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Abstract In this work, we derive the asymptotic expressions of the average sym-

bol error probability (SEP) of a wireless system over the Weibull-lognormal fading

channel. First, we evaluate an approximation of the multipath distribution at the o-

rigin then the composite distribution is obtained by averaging the approximate mul-

tipath probability density function (PDF) with respect to shadowing. The result is

further extended to include maximal ratio combining (MRC), equal gain combining

(EGC), and selection combining (SC) PDF at the origin. The derived expressions

of the composite PDF are further utilized to evaluate the average SEP for both co-

herent and non-coherent modulation schemes. The derived expressions have been

corroborated with Monte-Carlo simulations.
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1 Introduction

A composite model is a class of mathematical model which includes both multipath

and shadowing phenomena simultaneously and hence is a more realistic model. A-

mong the available class of composite fading models, Weibull-lognormal (WLN)

draws its significance from the fact that the Weibull distribution is known to charac-

terize the multipath effects of an indoor and outdoor channel, based on its excellent

matching with the measurements conducted in related environments [1–4]. The shad-

owing effect of the channel is best captured by the lognormal (LN) distribution [5].

Moreover, the LN distribution is shown to characterize a number of wireless appli-

cations such as an outdoor scenario, fading phenomenon in an indoor environment,

radio channels affected by body worn devices, ultra wideband indoor channels, and
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weak-to-moderate turbulence channels found in free-space optical communications

channels [5–7].

In the performance analysis of a wireless system, the closed-form solution facil-

itates better interpretation of system behavior. Yet, sometimes the complexities of

the expression defies the basic purpose of the system optimization [8]. This moti-

vates us to go for an asymptotic analysis of system performance. In the literature,

various work related to asymptotic behavior of a system has been carried out [9–

11]. For example, in [9], asymptotic bit error rate (BER) analysis has been presented

for maximal-ratio combining with transmit antenna selection in flat Nakagami-m

fading channels. In [10], simplified expressions of the BER for the 𝜂 − 𝜇∕Gamma
composite fading channel in a high-power regime are derived. The asymptotic BER

expressions for the 𝛼 − 𝜂 − 𝜇 fading channel have been derived for both coherent and

non-coherent modulation schemes [11]. To date, the asymptotic analysis over W-LN

fading channel with diversity reception has not been reported in the open literature.

Recently, authors of a current paper have reported asymptotic closed-form expres-

sions of the average symbol error probability (SEP) with maximal ratio combining

(MRC) diversity [12]. The common approach adopted to derive the asymptotic so-

lutions of the average SEP over the composite fading channel is to first derive the

composite distribution by averaging the multipath with respect to shadowing, ap-

proximate the distribution at the origin as suggested in [8], then deduct the average

SEP. Generally, composite distribution following the previous concept may lead to

a result having a summation term, and thus the solution may not be tractable as far

as the derivation of the probability density function (PDF) of the MRC, equal gain

combining (EGC), and selection combining (SC) output is concerned, and usually

does not lead to the closed-form solution.

In this chapter, we obtain the asymptotic expressions for the average SEP with all

three diversity schemes such as MRC, EGC, and SC. While deriving the asymptotic

solutions we have followed the following approach. First, we evaluate an approxi-

mation of the multipath distribution at the origin then the composite distribution is

obtained by averaging the approximate multipath PDF with respect to shadowing.

The result is further extended to include MRC, EGC, and SC PDFs at the origin.

These expression have been used to evaluate the closed-form solutions of the aver-

age SEP. Furthermore, we have compared the performance of MRC, EGC, and SC

in the context of error probability over the composite fading channel.

