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Abstract
Plants are frequently subjected to abiotic stress such as drought, salinity, heat, 
and cold which constitutes a major limitation to agricultural production world-
wide. The unfavorable environmental conditions that plants encounter in vegeta-
tive cycle perturb their metabolic reactions and negatively affect growth at 
cellular and biochemical plant levels. Preventing crop losses and generating 
more food to meet the demands of growing human populations have gained 
importance. Identifying plant mechanisms to neutralize abiotic stresses and sus-
tain their growth and survival under unfavorable conditions holds huge impor-
tance. Research studies have revealed that plant growth regulators (PGR) confirm 
their significance as metabolic engineering targets for producing abiotic stress- 
tolerant crop plants. In addition, seed priming has shown its importance as a 
powerful technique to improve germination, growth, and yield of crops under 
unfavorable environment conditions. The combination of the two effects, seed 
priming with PGR, could have very prevailing results. In this context, during this 
chapter, we evaluate the effect of seed priming with PGR in plant growth devel-
opment and abiotic stress tolerance.
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6.1  Introduction

The human population is growing rapidly and requires a considerable increase in 
agricultural productivity worldwide. However, diverse abiotic stresses are limiting 
crop productivity (Wani and Sah 2014). In order to nourish the rising world popula-
tion, crop productivity must be amplified in the near future. That’s why plant breed-
ers and biotechnologists should improve crop tolerance to abiotic stress by 
recognizing these mechanisms. However, plant machineries leading to environmen-
tal stress response and tolerance are complex (Qin et al. 2011). Since the complica-
tion of stress tolerance, conventional breeding trials have met little success. That’s 
why original and effective approaches should be developed. Seed priming is a revo-
lutionary technique used to improve seed germination and seedling growth in abi-
otic stress conditions. During this process, a series of physiological and biochemical 
processes are triggered leading to improving plant growth under stress conditions 
(Eisvand et al. 2010). Seeds can be soaked in solutions containing exogenous mol-
ecules such as salts (Khan et al. 2009a, b) or plant growth regulators (PGR) (Nakaune 
et al. 2012). Seed priming with PGR pretreatment is a commonly used strategy to 
improve seed germination and seedling growth in unfavorable conditions (Masood 
et al. 2012; Hu et al. 2013). Seeds presoaked with optimal concentration of PGR 
enhance germination, growth, and yield of crops under stress condition by rising 
nutrient reserves through improved physiological activities and root profusion 
(Afzal et al. 2002; Akbari et al. 2007). PGR are organic compounds produced in 
extremely small amount and play a vital function in growth, expansion, and yield of 
crops. They regulate, as chemical messengers, a range of cellular processes in higher 
plants and coordinate diverse signal transduction pathways during abiotic stress 
response (Vob et al. 2014; Kazan 2015). For instance, seeds of rye (Secale monta-
num) pretreated with gibberellic acid (GA3) increased germination under water 
deficit (Ansari et  al. 2013). Khan et  al. (2009a, b) confirmed that pepper seeds 
(Capscum annum L.) pretreated with salicylic acid resulted in better germination 
and seedling growth under salt stress. Furthermore, ethylene reduces high tempera-
ture effect on seed germination of lettuce (Nascimento et al. 2004).

6.2  Abiotic Stresses: World Agricultural Challenge

Exploring how abiotic stresses can influence plant growth at the physiological, bio-
chemical, and molecular levels is decisive to advance crop production, since stresses 
cause crop losses (Kazan 2015). Abiotic stresses, including drought, salinity, chill-
ing, freezing, heat, and UV radiation, are the main environmental factors restraining 
crop production. They negatively influence growth, biomass production, and yields 
of food crops threatening consequently food security worldwide (Kaur et al. 2008; 
Thakur et al. 2010). Among these stresses, drought, salinity, and temperature sever-
ity are the most common abiotic stresses limiting crop productivity in the world 
(Jaleel et al. 2009; Thakur et al. 2010). They affect plant survival, pigment content, 
membrane integrity, water relations, osmotic adjustments, and photosynthetic 
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activity (Sanghera et  al. 2011; Pathak et  al. 2014). Drought and salinity affect 
together more than 55% of the world’s agricultural land (Dos Reis et  al. 2012). 
Since abiotic stress tolerance is multigenic in nature (Collins et al. 2008), an enor-
mous challenge was undertaken to comprehend key mechanisms to go forward in 
selective breeding purposes. Understanding the machinery of plants’ environmental 
stress tolerance is of critical importance for the development of stress-tolerant and 
high-yielding food crop cultivars.

