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1 Introduction

Rough sets, firstly introduced by Pawlak [11] has been advanced notably with
worthy of attention due to its widespread applications in both mathematics
and computer sciences for the study of intelligent systems having insufficient,
imprecise, uncertain and incomplete information. The partition or equivalence
(indiscernibility) relations were the fundamental and abstract tools of the rough
set theory introduced by Pawlak. Researchers have made several generalizations
of rough sets using an arbitrary relation in place of an equivalence relation
(cf., [4,7,21,22]). Dubois and Prade [3], proposed fuzzy version of rough sets
in which fuzzy relations play a key roll instead of crisp relations. The fuzzy
rough sets and their relationship with fuzzy topological spaces were described
in detail by several authors (e.g., cf., [2,6,10,12–14,16,17,19,20]). Moreover, in
[6,10,17], the set of all L-fuzzy preorder approximation spaces together with
the set of all saturated L-fuzzy topological spaces were center of interest, and
it was shown that under a certain extra condition there exists a bijective cor-
respondence between them. The silence on such relationship between the set of
other generalized approximation spaces (such as L-fuzzy reflexive approximation
space and L-fuzzy tolerance approximation spaces) and the set of some L-fuzzy
topological structures, in the cited work, attract our attention and lead us an
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attempt to establish such relationships by using the concept of L-fuzzy closure
spaces. Finally, we have established the similar result for the set of all, L-fuzzy
preorder approximation spaces and L-fuzzy closure spaces, respectively.

2 Preliminaries

We begin by recalling the following concept of a residuated lattice from [1].

Definition 1. An algebra L = (L,∧,∨, ∗,→, 0, 1) define a residuated lattice,
if (L,∧,∨, 0, 1) is a lattice having 0 and 1 as least and greatest element, respec-
tively, (L, ∗, 1) is a commutative monoid having unit 1, and ∗ and → form an
adjoint pair, i.e., ∀ x, y, z ∈ L, x ∗ y ≤ z ⇔ x ≤ y → z. Also, L is said to be a
complete residuated lattice if lattice (L,∨,∧, 0, 1) is complete.

Definition 2. The precomplement on L is a map ⇁: L −→ L such that
⇁ x = x → 0,∀x ∈ L.

Throughout, L denotes the complete residuated lattice. For a nonempty set X,
LX denote the collection of all L-fuzzy sets in X, for α ∈ L, ᾱ denotes the
constant L-fuzzy set.

Definition 3. A complete residuated lattice L is called regular if ⇁ (⇁ a) = a,
∀a ∈ L.

The basic properties of a complete regular residuated lattice, which we use in
subsequent sections are listed in following proposition.

Proposition 1. For all a, b, ai ∈ L, i ∈ J an index set, we have

(i) a ∗ b =⇁ (a → (⇁ b)),
(ii) a → b =⇁ (a ∗ (⇁ b)),
(iii) ⇁ (∧{ai}) = ∨{⇁ ai},
(iv) ⇁ (∨{ai}) = ∧{⇁ ai}.

Definition 4 [5]. Let X be a nonempty set, then L-fuzzy relation on X is a map
R : X × X → L.
For, properties of an L-fuzzy relation we refer to [5,10,15]. However, for com-
pleteness we emphasize from [10,15] that an L-fuzzy reflexive and L-fuzzy sym-
metric relation R is known as L-fuzzy tolerance relation and, if R is L-fuzzy
reflexive as well as L-fuzzy transitive then it is called L-fuzzy preorder.

Definition 5 [6,10,15,17]. Let R be an L-fuzzy relation on a nonempty set X,
then an L-fuzzy approximation space is a pair (X,R), which is further known
as L-fuzzy reflexive/tolerance/preorder approximation space, respec-
tively, according as underlying L-fuzzy relation R is an reflexive, tolerance or
preorder.

