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Abstract Navigation in an unknown dynamic environment is one of the key chal-

lenges in mobile robotics. This paper proposes a scheme, inspired by human pedes-

trian behavior, for navigation of a mobile robot in an a priori unknown dynamic

environment. An occupancy grid map has been built using onboard sonar sensors

through successive sensor information. Inspired by human pedestrian behavior to

maintain a safe direction and distance to avoid collisions with obstacles, the pro-

posed navigation scheme trail a path for the robot following a forbidden region map

concept with a velocity proportional to the distance and rate at which the obsta-

cles are approaching or receding the robot. The reachable region of robot navigation

horizon is based on the motion model predictability of the obstacles. The navigation

scheme is deployed on a Fire Bird V mobile robot. The experimental result shows

that the robot is able to follow a smooth and time-efficient path avoiding collisions

with the mobile and stationary obstacles.
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1 Introduction

The need of mobile robots sharing a common work cell with human is continu-

ously increasing in many practical contexts. This demands for a smooth and time-

efficient navigation by the robots in an unknown dynamic environment. There have

been various approaches for environment mapping and navigation in the field of

mobile robotics. However, most of the methods are subjected to path irregularity
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and lower throughput leading to collisions in unknown dynamic environments. In

societal and industrial settings, the implementation of a mobile robot is accepted to

be enabled of navigation capabilities that meet both engineering and societal objec-

tives [1]. Therefore, mapping and navigation in an unknown dynamic environment

are largely an open research problem [2].

Based on the neuro-fuzzy concepts aiming toward collision free and minimum

trajectory error, number of motion control methodologies like adaptive neural net-

work method, sliding mode control, and back-stepping method [3] have been pro-

posed. Simultaneous localization and mapping (SLAM) technique have been in use

for building a metric map of an unknown environment [4]. Following SLAM for

modeling uncertainties, unexpected disturbances, and actuator failures, an adaptive

fault tracking control method have been proposed by Song et al. [5]. In the area of

robot localization and navigational research, number of technologies have been uti-

lized from mapping [4] to navigation [6]. Although aforementioned methods can

realize map-building-based navigation, human efforts or exteroceptive sensor infor-

mation have to be integrated for occupancy grid map building leading to limita-

tion in smooth and time-efficient navigation of the mobile robots. Obstacles detec-

tion through infrared images [7] have been studied to facilitate the deployment of

autonomous robots. Prediction of trajectories which comprises of discrete decisions

for interacting agents [8], use of visual and embodied data association to build a

local map [9] are explained for autonomous mobile robots. A fully distributed algo-

rithm for robots navigation has been implemented for mutual avoidance as adopted

by human have been proposed by Guzzi et al. [1]. But to address both engineering

and societal aspects of the navigation in unknown dynamic environment, a robot

should be equipped with the similar locomotion capability as a pedestrian.

We present a navigation scheme for a mobile robot in an unknown dynamic envi-

ronment. Using successive onboard sensor information, a real-time local map has

been built. Inspired by the human pedestrian behavior, the navigation scheme main-

tains a safe distance and direction form the obstacles by controlling its speed and

heading direction. A velocity constraint multiplier; proportional to the velocity of

the surrounding obstacles have been introduced to maintain a safe distance between

the robot and obstacles. Based on motion model predictability of obstacles, the navi-

gation scheme plan for a shorter or longer reachable region for the robot; which helps

to avoid the obstacles following a simple navigation scheme. The proposed scheme

has been deployed on a Fire Bird V mobile robot which ensures smooth and time-

efficient navigation in terms of path irregularity and relative throughput under no

obstacle, static and dynamic environments.

2 Real-Time Local Map Building

In this work, we used the Fire Bird V mobile robot customized with ultrasonic range

sensors (shown in Fig. 1a) as an experimental testbed. Successive sensors informa-
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tion were superimposed for real-time map building of a local area; scanning a view

of 360
◦

surrounding the robot with a radius of 180 cm.

A typical ultrasonic sensor returns a radial measure of distance to the nearest

obstacle within its conical field of view which lies between 10
◦

and 30
◦
. To avoid

crosstalk possibility, we used four Ultrasonic Ranging Module HC-SR04 equally

spaced 90
◦

apart in a circular ring on the robot at a height of 15 cm from the ground.

The circular ring is mounted on a servo mechanism in order to have a full 360
◦

scan

around the robot. The ultrasonic sensors were set to detect an obstacle upto 180 cm

with an accuracy of ±1 cm.