6.2.1  Plant Drought Tolerance

Drought tolerance is the ability to survive and produce stable yields under water 
scarcity. Drought stress decreases plants’ photosynthetic rate, decreasing conse-
quently the amount of assimilates available for export to the sink organs (Kim et al. 
2000). Abscisic acid (ABA) is a key plant growth regulator in the response and 
adaptation of plants to water scarcity. It is involved in stomatal closure, accumula-
tion of osmoprotectants, and changes in gene expression (Umezawa et al. 2010). 
The biosynthesis of osmoprotectants such as amino acid, amines, and carbohydrates 
is another indispensable strategy for plant resistance to water stress. The most com-
mon osmoprotectants are proline, glycine betaine, fructans, starch, and mono- and 
disaccharides.

6.2.2  Plant Heat Tolerance

Heat stress perturbs cellular homeostasis and causes protein denaturation and dys-
function in plant cells, leading to brutal growth retardation. During this stress, elec-
tron transport is altered affecting electron flow from oxygen-evolving complex 
(OEC) toward the acceptor side of photosystem II (PSII). These alterations affect the 
generation of ATP, Rubisco for carbon fixation, and starch (Asthir 2015). Drought 
stress generates the accumulation of ROS leading to a severe damage in DNA and 
peroxidation of membrane lipids and pigments. Other changes include a decrease in 
photosynthetic pigment ratio and inhibitions of stomatal conductance and photosyn-
thesis rate. These alterations ultimately reduce the partitioning of photosynthates, 
which manifest by reduced growth and economic yield. Other morphological dam-
ages associated with heat stress comprise scorching of leaves, branches, and stems, 
leaf senescence, fruit discoloration, and damage (Hasanuzzaman et al. 2013).

6.2.3  Plant Cold Tolerance

Cold stress occurs at temperatures less than 20 °C. Chilling (<20 °C) or freezing 
(<0 °C) temperatures can trigger the formation of ice in plant tissues, cause cellular 
dehydration and leakage of intracellular solutes, and reduce plasma membrane 
integrity (Chinnusamy et al. 2007). Consequently, cold stress severely affects plant 
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growth and leads to substantial crop losses (Sanghera et al. 2011). To cope with this 
unfavorable condition, plants adopt several strategies such as activating primary 
metabolisms, raising the level of antioxidants, and maintaining osmotic balance 
(Miura and Furumoto 2013). During cold stress, membrane rigidification occurs as 
opposed to heat stress. This process is the upstream trigger for the induction of 
cytosolic Ca2+ signatures leading to a transient increase in cytosolic Ca2+ levels 
(Knight et al. 1991).

6.3  Plant Growth Regulators: Key Mediators of Plant 
Responses to Environmental Stresses

Plants have to adjust their development to respond to various abiotic stresses. Plant 
growth regulators (PGR) are cells signaling molecules acting in very small quanti-
ties that mediate these responses. Their crucial functions are advancing plant adap-
tation to an altering environment by mediating growth, development, and nutrient 
allocation (Fahad et al. 2015a, b). PGR are endogenous substances responsible in 
adjusting physiological and molecular responses for plant survival. They include 
gibberellins (GAs), salicylic acid (SA), auxin (IAA), ethylene (ET), cytokinins 
(CKs), brassinosteroids (BRs), abscisic acid (ABA), and jasmonates (JAs).

6.3.1  Abscisic Acid (ABA), the Abiotic Stress Hormone

Abscisic acid (ABA) is the most studied PGR. It plays an important role throughout 
numerous plant physiological processes and developmental stages including sto-
matal closure, embryo morphogenesis, seed dormancy, and synthesis of storage 
proteins and lipids (Sreenivasulu et al. 2010). ABA is a vital messenger in the adap-
tive response of plants to abiotic stress. During this response, endogenous ABA 
levels increase rapidly, activating specific signaling pathways and altering gene 
expression levels (O’Brien and Benkova 2013). Zhang et al. (2006) and Hossain 
et al. (2010) stated a substantial increase in ABA concentration upon exposure of 
plants to salinity and drought. It regulates the expression of different stress-responsive 
genes implicated in the accumulation of compatible osmolytes and the synthesis of 
proteins and antioxidant enzymes (Chaves et al. 2003; Verslues et al. 2006).

6.3.2  Auxins (IAA)

IAA (indole-3-acetic acid) is a multifunctional PGR and is vital for plant growth 
under stress conditions (Kazan 2013). IAA boosts plant root and shoot growth and 
plays consequently a fundamental part in plant adaptation to salt stress (Egamberdieva 
2009; Iqbal et al. 2014; Fahad et al. 2015a, b). Auxin stimulates the transcription of 
primary auxin response genes identified and characterized in several plant species 
(Javid et al. 2011).
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6.3.3  Gibberellins (GAs)

GAs improve seed germination, leaf expansion, stem elongation, fruit develop-
ment, and abiotic stress response and adaptation (Yamaguchi 2008; Colebrook 
et  al. 2014). It interacts with other PGR in many stimulus-response processes 
(Munteanu et al. 2014).

