
Amalgamations and Equitable
Block-Colorings

E. B. Matson(B) and C. A. Rodger

Department of Mathematics and Statistics, Auburn University,
221 Parker Hall, Auburn, AL 36849, USA

{eab0052,rodgec1}@auburn.edu

Abstract. An H-decomposition of G is a partition P of E(G) into
blocks, each element of which induces a copy of H. Amalgamations
of graphs have proved to be a valuable tool in the construction of
H-decompositions. The method can force decompositions to satisfy
fairness notions. Here the use of the method is further applied to (s, p)-
equitable block-colorings of H-decompostions: a coloring of the blocks
using exactly s colors such that each vertex v is incident with blocks col-
ored with exactly p colors, the blocks containing v being shared out as
evenly as possible among the p color classes. Recently interest has turned
to the color vector V (E) = (c1(E), c2(E), . . . , cs(E)) of such colorings.
Amalgamations are used to construct (s, p)-equitable block-colorings of
C4-decompositions of Kn−F and K2-decompositions of Kn, focusing on
one unsolved case with each where c1 is as small as possible and c2 is as
large as possible.

1 Introduction

An H-decomposition of a graph G is an ordered pair (V,B) where V is the vertex
set of G and B is a partition of the edges of G into sets, each of which induces
a copy of H. The elements of B are known as the blocks of the decomposition.
An H-decomposition (V,B) is said to have an (s, p)-equitable block-coloring
E : B �→ C = {1, 2, . . . , s} if:

(i) the blocks in B are colored with exactly s colors,
(ii) for each vertex u ∈ V (G) the blocks containing u are colored using exactly

p colors, and
(iii) for each vertex u ∈ V (G) and for each {i, j} ⊂ C(E, u),

|b(E, u, i) − b(E, u, j)| ≤ 1,

where C(E, u) = {i | some block incident with u is colored i by E} and b(E, u, i)
is the number of blocks in B containing u that are colored i by E. Such colorings
have been considered by several authors, including L. Gionfriddo, M. Gionfriddo,
Hork, Li, Matson, Milazzo, Ragusa and Rodger (see [5–7,13,14]), the work focus-
ing on cases where H ∈ {C3, C4} and G ∈ {Kn,Kn−F}, where F is a 1-factor of
Kn. The main focus in these papers was to find the smallest and largest possible
values of s for each fixed value of p.
c© Springer Nature Singapore Pte Ltd. 2018
D. Ghosh et al. (Eds.): ICMC 2018, CCIS 834, pp. 42–50, 2018.
https://doi.org/10.1007/978-981-13-0023-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0023-3_5&domain=pdf
http://orcid.org/0000-0002-5214-9785


Amalgamations and Equitable Block-Colorings 43

More recently, the research has turned to the structure of such colorings in the
form of the color vector V (E) = (c1(E), c2(E), . . . , cs(E)) of an (s, p)-equitable
block-coloring E of G, where ci(E) is the number of vertices in G incident with
a block of color i arranged in non-decreasing order. Of most interest are the
extreme values of ci(E), thus motivating the following definitions.

Definition 1. For any graphs G and H and for 1 ≤ i ≤ s, define

(i) φ(H,G; s, p, i) = {ci(E) | E is an (s, p)-equitable block-coloring of an
H-decomposition of G}.

(ii) ψ
′
(H,G; s, p, i) = minφ(H,G; s, p, i),

(iii) and ψ′(H,G; s, p, i) = maxφ(H,G; s, p, i).

Considering the tightest cases where s is as small as possible for a given value
of p is a naturally challenging problem. Often this means that the s = p case is
being addressed, and so it is natural to construct such colorings by using path
interchange techniques that abound in graph theory. But in rarer cases it turns
out that s is always greater than p, requiring new methods to make progress
to construct the colorings, hence the motivation for proving Theorems 1 and 2
below. (Interchanging colors along paths can introduce new colors at the end
blocks, potentially contravening the requirement that exactly p colors appear
on blocks at each vertex.) Before stating Theorem 1, some notation needs to be
introduced.

