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Abstract
A large proportion of the global cultivable land is inflicted by saline conditions. 
Several popular plants and staple crops cannot be cultivated on these vast 
stretches of land due to their susceptibility to salt stress. Crops growing under 
such suboptimal conditions exhibit deteriorated physiological development and 
compromised yields. Several agro-biotechnology-supported programmes are 
available to enhance plant salt tolerance. Among them, seed priming or ‘pretreat-
ment’ is the most acceptable one from the point of biosafety and socio-economic 
views. Seed priming provides an abiotic stress-like condition to the dormant 
seed. It partially reprogrammes the seed metabolome so that it experiences such 
suboptimal condition and can better adapt to salt stress. Partial hydration of the 
seed during priming weakens the endosperm, channelizes the energy reserves, 
makes the seed ready for radicle protrusion (germination) and recharges the 
entire antioxidant machinery. This chapter provides an insight into the multiple 
mechanisms via which seed priming with various inorganic as well as endoge-
nous agents can ameliorate salinity stress-related damages across multiple plant 
species.
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5.1	 �Introduction

Abiotic stresses like salinity, drought, heavy metal toxicity, irradiation, etc. lead to 
large-scale crop losses throughout the world. Among these environmental chal-
lenges, salt stress is most prevalent in arid, semiarid and coastal regions and spreads 
easily in the irrigated lands (Munns and Tester 2008). The FAO report (2011) high-
lights that 60–80 million hectares of land are inflicted by salt. This ultimately will 
lead to the loss of about 50% of the cultivable lands by the twenty-first century. 
High salt content in the soil or the irrigated water directly interferes with seed ger-
mination and seedling growth, thus making most plants susceptible to this kind of 
abiotic stress (Hubbard et al. 2012). Salt stress delays the advent of germination in 
susceptible plant seeds (Thiam et al. 2013). An interesting contradiction has been 
noted in the development of plants in response to low and high salt concentrations 
(Khan and Weber 2008). It was seen that whereas low salt levels promote seed dor-
mancy, high salt concentrations directly inhibit seed germination. However, both 
these stress inductions ultimately decrease the germination rate and thus lead to 
phenotypically retarded development (Khan and Weber 2008). Several crops like 
Oryza sativa, Zea mays, Brassica oleracea, Abelmoschus esculentus, Vigna unguic-
ulata, Apium graveolens, Foeniculum vulgare, Petroselinum crispum, Raphanus 
sativus, Ipomoea aquatica, Silybum marianum, Lactuca sativa, Glycine max, etc. 
are reportedly sensitive to a gradient of salt concentrations (Banerjee and 
Roychoudhury 2016a; Basu and Roychoudhury 2014; Ibrahim 2016).

Esechie (1995) showed that the top 10 cm layer of the soil accumulates higher 
salt levels than the lower layers. Seeds of cultivated crops are usually sown in this 
top layer. High evapotranspiration in plants growing in the arid environments results 
in water loss and accumulation of salt around the roots. This retards translocation 
and crucial physiological processes (Bernstein and Hayward 1958). Hence, novel 
strategies are required to ameliorate salt stress in developing crop plants. Transgenic 
technology has often been adopted to generate genetically modified (GM) plants 
overexpressing a target gene which confers stress tolerance. However, this technol-
ogy faces several biosafety issues across multiple countries, and hence such GM 
plants cannot be popularly marketed. Thus researchers have designed a novel tech-
nology called ‘seed priming’ where an inorganic chemical solution or an endoge-
nous osmoprotectant or ‘eliciting factor’ is purified and used as the pretreating agent 
to make the seeds tolerant to future stress exposures (Tanou et al. 2012). In this 
technology, the seeds are hydrated in a prescribed solution containing the optimum 
concentration of the ‘eliciting factor’ and then dried. This improves germination, 
triggers multiple epigenetic alterations and up-regulates genes encoding stress-
responsive transcription factors (TFs) (Farooq et al. 2009; Bruce et al. 2007). The 
treated seeds reportedly exhibit higher germination and seedling emergence rates 
under stress conditions in comparison to the non-treated seeds (Sharma et al. 2014). 
Studies show that seed priming can even improve crop productivity under optimum 
conditions (Jisha et al. 2013). The popularity of seed priming lies in its easy usage, 
low cost and lesser environmental risk (Ibrahim 2016).
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5.2	 �Salinity and Seed Germination