6.3.4  Salicylic Acid (SA)

SA plays a vital role in the regulation of plant growth, ripening, and responses to 
abiotic stresses (Khodary 2004; Miura et al. 2013; Miura and Tada 2014). Gharib 
and Hegazi (2010) showed that SA stimulated growth of bean seedlings and reduced 
the adverse effect of cold and chilling stresses.

6.3.5  Cytokinins (CKs)

CKs are involved in many plant growth processes and abiotic stress tolerance 
(Nishiyama et al. 2011; Kang et al. 2012; O’Brien and Benkova 2013). CKs are 
often considered ABA antagonists (Pospíšilová 2003). It has been linked to different 
abiotic stress tolerance like cold stress and freezing stress (Jeon et al. 2010). Salinity 
or osmotic stress shows an effect in the expression levels of CK receptors and 
metabolism, respectively, in Arabidopsis and maize (Zalabák et al. 2013).

6.3.6  Jasmonates (JAs)

Jasmonates are involved in plant development including reproductive processes, 
secondary metabolism, and plant responses to environmental stresses (Pauwels 
et al. 2009; Seo et al. 2001; Fahad et al. 2015a, b). Exogenous application of JA 
significantly reduced salinity and heavy metal stress symptoms in plants by activat-
ing the antioxidant machinery (Yoon et al. 2009; Yan et al. 2013). Wang et al. (2010) 
have reported a significant increase in endogenous levels of JA in rice roots under 
salinity stress. In addition, JA confers tolerance to metal stress in plants via the 
accumulation of phytochelatins (Maksymiec et al. 2007).

6.3.7  Ethylene (ET)

ET, a gaseous PGR, is involved in plant growth and development, notably fruit rip-
ening, flower senescence, leaf and petal abscission, and stress response regulation 
(Gamalero and Glick 2012; Groen and Whiteman 2014). Enhanced abiotic toler-
ance was achieved with higher endogenous ET concentrations in plants (Shi et al. 
2012; Groen and Whiteman 2014). ET also induces plants’ defense response to heat 
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stress (Larkindale et al. 2005). Yin et al. (2015) have shown that ET and ABA act in 
synergy or in antagonism to control plant growth.

6.4  Seed Priming as a Strategy to Improve Abiotic Stress 
Tolerance

Recently, diverse strategies have been employed to induce abiotic stress tolerance in 
plants. Seed priming is an effective, practical, and low-cost technique to obtain 
rapid emergence, high seedling vigor, and better crop yields under unfavorable envi-
ronmental conditions (Jisha et  al. 2013; Paparella et  al. 2015). It is a controlled 
hydration technique triggering metabolic processes during early phase of germina-
tion before radicle protrusion (Hussain et al. 2015). Higher and synchronized ger-
mination of primed seeds is due to reduction in the lag time of imbibition 
(Brocklehurst and Dearman 2008), enzyme activation (Lee and Kim 2000), buildup 
of germination-enhancing metabolites (Hussain et al. 2015), metabolic repair dur-
ing imbibition (Farooq et  al. 2006), and osmotic adjustment (Bradford 1986). 
Primed plants exhibit activation of cellular defense responses, which imparts abiotic 
stress tolerance (Jisha et  al. 2013). Various seed priming techniques have been 
employed under different environmental stresses including hydropriming, 
osmopriming, chemical priming, nutrient priming, and hormonal priming (Jisha 
et  al. 2013; Paparella et  al. 2015). During seed priming, germination process is 
induced by soaking seeds in solutions containing exogenous molecules such as salts 
(Khan et al. 2009a, b), metals (Mirshekari et al. 2012), or hormones (Nakaune et al. 
2012). Varier et al. (2010) and Eisvand et al. (2010) suggest that seed priming acti-
vates a series of physiological processes that improve plant growth under stressful 
conditions, including the induction of antioxidant systems.

6.4.1  Seed Priming with Plant Growth Regulators

PGR pretreatment is a commonly used priming approach to improve seed germina-
tion under stressful conditions (Jisha et al. 2013; Hu et al. 2013). It can be used to 
advance germination, seedling growth, and yield under drought, salinity, metal, 
cold, and heat stresses.

