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Abstract. The paper deals with all pairs approximate parameterized
string matching problem with error threshold k, among two sets of
equal length strings. Let P = {p1, p2, . . . , pnP } ⊆ Σm

P and T =
{t1, t2, . . . , tnT } ⊆ Σm

T be two sets of strings where |ΣP | = |ΣT |. For
each pi ∈ P , the problem is to find tj ∈ T which is approximately param-
eterized closest to pi under the threshold. The solution has complexity
O(nP nT m). We introduce Parikh vector filtering technique in order to
preprocess the given strings and avoid the unwanted paired compar-
isons. The PV-filtering does not change the asymptotic time complexity
but rapidly improves running time for small error threshold as shown by
experiments.
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1 Introduction

The problem of searching a given string in a text has a wide range of applications
such as in text-editing programs, search engines and searching for patterns in
a DNA sequence. There are non-indexed and indexed versions of this problem.
In the indexed version, it is allowed to preprocess the string (pattern or text)
before searching for the pattern in the text. The motivation of preprocessing is
to improve the efficiency of the search. The standard variations of string match-
ing problems are exact string matching [7,14], parameterized string matching
[3–5], approximate string matching [23] and approximate parameterized string
matching [8,26].
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The Approximate Parameterized String Matching (APSM) problem is a
well studied problem [1,2,13,19,21,25]. In [19], Hazay et al. have given reduc-
tion between the maximum weighted bipartite matching problem [12,15–17,20]
and APSM problem for two equal length strings. They have used the maxi-
mum weighted bipartite (decomposition) algorithm, originally proposed by Kao
et al. [20], to solve the APSM problem between two equal length strings p ∈ Σ∗

P

and t ∈ Σ∗
T in time O(m1.5), where |p| = |t| = m.

In this paper, we investigate All Pairs (best) Approximate Parameterized
String Matching (APAPSM) problem with error threshold k (with respect to
Hamming distance error model) among two sets of equal length strings. Let
P = {p1, p2, . . . , pnP

} ⊆ Σm
P and T = {t1, t2, . . . , tnT

} ⊆ Σm
T be two sets of

strings where 1 ≤ i ≤ nP , 1 ≤ j ≤ nT and |ΣP | = |ΣT | = σ. The APAPSM
problem is to find: for each pi ∈ P , a string tj ∈ T which is approximately
parameterized closest to pi under k threshold.

Section 2 describes the required preliminaries to understand the APAPSM
problem which is explained in detail in the next section. In Sect. 3, we discuss
a solution to the APAPSM problem with worst-case complexity O(nP nT m),
assuming a constant size alphabet. Next, we design a filtering technique by
using Parikh vector [24] in order to preprocess the given strings and reduce the
number of pair comparisons for solving APSM between the pair of strings with k
error threshold. We call it PV-filter. Even though the filter does not improve the
asymptotic bound theoretically, practical results in Sect. 4 show that it performs
well for small error threshold. Finally, Sect. 5 summarizes the results.

2 Preliminaries and Related Results

We use some basic notions throughout the paper. An alphabet is a non-empty
finite set of symbols. A string over a given alphabet is a finite sequence of sym-
bols. We denote Σ∗ as the set of all finite-length strings over alphabet Σ. The
empty string is denoted by ε. The length of any string w is the total number of
symbols in w and is denoted by |w|; so |ε| = 0. Let Σ+ = Σ∗ \ {ε} and for a
given m ∈ N0, Σm is the set of all strings of length m over the alphabet Σ [26].

Let w = xyz be a string where x, y, z ∈ Σ∗. We call y as a substring of string
w. If x = ε then y is a prefix of w. If z = ε then y is a suffix of w. The i-th symbol
of a string w is denoted by w[i] for 1 ≤ i ≤ |w|. We denote substring y of string
w as w[i..j] if y starts at position i and ends at position j for 1 ≤ i ≤ j ≤ |w|,
and string w[i..j] = ε if i > j [26]. Let N0 be the set of non-negative integers.

Approximate String Matching (ASM): ASM problem considers the string
matching problem with errors. It is an important problem in many branches
of computer science, with several applications to text searching, computational
biology, pattern recognition, signal processing etc. [9,23,26].

