

Fixed Point Results for (ϕ, ψ) -Weak Contraction in Fuzzy Metric Spaces

Vandana Tiwari $^{(\boxtimes)}$ and Tanmoy Som

Department of Mathematical Sciences, Indian Institute of Technology (BHU), Varanasi 221005, India {vandanatiwari.rs.apm12,tsom.apm}@itbhu.ac.in

Abstract. In the present work, a fixed point result for generalized weakly contractive mapping in fuzzy metric space has been established. An example is cited to illustrate the obtained result.

Keywords: Weak contraction · Fuzzy metric · Fixed points

1 Introduction and Preliminaries

The concept of fuzzy metric spaces have been introduced in different ways by many authors. Among which, KM-fuzzy metric space, introduced by Kramosil and Michalek [2] and GV-fuzzy metric space, introduced by George and Veeramani [3], are two most widely used fuzzy metric spaces. KM-fuzzy metric space is similar to generalized Menger space [4]. George and Veeramani imposed a strong condition on the definition of Kramosil and Michalek for topological reasons. Several fixed point results in these fuzzy metric spaces can be found in [5,7,8,10,11].

Alber et al. extended the concept of Banach contraction to the weak contraction and established a fixed point result in Hilbert space [1]. There after B.E. Rhoades investigated this result in metric space [6]. Fixed point problem for weak contraction mapping have been investigated by many authors [12–15,17–24]. In [9] Dutta et al. extended the results of Rhoades. Motivated by the works of [9,16,25], in the present work, a fixed point result in fuzzy metric space, introduced by George and Veeramani, is obtained and an example is added in the support of main result.

Definition 1.1 [4]. A continuous t-norm * is a binary operation on [0, 1], which satisfies the following conditions:

- (i) * is associative and commutative,
- (*ii*) x * 1 = x, for all $x \in [0, 1]$,
- (iii) $x * y \le u * v$, whenever $x \le u$ and $y \le v$, for all $x, y, u, v \in [0, 1]$,
- (iv) * is continuous.

For example: (a) The minimum *t*-norm, $*_M$, defined by $x *_M y = \min\{x, y\}$; (b) The product *t*-norm, $*_P$, defined by $x *_P y = x \cdot y$, are two basic *t*-norms.

 © Springer Nature Singapore Pte Ltd. 2018
 D. Ghosh et al. (Eds.): ICMC 2018, CCIS 834, pp. 278–285, 2018. https://doi.org/10.1007/978-981-13-0023-3_26 **Definition 1.2** [3]. The triplet (X, M, *) is called fuzzy metric space if X is a non-empty set, * is continuous t-norm and M is a fuzzy set on $X^2 \times (0, \infty)$ satisfying the following conditions:

 $\begin{array}{ll} \textbf{(i)} & M\left(x,y,t\right) > 0, \\ \textbf{(ii)} & M\left(x,y,t\right) = 1 \ if \ and \ only \ if \ x = y, \\ \textbf{(iii)} & M\left(x,y,t\right) = M\left(y,x,t\right), \\ \textbf{(iv)} & M\left(x,z,t+s\right) \geq M(x,y,t) * M(y,z,s), \\ \textbf{(v)} & M\left(x,y,.\right) : (0,\infty) \to [0,1] \ is \ continuous, \end{array}$

for all $t, s \in (0, \infty)$ and $x, y, z \in X$.

In this paper, we use the notion of fuzzy metric space introduced by George and Veeramani.

Definition 1.3 [3]. Let (X, M, *) be a fuzzy metric space. Then

- (i) A sequence $\{x_n\} \subseteq X$ is said to converge to a point $x \in X$ if $\lim M(x_n, x, t) = 1$, for all t > 0.
- (ii) A sequence {x_n} ⊆ X is called a Cauchy sequence if for each 0 < ε < 1 and t > 0, there exists an N ∈ N such that M (x_n, x_m, t) > 1 − ε, for each m, n ≥ N.
- (iii) A fuzzy metric space is called complete if every Cauchy sequence in this space is convergent.