2 System Model

The Weibull envelope “X” has the PDF given as follows [13]:

fX(x) =
cA
𝛺c∕2 x

c−1 exp
[
− A

(
x2
𝛺

)c∕2]
(1)

where 𝛺 is the average fading power 𝛺 = E[X
c
2 ], A = [𝛤 (1 + 2

c
)]c∕2 and 𝛤 (.) is the

Gamma function. Here c is the multipath parameter and the channel condition im-
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proves as c → ∞ . As a special case, when c = 1, 2 the Weibull distribution reduces

to the exponential and Rayleigh distributions, respectively. An LN random variable

(RV) “Z” has the PDF [5]:

fZ(z) =
1

z𝜎
√
2𝜋

exp
[
−
(
ln z − 𝜇√

2𝜎

)2]
∶ z > 0 (2)

where 𝜎 and 𝜇 are the mean and standard deviation of ln(Z). The expected value of

Z is E[Z] = 𝛤 = Zavg = exp (𝜇 + 𝜎
2∕2). As such, and by using Taylor’s series, the

fX(x) given in (1) can be rewritten as:

fX(x) =
cA
𝛺

c
2

xc−1 + O (3)

where O stands for higher order terms. First, substitute (3) and (2) into the defini-

tion of the composite distribution [14, Eq. (3)], then setting t = (ln(z) − 𝜇)∕
√
2𝜎,

employing the identity [15, Eq. (3.323.2
10

)], and finally following the conversion

𝛾 = x2𝜌, �̄� = 𝛺𝜌 and fY (𝛾) = fX(
√
𝛾∕𝜌)∕2

√
𝛾𝜌, where 𝜌 = Es

N0
, Es is the energy per

symbol and N0 is the one-sided power spectral density of the additive white Gaussian

noise (AWGN) [13], the signal-to-noise ratio (SNR) distribution of the composite

distribution around origin can be given as:

fY (𝛾) ≈
cAe−

𝜇c
2 e

𝜎
2c2
8

2𝜌
c
2

𝛾

c
2 −1 (4)

The simplified PDF of (4) does not contain any summation term, thus enabling us

to derive the PDF of the diversity combiner output in a convenient way, which is

presented next.

2.1 Maximal Ratio Combining Probability Density Function
at the Origin

For MRC with L independent and identically distributed (i.i.d.) diversity branches,

the instantaneous SNR of the combiner output is given by:

𝛾mrc =
L∑
j=1

𝛾j (5)

where 𝛾j is the instantaneous SNR of the jth branch. Since the L WLN RVs are i.i.d.,

the moment-generating function (MGF) of 𝛾mrc is expressed as M
𝛾mrc

(s) =
L∏
j=1

M
𝛾j
(s),

where M
𝛾j
(s) is the jth branch MGF and is deduced by taking the Laplace transform
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of (4) with the aid of [15, Eq. (3.381.4)]. Thus, assuming the average SNR of each

branch to be same, i.e., 𝜌1 = 𝜌2 = … = 𝜌L = 𝜌, the MGF of 𝛾mrc can readily be shown

as:

M
𝛾mrc

(s) ≈
(cAe−

𝜇c
2 e

𝜎
2c2
8 𝛤 ( c

2
)

2(s𝜌)
c
2

)L

(6)

The PDF of the RV Ymrc is deduced by performing the inverse Laplace transform of

(6) with the aid of [15, Eq. (3.381.4)], yields [12]:

fYmrc ≈
(𝜗)L(𝛤 ( c

2
))L

𝜌

Lc
2 𝛤 ( Lc

2
)

𝛾

Lc
2 −1 (7)

where 𝜗 = cAe−
𝜇c
2 e

𝜎
2c2
8

2
.

2.2 Equal Gain Combining Probability Density Function at
the Origin

For L i.i.d. diversity branches, the instantaneous SNR of the EGC output is given as:

𝛾egc =
(

1√
L

L∑
j=1

√
𝛾j

)2

(8)

The above equation can be further be expressed by taking the square-root of both

sides as:

xegc =
L∑
j=1

xj√
L

(9)

In a similar context to MRC, the MGF for EGC is expressed as Mxegc =
L∏
j=1

Mxj

(s∕
√
L). Now, following a similar approach to MRC, and with the aid of [13], the

SNR distribution around the origin is deduced as:

fYegc(𝛾) ≈
𝛼
L(𝛤 (c))L(

√
L)Lc

2𝛤 (Lc)𝜌
Lc
2

𝛾

Lc
2 −1 (10)

where 𝛼 = Ace−
𝜇c
2 e

𝜎
2c2
8 .
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2.3 Selection Combining Probability Density Function at the
Origin

