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Message from the General Chairs

It is our privilege and great pleasure to welcome you to the proceedings of the 4th
International Conference on Mathematics and Computing 2018 (ICMC 2018). The
scope of the conference is to provide an international forum for the exchange of ideas
among interested researchers.

ICMC 2018 was supported by invited speakers giving talks on mathematical
analysis, cryptology, approximation theory, graph theory, operations research,
numerical methods, etc. Technical sessions on a variety of fields covering almost all
aspects of mathematics were arranged. The conference addressed key topics and issues
related to all aspects of computing.

The conference was held at the Indian Institute of Technology (Banaras Hindu
University), which is situated in the oldest city of the world – Varanasi. Varanasi is
well known for its heritage and culture, and the participants enjoyed the city by visiting
many places of interests.

We hope the interactions and discussions during the conference provided the par-
ticipants with new ideas and recommendations, useful to the research world as well as
to society.

P. K. Saxena
P. D. Srivastava

U. C. Gupta
L. P. Singh

Debjani Chakraborty



Message from the Program Chairs

It was a great pleasure for us to organize the 4th International Conference on Mathe-
matics and Computing 2018 held during January 9–11, 2018, at the Indian Institute of
Technology, BHU, Varanasi, Uttar Pradesh, India. Our main goal in this conference is to
provide an opportunity for participants to learn about contemporary research in cryp-
tography, security, modeling, and different areas of mathematics and computing. In
addition, we aim to promote the exchange of ideas among attendees and experts par-
ticipating in the conference, both the plenary as well as the invited speakers. With this
aim in mind, we carefully selected the invited speakers. It is our sincere hope that the
conference helped participants in their research and training and opened new avenues
for work for those who are either starting their research or are looking to extend their
area of research to a new field of current research in mathematics and computing.

The inauguration ceremony of the conference was held on January 9, 2018, starting
with the one-hour keynote talk of Prof. T. S. Ho, University of Surrey, UK, followed by 11
forty-five-minute invited talks by Prof. R. N. Mahapatra, University of Central Florida,
Orlando, USA, Prof. Matti Vuorinen, University of Turku, Finland, Prof. Srinivas R.
Chakravarthy, Kettering University, USA, Dr. Srinivas Pyda, Oracle’s System’s Tech-
nology, USA, Dr. Parisa Hariri, University of Turku, Finland, Prof. S. Ponnusamy, Indian
Institute of Technology Madras, Prof. Debasis Giri, Haldia Institute of Technology, India,
Prof. Kouichi Sakurai, Kyushu University, Fukuoka, Prof. Chris Rodger, Auburn
University, Alabama, USA, Prof. S. K. Mishra, Banaras Hindu University, India, Prof.
T. Som, IIT (BHU), and Dr. Arvind, SCUBE India. The speakers/contributors came from
India, Japan, UK, and the USA.

After an initial call for papers, 116 papers were submitted for presentation at the
conference. All the submitted papers were sent to external reviewers. After a thorough
review process, 29 papers were recommended for publication for the conference pro-
ceedings published by Springer in its Communications in Computer and Information
Science (CCIS) series.

We are truly thankful to the speakers, participants, reviewers, organizers, sponsors,
and funding agencies for their support and help without which it would have been
impossible to organize the conference. We owe our gratitude to the research scholars
of the Department of Mathematical Sciences, IIT (BHU), who volunteered the con-
ference and worked behind the scene tirelessly in taking care of the details to make the
conference a success.

Debdas Ghosh
Debasis Giri

Ram N. Mohapatra
Ekrem Savas

Kouichi Sakurai
L. P. Singh



Preface

The 4th International Conference on Mathematics and Computing (ICMC 2018) was
held at the Indian Institute of Technology (Banaras Hindu University) Varanasi, during
January 9–11, 2018. Varanasi, located in the Indian state of Uttar Pradesh, is one of the
oldest cities in the world and is well-known for its culture and heritage. The Indian
Institute of Technology (BHU) Varanasi is an institution of national importance.

In response to the call for papers for ICMC 2018, 116 papers were submitted for
presentation and publication through the proceedings of the conference. The papers
were evaluated and ranked on the basis of their significance, novelty, and technical
quality by at least two reviewers per paper. After a careful blind refereeing process, 29
papers were selected for inclusion in the conference proceedings. The papers cover
current research in cryptography, security, abstract algebra, functional analysis, fluid
dynamics, fuzzy modeling, and optimization. ICMC 2018 was supported by eminent
researchers from India, USA, UK, Japan, and Finland, among others. The invited
speakers from India are recognized leaders in government, industry, and academic
institutions such as the Indian Statistical Institute Chennai, IIT Madras, University of
Surrey, UK, University of Central Florida, Orlando, USA, University of Turku, Fin-
land, Kettering University, USA, Oracle’s Systems Technology, USA, University of
Turku, Finland, Haldia Institute of Technology, India, Kyushu University, Fukuoka,
Auburn University, Alabama, USA, Banaras Hindu University, India, IIT (BHU), and
SCUBE India.

A conference of this kind would not be possible to organize without the full support
of different people across different committees. All logistics and general organizational
aspects are looked after by the Organizing Committee members, who spent their time
and energy in making the conference a reality. We also thank all the Technical Program
Committee members and external reviewers for thoroughly reviewing the papers
submitted to the conference and sending their constructive suggestions within the
deadlines. Our hearty thanks to Springer for agreeing to publish the proceedings in its
Communications in Computer and Information Science (CCIS) series.

We are truly indebted to the Science and Engineering Research Board (Department
of Science and Technology), Council of Scientific and Industrial Research (CSIR),
Defense Research and Development Organization (DRDO), and Indian Institute of
Technology (BHU) Varanasi and SCUBE India for their financial support, which
significantly helped to raise the profile of the conference.

The Organizing Committee is grateful to the research students of the Department of
Mathematical Sciences, IIT (BHU), for their tireless support in making the conference a
success.



Last but not the least, our sincere thanks go to all the Technical Program Committee
members and authors who submitted papers to ICMC 2018 and to all speakers and
participants. We fervently hope that the readers will find the proceedings stimulating
and inspiring.

March 2018 Debdas Ghosh
Debasis Giri

R. N. Mohapatra
Ekrem Savas

Kouichi Sakurai
L. P. Singh
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Achieving Better Security
Using Nonlinear Cellular Automata

as a Cryptographic Primitive

Swapan Maiti(B) and Dipanwita Roy Chowdhury(B)

Indian Institute of Technology Kharagpur, Kharagpur, India
swapankumar maiti@yahoo.co.in, drc@cse.iitkgp.ernet.in

Abstract. Nonlinear functions are essential in different crypto-
primitives as they play an important role on the security of a cipher
design. Wolfram identified Rule 30 as a powerful nonlinear function for
cryptographic applications. However, Meier and Staffelbach mounted an
attack (MS attack) against Rule 30 Cellular Automata (CA). MS attack
is a real threat on a CA based system. Nonlinear rules as well as max-
imum period CA increase randomness property. In this work, nonlinear
rules of maximum period nonlinear hybrid CA (M-NHCA) are studied
and it is shown to be a better crypto-primitive than Rule 30 CA. It
has also been analysed that the M-NHCA with single nonlinearity injec-
tion proposed in the literature is vulnerable against MS attack, whereas
M-NHCA with multiple nonlinearity injections provide better crypto-
graphic primitives and they are also secure against MS attack.

