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Abstract. In this article, we discussed the dynamical behaviour of a
fractional order HIV/AIDS virus dynamics model which takes account
the cure of infected cells and loss of viral particles due to the fusion into
uninfected cells. The local and global stability of the model is studied
for disease-free equilibrium point with the help of next generation matrix
method. Moreover, the numerical solutions for some particular cases are
provided to verify the analytical results.
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1 Introduction

The fractional derivative has been widely applied in many research areas which
have been perceived an enormous growth in the last four decades. For examples,
the models approaching the backgrounds of economics, physics, circuits, heat
transfer, diffusion, electro-chemistry, and even biology are always apprehensive
with fractional derivative [1–5]. In fact, fractional derivative based approaches
establish more advanced and updated models of engineering systems than the
ordinary derivative based approaches do in many applications. The theories of
fractional derivatives generalize the idea of ordinary derivatives to some extent.
The literature shows that there is no field that has remained untouched by
fractional derivatives. However, development still needs to be achieved before
the ordinary derivatives could be truly interpreted as a subset of the fractional
derivatives [6–8].

In 2012, Safiel et al. [9] examines the effect of screening and treatment on
the transmission of HIV/AIDS infection in a population and shows the screen-
ing of HIV infectives and treatment of screened HIV infectives has the effect of
reducing the transmission of the disease. Kaur et al. [10] studied the transmis-
sion of infectives and counselling on the spread of HIV infection. In 2009, Ding
and Ye [11] introduce a fractional-order HIV infection of CD4+ T-cells model,
which determined the non-negative solutions, and carry out a detailed analysis
on the stability of equilibrium. Gkdogan et al. [12] have applied the multi-step
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differential transform method to present an analytical solution of nonlinear frac-
tional order HIV model for infection of CD4+ T cells. Recently, Arafa et al. [13]
describes the fractional-order model for HIV infection of CD4+ T cells with ther-
apy effect, and they employed Generalized Euler Method to find the numerical
solution of such problem.

More precisely, we reflect on a HIV/AIDS virus dynamic model describing
the interaction between the host susceptible CD4+ T cells (H), infected CD4+

T cells (I) and virus (V), and it is formulated by the following non-linear system
of fractional differential equations in Caputo sense

Dα
0 H = μ − (δ + γ)HV − d1H + σI (1a)

Dα
0 I = δHV − (d2 + σ)I (1b)

Dα
0 V = βI − γHV − d3V (1c)

and the initial conditions are

H(0) = H0, I(0) = I0, V (0) = V0, (2)

where the formation rate of susceptible host cells is μ, die at a rate d1H and
turn into infected δHV by virus, recovered or cured at a rate σI and destroy
at a rate γHV due to fusion. Infected cells might be killed because of virion in
their nucleus. The loss rate of infected cells is given by (d2 + σ)I, where d2I is
the death rate of infected cells and σI is the cure rate into the susceptible cells.
Finally, virions are produced by infected cells at a rate βI, decays at a rate d3V ,
and destroy at a rate γHV due to fusion.

In this study, we analysed a HIV/AIDS dynamical model with effect of fusion.
One more vital feature of the model is the fact that we incorporate also a cure
rate of the infected cells to the susceptible cells.

2 Analysis of the Model

2.1 Positivity and Boundedness

Denote IR3
+ = {x ∈ IR3 : x ≥ 0} and let x(t) = [H(t), I(t), V (t)]T . To prove

the main theorem, we need the following generalized mean value theorem and
corollary [9,12].

Lemma 1 ([11]). Suppose that f(x) ∈ C[a, b] and Caputo derivative Dα
a f(x) ∈

C[a, b] for 0 < α ≤ 1, then we have

f(x) = f(a) +
1

Γ(α)
(Dα

a f)(τ)(x − a)α (3)

with a ≤ τ ≤ x, ∀x ∈ (a, b].

Corollary 2. Let f(x) ∈ C[a, b] and Caputo derivative Dα
a f(x) ∈ C[a, b] for

0 < α ≤ 1.
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– If Dα
a f(x) ≥ 0, ∀x ∈ (a, b), then f(x) is non-decreasing function for each

x ∈ [a, b].
– If Dα

a f(x) ≤ 0, ∀x ∈ (a, b), then f(x) is non-increasing function for each
x ∈ [a, b].

