
Reduction in Execution Cost of k-Nearest
Neighbor Based Outlier Detection Method

Sanjoli Poddar(B) and Bidyut Kr. Patra(B)

National Institute of Technology Rourkela, Rourkela, Odisha, India
sanjoli0511@gmail.com, patrabk@nitrkl.ac.in

Abstract. Outlier detection is an important task as it leads to the dis-
covery of critical information in a variety of the application domains.
The variants of k-nearest neighbor based outlier detection method have
been successfully applied over decades. However, these approaches have
high execution time as they compute a score (known as outlier score)
for each data point. In this paper, we propose a method to reduce the
execution time of k-nearest neighbor based algorithms. Proposed method
quickly identifies the data points which are normal and therefore outlier
score for such points need not be computed in further processing. The
proposed method is generic and can be applied to improve the execu-
tion efficiency of many density-based and distance-based outlier detec-
tion methods. Proposed work is compared with other existing methods
and the result shows that the proposed work outperforms other methods.

Keywords: Density based outlier detection method
k-nearest neighbor · LOF · Execution time

1 Introduction

Outliers are the observations which deviates so much from the other observa-
tions as to arouse suspicions that it was generated from a different mechanism
[1]. Efficient mining of the data is very important as it finds its application
in various domains such as credit card fraud analysis, intrusion detection sys-
tem, medical field, marketing etc. Both supervised and unsupervised learning
methods are used to identify the outliers [8]. In unsupervised learning, no prior
knowledge about the data set is known. This makes the unsupervised outlier
detection methods very popular over supervised approach. Popular unsuper-
vised algorithms include clustering techniques, distance-based outlier, density
based-outlier and k-nearest neighbor based methods.

Among the unsupervised learning algorithms, density based outlier detection
methods are very popular and efficient for identifying the outliers. The main idea
behind density based methods is to compute outlier score for each data point and
declare the points with high scores as outlier points. In order to compute the out-
lier score, k-nearest neighbors of each data point are computed and subsequently
use their statistics according to the individual algorithm. Popular density based
c© Springer Nature Singapore Pte Ltd. 2018
D. Ghosh et al. (Eds.): ICMC 2018, CCIS 834, pp. 53–60, 2018.
https://doi.org/10.1007/978-981-13-0023-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0023-3_6&domain=pdf

54 S. Poddar and B. K. Patra

outlier detection method includes LOF (local outlier factor) [5], COF (connec-
tivity outlier factor) [11], INFLO. The distance based method is also found to
be using k-nearest neighbor information [9].

The outlier score corresponding to normal data point is of limited use espe-
cially when the objective is to mine out the outliers. As density and distance
based approaches calculates the outlier score for every the data point, it makes
the method inefficient. The problem increases in many folds with increasing the
size of the data set.

In this paper, we propose a method to improve the execution time of k-nearest
neighbor based outlier detection methods. In proposed method, we introduce a
novel measure termed as devToMean to identify the normal points for which out-
lier scores are not required to compute in further processing. The novel measure
ensures that none of the outlier points is identified as normal points. Having
filtered these normal points, we only compute outlier score of the remaining
data points based on the individual algorithm. The experiments are carried out
both on synthetic as well as real datasets and the results show a significant
improvement in execution cost over the other methods.

The rest of the paper is organized as follows. Section 2 describes state-of-the-
art works in this direction. We describe proposed work in Sect. 3. Experimental
results and analysis are reported in Sect. 4. We conclude our paper in Sect. 5.

2 Related Work

The broad application of the outlier detection has made the literature very
rich. Widely popular outlier detection techniques include statistical approach,
distance-based, density-based, rule-based, neighborhood based, etc. [8].

Distance and density based outlier detection techniques are widely used when
no prior knowledge about the dataset is known unlike statistical approach. Knorr
and Ng [2] proposed first distance-based outlier detection technique. It uses
the distance parameter to find the outliers. The notion of the distance based
algorithm is further extended to k-nearest neighbor distance or statistics [9]. In
[9], it uses the relative location of an object to its neighbor to determine the
degree to which object deviates from its neighbors. Thus the objects with the
higher LDOF score (Eq. 1) are regarded as outliers.

LDOFk(xp) =
dxp

Dxp

(1)

where, Dxp
= 1

k(k−1)

∑
xi,xi′ ∈kNN(xp)

dist(xi, xi′), dxp
is the average distance

from point xp to all its k nearest neighbors, kNN is the k-nearest neighbors of
the point xp excluding the point xp itself.

