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Abstract The fMRI (Functional Magnetic Resonance Imaging) technology is a rev-

olutionary tool that has lit up the studies of human cognitive processing with the

help of efficient methods of image and data analysis. Machine learning classifiers

are widely employed to extract all sorts of information from neuroimaging data.

This study aims to identify tangible patterns in the fMRI data for visual activity

and perform multivariate pattern analysis. It is done by selecting relevant features to

indicate the response to visual stimulus of a set of objects belonging to eight different

categories. The task intends to identify the nature of the response to the stimuli and

classify them according to the brain’s neural activation to the visual stimuli. An SVM

(Support Vector Machine) classifier and an FSVM (Fuzzy Support Vector Machine)

classifier are implemented to perform the classification based on the features. The

training of the classifiers involved 72 test samples per category. The 24 test sam-

ples of each category were tested with each of the classifiers. Conclusively, for this

dataset, the FSVM classifier performs better than SVM classifier with an increased

accuracy of 4% and classifying certain categories with improvement.
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1 Introduction

Given the multitude of activities made possible by the brain, the visual object recog-

nition is an extremely intriguing task. For so many years, neuroscientists have been

trying to further their understanding of the various cognitive processes. It is increas-

ingly possible by solving the problem of brain-mapping wherein a relationship is

established between the perceptual state and the specific patterns in the brain.

Functional Magnetic Resonance Imaging (fMRI) is an imaging technology which

is primarily used to record the brain activation during any activity by measuring neu-

ral activity in the brain. Its non-invasive, safe and easy-to-use nature powered with

its promising spatial and good temporal resolution have contributed immensely to its

popularity in medicine, research and industry. It has been instrumental in empower-

ing studies that have thrown light on the functional aspects of the brain with respect

to memory, language, pain, learning and emotion as elaborately discussed in [1].

Multiple methods of data analysis when applied on the fMRI data can give deeper

insights into the patterns represented by these images of the brain. Researchers have

now employed fMRI to conduct hundreds of studies that identify which regions of

the brain are activated on average when a human performs a particular cognitive

task. Research publications have enumerated the summary statistics of brain activity

in various locations.

As elucidated in [2–4], a number of machine learning techniques can be effec-

tively employed to draw certain scientific results. These depict how computing is

used as tool to delve deeper into the patterns that are generated in the brain. These

patterns have to be used by computing algorithms to draw inferences about many

useful things. Pattern analysis is the key to solve the brain-mapping problem.

1.1 Related Studies

Many approaches have been developed for pattern analysis. Multivariate Pattern

Analysis (MVPA) is described and used in [5] and [6]. It involves analysing the

pattern considering the fMRI data as a whole. It has proven to be more sensitive

and more informative about the functional organization of cortex than in univariate

analysis with the General Linear Model (GLM). The multivariate pattern analysis

allows us to study how specific stimuli are encoded in detailed activity patterns in

specific parts of the brain.

Classifying the stimuli for a particular activity is a fundamental task in dealing

with the brain. Machine learning makes this possible with data classification algo-

rithms. A slew of classifiers have been used across various works. LDA is imple-

mented by the work in [7]. A technique of using a collection of machine learning

algorithms to train classifiers of specific stimuli is adopted in [8]. Here, GNB and

kNN classifiers are combined to achieve more than 95% accuracy. It points out that

the high dimensionality and intrinsically low signal-to-noise ratio of fMRI data raises
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a need for using alternate and collective methods of classification. The approach

seems to improve multiple subject experiments by reducing the high inter-subject

variability in brain function. The work in [9] uses LDA and SVM classifiers with the

SVM classifiers achieving 53% accuracy for restricted voxels. It explains the clas-

sification with specific reference to the visual cortex. The work [10] also uses an

SVM classifier to predict the orientation of the stimulus. Jeiran Choupan [11] com-

pares SVM, NN and CRF classifiers under various conditions for the same dataset

used in our work. Song [12] is a comprehensive study of SVM classification for

fMRI data with different voxel selection schemes. Weili Zheng [13] points out the

need for these classifiers to optimally select brain regions. It is evident that, owing

to the high-dimensional nature and volume of the fMRI data, the performance of

SVM classifier seems to have outsmarted all the other classifiers as in [14]. Hence,

the motivation of this work is to incorporate an SVM classifier. In order to further

enhance the performance of an SVM classifier, a different version of the same can

be employed.