Keywords: Cellular Automata · Maximum period nonlinear CA
Meier and Staffelbach attack · Nonlinear functions

1 Introduction

Cellular Automata (CA) have long been of interest to researchers for their the-
oretical properties and practical applications. In 1986, Wolfram first applied
CA in pseudorandom number generation [16]. In the last three decades, one-
dimensional (1-D) CA based Pseudorandom Number Generators (PRNGs) have
been extensively studied [2,14].

Maximum period linear CA (LCA) increase randomness property as well as
provide security against different side channel attacks like power attack, timing
attack etc., but a linear CA is known to be insecure. Therefore, nonlinearity
is very essential in cryptographic applications. Wolfram proposed Rule 30 as a
better cryptographic primitive and it was used in non-linear CA (NLCA) con-
struction for cryptographic applications [15,16]. However, Meier and Staffelbach
developed an algorithm (MS attack) and it has been shown in [12] that the NLCA
based on Rule 30 is vulnerable. All the 256 elementary 3-neighborhood CA rules
were analysed in [5,11], and it was found out that no nonlinear elementary CA
c© Springer Nature Singapore Pte Ltd. 2018
D. Ghosh et al. (Eds.): ICMC 2018, CCIS 834, pp. 3–15, 2018.
https://doi.org/10.1007/978-981-13-0023-3_1
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4 S. Maiti and D. Roy Chowdhury

rule is correlation immune. In [7], 4-neighborhood nonlinear CA are introduced
and their cryptographic properties have also been studied. However, because of
left skewed rule, the diffusion rate of left neighbor cell and that of right neighbor
cell with respect to every cell is not same. Moreover, this nonlinear CA does not
provide a maximum length cycle. In [8], Lacharme et al. analysed all the 65536
CA rules with four variables to find 200 nonlinear balanced functions which are
1-resilient. In [9], nonlinear and resilient rules are selected from 5-neighborhood
bipermutive CA rules.

In [6], maximum period nonlinear hybrid CA (M-NHCA) with single non-
linearity injection is proposed, where nonlinear rule of the injected cell is bal-
anced and 1-resilient (or 2-resilient). The M-NHCA may become a better crypto-
primitive than Rule 30 CA and other nonlinear CA. The main contribution of
this work can be summarized as below:

– Study of nonlinear rules of M-NHCA with single nonlinearity injection and
their security analysis.

– Security analysis of M-NHCA with multiple nonlinearity injections.

This paper is organized as follows. Following the introduction, basics of CA,
cryptographic terms and primitives are defined in Sect. 2. MS attack is also
stated in this section as the pre-requisite of our work. Section 3 presents security
analysis of M-NHCA [6] with single nonlinearity injection. In Sect. 4, M-NHCA
is extended with multiple nonlinearity injections and their security analysis is
shown. This section compares M-NHCA with Rule 30 CA with respect to non-
linearity and other related work. Finally, the paper is concluded in Sect. 5.

2 Preliminaries

This section presents some basics of Cellular automata and some definitions
involving cryptographic terms and primitives with examples, and MS attack on
Rule 30 CA.

2.1 Basics of Cellular Automata

Cellular Automata (CA) are studied as mathematical model for self organizing
statistical systems [13]. One-dimensional CA based random number generators
have been extensively studied in the past [4,11,16]. One-dimensional CA can be
considered as an array of 1-bit memory elements. Formally, for a 3-neighborhood
CA, the neighbor set of ith cell is defined as N(i) = {si−1, si, si+1} and the state
transition function of ith cell is as follows: st+1

i = fi(sti−1, s
t
i, s

t
i+1), where, sti

denotes the current state of the ith cell at time step t and st+1
i denotes the next

state of the ith cell at time step t+1 and fi denotes some combinatorial logic for
ith cell. Since, a 3-neighborhood CA having two states (0 or 1) in each cell, can
have 23 = 8 possible binary states, there are total 22

3
= 256 possible Boolean

functions, called rules. Each rule can be represented as an decimal integer from 0
to 255 [4]. If the combinatorial logic contains only boolean XOR operation, then
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it is called linear or additive rule. Some of the additive rules are 0, 60, 90, 102,
150 etc. Moreover, if the combinatorial logic contains AND/OR operations, then
it is called nonlinear rule. For example, Rule 30 is a nonlinear rule. An n-cell CA
with cells {s1, s2, · · · , sn} is called a null boundary CA if sn+1 = 0 and s0 = 0,
and a periodic boundary CA if sn+1 = s1. A CA is called uniform, if all cells
follow the same rule. Otherwise, it is called non-uniform or hybrid CA. The CA
where all cells follow linear rules but not the same linear rules are called linear
hybrid CA (LHCA). Similarly, the CA where some cell follows nonlinear rules
are called nonlinear hybrid CA (NHCA). The sequence of corresponding rules of
CA cells is called rule vector for the CA.

2.2 Cryptographic Terms and Primitives

Pseudorandom Sequence: A bit-sequence is pseudorandom if it cannot be dis-
tinguished from a truly random sequence by any efficient polynomial time algo-
rithm.

Affine Function: A Boolean function which involves its input variables in
linear combinations (i.e., combinations involving ⊕) only, is called an affine
function. For example, f(x1, x2) = x1 ⊕ x2 is an affine function, whereas the
function, f(x1, x2) = x1 ⊕ x2 ⊕ x1 · x2 is not an affine function, where · is the
Boolean ‘AND’ operation.

Hamming Weight: Number of 1’s in a Boolean function’s truth table is called
the Hamming weight of the function.

Balanced Boolean Function: If the Hamming weight of a Boolean function of
n variables is 2n−1, it is called a balanced Boolean function. Thus, f(x1, x2) =
x1 ⊕ x2 is balanced, whereas f(x1, x2) = x1 · x2 is not balanced.

Hamming Distance: Hamming weight of f1 ⊕ f2 is called the Hamming dis-
tance between f1 and f2. Thus, Hamming distance between f1(x1, x2) = x1 ⊕x2

and f2(x1, x2) = x1 · x2 is 3.
Nonlinearity: The minimum of the Hamming distances between a Boolean

function f and all affine functions involving its input variables is known as the
nonlinearity of the function. Hence, nonlinearity of f(x1, x2) = x1 · x2 is 1.