Lemma 1.1 [5]. Let (X, M, *) be a fuzzy metric space. Then (X, M, .) is nondecreasing for all $x, y \in X$.

Lemma 1.2 [25]. If * is a continuous t-norm, and $\{\alpha_n\}, \{\beta_n\}$ and $\{\gamma_n\}$ are sequences such that $\alpha_n \to \alpha, \gamma_n \to \gamma$ as $n \to \infty$, then $\lim_{k \to \infty} (\alpha_k * \beta_k * \gamma_k) = \alpha * \lim_{k \to \infty} \beta_k * \gamma$ and $\lim_{k \to \infty} (\alpha_k * \beta_k * \gamma_k) = \alpha * \lim_{k \to \infty} \beta_k * \gamma$.

Lemma 1.3 [25]. Let $\{f(k,.): (0,\infty) \to (0,1], k = 0, 1, 2, \dots\}$ be a sequence of functions such that f(k,.) is continuous and monotone increasing for each $k \ge 0$. Then $\lim_{k \to \infty} f(k,t)$ is a left continuous function in t and $\lim_{k \to \infty} f(k,t)$ is a right continuous function in t.

2 Main Results

Theorem 2.1. Let (X, M, *) be a complete fuzzy metric space with an arbitrary continuous t-norm '*' and let $T : X \to X$ be a self mapping satisfying the following condition:

$$\psi(M(Tx, Ty, t)) \le \psi(\min(M(x, y, t), M(x, Tx, t), M(y, Ty, t)))$$
(2.1)
- $\phi(\min(M(x, y, t), M(y, Ty, t))),$

where $\psi, \phi: (0,1] \to [0,\infty)$ are two functions such that:

- (i) ψ is continuous and monotone decreasing function with $\psi(t) = 0$ if and only if t = 1,
- (ii) ϕ is lower semi continuous function with $\phi(t) = 0$ if and only if t = 1.

Then T has a unique fixed point.

Proof: Let $x_0 \in X$. We define the sequence $\{x_n\}$ in X such that $x_{n+1} = Tx_n$, for each $n \ge 0$. If there exists a positive integer k such that $x_k = x_{k+1}$, then x_k is a fixed point of T. Hence, we shall assume that $x_n \ne x_{n+1}$, for all $n \ge 0$. Now, from (2.1)

$$\psi(M(x_{n+1}, x_{n+2}, t)) = \psi(M(Tx_n, Tx_{n+1}, t))$$

$$\leq \psi(\min\{M(x_n, x_{n+1}, t), M(x_n, x_{n+1}, t), M(x_{n+1}, x_{n+2}, t)\})$$

$$-\phi(\min\{M(x_n, x_{n+1}, t), M(x_{n+1}, x_{n+2}, t)\}). \quad (2.2)$$

Suppose that $M(x_n, x_{n+1}, t) > M(x_{n+1}, x_{n+2}, t)$, for some positive integer n. Then from (2.2), we have

 $\psi(M(x_{n+1}, x_{n+2}, t)) \leq \psi(M(x_{n+1}, x_{n+2}, t)) - \phi(M(x_{n+1}, x_{n+2}, t))$, that is, $\phi(M(x_{n+1}, x_{n+2}, t)) \leq 0$, which implies that $M(x_{n+1}, x_{n+2}, t) = 1$. This gives that $x_{n+1} = x_{n+2}$, which is a contradiction.

Therefore, $M(x_{n+1}, x_{n+2}, t) \leq M(x_n, x_{n+1}, t)$ for all $n \geq 0$, and $\{M(x_n, x_{n+1}, t)\}$ is a monotone increasing sequence of non-negative real numbers. Hence, there exists an r > 0 such that $\lim_{n \to \infty} M(x_n, x_{n+1}, t) = r$.