1.2 Fuzzy SVM

Fuzzy SVM (FSVM) is a classification methodology that can be incorporated as an

extension of the SVM classifier with additional conditions for classification. A clear

explanation about the underpinnings of the SVM and FSVM classifiers formulation

were detailed in [15]. It explains about the handling decisions of classification based

on certain rules whenever the distribution of the test data in the feature space does

not yield a decisive classification.

The interest is to train classifiers to automatically decode the subjects’ visual cog-

nitive state over an interval in time. When such classifiers are trained reliably, they

can be made as virtual sensors of cognitive states to use them for further analysis

or usage. This study investigates the utility of methods in improving the prediction

accuracy of classifiers trained on functional neuroimaging data taken from [16].

1.3 Scope of Our Work

This work explores the use of a classification method—FSVM in the context of an

event-related functional neuroimaging experiment where participants viewed images

of objects in intervals. It requires to train support vector machines on functional data

to predict with a greater accuracy the objects viewed by the participants. It shows

that the classifier achieves better than random predictions and the average accuracy is

close to that of the actual stimuli. Here, the classification method consists of feature

extraction, feature selection and classification parts, and it also employs a feature

extraction method based on the mean change in the intensity from baseline condition

to the sample.
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To process the fMRI data corresponding to the task of visualizing objects belong-

ing to finite categories one after the other, classifiers are built to classify input fMRI

image volumes into their corresponding categories. It involves performing statistical

corrections and analysis on the data, selecting and extracting the characteristic fea-

tures as voxels and training the data for classification by an SVM classifier, followed

by the constructed FSVM classifier. N-fold cross-validation mechanism is used with

the training of these classifiers. The performance of the two classifiers is compared

with respect to their relative accuracies in predicting the different categories corre-

sponding to the data.

2 System Design

The system implemented in this work involves the fMRI data of the visual one-back

task dataset downloaded from [16] and the acquired fMRI data of two additional

subjects that are employed as test data in the classification. The image volumes are

preprocessed applying many techniques and the category representing features are

extracted. The feature set is given as input to the SVM and FSVM classifiers for

categorizing the data into the corresponding categories of objects that were viewed

by the subject during data acquisition.

2.1 Dataset

During the task of recording the fMRI images for the dataset, the subjects see the

eight objects presented as greyscale photographs for 24-s, followed by 12-s of rest.

Each of the stimuli is held for 500 ms with an inter-stimulus interval of 1500 ms.

Twelve time series volumes are extracted for each of the eight subjects.

Additional real test data was acquired by us by carrying out the same task (only for

two categories—shoe and bottle images) with two healthy volunteers under the same

experimental conditions [repetition time (TR) = 2500 ms, 40 3.5-mm-thick sagittal

images, field of view (FOV) = 24 cm, echo time (TE) = 30 ms, flip angle = 90◦].

Currently, the dataset consists of visual identification of eight different cate-

gories of objects: House, Scrambled, Cat, Shoe, Bottle, Scissors, Chair and Face

as greyscale images by eight different subjects and additional test data.

2.2 Preprocessing

A series of operations is applied to correct and normalize the data to make it compat-

ible for extracting features and further processing. This helps in preparing our data

for classification. They are summarized in Table 1.
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Table 1 A summary of the preprocessing steps applied

Preprocessing step Reason

1 Brain extraction Elimination of non-brain tissues with

highly variable contrast

2 Motion correction Adjustment of the variation of intensity

due to head movements

3 Spatial filtering Increase in signal-to-noise ratio and

smoothness

4 Temporal filtering Discarding noise due to very high and

very low frequencies

5 Detrending Ensuring that there is significant intensity

change over time

6 Intensity normalization Transformation of data into a normal

distribution

2.3 Feature Extraction

Extracting the features with respect to the baseline condition using feature space

reduction and a searchlight technique to construct data that can be used for training.

The major steps in feature selection and extraction are explained as follows:

Examples Creation The brain images corresponding to each category are dis-

tributed across time in independent blocks. This step combines the images across

time points as an example. It is done by block averaging, i.e. averaging the images

within each block of time in a run.