Theorem 3. There is a unique solution x(t) = [H(t), I(t), V (t)]T to the system
(1) and initial condition (2) on t ≥ 0 and the solution will remain in IR3

+.
Furthermore, H(t) and I(t) are all bounded.

Proof. According to Lin [14], we can determine the solution on (0,+∞), by
solving the model (1) and initial conditions (2), which is not only existent but
also unique. Subsequently, we have to explain the non-negative octant IR3

+ is a
positively invariant region. From Eq. (1), we find

Dα
0 H = μ > 0, Dα

0 I = δHV ≥ 0, Dα
0 V = βI ≥ 0. (4)

By Corollary 2, the solution of model (1) will be remain in IR3
+. Furthermore,

from equation (1) we make out that

Dα
0 Ttotal = μ − γHV − d1H − d2I,

where, Ttotal = H + I.

Death by infected CD4+ T cells occurs faster than death by natural means;
that is, d2 > d1. Therefore,

Dα
0 Ttotal + d1Ttotal < μ. (5)

Thus, by Corollary 2, in the case of HIV infection, the total T-cell population,
Ttotal, i.e., the sub populations H(t) and I(t), are bounded.

2.2 Equilibrium Points, Reproduction Number and Local Stability

Equilibrium Points. To evaluate the equilibrium points of model (1), let

Dα
0 H = 0, Dα

0 I = 0, Dα
0 V = 0. (6)

Then E0 = ( μ
d1

, 0, 0) and E∗ = (H∗, I∗, V ∗) are the infection-free and
endemic equilibrium points, respectively, where

H∗ =
d3(d2 + σ)

βδ − γ(d2 + σ)
,

I∗ =
δ(d1d3(d2 + σ) + μ(γ(d2 + σ) − βδ)
(γ(d2 + σ) − βδ)(d2(γ + δ) + γσ)

,

V ∗ =
μ(βδ − γ(d2 + σ)) − d1d3(d2 + σ)

d2d3(γ + δ) + d3γσ
.
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Reproduction Number. Now, we compute the reproduction number (�0) for
the model (1). �0 is defined as the number of secondary infections due to a single
infection in a completely susceptible population, and it is

�0 =
βδμ

(d1d3 + γμ)(d2 + σ)
. (7)

Local Stability of Equilibria. The Jacobian matrix of model (1) at a general
point is given by

J =

⎛
⎝

−d1 − (γ + δ)V σ −(γ + δ)H
δV −d2 − σ δH

−γV β −d3 − γH

⎞
⎠ (8)

Based on Jacobian matrix approach by evaluating (8) at infection-free equi-
librium point E0, we can obtain the following results:

Lemma 4. The infection-free equilibrium point E0 is locally asymptotically sta-
ble if all eigenvalues λi of the Jacobian matrix J(E0) for model (1), satisfy
|arg(λi)| > απ

2 .

Proof. The Jacobian matrix J(E0) for model (1) evaluated at the infection-free
equilibrium steady state E0, is given by

J(E0) =

⎛
⎝

−d1 σ −(γ + δ) μ
d1

0 −d2 − σ δ μ
d1

0 β −d3 − γ μ
d1

⎞
⎠ (9)

The characteristic equation of the Jacobian matrix J(E0) is

(λ + d1)(λ2 + a1λ + a2) = 0,

where, a1 = (σ + d2 + d3 + γ μ
d1

) > 0, and,

a2 =
(d1d3 + μγ)(d2 + σ) − βδμ

d1
=

1 − �0

d1(d1d3 + μγ)(d2 + σ)
. (10)

Many researchers studied the Routh-Hurwitz stability conditions for frac-
tional order systems [12–15], and describe the necessary and sufficient condition
|arg(λi)| > απ

2 , for various models. Routh–Hurwitz criteria states that all roots
of the characteristic equation (λ+d1)(λ2+a1λ+a2) = 0 have negative real parts
if and only if a1 > 0 and a2 > 0. Therefore, Eq. (10) implies that if �0 < 1 then
all roots will be negative and for this condition the necessary and sufficient con-
dition will satisfy. Hence, a sufficient condition for the local asymptotic stability
of the equilibrium points is that the eigenvalues λi of the Jacobian matrix of
J(E0) satisfy the condition |arg(λi)| > απ

2 . This confirms that fractional-order
differential equations are, at least, as stable as their integer order counterpart.