Resiliency: A Boolean function of n variables is called to have a resiliency
t, if for all possible subsets of variables of size less than or equal to t, on fixing
values of those variables in every possible subset, the resultant Boolean function
still remains balanced. For example, resiliency of f(x1, x2) = x1 ⊕ x2 is 1, but
resiliency of f(x1, x2) = x1 · x2 is 0.

Algebraic Degree: The algebraic degree of a Boolean function is the number
of variables in the highest order term with non-zero coefficient. Thus, algebraic
degree of f(x1, x2) = x1 ⊕ x2 ⊕ x1 · x2 is 2.

Unicity Distance: The unicity distance of a cryptosystem is defined to be a
value of n, denoted by n0, at which the expected number of spurious keys (i.e.
possible incorrect keys) becomes zero.

In the next subsection, Meier and Staffelbach attack (MS attack) [12] on Rule
30 CA is explained briefly as the pre-requisite of our work.
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2.3 Meier and Staffelbach Attack (MS Attack)

In [12], the attack is a known plaintext attack where the keys are chosen as seed
of the cellular automaton of size n (i.e. the size of the keys is n). The problem
of cryptanalysis is in determining the seed (or the keys) from the produced
output sequence. In [12], a nonlinear CA denoted by {s1, s2, · · · , sn} of width
n = 2N + 1 is considered. The site vector of the nonlinear CA (i.e. contents of the
CA) at time step t is 〈sti−N , · · · , sti−1, s

t
i, s

t
i+1, · · · , sti+N 〉 as shown in Fig. 1. The

bit-sequence of ith cell for N cycles, denoted by {sti} that is 〈sti, st+1
i , · · · , st+N

i 〉,
is the known output sequence, where i = N + 1. The site vector, which is the
key of this attack, forms a triangle along with the temporal sequence column
(i.e. {sti}). From the knowledge of two adjacent columns in the triangle, that
is, temporal sequence column (i.e. {sti}) and right adjacent sequence column
(i.e. {sti+1}) or temporal sequence column (i.e. {sti}) and left adjacent sequence
column (i.e. {sti−1}), one can determine the seed. Every cell of the null boundary
nonlinear CA follows Rule 30. The state transition function of Rule 30 is as
follows: st+1

i = sti−1 ⊕ (sti + sti+1), where sti is the current state and st+1
i is the

next state of the ith cell.

sti−N · · · sti−1 sti sti+1 · · · sti+N

· · · st+1
i−1 st+1

i st+1
i+1 · · ·

...
...

...
· · ·

·
st+N
i

Fig. 1. Determination of the seed

First, a random seed 〈sti+1, · · · , sti+N 〉 is generated. In the completion for-
wards process, using the random seed and Rule 30 formula, st+1

i+1, st+1
i+2, · · · ,

st+1
i+N−1 can be easily computed as it is only the unknown item in the expression

of Rule 30. In this way, the random seed together with temporal sequence column
forms the right triangle as shown in Fig. 1. The above formula can be written
in another way: sti−1 = st+1

i ⊕ (sti + sti+1). The knowledge of right adjacent
column and the temporal sequence column can compute the left triangle of the
temporal sequence column and eventually, determine the seed 〈sti−N , · · · , sti−1〉
(completion backwards process [12]).

Eventually, the CA is loaded with the computed seed 〈sti−N , · · · ,
sti−1, s

t
i, s

t
i+1, · · · , sti+N 〉 and produce the output sequence; the algorithm ter-

minates if the produced sequence coincides with the known output sequence,
otherwise, this process repeats for another choice of the random seed. There are
2N (≈2

n
2 ) choices for random seed, so the required time complexity is O(2N )

(i.e. O(2
n
2 )).
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3 Security Analysis of Synthesized M-NHCA with Single
Nonlinearity Injection

In this section, cryptographic properties of nonlinear functions of synthesized
M-NHCA introduced in [6] are studied and the security analysis of the synthe-
sized M-NHCA is presented. Before presenting our work on the security analysis,
the synthesis of M-NHCA is briefly described with an example shown below.

3.1 Synthesis of M-NHCA

The algorithm [6] to synthesize a maximum period NHCA (M-NHCA) is
explained briefly as the pre-requisite of our work. The following example clearly
illustrates how a M-NHCA can be synthesized by injecting nonlinearity into a
selected position of a maximum period LHCA.

Example 1. Let us consider a 3-neighborhood 7-bit maximum period null-
boundary LHCA L′ denoted by {x0, x1, x2, x3, x4, x5, x6} of a characteristic poly-
nomial (primitive polynomial [4]) x7 + x+ 1 with rule vector [1, 0, 1, 1, 0, 0, 1],
where 0 ≡ Rule 90 and 1 ≡ Rule 150. Let nonlinearity be injected at position
3 (i.e. on the cell x3) with the nonlinear function fN (xt

1, x
t
5) = (xt

1 · xt
5). The

updated state transition function (nonlinear) is xt+1
3 = xt

2 ⊕ xt
3 ⊕ xt

4 ⊕ (xt
1 · xt

5)
and other functions xt+1

i , for i = 0, 1, 2, 4, 5, 6, can be generated by 90/150
rules.

However, as mentioned in [6], to ensure maximum periodicity the neighbor-
ing transition functions need to be updated with the same nonlinear function
fN (xt

1, x
t
5) = (xt

1 · xt
5) by applying one cell shifting operations and an additional

Boolean function fN (xt+1
1 , xt+1

5 ) = ((xt
0 ⊕ xt

2) · (xt
4 ⊕ xt

6)) needs to be injected
to the same inject position 3. Thus, the functions xt+1

i , for i = 0, 1, 5, 6, can be
generated by 90/150 rules and the updated state transition functions (nonlinear)
of M-NHCA N ′ can be generated as follows:

xt+1
2 = xt

1 ⊕ xt
2 ⊕ xt

3 ⊕ (xt
1 · xt

5)
xt+1
3 = xt

2 ⊕ xt
3 ⊕ xt

4 ⊕ (xt
1 · xt

5) ⊕ ((xt
0 ⊕ xt

2) · (xt
4 ⊕ xt

6))
xt+1
4 = xt

3 ⊕ xt
5 ⊕ (xt

1 · xt
5)

3.2 Cryptographic Properties of Non-linear Rules

Balancedness is an important property of cryptographic Boolean functions.
Indeed, resiliency is a balancedness test for certain functions obtained from the
target cryptographic Boolean functions. Lack of resiliency implies correlation
among input and output bits. CA with linear rules provide best resiliency. But
this kind of CA can be trivially crytanalyzed by linearization. Nonlinearity is
another important property of cryptographic Boolean functions. Like resiliency,
nonlinearity should also increase with each iteration for a cryptographically suit-
able CA. It is difficult to have a balance between them in CA designs. It turns
out that, only hybrid CA can be employed in providing both good nonlinearity
and resiliency.
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Table 1. Cryptographic properties of M-NHCA with iterations