Salt stress primarily increases the soil osmotic potential which results in constrained 
water and solvent uptake via roots (Daszkowska-Golec 2011). The osmotic balance 
in the plant gets disrupted due to generation of reactive oxygen species (ROS) like 
hydroxyl radicals, superoxides and hydrogen peroxides (Das and Roychoudhury 
2014). Massive oxidative stress caused by Na+ and Cl− toxicity jeopardizes macro-
molecular structures and membrane integrity and even affects embryo development. 
Physiological processes like photosynthesis, growth, respiration and flowering are 
severely inhibited by salt stress (Roychoudhury and Chakraborty 2013). The overall 
systemic deterioration leads to cellular apoptosis coupled with the degeneration of 
membrane lipids, enzymes and nucleic acids (Banerjee and Roychoudhury 2017a). 
Peroxidation of membrane lipids produces malondialdehyde (MDA), an important 
stress marker in plants. Such MDA levels sharply increase in salt-sensitive plants 
exposed to stress (Das and Roychoudhury 2014).

Salinity-induced ROS accumulation triggers the up-regulation of osmotic stress 
responsive (OR) genes and their upstream transcription factors (TFs) in a cultivar-
dependent fashion (Roychoudhury et al. 2013; Banerjee and Roychoudhury 2017b). 
The OR gene products confer tolerance in specific cultivars of the crops exposed to 
salt stress. The salt-tolerant cultivars exhibit higher expression of antioxidant 
enzymes like superoxide dismutase (SOD), peroxidase (POX), catalase (CAT), glu-
tathione reductase (GR), etc. Most of these enzymes restore the cellular oxidative 
equilibrium by operating through the ascorbate-glutathione cycle (Anjum et  al. 
2015). Recent studies have also highlighted the massive histone modifications, 
DNA methylation and chromatin remodelling occurring in signature genomic 
regions of the plants exposed to salinity (Banerjee and Roychoudhury 2017c). The 
transposon-associated differentially methylated regions (DMRs) in IR-64 (stress 
susceptible), Pokkali (salt tolerant) and Nagina 22 (drought tolerant) rice cultivars 
were closely related to the transcript abundance of the protein-coding genes (Garg 
et  al. 2015). However, close association of the hypermethylated silenced hetero-
chromatin with the small RNAs (smRNAs) was noted (Banerjee et al. 2016). This 
clarified the existence of a crosstalk among the chromatin methylation status, gene 
expression and smRNA abundance during salt stress response in rice.

5.3	 �Seed Physiology and Priming

Seed hydration triggers germination via three stages: imbibition, lag phase and radi-
cle protrusion through the testa (Ibrahim 2016). Priming promotes partial hydration 
of seeds. This effectively accelerates pregermination metabolism but is not enough 
to facilitate the transition of a dormant seed towards complete germination (Paparella 
et  al. 2015). Hence priming converts a metabolically naive seed into a quasi-
metabolically active unit. However, such quasi-metabolic state does not support the 
complete emergence of the radicle.
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The next crucial phase is the post-priming redrying (or drying back) of the seeds 
to restore their relative moisture content back to the initial control levels. Redrying 
of the primed seeds at the correct stage is extremely important for seed storage, 
preserving seed longevity and tolerance towards abiotic stresses (Ratikanta 2011). 
It has been reported that the partially hydrated seeds in the imbibition or lag phase 
tolerate redrying without significant physiological deteriorations (Rajjou et  al. 
2012). However, seeds with already emerged radicles if redried usually exhibit com-
promised seed vigour (Rajjou et al. 2012). The rate of redrying also regulates seed 
viability in due course (Gurusinghe and Bradford 2001). Bruggink et  al. (1999) 
stated that the drying back of the primed seeds should be performed slowly as this 
improves seed longevity and tolerance to desiccation.