Let d: Σ∗ × Σ∗ → N0 be the distance function. The distance d(x, y) between
two strings x = x[1..n] ∈ Σ∗ and y = y[1..m] ∈ Σ∗ is the minimal cost of a
sequence of operations that transform x into y (and ∞ if no such sequence exists).
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The cost of a sequence of operations is the sum of the costs of the individual
operations. In general, the set of possible operations are insertion, deletion, sub-
stitution or replacement and transposition [23]. Therefore under the distance
measure, the ASM problem becomes minimizing the total cost to transform the
pattern and its occurrence in a text to make them equal and find the text
positions where this cost is low enough. Some of the most classical distance
metrics are Levenshtein distance [22], Damerau distance [10] and Hamming dis-
tance [18]. Hamming Distance (HD), denoted as dH , allows only replacements.
It is restricted to equal length strings. In the literature, the search problem in
many cases is called “string matching with mismatches” [23,26].

Since in this paper, the APAPSM problem is considered under HD, the fol-
lowing definitions are considered using HD applied to equal length strings. From
now onwards we assume that d = dH , for notational simplicity. Given an error
threshold k ∈ N0, a pair of strings u ∈ Σ∗

u and v ∈ Σ∗
v where m = |u| = |v|, con-

sider the following definitions. Without loss of generality, we presume both the
alphabet sizes are equal when dealing with a bijection between the alphabets.

Parameterized String Matching (PSM): String u = u[1..m] is said to be
a parameterized match or p-match with v (denoted as u =̂ v) if there exists a
bijection π: Σu → Σv such that π(u) = π(u[1])π(u[2]) . . . π(u[m]) = v [3].

Approximate Parameterized String Matching (Without Error Thresh-
old): Given a bijection π: Σu → Σv, the π-mismatch between u and v is the HD
between the image of u under π and v, i.e., d(π(u), v) [19]. We denote this by
π-mismatch(u, v). Note that, there is an exponential number of possible bijec-
tions from Σu to Σv. Also, such π for which d(π(u), v) is minimum, may not be
unique.

The Approximate Parameterized String Matching (APSM) between u and v
is to find a π such that over all bijections π-mismatch(u, v) is minimized. We
denote this by APSM(u, v). Formally, APSM(u, v) = {π | d(π(u), v) is minimum
over all π}. We define the cost of APSM(u, v) as cost(APSM(u, v)) = d(π(u), v)
where π ∈ APSM(u, v).

Parameterized String Matching (PSM) with k Mismatches: PSM with k
mismatch seeks to find a bijection π: Σu → Σv such that the π-mismatch(u, v) ≤
k. We then say that u parameterized matches v with k threshold. In literature,
this problem is also known as string comparison problem with threshold k [19].
However, any π with π-mismatch(u, v) ≤ k will be satisfactory in this case (i.e.,
π-mismatch(u, v) need not be the minimum one over all π: Σu → Σv).

Both the above problems were solved in O(m1.5) time [19] by reducing them
to maximum weight bipartite matching problem and using Kao et al.’s algo-
rithm [20]. Let us define APSM problem with k error threshold as follows.
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Approximate Parameterized String Matching with k Error Threshold:
APSM with k error threshold, denoted as APSM(u, v, k), seeks to find a π: Σu →
Σv (over all bijections) such that d(π(u), v) is minimum but not greater than k
[19]. More formally, APSM(u, v, k) = {π | π ∈ APSM(u, v) ∧ d(π(u), v) ≤ k}.
We define cost of APSM(u, v, k) as cost(APSM(u, v, k)) = d(π(u), v), where
π ∈ APSM(u, v, k). In case, APSM(u, v, k) = ∅, then cost(APSM(u, v, k)) = ∞.

Example 1 in page 4 shows the difference between the above definitions.

3 All Pairs Approximate Parameterized String Matching

In this section, we investigate all pairs (best) approximate parameterized string
matching (APAPSM) problem with k error threshold (with respect to Hamming
distance error model) among the two sets P and T of equal length strings. The
problem definition is the following along with the other required definitions1.

Definition 1 (Pair Approximate Parameterized String Matching
(PAPSM) with Error Threshold k). Given a string p ∈ Σm

P and T =
{t1, t2, . . . , tnT

} ⊆ Σm
T , where |ΣP | = |ΣT | = σ and 0 ≤ k ≤ m. The PAPSM

problem with k error threshold is to find j such that APSM(p, tj , k) gives πj over
all bijections and d(πj(p), tj) is minimum over all j where 1 ≤ j ≤ nT .