Density based outlier detection techniques use local information/statistics of
each data point for computing outlier score of the point. Some of the significant
works done in this area includes LOF (local outlier factor) [5], COF (connectiv-
ity based outlier factor) [11], INFLO [7], etc. In the popular LOF method [5],

Reduction in Execution Cost 55

local reachibility density of a point is computed using the statistics of k-nearest
neighbors of the point. Finally, it computes a score called lof which is the average
of the ratio of local reachibility density of a point p to the density of the point
p’s nearest neighbors. If the factor lof is close to 1 then the point is considered
as normal. If the value of the lof �1, then it is declared as an outlier. INFLO
[7] outlier detection approach addresses the problem of LOF in a dataset with
variable density over the feature space. It considers both k-neighbors and reverse
k-neighbors statistics while computing outlier score [3,4,6,10].

All the methods discussed above are proven to be very powerful and efficient
in term of finding outliers. However, these approaches have high execution time
as they compute outlier score for each data point. This problem becomes severe
with the increase of size of the dataset. Few methods are reported to improve the
execution time but they are specific to particular density based outlier detection
technique while compromising the accuracy (precision) of the method.

Some of the work done to improve upon the density based outlier detection
methods include LOF’ [6]. Authors argued that the MinPts-dist is sufficient to
find the density of a point. Subsequently, the basic formula (Eq. 1) for computing
the outlierness of a point is altered. In FastLOF [10], author argue that a good
estimation is fair enough for normal data points but precise nearest neighbors
are required for the outliers. To reduce the execution time of k-nearest neighbor
search, data set is randomly divided into data chunks and search is performed
only within a single chunk for each point in it. Subsequently, approach takes a
decision that which data points can be further considered to find the outliers
and other are safely pruned (removed). However, in this case all outlier points
may not be detected. Other pruning strategies are also developed to reduce the
execution time of density and distance based approaches [3,4]. Basic idea of these
research is to identify the normal points and prune them for further processing.
In [4], k-means clustering method is applied over the dataset and subsequently,
pruning strategy is applied to individual cluster. The points within a cluster
are pruned (removed) if they locate close to the centriod (within the radius
of the cluster). Finally, LDOF is applied to remaining points in the dataset.
However, the genuine outlier point located close to the centriod of a cluster can be
considered as normal point and it can be pruned in this approach. Another major
drawback of the pruning approach is that pruning a normal point may change
the characteristics of its neighbors (i.e., normal to outlier point). Therefore, it
increases the false positive rate. Reduction of execution time of these approaches
is achieved at the cost of accuracy of outlier detection mechanism.

3 Proposed Work

We address the problem of computation overhead involved in the methods dis-
cussed in previous section in a novel way. In those methods, outlier score is calcu-
lated for each data point. Intuitively, outlier scores corresponding to the normal
points are not of significant use and hence this calculation can be avoided. In
this proposed approach, we quickly identify most of the normal points and com-
putation of the outlier score for these points are not performed in subsequent

56 S. Poddar and B. K. Patra

step. It can be noted that we do not prune these points unlike pruning strategy.
Therefore, accuracy of the individual method is not compromised in this app-
roach and it leads to reduce the execution cost of the density and distance based
outlier detection methods.

Our proposed approach works in two phases. In the first phase, a linear
clustering method (k-means) is applied to partition the data into a number of
chunks (cluster) and centroid point of each of the cluster is computed. We aim
to mark all normal data points from each of these cluster. It can be intuitively
said that the normal points lie in dense region, hence its deviation (density
deviation) from its neighbors is small, whereas outliers lie in the sparse region
and its deviation from its neighbors would be more as compared to normal
points. We use this assumption in order to identify the normal points within
each cluster. We introduce a metric termed as devToMean for each point within
a cluster. Let Ci be a cluster and mCi

be the mean of Ci. The devToMean of
a point x ∈ Ci is the ratio of deviation of the point x from mean point to the
average deviation of its neighbors from the mean of the cluster. This is computed
using the following Eq. 2.

devToMean(x) =
||x − mCi

||
1
k

∑
xi∈k−NN(x) ||xi − mCi

|| (2)

The devToMean determines how much an object deviates from the mean of the
cluster to which it belongs with respect to its neighbors. If this deviation of a
point is similar to that of its neighbors, then the value of devToMean is close to
1 and the point is considered as a normal point. The value of devToMean for
outlier point can be high (>> 1) (outlier point far away from mean point) or
close to 0 (outlier point close to the mean).