Itr# Nonlinearity Balancedness Resiliency

x0 x1 x2 x3 x4 x5 x6 x0 x1 x2 x3 x4 x5 x6 x0 x1 x2 x3 x4 x5 x6

1 0 0 4 48 2 0 0 True True True True True True True 1 1 1 2 0 1 1

2 0 8 0 32 8 4 0 True True True True True True True 1 2 3 1 2 1 1

3 4 0 0 32 0 16 8 True True True True True True True 1 1 1 1 3 3 2

4 4 4 0 8 16 2 0 True True True True True True True 1 1 1 1 3 3 3

5 0 4 4 32 8 8 4 True True True True True True True 2 1 1 2 2 2 1

6 16 16 16 32 0 0 0 True True True True True True True 3 3 3 1 4 4 3

Table 1 shows the cryptographic properties of all rules of the M-NHCA shown
in Example 1 with iterations. The M-NHCA generates balanced outputs, but the
increase of resiliency and nonlinearity with iterations is not regular.

3.3 Vulnerability Against MS Attack

In this section, we show that the synthesized M-NHCA with single nonlin-
earity injection is not secure against MS attack. In this work, we consider a
3-neighborhood n-bit maximum period null-boundary LHCA L′ denoted by
{x0, x1, · · · , xn−1} with rule vector [d0, d1, · · · , dn−1], where di = 0 if xi fol-
lows Rule 90 and di = 1 if xi follows Rule 150. Let nonlinearity be injected at
position j with the nonlinear function fN (xt

j−2, x
t
j+2) = (xt

j−2 ·xt
j+2). In the syn-

thesized M-NHCA N ′, the state transition functions (nonlinear) of neighboring
cells around the non-linearity position j are as follows:

xt+1
j−1 = xt

j−2 ⊕ dj−1 · xt
j−1 ⊕ xt

j ⊕ (xt
j−2 · xt

j+2) (1)

xt+1
j = xt

j−1 ⊕ dj · xt
j ⊕ xt

j+1 ⊕ dj · (xt
j−2 · xt

j+2)

⊕ ((xt
j−3 ⊕ dj−2 · xt

j−2 ⊕ xt
j−1) · (xt

j+1 ⊕ dj+2 · xt
j+2 ⊕ xt

j+3)) (2)

xt+1
j+1 = xt

j ⊕ dj+1 · xt
j+1 ⊕ xt

j+2 ⊕ (xt
j−2 · xt

j+2) (3)

where 〈xt
0, x

t
1, · · · , xt

n−1〉 is the site vector of N ′ at time step t and all other cells
xi, 0 ≤ i ≤ j−2 and j+2 ≤ i ≤ n−1, of synthesized NHCA follow Rule 90/150
as the corresponding cells of L′ follow. The attack is a known plaintext attack.
The output sequence {xt

i} (i.e. the temporal sequence {xt
j−1}) is known upto

the unicity distance N shown in Table 2, where i = j − 1.
Our aim is to determine the seed 〈xt

0, x
t
1, · · · , xt

i−1, x
t
i, x

t
i+1, · · · , xt

n−1〉 from
the knowledge of given output sequence {xt

i}. A random seed 〈xt
i+1, · · · , xt

n−1〉
is generated out of 2n−(i+1) possibilities. Now, xt

j−2 can be determined from the
Eq. (1) with probability 1

2 . In the completion forwards process (i.e. left to right
approach), xt+1

j , xt+1
j+1 can be computed using the Eqs. (2) and (3) respectively,

since in every expression only one item is unknown like Rule 30. xt+1
j+2, x

t+1
j+3, · · · ,

xt+1
n−1 can be computed as per 3-neighborhood 90/150 rule. For next time step

(i.e. at time step t+2) we can compute all above values in the similar way. In this
way, right triangle of the temporal sequence column (i.e. {xt

i}), shown in Table 2,
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Table 2. Determination of the seed for M-NHCA N ′

xt
0 · · · xt

i−6 xt
i−5 · · · xt

i−1 xt
i xt

i+1 · · · xt
n−1

* *** *
xt+1
0 · · · · · · · · · · · · xt+1

i−1 xt+1
i xt+1

i+1 · · · xt+1
n−1

· · · · · · · · · · · · xt+2
i−1 xt+2

i xt+2
i+1 · · ·

· · · · · · · · · · · · xt+3
i−1 xt+3

i xt+3
i+1 · · ·

...
...

...
...

...
...

...
· · · · · · · · · . . . · · ·

· · · · · · . . . · · ·
· · · . . . · · ·

xt+N−1
i−1 . xt+N−1

i+1

xt+N
i

’*’ represents ”guess” value

can be determined. Because of single nonlinearity injection and since all CA cells
in the opposite side of injection point in respect of temporal sequence column
follow Rule 90/150 as in LHCA, the only knowledge of right adjacent column
(i.e. {xt

i+1}) in the right triangle together with temporal sequence column can
determine the seed 〈xt

0, · · · , xt
i−1〉. The columns {xt

j−3}, {xt
j−4}, · · · , {xt

0} can be
computed as per 3-neighborhood 90/150 rule. Here, each column is computed by
bottom-up approach. In this way left triangle of the temporal sequence column
(i.e. {xt

i}) can be formed (completion backwards process) and hence, the seed
〈xt

0, · · · , xt
i−1〉 can be determined.

Eventually, the CA is loaded with the computed seed 〈xt
0, · · · ,

xt
i−1, x

t
i, x

t
i+1, · · · , xt

n−1〉 and produce the output sequence; the algorithm termi-
nates if the produced sequence coincides with the given temporal sequence, oth-
erwise, this process repeats for another choice of random seed 〈xt

i+1, · · · , xt
n−1〉.

The random seed 〈xt
i+1, · · · , xt

n−1〉 can be chosen with 2n−(i+1) possibilities.
Since, xt

j−2 is determined from the Eq. (1) with probability 1
2 , therefore, for

the column j − 2, n−(i+1)
2 values can be computed deterministically and other

n−(i+1)
2 values can be chosen randomly with 2

n−(i+1)
2 possibilities. The required

time complexity is: 2n−(i+1) . 2
n−(i+1)

2 = 2
3
2 (n−1−i) = 2n− n+3

4 , where i = j − 1
and i = n−1

2 , the middle cell position of the CA. Hence, the required time is less
than 2n (reqd. for exhaustive search).