Denote this problem as PAPSM(p, T, k). In more formal notation, PAPSM
(p, T, k) = {j | πj ∈ APSM(p, tj , k) ∧ d(πj(p), tj) = min1≤i≤nT

{cost(APSM
(p, ti, k))}}. In other words, the problem is to find tj ∈ T which is approximately
parameterized closest to p with k error threshold. We call d(πj(p), tj) as the
cost of PAPSM(p, T, k) and let us denote this by cost(PAPSM(p, T, k)). In case,
PAPSM(p, T, k) = ∅, then cost(PAPSM(p, T, k)) = ∞.

Example 1. Given p = abab ∈ Σ4
P = {a, b}4, T = {t1 = cdcd, t2 = dcdc, t3 =

ccdd, t4 = cccd} ⊆ Σ4
T = {c, d}4 and k = 1. Now,

APSM(p, t1, k) = {π1 = {a → c, b → d}}, d(π1(p), t1)) = 0;
APSM(p, t2, k) = {π2 = {a → d, b → c}}, d(π2(p), t2)) = 0;
APSM(p, t3, k) = ∅;
APSM(p, t4, k) = {π4 = {a → c, b → d}}, d(π4(p), t4)) = 1.

Observe that, π3 = {a → c, b → d} ∈ APSM(p, t3) but d(π3(p), t3)) = 2 > k.
So, APSM(p, t3, 1) = ∅. Hence, PAPSM(p, T, 1) = {1, 2}. Also note that, if k = 3,
then for π′

4 = {a → d, b → c}, π′
4-mismatch(p, t4) ≤ k. Hence just finding π′

4

is also satisfactory to say that p is parameterized matched with t4 under k = 3
error threshold; whereas APSM(p, t4, 3) = {π4} and π′

4 /∈ APSM(p, t4, 3) . 	


1 These definitions can also be extended with respect to other error models.
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Note that it is sufficient to report a string from T which is closest to p
under a given error threshold k. Also, it is possible to enumerate all ti ∈ T
which are closest to p. Observe that, if PAPSM(p, T, k) = {i, j} corresponding
to the strings ti and tj , then cost(PAPSM(p, T, k)) ≤ k and more importantly,
cost(PAPSM(p, T, k)) = d(πi(p), ti) = d(πj(p), tj).

Theorem 1. Given p ∈ Σm
P and T = {t1, t2} ⊆ Σm

T . If p is an approximate
parameterized matched with t1 and t1 =̂ t2, then p is also approximate parame-
terized matched with t2 and its cost equal to cost(APSM(p, t1)).

Proof. The proof consists of two phases. Since p is approximate parameterized
matched with t1 (without any error threshold), then say π1 ∈ APSM(p, t1). As a
consequence, cost(APSM(p, t1)) = d(π1(p), t1) and moreover it is minimum over
all bijections from ΣP to ΣT . Also, since t1 =̂ t2, there exist a bijection, say
π: ΣT → ΣT such that π(t1) = t2 and so cost(APSM(t1, t2)) = d(π(t1), t2) = 0.

Let π2 = π ◦ π1: ΣP → ΣT and is defined as π ◦ π1(u) = π(π1(u)) where
u ∈ Σm

P . It can be easily proved by contradiction that d(π2(p), t2) is minimum
over all bijections. So we skip it.

Now, cost(APSM(p, t2)) = d(π2(p), t2) = d(π(π1(p)), t2) = d(π(π1(p)), π(t1))
= d(π1(p), t1) = cost(APSM(p, t1)). Therefore, π2 = π ◦ π1 ∈ APSM(p, t2) and
its cost equal to cost(APSM(p, t1)) unit. 	


The above theorem is extended for APSM problem with k error threshold.

Theorem 2. Given p ∈ Σm
P and T = {t1, t2} ⊆ Σm

T and 0 ≤ k ≤ m. If p is
an approximate parameterized matched with t1 under the k error threshold and
t1 =̂ t2, then p is also approximate parameterized matched with t2 under the k
error threshold and with the cost equal to cost(APSM(p, t1, k)).