Figure 1c shows schematic of four sensors as S1, S2, S3, and S4; wherein each

sensor’s beam of acoustic energy spreads in a cone of 30
◦
. The typical scan time of

a sensor ranges from 60 to 500 ms. The servo mechanism rotates the circular ring

twice by an angle of 30
◦

to complete a scan of a 90
◦

cone by each sensor. The cone

of the acoustic energy beam during successive rotation of sensor S3 for completing

a scan of 90
◦

is shown as S3, S3′ and S3′′ in Fig. 1c. If the sensor returns a value of

distance between the specified minimum and maximum range (10–180 cm), then the

returned distance measurement is proportional to the distance of the nearest obstacle

within the range of the sensor.

Map building requires obstacles’ localization in the area with reference to the

robot. For the ease of it, sensing range in front of each sensor is categorized into

three zones (viz., Z1, Z2, and Z3) and shown for sensor S1 in Fig. 1c. The zones

Fig. 1 a Experimental test

bed: Fire Bird V customized

with ultrasonic range

sensors. b Typical map build

with the robot as a circle in

blue color and obstacles as

squares in black color. c
Schematic of the ultrasonic

sensors with the cone of

acoustic energy spread and

sensing range
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Z1, Z2 and Z3 ranges upto a distance of 30 cm, 90 cm and 180 cm respectively. The

incoming four sonar sensors’ (S1, S2, S3, and S4) readings for three successive trials

(like S3, S′3, S′′3 for sensor S3) are interpreted and converted to local occupancy values

for map building. The grids allow the efficient accumulation of small amounts of

information from individual sensor readings for increasingly accurate maps of the

robot’s surroundings. An occupancy grid map has been built based on the sensors

information wherein a sequence of continuously changing information indicates an

obstacle; a new continuous sequence after a discontinuity indicates a new obstacle;

and a single measurement not related to its neighbors considered as noise. Figure 1b

shows a typical map built with the robot shown as a circle in blue and the obstacles

as squares in black colors. The map building through sensor data interpretation is

the first phase to support the robot navigation in an unknown dynamic environment.

3 Navigation Scheme

The proposed scheme aims at human pedestrian behavior and is based on a novel

cognitive science approach to determine human pedestrian behavior [10].

3.1 Human Pedestrian Behavior

A pedestrian usually selects the most convenient and efficient path for reaching the

destination. Visual information is the prime source for deciding the motion strategy

by the pedestrian [11]. Using the neural interface between the retina and brain, a

pedestrian can estimate the time to collision with the obstacles [12]. Accordingly,

the pedestrian chooses the direction that leads to the destination through the shortest

path while maintaining a safe distance from the obstacles along the line of heading

[10].

3.2 Navigation Approach

The navigation approach plan to scan an area of 180 cm radius with the robot’s posi-

tion as the center and repeats the plan after traversing the area moving toward its

goal. At each step, the robot estimates the relative obstacle position and motion for

choosing a way to avoid collisions. We model the velocity vector of the robot (VROB)

by a superposition of the velocity due to its own actuation (VAct) as a factor of a mul-

tiplier proportional to the distance between the robot and the obstacle. We introduced

this multiplier as velocity constraint inspired by the human pedestrian behavior to

maintain a safe distance with the obstacles.
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VROB = VAct + k ⋅ VAct (1)

where k = Velocity constraint proportional to the distance between the robot and the

obstacle; and is quantized as follows:

k =1 if𝛥DRob−Obs ≥ 91 cm

=0 if𝛥DRob−Obs = 31−90 cm

= − 1 if𝛥DRob−Obs = 10−30 cm

where 𝛥DRob−Obs = Distance between the robot and the obstacle.

The navigation scheme generates the actuation command to the robot for modi-

fying its speed in order to avoid collision with the obstacles in its sensing range. The

actuation to the robot is kept at VAct = 12 cm/s with k = 0 initially and can have a

maximum speed of 24 cm/s. To avoid collision, k = −1 at 𝛥DRob−Obs = 10–30 cm

(i.e., when the obstacle is in the region Z1) makes the robot to stop and allow change

in its heading direction. The robot moves with 12 cm/s toward its goal point with k
= 0 at 𝛥DRob−Obs = 31–90 cm (i.e., when the obstacle is in the region Z2). The robot

doubles its speed toward the goal point with k = 1 at 𝛥DRob−Obs = 91–180 cm (i.e.,

when the obstacle is in the region Z3). The robot modifies its motion strategy suc-

cessively every 4 s; out of which 3 s is required by the robot to scan the 360
◦

around

it and another 1 s for commanding the actuation including the computation for map

building. The determination of the directional heading and velocity of the robot is

illustrated for static and dynamic environment in the following sections.

