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Abstract. In this paper, we introduce a new type of convergence for
a sequence of function, namely, λ-statistically convergent sequences of
functions in random 2-normed space, which is a natural generalization
of convergence in random 2-normed space. In particular, following the
line of recent work of Karakaya et al. [12], we introduce the concepts of
uniform λ-statistical convergence and pointwise λ-statistical convergence
in the topology induced by random 2-normed spaces. We define the λ-
statistical analog of the Cauchy convergence criterion for pointwise and
uniform λ-statistical convergence in a random 2-normed space and give
some basic properties of these concepts. In addition, the preservation of
continuity by pointwise and uniform λ-statistical convergence is proven.
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1 Introduction and Preliminaries

Our aim is to propose some new variants of statistical convergence (and more
general λ-statistical convergence) for sequences of functions in random 2-normed
spaces. We put special attention on functions in random 2-normed spaces, in a
sense extending original ideas of Balcerzak et al. [3] and Karakaya et al. [12].

The theory of probabilistic normed (PN) spaces is important area of research
in functional analysis. Lots of work have been done by this theory and it has
many important applications in real life situations. PN spaces are the vector
spaces in which the norms of the vectors are uncertain due to randomness. A
PN space is a generalization of an ordinary normed linear space. In a PN space,
the norms of the vectors are represented by probability distribution functions
instead of non-negative real numbers. If x is an element of a PN space, then its
norm is denoted by Fx, and the value Fx(t) is interpreted as the probability that
the norm of x is smaller than t. The probabilistic metric space was introduced by
Menger [13] which is an interesting and an important generalization of the notion
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of a metric space. The theory of probabilistic normed (or metric) space was initi-
ated and developed in [1,19–21]; further it was extended to random/probabilistic
2-normed spaces by Golet [9] using the concept of 2-norm which is defined by
Gähler (see [7]); and Gürdal and Pehlivan [10] studied statistical convergence in
2-Banach spaces.

In order to extend the notion of convergence of sequences, statistical conver-
gence of sequences was introduced by Fast [5]. A lot of developments have been
made in this areas after the work of Fridy [6]. Over the years and under differ-
ent names, statistical convergence has been discussed in the theory of Fourier
analysis, summability theory and number theory. Recently, Mursaleen [14] stud-
ied λ-statistical convergence as a generalization of the statistical convergence,
and in [15] he considered the concept of statistical convergence of sequences in
random 2-normed spaces. Quite recently, Savaş and Mohiuddine [18] defined λ-
statistical convergence for double sequences in probabilistic normed spaces, and
also Savaş [16] studied generalized statistical convergence in random 2-normed
space (also see [17]).

In another direction the idea of statistical convergence of sequences of real
functions was studied in [3], and some important results and references on statis-
tical convergence and function sequences can be found in [4,8]. Recently, in [12],
Karakaya et al. studied the statistical convergence of sequences of functions with
respect to the intuitionistic fuzzy normed spaces. Also in [11], Karakaya et al.
introduced the concept of λ-statistical convergence of sequences of functions in
the intuitionistic fuzzy normed spaces.

The notion of λ-statistical convergence of sequences of functions has not
been studied previously in the setting of random 2-normed spaces. Motivated
by this fact, in this paper, as a variant of statistical convergence, the notion
of λ-statistical convergence of sequences of functions is introduced in a random
2-normed space. In Sect. 2, we prove some results concerning to convergence
in pointwise λ-statistical convergence and uniform λ-statistical convergence of
sequences of functions in a random 2-normed spaces. We demonstrate the λ-
statistical analog of the Cauchy convergence criterion for pointwise and uniform
λ-statistical convergence in a random 2-normed space and give some basic prop-
erties of these concepts. Finally, we prove that pointwise and uniform λ-statistical
convergence preserves continuity.

First we recall some of the basic concepts, that will be used in this paper.
The notion of statistical convergence depends on the density of subsets of N,

the set of natural numbers. Let K be a subset of N. Then the asymptotic density
of the set K denoted by δ (K) is defined as

δ (K) = lim
n→∞

1
n

|{k ≤ n : k ∈ K}| ,

where the vertical bars denote the cardinality of the enclosed set. A number
sequence x = (xk)k∈N

is said to be statistically convergent to a point L if for
every ε > 0, the set K (ε) = {k ≤ n : |xk − L| ≥ ε} has asymptotic density zero,
i.e.,
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lim
n→∞

1
n

|{k ≤ n : |xk − L| ≥ ε}| = 0.