Definition 2 (All Pairs Approximate Parameterized String Matching
(APAPSM) with k Threshold). Let P = {p1, p2, . . . , pnP

} ⊆ Σm
P and T =

{t1, t2, . . . , tnT
} ⊆ Σm

T . The problem is to find a mapping η: [1, nP ] → [1, nT ]
such that sum of the cost(APSM(pi, tη(i), k)) over all i (1 ≤ i ≤ nP ) is minimum.

Let us denote this problem as APAPSM(P, T, k). The problem is to search:
for each pi ∈ P (1 ≤ i ≤ nP ), a tj ∈ T (1 ≤ j ≤ nT ) which is
approximately parameterized closest to pi under k error threshold. More
formally, APAPSM(P, T, k)= {(PAPSM(p1, T, k),PAPSM(p2, T, k), . . . ,PAPSM
(pnP

, T, k))}.

Theorem 3. The above problem can be solved in O(nP nT m1.5) time.

Proof. It is direct from the solution of APSM problem proposed by Hazay et
al. [19] by considering all possible pairs between P and T .

Definition 3 (γ(k) -match of strings). Let k ∈ N0. For two given strings
u = u[1..m], v = v[1..m] ∈ Σ∗ and the alphabet set Σ = {a1, a2, . . . , aσ} where
each ai ∈ N0, u is said to be γ(k)-matched with v if and only if

∑m
i=1 |ui−vi| ≤ k.
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The term γ(k) − match is a suitably renamed version of the terminology
γ − approximate which was prescribed in [6] and defined on strings. Similar as
above, we define γ(k)-match on two equal cardinality vectors of numbers.

Definition 4 (γ-distance, γ(k)-match of vectors). Given two vectors u =
(u1, u2, . . . , um), v = (v1, v2, . . . , vm) where ui, vj ∈ N0, 1 ≤ i, j ≤ m and l, k ∈
N0. γ-distance between u and v is l (denoted as γ(u, v) = l) if and only if
l =

∑m
i=1 |ui − vi|. We say that u, γ(k)-matches with v, if and only if γ(u, v)

=
∑m

i=1 |ui − vi| ≤ k.

The notion of Parikh mapping or vector was introduced by R.J. Parikh in
[24]. It provides numerical properties of a string in terms of a vector by counting
the number of occurrences of the symbols in the string. Parikh vector of a string
w is denoted as ψ(w).

Definition 5 (Parikh Vector (PV)). Let Σ = {a1, a2, . . . , aσ}. Given w ∈
Σ∗, ψ(w) = (f(a1, w), f(a2, w), . . . , f(aσ, w)) where f(ai, w) gives the frequency
of the symbol ai ∈ Σ (1 ≤ i ≤ σ) in the string w.

For example, if Σ = {c, d} then ψ(cddcc) = (3, 2). However, much informa-
tion is lost in the transition from a string to its PV. Note that Parikh mapping
is not injective as many strings over an alphabet may have the same PV and
so the information of a string is reduced while changing the string to a PV. For
example, the strings cccdddd and dcdcdcd have the same Parikh vector (3, 4).

Definition 6 (Normalized Parikh Vector (NPV)). NPV of a string w ∈
Σ∗ is ̂ψ(w) = (g1, g2, . . . , gσ) such that ∀i, 1 ≤ i < σ, gi ≥ gi+1 and there
exists a bijective mapping ρ: {1..σ} → {1..σ} such that gi = f(aρ(i), w).

In other words, we sort the elements of ψ(w) in non-increasing order to get
the ̂ψ(w) of string w. For example, ψ(dcdcdcd) = (3, 4) and ̂ψ(dcdcdcd) = (4, 3).

Theorem 4. Given a pair of equal length strings u ∈ Σ∗
P and v ∈ Σ∗

T , if u =̂ v

then γ( ̂ψ(u), ̂ψ(v)) = 0.

Proof. Since u =̂ v, then by definition there exists a bijection π: ΣP → ΣT such
that π(u) = v, i.e. π(u) is obtained by renaming each character of u using π.
Though symbols of ΣP are renamed by π, the frequency of each symbol a ∈ ΣP

in u will be same as the frequency of π(a) ∈ ΣT in v = π(u). As a consequence,
̂ψ(v) = ̂ψ(u), even though there may be the case ψ(u) �= ψ(v). 	


However, the converse is not always true. To show that, we shall give the
following example.