In view of the above facts, from (2.2), we have

$$\psi(M(x_{n+1}, x_{n+2}, t)) \le \psi(M(x_n, x_{n+1}, t)) - \phi(M(x_n, x_{n+1}, t)), \text{ for all } n \ge 0,$$

Taking the limit as $n \to \infty$ in the above inequality and using the continuities of ϕ and ψ we have $\psi(r) \leq \psi(r) - \phi(r)$, which is a contradiction unless r = 1. Hence

$$M(x_n, x_{n+1}, t) \to 1 \quad \text{as } n \to \infty.$$
 (2.3)

Next, we show that $\{x_n\}$ is Cauchy sequence. If otherwise, there exist λ , $\epsilon > 0$ with $\lambda \in (0, 1)$ such that for each integer k, there are two integers l(k) and m(k) such that $m(k) > l(k) \ge k$ and

$$M(x_{l(k)}, x_{m(k)}, \epsilon) \le 1 - \lambda, \text{ for all } k > 0.$$

$$(2.4)$$

By choosing m(k) to be the smallest integer exceeding l(k) for which (2.4) holds, then for all k > 0, we have

$$M(x_{l(k)}, x_{m(k)-1}, \epsilon) > 1 - \lambda.$$

Now, by triangle inequality, for any s with $0 < s < \frac{\epsilon}{2}$, for all k > 0, we have

$$1 - \lambda \ge M(x_{l(k)}, x_{m(k)}, \epsilon)$$

$$\ge M(x_{l(k)}, x_{l(k)+1}, s) * M(x_{l(k)+1}, x_{m(k)+1}, \epsilon - 2s) * M(x_{m(k)+1}, x_{m(k)}, s).$$
(2.5)

For t > 0, we define the function $h_1(t) = \overline{\lim_{n \to \infty}} M\left(x_{l(k)+1}, x_{m(k)+1}, t\right)$.

Taking lim sup on both the sides of (2.5), using (2.3) and the continuity property of *, by Lemma (1.2), we conclude that

$$1 - \lambda \ge 1 * \lim_{k \to \infty} M(x_{l(k)+1}, x_{m(k)+1}, \epsilon - 2s) * 1$$
$$= \lim_{k \to \infty} M(x_{l(k)+1}, x_{m(k)+1}, \epsilon - 2s)$$
$$= h_1(\epsilon - 2s).$$

By an application of Lemma (1.3), h_1 is left continuous.

Letting limit as $s \to 0$ in the above inequality, we obtain

$$h_1(\epsilon) = \lim_{k \to \infty} M(x_{l(k)+1}, x_{m(k)+1}, \epsilon) \le 1 - \lambda.$$
(2.6)

Next, for all t > 0, we define the function

 $h_2(t) = \lim_{k \to \infty} M\left(x_{l(k)+1}, x_{m(k)+1}, t\right).$

In above similar process, we can prove that

$$h_2(\epsilon) = \lim_{k \to \infty} M\left(x_{l(k)+1}, x_{m(k)+1}, \epsilon\right) \ge 1 - \lambda.$$
(2.7)

Combining (2.6) and (2.7), we get

 $\underbrace{\lim_{k \to \infty} M(x_{l(k)+1}, x_{m(k)+1}, \epsilon)}_{k \to \infty} \leq 1 - \lambda \leq \underbrace{\lim_{k \to \infty} M(x_{l(k)+1}, x_{m(k)+1}, \epsilon)}_{k \to \infty}.$ This implies that

$$\lim_{n \to \infty} M(x_{l(k)+1}, x_{m(k)+1}, t) = 1 - \lambda.$$
(2.8)

Again by (2.6),

$$\overline{\lim_{k \to \infty}} M(x_{l(k)}, x_{m(k)}, \epsilon) \le 1 - \lambda.$$

For t > 0, we define the function

$$h_3(t) = \lim_{k \to \infty} M(x_{l(k)}, x_{m(k)}, \epsilon).$$
(2.9)

Now for s > 0,

 $M(x_{l(k)}, x_{m(k)}, \epsilon + 2s) \geq M(x_{l(k)}, x_{l(k)+1}, s) * M(x_{l(k)+1}, x_{m(k)+1}, \epsilon) * M(x_{m(k)+1}, x_{m(k)}, s).$