In this case we write S-lim x = L or xk → L (S) (see [5,6]).
The following definitions are due to Mursaleen [14].

Definition 1. Let K be a subset of N and λ = (λn) be a non-decreasing
sequences of positive real numbers tending to ∞ and such that

λn+1 ≤ λn + 1, λ1 = 0.

Let K be a subset of N, the set of natural numbers. The number

δλ (K) = lim
n

1
λn

|{k ∈ K : n − λn + 1 ≤ k ≤ n}| ,

is said to be the λ-density of K.

Definition 2. A sequence x = (xk) in X is said to be λ-statistically convergent
to L ∈ X and is denoted by Sλ-lim x = L, if, for every ε > 0, the set K (ε) has
λ-density zero, i.e.,

lim
n

1
λn

|Kn (ε)| = 0,

where Kn (ε) = {k ∈ In : |xk − L| ≥ ε} and In = [n − λn + 1, n] .

Definition 3 ([7]). Let X be a real vector space of dimension d, where 2 ≤
d < ∞. A 2-norm on X is a function ‖·, ·‖ : X × X → R which satisfies (i)
‖x, y‖ = 0 if and only if x and y are linearly dependent; (ii) ‖x, y‖ = ‖y, x‖ ;
(iii) ‖αx, y‖ = |α| ‖x, y‖ , α ∈ R; (iv) ‖x, y + z‖ ≤ ‖x, y‖ + ‖x, z‖ . The pair
(X, ‖·, ·‖) is then called a 2-normed space.

As an example of a 2-normed space we may take X = R
2 being equipped

with the 2-norm ‖x, y‖ := the area of the parallelogram spanned by the vectors
x and y, which may be given explicitly by the formula

‖x, y‖ = |x1y2 − x2y1| , x = (x1, x2) , y = (y1, y2) .

All the concepts listed below are studied in depth in the fundamental book
by Schweizer and Sklar [19].

Definition 4. Let R denote the set of real numbers, R+ = {x ∈ R : x ≥ 0} and
S = [0, 1] the closed unit interval. A mapping f : R → S is called a distribution
function if, it is non-decreasing and left continuous with inft∈R f (t) = 0 and
supt∈R f (t) = 1.

We denote the set of all distribution functions by D+ such that f (0) = 0. If
a ∈ R+, then Ha ∈ D+, where

Ha (t) =
{

1 if t > a,
0 if t ≤ a.

It is obvious that H0 ≥ f for all f ∈ D+.



Generalized Statistical Convergence 299

Definition 5. A triangular norm (t-norm) is a continuous mapping ∗ : S×S →
S be such that (S, ∗) is an abelian monoid with unit one and c∗d ≤ a∗ b if c ≤ a
and d ≤ b for all a, b, c, d ∈ S. A triangle function τ is a binary operation on
D+ which is commutative, associative and τ (f,H0) = f for every f ∈ D+.

Definition 6. Let X be a linear space of dimension greater than one, τ be a
triangle function, and F : X × X → D+. Then F is called a probabilistic 2-
norm and (X,F, τ) a probabilistic 2-normed space if the following conditions are
satisfied:

(i) F (x, y; t) = H0(t) if x and y are linearly dependent, where F (x, y; t) denotes
the value of F (x, y) at t ∈ R,

(ii) F (x, y; t) 	= H0(t) if x and y are linearly independent,
(iii) F (x, y; t) = F (y, x; t) for all x, y ∈ X,
(iv) F (αx, y; t) = F (x, y; t

|α| ) for every t > 0, α 	= 0 and x, y ∈ X,
(v) F (x + y, z; t) ≥ τ(F (x, z; t), F (y, z; t)) whenever x, y, z ∈ X, and t > 0. If

(v) is replaced by
(vi) F (x+y, z; t1+t2) ≥ F (x, z; t1)∗F (y, z; t2) for all x, y, z ∈ X and t1, t2 ∈ R+;

then (X,F, ∗) is called a random 2-normed space (for short, RTNS).

We provide the following example.

Example 1. Let (X, ‖., .‖) be a 2-normed space, and let a∗b = ab for all a, b ∈ S.
For all x, y ∈ X and every t > 0, consider

F (x, y; t) =
t

t + ‖x, y‖ .

Clearly (X,F, ∗) is a random 2-normed space.