4 M-NHCA with Multiple Nonlinearity Injections

M-NHCA with single nonlinearity injection described in Sect. 3 is not secure
against MS attack. In this section, we extend M-NHCA with multiple non-
linearity injections and study their cryptographic properties, and it is also
shown that M-NHCA with multiple nonlinearity injections is secure against
MS attack. Here, we consider an n-cell maximum period LHCA denoted by
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Table 3. Nonlinearity comparison w.r.t. injection points

LHCA polynomial Nonlinearity
inject
position(s)

CA cell for
nonlinearity

Nonlinearity with iterations

1 2 3 4 5 6 7

7, 1, 0 3 x3 48 32 32 8 32 32 16

10, 3, 0 3 x3 48 8 64 128 128 256 256

3, 7 x3 48 16 64 192 256 256 384

12, 7, 4, 3, 0 3 x3 48 64 64 32 32 512 512

3, 8 x3 48 64 128 32 48 768 768

16, 5, 3, 2, 0 5 x5 48 32 512 512 512 1024 1024

5, 9 x5 48 64 1024 512 1024 1024 1024

32, 28, 27, 1, 0 11 x11 16 64 512 2048 2048 3072 3072

7, 11, 15, 19 x11 16 256 2048 3072 4096 4096 4096

{x0, x1, · · · , xn−2, xn−1}. For multiple nonlinearity injections, we follow the fol-
lowing two criteria: (1) Non-linearity can be injected in cell position i, 2 ≤ i ≤
n − 3 such that the injected nonlinear function fN (xt

i−2, x
t
i+2) = (xt

i−2 · xt
i+2)

can be formed properly. (2) To retain the maximum length cycle, there must be
at least three cells in between any two non-linearity inject positions; that is, if i
and j be two inject positions then there must be |i − j| ≥ 4.

4.1 Achieving Better Nonlinearity

In this section, we compute nonlinearity of some synthesized M-NHCA with sin-
gle and multiple nonlinearity injection(s). The result is shown in Table 3. The
underlying maximum period LHCA is synthesized [3] from a primitive polyno-
mial represented as a listing of non-zero coefficients. For example, the set (7, 1, 0)
represents the CA polynomial x7 + x + 1. The set (i, j, k) in the 2nd column
of Table 3 represents that nonlinearity is injected in ith, jth and kth cell posi-
tions simultaneously. Table 3 clearly illustrates that the nonlinearity of M-NHCA
increases more in multiple injections than single injection.

4.2 Diffusion and Randomness Properties

Nonlinear function of the nonlinearity injected cell of synthesized M-NHCA is
a 7-neighborhood rule as described in Subsect. 3.1. Therefore, the diffusion rate
of cell contents of M-NHCA is more than that of 3-neighborhood CA. To test
the randomness property of the M-NHCA, 100 bit-streams with each stream
of 10,00,000 bits are generated from each cell of a 32-bit M-NHCA which is
synthesized from a 32-bit 90/150 LHCA of CA polynomial (primitive polynomial
[4]) x32 + x28 + x27 + x+ 1, and are tested by NIST test suite [1]. Table 4 shows
high randomness property of the generated bit-streams.
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Table 4. Results of NIST-statistical test suite for randomness of M-NHCA

Test name Status Test name Status

Frequency test Pass Cumulative sums Pass

Block frequency (block len. = 128) Pass Runs Pass

Non-overlapping template (block len. = 9) Pass Longest run Pass

Overlapping template (block len. = 9) Pass FFT Pass

Approximate entropy (block len. = 10) Pass Universal Pass

Random excursions test Pass Serial Pass

Random excursions variant test Pass

4.3 Resistance Against MS Attack

A new design construction of a stream cipher is presented in [10] based on CA,
and the authors have shown its security analysis including MS attack resistance
of the cipher. MS attack is a real threat on a CA based system. In this work,
the detailed proof of MS attack resistance of a synthesized M-NHCA is shown.

Let us consider a 3-neighborhood n-bit maximum period null-boundary
LHCA L′ denoted by {x0, x1, · · · , xn−1} with rule vector [d0, d1, · · · , dn−1],
where di = 0 if xi follows Rule 90 and di = 1 if xi follows Rule 150. Let
nonlinearity be injected at positions j and k with the nonlinear functions
fN (xt

j−2, x
t
j+2) = (xt

j−2 · xt
j+2) and fN (xt

k−2, x
t
k+2) = (xt

k−2 · xt
k+2) respectively,

where k − j = 4 which is the 2nd criteria for multiple nonlinearity injections.
The state transition functions (nonlinear) of neighboring cells of synthesized M-
NHCA N ′ around the non-linearity positions j and k respectively, are as follows:
for jth position,

xt+1
j−1 = xt

j−2 ⊕ dj−1 · xt
j−1 ⊕ xt

j ⊕ (xt
j−2 · xt

j+2) (4)

xt+1
j = xt

j−1 ⊕ dj · xt
j ⊕ xt

j+1 ⊕ dj · (xt
j−2 · xt

j+2)

⊕ ((xt
j−3 ⊕ dj−2 · xt

j−2 ⊕ xt
j−1) · (xt

j+1 ⊕ dj+2 · xt
j+2 ⊕ xt

j+3)) (5)

xt+1
j+1 = xt

j ⊕ dj+1 · xt
j+1 ⊕ xt

j+2 ⊕ (xt
j−2 · xt

j+2) (6)

Similarly, for kth position, the expressions (nonlinear) for xt+1
k−1, x

t+1
k and xt+1

k+1

can be generated as 2nd rule set, where (xt
0, x

t
1, · · · , xt

n−1) is the site vector of
N ′ at time step t. Now, this 2nd rule set can be stated with k = j+4 as follows:

xt+1
j+3 = xt

j+2 ⊕ dj+3 · xt
j+3 ⊕ xt

j+4 ⊕ (xt
j+2 · xt

j+6) (7)

xt+1
j+4 = xt

j+3 ⊕ dj+4 · xt
j+4 ⊕ xt

j+5 ⊕ dj+4 · (xt
j+2 · xt

j+6)

⊕ ((xt
j+1 ⊕ dj+2 · xt

j+2 ⊕ xt
j+3) · (xt

j+5 ⊕ dj+6 · xt
j+6 ⊕ xt

j+7)) (8)

xt+1
j+5 = xt

j+4 ⊕ dj+5 · xt
j+5 ⊕ xt

j+6 ⊕ (xt
j+2 · xt

j+6) (9)

All other cells xi, for 0 ≤ i ≤ j − 2, i = j + 2 and j + 6 ≤ i ≤ n− 1, of N ′ follow
Rule 90/150 as corresponding cells of L′ follow. Our aim is to determine the
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Table 5. Determination of the seed for M-NHCA N ′

xt
0 · · · xt

i−6 xt
i−5 · · · xt

i−1 xt
i xt

i+1 · · · xt
n−1

* * * *** *
xt+1
0 · · · * * · · · xt+1

i−1 xt+1
i xt+1

i+1 · · · xt+1
n−1

· · · * * · · · xt+2
i−1 xt+2

i xt+2
i+1 · · ·

· · · * * · · · xt+3
i−1 xt+3

i xt+3
i+1 · · ·

...
...

