
On Leaf Node Edge Switchings
in Spanning Trees of De Bruijn Graphs

Suman Roy1(B) , Srinivasan Krishnaswamy1, and P. Vinod Kumar2

1 Department of Electronics and Electrical Engineering,
Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India

{suman.roy,srinikris}@iitg.ernet.in
2 Bharat Broadband Network Limited, Trivandrum, India

saivinod.potnuru@gmail.com

Abstract. An n-th order k-ary de Bruijn sequence is a cyclic sequence
of length kn which contains every possible k-ary subsequence of length
n exactly once during each period. In this paper, we show that, if we fix
the initial n bits, any n-th order de Bruijn sequence can be transformed
to another using a sequence of transformations.

Keywords: De Bruijn sequences · De Bruijn graph
Pseudorandom sequence generator · Shift register

1 Introduction

An n-th order k-ary de Bruijn sequence, DBn(k), is a periodic sequence of
length kn having every possible k-ary subsequence of length n exactly once in
each period. An example of DB2(3) is 001021122. In [3], it has been shown that
there exist ((k − 1)!)k

n−1
kk(n−1)−n k-ary de Bruijn sequences of order n. De

Bruijn sequences satisfy many statistical properties associated with randomness
such as balance property, span-n property, etc. Thus, they find many applications
ranging from cryptography and coding theory to communication systems [11,12].
This paper deals with binary de Bruijn sequences although the results can be
easily extended for k-ary de Bruijn sequences. Feedback Shift Registers (FSRs)
have been used to generate such sequences for many decades [7]. There are a
number of algorithms available in literature to generate de Bruijn sequences
using shift registers [5]. One way of generating de Bruijn sequences is by joining
various FSRs of shorter cycles [4,8]. Given a k-ary de Bruijn sequence of order n,
other such sequences can be obtained by using cross-join pairs [6,10]. Recursive
algorithms to produce higher order de Bruijn sequences from the lower order
de Bruijn sequences have been discussed in [1,9]. In this paper, we use the
enumerative construction given in [2] to show that any n-th order de Bruijn
sequence can be generated from another by using a set of transformations. Here
all de Bruijn sequences that are cyclic shifts of each other shall be considered
equivalent.
c© Springer Nature Singapore Pte Ltd. 2018
D. Ghosh et al. (Eds.): ICMC 2018, CCIS 834, pp. 110–117, 2018.
https://doi.org/10.1007/978-981-13-0023-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0023-3_11&domain=pdf
http://orcid.org/0000-0003-0895-1268


On Leaf Node Edge Switchings in Spanning Trees of De Bruijn Graphs 111

The remainder of this paper is organized as follows. Section 2 introduces de
Bruijn graphs and contains a brief description of the algorithm given in [2].
Section 3 contains the main results of the paper. In Sect. 4, we summarize the
results and conclude the paper.

2 Preliminaries

Let G = (V,E) be a directed graph where V and E denote the vertex (or
node) set and the edge set in G respectively. Every edge e ∈ E is directed
from the source vertex s(e) to the target vertex t(e). For all v ∈ V , indeg(v)
and outdeg(v) are the number of incoming and outgoing edges respectively. An
Eulerian cycle (or Eulerian circuit) in a directed graph is a directed cycle which
uses every edge e ∈ E exactly once. A graph that contains an Eulerian cycle
is called an Eulerian graph. For a connected directed balanced graph G, there
exists at least one Eulerian circuit. De Bruijn sequences are closely associated
with special directed Eulerian graphs known as de Bruijn graphs [3]. A binary
de Bruijn graph of order n, denoted as Gn, is a directed graph with 2n vertices,
each labeled with a unique n bit string. Each edge of the graph is labeled with
a binary string of length (n + 1). The edge labeled as s0s1 . . . sn connects the
source vertex labeled s0s1 . . . sn−1 with the target vertex labeled s1s2 . . . sn.

Example 1. Figure 1 represents a second order binary de Bruijn graph G2.

00

0110

11

000

001

010

011

100

110

101

111

Fig. 1. G2: De Bruijn graph of order 2.

In Gn, each vertex v = (s0s1 . . . sn−1) has two out-edges (s0s1 . . . sn−11) and
(s0s1 . . . sn−10); these edges are known as the one-edge and the zero-edge of v
respectively. Since de Bruijn graphs are connected and balanced they always
contain an Eulerian cycle. Observe that we can obtain an (n + 1)-th order de
Bruijn sequence by considering the sequence of most significant bits of edges
in an Eulerian cycle of Gn. Clearly, there exists a one-to-one correspondence



112 S. Roy et al.

between Eulerian cycles of Gn and (n+1)-th order de Bruijn sequences. We now
proceed to briefly describe the process of generating Eulerian cycles of Gn given
in [2].