Let (X,F, ∗) be a RTN space. Since ∗ is a continuous t-norm, the system of
(ε, η)-neighbourhoods of θ (the null vector in X){N(θ,z)(ε, η) : ε > 0, η ∈ (0, 1), z ∈ X

}
,

where
N(θ,z)(ε, η) =

{
(x, z) ∈ X × X : F(x,z)(ε) > 1 − η

}
.

determines a first countable Hausdorff topology on X×X, called the F -topology.
Thus, the F -topology can be completely specified by means of F -convergence of
sequences. It is clear that x − y ∈ N(θ,z) means y ∈ N(x,z) and vice-versa.

A sequence x = (xk) in X is said to be F -convergent to L ∈ X if for every
ε > 0, η ∈ (0, 1) and for each non-zero z ∈ X there exists a positive integer N
such that;

(xk, z − L) ∈ N(θ,z)(ε, η) for each k ≥ N

or equivalently,
(xk, z) ∈ N(L,z)(ε, η) for each k ≥ N.

In this case we write F -lim (xk, z) = L.
We also recall that the concept of convergence and Cauchy sequence in a

random 2-normed space is studied in [2].
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Definition 7. Let (X,F, ∗) be a RN space. Then, a sequence x = {xk} is said
to be convergent to L ∈ X with respect to the random norm F if, for every ε > 0
and η ∈ (0, 1) , there exists k0 ∈ N such that F(xk−L,z) (ε) > 1 − η whenever
k ≥ k0. It is denoted by F -lim x = L or xk →F L as k → ∞.

Definition 8. Let (X,F, ∗) be a RN space. Then, a sequence x = {xk} is called
a Cauchy sequence with respect to the random norm F if, for every ε > 0 and
η ∈ (0, 1) , there exists k0 ∈ N such that F(xk−xm,z) (ε) > 1 − η for all k,m ≥ k0.

Definition 9. Let (X,F, ∗) be a RN space. Then, a sequence x = {xk} is said
to be λ-statistically convergent to L ∈ X with respect to the F -topology if for
every ε > 0, η ∈ (0, 1) and each non-zero z ∈ X such that;

δλ

({
k ∈ N : F(xk−L,z) (ε) ≤ 1 − η

})
= 0

or equivalently
δλ

({
k ∈ N : F(xk−L,z) (ε) > 1 − η

})
= 1.

In this case we write SR2N
λ -lim x = L or xk → L

(
SR2N

λ

)
.

If λn = n for every n then every λ-statistically convergent sequences in
random 2-normed space (X,F, ∗) reduce to statistically convergent sequences in
random 2-normed space (X,F, ∗) .

Definition 10. Let (X,F, ∗) be a RN space. Then, a sequence x = {xk} is
said to be λ-statistical Cauchy to L ∈ X with respect to the F -topology if, for
every ε > 0, η ∈ (0, 1) and each non-zero z ∈ X there exists a positive integer
N = N (ε) such that

δλ

({
k ∈ N : F(xk−xN ,z) (ε) ≤ 1 − η

})
= 0

or equivalently

δλ

({
k ∈ N : F(xk−xN ,z) (ε) > 1 − η

})
= 1.

In this case we write SR2N
λ -lim x = L or xk → L

(
SR2N

λ

)
.

2 Kinds of λ-Statistical Convergence for Functions
in RTNS

In this section we are concerned with convergence in pointwise λ-statistical con-
vergence and uniform λ-statistical convergence of sequences of functions in a
random 2-normed spaces. Particularly, we introduce the λ-statistical analog of
the Cauchy convergence criterion for pointwise and uniform λ-statistical conver-
gence in a random 2-normed space. Finally, we prove that pointwise and uniform
λ-statistical convergence preserves continuity.
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2.1 Pointwise λ-Statistical Convergence in RTNS

Fix a random 2-normed space (Y, F ′, ∗) . Assume that (X,F, ∗) is a RTN
space and that N ′

(θ,z)(ε, η) =
{

x, z ∈ X × X : F ′
(x,z)(ε) > 1 − η

}
, called the F ′-

topology, is given.
Let fk : (X,F, ∗) → (Y, F ′, ∗) , k ∈ N, be a sequence of functions. A sequences

of functions (fk)k∈N
(on X) is said to be F -convergence to f (on X) if for every

ε > 0, η ∈ (0, 1) and for each non-zero z ∈ X, there exists a positive integer
N = N (ε, η, x) such that

(fk (x) − f (x) , z) ∈ N ′
θ,z(ε, η) =

{
(x, z) ∈ X × X : F ′

((fk(x)−f(x)),z)(ε) > 1 − η
}

for each k ≥ N and for each x ∈ X or equivalently,

(fk (x) , z) ∈ N ′
(f(x),z)(ε, η) for each k ≥ N and for each x ∈ X.