Throughout this paper the focus is on the case where (H,G) = (C4,Kv′ −F ),
and the related case where (H,G) = (K2,Kv) described below. In this context
it has been shown that the only situation where s is always greater than p is
when v′ ≡ 4t + 2 (mod 8t) (for example, see [14,15]), in which case if s is as
small as possible then (s, p) = (2t + 1, 2t) for some integer t. So for the rest of
the paper we now assume that (s, p) = (2t + 1, 2t) and that v′ = 8tx + 4t + 2
for some integer x; so clearly v′ > 1 and t ≥ 1. It is also convenient to define
ψ

′
(H,G; 2t + 1, 2t, i) = ψ

′
i(H,G) and ψ′(H,G; 2t + 1, 2t, i) = ψ′

i(H,G). Since
each vertex u in Kv′ − F obviously has degree 8tx + 4x, which is divisible by
2p = 4t, u is contained in exactly b′(v′) = v′−2

4t = 2x + 1 blocks in each of the
p = 2t color classes appearing at u (each block, being a 4-cycle, contains 2 edges
incident with u). We are now ready to state the following theorem.

Theorem 1 [15]. Let v′ ≡ 4t + 2 (mod 8t). Let 4t ≤ 2b′(v′) + 2. Then

(1) ψ′
1(C4,Kv′ − F ) = 2b′(v′) + 2 and

(2) for 3 ≤ i ≤ 2t + 1, ψ′
i(C4,Kv′ − F ) = v′ − 2.

Notice that there is an unsolved case left in Theorem 1, namely finding
ψ′
2(C4,Kv′ − F ); this is the one value of i where ψ′

i(C4,Kv′ − F ) is not always
either the obvious lower or upper bound on the size of a color class, so it is
particularly challenging to find. In this paper, ψ′

2(C4,Kv′ − F ) is found (see
Corollary 1) by solving a related edge-coloring problem in Theorem 4 which is
proved using the method of amalgamations of graphs (graph homomorphisms).
This construction is then modified in Sect. 4 to provide a new proof of Theorem 1.
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Amalgamations provide a versatile proof technique that has been used in the
study of factorizations of graphs and Steiner triple systems, but its use in block-
colorings is relatively new.

Pursuing this approach in more detail, it is shown in [15] that Theorem 1 is a
direct consequence of the existence of a (2t+1, 2t)-equitable edge-coloring of Kv,
where v = v′/2 (or, more precisely, a (2t + 1, 2t)-equitable block-coloring of the
obvious K2-decomposition of Kv), so v = 4tx+2t+1 for some integer x; clearly
if v > 1, then t ≥ 1. Each vertex u has degree 4tx+2t, which is clearly divisible
by p = 2t, so u is contained in exactly b(v) = v−1

2t = 2x + 1 = b′(v′) blocks
(edges) in each of the 2t color classes appearing at u. Note that b(v) is odd. In
Sect. 4, a new proof of the following result is presented (and by the discussion
above, a new proof of Theorem 1 as well).

Theorem 2 [15]. Let v ≡ 2t + 1 (mod 4t) with v > 1. Let 2t ≤ b(v) + 1. Then,

(1) ψ′
1(K2,Kv) = b(v) + 1 and

(2) for 3 ≤ i ≤ 2t + 1, ψ′
i(K2,Kv) = v − 1.

It is worth noting that a more generalized result in [15] complements The-
orems 1 and 2, addressing the cases where 4t ≥ 2b′(v′) + 2 and 2t ≥ b(v) + 1,
showing that then ψ′

2(C4,Kv′ −F ) = v′ −1 and ψ′
2(K2,Kv) = v−1 respectively.

The following notation will be useful throughout the paper. Let K[R] denote
the complete graph defined on the vertex set R. Color i is said to appear at a
vertex u if at least one block incident with u is colored i.