...
...

...
...

...
* * · · · . . . · · ·

* · · · . . . · · ·
· · · . . . · · ·

xt+N−1
i−1 . xt+N−1

i+1

xt+N
i

’*’ represents ”guess” value

seed 〈xt
0, x

t
1, · · · , xt

i−1, x
t
i, x

t
i+1, · · · , xt

n−1〉 from the knowledge of given output
sequence {xt

i} (i.e. the temporal sequence {xt
j+3}) upto the unicity distance N

shown in Table 5, where i = j + 3 and i = k − 1 since k − j = 4.
We choose a random seed 〈xt

i+1, · · · , xt
n−1〉 out of 2n−(i+1) possibilities. Now,

xt
j+2 can be determined from the Eq. (7) with probability 1

2 . In the completion
forwards process (i.e. left to right approach), xt+1

j+4, x
t+1
j+5 can be computed using

the Eqs. (8) and (9) respectively, in the 2nd rule set. xt+1
j+6, x

t+1
j+7, · · · , xt+1

n−1 can be
computed as per 3-neighborhood 90/150 rule. For next time step (i.e. at time step
t+ 2) we can compute all above values again using the 2nd rule set. In this way,
right triangle of the temporal sequence column (i.e. {xt

i}), shown in Table 5, can
be determined. Here, the only knowledge of right adjacent column in the right
triangle together with temporal sequence column can not determine the seed
〈xt

0, · · · , xt
i−1〉. The column {xt

j+1} can be computed using the state transition
function of xt+1

j+2. The column {xt
j} can only be computed from the Eq. (6) if the

column {xt
j−2} (i.e. {xt

i−5}) is chosen as random out of 2j+1 possibilities, because
{xt

j−2} is unknown. The column {xt
j−1} can only be computed from Eq. (5) of

the 1st rule set if the column {xt
j−3} (i.e. {xt

i−6}) is chosen as random out of 2j

possibilities, because {xt
j−3} is unknown. The column {xt

j−4}, {xt
j−5}, · · · , {xt

0}
can be computed as per 3-neighborhood 90/150 rule. Here, each column is com-
puted by bottom-up approach. In this way left triangle of the temporal sequence
column (i.e. {xt

i}) can be formed (completion backwards process) and hence, the
seed 〈xt

0, · · · , xt
i−1〉 can be determined.

Eventually, the CA is loaded with the computed seed 〈xt
0, · · · ,

xt
i−1, x

t
i, x

t
i+1, · · · , xt

n−1〉 and produce the output sequence; the algorithm termi-
nates if the produced sequence coincides with the given temporal sequence, oth-
erwise, this process repeats for another choice of random seed 〈xt

i+1, · · · , xt
n−1〉.

The random seed 〈xt
i+1, · · · , xt

n−1〉 can be chosen with 2n−(i+1) possibilities.
Since, xt

j+2 is determined from the Eq. (7) with probability 1
2 , therefore, for
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the column j + 2, n−(i+1)
2 values can be computed deterministically and other

n−(i+1)
2 values can be chosen randomly with 2

n−(i+1)
2 possibilities. The column

j − 2 is chosen as random out of 2j+1 possibilities. The column j − 3 is chosen
as random out of 2j possibilities. Therefore, the required time complexity is:

2n−(i+1) · 2
n−(i+1)

2 · 2j+1 · 2j = 2
3
2 (n−i−1) · 22j+1 = 2n+

3
4 (n−9)

where j = i − 3 and i = n−1
2 , the middle cell position of the CA. Hence, the

required time is greater than 2n (reqd. for exhaustive search) for n > 9.
Following the similar approach, we can determine the seed 〈xt

i+1, · · · , xt
n−1〉

from the given output sequence {xt
i} (i.e. the temporal sequence {xt

j+3}) upto
the unicity distance N , by guessing the seed 〈xt

0, · · · , xt
i−1〉 out of 2i possibilities.

In the completion forwards process, the left triangle of the temporal sequence
column (i.e. {xt

i}) can be determined. In the completion backwards process, the
right triangle of the temporal sequence column (i.e. {xt

i}) can be formed. The
random seed 〈xt

0, · · · , xt
i−1〉 can be chosen with 2i possibilities. The column j+6

(i.e. k + 2) is chosen as random out of 2n−k possibilities. The column j + 7 (i.e.
k + 3) is chosen as random out of 2n−k−1 possibilities. Therefore, the required
time complexity is:

2i · 2n−k · 2n−k−1 = 2i+2n−2k−1 = 2n+
n−5
2

where k = i + 1 and i = n−1
2 , the middle cell position of the CA. Hence, the

required time is greater than 2n (reqd. for exhaustive search) for n > 5.

4.4 Comparison with Rule 30 CA

The comparison of M-NHCA with Rule 30 CA is shown in Table 6. Nonlinearity
of M-NHCA synthesized from LHCA of CA polynomial x32 + x28 + x27 + x + 1
is shown for 3 iterations, which is already shown in Table 3. Nonlinearity of
M-NHCA increases very fast with iterations than that of Rule 30 CA. M-NHCA
with multiple nonlinearity injections is secure against MS attack. Although,
hardware requirement of this M-NHCA is slightly more than that of Rule 30
CA, yet this M-NHCA is fair with respect to the security features.

Table 6. Comparison of M-NHCA with Rule 30 CA

Nonlinear CA Nonlinearity Maximum
period CA

MS attack
resistant

Itr#1 Itr#2 Itr#3

Rule 30 CA 2 4 36 No No

M-NHCA with single
nonlinearity injection

16 64 512 Yes No

M-NHCA with multiple
nonlinearity injection

16 256 2048 Yes Yes
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5 Conclusion

MS attack is a real threat on a CA based system. M-NHCA with single nonlin-
earity injection is vulnerable against MS attack, whereas M-NHCA with multiple
nonlinearity injections can resist MS attack and are better cryptographic primi-
tive with respect to the security features. The M-NHCA can be used in designing
a CA based cipher. Other applications of M-NHCA than pseudorandom sequence
generation (e.g. hash functions) can also be investigated.
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Abstract. Cryptography is the science of using mathematics to encrypt
and decrypt data and Steganography is the art and science of hiding
communication. A steganographic system thus embeds hidden content
in unremarkable cover media so as not to arouse an eavesdropper’s sus-
picion. The Steganography hides the message so it cannot be seen. In this
paper, a new method is proposed to embed data in images. The security
is provided through context sensitive rules. Hexagonal Finite Interactive
System is taken as a base to choose the Carrier. Experimental results
show that the method is very efficient especially when gluing is done by
matching the border label so that the tiling is done uniformly.