Example 2. Given p = ababa,∈ Σ∗
P = {a, b}∗ and T = {t1 = cdcdd, t2 =

dcdcd} ⊆ Σ∗
T = {c, d}∗. Now,

ψ(p) = (3, 2) and ̂ψ(p) = (3, 2);

ψ(t1) = (2, 3) and ̂ψ(t1) = (3, 2);

ψ(t2) = (2, 3) and ̂ψ(t2) = (3, 2).
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As mentioned in Theorem 4, p =̂ t2 and so γ( ̂ψ(p), ̂ψ(t2)) = 0, even though
ψ(p) �= ψ(t2). Conversely, ̂ψ(t1) = ̂ψ(p) = ̂ψ(t2) = (3, 2), but p ̂�= t1 and p =̂ t2.
Hence, in case γ( ̂ψ(u), ̂ψ(v)) = 0, it is required to check if u =̂ v or not. 	


In general, a filter is a device or subroutine that processes the feasible inputs
and tries to remove some undesirable component. We design an interesting fil-
tering technique by using Parikh vector in order to preprocess the given strings
of P and T and to reduce the number of pair comparisons for solving approx-
imate parameterized string matching between the pair of strings under k error
threshold. We name the filter which is mentioned in Theorem 7 as PV-filter and
the process of filtering the input data by PV-filter as PV-filtering.

The following theorems are useful in minimizing the number of pairs compar-
isons for APAPSM problem to improve the solution from the practical aspect.
Theorem 5 is applicable for ASM problem. It is extended in Theorems 6 and 7 in
the context of APSM problem without and with k error threshold, respectively.

Theorem 5. Let u, v ∈ Σ∗ be a pair of equal length strings and k = d(u, v), is
the Hamming distance. Then γ( ̂ψ(u), ̂ψ(v)) ≤ 2k and γ(ψ(u), ψ(v)) ≤ 2k.

Proof. We prove it by the principle of mathematical induction on k.

Base case: For u = v, k = d(u, v) = 0 and γ( ̂ψ(u), ̂ψ(v)) = 0.
Hypothesis: Assume that for any k with 0 ≤ k = d(u, v) ≤ i, γ( ̂ψ(u), ̂ψ(v)) ≤ 2k.
Inductive step: Let, after introducing one more error by replacement (symbol

a ∈ Σ is replaced by b ∈ Σ in any position of u) operation in u we get u′

such that d(u′, u) = 1 and k = d(u′, v) = i + 1. However, while changing u to
u′ with d(u′, u) = 1, there may be only other case that k = d(u′, v) = i − 1
for which also the inequality is true (by the induction hypothesis). So we
have to argue for the former case: k = i + 1. While introducing one error by
replacement, γ( ̂ψ(u′), ̂ψ(u)) will be increased by at most 2 as the frequency
of symbol a is decreased by one and the frequency of b is increased by one.
Hence, γ( ̂ψ(u′), ̂ψ(v)) ≤ 2i + 2 = 2(i + 1) while k = d(u′, v) = i + 1.

Hence the proof of the first inequality, by the principle of mathematical
induction.

For the other one also, the proof justification is similar. 	

Theorem 6. Given a pair of strings u ∈ Σm

P , v ∈ Σm
T , let k =

cost(APSM(u, v)). Then γ( ̂ψ(u), ̂ψ(v)) ≤ 2k.

Proof. Let π ∈ APSM(u, v). Therefore by definition, k = cost(APSM(u, v)) =
d(π(u), v) is minimum over all bijections. Let π(u) = u′ ∈ Σm

T . Since u =̂ u′

under π, ̂ψ(u) = ̂ψ(u′), by Theorem 4. Hence γ( ̂ψ(u), ̂ψ(v)) = γ( ̂ψ(u′), ̂ψ(v)). By
using Theorem 5, we have γ( ̂ψ(u), ̂ψ(v)) = γ( ̂ψ(u′), ̂ψ(v)) ≤ 2k. 	

Theorem 7. Given u ∈ Σm

P and v ∈ Σm
T . Let ̂k = cost(APSM(u, v, k)). Then

γ( ̂ψ(u), ̂ψ(v)) ≤ 2̂k (which we call as PV-filter).
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Proof. The proof is very similar as Theorem 6. Let π ∈ APSM(u, v, k). Accord-
ingly, there exists a bijection π: ΣP → ΣT such that ̂k = cost(APSM(u, v, k)) =
d(π(u), v) is minimum but not greater than k. Let u′ = π(u) ∈ Σm

T . With similar
argument as above, we have γ( ̂ψ(u), ̂ψ(v)) = γ( ̂ψ(u′), ̂ψ(v)) ≤ 2̂k. 	