2 Some Preliminary Results

In order to find ψ′
2(C4,Kv′ −F ) and ψ′

2(K2,Kv), we begin by finding bounds on
the value of c2 in the following Lemmas, utilizing some results proved in [14,15].
For ease of notation define 	x
e to be the largest even integer less than or equal
to x.

Lemma 1. For v ≡ 2t + 1 (mod 4t) and v′ = 2v,

ψ
′
i(K2,Kv) ≤

⌊
2tv − ∑i−1

j=1 ψ′
j(K2,Kv)

2t + 2 − i

⌋
e

and

ψ
′
i(C4,Kv′ − F ) ≤

⌊
2tv′ − ∑i−1

j=1 ψ′
j(C4,Kv′ − F )

2t + 2 − i

⌋
e

.

Proof. Note the elements of the color vector are listed in non-decreasing order;
and since in Lemma 2.5 of [14] it is shown that for any (2t+1, 2t)-equitable edge-
coloring E of Kv and for any (2t + 1, 2t)-equitable C4-coloring E′ of Kv′ − F ,
both

∑2t+1
i=1 ci(E) = 2tv and

∑2t+1
i=1 ci(E′) = 2tv′, the above holds. ��
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Lemma 2. Let v = v′/2 = 4tx + 2t + 1 for some integer x and b(v) + 1 =
b′(v′) + 1 ≥ 2t. Then,

ψ
′
2(K2,Kv) ≤

⌊
v − x + 1

t

⌋
e

and ψ
′
2(C4,Kv′ − F ) ≤

⌊
v′ − 2x + 2

t

⌋
e

.

Proof. Let b(v)+1 ≥ 2t. By Theorem 3.5 of [15], ψ′
1(K2,Kv) = b(v)+1. Therefore

by Lemma 1:

ψ
′
2(K2,Kv) ≤ 	2tv − (b(v) + 1)

2t + 2 − 2

e

= 	v − (b(v) + 1)
2t


e

= 	v − 2x + 2
2t


e

= 	v − x + 1
t


e.

By Corollary 3.6 of [15], ψ′
1(C4,Kv′ − F ) = 2b′(v′) + 2. Therefore by

Lemma 1:

ψ
′
2(C4,Kv′ − F ) ≤

⌊
2tv′ − (2b′(v′) + 2)

2t + 2 − 2

⌋
e

=
⌊
v′ − (2b′(v′) + 2)

2t

⌋
e

=
⌊
v′ − 2x + 4

2t

⌋
e

=
⌊
v′ − 2x + 2

t

⌋
e

.

��

3 Settling the Unsolved Cases in Theorems 1 and 2

Apart from completing the open case left in Theorems 1 and 2, in this paper the
use of amalgamations in block-decompositions is further demonstrated. Hilton
and Rodger [8,9] used this technique to find embeddings of edge-colorings into
hamiltonian decompositions. Buchanan [2] used amalgamations to find hamilto-
nian decompositions of Kn − E(U) for any 2-regular spanning subgraph U , and
this was extended to various multipartite graphs by Leach and Rodger [10,12].
Leach and Rodger [11] went on to find hamilton decompositions of complete
multipartite graphs where each hamilton cycle spreads its edges out as evenly
as possible among the pairs of parts of the graph. This notion has recently been
extended by Erzurumluoğlu and Rodger [3,4] to factorizations and holey fac-
torizations of complete multipartite graphs and then to C4-decompositions of
Kv − F and edge-decompositions of Kv by Matson and Rodger in [15].
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Formally, a graph H is said to be an amalgamation of a graph G if there exists
a function ψ from V (G) onto V (H) and a bijection ψ

′
: E(G) → E(H) such that

e = {u, v} ∈ E(G) if and only if ψ
′
(e) = {ψ(u), ψ(v)} ∈ E(H). The function ψ

is called an amalgamation function. We say that G is a detachment of H, where
each vertex u of H splits into the vertices of ψ−1({u}). An η-detachment of H
is a detachment in which each vertex u of H splits into η(u) vertices.

