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Abstract A single-input single-output discrete system of high order is reduced to a
second order in this paper employing two approaches: an indirect approach using
conventional techniques and a direct approach using evolutionary techniques. In the
indirect approach, the discrete system is transformed to a continuous system and
reduced to a lower order by Padê approximation (by matching Time Moments or
Markov parameters) combined with Routh approximation for ensuring stability and
inverse transformed back to a lower order discrete system. In the evolutionary
approach, the discrete system is reduced to a lower order discrete function and
optimized based on minimization of ISE as the objective function using Genetic
Algorithm (GA) and Particle Swarm Optimization (PSO) independently. The step
responses of reduced order discrete systems obtained by the conventional and
evolutionary approaches are compared to determine the best solution.
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1 Introduction

For analysis, synthesis, and to study the behavior of real-life systems, its high order
complex mathematical model needs to be reduced to simpler lower order model
whose behavior resembles that of original system as far as feasible. Various
methods of model order reduction have been listed and described comprehensively
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and comparatively by Genesio R. et al. and other authors [1–7]. Shamash Y. [7]
showed that the models reduced from even the originally stable models by many
methods are not always stable. This problem has been addressed by Hutton M and
many others [8–26] by reduction methods using stability criterion like Routh
approximation or Mihailov stability criterion and many without the aid of any
stability criterion as well as using mixed techniques. Majority of various methods
referred above are applicable for reduction of continuous systems only. The discrete
systems can be reduced in discrete domain directly or indirectly using known
conventional methods and their stability verified [27–33]. In the last two decades,
bio-inspired evolutionary techniques such as Genetic Algorithm (GA) and Particle
Swarm Optimization (PSO) method have emerged as modern tools for reduction
and optimization [34–42]. In this paper, an nth-order single-input single-output
discrete system has been reduced by two approaches. The first indirect approach
consists of the transformation of the discrete system into a continuous system, order
reduction of the continuous system using a combination of conventional techniques
of Padê approximation (by matching Time Moments or Markov parameters)
combined with Routh approximation for ensuring stability, and inverse transfor-
mation of the reduced continuous system back into a discrete system. The second
approach consists of the direct method using evolutionary techniques of GA and
PSO independently. This paper is organized into eight major sections with Sect. 1
already used for introduction. The problem statement is made in Sect. 2. Indirect
approach of order reduction by a combination of conventional techniques has been
presented in Sect. 3. In Sects. 4 and 5, order reduction and optimization of the
solution by GA and PSO methods have been presented sequentially. All the above
methods have been applied to an eighth-order discrete transfer function to obtain
second-order reduced discrete transfer function in Sect. 6. The results obtained are
compared in Sect. 7. Conclusions made are discussed in Sect. 8.

2 Problem Statement

An nth-order discrete system transfer function in z-transform is represented by:

G zð Þ=NðzÞ ̸DðzÞ. ð1Þ

with numerator N(z) = a0 + a1z + a2z
2 + ⋅ ⋅ ⋅ + a(n–1) z

(n−1) and denominator
D(z) = b0 + b1z + b2z

2 + ⋅ ⋅ ⋅ + b(n−1) z
(n−1) + bn z

n where ai (0 ≤ i ≤ n − 1)
and bi (0 ≤ i ≤ n) are the scalar coefficients of powers of ‘z’ in the expressions of
numerator N(z) and denominator D(z), respectively.

The main objective is to derive a discrete system transfer function R(z) of lower
order ‘r’ (r < n) using indirect (conventional) methods and direct methods (GA and
PSO). The reduced transfer function is represented by
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R zð Þ=NrðzÞ ̸DrðzÞ. ð2Þ

with numerator Nr(z) = c0 + c1 z + c2 z2 + ⋅ ⋅ ⋅ + c(r–1) z
(r−1) and denominator

Dr (z) = d0 + d1 z + d2 z
2 + ⋅ ⋅ ⋅ + d(r–1) z

(r−1) + dr z
r where ci (0 ≤ i ≤ r − 1)

and di (0 ≤ i ≤ r ) are the scalar coefficients of powers of ‘z’ in the expressions
Nr(z) and Dr(z) respectively chosen such that the behavior and response of
R(z) should match as closely as possible to that of G(z) for the same type of inputs.