We use this PV-filter as a subroutine during the design of a simple algorithm
to solve the APAPSM problem with error threshold k between two sets P and
T of equal length strings. In worst-case (i.e. none of the pairs are filtered out by
PV-filter), it takes O(nP nT m).

Computing APAPSM Under Error Threshold: Let P = {p1, p2, . . . , pnP
}

⊆ Σm
P and T = {t1, t2, . . . , tnT

} ⊆ Σm
T be two sets of strings where |ΣP | =

|ΣT | = σ. In Algorithm 1, we compute APAPSM problem with error threshold
k ∈ N0 among two sets P and T of equal length strings. In Step 3, clustering is
precisely recommended, in case in advance it is known that there are many exact
and parameterized repetition of strings in P and T . To create the equivalence
classes in P and T separately, with respect to parameterization, clustering is done
based on the converse of Theorem 4, i.e., in case for any two strings u, v ∈ P
(and T , respectively) if γ( ̂ψ(u), ̂ψ(v)) = 0, then and only then check for u =̂ v.
If u =̂ v holds, them put u and v into the same cluster.

Algorithm 1. Compute APAPSM(P, T, k) after using the PV-filter
Input: The sets P , T of equal length strings and an error threshold k.
Output: APAPSM(P, T, k) with respect to Hamming distance error model.

Apapsm(P, T, k)
1: for i ← 1 : nP do compute NPV of pi.
2: for i ← 1 : nT do compute NPV of ti.
3: do parameterized clustering of P and T , i.e., for any (p1, p2) ∈ P × P or T × T

of a cluster, p1 =̂ p2. To speed up the clustering, if γ( ̂ψ(p1), ̂ψ(p2)) = 0 then

only check for p1 =̂ p2, or otherwise, p1
̂�= p2 (Negation of Theorem 4).

4: for each parameterized cluster of P , pick a representative, say pi

for each parameterized cluster of T , pick a representative, say tj
if γ( ̂ψ(pi), ̂ψ(tj)) ≤ 2k (which is the PV-filtering)

then compute APSM(pi, tj , k).
end if

end for
end for

Complexity Analysis: Steps 1–3 of Algorithm 1 are the preprocessing steps for
computing APAPSM(P, T, k); Steps 1–2 takes O(m(nP + nT )) and Step 3 takes
O(m(n2

P +n2
T )) time, assuming a constant size alphabets. But as mentioned ear-

lier, clustering is optional, it might be skipped depending on the circumstances.
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In Step 4, for any pair (pi, tj) ∈ P × T , computation of APSM(pi, tj , k)
can be done by reducing the problem to maximum weight bipartite matching
(MWBM) problem [19]. Let G = (V,E,W ) be an undirected, weighted (non-
negative integer weight) bipartite graph where V,E and W are the vertex set,
edge set and total weight of G, respectively. MWBM problem can be solved in
O(

√|V |W ′) time, where |E| ≤ W ′ ≤ W [12]. It is a fine-tuned version of the
existing decomposition solution [20]. Using the fine-tuned decomposition solution
for MWBM, APSM(pi, tj , k) can be solved in O(m

√
σ) where W ′ = O(W ) =

O(m) and V = O(σ) [12,13]. In the worst-case scenario: each of the clusters will
have just a single string either from P or T and PV-filter in Step 4 does not
filter out any pair (pi, tj) ∈ P × T . Therefore worst-case running time of the
Algorithm 1 is O(nP nT m

√
σ), which is O(nP nT m), if we assume a constant

alphabet.

4 Experimental Results

To test the efficiency of the PV-filter, we performed several experimental studies,
but only a few are reported in this section because of page limitation. Algorithm 1
which solves APAPSM(P, T, k), is implemented in MATLAB Version 7.8.0.347
(R2009a). All the experiments are conducted on a PC Laptop with an Intel R©
CoreTM 2 Duo (T6570 @ 2.10GHz ) Processor, 3.00 GB RAM and 500 GB Hard
Disk, running the Microsoft Windows 7 Ultimate (32-bit Operating System).