To describe the amalgamation result used here more precisely, some notation
will be needed. Let x ≈ y represent the fact that 	y
 ≤ x ≤ �y�. Furthermore,
let �(u) denote the number of loops incident with vertex u, where each loop
contributes twice to the degree of u, let G(j) denote the subgraph of G induced
by the edges colored j, and let m(u, v) denote the number of edges between the
pair of vertices u and v in G.

The following is a special case of Theorem 3.1 in [1] (omitting the condition
that ensures color classes are connected and a balanced property on the color
classes for multigraphs since in our case G is simple).

Theorem 3 (Bahmanian and Rodger [1, Theorem 3.1]). Let H be a k-edge-
colored graph and let η be a function from V (H) into N such that for each
v ∈ V (H), η(v) = 1 implies �H(v) = 0. Then there exists a loopless η-detachment
G of H in which each v ∈ V (H) is detached into v1, . . . , vη(v), such that G
satisfies the following conditions:

1. dG(ui) ≈ dH(u)/η(u) for each u ∈ V (H) and 1 ≤ i ≤ η(u);
2. dG(j)(ui) ≈ dH(j)(u)/η(u) for each u ∈ V (H), 1 ≤ i ≤ η(u), and 1 ≤ j ≤ k;
3. mG(ui, ui′) ≈ �H(u)/

(
η(u)
2

)
for each u ∈ V (H) with η(u) ≥ 2 and 1 ≤ i <

i′ ≤ η(u); and
4. mG(ui, vi′) ≈ mH(u, v)/(η(u)η(v)) for every pair of distinct vertices u, v ∈

V (H), 1 ≤ i ≤ η(u), and 1 ≤ i′ ≤ η(v).

We now complete the open case left in Theorem 2 as stated here as
Theorem 4. As explained in the introduction, as a result of Theorem 4, we
also complete the open case left in Theorem 1, stated here as Corollary 1, using
the method of amalgamations in both.

Theorem 4. Let v ≡ 2t + 1 (mod 4t) with v > 1. Let 2t ≤ b(v) + 1. Then

ψ′
2(K2,Kv) =

⌊
v − x + 1

t

⌋
e

.

Proof. Let v = 4tx + 2t + 1 for some integer x. Form a complete graph G0 on
the set of vertices V0 = {u1, . . . , u2x+2} and color all the edges of G0 with color
2t + 1. So each vertex in G0 is incident with 2x + 1 = b(v) edges colored 2t + 1
as desired. Notice that in the final edge-coloring of Kv, each vertex is missing
(i.e., is not incident with any edges of) exactly one color. We will arrange for
1 ≤ i ≤ 2t, color m(i) = i to be missing from vertex ui, for 2t + 1 ≤ i ≤ 2x + 2
color m(i) = � i−2t

2 � (mod 2t) ∈ {1, . . . , 2t} to be missing from ui, and color
m(αi) = 2t+1 to be missing from the remaining v − 2x − 2 vertices (which will



Amalgamations and Equitable Block-Colorings 47

be named α1, . . . , αη(α) below). For 1 ≤ i ≤ 2t let M(i) = {uj ∈ V0 | m(j) = i}.
Note for 1 ≤ i < j ≤ 2t, | |M(i)| − |M(j)| |∈ {0, 2} and |M(i)| is odd for all i.

Next form a new edge-colored graph G+
0 from G0 as follows. Add a single

vertex, α. The aim now is to complete the proof by using Theorem 3 with
η(ui) = 1 for 1 ≤ i ≤ 2x+2 and η(α) = v − 2x− 2. For 1 ≤ i ≤ 2x+2 join ui to
α with b(v) edges of each color in {1, 2, . . . , 2t}\{m(i)}. Thus for 1 ≤ i ≤ 2x+2
the number of edges joining ui to α is (2t−1)(2x+1) = 4tx+2t+1−(2x+1)−1 =
v − 1 − (2x + 1) = η(α), and dG+

0
(ui) = v − 1.