The simplest approach for combining the signals from the channel branches is the

SC method. From the practical point of view, this algorithm has the easiest imple-

mentation. In this, the output or branch is picked which has the highest SNR which

can be defined mathematically as Ysc = max(Yj), j = 1, 2...L. The PDF of the output

SNR is defined as [16]:

fYsc = L(FY (𝛾))L−1fY (𝛾) (11)

whereFY (𝛾) is the cumulative distribution function (CDF). The CDF can be obtained

by substituting (4) in the definition FY (𝛾th) = F(Y < 𝛾th) [16] and after some straight

forward mathematical simplification:

FY (𝛾th) =
𝜗𝛾

c
2
th

c
2
𝜌

c
2

(12)

Further, substituting (4) and (12) into (11) results in the closed-form expression of

the SC distribution:

fYsc (𝛾) ≈
L𝜗L

( c
2
)L−1𝜌

Lc
2

𝛾

Lc
2 −1 (13)

3 Average Symbol Error Probability Analysis

In this section, we analyse the performance of the composite fading channel over

average SEP for both coherent and non-coherent modulation schemes. The general

expression of the average SEP over a fading channel is obtained by taking an ensem-

ble average of the instantaneous error probability over the fading distribution. The

general expression of the average SEP over a fading channel is given by [16]:

P̄e =
∞

∫
0

Pe(𝛾)fY (𝛾)d𝛾 (14)

where Pe(𝛾) is the instantaneous symbol error rate (SER) of the modulation

technique.

3.1 Coherent Average Symbol Error Probability

The generalized probability of error for coherent modulation schemes is given by

[11, Eq. (17)]:
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Pe(𝛾) = Aperfc(
√

Bp𝛾) (15)

where constants Ap and Bp, for different modulation techniques, are given in [11,

Table I] for various constellation size. erfc(.) is the complementary error function

and is defined as erfc(x) = 2√
𝜋

∞∫
x
exp(−t2)dt.

3.1.1 Average Symbol Error Probability for Maximal Ratio Combining

By substituting (7) and (15) in (14), letting t =
√
Bp𝛾 , and using [17, Eq. (2.8.2.1)],

the asymptotic average SEP can be obtained as:

P̄mrc,asy
e,coh ≈

2Ap𝜗
L(𝛤 ( c

2
))L𝛤 ( Lc+1

2
)

cL
√
𝜋(Bp𝜌)

cL
2 𝛤 ( Lc

2
)

(16)

The result of the asymptotic average SEP can also be expressed in terms of coding

gain (Gc) and diversity gain (Gd), i.e., Pasym
e ≈ (Gc.�̄�)−Gd [8, eq. (1)] as:

Gd =
Lc
2

Gc =
(2Ap𝜗

L(𝛤 ( c
2
))L𝛤 ( Lc+1

2
)

cL
√
𝜋B

cL
2
p 𝛤 ( Lc

2
)

)− 2
cL

(17)

3.1.2 Average Symbol Error Probability for Equal Gain Combining

By substituting (10) and (15) in (14), and following a similar procedure as defined

above, it follows immediately that:

P̄egc,asy
e,coh ≈

Ap𝛼
L(𝛤 (c))L(

√
L)Lc𝛤 ( Lc+1

2
)√

𝜋𝛤 (Lc + 1)(𝜌Bp)
Lc
2

(18)

Diversity and coding gain are expressed as:

Gd =
Lc
2

Gc =
(Ap𝛼

L(𝛤 (c))L(
√
L)Lc𝛤 ( Lc+1

2
)

𝛤 (Lc + 1)
√
𝜋B

cL
2
p

)− 2
cL

(19)

3.1.3 Average Symbol Error Probability for Selection Combining

By substituting (13) and (15) in (14), and following a similar procedure as defined

in Sect. 3.1.1, it follows immediately that:
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P̄sc,asy
e,coh ≈

2Ap𝜗
L
𝛤 ( Lc+1

2
)

c
√
𝜋( c

2
)L−1(𝜌Bp)

Lc
2

(20)

The values of diversity and coding gain are expressed as:

Gd =
Lc
2

Gc =
( 2Ap𝜗

L
𝛤 ( Lc+1

2
)

c
√
𝜋( c

2
)L−1B

cL
2
p

)− 2
cL

(21)

3.2 Non-coherent Average Symbol Error Probability

The instantaneous SEP for different non-coherent modulation schemes is given by

[12, Eq. (18)]:

Pe(𝛾) = Anexp(−Bn𝛾) (22)

where the parameters An and Bn are defined in [12, Table 2].

