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Abstract. In the present work, a fixed point result for generalized
weakly contractive mapping in fuzzy metric space has been established.
An example is cited to illustrate the obtained result.
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1 Introduction and Preliminaries

The concept of fuzzy metric spaces have been introduced in different ways by
many authors. Among which, KM-fuzzy metric space, introduced by Kramosil
and Michalek [2] and GV-fuzzy metric space, introduced by George and
Veeramani [3], are two most widely used fuzzy metric spaces. KM-fuzzy metric
space is similar to generalized Menger space [4]. George and Veeramani imposed
a strong condition on the definition of Kramosil and Michalek for topological
reasons. Several fixed point results in these fuzzy metric spaces can be found in
[5,7,8,10,11].

Alber et al. extended the concept of Banach contraction to the weak con-
traction and established a fixed point result in Hilbert space [1]. There after
B.E. Rhoades investigated this result in metric space [6]. Fixed point prob-
lem for weak contraction mapping have been investigated by many authors
[12-15,17-24]. In [9] Dutta et al. extended the results of Rhoades. Motivated
by the works of [9,16,25], in the present work, a fixed point result in fuzzy met-
ric space, introduced by George and Veeramani, is obtained and an example is
added in the support of main result.

Definition 1.1 [4]. A continuous t-norm * is a binary operation on [0, 1], which
satisfies the following conditions:

(i) * is associative and commutative,

(i) %1 =z, for all x € [0,1],
(iti) x xy < uxv, whenever x < u and y < v, for all x,y,u,v € [0,1],
(iv) * is continuous.

For example: (a) The minimum ¢-norm, x,s, defined by = *3; y = min {z,y};
(b) The product t-norm, xp, defined by x *p y = x.y, are two basic t-norms.
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Definition 1.2 [3]. The triplet (X, M, ) is called fuzzy metric space if X is a
non-empty set, * is continuous t-norm and M is a fuzzy set on X2 x (0, 00)
satisfying the following conditions:

(i) M (z,y,t) >0,

(i) M (z,y,t) =1 if and only if x =y,

(iii) M (z,y,t) = M (y,z,1),

(iv) M (z,z,t+s) > M(z,y,t) « M(y, z, ),
(v) M (z,y,.):(0,00) — [0,1] is continuous,

for all t,s € (0,00) and z,y,z € X.

In this paper, we use the notion of fuzzy metric space introduced by George
and Veeramani.

Definition 1.3 [3]. Let (X, M, *) be a fuzzy metric space. Then

(i) A sequence {z,} C X is said to converge to a point x € X if
lim M (z,,z,t) =1, for all t > 0.

n—oo

(ii) A sequence {x,} C X is called a Cauchy sequence if for each 0 < ¢ < 1
and t > 0, there exists an N € N such that M (2, xm,t) > 1 — €, for each
m,n > N.

(iii) A fuzzy metric space is called complete if every Cauchy sequence in this
space is convergent.

Lemma 1.1 [5]. Let (X, M,x*) be a fuzzy metric space. Then (X, M,.) is non-
decreasing for all x,y € X.

Lemma 1.2 [25]. If * is a continuous t-norm, and {ay}, {B.} and {y,} are
sequences such that a, — «o,v, — v as n — oo, then klim (g * Br * ) =
c— 00

ax lim B *v and Hm (g * By *y,) = o+ lim By * .
k—o0 k—o0 k— oo

Lemma 1.3 [25]. Let {f(k,.): (0,00) — (0,1],k =0,1,2, ........ } be a sequence

of functions such that f(k,.) is continuous and monotone increasing for each

k > 0. Then klim f(k,t) is a left continuous function in t and lim f(k,t) is a
— 00

) ) ) ) k—oo
right continuous function in t.

2 Main Results

Theorem 2.1. Let (X, M, x) be a complete fuzzy metric space with an arbitrary
continuous t-norm ¥’ and let T : X — X be a self mapping satisfying the
following condition:

Y(M (T, Ty,t)) < p(min(M(z,y,t), M(z, Tx,t), M(y, Ty,t)))  (2.1)
_(b(min(M(m? Y, t)’ M(yv Ty7 t)))>

where ¥, ¢ : (0,1] — [0,00) are two functions such that:
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(1) ¥ is continuous and monotone decreasing function with ¥ (t) = 0 if and only
ift=1,
(ii) ¢ is lower semi continuous function with ¢(t) =0 if and only if t = 1.