Keywords: Image steganography · Secret image
Context sensitive stego technique · Stego image · Secret key

1 Introduction

Data security is a challenging issue of data communications today that touches
many areas including secure communication channel, strong data encryption
technique and trusted third party to maintain the database. The rapid devel-
opment in information technology, the secure transmission of confidential data
herewith gets a great deal of attention. The conventional methods of encryption
can only maintain the data security. The information could be accessed by the
unauthorized user for malicious purpose. Therefore, it is necessary to apply effec-
tive encryption/decryption methods to enhance data security. The two impor-
tant techniques for providing security are cryptography and steganography [Mi1].
Both are well known and widely used methods in information security.

Steganography has been progressively becoming one of the popular technique
to be used for secret communication between two parties or more. The term of
steganography originated from two Greek words which were stegano and graphos.
Stegano could be described as cover or secret and graphos defined the meaning
of writing or drawing. The combination of both words delineated the meaning
of “covered writing” [SK1].
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Several steganography methods began to propose embedded secret message
in multimedia objects such as images. Images could be a powerful host to hide
information because of the spacious spaces it offers. Moreover, the changes in
digital images are usually unnoticeable to naked eye. Nowadays, computer tech-
nology has given a new life to the ancient steganography. Computer technology
introduces digital steganography and makes the steganography easier to execute
but harder to crack. These facts stimulate to propose a new model for hiding
text in image. A tiling system generates a grid of tiles using the set R of produc-
tion. Another type of steganographic scheme based on context-sensitive tilings
is explored in [PR1] rules.

A novel method of hiding text in image is defined and implemented through
tiling. A context sensitive rule is used to generate the Stego image. The images
thus produced can be said to have both structure and semantics. A new algo-
rithm has been proposed that would satisfy all the principles of security i.e.
confidentiality, authentication, integrity and non-repudiation and also satisfy
the requirements of steganography i.e. capacity, undetectability and robustness.

2 Preliminaries

2.1 Steganography [KK1,MB1]

Steganography is the technique of embedding hidden messages in such a way that
no one, except the sender and intended receiver(s) can detect the existence of the
messages. The main goal of steganography is to hide the secret message or infor-
mation in such a way that eavesdroppers are not able to detect it [NS1]. Other
goal of steganography is to communicate securely in a completely undetectable
manner. The various forms of data in steganography can be audio, video, text
and images etc.

The basic model of Steganography consists of three components: The Carrier
image: The carrier image is also called the cover object that will carry the mes-
sage that is to be hidden. The Message: A message can be anything like data,
file or image etc. The Key: A key is used to decode/decipher/discover the hidden
message.

Steganography can be achieved when the user can retrieve a secret message
unnoticeably. This involves two main processes. The first process is embedding
process, where a secret message is embedded in the host. The host and a secret
message can be an image, a video, an audio or text. The second process is
involving the extraction of the secret message that has been embedded. Generally
steganography concepts can be represented by a basic model of steganography
as in Fig. 1.

Various types of Steganography include Image Steganography, Audio
Steganography, Video Steganography, Text files Steganography, etc. The image
steganography is the process in which we hide the data within an image so that
there will not be any perceivable change in the original image. Different tech-
niques of Steganography like Least Significant Bit and Bitmap Steganography
are available. Recently, image has been used in steganography as a carrier to
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Fig. 1. Basic model of steganography

transmit or send the secret message from a sender to a receiver. The reason is
because a huge amount of information can be hidden without noticeable impact
to the image that is used as carrier. In addition, the usage of image in informa-
tion hiding is an ideal technique to have a secured steganography because digital
image is insensitive to human visual system.

We are also looking back the definition of hexagonal tiles and scenarios
designed by tiling hexagonal unit cells with colors representing two dimensional
hexagonal pictures and the structure of a complete 3 × 3 Hexagonal Finite
Interactive System (HFIS) [NA1].

2.2 Hexagonal Grid

Hexagonal grid is an alternative representation of pixel tessellation scheme for
the conventional square grid for sampling and representing discredited images.
Each pixel is represented by a horizontal deflection followed by a deflection
upward and to the right. These directions are represented by a pair of unit vectors
u and v and this coordinate system is referred as the “h2” system. Given a pixel
with coordinates (u, v) (assumed integer), the coordinates of the neighbors are
illustrated in Fig. 2.

2.3 Hexagonal Tiles and Scenarios

Let Σ be a finite alphabet. A hexagonal tile is a hexagonal cell labelled with
symbol from the given alphabet and enriched with additional information on
each border. This information is represented abstractly as an element from a
finite set and is called a border label. The role of border labels is to impose local
gluing constraints on self-assembling tiles: two neighbouring cells, sharing a side
border (east-west or north east-south west or north west-south east) should agree
on the label on that border. A hexagonal scenario is similar to a two-dimensional
hexagonal picture, but: (1) each hexagonal cell is replaced by a tile; and (2) east-
west or north east-south west or north west-south east neighbouring cells have
the same label on the common border.
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Fig. 2. (a) A coordinate system based on unit vectors u and v, (b) the neighborhood
of a hexagonal pixel and (c) labeling of a hexagonal pixel

Graphically, a hexagonal scenario is obtained using the hexagonal tiles rep-
resenting the transitions and identifying the matching classes or states of the
neighbouring cells. The labels on the north east and north west borders repre-
sent north memory states, while the south east and south west borders represent
south memory states and the ones on the west and east borders represent inter-
action classes. The selected labels on the external borders are called initial for
south west, west and north west borders and final for north east, east and south
east borders.

To construct the hexagonal scenarios by assembling hexagonal tiles, we make
use of the following. N is the set of natural numbers {0, 1, 2, ...}, Z = N ∪ −N
is the set of integers and R is the set of real numbers. We will be working in
the two-dimensional hexagonal grid of integer positions Z × Z. The directions
D = {EE,WW,NE,NW,SE, SW} will be used as functions from Z × Z to
Z × Z: A point on the side borders in a unit cell is specified by its middle points
such that EE(x, y) = (x + 1, y),WW (x, y) = (x − 1, y), NE(x, y) = (x, y +
1), NW (x, y) = (x−1, y+1), SE(x, y) = (x+1, y−1) and SW (x, y) = (x, y−1).
We say that (x, y) and (x

′
, y

′
) are neighbors if

(x
′
, y

′
) ∈ {EE(x, y)/WW (x, y)/NE(x, y)/NW (x, y)/SE(x, y)/SW (x, y)}. Note

that EE = WW−1, NE = SW−1 and NW = SE−1. Examples of tiles and
scenarios are presented in Fig. 3.