Throughout, set of all L-fuzzy approximation space over a nonempty set X is
denoted by Ω.
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Definition 6 [10,15,17]. Consider an (X,R) ∈ Ω and A ∈ LX . The lower
approximation apr

R
(A) of A and the upper approximation aprR(A) of A

in (X,R) are respectively defined as follows:

apr
R
(A)(x) = ∧{R(x, y) → A(y) : y ∈ X}, and

aprR(A)(x) = ∨{R(x, y) ∗ A(y) : y ∈ X}.

For an (X,R) ∈ Ω and A ∈ LX , we called the pair (apr
R
(A), aprR(A)) an

L-fuzzy rough set.

Proposition 2 [17]. Consider an (X,R) ∈ Ω, where L is regular as well, then
forallA ∈ LX ,

(i) apr
R
(A) =⇁ aprR(⇁ A), and

(ii) aprR(A) =⇁ apr
R
(⇁ A).

Proposition 3 [6,15,17]. Consider an (X,R) ∈ Ω, then ∀Ai ∈ LX , i ∈ J and
α ∈ L,

(i) aprR(∨{Ai : i ∈ J}) = ∨aprR{Ai : i ∈ J},
(ii) apr

R
(∧{Ai : i ∈ J}) = ∧apr

R
{Ai : i ∈ J}, and

(iii) aprR(A ∗ ᾱ) = aprR(A) ∗ ᾱ.

Proposition 4 [17]. Consider an (X,R) ∈ Ω, which is reflexive and A ∈ LX ,
then

(i) apr
R
(A) ≤ A, and

(ii) A ≤ aprR(A).

Proposition 5 [17]. Consider an (X,R) ∈ Ω and A ∈ LX , then R is an L-fuzzy
transitive relation on X iff aprR(aprR(A)) ≤ aprR(A).

Proposition 6. Let (X,R), (X,S) ∈ Ω, then R ≤ S iff aprR(A) ≤ aprS(A),
∀A ∈ LX .

Proof. Let aprR(A) ≤ aprS(A), ∀A ∈ LX , i.e., ∨{R(x, y) ∗ A(y)} ≤ ∨{S(x, y) ∗
A(y)}, ∀A ∈ LX . Thus R ≤ S, ∀x, y ∈ X.
Conversely, let R ≤ S and x ∈ X. Then aprR(A)(x) = ∨{R(x, y) ∗ A(y) :
y ∈ X} ≤ ∨{S(x, y) ∗ A(y) : y ∈ X} = aprS(A)(x). Thus aprR(A) ≤ aprS(A).

The L-fuzzy topological concepts, we use here, are fairly standard and based
on [8].

Definition 7. An L-fuzzy topology τ over a nonempty set X is a subset
of LX closed under arbitrary suprema and finite infima and which contains all
constant L-fuzzy sets.

The pair (X, τ) is called an L-bffuzzy topological space. As usual, the member
of τ are called L-fuzzy τ -open sets.
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Definition 8. A Kuratowski L-fuzzy closure operator over a nonempty
set X is a map k : LX → LX , whit property that ∀A,∈ LX and ∀α ∈ L,

(i) k(ᾱ) = ᾱ,
(ii) A ≤ k(A),
(iii) k(A ∨ B) = k(A) ∨ k(B), and
(iv) k(k(A)) = k(A).

Proposition 7 [6]. Consider an (X,R) ∈ Ω, where R be an L-fuzzy reflexive
relation, then τR = {A ∈ LX : apr

R
(A) = A} is an L-fuzzy topology.

One can easily verify that τR is a saturated1 L-fuzzy topology over X.

Proposition 8 [17]. Let k be as defined in Definition 8, then ∃ an L-fuzzy
preorder Sk over X for which aprSk

(A) = k(A) iff (i) ∀i ∈ J an indexed set
k(∨{Ai}) = ∨{k(Ai)}, ∀Ai ∈ LX and (ii) k(A ∗ ᾱ) = k(A) ∗ ᾱ, ∀A ∈ LX ,
∀α ∈ L.