Taking lim inf both the sides, we have

 $\underbrace{\lim_{k \to \infty} M(x_{l(k)}, x_{m(k)}, \epsilon + 2s)}_{k \to \infty} \ge 1 * \underbrace{\lim_{k \to \infty} M(x_{l(k)+1}, x_{m(k)+1}, \epsilon) * 1}_{k \to \infty} = 1 - \lambda.$ Thus,

$$h_3(\epsilon + 2s) \ge 1 - \lambda. \tag{2.10}$$

Taking limit as $s \to 0$, we get $h_3(\epsilon) \ge 1 - \lambda$. Combining (2.9) and (2.10) we obtain

$$\lim_{n \to \infty} M(x_{l(k)}, x_{m(k)}, \epsilon) = 1.$$

Now,

$$\psi(M(x_{l(k)+1}, x_{m(k)+1}, \epsilon)) \le \psi(\min(M(x_{l(k)}, x_{m(k)}, \epsilon), M(x_{l(k)}, x_{l(k)+1}, \epsilon)), M(x_{m(k)}, x_{m(k)+1}, \epsilon)) -\phi(\min(M(x_{l(k)}, x_{m(k)}, \epsilon), M(x_{m(k)}, x_{m(k)+1}, \epsilon))).$$

Taking limit as $k \to \infty$, we get

 $\psi(1-\lambda) \leq \psi(1-\lambda) - \phi(1-\lambda)$, which is a contradiction.

Thus, $\{x_n\}$ is Cauchy sequence. Since X is complete, there exists $p \in X$ such that $x_n \to p$ as $n \to \infty$. Now,

$$\psi(M(x_{n+1}, Tp, t)) = \psi(M(Tx_n, Tp, t))$$

$$\leq \psi(\min\{M(x_n, p, t), M(x_n, x_{n+1}, t), M(p, Tp, t)\})$$

$$-\phi(\min\{M(x_n, p, t), M(p, Tp, t)\}).$$

Taking limit as $n \to \infty$, we get

 $\psi(M(p,Tp,t)) \le \psi(M(p,Tp,t)) - \phi(M(p,Tp,t)),$

which implies that $\phi(M(p,Tp,t)) = 0$, that is,

M(p,Tp,t) = 1 or p = Tp.

We next establish that fixed point is unique. Let p and q be two fixed points of T.

Putting x = p and y = q in (2.1),

 $\begin{array}{lll} \psi(M(Tp,Tq,t)) &\leq & \psi(\min M(p,q,t), M(p,Tp,t), M(q,Tq,t)) \; - \; \phi(\min M(p,q,t), M(q,Tq,t)) \; or, \; \psi(M(p,q,t)) \leq \psi(\min M(p,q,t), M(p,p,t), M(q,q,t)) \\ - \phi(\min M(p,q,t), M(q,q,t)) \; or, \; \psi(M(p,q,t)) \leq \psi(M(p,q,t)) - \phi(M(p,q,t)) \; or, \\ \phi(M(p,q,t)) \leq 0, \; or, \; equivalently, \; M(p,q,t) = 1, \; \text{that is, } p = q. \end{array}$

The following example is in support of Theorem 2.1.

Example 2.1. Let X = [0, 1]. Let

$$M(x, y, t) = e^{-\frac{|x-y|}{t}},$$

for all $x, y \in X$ and t > 0, then (X, M, *) is a complete fuzzy metric space, where '*' is product t-norm. Let $\psi, \phi : (0, 1] \to [0, \infty)$ be defined by $\psi(s) = \frac{1}{s} - 1$ and $\phi(s) = \frac{1}{s} - \frac{1}{\sqrt{s}}$. Then ψ and ϕ satisfy all the conditions of Theorem (2.1). Let the mapping $T : X \to X$ be defined by $Tx = \frac{x}{2}$, for all $x \in X$. Now, we will show that

$$\psi(M(Tx,Ty,t)) \le \psi(M(x,y)) - \phi(N(x,y)), \tag{2.11}$$

where $M(x,y) = \min\{M(x,y,t), M(x,Tx,t), M(y,Ty,t)\}$ and $N(x,y) = \phi(\min\{M(x,y,t), M(y,Ty,t)\})$. Herein;