3.2.1 Static Environment

We plan the robot navigation in position space. Position space for a short duration

𝛥T becomes the reachable region R𝛥T; which is the set of all positions that the robot

can reach in time 𝛥T . Each obstacle corresponds to a set of directions, termed as

forbidden headings that need to be avoided. We denote the forbidden heading for a

given obstacle as Hobs.

In Fig. 2a, R𝛥T shows the reachable region with the robot velocity vector VROB
towards the goal position. An obstacle in between the start and goal point is repre-

sented by the occlusion points Os and Oe in Fig. 2b. To accommodate the size of the

robot of radius RROB, we extend the obstacle by this measure at the occlusion points.

The heading to be avoided by the robot to prevent collision is shown as HObs; marked

in the reachable region with an arc in red color and is determined as the forbidden

region. The directional heading decision for passing by Os or Oe is made through

choosing the shortest path to the goal. The velocity vector VROB is determined fol-

lowing the Eq. 1. For multiple obstacles, multiple forbidden regions are introduced

following the same approach.
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Fig. 2 a Reachable region

and velocity vector of the

robot. b An obstacle in red

color with occlusion point

Os and Oe in between the

robot and the goal and the

forbidden region HOBS. The

robot is shown as a circle in

blue color at the start point

with the goal as a circle in

green color

Fig. 3 a Choice of smaller

reachable region with the

obstacle in the Z1 or Z2 zone.

b Choice of larger reachable

region with the obstacle in

the Z3 zone

3.2.2 Dynamic Environment

The velocities of the dynamic obstacles are unknown a priori and have to be superim-

posed with the robot velocity in order to maintain a safe distance with the obstacles.

Accordingly the Eq. 1 for determining the robot velocity is modified as follows:

VROB = VAct + k ⋅ VAct ± VOBS (2)

where VOBS = Obstacle velocity measured using onboard sensors and is negative

if the obstacle is proceeding towards the robot and is positive if receding from the

robot.

The choice of the reachable region R𝛥T depends on the distance to the nearest

obstacle. If the predicted motion is considered reliable, the robot can plan for a longer

reachable horizon. On the other hand, if the obstacle’s motion model is highly unpre-

dictable, the robot plans for a shorter reachable horizon. If the predicted distance to

the obstacle lies in the Z1 or Z2 zone, the reachable region is planned with shorter

time step as shown in Fig. 3a. On the other hand, if the predicted distance to the

obstacle lies in the Z3 zone, the reachable region is planned with longer time step as

in Fig. 3b. With this reachable region, the directional heading is decided as for static

environment.
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4 Experiments and Results

4.1 Experimental Setup

Experiments are performed with the Fire Bird V mobile robot on a rectangular arena

of 5.76 m
2

with 36 squares of 0.16 m
2

each in it. At first, the robot is entrusted to

navigate from the start (i.e., robot origin position) to goal point (i.e., robot final posi-

tion) on the arena. The data from the sonar sensors were fed to MATLAB through

an UNO 328P controller. The path planned in MATLAB following the navigation

approach illustrated in Sect. 3 is fed to the robot controller ATMEGA 2560 for its

navigation accordingly. The experiments have been performed in the following three

environments:

No Obstacles Environment: The arena is free of any obstacles and the robot travel

toward the goal point from the start point.

Static Environment: The obstacles initially placed at regular intervals along the ver-

tices of the squares in the arena and the robot was entrusted to navigate from the start

to goal point.

Dynamic Environment: The remotely controlled dynamic obstacles travel obstruct-

ing the path of the robot from the start to goal point. This creates a crossroad and the

robot frequently need to adjust their trajectories in order to avoid collisions.

4.2 Performance Metrics

Following performance metrics have been computed for each environments:

Throughput: It indicates the robot’s time efficiency in navigating toward the goal.

This measure is defined as the minimal time that the robot would take to reach the

goal without any obstacles while traveling in a straight line divided by the actual

time it takes while traveling from the start to goal point avoiding any collisions in

the presence of obstacles.

Path Irregularity: It is defined as the amount of unnecessary turning per unit path

length performed by a robot, where unnecessary turning corresponds to the total

amount of robot rotation minus the minimum amount of rotation which would be

needed to reach the same goal point with the most direct path. Path irregularity is

measured in radian per meter and indicates the smoothness of the navigating path.