Then T has a unique fixed point.

Proof: Let xy € X. We define the sequence {z,} in X such that z,,11 = Tz,
for each n > 0. If there exists a positive integer k such that zy = xx11, then
is a fixed point of T. Hence, we shall assume that x,, # z,1, for all n > 0. Now,
from (2.1)

V(M (Tng1, Toga, 1) =0(M(Trp, Topgr,t))
< ¢(m1n{M(xn7 In+1,t), M(Irn LTn41, t), M($n+17 Tn+2, t)})
—p(min{M (xp, Tpi1,t), M(Tpni1, Tnia,t)}). (2.2)

Suppose that M (., xpt1,t) > M(Xpa1,Tnao,t), for some positive integer
n. Then from (2.2), we have

w(M(xn+lv Tn+2, t)) < ¢(M($n+1, Tn+2, t)) - ¢(M(xn+1, Tn+2, t))a that iS,
(M (xp41, Tnta,t)) < 0, which implies that M (41, Znt2,t) = 1. This gives
that x,,41 = 542, which is a contradiction.

Therefore, M(Zpi1,Tnio,t) < M(xp,2py1,t) for all n > 0, and
{M(2pn,Znyt1,t)} is a monotone increasing sequence of non-negative real num-
bers. Hence, there exists an r > 0 such that lim M (z,,z,q1,t) = 7.

n—oo

In view of the above facts, from (2.2), we have

¢(M(xn+17mn+27t)) S ¢(M($naxn+1at)) - ¢(M(xn,xn+17t)), for all n Z 07

Taking the limit as n — oo in the above inequality and using the continuities

of ¢ and ¢ we have ¥(r) < ¢(r) — ¢(r), which is a contradiction unless r = 1.
Hence

M(zp, Xpi1,t) — 1 asn — oo. (2.3)

Next, we show that {x,,} is Cauchy sequence. If otherwise, there exist A, € > 0
with A € (0, 1) such that for each integer k, there are two integers [(k) and m(k)
such that m(k) > I(k) > k and

M (1), Tim(ry,€) < 1= A, forall k> 0. (2.4)

By choosing m(k) to be the smallest integer exceeding [(k) for which (2.4) holds,
then for all £ > 0, we have

M(;vl(k), T (k)—1> 6) >1-\
Now, by triangle inequality, for any s with 0 < s < §, for all k > 0, we have

L= X 2> M(2i(k)s (k) €)
> M (), Tr(ky 15 8) * M(Zi(k)+15 Trm(k)+15 € — 28) % M (T (k)15 Trm(k)» S)-
(2.5)

For t > 0, we define the function hy(t) = LIm M (@)1, Tm(k)+1, 1) -

n
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Taking limsup on both the sides of (2.5), using (2.3) and the continuity
property of *, by Lemma (1.2), we conclude that

1—A>1x% km M (Z1(k) 41> T ()41, € — 25) * 1

= k@oM(@(k)Hv T (k)+15€ — 2s)

= hl (6 — 25).

By an application of Lemma (1.3), h is left continuous.
Letting limit as s — 0 in the above inequality, we obtain

hl(e) = k@oM(xl(k)+laxm(k)+l7 6) < 1-A (26)

Next, for all ¢ > 0, we define the function
ha(t) = kliim M (Zy(ky+1> Ty 41, t) -
In above similar process, we can prove that
ha(e) = ;Lm M (T 1> Tr(k)+1:€) = 1= A, (2.7)
Combining (2.6) and (2.7), we get
kILH;OM(xl(k)+1axm(k)+17 €)<1-A< kh7m M(xl(k)ﬂa Lm(k)+1> €).
This implies that
Jim M (k)15 Ty 41,1) = 1= A (2.8)

Again by (2.6), o
khm M(xl(k),xm(k), 6) < 1- A

For t > 0, we define the function

Now for s > 0,
M (Zi(kys Ty € + 28) = M(Zyy, Tiey+1,5) * M(Ti(k)+1, Tm(k)+1,€) *
M (Zm(k) 1> T (k)» S)-
Taking liminf both the sides, we have
lim M(xl(k),xm(k), €+2s) > 1% lim M(xl(k)+1,xm(k)+1, e)xl=1-\
k—o0

k—oo
Thus,
hs(e+2s) > 1— A, (2.10)

Taking limit as s — 0, we get hs(e) > 1 — A. Combining (2.9) and (2.10) we
obtain

Jim M (k) Tmry, €) = 1.
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Now,

V(M (2y() 41, T ()41, €)) < Y(min(M (25, Tor), €),
M (@), i) 15 €))s M (Trn(k)s Ton(k)+15€))
—p(min(M (21, T (ks €)s M (Zrn(k)s Trm(k)+15€)))-

Taking limit as k — oo, we get

Pl —=X) <yl —A)—¢(1 — ), which is a contradiction.