The concept of fuzzy closure spaces was proposed in (cf., [9]). Further, the con-
cepts of subspace of a fuzzy closure space, sum of a family of pairwise disjoint
fuzzy closure spaces and product of a family of fuzzy closure spaces were studied
in [18]. Now, we introduce here the following concept of an L-fuzzy closure space
as a generalization of the concept of a fuzzy closure space studied in [9,18].

Definition 9. An L-fuzzy closure space over a nonempty set X is a pair (X, c),
where the map c : LX → LX is such that ∀A,B ∈ LX and ∀α ∈ L,

(i) c(ᾱ) = ᾱ,
(ii) A ≤ c(A), and
(iii) c(A ∨ B) = c(A) ∨ c(B).

Definition 10. An L-fuzzy closure space (X, c) is called

(i) quasi-discrete if c{∨{Ai : i ∈ J}} = ∨{c(Ai) : i ∈ J}, ∀Ai ∈ LX ,
(ii) symmetric if c(1y)(x) = c(1x)(y), ∀x, y ∈ X, and
(iii) A ∈ LX is called L-fuzzy closed if c(A) = A.

Proposition 9. Let (X, c) be as in 9, then

(i) for A,B ∈ LX if A ≤ B then c(A) ≤ c(B),
(ii) c{∧{Ai : i ∈ J}} ≤ ∧{c(Ai) : i ∈ J}, ∀Ai ∈ LX , i ∈ J .

Proof. Follows obviously.

Proposition 10. Consider L-fuzzy closure space (X, c), H ∈ LX and c̄ : LX →
LX be a map such that c̄(H) = ∧{K ∈ LX : H ≤ K and c(K) = K}. Then c̄ is
a Kuratowski L-fuzzy closure operator on X.

1 In the sense that arbitrary infimum of L-fuzzy τR-open sets is also, an L-fuzzy
τR-open.
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Proof. Obviously ∀α ∈ L, c(ᾱ) = ᾱ and ∀H ∈ LX ,H ≤ c̄(H). Now, let H,K ∈
X. Then c̄(H ∨ K) = ∧{G ∈ LX : (H ∨ K) ≤ G and c(G) = G}. Thus
c̄(H ∨ K) = ∧{G ∈ LX : H ≤ G,K ≤ G and c(G) = G} = {∧{G ∈ LX :
H ≤ G and c(G) = G} ∨ {∧(G ∈ LX : K ≤ G and c(G) = G)}} = c̄(H) ∨ c̄(K).
Finally, c̄(c̄(H)) = c̄{{∧{K ∈ LX : H ≤ K and c(K) = K}} ≤ ∧{c̄(K) : H ≤
K, c(K) = K} = ∧{∧{G : K ≤ G, c(G) = G} : H ≤ K, c(K) = K} = ∧{G :
H ≤ G, c(G) = G} = c̄(H).

Thus c̄ induces an L-fuzzy topology, say, τc̄ and is given by τc̄ = {H ∈ LX :
c̄(⇁ H) =⇁ H}.

Proposition 11. Let (X, c) be an L-fuzzy closure space. Then ∀H ∈ LX ,

(i) c(c̄(H)) = c̄(H), i.e., c̄(H) is L-fuzzy closed.
(ii) c(H) ≤ c̄(H),
(iii) c(H) = H iff c̄(H) = H.

Proof. (i) Let H ∈ LX . Then from Proposition 9, c(c̄(H)) = c(∧{K : H ≤ K
and c(K) = K}) ≤ ∧{c(K) : H ≤ K and c(K) = K} = ∧{K : H ≤ K and
c(K) = K} = c̄(H).
(ii) H ≤ c̄(H) ⇒ c(H) ≤ c(c̄(H)) = c̄(H).
(iii) Let c(H) = H, ∀H ∈ LX . Then H is L-fuzzy closed. Therefore c̄(H) ≤ H
(cf., Proposition 10). This together with H ≤ c̄(H) shows that c̄(H) = H.
Conversely, let c̄(H) = H. Then from (ii), H ≤ c(H) ≤ c̄(H) = H. Thus
c̄(H) = H, whereby c(H) = H.