Let a(i) be the number of vertices in G+
0 where color i appears and let εi = 2

for 1 ≤ i ≤ x+1− t (mod 2t) and εi = 0 otherwise. Therefore a(2t+1) = 2x+2
and for 1 ≤ i ≤ 2t,

a(i) = 2x + 3 − |M(i)|

= 2x + 2 − 2
⌊
2x + 2 − 2t

4t

⌋
− εi.

Note since x ≥ 0 and t ≥ 1 for 1 ≤ i ≤ 2t,

η(α) − (a(i) − 1) = v − 2x − 2 −
(
2x + 2 − 2

⌊
2x + 2 − 2t

4t

⌋
− εi − 1

)

= v − 4x − 3 − 2
⌊
2x + 2 − 2t

4t

⌋
+ εi

≥ 4tx + 2t − 2 − 4x −
(
2x + 2 − 2t

2t

)

= 4x(t − 1) + 2t − 1 − x + 1
t

= (4x + 1)(t − 1) + t − x + 1
t

≥ 0.

Thus for 1 ≤ i ≤ 2t add (b(v)η(α) − b(v)(a(i) − 1))/2 loops colored i to α,
thus resulting in dG+

0 (i)(α) = b(v)η(α). By the above calculations we know we
will be adding a non-negative number of loops for all colors 1, . . . , 2t.

Let l(α) be the number of loops incident with α and E(V (G0), α) be the set
of edges from a vertex in G0 to α. Therefore,

l(α) =
(
dG+

0
(α) − |E(V (G0), α)|

)
/2

= (η(α)b(v)2t − (2x + 2)[b(v)(2t − 1)]) /2
= (η(α)b(v)2t − (2x + 2)η(α)) /2
= η(α) (b(v)2t − 2x − 2) /2
= η(α) (4tx + 2t + 1 − 2x − 3) /2
= η(α)(v − 2x − 2 − 1)/2
= η(α)(η(α) − 1)/2.
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Now apply Theorem 3 to form the detachment G of G+
0 in which α is detached

into the vertices α1, . . . , αη(α). For 1 ≤ i ≤ 2x + 2, since ui is joined to α with
b(v) edges in G+

0 , by condition (3) ui is joined to each vertex αj for 1 ≤ j ≤ η(α)
by exactly one edge in G. Also, since α is incident with η(α)(η(α)−1)/2 loops in
G+
0 , by condition (4) αi is joined to αj by exactly one edge for 1 ≤ i < j ≤ η(α)

in G. It follows that G is isomorphic to K2x+2+η(α) = Kv. By condition (2),
for each vertex u in G, each color which appears at u does so on b(v) edges.
Therefore the edge-coloring E of G is (2t + 1, 2t)-equitable. Furthermore, in G,
color 2t + 1 appears at b(v) + 1 ≥ 2t vertices and for 1 ≤ i ≤ 2t, the number of
vertices where color i appears is

a(i) − 1 + η(α) = (2x + 2) − 2
⌊

x + 1 − t

2t

⌋
− εi − 1 + v − (2x + 2)

= v − 1 − 2
⌊

x + 1 − t

2t

⌋
− εi.

Therefore, since a(i) and η(α) are both odd integers, if 2t divides (x + 1 − t),
then ε1 = 0 and

a(1) − 1 + η(α) = v − 1 − x + 1 − t

t

= v − x + 1
t

=
⌊
v − x + 1

t

⌋
e

,

and if 2t does not divide (x + 1 − t) then ε1 = 2 and

a(1) − 1 + η(α) = v − 1 −
(
2
⌊

x + 1 − t

2t

⌋
+ 2

)

= v − 1 − 2
⌈

x + 1 − t

2t

⌉

= v − 1 + 2
⌊−(x + 1 − t)

2t

⌋

= 2
⌊

v − 1
2

+
1
2

− x + 1
2t

⌋

= 2
⌊

v

2
− x + 1

2t

⌋

=
⌊
v − x + 1

t

⌋
e

.