An oriented spanning tree is an acyclic subgraph of a directed graph G =
(V,E). It has a vertex r ∈ V known as root vertex such that outdeg(r) = 0
and there exists a path from every vertex v ∈ V \{r} to r. For a directed graph
shown in Fig. 1, an oriented spanning tree T rooted at 00 is given in Fig. 2.

00

0110

11

010

100

110

Fig. 2. T: Spanning tree of G2 rooted at 00.

Let T be a spanning tree of Gn = (V,E) where V is the set of vertices and E
is the edge set in Gn. Now, for all v ∈ V , construct the lists lv having indeg(v)
number of edges. This array of lists is known as tree array. For all v ∈ V \{r},
the last element of lv will be the unique outgoing edge of v which occurs in the
spanning tree T . In case of the root vertex r, last element of lr is the symbol Ω
and the first entry of lr can be any of its outgoing edges in Gn.

Example 2. Consider the de Bruijn graph G2 shown in Fig. 1. A spanning tree
of G2 is shown in Fig. 2. A tree array lv corresponding to T is given as follows:

l00 = {(000), Ω }
l01 = {(011), (010)}
l10 = {(101), (100)}
l11 = {(111), (110)}

Now, let T be a spanning tree of Gn rooted at the vertex r and consider its
corresponding tree array. One can obtain the Eulerian cycle of Gn as follows.
Starting with the unique edge of Gn which does not lie in the tree array, each
edge x is followed by the first unused outgoing edge of t(x) in the tree array. This
process stops when the only unused entry of the tree array is Ω. Thus, given a
spanning tree and a tree array we can generate an Eulerian cycle in Gn. Further,
it has been shown in [2] that the correspondence between a spanning tree - tree
array pair and Eulerian cycles is one-to-one and one can easily obtain one from
the other.

Example 3. Consider the G2 given in Fig. 1 and its spanning tree T rooted at
00 shown in Fig. 2. A tree array for the spanning tree is given in Example 2.



On Leaf Node Edge Switchings in Spanning Trees of De Bruijn Graphs 113

We start with the edge 001 followed by the edge 011 which is the first unused
outgoing edge of the vertex 01 = t(001). By repeating this process, we get the
Eulerian cycle of G2 shown in Fig. 3. The corresponding 3-rd order de Bruijn
sequence is 00111010.

00 0001 1111 10 01 10 00
100 000011 111 110 101 010 100

Fig. 3. Eulerian cycle of the de Bruijn graph G2.

3 Construction of Any Spanning Tree of Gn from
a Spanning Tree of Gn

Recall that, a binary de Bruijn graph Gn having a vertex s = (s0s1 . . . sn−1) has
two out-edges, namely zero-edge and one-edge, which connect s to its successor
vertex (s1s2 . . . sn−10) and (s1s2 . . . sn−11) respectively. These vertices are called
conjugates of each other and corresponding edges are called conjugate edges.
In a spanning tree of Gn, any vertex s is connected to one of its successor
vertices. The all-zero and all-one vertices have only one possible successor in the
spanning tree. Therefore, we consider these vertices merged with their respective
successor vertices in the spanning tree as a single vertex. For example, consider
the spanning tree of G3 shown in Fig. 4. Here 000 and 001 (similarly, 111 and
110) are jointly treated as a single vertex 000 − 001 (111 − 110).

001

011

111

110

101

010

100

000

T1

Fig. 4. A spanning tree of G3 rooted at 011.

Note that fixing the root vertex and its unique outgoing edge that does not lie
in the tree array essentially fixes the starting edge of the Eulerian cycle (there-
fore, the first n-bits of the de Bruijn sequence). Therefore, if we fix the entry



114 S. Roy et al.

corresponding to the root vertex in the tree array, we have a one-to-one corre-
spondence between de Bruijn sequences with a given initial state and oriented
spanning trees of Gn. In the remainder of this section we will show that from a
given spanning tree of Gn rooted at a particular vertex we can generate any other
spanning tree of Gn having the same root by a sequence of transformations.

The process of replacing the outgoing edge of one vertex in the spanning tree
by its conjugate edge is known as edge switching. In a spanning tree T , a leaf
node is a node that does not have any incoming edge. For example, consider one
of the binary spanning trees of G2, T , rooted at 00 given in Fig. 2. Here, 01 and
11 are the leaf nodes.

Lemma 1. Switching the outgoing edge of a leaf node in a spanning tree of Gn

generates another spanning tree.