Proposition 12. Let (X, c) be an L-fuzzy closure space. Then ∀H ∈ LX ,
c(H) = c̄(H) iff c(c(H)) = c(H).

Proof. Let c(H) = c̄(H), H ∈ LX . Then c(c(H)) = c(c̄(H)) = c̄(H) = c(H).
Conversely, let c(c(H)) = c(H). Then c(H) is L-fuzzy closed. Hence from Propo-
sition 11 (iii), c(H) = c̄(H).

Proposition 13. Let (X, c) be a quasi-discrete L-fuzzy closure space. Then the
L-fuzzy topology τc̄ on X is a saturated L-fuzzy topology.

Proof. Follows from Definition 10 and Propositions 10 and 12.

3 L-fuzzy Closure Spaces and L-fuzzy Approximation
Spaces

The existence of a bijective correspondence between the set of all L-fuzzy reflex-
ive approximation spaces and the set of all quasi-discrete L-fuzzy closure spaces
under a certain extra condition is established here. The similar relationship
between the set of all L-fuzzy tolerance approximation spaces and the set of
all symmetric quasi-discrete L-fuzzy closure spaces satisfying a certain extra
condition is also demonstrated.
We begin with the following.



On the Rel. between L-fuzzy Closure Spaces and L-fuzzy Rough Sets 273

Proposition 14. Consider an (X,R) ∈ Ω, where R is L-fuzzy reflexive relation
then (X, aprR) is a quasi-discrete L-fuzzy closure space such that aprR(A ∗ ᾱ) =
aprR(A) ∗ ᾱ, ∀A ∈ LX and ∀α ∈ L.

Proof. Follows from Propositions 3 and 4.

Definition 11. For y ∈ X and α ∈ L, the L-fuzzy subset 1y ∗ ᾱ of X is called
an L-fuzzy point in X, and is denoted as yα.

Proposition 15. Let (X, c) be a quasi-discrete L-fuzzy closure space such that
c(A ∗ ᾱ) = c(A) ∗ ᾱ, ∀A ∈ LX and ∀α ∈ L. Then ∃ a L-fuzzy reflexive relation
Rc over X which is unique and satisfy aprRc

(A) = c(A), ∀A ∈ LX .

Proof. Let (X, c) be a quasi-discrete L-fuzzy closure space such that c(A ∗ ᾱ) =
c(A)∗ ᾱ, ∀A ∈ LX and ∀α ∈ L. Also, let Rc(x, t) = c(1t)(x), ∀x, t ∈ X. Then Rc

is an L-fuzzy relation on X such that 1 = 1x(x) ≤ c(1x)(x). Thus c(1x)(x) = 1,
whereby Rc is an L-fuzzy reflexive relation over X. Now, let A ∈ LX , α ∈ L and
x ∈ X. Then

aprRc
(A)(x) = aprRc

(∨{tα : t ∈ X})(x), where α = A(t)
= ∨{∨{Rc(x, r) ∗ tα(r) : r ∈ X} : t ∈ X}
= ∨{∨{Rc(x, r) ∗ tα(r) : r ∈ X, r �= t},

∨{Rc(x, t) ∗ tα(r) : r ∈ X, r = t} : t ∈ X}
= ∨{0 ∨ (Rc(x, t) ∗ α) : t ∈ X}
= ∨{Rc(x, t) ∗ α : t ∈ X}
= ∨{c(1t)(x) ∗ α : t ∈ X}
= ∨{c{(1t) ∗ ᾱ}(x) : t ∈ X}
= c{∨{1t ∗ ᾱ : t ∈ X}(x)}
= c(A).