Therefore by Lemma 2, ψ′
2(K2,Kv) = 	v− x+1

t 
e and the proof is complete (after
renaming color 2t+1 with 1 and renaming colors 1, 2, . . . , 2t with 2, 3, . . . , 2t+1
respectively). ��
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Corollary 1. Let v′ ≡ 4t + 2 (mod 8t). Let 2t ≤ b′(v′) + 1. Then

ψ′
2(C4,Kv′ − F ) = 	v − 2x + 2

t

e.

Proof. By Theorem 4 fo v = v′/2 there exists a (2t+1, 2t)-equitable edge-coloring
E of Kv such that c2(E) = 	v − x+1

t 
e. So as explained in [15] there exists a
(2t + 1, 2t)-equitable C4-coloring E′ of Kv′ − F such that c2(E′) = 2c2(E) =
2	v − x+1

t 
e = 	2 (
v − x+1

t

)
e = 	2v − 2x+2
t 
e = 	v′ − 2x+2

t 
e. Therefore by
Lemma 2, ψ′

2(C4,Kv′ − F ) = 	v − 2x+2
t 
e. ��

4 A New Proof of Theorems 1 and 2

By modifying the proof of Theorem 4 we obtain a new proof of Theorem 2,
and as explained in the introduction, a new proof of Theorem 1 as well, using
amalgamations.

Proof. Let v = 4tx + 2t + 1 for some integer x. Form G0 in the same way as in
Theorem 4. Here color m(i) = i will be missing from vertex ui for 1 ≤ i ≤ 2t−1,
color m(i) = 2t will be missing from vertex ui for 2t ≤ i ≤ 2x + 2, and color
m(αi) = 2t + 1 will be missing from the remaining v − 2x − 2 vertices (which
will be named α1, . . . , αη(α) below).

Next form a new edge-colored graph G+
0 as in Theorem 4 and again the aim

now is to complete the proof using Theorem 3 with η(ui) = 1 for 1 ≤ i ≤ 2x+2
and η(α) = v−2x−2. For 1 ≤ i ≤ 2x+2 join ui to α with b(v) edges of each color
{1, 2, . . . , 2t}\{m(i)} as in Theorem 4; again the number of edges joining ui to α
is η(α), and dG+

0
(ui) = v−1. For 1 ≤ i ≤ 2t−1 add b(v)(η(v)− (2x+1))/2 loops

of color i to α; so α has degree b(v)η(v) in color class i (where loops contribute
2 to the degree of the incident vertex). Also add b(v)(η(v)− (2t − 1))/2 loops of
color 2t to α; so α has degree b(v)η(v) in color class 2t as well. Notice that the
number of loops incident with α is

l(α) = (2t − 1)b(v)(η(α) − (2x + 1)/2) + b(v)(η(α) − (2t − 1))/2
= (2t(2x + 1)η(α) − (2x + 1)(2t − 1)(2x + 2))/2
= (2x + 1)(2tη(α) − (4xt − 2x − 4t − 2))/2
= (2x + 1)(2tη(α) − (η(α) + 2t − 1))/2
= (2x + 1)(η(α) − 1)(2t − 1))/2
= η(α)(η(α) − 1)/2.

As in the proof of Theorem 4, Theorem 3 allows us to form G isomorphic to Kv

from G+
0 so that the edge-coloring E of G is (2t+1, 2t)-equitable. Furthermore, in

G, color 2t+1 appears at b(v)+1 vertices, color 2t appears at v−2t−1 vertices,
and each other color appears at v−1 vertices. Since in [15] it is shown in this case
that ψ′

i(K2,Kv) ≥ b(v) + 1 and that ψ′
i(K2,Kv) ≤ v − 1 for 1 ≤ i ≤ 2t + 1, the

proof is complete (after renaming the colors 1, 2, . . . , 2t+1 with 2t+1, 2t, . . . , 1
respectively). ��
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