In this case we write fk →F 2 f.
First let us define pointwise λ-statistical convergence in a random 2-normed

space.

Definition 11. Let fk : (X,F, ∗) → (Y, F ′, ∗) , k ∈ N, be a sequence of func-
tions. (fk)k∈N

is said to be pointwise λ-statistical convergence to a function f
(on X) with respect to F -topology if, for every x ∈ X, ε > 0, η ∈ (0, 1) and each
non-zero z ∈ X the set

δλ

({
k ∈ N : (fk (x) , z) /∈ N ′

(f(x),z)(ε, η)
})

= 0,

or equivalently

δλ

({
k ∈ N : (fk (x) , z) ∈ N ′

(f(x),z)(ε, η)
})

= 1.

In this case we write fk → f
(
SRTN

λ

)
.

Theorem 1. Let (X,F, ∗), (Y, F ′, ∗) be RTN spaces. Assume that (fk)k∈N
is

pointwise convergent (on X) with respect to F -topology where fk : (X,F, ∗) →
(Y, F ′, ∗) , k ∈ N. Then fk → f

(
SRTN

λ

)
(on X). However the converse of this is

not true.

Proof. Let ε > 0 and η ∈ (0, 1) . Suppose (fk)k∈N
is F -convergent on X. In this

case the sequence (fk (x)) is convergent with respect to F ′-topology for each
x ∈ X. Then, there exists a number k0 = k0 (ε) ∈ N such that (fk (x) , z) ∈
N ′

(f(x),z)(ε, η) for every k ≥ k0, every non-zero z ∈ X and for each x ∈ X. This
implies that the set

A (ε, η) =
{

k ∈ N : (fk (x) , z) /∈ N ′
f(x),z(ε, η)

}
⊆ {1, 2, 3, ..., k0 − 1} .

Since finite subset of N has λ-density 0, we have δλ (A (ε, η)) = 0. That is,
fk → f

(
SRTN

λ

)
(on X).
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Example 2. Considering X as in Example 1, we have (X,F, ∗) as a RTN space
induced by the random 2-norm F(x,y)(ε) = ε

ε+‖x,y‖ . Define a sequence of func-
tions fk : [0, 1] → R via

fk (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xk + 1 if n − √
λn + 1 ≤ k ≤ n and x ∈ [0, 1

2 )
0 if otherwise and x ∈ [0, 1

2 )
xk + 1

2 if n − √
λn + 1 ≤ k ≤ n and x ∈ [12 , 1)

1 if otherwise and x ∈ [12 , 1)
2 if x = 1.

Then, for every ε > 0, η ∈ (0, 1), x ∈ [0, 1
2 ) and each non-zero z ∈ X, let

An (ε, η) =
{

k ∈ N : (fk (x) , z) /∈ N ′
(f(x),z)(ε, λ)

}
. We observe that;

An (ε, η) =
{

k ∈ In :
ε

ε + ‖fk (x) , z‖ ≤ 1 − η)
}

=
{

k ∈ In : ‖fk (x) , z‖ ≥ εη

1 − ε

}

=
{
k ∈ In : fk (x) = xk + 1

}
.

and |An (ε, λ)| ≤ √
λn. Thus, for each x ∈ [0, 1

2 ), since

δλ (An (ε, η)) = lim
n→∞

|An (ε, η)|
λn

= lim
n→∞

√
λn

λn
= 0

(fk)k∈N
is λ-statistically convergent to 0 with respect to F -topology. Similarly,

if we take x ∈ [12 , 1) and x = 1, it can be easily seen that (fk)k∈N
is λ-statistical

convergence to 1
2 and 2 with respect to F -topology, respectively. Hence (fk)k∈N

is pointwise λ-statistical convergent with respect to F -topology (on X).

Theorem 2. Let (X,F, ∗), (Y, F ′, ∗) be RTN spaces and let fk : (X,F, ∗) →
(Y, F ′, ∗) , k ∈ N, be a sequence of functions. Then the following statements are
equivalent:

(i) fk → f
(
SRTN

λ

)
.