Hence aprRc
(A) = c(A). To show the uniqueness of L-fuzzy relation Rc, let R′

be another L-fuzzy reflexive relation on X such that aprR′(A) = c(A), ∀A ∈ LX .
Then Rc(x, t) = c(1t)(x) = aprR′(1t)(x) = ∨{R′(x, r) ∗1t(r) : r ∈ X} = R′(x, t).
Thus Rc = R′. Hence the L-fuzzy relation Rc on X is unique.

Now, Propositions 14 and 15 lead us to the following.

Proposition 16. Let F be the set of all L-fuzzy reflexive approximation spaces
and T be the set of all quasi-discrete L-fuzzy closure spaces satisfying c(A∗ ᾱ) =
c(A) ∗ ᾱ, ∀A ∈ LX and ∀α ∈ L. Then there exists a bijective correspondence
between F and T .

Remark 1. In [6], it has been pointed out that for A ∈ LX , apr
R
(A) and aprR(A)

are not dual to each other. Therefore τRc
�= τc̄. The next proposition says that

the equality holds if L is regular.
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Proposition 17. Let L be regular and (X, c) be a quasi-discrete satisfying
c(A ∗ ᾱ) = c(A) ∗ ᾱ,∀A ∈ LX ,∀α ∈ L. Then τRc

= τc̄, where Rc is an
L-fuzzy reflexive relation on X induced by c.

Proof. Let A ∈ τc̄. Then c̄(⇁ A) =⇁ A. As from Proposition 11, c(A)≤ c̄(A),
∀A ∈ LX , c(⇁ A) ≤ c̄(⇁ A), or that A ≤ ⇁ c(⇁ A).

Now, ⇁ c(⇁ A) = ⇁ aprRc
(⇁ A)

= ⇁ {∨{Rc(w, t) ∗ (⇁ A(t))} : t ∈ X}
= ⇁ {∨{⇁ {Rc(w, t) → (⇁ (⇁ A(t)))}} : t ∈ X}
= ⇁ {∨{⇁ {Rc(w, t) → A(t)}} : t ∈ X}
= ∧{⇁⇁ {Rc(w, t) → A(t)} : t ∈ X}
= ∧{Rc(w, t) → A(t)}
= apr

Rc
(A).

Thus A ≤ apr
Rc

(A). Also, apr
Rc

≤ A, whereby apr
Rc

= A. Hence τc̄ ≤ τRc
.

Conversely, let A ∈ τRc
. Then apr

Rc
(A) = A, or that ∧{Rc(w, t) → A(t) :

t ∈ X} = A, i.e., ∧{⇁ {Rc(w, t) ∗ (⇁ A(t)) : t ∈ X}} = A, or that
⇁ {∨{Rc(w, t) ∗ (⇁ A(t)) : t ∈ X}} = A, i.e., ∨{Rc(w, t) ∗ (⇁ A(t)) : t ∈
X} =⇁ A, or that aprRc

(⇁ A) =⇁ A, whereby c(⇁ A) =⇁ A. Thus from
Proposition 11, c̄(⇁ A) =⇁ A, whereby A ∈ τc̄, or that τRc

≤ τc̄. Hence
τRc

= τc̄.

For a given quasi-discrete L-fuzzy closure space (X, c) satisfying c(A ∗ ᾱ) =
c(A) ∗ ᾱ, ∀A ∈ LX , ∀α ∈ L and its associated Kuratowski L-fuzzy closure
operator c̄, (X, c̄) is obviously a quasi-discrete L-fuzzy closure space such that
c̄(A ∗ ᾱ) = c̄(A) ∗ ᾱ, ∀A ∈ LX , ∀α ∈ L. Hence from Proposition 15, there exists
an L-fuzzy reflexive relation, say, Sc̄ on X, given by Sc̄(w, t)= c̄(1t)(w),∀w, t∈X.