$$\max\{|x-y|, \frac{x}{2}, \frac{y}{2}\} = \begin{cases} x-y & 0 \le y \le \frac{x}{2} \\ \frac{x}{2} & \frac{x}{2} < y \le x \\ \frac{y}{2} & x < y \le 2x \\ y-x & 2x < y \le 1 \end{cases}$$

and

$$\max\{|x-y|, \frac{y}{2}\} = \begin{cases} x-y & 0 \le y \le \frac{2x}{3} \\ \frac{y}{2} & \frac{2x}{3} < y \le 2x \\ y-x & 2x < y \le 1. \end{cases}$$

Case (1): When $0 \le y \le \frac{x}{2}$ or $2x < y \le 1$, then

$$\psi(M(Tx, Ty, t)) = \psi(e^{-|\frac{x-y}{2t}|}) = e^{|\frac{x-y}{2t}|} - 1$$

and

$$\psi(M(x,y)) - \phi(N(x,y)) = \psi(e^{-\frac{|x-y|}{t}}) - \phi(e^{-\frac{|x-y|}{t}}) = e^{|\frac{x-y}{2t}|} - 1.$$

Obviously, in this case, (2.11) is satisfied.

Case (2): When $\frac{x}{2} < y \leq \frac{2x}{3}$, then

$$\psi(M(Tx, Ty, t)) = \psi(e^{-\frac{x-y}{2t}}) = e^{\frac{x-y}{2t}} - 1$$

and

$$\psi(M(x,y)) - \phi(N(x,y)) = \psi(e^{-\frac{x}{2t}}) - \phi(e^{-\frac{x-y}{t}}) = e^{\frac{x}{2t}} - 1 - e^{\frac{x-y}{t}} + e^{\frac{x-y}{2t}}.$$

In this case, $\frac{x}{2} \ge x - y$ and exponential function is an increasing function. Therefore, $e^{\frac{x-y}{2t}} \le e^{\frac{x}{2t}} - e^{\frac{x-y}{t}} + e^{\frac{x-y}{2t}}$ and hence (2.11) is satisfied. Case (3): When $\frac{2x}{3} < y \le x$, then

$$\psi(M(Tx, Ty, t)) = \psi(e^{-\frac{x-y}{2t}}) = e^{\frac{x-y}{2t}} - 1$$

and

$$\psi(M(x,y)) - \phi(N(x,y)) = \psi(e^{-\frac{x}{2t}}) - \phi(e^{-\frac{y}{2t}}) = e^{\frac{x}{2t}} - 1 - e^{\frac{y}{2t}} + e^{\frac{y}{4t}}.$$

Since, in this case, $\frac{x-y}{2} \leq \frac{y}{4}$ and $\frac{x}{2} \geq \frac{y}{2}$, (2.11) is satisfied. Case (4): $x < y \leq 2x$, then

$$\psi(M(Tx, Ty, t)) = \psi(e^{-\frac{y-x}{2t}}) = e^{\frac{y-x}{2t}} - 1$$

and

$$\psi(M(x,y)) - \phi(N(x,y)) = \psi(e^{-\frac{y}{2t}}) - \phi(e^{-\frac{y}{2t}}) = e^{\frac{x}{4t}} - 1.$$

Since, in this case, $\frac{y}{2} \ge y - x$, (2.11) is satisfied. Hence, all the conditions of Theorem (2.1) are satisfied. Thus, 0 is the unique fixed point of T.