6.4.1.1  Seed Priming with PGR Under Water Deficit
Seeds of rye (Secale montanum) primed with gibberellic acid increased germination 
under water deficit (Ansari et  al. 2013). ABA-primed seeds of Brassica napus 
exhibited earlier germination and higher final percent radicle protrusion than non- 
primed control seeds, under water stress (Gao et  al. 2002). Seeds of Agropyron 
elongatum primed with gibberellin and abscisic acid exhibited induced CAT and 
SOD activities under drought conditions when compared to unprimed seeds 
(Eisvand et al. 2010). Farooq et al. (2013) have shown that seeds primed with ascor-
bic acid improve emergence, growth, yield, and water statue of wheat seedlings 
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under water deficit. Priming with ascorbic acid showed significant effects on germi-
nation percentage, shoot length, root length, vigor index, and CAT and POX activity 
in rapeseed (Brassica napus L.) plant under drought condition (Razaji et al. 2014).

6.4.1.2  Seed Priming with PGR Under Salt Stress
In pepper (Capscum annum L.), Khan et al. (2009a, b) showed that pretreatment 
with acetylsalicylic acid and salicylic acid resulted in greater uniformity of germi-
nation and establishment of seedlings under high salinity. ABA-primed seeds of 
Brassica napus exhibited earlier germination and higher final percent radicle pro-
trusion than non-primed control seeds, under salt stress (100 mM NaCl) (Gao et al. 
2002). In wheat seed germination, auxin pretreatments increased the hypocotyl 
length, seedling fresh and dry weight, and hypocotyl dry weight under saline condi-
tions (Akbari et al. 2007). Salicylic acid priming in fennel seeds also showed better 
germination under salt stress (Farahbakhsh 2012). Iqbal et al. (2011) have reported 
that seed priming with gibberellic acid induced an increase in grain yield of wheat 
plants, modulation of ion uptake and partitioning, and hormone homeostasis under 
saline conditions.

6.4.1.3  Seed Priming with PGR Under Heat Stress
Additionally, ethylene was used to minimize the effect of high temperatures on seed 
germination of lettuce (Lactuca sativa L.) (Nascimento et al. 2004). Rehman et al. 
(2012) have shown that seed priming with salicylic acid improved temperature 
stress resistance in spring maize through an earlier emergence, increased seedling 
dry weight and tissue water status, and improved membrane stability. Seed priming 
with salicylic acid or jasmonic acid improves growth, carbohydrate content, and 
chilling resistance in sunflower (Helianthus annuus L.) (Gornik and Lahuta 2017). 
Singh and Singh (2016) have shown that seed priming with three levels of salicylic 
acid (0.25 mM, 0.5 mM, and 0.75 mM) improves growth, flowering, yield, and fruit 
quality under high-temperature stress conditions.

6.4.1.4  Seed Priming with PGR Under Cold Stress
The incorporation of methyl jasmonate (3 μM) into the priming solution on low 
temperature improves germination and emergence performance of watermelon 
(Citrullus lanatus) cv. Crimson Sweet (Korkmaz et al. 2004). Gamel et al. (2017) 
have shown that seed priming with 100 ppm gibberellic acid improves germination, 
growth, yield, and fruit quality of three tomato cultivars under low temperature. 
Ansari and Zadeh (2012) have shown that seed priming with gibberellic acid 
(25 ppm) advances germination and seedling growth of mountain rye (Secale mon-
tanum) under cold stress.

6.4.1.5  Seed Priming with PGR Under Metal Stress
Seed priming with ethylene (100 μM) improves germination parameters of pigeon 
pea under cadmium stress (Sneideris et al. 2014). PGR priming using auxin, cytoki-
nin, and gibberellic acid at concentration of 10–100 μM was the most appropriate 
priming treatment for soybean (Glycine max) seeds grown under lead (Pb) stress 
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conditions (Abu-Muriefah 2017). Seed priming with jasmonate advances growth 
and activity of SOD and POD and increases significantly the accumulation of chlo-
rophyll and carotenoid and neutralizes the toxic effect of Cu2+ on Cajanus cajan 
seedlings under copper stress (Poonam et al. 2013).

6.5  Conclusion and Future Perspectives

It can be concluded that seed priming with PGR has the potential for improving 
crop abiotic stress tolerance which provides new opportunities to maintain sustain-
able crop production to feed the growing population under changing environmental 
conditions. Even though, with rapid development of genomic technology, signifi-
cant attempts have been done on the way to decoding the plant abiotic stress 
responses, many challenges still lie ahead to uncover the complexity of stress signal 
transduction pathways. More hard work will be required at the genetic level of PGR 
biosynthetic pathway. The success in elucidating roles of PGR in stress tolerance at 
molecular levels will help in showing positive effects of seed priming with PGR and 
their substitutes in improving stress tolerance in a wide range of crop species. 
However, more research will be needed in unraveling the mechanism of PGR, espe-
cially with stress-responsive genes.
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