Before stating next, we introduce the following.

Definition 12. Let R and T be two L-fuzzy relations on X. Then T is called
L-fuzzy transitive closure of R if T is the smallest L-fuzzy transitive relation
containing R.

Now, we have the following.

Proposition 18. Let (X, c) be a quasi-discrete L-fuzzy closure space such that
c(H ∗ ᾱ) = c(H) ∗ ᾱ, ∀H ∈ LX , ∀α ∈ L and c̄ be the associated Kuratowski
L-fuzzy closure operator. Then the L-fuzzy relation Sc̄ is L-fuzzy transitive clo-
sure of L-fuzzy relation Rc.

Proof. Let Sc̄ = c̄(1y)(x),∀x, y ∈ X.Transitivity of Sc̄ follows from Propositions
5 and 15. Also, Rc ≤ Sc̄ follows from Proposition 11. To show the relation Sc̄ is
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an L-fuzzy transitive closure of L-fuzzy relation Rc, it only remains to show that
Sc̄ is the smallest L-fuzzy reflexive and transitive relation containing Rc. For this,
let T be another L-fuzzy reflexive and transitive relation on X such that Rc ≤ T .
Then from the reflexivity of T , (X, aprT ) is quasi-discrete L-fuzzy closure space.
Now, from transitivity of T and Proposition 12 followed by Proposition 10, we
have aprT (H) = ∧{K ∈ LX : H ≤ K, aprT (K) = K},∀H ∈ LX . Also, Sc̄ being
L-fuzzy reflexive and L-fuzzy transitive relation associated with Kuratowski L-
fuzzy closure operator c̄, from Proposition 8 aprSc̄

(H) = c̄(H),∀H ∈ LX and
c̄ being Kuratowski L-fuzzy closure operator associated with quasi-discrete L-
fuzzy closure space (X, c), ∀H ∈ LX , it follows from Proposition 15 that c̄(H) =
∧{K ∈ LX : H ≤ K, c(K) = K} = ∧{K ∈ LX : H ≤ K, aprRc

(K) = K}. Thus
from Proposition 6, aprSc̄

(H) = ∧{K ∈ LX : H ≤ K, aprRc
(K) = K} ≤ ∧{K ∈

LX : H ≤ K, aprT (K) = K} = aprT (H), whereby aprSc̄
(H) ≤ aprT (H),

showing that Sc̄ ≤ T .

Now, we show that there is a bijective correspondence between the set of all
L-fuzzy tolerance approximation spaces and the set of all symmetric quasi-
discrete L-fuzzy closure spaces satisfying an extra condition.

Proposition 19. Let (X,R) be an L-fuzzy tolerance approximation space.
Then (X, aprR) is a symmetric quasi-discrete L-fuzzy closure space such that
aprR(H ∗ ᾱ) = aprR(H) ∗ ᾱ, ∀H ∈ LX and ∀α ∈ L.

Proof. From Propositions 3 and 4 it follows that (X, aprR) is an L-fuzzy closure
space and quasi-discrete. Now, ∀x, y ∈ X, aprR(1y)(x) = ∨{R(x, t) ∗ 1y(t) : t ∈
X} = ∨{R(y, t) ∗ 1x(t) : t ∈ X} = aprR(1x)(y), showing that (X, aprR) is
symmetric. Also, for all H ∈ LX and α ∈ L, aprR(H ∗ ᾱ) = aprR(H) ∗ ᾱ follows
from Proposition 3.

Proposition 20. Let (X, c) be a symmetric quasi-discrete L-fuzzy closure space
such that c(H ∗ ᾱ) = c(H) ∗ ᾱ, ∀H ∈ LX and ∀α ∈ L. Then ∃ a L-fuzzy tolerance
relation Rc over X which is unique and satisfy aprRc

(H) = c(H), ∀H ∈ LX .