5.4	 �Seed Priming Techniques

The classification of the priming techniques varies with the chemical nature of the 
priming agent. Eight different priming techniques are usually reported (Ibrahim 
2016). They have been highlighted in Table 5.1. Out of the different priming strate-
gies, hydro-, osmo-, halo- and hormone priming are the most popular (Paparella 
et al. 2015; Maiti and Pramanik 2013). Depending on the technique to be used, other 
variable parameters also require standardization to gain optimum ameliorative 
results. These variables include water potential, priming duration, temperature, seed 
vigour, cultivar and post-priming storage conditions (Maiti and Pramanik 2013).

5.5	 �Priming-Induced Alterations Which Ameliorate Salt 
Stress in Susceptible Plants

Priming promotes embryo swelling and accelerates the development of immature 
embryos. The partial hydration state reduces the physical resistance of the endo-
sperm, improves physiological parameters and leaches out the chemical inhibitors 
of germination (Bewley et al. 2013). Sadeghi et al. (2011) reported that priming 

Table 5.1  The different applied seed priming techniques

Seed priming technique Nature of the treatment
Hydropriming Water treated
Osmopriming Aqueous solution of osmolytes like polyamines, etc.
Halopriming Inorganic salt solution
Hormone priming Phytohormones like abscisic acid (ABA), salicylic acid (SA), etc.
Hardening Hydrated seeds are redried
Solid matrix Solid materials like ground Leonardite Shale (Agro-Lig), etc. mixed 

with water in known proportions
Humidification and 
stratification

Seed processing like cold and moist treatments to promote faster 
germination after sowing

Physical Irradiation, heat, etc.
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modifies the seed metabolic balance as a result of which germination and seedling 
development is more rapid even under suboptimal saline conditions. Such stress 
tolerance is facilitated by metabolome reprogramming and generation of ‘priming 
memory’ in seeds (Pastor et al. 2013). ‘Priming memory’ is supposedly epigenetic 
signatures etched within the seed genome during the stress-like conditions created 
as a result of seed priming (Banerjee and Roychoudhury 2017c). Such epigenetic 
alterations in the chromatin architecture lead to the overexpression of several stress-
responsive genes like late embryogenesis abundant (LEA), whose protein products 
confer tolerance towards salt stress (Banerjee and Roychoudhury 2016a; 
Roychoudhury et al. 2007).

Sharma et al. (2015) showed accelerated germination in the primed seeds. Such 
improvements could be attributed to specific germination-associated genes which 
get up-regulated in the primed seeds (Sharma et al. 2015). Several antioxidant genes 
also exhibit increased expression as the entire metabolic equilibrium of the seed is 
altered after optimum priming (Sadeghi et  al. 2011). Such antioxidants promote 
seed germination and seedling development by scavenging the toxic ROS and low-
ering oxidative stress under saline conditions (Kubala et  al. 2015). Salt stress 
imposes large-scale oxidative stress in the plant. If uncontrolled, this can lead to 
chromosomal damages, protein degradation and metabolite leakage (Netondo et al. 
2004). Oxidative stress-induced membrane peroxidation triggers the accumulation 
of MDA which inhibits the activities of crucial enzymes (Younesi and Moradi 
2015). Priming reportedly reverses these degenerative effects of salt stress and facil-
itates early replication, transcription and chromosomal repair (Roychoudhury and 
Chakraborty 2013).