Proof. Let T be a spanning tree of Gn. Suppose an outgoing edge e of a vertex
v ∈ T is replaced by its conjugate edge e′, then this switching results in a
cycle only if t(e) is a vertex from which there exists a path to v. Otherwise the
resulting graph will be an another spanning tree. Now, if the node v ∈ T is a leaf
node then there exists no path to v from any other vertex. Therefore, when the
outgoing edge of a leaf node is switched the resulting graph is another spanning
tree of Gn.

Example 4. Consider the spanning tree, T1, of G3 as given in Fig. 4. T1 has two
leaf nodes viz. 101 and the merged pair 111 − 110. Switching of these edges, 101
and 111 − 110, produce two different spanning trees (see Fig. 5).

001

011

111

110

101

010

100

000

001

011

111

110

101

010

100

000

T2 T3

Fig. 5. Spanning trees of G3 rooted at 011.

In a directed spanning tree T a node x is known as an ancestor of a node v if
there exists a path from x to v in T . For example, in Fig. 4 the ancestors of the
node 100 are 101, 010 and the merged vertex pair 111 − 110. Now, we proceed
to prove our main result.



On Leaf Node Edge Switchings in Spanning Trees of De Bruijn Graphs 115

Theorem 1. Given a spanning tree T of Gn rooted at r, any other spanning
tree T ′ of Gn having the same root can be obtained from T by a sequence of leaf
nodes edge switching.

Proof. Let the number of nodes in T whose outgoing edges are same as that in
T ′ be κ. Now, consider a node v �= r in T whose outgoing edge is different from
that in T ′ and all of whose ancestor nodes have the same out-edges as in T ′.
Now, we apply post-order depth first traversal on the sub-tree of T rooted at v
and switch the nodes in the order in which they occur in this traversal. Clearly,
this is a sequence of leaf node edge switchings culminating in the switching of the
outgoing edge of v. Once the node v is switched, we switch all the other nodes
that we had switched before v in the reverse order. We now have a new graph
wherein the number of nodes in T whose outgoing edges are same as that in T ′

is κ + 1. We keep repeating this process till the outgoing edges of all vertices in
T become same as T ′. Thus, we transform the spanning tree T into T ′.

Given a de Bruijn sequence we can construct the corresponding spanning tree
and tree array. Now, by randomly performing a sequence of leaf node switches
we can get a random spanning tree of Gn and therefore a random de Bruijn
sequence.

Example 5. Consider a spanning tree, T1, of the 3-rd order de Bruijn graph
shown in Fig. 6(a). Let T ′

1 be any other spanning tree of G3 rooted at the same
vertex as shown in Fig. 6(g). Here κ = 5 and except 101 and 100 all other nodes in
T1 have the same outgoing edges as in T ′

1. Now, 101 is a leaf node and switching
its edge gives us a new spanning tree shown in Fig. 6(b). This spanning tree has
6 nodes whose outgoing edges are same as in T ′

1. Now, the vertex 100 is not a
leaf node. By applying depth first traversal algorithm on the sub-graph rooted
at node 100 we get the list {111−110, 010, 100}. We now switch the nodes in the
order 111− 110, 010 and 100. This gives us the spanning tree shown in Fig. 6(e).
We now again switch the nodes 010 and 111−110. This gives us the spanning tree
T ′
1. These switching operations are depicted in Fig. 6(a–g). The corresponding

tree arrays and 4-th order de Bruijn sequences of the spanning trees T1 and T ′
1

are tabulated in Table 1.

Remark 1. A sequence of Leaf node transformations can be represented by a
string of vertices whose outgoing edges are switched. It is interesting to note
that the set of such strings form a group under string concatenation where the
zero element is the empty string and the inverse of any string is a string where
the same nodes occur in the reverse order.

These results can be easily extended for k-ary de Bruijn graphs. In a k-ary
de Bruijn graph of order n, Gn(k), every vertex v ∈ V will have k incoming edges
and k outgoing edges. Let T be a spanning tree of Gn. Given a vertex v ∈ V\{r},
the row Lv in the tree array has indeg(v) = k elements. The last element of Lv

will be the unique outgoing edge of v that occurs in T . The remaining k − 1
elements in Gn(k) can be arranged in any order. Similarly, in case of the root



116 S. Roy et al.

Table 1. Tree arrays and de Bruijn sequences of T1 and T ′
1

Spanning tree (T1) Spanning tree (T ′
1)