(ii) δλ

({
k ∈ N : (fk (x) , z) /∈ N ′

(f(x),z)(ε, η)
})

= 0 for every ε > 0, η ∈ (0, 1),
for each x ∈ X and each non-zero z ∈ X.

(iii) δλ

({
k ∈ N : (fk (x) , z) ∈ N ′

(f(x),z)(ε, η)
})

= 1 for every ε > 0, η ∈ (0, 1),
for each x ∈ X and each non-zero z ∈ X.

(iv) Sλ-lim F ′
(fk(x)−f(x),z) (ε) = 1 for every x ∈ X and each non-zero z ∈ X.

Proof is standard.

Theorem 3. Let (fk)k∈N
and (gk)k∈N

be two sequences of functions from
(X,F, ∗) to (Y, F ′, ∗) with a ∗ a > a for every a ∈ (0, 1) . If fk → f

(
SRTN

λ

)
and gk → g

(
SRTN

λ

)
, then (αfk + βgk) → (αf + βg)

(
SRTN

λ

)
where α, β ∈ R

(or C).
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Proof. Let ε > 0 and η ∈ (0, 1) . Since fk → f
(
SRTN

λ

)
and gk → g

(
SRTN

λ

)
for

each x ∈ X, if we define

A1 =
{

k ∈ N : (fk (x) , z) /∈ N ′
(f(x),z)(

ε

2
, η)

}
and A2 =

{
k ∈ N : (gk (x) , z) /∈ N ′

(g(x),z)(
ε

2
, η)

}

then δλ (A1) = 0 and δλ (A2) = 0. Since δλ (A1) = 0 and δλ (A2) = 0, if we
represent A by (A1 ∪ A2) then δλ (A) = 0. Hence A1 ∪ A2 	= N and there exists
∃k0 ∈ N such that;

(fk0 (x) , z) ∈ N ′
(f(x),z)(

ε

2
, η) and (gk0 (x) , z) ∈ N ′

(g(x),z)(
ε

2
, η)

Let

B =
{

k ∈ N : ((αfk (x) + βgk (x)) , z) /∈ N ′
((αf(x)+βg(x)),z)(ε, η)

}
.

We shall show that Ac ⊂ B for each x ∈ X. Let k0 ∈ Ac. In this case,

(fk0 (x) , z) ∈ N ′
(f(x),z)(

ε

2
, η) and (gk0 (x) , z) ∈ N ′

(g(x),z)(
ε

2
, η).

From the above expressions, we have

F ′
((αfk(x)+βgk(x)−αf(x)+βg(x)),z) (ε) ≥ F ′

((αfk(x)−αf(x)),z)

( ε

2

)
∗ F ′

((βgk(x)−βg(x)),z)

( ε

2

)

= F ′
((fk(x)−f(x)),z)

( ε

2α

)
∗ F ′

((gk(x)−g(x)),z)

(
ε

2β

)

> (1 − η) ∗ (1 − η)

> 1 − η.

This implies Ac ⊂ B. Since Bc ⊂ A and δλ (A) = 0, hence δλ (Bc) = 0. That is

δλ

({
k ∈ N : ((αfk (x) + βgk (x)) , z) /∈ N ′

((αf(x)+βg(x)),z)(ε, η)
})

= 0.

Definition 12. Let (X,F, ∗), (Y, F ′, ∗) be RTN spaces and let fk : (X,F, ∗) →
(Y, F ′, ∗) , k ∈ N, be a sequence of functions. A sequence (fk)k∈N

is called point-
wise λ-statistical Cauchy sequence in RTN space if, for every ε > 0, η ∈ (0, 1)
and each non-zero z ∈ X there exists M = M (ε, η, x) ∈ N such that;

δλ

({
k ∈ N : (fk (x) − fM (x) , z) /∈ N ′

(θ,z)(ε, η)
})

= 0.

Theorem 4. Let (X,F, ∗), (Y, F ′, ∗) be RTN spaces such that a ∗ a > a for
every a ∈ (0, 1) and let fk : (X,F, ∗) → (Y, F ′, ∗) , k ∈ N, be a sequence of
functions. If (fk)k∈N

is a pointwise λ-statistical convergent sequence with respect
to F -topology, then (fk)k∈N

is a pointwise λ-statistical Cauchy sequence with
respect to F -topology. However the converse of this is not true.