Number of Collisions: It indicates the performance of the navigation algorithm in

terms of safety measuring the number of collisions occurring under the three exper-

imental environments. It is measured as collisions per minute.
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4.3 Results and Discussions

The results exploring the characteristics of the proposed navigation scheme in terms

of throughput and path irregularity in three different environments: no obstacles,

static and dynamic environments are reported in this section. Figure 4 through Fig. 6

shows the navigation path of the robot in no obstacle, static and dynamic environ-

ments.

Initially, the robot was kept stationary at the start point and entrusted to travel to

the goal point located at a distance of ≈250 cm along the diagonal of the arena as

shown in Fig. 4. Under no obstacle environment, Fig. 4 shows the robot navigation

path following the shortest path from the start to the goal point. Initially, the robot

starts with a speed of 12 cm/s. After a period of 4 s, the robot updates its speed to 24

cm/s following the Eq. 1. This is because the sensors could not detect any obstacles

along its path towards the goal point (i.e., k = 1). The robot continues its navigation

path at the maximum speed of 24 cm/s and completes in≈11 s. In static environment,

initially the robot follows the direction to go straight toward the goal at a speed of

12 cm/s. On the detection of an obstacle at a distance of about ≈56 cm, the robot

motion is modified. Accordingly the velocity constraint value is updated as k = −1

following Eq. 1. Following the navigation approach illustrated in Sect. 3, the robot

avoids the forbidden region and moves to one of the edges of the obstacle leading

to the shortest path to the goal point as shown in Fig. 5a. Likewise, the collision

avoidance of the robot with the second obstacle is shown in Fig. 5b. The second

obstacle is located at a distance of ≈65 cm from that of the first obstacle’s edge

and the robot avoids the forbidden region with the velocity constraint value as k =

−1 following Eq. 1. Figure 5c shows the navigation path of the robot from the start

to the goal point in static environment. In dynamic environment, initially the robot

follows the direction to go straight toward the goal at a speed of 12 cm/s as in static

environment. The first dynamic obstacles obstructs from left side of the robot. The

collision with the first obstacle is avoided as in Fig. 6a with a velocity constraint value

updated to k = −1. The robot avoids the forbidden region following the navigation

approach as illustrated in Sect. 3 with a velocity according to the Eq. 2; wherein the

Fig. 4 Navigation of the

robot in no obstacle

environment
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Fig. 5 Robot navigation in static environment avoiding collision with a first obstacle b second

obstacle and c from start to the goal point

Fig. 6 Robot navigation in dynamic environment avoiding collision with a first obstacle b second

obstacle and c from start to the goal point

Fig. 7 Throughput and path

irregularity in static

environment
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robot’s velocity increases by a magnitude equal to the obstacle’s velocity. Similarly,

collision avoidance with the second obstacle approaching the path of the robot from

right to left is shown in Fig. 6b. In this case, the robot’s velocity decreases by a

magnitude equal to the velocity of the obstacle. Figure 6c shows the navigation path

of the robot from start to the goal point in dynamic environment with the reachable

and forbidden regions as planned by the navigation scheme. Such dynamic obstacle

avoidance requires a simple and fast online navigation scheme as proposed.

The throughput and path irregularity of the robot in static and dynamic environ-

ment are shown in Figs. 7 and 8. It can be observed that the throughput decreases
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Fig. 8 Throughput and path

irregularity dynamic

environment
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and path irregularity increases with the increase in the number of obstacles. This

is because robots must follow longer and more curved path with the increase in the

number of obstacles. The throughput of the robot is higher in static environment

compared to the dynamic one as the robot follows more longer path to avoid dynamic

obstacles compared to static obstacles. Further, path irregularity of the robot is higher

in dynamic environment compared to static environment as the robot needs to follow

more number of changes in heading direction for avoiding collisions with dynamic

obstacles.

5 Conclusions

A navigation scheme inspired by human pedestrian behavior for a mobile robot in

an a priori unknown dynamic environment is proposed. The proposed scheme is

evaluated under no obstacles, static and dynamic environments; and the robot was

able to avoid both stationary as well as dynamic obstacles. The experimental results

show that the introduction of the velocity constraint and reachable regions holds

promise for navigation of mobile robot. It has been observed that the throughput and

path irregularity of the robot decreases and increases, respectively, with the increase

in the number of obstacles. One of the opportunities to minimize it is the detection of

the obstacle’s orientation in the sensing cone; which is the part of ongoing research.
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