Spherical Searchlight The image volume examples in a trial is analysed by applying

a searchlight to compare each voxel with the neighbouring voxels. In this process, it

is inferred if the voxel is representative of the features of the category. Hence, a set

of voxels which represent the features are selected and the pattern is generated by

formulating it as a feature vector labelled by the category it represents.

To reduce feature input dimensionality feature representing voxels need to be

selected using a similar approach used in [3].

i. A fixed sphere is moved over the brain image volume, voxel-by-voxel.

ii. The mean intensity of all the voxels within the sphere is computed.

iii. Fixing the mean value within the sphere as a threshold, all the voxels with higher

intensity are assigned a score based on ranking.

iv. This scoring information is corrected for multiple comparisons as each data

point is used multiple times.

v. Finally, all those voxels with the maximum score are selected.

Voxel Reduction The set of voxels returned by the searchlight are huge in number

and contains voxels that are trivial. The features that represent the visual activity

are localized around the visual cortex. A brain atlas that provides a spatial mask of



158 S. Kavitha et al.

the visual cortex is used as an anatomical mask to select the voxels that are con-

fined around the visual cortex and reject the remaining voxels. This process yields a

reduced list of voxels based on the Region of Interest (ROI).

Generation of Training and Test Data The reduced set of voxels is converted into

a form of data which can be used to train a classifier. The x, y and z coordinates

of the voxels are indicated along with the category label whose features the voxels

represent. The unequal number of voxels of each category is adjusted by padding

with out-of-bound values. The data is then optimally split into test and training data.

2.4 Classification

Support Vector Machine (SVM) and Fuzzy Support Vector Machine (FSVM) clas-

sifiers with linear kernels have been used for the classification. A cross-validation

mechanism is used to determine the best possible subset for training.

SVM leads to good generalization performance [17] even in case of

high-dimensional data and a small set of training patterns. It reduces the problems

due to dimensionality by reducing the risk of overfitting the training data when the

number of voxels is reduced.

FSVM follows the same principle of SVM, but certain additional computations

are performed to add more decision rules to classify data that are either unclassified

or classified in an overlapping fashion.

In FVSM, for an m-dimensional input 𝐱𝐢(i = 1,… ,M) belonging to a class yi, and

assuming the data to be separable linearly, the decision function is given by

Di(𝐱) = 𝐰t𝐱 + b (1)

where w is an m-dimensional vector and b is a scalar with the separating hyper-plane

satisfying:

yi(𝐰t𝐱𝐢 + b) ≥ 1 (2)

As stated in [15], the procedure of classification is as follows:

i. If Di(𝐱) > 0 for just one class, the input is classified into the class.

ii. If Di(𝐱) > 0 for more than one class i𝜖(i = i1,… , il, l > 1), classify the datum

into the class with the maximum Di(𝐱)(i ∈ i1,… , il).
iii. If Di(𝐱) ≤ 0 for all the classes, the datum is assigned to the class with the mini-

mum absolute value of Di(𝐱).

The corresponding category is determined by the decision function is output. This

classification result for the test data belonging to all of the categories is output by

constructing a confusion matrix by the classifiers.
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3 Results and Discussion

The features are extracted from the fMRI data in the dataset to construct the training

set and tested with test data for classification. The results obtained from the classifiers

are analysed to measure their performance.

The neuroimaging data exists as anatomical image volume and functional image

volumes. The functional image volumes are the acquired data that reflect the inten-

sity change as the stimulus events take place. The 4D time series for each subject

consists of 1452 volumes with 40× 64× 64 voxels, corresponding to a voxel size of

3.5× 3.75× 3.75 mm and a volume repetition time of 2.5 s.

A sequence of preprocessing steps were applied using FSL [18], to the four-

dimensional images to refine them and highlight the features. The brain portion

is extracted from the image volumes and the corresponding masks are generated.

Motion correction and filtering are done on them to correct recording errors and

remove noise.

The resulting image volumes were further preprocessed to normalize the intensi-

ties across the voxel space. Detrending was performed on consecutive image volumes

in the time series. After applying the other preprocessing steps, it appears like Fig. 1.