We mark the normal points (devToMean ≈ 1) and avoid computation of
outlier score for these points in next phase. The marked points are not pruned
(removed) from the dataset. Remaining unmarked points are sorted based on
their devToMean values. We apply 10 percentile rule to find probable outliers in
the dataset. We select the top ten (10) percentile and bottom ten (10) percentile
of these sorted unmarked points as probable outliers and investigate them in the
next phase. The idea of this rule is that there are few outlier points compared
to the normal points and the value of devToMean for genuine outlier is either
close to 0 or very high (>> 1).

The second stage involves the calculation of the outlier score of the points
obtained using 10 percent rule. For computing the outlier score, one can use any
popular distance or density based approach discussed in Sect. 2. While computing
the k-nearest neighbor statistics of these selected points, all data points are used
including the marked normal points. Therefore, accuracy of the outlier detection
method is not compromised and results obtained by our approach will be the
same as that of the original approach applied on the same dataset. The proposed
approach is depicted in Algorithm 1. Finally, a ranking list is made for all the
outlier score and top-n outliers are selected.

Reduction in Execution Cost 57

Algorithm 1. DevToMean outlier detection
Input: D, num-clust, k
Output: outlier-score
1: Clusters ← k-meansClustering(D,num-clust)
2: for each ci ∈ Clusters do
3: for each pj ∈ ci do
4: Compute devToMean(pj)
5: Mark the point pj if devToMean(pj) = 1.
6: end for
7: end for
8: POutlier ← Filter the unmarked points by applying 10 percentile rule.
9: for each pi ∈ POutlier do

10: Compute outlier score of pi using entire dataset D.
11: end for

As the outlier score corresponding to a very less number of the data point
is calculated, the execution time of the proposed algorithm is quite less as com-
pared to the time taken by the original algorithm. The number of clusters to
be provided in the first phase is very important factor. The number of clusters
should be such that the size of the cluster is neither too big nor too small. If the
size of a cluster is too small, then the genuine outlier point might get overlooked
as it would contain the value of devToMean factor close to 1. Also, if the size
of the cluster is too large, then the reduction in time complexity would be quite
small as large volume of data set would be examined to calculate the value of
devToMean factor. Thus, specifying the appropriate number of clusters accord-
ing to the size of the data set is very important. For testing purpose, we consider
that the minimum size of the cluster to be 100.

4 Experimental Results

The proposed method is tested on synthetic as well as real data set. The synthetic
data set was uniformly distribution within a region. We also injected few outliers
to the dataset. We took one classification dataset named Cover Type Data from
UCI machine learning repository and converted into One class data with few
injection of outlier points from other classes.

We introduce a metric termed as speed up factor S which measures the per-
centage of decrease in the execution time of the proposed method from the
execution time of the original approach. The metric is normalized by the max-
imum decrease in execution time over various input sizes of a dataset. Let tmdev
and tmo be the execution time of proposed approach and original approach while
both of them applied on a subset of size m of a dataset, respectively. The speed
up factor Sm is computed as follows.

58 S. Poddar and B. K. Patra

500 1,500 2,500 3,500 4,500 5,500 6,500 7,500
−20
−10

0
10
20
30
40
50
60
70
80
90

100

Data subset size

Sp
ee
d
up

fa
ct
or

S

k=15
k=30
k=45
k=60

Fig. 1. Speedup factor S with varying data set and parameter k for LOF

Sm =
tmo − tmdev

maxl{tlo − tldev}
× 100 (3)

where, l is the size of a data subset. The minimum value of Sm = 0, when
proposed approach takes exactly the same time (tmo = tmdev) as that of the original
approach.

We speed LOF (density based outlier detection algorithm) up using our app-
roach and speed up factor of the proposed approach is plotted in varying data
size of the synthetic dataset in Fig. 1. It can be easily inferred from the plot that
the proposed method’s efficiency increases with increase in size of the data set
in terms of execution cost. For the considered size of the data set, the reduc-
tion in time is more than 50% for higher values of k. We achieved a significant
reduction in execution time of the LOF method over increasing the size of the
dataset. This shows that proposed approach is effective in large size data. The
popular distance based outlier detection method LDOF [9] speed-ed up using
proposed approach and reported in Fig. 2. Similar trends are observed.