3 Reduction by Conventional Method

Verify the stability of discrete system G(z) by applying Jury stability criterion. By
applying bilinear transformation z = (1 + s)/(1 – s) to G(z) to Eq. (1), obtain an
equivalent continuous system transfer function G(s) represented by Eq. (3) given
below

G sð Þ=N sð Þ ̸D sð Þ. ð3Þ

with numerator N(s) = e0 + e1s + e2s
2+ ⋅ ⋅ ⋅ + e(n–1)s

(n−1) and denominator
D(s) = f0 + f1s + f2s

2 + ⋅ ⋅ ⋅ + f(n–1) s
(n−1) + fn s

n where ei (0 ≤ i ≤ n – 1) and
fi (0 ≤ i ≤ n – 1) are the scalar coefficients of powers of ‘s’ in the expressions
N(s) and D(s), respectively.

Construct Routh array from the denominator D(s) by arranging the powers of
s in the decreasing order. Verify the stability the G(s) by applying Routh stability
criterion. Using Routh approximation method proposed by Hutton and Friedland,
modified by Shamas Y and illustrated by Panda S. et al. [8, 9, 40], obtain a reduced
order denominator of desired order ‘r’ as shown below in Eq. (4):

Dr sð Þ= ∑
r

j = 0
hjs j

( )
with hr =1. ð4Þ

Following John S. et al. and Panda S. et al. [12, 14, 40], G(s) is expanded about
s = 0 (or s = ∞) into power series with time moments (or Markov Parameters)
given below:

Time Moment power seriesG sð Þ=GTðsÞ= p0 + p1s+ p2s2 + p3s3 . . .
� �

. ð5Þ

and Markov Parameters power seriesG sð Þ=GM sð Þ= ðm1s−1 +m2s−2 +m3s−3 . . .Þ .
ð6Þ

Multiply the power series Eqs. (5) and (6) independently with the reduced
denominators Dr(s) Eq. (4) and limit the largest power of s in the products to one
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power less than that of the reduced denominator Eq. (4) to obtain the two reduced
numerators as given below in Eq. (7):

Nr sð Þ= ∑
r− 1

j = 0
qjs j
� �" #

ð7Þ

where j represents power of s and qj represent the coefficient of jth power of s. By
using reduced numerators and reduced denominator represented by Eqs. (7) and
(4), obtain two reduced models of order ‘r’ in s domain, one model by matching
Time Moments in Eq. (5) and one model by matching Markov parameters in
Eq. (6), as given below in Eq. (8):

Gr sð Þ=Nr sð Þ ̸Dr sð Þ ð8Þ

Remove the steady state errors of the reduced functions by multiplying the
reduced functions with respective gain correction factors [G(s)/Gr(s)]s=0. Convert
the reduced models in s domain to z domain by inverse bilinear transformation
yielding four reduced discrete functions Gr(z) by the indirect conventional
approach. Once again steady-state errors are removed by applying suitable cor-
rection factors. Finally, verify the stability of each of the reduced discrete function
Gr(z) by determining that all the discrete system poles reside inside the area of circle
of radius |z| = 1.

4 Reduction by GA Technique

The objective function chosen in this paper for the GA technique is minimization of
the (ISE) or square of error between the transient state step responses of the original
discrete system G(z) of high order and the reduced order discrete system R(z)
integrated within the limits of time domain of transient state. The ISE computed by
the integral I given by Eq. (9) is as follows:

I =
ZTs
0

y tð Þ− yr tð Þ½ �2d tð Þ ð9Þ

where y(t) and yr(t) represent the unit step responses of original and desired reduced
discrete transfer functions and TS represents the settling time of transient state
response. The evolution in GA is initiated from a population of randomly generated
variables. The reduced order transfer function R(z) is optimized through a number
of iterations (generations). For a given optimization objective function, a number of
solutions are possible.
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An optimized reduced function of desired order is obtained using readily
available MATLAB code for GA after defining the objective function, controlled
variables, maximum number of generations, population size as well as the upper
and lower bounds of each variable. The controlled variables are the scalar coeffi-
cients of powers of z in the numerator and denominator of the desired reduced
discrete system transfer function arranged in a defined sequence. Their total number
of controlled variables is five (5) for optimizing second-order reduced function. GA
creates new solutions (akin to chromosomes of a living cell) using reproduction,
crossover, and mutation.