The final preprocessed fMRI data is used for creating examples of the aver-

age image volumes for the corresponding stimuli conditions. Further, the spherical

searchlight technique is applied on them using PyMVPA [19] to extract the voxels

which represent the features.

The voxels in the features of the corresponding runs are reduced in number using

ROI representing the visual cortex and corresponding feature data of the 577 voxels

per object category is generated. The feature data is represented as training and test

data.

The input data is split into training data consisting of nine runs and test data

consisting of three runs per subject.

An SVM classifier with a linear kernel is invoked using PyMVPA with the

generated training and testing data as input. It performs N-fold cross-validation by

selecting various combinations of the training and test data to come up with the best

possible classification.

Fig. 1 A slice of the final preprocessed fMRI image volume
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Fig. 2 SVM confusion matrix

Table 2 Results of testing SVM and FSVM classifiers with acquired dataset

Test subject Test subject 1 Test subject 2

Actual category Shoe Bottle Shoe Bottle

SVM

classification

result

Shoe Scissors Bottle Scissors

FSVM

classification

result

Shoe Bottle Shoe Scissors

The 12 runs of 8 subjects are split into 9 runs for training data and 3 runs of test

data. There are eight categories of visual objects. The classifier outputs the classified

label in each case. The category labels predicted by the classifier for test samples are

compared with the actual categories they belong to.

The test samples of each category were tested with the SVM classifier. Out of 192

total samples, 140 were correctly classified. The results of the SVM classifier are

summarized as the number of test samples predicted per categories versus the actual

categories are shown in Fig. 2. This confusion matrix representing the classification

results of the SVM classifier for each of the 24 test samples for the eight categories.

In the case of FSVM classifier, out of 192 total samples, 146 were correctly clas-

sified. The results of the FSVM classification are presented as a confusion matrix is

shown in Fig. 3.

The real test data acquired for the categories: shoe and bottle were tested with

the SVM and FSVM classifiers and the results of the classification are summarized

in Table 2. The FSVM classifier gives the correct prediction for both the subjects,

indicating a better generalization over SVM.

Table 3 compares the number of test samples that were classified correctly in each

category by the SVM and FSVM classifiers.
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Fig. 3 FSVM confusion matrix

Table 3 Classification results of SVM and FSVM classifiers for various categories

Category of visual object No. of test samples correctly

classified by SVM

No. of test samples correctly

classified by FSVM

Scissors 19 19

Face 11 13

Cat 20 20

Shoe 18 18

House 23 23

Scrambled 18 20

Bottle 15 16

Chair 16 17

Fig. 4 Performance comparison of SVM and FSVM classifiers

The overall accuracy percentage of SVM was 72.92% and that of FSVM was

76.04%. Figure 4 shows that FSVM has considerably enhanced the overall per-

centage of accuracy along with the accuracy of certain specific categories. The

category—face, whose accuracy was 45.83% with SVM had improved crossing the



162 S. Kavitha et al.

halfway mark to 54.16%. Scrambled, which had 75% accuracy in previous SVM has

increased the accuracy to 83.33%. It is especially a category that is hard to gener-

alize. Bottle and chair categories also saw considerable progress in accuracy with

an increase of more than 4%. The other categories, however, perform with the same

accuracy as SVM when trained and tested with FSVM.

4 Conclusion and Future Work

This work carried out the prediction of the visual state of the subject according to

the object viewed by him/her and classified the visual stimuli into various categories.

The major task was to consolidate the characteristic features of each of the stimulus

object into a number of voxels to use for multivariate pattern analysis. The extracted

features were used to train an SVM classifier and was tested to understand which

categories were predicted accurately and which categories were mistaken for other

categories by the classifier. The accuracy of the classifier was noted down. To mini-

mize the effect of wrongly classified or unclassified data, Fuzzy SVM classifier was

built by modifying the existing classifier and performing training and testing for

the same data. This work demonstrates the improvement in the classification accu-

racy of the presently existing SVM algorithm when a Fuzzy SVM (FSVM) is used.

This work is aimed at highlighting the possibility of applying computational meth-

ods to further the current medical diagnosis practices. It can be extended to building

human–computer interfaces and understanding brain visual information encoding.
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