Tree array l000 = {(0000), (0001)}
l001 = {(0010), (0011)}
l010 = {(0101), (0100)}
l011 = {(0110), Ω }
l100 = {(1001), (1000)}
l101 = {(1010), (1011)}
l110 = {(1101), (1100)}
l111 = {(1111), (1110)}

l000 = {(0000), (0001)}
l001 = {(0010), (0011)}
l010 = {(0101), (0100)}
l011 = {(0110), Ω }
l100 = {(1000), (1001)}
l101 = {(1010), (1011)}
l110 = {(1101), (1100)}
l111 = {(1111), (1110)}

de Bruijn seq. 0111101011001000 0111101011000010

001

011

111

110

101

010

100

000

(a) Spanning tree of G3

001

011

111

110

101

010

100

000

001

011

111

110

101

010

100

000

001

011

111

110

101

010

100

000

001

011

111

110

101

010

100

000

001

011

111

110

101

010

100

000

001

011

111

110

101

010

100

000

rooted at 011
(b) Edge switching of

the leaf node 101
(c) Edge switching of
the leaf node 111-110

(d) Edge switching of
the leaf node 010

(e) Edge switching of
the leaf node 100

(f) Edge switching of
the leaf node 010

(g) Edge switching of
the leaf node 111-110

T1

T ′
1

Fig. 6. Switching of leaf node edges in a spanning tree of G3.

vertex r, we consider Ω as the last entry of Lr and the other k − 1 entries of
Lr can be chosen from any of its outgoing edges in Gn(k). From this tree array
we can construct an Eulerian cycle of a k-ary de Bruijn graph of order n using
the method given in Sect. 2. Observe that the proof of Theorem 1 would also be
valid in this case.



On Leaf Node Edge Switchings in Spanning Trees of De Bruijn Graphs 117

4 Conclusion and Future Work

In this paper, we have shown that one can go from a given de Bruijn sequence
to another by a sequence of leaf node edge switchings. By randomly choosing
the sequence of leaf node edge switches we can generate a random spanning tree
of Gn and therefore a random de Bruijn sequence.

Since every n-th order de Bruijn sequence can also be generated from a single
n-th order de Bruijn sequence by using a sequence of cross joining operations, it
would be interesting to find a correspondence between a sequence of leaf node
switchings given in this paper and a sequence of cross joining operations. Further,
it can be investigated if this method can be efficiently translated into a nonlinear
feedback function for FSRs.

Acknowledgment. The authors are grateful to Prof. Harish K. Pillai, Department
of Electrical Engineering, Indian Institute of Technology Bombay, without whom this
work would never have been possible.

References

1. Annexstein, F.S.: Generating de Bruijn sequences: an efficient implementation.
IEEE Trans. Comput. 46(2), 198–200 (1997)

2. Bidkhori, H., Kishore, S.: A bijective proof of a theorem of Knuth. Comb. Probab.
Comput. 20(1), 11–25 (2011)

3. De Bruijn, N.G.: A Combinatorial Problem. Koninklijke Nederlandsche Akademie
Van Wetenschappen, vol. 49, no. 6, pp. 758–764, June 1946

4. Etzion, T., Lempel, A.: Algorithms for the generation of full-length shift-register
sequences. IEEE Trans. Inf. Theory 30(3), 480–484 (1984)

5. Fredricksen, H.: A survey of full length nonlinear shift register cycle algorithms.
SIAM Rev. 24(2), 195–221 (1982)

6. Fredricksen, H.M.: Disjoint cycles from the de Bruijn graph. Technical report,
DTIC Document (1968)

7. Golomb, S.W., et al.: Shift Register Sequences. Aegean Park Press, Laguna Hills
(1982)

8. Jansen, C.J.A.: Investigations on nonlinear streamcipher systems: construction and
evaluation methods. Ph.D. thesis, Technische Universiteit Delft (1989)

9. Lempel, A.: On a homomorphism of the de Bruijn graph and its applications to
the design of feedback shift registers. IEEE Trans. Comput. 100(12), 1204–1209
(1970)

10. Mykkeltveit, J., Szmidt, J.: On cross joining de Bruijn sequences. In: Topics in
Finite Fields, vol. 632, pp. 335–346 (2015)

11. Schneier, B.: Applied Cryptography: Protocols, Algorithms, and Source Code in C.
Wiley, New York (2007)

12. Spinsante, S., Andrenacci, S., Gambi, E.: De Bruijn sequences for spread spec-
trum applications: analysis and results. In: 18th International Conference on Soft-
ware, Telecommunications and Computer Networks, SoftCOM 2010, pp. 365–369,
September 2010


	On Leaf Node Edge Switchings in Spanning Trees of De Bruijn Graphs
	1 Introduction
	2 Preliminaries
	3 Construction of Any Spanning Tree of Gn from a Spanning Tree of Gn
	4 Conclusion and Future Work
	References