Proof. Suppose that (fk)k∈N
is a pointwise λ-statistical convergent to f with

respect to F -topology. Let ε > 0 and η ∈ (0, 1) be given. If we state A and Ac

by

A =
{

k ∈ N : (fk (x) , z) /∈ N ′
(f(x),z)(

ε

2
, η)

}
and A

c
=

{
k ∈ N : (fk (x) , z) ∈ N ′

(f(x),z)(
ε

2
, η)

}
,
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then δλ (A) = 0 and δλ (Ac) = 1. Now, for every k,m ∈ Ac,

F ′
(fk(x)−fm(x),z) (ε) ≥ F ′

(fk(x)−f(x),z)

(ε

2

)
∗ F ′

(fm(x)−f(x),z)

(ε

2

)

> (1 − η) ∗ (1 − η)
> 1 − η.

So, δλ

({
k ∈ N : (fk (x) − fm (x) , z) ∈ N ′

(θ,z)(ε, η)
})

= 1. Therefore

δλ

({
k ∈ N : (fk (x) − fm (x) , z) /∈ N ′

(θ,z)(ε, η)
})

= 0,

i.e., (fk)k∈N
is a pointwise λ-statistical Cauchy sequence with respect to F -

topology.

The next result is a modification of a well-known result.

Theorem 5. Let (X,F, ∗), (Y, F ′, ∗) be a RTN spaces such that a ∗ a > a for
every a ∈ (0, 1) . Assume that fk → f

(
SRTN

λ

)
(on X) where functions fk :

(X,F, ∗) → (Y, F ′, ∗) , k ∈ N, are equi-continuous (on X) and f : (X,F, ∗) →
(Y, F ′, ∗) . Then f is continuous (on X) with respect to F -topology.

Proof. We prove that f is continuous with respect to F -topology. Let x0 ∈ X
and (x − x0, z) ∈ Nθ,z(ε, η) be fixed. By the equi-continuity of fk’s, for every
ε > 0 and each non-zero z ∈ X, there exists a γ ∈ (0, 1) with γ < η such that
(fk (x) − fk (x0) , z) ∈ N ′

(θ,z)(
ε
3 , γ) for every k ∈ N. Since fk → f

(
SRTN

λ

)
, if we

state respectively A and B by the sets A=
{

k∈N : (fk (x0) , z) /∈N ′
(f(x0),z)

( ε
3 , γ)

}

and B =
{

k ∈ N : (fk (x) , z) /∈ N ′
(f(x),z)(

ε
3 , γ)

}
, then δλ (A) = 0 and δλ (B) = 0.

Therefore, δλ (A ∪ B) = 0 and A ∪ B is different from N. So, there exists k ∈ N

such that (fk (x0) , z) ∈ N ′
(f(x0),z)

( ε
3 , γ) and (fk (x) , z) ∈ N ′

(f(x),z)(
ε
3 , γ). We

have

F ′
(f(x0)−f(x),z) (ε) ≥ F ′

(f(x0)−fk(x0),z)

( ε

3

)
∗

[
F ′
(fk(x0)−fk(x),z)

( ε

3

)
∗ F ′

(fk(x)−f(x),z)

( ε

3

)]

> (1 − γ) ∗ [(1 − γ) ∗ (1 − γ)]

> (1 − γ) ∗ (1 − γ)

> 1 − γ

> 1 − η

and the continuity of f with respect to F -topology is proved.

2.2 Uniformly λ-Statistical Convergence in RTNS

Let us define uniform λ-statistical convergence in a random 2-normed space.
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Definition 13. Let (X,F, ∗), (Y, F ′, ∗) be RTN spaces. We say that a sequence
of functions fk : (X,F, ∗) → (Y, F ′, ∗) , k ∈ N, is uniform λ-statistically conver-
gent to a function f (on X) with respect to F -topology if and only if ∀ε > 0,
∃M ⊂ N, δλ (M) = 1, ∃k0 = k0 (ε, η, x) ∈ M � ∀k > k0, k ∈ M, ∀z ∈ X and
∀x ∈ X, η ∈ (0, 1) (fk (x) , z) ∈ N ′

(f(x),z)(ε, η).
In this case we write fk ⇒ f

(
SRTN

λ

)
.

We state the following result without proof, which can be established using
standard technique.