The abiotic stress tolerance generated by seed priming is conferred via the syn-
chronization of several physiological, biochemical, systemic, cellular and molecu-
lar modulations (Siri et  al. 2013). The metabolome reprogramming enables 
mobilization of energy reserves via endosperm weakening and promotes the 
expansion and initial development of the dormant embryo (Chen and Arora 2011). 
This boosts the germination potential of the seed. The activities of several enzymes 
which facilitate reserve mobilization are enhanced. These are essentially proteases, 
lyases and amylases (Varier et al. 2010). Proper seedling development is allowed 
by inducing cell division, elongation, plasma membrane fluidity and stress-respon-
sive proteins like the heat shock proteins (HSPs) and LEAs. Reports have shown 
alterations in H+/ATPase activities and even in the transcriptome and proteome of 
the primed seeds (Ibrahim 2016). Stress tolerance in the primed seeds is also medi-
ated by an increased potential in protein synthesis and post-translational modifica-
tions and by maintaining the optimum quotient for the translational turnover 
(Kubala et al. 2015).

Bakht et al. (2011) reported that seed priming efficiently eliminated the harmful 
Na+ and Cl− ions via activating membrane efflux pumps. On the contrary, the active 
uptake of inorganic ions facilitates the accumulation of K+ and Ca2+ ions which in turn 
lowers the cellular osmopotential and promotes water uptake under saline conditions. 
Apart from these beneficial effects, K+ ions balance membrane potential and turgor, 
whereas Ca2+ ions maintain the cellular morphology and integrity and mask the growth 
inhibitory effects of Na+ ions (Summart et al. 2010; Gobinathan et al. 2009).
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A large number of inorganic and organic solutes have been isolated from plants 
which mediate osmotic adjustments and confer salt tolerance. Solutes like proline 
(Pro), glycine betaine, free amino acids, soluble sugars, etc. undergo accumula-
tion in the seeds and seedlings after osmopriming. These solutes might also be 
used as the priming agents to ameliorate salt susceptibility in plants (Roychoudhury 
and Chakraborty 2013). A chronological representation of the significant priming 
reagents used across several plant species to generate salt tolerance is presented in 
Table 5.2. Antioxidant enzymes like SOD, CAT and peroxidase (POX) also exhibit 
increased ROS scavenging upon seed priming (Nawaz et al. 2012). Compatible 
solutes like polyamines [putrescine (Put2+), spermidine (Spd3+) and spermine 
(Spm4+)] maintain cellular osmolarity and membrane integrity by chelating out 
the toxic Na+ ions (Paul and Roychoudhury 2016; Roychoudhury et  al. 2008). 
Similar antioxidative effects are conferred by seed priming using ascorbic acid 
and glutathione (Roychoudhury et al. 2012). Imbibition with the universal stress 
hormone, abscisic acid (ABA), generates a ‘stress memory’ in the seeds and 
makes them salt tolerant (Roychoudhury et al. 2009). Priming also induces the 
accumulation of photoprotective pigments like anthocyanin which exhibit ROS 
scavenging and plant protection (Banerjee and Roychoudhury 2016b). Overall, 
the priming strategies utilized to generate salt tolerance reduce MDA content and 
optimize ROS levels via accumulation of multivariant antioxidants and protective 
proteins (Nawaz et al. 2012).

5.6	 �Conclusion and Future Perspectives

Priming is a biologically safe and cheap crop expansion technology which modifies 
the seed metabolome and makes the tissue ready to tolerate suboptimal conditions 
like salinity. From the mechanism of stress amelioration by several priming agents 
(Table 5.2), it can be summarized that they recharge the antioxidant machinery and 
up-regulate multiple stress-responsive genes (Paul and Roychoudhury 2017). This 
promotes seed development and germination even under adversely saline condi-
tions. Seed priming is also economically cheap since a small volume of priming 
solution is sufficient for seed imbibition, and this solution can even be reused. In 
spite of the huge potential of this technology, little information regarding its molec-
ular mechanisms actually exists. One such perspective is the epigenomic basis of 
‘stress memory’, which is required to be unravelled. Precise concentrations of the 
priming agents are extremely important for agronomic purposes as unusually high 
concentrations can cause irreversible damages to the developing seeds. Thus, future 
investigations revolving around the molecular and metabolomic platforms in this 
field shall bear credible impacts.
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