Thus, {z,} is Cauchy sequence. Since X is complete, there exists p € X such
that x,, — p as n — oo. Now,

Y(M(2pt1,Tp, 1)) = (M (T, Tp,t))
< Y(min{M (2, p,t), M(Tn, Tni1,t), M(p, Tp,t)})
—p(min{M (zn, p, t), M(p,Tp,t)}).

Taking limit as n — oo, we get
which implies that ¢(M (p, Tp,t)) = 0, that is,

M(p,Tp,t) =1 or p=Tp.

We next establish that fixed point is unique. Let p and ¢ be two fixed points
of T.

Putting 2 = p and y = ¢ in (2.1),

Y(M(Tp,Tq,t)) < (minM(p,q,t), M(p,Tp,t), M(q,Tq,t) ¢(min
M(p,q,t), M(q,Tq,t)) or, (M (p,q,t)) < ¢(min M(p, ¢, t), M (p,p,t), (q q ))
—¢(minM(p,q,t),M(q,q,t)) r, Y(M(p,q,t)) < Y(M(p,q,t)) —d(M(p, g, 1)) or
d(M(p,q,t)) <0, or, equivalently, M(p,q,t) =1, that is, p = gq.

The following example is in support of Theorem 2.1.

Example 2.1. Let X =[0,1]. Let

[z—y|

M(z,y,t) =e 7

)

forallz,y € X andt > 0, then (X, M, *) is a complete fuzzy metric space, where
'«/ is product t-norm. Let 1, ¢ : (0,1] — [0,00) be defined by ¢(s) =1 — 1 and

B(s) = L — % Then 1 and ¢ satisfy all the conditions of Theorem (2.1). Let

S

the mapping T : X — X be defined by Tx = 3, for all x € X.
Now, we will show that

w(M(T'raTyvt)) < ¢(M($ay)) - (;S(N(x,y)), (211)

where M(z,y) = min{M(z,y,t), M(z,Tz,t), M(y,Ty,t)} and N(z,y) =
¢(min{M(z,y,t), M(y,Ty,t)}). Herein;

r—y 0<y<3
Y ] F<y<uw
max{|z —y|, 5, 2} =4 2 2
2792 g r<y< 2z
Yy—x 2r<y<l1
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and

y r—y 0<y<¥%
max{|z — y, 5}: ]

5 2§<y§2x
Y- 2z <y < 1.

Case (1): When 0 <y < 3 or 2z <y <1, then

(M (Tx, Ty, t)) = (e ) = el =1 -1

and

V(M (z,y)) — ¢(N(z,y)) = w(e*@) _ qb(e’@ oy

y=el= -1
Obviously, in this case, (2.11) is satisfied.
Case (2): When § <y < %””, then
VO (Ta, Ty, 1)) = p(e= ") = 5 — 1
and
V(M (2,y)) = d(N(z,y)) = (e F) —gle” 7 ) =eF —l—e' T fe=,

In this case, § > x —y and exponential function is an increasing function.

Therefore, e 2 < e3 —e 7 +e 7 and hence (2.11) is satisfied.
Case (3): When %” <y <z, then

V(M (Tx, Ty,t)) = 1#(67%) oy

and

V(M(x,y)) — o(N(z,y)) = (e 2¢) — (15(67%

~—

@ Yy Yy
=e2t — ] —e2t 4 eit,
Since, in this case, 5% <

S

and § > %, (2.11) is satisfied.
Case (4): x <y < 2z, then

G(M(Ta, Ty,1)) = v(e 7 ) = 7
and

(M (2,y)) = $(N(2,y)) = (e ) — (

e73) = et — 1.

Since, in this case, 5 >y —x, (2.11) is satisfied. Hence, all the conditions of
Theorem (2.1) are satisfied. Thus, 0 is the unique fixed point of T.
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