Theorem 6. Let (X,F, ∗), (Y, F ′, ∗) be RTN spaces and let fk : (X,F, ∗) →
(Y, F ′, ∗) , k ∈ N, be a sequence of functions. Then for every ε > 0 and η ∈ (0, 1),
the following statements are equivalent:

(i) fk ⇒ f
(
SRTN

λ

)
.

(ii) δλ

({
k ∈ N : (fk (x) , z) /∈ N ′

(f(x),z)(ε, η)
})

= 0 for every x ∈ X and each
non-zero z ∈ X.

(iii) δλ

({
k ∈ N : (fk (x) , z) ∈ N ′

(f(x),z)(ε, η)
})

= 1 for every x ∈ X and each
non-zero z ∈ X.

(iv) Sλ–lim F ′
(fk(x)−f(x),z) (ε) = 1 for every x ∈ X and each non-zero z ∈ X.

Definition 14. Let (X,F, ∗) be a RTN space. A subset Y of X is said to be
bounded on RTN spaces if for every η ∈ (0, 1) there exists ε > 0 such that
(x, z) ∈ N(θ,z)(ε, η) for all x ∈ Y and every non-zero z ∈ X.

Definition 15. Let (X,F, ∗), (Y, F ′, ∗) be RTN spaces and let fk : (X,F, ∗) →
(Y, F ′, ∗) , k ∈ N, and f : (X,F, ∗) → (Y, F ′, ∗) be bounded functions. Then
fk ⇒ f

(
SRTN

λ

)
if and only if Sλ-lim

(
infx∈X F ′

(fk(x)−f(x),z) (ε)
)

= 1.

Example 3. Let (X,F, ∗) be as considered in Example 1. Define a sequence of
functions fk : [0, 1) → R via

fk (x) =
{

xk + 1 if n − √
λn + 1 ≤ k ≤ n

2 otherwise.

Then, for every ε > 0, η ∈ (0, 1) and each non-zero z ∈ X, let An (ε, η) ={
k ∈ In : (fk (x) , z) /∈ N ′

(1,z)(ε, λ)
}

. For all x ∈ X, we have δλ (An (ε, λ)) = 0.

Since fk → 1
(
SRTN

λ

)
for all x ∈ X, fk ⇒ 1

(
SRTN

λ

)
(on [0, 1)).

Remark 1. If fk ⇒ f
(
SRTN

λ

)
, then fk → f

(
SRTN

λ

)
. But not necessarily con-

versely.

We establish the above remark providing the following example.

Example 4. Define the sequence of functions

fk (x) =
{

0 if n − √
λn + 1 ≤ k ≤ n

k2x
1+k3x2 otherwise
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on [0, 1] . Since fk

(
1
k

) → 1
(
SRTN

λ

)
and fk (0) → 0

(
SRTN

λ

)
, this sequence of

functions is pointwise λ-statistically convergence to 0 with respect to F -topology.
But by Definition 11, it is not uniform λ-statistical convergence with respect to
F -topology.

Theorem 7. Let (X,F, ∗), (Y, F ′, ∗) be RTN spaces. Assume that (fk)k∈N
is

uniformly convergent (on X) with respect to F -topology where fk : (X,F, ∗) →
(Y, F ′, ∗) , k ∈ N. Then fk ⇒ f

(
SRTN

λ

)
(on X). However the converse of this is

not true.

Proof. Assume that (fk)k∈N
is uniformly convergent to f on X with respect to

F -topology. In this case, for every ε > 0, η ∈ (0, 1) and every non-zero z ∈ X,
there exists a positive integer k0 = k0 (ε, η) such that ∀x ∈ X and ∀k > k0,
(fk (x) , z) ∈ N ′

(f(x),z)(ε, η). That is, for k ≤ k0

A (ε, η) =
{

k ∈ N : (fk (x) , z) /∈ N ′
(f(x),z)(ε, η)

}
⊆ {1, 2, 3, ..., k0} .

Since finite subset of N has λ-density 0, we have δλ (A (ε, η)) = 0. That is,
fk ⇒ f

(
SRTN

λ

)
(on X).

Definition 16. Let (X,F, ∗), (Y, F ′, ∗) be RTN spaces and let fk : (X,F, ∗) →
(Y, F ′, ∗) , k ∈ N, be a sequence of functions. Then a sequence (fk)k∈N

is called
uniform λ-statistical Cauchy sequence in RTN space if for every ε > 0, η ∈ (0, 1)
and each non-zero z ∈ X there exists N = N (ε, η) ∈ N such that

δλ

({
k ∈ N : (fk (x) − fN (x) , z) /∈ N ′

(θ,z)(ε, η)
})

= 0.