5 Reduction by PSO Technique

In the PSO method, the reduced order transfer function R(z) is optimized through a
number of iterations (generations) keeping an optimization objective. A number of
feasible solutions (called as a particles) are produced in each generation by fol-
lowing the principles of fish schooling or flocking behavior of birds or social
behavior of a flock of birds. The objective function of the PSO method is also the
same as in the case of the GA method and is given by Eq. (9).

Each particle endeavors to improve its fitness in each successive generation by
imitating the properties of more successful peers. It is capable of remembering its
own best fitness position (referred to as the p-best) in the solution space so far
visited by it. The overall best fitness position out of all the p-best positions of
different particles in the population in a given generation is called as the group best
or the g-best position. Each particle continuously makes effort to move toward the
g-best position. Each particle flies in the solution space with a velocity determined
by its own momentum which is modified dynamically according to its own flying
experience (p-best position) (cognitive vector) as well as that of its peers or other
particles (g-best position) (social vector). Various parameters are selected carefully
according to past experience to guide the particle achieve an optimum value as fast
as possible with suitable velocity and without resorting to excessive iterations.
The PSO algorithm needs to be initialized with an initial swarm consisting of the
coefficients of powers of z chosen from any known reduced discrete system of
desired order. In each PSO run, the optimization ceases automatically after com-
pleting the preset number of generations (iterations). Barring the first PSO run, the
initialization of the next PSO run is done using the optimized results achieved in the
previous PSO run. The ISE will gradually reduce and get stabilized with the
increase in the execution of a total number of iterations.
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6 Numerical Example

6.1 Combined Routh Approximation and Padê
Approximation Method

An eighth-order discrete system (converted from an eighth-order stable continuous
system of Panda S. et al. [40]) is given in Eq. (10) as shown below:

G zð Þ=N zð Þ ̸D zð Þ with a sampling period of 0.25 s ð10Þ

where N(z) = 2.052 z7 – 5.461 z6 + 4.64 z5 – 0.04639 z4 – 2.228 z3+ 1.25 z2 –

0.1686 z – 0.02627 and D(z) = z8 – 3.044 z7 + 3.877 z6 − 2.697 z5 + 1.12 z4 –

0.2842 z3 + 0.04307 z2 – 0.003565 z + 0.0001234. The main objective is to derive
a stable reduced second-order discrete system model which has a transient step
response similar and as close as possible to that of the original stable discrete
system of eighth order. The steps explained in Sect. 3 have been implemented on
the eighth-order discrete transfer function (10) to obtain stable second-order
reduced discrete transfer functions by the indirect conventional method as given
below:

RTM zð Þ= 1.632z− 0.5788ð Þ ̸ z2 + 0.01711z+0.0001234
� � ð11Þ

RMP zð Þ= 1.142z− 0.0886ð Þ ̸ z2 + 0.01711z+0.0001234
� � ð12Þ

6.2 Genetic Algorithm Method

An optimized second-order discrete transfer function as shown below in Eq. (13) is
obtained by running a GA program readily available on MATLAB after specifying
various parameters, defining the objective function and entering the coefficients of
powers of z of Eq. (10) in predefined sequence:

RGA zð Þ= 1.3048z+0.6109ð Þ ̸ 1.0071z2 + 0.2104z+0.5314
� � ð13Þ

6.3 Particle Swarm Optimization Method

The coefficients of powers of z of the second-order reduced function RT1(z) Eq. (11)
obtained by the conventional methods is used for initialization of PSO algorithm.
An objective function is defined and various parameters are specified in Sect. 5.
A program based on PSO algorithm is run on MATLAB after entering the coef-
ficients of powers of z of Eq. (10) in the program. The reduced function obtained in
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a particular run is used for initialization of next PSO run and so on for subsequent
runs. The second-order reduced discrete function obtained by PSO is given in
Eq. (14) shown below.

RTMPSO zð Þ= − 69.1165743z+63.03683816ð Þ
− 38.17950153z2 + 43.06414420z− 10.78699324ð Þ ð14Þ

The plot of ISE data generated during seven consecutive PSO runs versus the
generation number in Fig. 1 shows optimization of solutions after 200 generations,
the minimization, and the convergence of ISE data with an increase in the number
of generations. In a similar manner, using the discrete second-order functions
RM1(z) Eq. (12) for initialization of PSO, another second-order reduced optimized
discrete transfer function is obtained as shown below in Eq. (15).