Data Description: We generate the input data sets P and T by using the pre-
defined randi function. It helps to generate uniformly distributed pseudorandom
integers. The function randi(imax,m,n) returns an m-by-n matrix containing
pseudorandom integer values drawn from the discrete uniform distribution on
1:imax.

Efficiency of PV-Filter: The experimental results show that the PV-filter is
efficient, essentially for small error threshold k, to avoid unwanted pairs (u, v)
comparison for APSM(u, v, k), where u ∈ P and v ∈ T . According to the random
experiment, if the error threshold k ≤ m

3 , then almost more than one-third of the
total pairs comparison can be skipped. Moreover, very smaller threshold gives
much better filtering. Please see the experiments.

Experiment 1. Consider, alphabet sets ΣP = {a, b, c, d, e, f, g, h, i, j}, ΣT =
{a′, b′, c′, d′, e′, f′, g′, h′, i′, j′}; P ∈ Σ∗

P , T ∈ Σ∗
T ; cardinality of each of the sets

P and T is |P | = |T | = 100; and |pi| = |tj | = 6 for 1 ≤ i, j ≤ |P | = |T |.
According to the data set generated in Experiment 1, a total of 10,000 (u, v)

pairs of comparisons for APSM(u, v, k), where u ∈ P and v ∈ T , are required
without PV-filtering. Figure 1 shows the efficiency graph of the filter on the
input data set. Each blue “∗” point in the graph indicates the number of elimi-
nation of pairs comparison for a given error threshold, after using the PV-filter.
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Fig. 1. Elimination graph of pairs of strings after using PV-filter for the input data
set with |ΣP | = |ΣT | = 10; |P | = |T | = 100; |pi| = |tj | = 6 for 1 ≤ i, j ≤ |P | = |T |, as
mentioned in Experiment 1.

Table 1. PV-filtering for the data set in Experiment 1.

Number of pairs ↓ k = 0 k = 1 k = 2 k = 3 k = 4

Before using PV-filter 10,000 10,000 10,000 10,000 10,000

Eliminated by PV-filter 7,141 2,099 340 42 0

Passed through PV-filter 2,859 7,901 9,660 9,958 10,000

Whose APSM cost ≤ k 570 3,986 8,699 9,869 10,000

For example, each point (i, j) in Fig. 1 represents that for k = i error threshold, j
number of (u, v) pairs of strings have skipped the comparison for APSM(u, v, i).

Table 1 gives more light to the Experiment 1. The second row represents that
for a given k, a total number of (u, v) pairs are to be checked for APSM(u, v, k),
initially before using PV-filter; the third row says, for respective k the number
of pairs of strings are eliminated by PV-filter; simultaneously, the fourth row
describes that how many string pairs are passed by the filter; and finally, the
last row mentions, for how many (u, v) pairs, actually cost(APSM(u, v)) ≤ k
among the passed pairs.

Experiment 2. Consider the alphabet sets ΣP = {a, b, c, . . . , x, y, z}, ΣT =
{a′, b′, c′, . . . , x′, y′, z′} with |ΣP | = |ΣT | = 26; P ∈ Σ∗

P , T ∈ Σ∗
T ; cardinality of

the sets P and T is |P | = |T | = 100; and |pi| = |tj | = 2000 for 1 ≤ i, j ≤ |P | =
|T |. Figure 2 gives the elimination graph. The corresponding table is skipped due
to space limitation.
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Fig. 2. Elimination graph of pairs of strings after using PV-filter for the input data set
with |ΣP | = |ΣT | = 26; |P | = |T | = 100; |pi| = |tj | = 2000 for 1 ≤ i, j ≤ |P | = |T |, as
mentioned in Experiment 2.

5 Conclusions

In this paper, we have explored all pairs approximate parameterized string
matching problem with k Hamming distance error threshold between two sets
of equal length stings. We have presented a solution with worst-case complexity
O(nP nT m), assuming constant alphabet size. In order to minimize number of
paired comparisons for solving APSM between pair of strings with error thresh-
old, we have proposed a PV-filtering technique by using Parikh vector. Although
the filter does not improve the worst-case asymptotic bound, but the using it as
a subroutine, we can avoid some of the unwanted paired comparisons for APSM.
Experimental results show that the PV-filter is efficient for small error threshold.

Acknowledgement. The author is grateful to Dr. Jan Holub for his helpful comments
and suggestions.
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