Proof. Let (X, c) be a quasi-discrete and such that c(H ∗ ᾱ) = c(H) ∗
ᾱ,∀H ∈ LX ,∀α ∈ L. Let L-fuzzy relation Rc on X be such that Rc(x, y) =
c(1y)(x),∀x, y ∈ X. Then 1 = 1x(x) ≤ c(1x)(x). Thus c(1x)(x) = 1. Hence Rc

is an L-fuzzy reflexive relation on X. Also, (X, c) being an L-fuzzy symmetric
closure space, the L-fuzzy relation Rc is symmetric and aprRc

(H) = c(H) (cf.,
Proposition 15). To show the uniqueness of L-fuzzy relation Rc, let R′ be another
L-fuzzy tolerance relation on X such that aprR′(H) = c(H), ∀H ∈ LX . Then
Rc(x, y) = c(1y)(x) = aprR′(1y)(x) = ∨{R′(x, t) ∗ 1y(t) : t ∈ X} = R′(x, y).
Thus Rc = R′. Hence the L-fuzzy relation Rc on X is unique.

Proposition 21. Let F be the set of all L-fuzzy tolerance approximation spaces
and T be the set of all symmetric quasi-discrete L-fuzzy closure spaces satisfying
c(H ∗ ᾱ) = c(H) ∗ ᾱ, ∀H ∈ LX and ∀ α ∈ L, then ∃ a bijective correspondence
between F and T .
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Proof. Follows from Propositions 19 and 20.

Proposition 22. Let (X, c) be a symmetric quasi-discrete L-fuzzy closure space
such that c(H ∗ ᾱ) = c(H) ∗ ᾱ, ∀H ∈ LX , ∀α ∈ L and c̄ be the associated
Kuratowski L-fuzzy closure operator. Then the L-fuzzy relation Sc̄ is an L-fuzzy
transitive closure of L-fuzzy relation Rc.

Proof. Similar to that of Proposition 18.

Proposition 23. Let (X,R) be an L-fuzzy preorder approximation space.
Then (X, aprR) is a quasi-discrete L-fuzzy closure space such that (i)
aprR(aprR(H)) = H and (ii) aprR(H ∗ ᾱ) = aprR(H) ∗ ᾱ, ∀H ∈ LX , ∀α ∈ L.

Proof. Follows from Propositions 5 and 14.

Proposition 24. Let (X, c) be a quasi-discrete L-fuzzy closure space such that
(i) c(c(H)) = c(H) and (ii) c(H ∗ ᾱ) = c(H) ∗ ᾱ, ∀H ∈ LX , ∀α ∈ L. Then
there exists an unique L-fuzzy preorder Rc on X such that aprRc

(H) = c(H),
∀H ∈ LX .

Proof. Follows from Propositions 8, 12 and 15.

Finally, the following is an equivalent characterization of the result regarding
the bijective correspondence between the set of all L-fuzzy preorder approxi-
mation spaces and the set of all saturated L-fuzzy topological spaces observed
in [6,10,17].

Proposition 25. Let F be the set of all L-fuzzy preorder approximation spaces
and T be the set of all quasi-discrete L-fuzzy closure spaces satisfying (i)
c(c(H)) = c(H) and (ii) c(H ∗ ᾱ) = c(H) ∗ ᾱ, ∀H ∈ LX , ∀α ∈ L. Then there
exists a bijective correspondence between F and T .

Proof. Follows from Propositions 23 and 24.

4 Conclusion

The present paper established an association between L-fuzzy rough sets and
L-fuzzy closure spaces. In literature, the bijective correspondence between the set
of all L-fuzzy preorder approximation spaces and the set of all L-fuzzy topological
spaces of certain type is well known (cf., [6,10]). But the work done in this
paper shows that actual theory for such bijective correspondence begins from
the notion of L-fuzzy closure spaces. In future we will try to associate L-fuzzy
approximation spaces and L-fuzzy topological spaces in categorical point of view.
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