3.2.1 Average Symbol Error Probability Maximal Ratio Combining

The asymptotic average SEP is derived by substituting (7) and (22) in (14), which

with the aid of [15, Eq. (3.381.4)], yields:

P̄mrc,asy
e,non ≈

An(𝜗)L(𝛤 ( c
2
))L

(Bn𝜌)
Lc
2

(23)

The diversity and coding gain are expressed as:

Gd =
Lc
2

Gc =
(An(𝜗)L(𝛤 ( c

2
))L

B
cL
2
n

)− 2
cL

(24)

3.2.2 Average Symbol Error Probability Equal Gain Combining

The closed-form asymptotic solution to average SEP is derived by substituting (10)

and (22) in (14), and repeating similar steps to those defined above:

P̄egc,asy
e,non ≈

An𝛼
L(𝛤 (c))L(

√
L)Lc𝛤 ( Lc

2
)

2𝛤 (Lc)(𝜌Bn)
Lc
2

(25)

Diversity and coding gain are expressed as:
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Gd =
Lc
2

Gc =
(An𝛼

L(𝛤 (c))L(
√
L)Lc𝛤 ( Lc

2
)

2𝛤 (Lc)B
cL
2
n

)− 2
cL

(26)

3.2.3 Average Symbol Error Probability Selection Combining

The closed-form asymptotic solution is evaluated by substituting (13) and (22) in

(14), and repeating similar steps to those defined in Sect. 3.2.1:

P̄sc,asy
e,non ≈

LAn𝜗
L
𝛤 ( Lc

2
)

( c
2
)L−1(𝜌Bn)

Lc
2

(27)

The values of diversity and coding gain are expressed as:

Gd =
Lc
2

Gc =
(LAn𝜗

L
𝛤 ( Lc

2
)

( c
2
)L−1B

cL
2
n

)− 2
cL

(28)

4 Numerical Analysis

In this section, the asymptotic behavior of the average SEP for the WLN fading chan-

nel has been presented graphically. The Monte-Carlo simulations are also included

in all the figures to validate the accuracy of the derived expressions.

Fig. 1 Average SEP for

MPAM with the MRC and

EGC diversity scheme and

constellation size M = 4
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Fig. 2 Average SEP for

BPSK with the SC diversity

scheme
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Fig. 3 Average SEP for

non-coherent DBPSK with

c = 2, 2.5, 3
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In Fig. 1, asymptotic plots of the average SEP for coherent M-ary pulse ampli-

tude modulation (MPAM), with MRC (16) and EGC (18) side by side, are presented

against Es∕N0. The parameters under consideration are c = 1, infrequent light shad-

owing [18, 19], constellation size M = 4, and diversity order L = 1, 2, 3. It is clear

from the figure that the asymptotic plot converges at high SNR and coincides with

Monte-Carlo simulations. It is also observed from the plot that MRC is superior to

EGC for all the diversity schemes, and the separation increases with increase in di-

versity order. The average SEP for coherent binary phase shift keying (BPSK) versus

Es∕N0 is given in Fig. 2 with the SC diversity scheme. The Monte-Carlo simulations
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are also included and shown to coincide with the closed-form solution at high S-

NR. In Fig. 3, the plot illustrates the non-coherent differential BPSK (DBPSK) (23)

scheme versus Es∕N0. As expected, it is revealed from the figure that increasing pa-

rameter c means that system performance improves.

5 Conclusion

The closed-from expressions of diversity PDF at the origin for the composite

W-LN fading channel have been presented. The derived results were then extend-

ed to evaluate the asymptotic expressions of the average SEP for both coherent and

non-coherent modulation schemes. It was shown that the asymptotic plot merges

with Monte-Carlo simulations at high SNRs, verifying the accuracy of the derived

expressions.
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