References

- Alber, Y.I., Guerre-Delabriere, S.: Principle of weak contractive mapes in Hilbert space. In: New Results in Operator Theory and its Applications, vol. 98. Birkhuser, Basel, pp. 7–22 (1997)
- Kramosil, O., Michalek, J.: Fuzzy metric and statistical metric spaces. Kybernetica 11, 326–334 (1975)
- George, A., Veeramani, P.: On some results in fuzzy metric space. Fuzzy Sets Syst. 64, 395–399 (1994)
- 4. Schweizer, B., Sklar, A.: Statistical metric spaces. Pac. J. Math. 10, 313-334 (1960)
- Grabice, M.: Fixed points in fuzzy metric spaces. Fuzzy Sets Syst. 27, 385–389 (1988)
- Rhoades, B.E.: Some theorems on weakly contractive maps. Nonlinear Anal. 47, 2683–2693 (2001)
- 7. Berinde, V.: Approximating fixed points of weak $\phi\text{-contractions.}$ Fixed Point Theor. 4, 131–142 (2003)
- Zhang, Q., Song, Y.: Fixed point theory for generalized φ-weak contractions. Appl. Math. Lett. 22, 75–78 (2009)
- Dutta, P.N., Choudhury, B.S.: A generalization of contraction principle in metric spaces. Fixed Point Theor. Appl. 1–8 (2008). Article ID 406368
- Som, T., Choudhury, B.S., Das, K.P.: Two common fixed point results in fuzzy metric spaces. Internat. Rev. Fuzzy. Math. 6, 21–32 (2011)
- 11. Doric, D.: Common fixed point for generalized $(\psi \phi)$ -weak contractions. Appl. Math. Lett. **22**, 1896–1900 (2009)
- Popescu, O.: Fixed point for (ψ-φ)-weak contractions. Appl. Math. Lett. 24, 1–4 (2011)
- Karapinar, E.: Fixed point theory for cyclic weak φ-contraction. Appl. Math. Lett. 24, 822–825 (2011)
- Rouhani, B., Moradi, S.: Common fixed point of multivalued generalized φ-weak contractive mappings. Fixed Point Theor. Appl. 1–13 (2010). Article ID 708984
- 15. Samet, B., Vetro, C., Vetro, P.: Fixed point theorems for $(\alpha \psi)$ -contractive type mappings. Nonlinear Anal. **75**, 2154–2165 (2012)
- Choudhury, B.S., Konar, P., Rhoades, B.E., Metiya, N.: Fixed point theorems for generalized weakly contractive mappings. Nonlin. Anal. 74, 2116–2126 (2011)
- 17. Moradi, S., Farajzadeh, A.: On the fixed point of $(\psi \phi)$ -weak and generalized $(\psi \phi)$ -weak contraction mappings. Appl. Math. Lett. **25**, 1257–1262 (2012)
- 18. Jamala, N., Sarwara, M., Imdad, M.: Fixed point results for generalized $(\psi \phi)$ -weak contractions with an application to system of non-linear integral equations. Trans. A Razm. Math. Inst. **171**, 182–194 (2017)
- Aydi, H., Karapnar, E., Shatanawi, W.: Coupled fixed point results for (ψ-φ)weakly contractive condition in ordered partial metric spaces. Comput. Math. Appl. 62, 4449–4460 (2011)
- Aydi, H., Postolache, M., Shatanawi, W.: Coupled fixed point results for (ψ-φ)weakly contractive mappings in ordered G-metric spaces. Comput. Math. Appl. 63, 298–309 (2012)
- 21. An, T.V., Chi, K.P., Karapnar, E., Thanh, T.D.: An extension of generalized (ψ - ϕ)-weak contractions. Int. J. Math. Math. Sci. 1–11 (2012). Article ID 431872
- Latif, A., Mongkolkeha, C., Sintunavarat, W.: Fixed point theorems for generalized α-β-weakly contraction mappings in metric spaces and applications. Sci. World J. 1–14 (2014). Article ID 784207

- Jha, K., Abbas, M., Beg, I., Pant, R.P., Imdad, M.: Common fixed point theorem for (ψ-φ)-weak contraction in suzzy metric space. Bull. Math. Anal. Appl. 3, 149– 158 (2011)
- 24. Luo, T.: Fuzzy (ψ - ϕ)-contractive mapping and fixed point theorem. Appl. Math. Sci. **8**(148), 7375–7381 (2016)
- 25. Saha, P., Choudhury, B.S., Das, P.: Weak coupled coincidence point results having a partially ordering in fuzzy metric space. Fuzzy. Inf. Eng. 7, 1–18 (2016)