Few works are reported to reduce the execution time of the density based
outlier detection techniques using pruning strategies while some of them modi-
fied the method for finding outlier detection method [4,6,10]. We compare our
proposed method with FastLOF which belongs to first category on real Cover
Type dataset. Results are recorded in Fig. 3. The results clearly show that our
proposed method outperforms FastLOF. It can be noted that comparison with
other pruning based approaches discussed in Sect. 2 are not reported here as
these methods cannot produce exactly the same detection accuracy as that of
the original approaches.

Reduction in Execution Cost 59

500 1,500 2,500 3,500 4,500 5,500 6,500 7,500
−20
−10

0
10
20
30
40
50
60
70
80
90

100

Data size

Sp
ee
d
U
p
Fa

ct
or

S

k=15
k=30
k=45
k=60

Fig. 2. Efficiency factor S with varying data set and parameter k for LDOF

10 20 30 40

10

20

30

40
45

Datset size(×103)

Spe
edu

pF
act

or
S

Proposed Method
FastLOF

Fig. 3. Comparison of the proposed approach with FastLOF [10] with k = 70.

5 Conclusion

In this paper, we proposed a framework to speed up a set of popular outlier
detection methods which compute outlier score for each data point using k-
nearest neighbor statistics. We introduced a metric devToMean which quickly
identifies normal points and computation of outlier scores for these points are
avoided in decision making. It is observed from experimental results that the
proposed framework is very effective for large dataset and for grater value of the
parameter k. In future, we can further reduce the execution time in speeding up
the identification process of normal points (devToMean).

References

1. Hawkins, D.M.: Identification of Outliers, vol. 11. Chapman and Hall, London
(1980)

2. Knorr, E.M., Ng, R.T.: A unified notion of outliers: properties and computation.
In: Proceedings of the Third International Conference on Knowledge Discovery
and Data Mining 1997 (KDD 1997), pp. 219–222 (1997)

60 S. Poddar and B. K. Patra

3. Pamula, R.: Data Pruning Based Outlier Detection (Doctoral Dissertation) (2015).
http://gyan.iitg.ernet.in/handle/123456789/631

4. Pamula, R., Deka, J.K., Nandi, S.: An outlier detection method based on clus-
tering. In: Proceeding of International Conference on Emerging Applications of
Information Technology, Kolkata, India (2011)

5. Breunig, M.M., Kriegel, H.-P., Ng, R.T, Sander, J.: LOF: identifying density-based
local outliers. In Proceedings of the 2000 ACM SIGMOD International Conference
on Management of Data 2000 (SIGMOD 2000), pp. 93–104. ACM (2000)

6. Chiu, A.L., Fu, A.W.: Enhancements on local outlier detection. In: Proceedings
of Seventh International Conference on Database Engineering and Applications
Symposium, pp. 298–307. IEEE (2003)

7. Jin, W., Tung, A.K.H., Han, J., Wang, W.: Ranking outliers using symmetric
neighborhood relationship. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.)
PAKDD 2006. LNCS (LNAI), vol. 3918, pp. 577–593. Springer, Heidelberg (2006).
https://doi.org/10.1007/11731139 68

8. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Com-
put. Surv. (CSUR) 41(3), 15 (2009)

9. Zhang, K., Hutter, M., Jin, H.: A new local distance-based outlier detection app-
roach for scattered real-world data. In: Theeramunkong, T., Kijsirikul, B., Cercone,
N., Ho, T.-B. (eds.) PAKDD 2009. LNCS (LNAI), vol. 5476, pp. 813–822. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-01307-2 84

10. Goldstein, M.: FastLOF: an expectation-maximization based local outlier detection
algorithm. In: Proceeding of 21st International Conference on Pattern Recognition
2012 (ICPR 2012), pp. 2282–2285 (2012)

11. Tang, J., Chen, Z., Fu, A.W., Cheung, D.W.: Enhancing effectiveness of outlier
detections for low density patterns. In: Chen, M.-S., Yu, P.S., Liu, B. (eds.) PAKDD
2002. LNCS (LNAI), vol. 2336, pp. 535–548. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-47887-6 53

http://gyan.iitg.ernet.in/handle/123456789/631
https://doi.org/10.1007/11731139_68
https://doi.org/10.1007/978-3-642-01307-2_84
https://doi.org/10.1007/3-540-47887-6_53
https://doi.org/10.1007/3-540-47887-6_53

	-1Reduction in Execution Cost of k-Nearest Neighbor Based Outlier Detection Method
	1 Introduction
	2 Related Work
	3 Proposed Work
	4 Experimental Results
	5 Conclusion
	References