RMPPSO zð Þ= 6.14176748z− 5.58841660ð Þ
3.65282698z2 − 4.30474654z+1.18888032ð Þ ð15Þ

The step responses of second-order discrete system equations obtained by the
second-order Eqs. (14) and (15) obtained by PSO, paired with Eqs. (11) and (12)
obtained by indirect conventional method (by matching Time Moments or Markov
parameters) combined with Routh approximation and Eq. (13) obtained by GA,
along with original discrete eighth-order Eq. (10) are plotted in Figs. 2 and 3. The
parameters of step responses, viz., settling time (TS), rise time (TR), peak time (TP),
and maximum overshoot (MP) are measured from the plots of step responses. The
values of poles for each transfer function are calculated. The ISE values are cal-
culated for all the reduced second-order functions using Eq. (9). The results
obtained are tabulated in Table 1 for comparison.

Fig. 1 ISE (between original transfer function and reduced function) versus PSO Generation No
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Fig. 2 Step responses of original discrete TF, reduced TF matched with time moments, GA
reduced TF, and PSO reduced TF

Fig. 3 Step responses of original discrete TF, reduced TF matched with Markov parameters, GA
reduced TF and PSO reduced TF
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7 Discussion of Results and Comparison of Methods

It can be seen from Figs. 2, 3 and Table 1 that the magnitude of each of the poles of
all functions is less than unity and lie within the unit circle. All the 2nd order
Reduced Transfer Functions (RTFs) are stable like the 8th order Original Transfer
Function (OTF). But the dominant poles of the PSO reduced RTFs are closer to that
of the OTF. Though the step responses of all the RTFs have zero steady-state error,
the amount of similarity and close resemblance of the shapes of step responses vary
from one RTF to another. While the step response of OTF has a distinct large
overshoot and the overshoots in step responses of RTFs due to GA and other
conventional methods are insignificant, but the step responses of RTFs only due to
PSO has got some significant values of overshoots comparable and even larger than
that of 8th order OTF. On comparison of step response parameters settling time
(Ts), maximum overshoot (Mp), peak time (Tp), and rise time (TR) and ISE, it can
be seen that the parameters of step responses of RTF obtained by PSO are the
closest and best approximates of OTF, while those obtained by GA Padê and Routh
approximations are quite inferior and poor approximates of 8th order OTF.

8 Conclusion

In this work, a discrete system transfer function of eighth order has been reduced to
a discrete transfer function of second order by the indirect approach of combined
conventional methods of Padê approximation (matching of Time Moments/Markov
parameters) and Routh approximation and direct methods of Genetic Algorithm and
Particle Swarm Optimization. A comparison of all parameters and the step

Table 1 Comparison of step response parameters and poles of the original transfer function
(OTF) and reduced functions TMTF, MPTF, GATF, and PSO RTF

Transfer function TR

(s)
TP

(s)
MP

(%)
TS

(s)
ISE Poles

Original eighth
order Eq. (10)
(OTF) G(z)

1.0 1.0 54 5.5 NA 0.7838, 0.6236, 0.4462 ± j0.1099,
0.2256 ± j0.0717, 0.1577, 0.1353

Reduced 2nd order
RTM(z) Eq. (11)

1.0 1.0 3.54 1.0 0.3670 −0.0086 ± j0.0071

Reduced 2nd order
RMP(z) Eq. (12)

1.0 1.0 3.56 1.0 0.6486 − 0.0086 ± j0.0071

Reduced 2nd order
RGA(z) Eq. (13)

1.0 3.0 10 4 0.0261 − 0.1045 ± j0.7188

Reduced 2nd order
RTMPSO(z) Eq. (14)

1.0 1.0 94 4.5 0.00067 0.7525 and 0.3755

Reduced 2nd order
RMPPSO(z) Eq. (15)

1.0 1.0 95 4.5 0.0047 0.7367 and 0.4418
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responses shows that the results of the discrete functions reduced by PSO method
are best and closest approximates of original model followed by that of GA method
and the step responses of the reduced TF obtained by conventional techniques are
poor approximates of the step response of original transfer function. This is also
confirmed by the lowest ranges of ISE of the PSO reduced functions.

Therefore, it can be concluded that the PSO technique is the best of all the
methods of reduction discussed above. Considering that the reduction is from a high
eighth order to a low second order, the results are satisfactory and encouraging. Still
better results and closer resemblance of step response of RTFs with that of OTF can
be expected if the desired order of reduced function is increased to third order or
higher.
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