The global existence of the solution of the fractional differential equation
always becomes a most important concern, which is carry out in the next section.
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2.3 Global Stability of Equilibria

Lemma 5 ([14]). Assume that the function G : IR+ × IR3 → IR3 satisfies the
following conditions in the global space:

(I) The function G(t, x(t)) is Lebesgue measurable with respect to t on IR.
(II) The function G(t, x(t)) is continuous with respect to x(t) on IR3.

(III)
∂G(t, x(t))

∂x
is continuous with respect x(t) on IR3.

(IV) ‖G(t, x(t))‖ ≤ ω + λ‖x‖, for almost every t ∈ IR and all x ∈ IR3.

Here, ω, λ are two positive constants and x(t) = [H(t), I(t), V (t)]T .
Then, the initial value problem

{
Dα

t x(t) = G(t, x(t)),
x(t0) = x0,

(11)

has a unique solution.

Theorem 6. There is a unique solution for system (1) and solution remains in
IR3

+.

Proof. From Lemma 5, we obtain the unique solution on (0,∞) by solving the
system (1). Firstly, Lin [14] discussed the proof of theorem and shows that the
solution is not only exist but also unique. In Theorem3, we already proof that
the solution of model (1) will be remain in IR3

+. The global stability of the model
also verified with the help of Fig. 1, which shows after some time the susceptible
population is going to constant while the number of infected population and
virions are tends to zero, i.e., we achieve the infection-free stage.

3 Numerical Results and Discussion

In this article, we will solve the system (1) by using Mathematica 9. Con-
sider that μ = 10 mm−3day−1, β = 160 day−1, δ = 0.000024 mm3day−1,
γ = 0.00001 mm3day−1, σ = 0.2 day−1, d3 = 3.4 day−1 [13]. We choose
d1 = 0.05 day−1 and d2 = 0.6 day−1 (since death rate of host infected cells
by virions will be slightly higher than those of susceptible cells) with initial con-
ditions H(0) = 1000, I(0) = 10 and V (0) = 10. The recovery rate σ will vary
for situation of the patient, such as availability of the drugs, etc.

Figure 1(a) shows that the host susceptible CD4+ T cell population decreases
with increase of time and tends to positive equilibrium point μ

d1
. Figure 1(b)

verify that infected CD4+ T cell population is increases in the first ten days,
after that it decreases drastically with increase of time and it tends to zero.
Similarly, Fig. 1(c) exhibit that first ten days the virus population is increases
rapidly compare to infected population later on decreased radically and it tends
to zero.
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(a)

(b)

(c)

Fig. 1. The densities of the host susceptible population H(t), infected population I(t)
and virions V(t) when α = 1, μ = 10, β = 160, δ = 0.000024, γ = 0.00001, d1 = 0.05,
d2 = 0.06, d3 = 3.4. The solid line (σ = 0.23), the dashed line (σ = 0.20), and the
dotted line (σ = 0.17).
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4 Conclusion

In this paper, we establish a system of Caputo sense fractional-order HIV/AIDS
dynamics model with the help of Srivastava and Hattaf et al. [16,17]. The author
explained the non-negative solutions and boundedness as an essential part of any
population dynamics model. The authors have defined the equilibrium points
and reproduction number for the proposed model. By using stability analysis on
an anticipated fractional order system, we obtained a sufficient condition on the
parameters for the stability of the infection-free steady state. The recent appear-
ance of fractional differential equations as models in some fields of applied math-
ematics makes it necessary to investigate analysis of solution for such equations
and we hope that this work is a step in this direction. The numerical solutions
have performed for different values of σ.
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