Theorem 8. Let (X,F, ∗), (Y, F ′, ∗) be RTN spaces such that a∗a > a for every
a ∈ (0, 1) and let fk : (X,F, ∗) → (Y, F ′, ∗) , k ∈ N, be a sequence of functions.
If (fk)k∈N

is a uniform λ-statistical convergence sequence with respect to F -
topology, then (fk)k∈N

is a uniform λ-statistical Cauchy sequence with respect to
F -topology. However the converse of this is not true.

Proof. Suppose that fk ⇒ f
(
SRTN

λ

)
. Let A =

{
k ∈ N : (fk (x) , z) ∈ N ′

f(x),z

(ε, η)
}

. By Definition 9, for every ε > 0, η ∈ (0, 1) and each non-zero z ∈ X,
there exists A ⊂ N, δλ (A) = 0 and ∃k0 = k0 (ε, η) ∈ A such that ∀k > k0, k ∈ A
and ∀x ∈ X, (fk (x) , z) ∈ N ′

(f(x),z)(
ε
2 , η). Choose N = N (ε, η) ∈ A, N > k0. So,

(fN (x) , z) ∈ N ′
(f(x),z)(

ε
2 , η). For every k ∈ A, we have

F ′
(fk(x)−fN (x),z) (ε) ≥ F ′

(fk(x)−f(x),z)

(ε

2

)
∗ F ′

(f(x)−fN (x),z)

(ε

2

)

> (1 − η) ∗ (1 − η)
> 1 − η.
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Hence, δλ

({
k ∈ N : (fk (x) − fN (x) , z) ∈ N ′

(θ,z)(ε, η)
})

= 1. Therefore

δλ

({
k ∈ N : (fk (x) − fN (x) , z) /∈ N ′

(θ,z)(ε, η)
})

= 0,

i.e., (fk) is an uniformly λ-statistical Cauchy sequence in RTN space.

The next result is a modification of a well-known result.

Theorem 9. Let (X,F, ∗), (Y, F ′, ∗) be RTN spaces such that a∗a > a for every
a ∈ (0, 1) and the map fk : (X,F, ∗) → (Y, F ′, ∗) , k ∈ N, be continuous (on X)
with respect to F -topology. If fk ⇒ f

(
SRTN

λ

)
(on X) then f : (X,F, ∗) →

(Y, F ′, ∗) is continuous (on X) with respect to F -topology. However the converse
of this is not true.

Proof. Let x0 ∈ X and (x0 − x, z) ∈ N(θ,z)(ε, η) be fixed. By F -continuity
of fk’s, for every ε > 0 and each non-zero z ∈ X, there exists a γ ∈ (0, 1)
with γ < η such that (fk (x0) − fk (x) , z) ∈ N ′

(θ,z)(
ε
3 , γ) for every k ∈ N.

Since fk ⇒ f
(
SRTN

λ

)
, for all x ∈ X, if we state respectively A (ε, η) and

B (ε, η) by the sets A =
{

k ∈ N : (fk (x0) , z) /∈ N ′
(f(x0),z)

( ε
3 , γ)

}
and B ={

k ∈ N : (fk (x) , z) /∈ N ′
(f(x),z)(

ε
3 , γ)

}
, then δλ (A) = 0 and δλ (B) = 0. There-

fore, δλ (A ∪ B) = 0 and A ∪ B is different from N. So, there exists k ∈ N such
that (fk (x0) , z) ∈ N ′

(f(x0),z)
( ε
3 , γ) and (fk (x) , z) ∈ N ′

(f(x),z)(
ε
3 , γ). It follows

that

F
′
(f(x)−f(x0),z) (ε) ≥ F

′
(f(x)−fm(x),z)

( ε

3

)
∗

[
F

′
(fm(x0)−fm(x0),z)

( ε

3

)
∗ F

′
(fm(x0)−f(x0),z)

( ε

3

)]

> (1 − γ) ∗ [(1 − γ) ∗ (1 − γ)]

> (1 − γ) ∗ (1 − γ)

> 1 − γ

> 1 − η.

This implies that f is continuous (on X) with respect to F -topology.
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