2.4 Hexagonal Finite Interactive System (HFIS)

Let Σ be a finite alphabet. A Hexagonal Finite Interactive System (HFIS) over
Σ is defined by: a set S = s1, s2, s3, s4 of states and a set C = c1, c2 of classes;
a set T of transitions of the form: (s1, c1, s2) → a → (s3, c2, s4) where a is a
symbol of a given alphabet Σ; specification of the initial/final states and classes.
Let sa be the scenario of direct transition where a is the labelled symbol over
the alphabet. The set of all scenarios representing hexagonal picture is denoted
by Σ∗∗

s2 .
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Fig. 3. Tiles and scenarios

A HFIS is complete if it specifies a transition (s1, c1, s2) → t → (s3, c2, s4)
for any pair ((s1, c1, s2), (s3, c2, s4)) in ((S × C × S) × (S × C × S)). A tile rep-
resentation is used which is based on showing the transitions and stating which
states and classes are initial/final. The states/classes of this HFIS is denoted by
the initials of the colors: The classes c1 and c2 are g (green) and b (blue) while
the swne memory states s1 and s3 are p (purple) and m (magenta) and the
nwse memory states s2 and s4 are r (red) and o (orange). A scenario is called
indecomposable if all its south west and north east borders are labelled with
s1 and s3 west and east borders with c1 and c2 and the north west and south
east borders with s2 and s4 respectively and it doesn’t contain any sub-scenarios
with this property. A complete 3 × 3 HFIS is specified by the 64 transitions
shown in Fig. 4.

3 Steganography Through HFIS

A New Model for Hiding Text in an image using Image Steganography through
Hexagonal Finite Interactive System is proposed. An interactive system HFIS
recognizing the Hexagonal grid consisting of a parallelogram array with empty
tokens is considered as a carrier to carry the image. A simple and an efficient
model based on context sensitive classes/states (CSC/CSS) replacement tech-
nique is stretched out for calculating secret message that can be embedded in
an image. The embedding process distribute the secret message inside a shared
colored images.

3.1 Context Sensitive Classes/States (CSC/CSS) Replacement
Technique

In image steganography techniques, this proposed model uses substitution tech-
nique. CSC replaces the color of the class in the image cell and CSS replaces
the color of the state in the image cell.
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Fig. 4. Transitions of 3 × 3 HFIS (Color figure online)

Each character of the original text is represented by a tile with border rule
representing the action/transition of the unit cell. Each tile is a unit cell sur-
rounded by two classes and four states The transition is directed by a context
sensitive rule (x1α1γ1y1β1δ1) ⇒ (x2α2γ2y2β2δ2). The graphical representation
of the rule is shown in Fig. 5.

{xi, yi} represents the classes either b (blue) or g (green); {αi, βi} represents
the swne memory states either m (magenda) or p (pink); {γi, δi} represents the
nwse memory states either o (orange) or r (red).

The HFIS depends on the constraints of the transitions identifying
the matching classes or states of the neighboring cells. The three sensitive
class/states of each character in the secret message is represented by three bits
of zeros. If there is a mismatching of class or states in a character, the particular
character is sensitive. Usually the class representing x1 and the states represent-
ing α1 and δ1 are more sensitive than the others. These sensitive class and states
are modified to hide the character of that cell. In that case, the corresponding
color is modified so that the original character is concealed in the cell and the
identified bit is changed from zero to one. The collective bits are converted into
decimal value to find the secret key. The conversion is done by choice of taking
bits of length less than twenty one at a time. We may develop a secret key for
each row. The assembled scenario is considered as the stego image in which the
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Fig. 5. Transition rule

secret message is concealed. The uniqueness of the data distribution process,
made this technique resistant to the attacks as it is difficult for the attackers to
reconstruct the shape from stego images. The carrier, the stego image and the
secret key together are called as context sensitive stego object and the process
of getting stego object is called as context sensitive stego system.

3.2 Steganography Algorithm for Encryption: (Secret Image
to Stego Image)

Input: SecretText, SecretImage, Carrier
Output: Secretkey, StegoImage
Algorithm:

1. Fix the number of rows as I and identify the row as Row(I)
2. Calculate the length of the SecretText in each row and fix it as

textlength(Row(I))
3. Let StegoImage = EmptyGrid(Carrier)
4. For each Row(I) do the following
5. Place the SecretImage of each characters one by one in the Grid as follows
6. Fix the sensitive class and states of the Current Image
7. Check the sensitive class/ states with the StegoImage
8. If maching = ok assemble with StegoImage and goto step 5
9. If not, modify the unmatched class and states and assemble the image with

StegoImage
10. Modify xαδ and goto step 5
11. Convert xαδ of row(I) into decimal ; fix it as Secretkey(I) and goto step 4
12. Get final StegoImage and Secret Key as output

3.3 Implementation of Context Sensitive Steganography

The following example elucidates the algorithm. Secret Image of the 64 charac-
ters are stored in a stack. The authors wish to send ‘GOOD, VERY GOOD, and
EXCELLENT’ as a secret message and choose the Hexagonal grid consisting of a
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Fig. 6. Stego image

Fig. 7. Secret image

parallelogram array with empty tokens on a hexagonal finite interactive system
as a Carrier to carry the image as a cover object. “GOOD” will be assembled by
four transition tiles in the first row, “VERY GOOD” will be assembled by nine
transition tiles in the second row and “EXCELLENT” will be assembled by nine
transition tiles in the third row. The minimum required size of the secret image
is 3 × 9. Choose a cover object of size 3 × 9.

Now the characters in the Secret Text is given as input and the Context Sen-
sitive Classes/States (CSC/CSS) Replacement Technique is applied. The tran-
sitions for “GOOD”, “VERY GOOD” and “EXCELLENT” are modified. The
process of modification is given in table 1 (Fig. 8). The modified tiles are assem-
bled in the cover object as a hexagonal scenario. The scenario is considered as
the Stego Image. The identified bits of the sensitive classes and states are modi-
fied and collected row wise. The modified bits for the first, second and third row
are respectively 000 000 100 000, 011 000 010 100 100 000 000 100 000 and 010
011 001 100 110 100 100 000 100. They are converted into decimal value and
the corresponding Secret keys are obtained. The Secret keys are 32, 51003424,
40265988. The final Stego Image is shown in Fig. 6.

Now, Stego image and secret keys are sent to the receiver. The receiver rec-
ognize the character of the Stego Image row wise. The Secret keys are converted
into binary digits. The receiver now identify the modified bits and the corre-
sponding modified state or class of each tile. The identified class or states are
remodified and the corresponding Secret image is received as shown in Fig. 7.
The equivalent secret text is obtained.
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Fig. 8. Process of secret image to stego image
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3.4 Steganography Algorithm for Decryption: (Stego Image
to Secret Image)

Input: Secretkey, StegoImage, Carrier
Output: Secretkey, SecretImage
Algorithm:

1. Fix the number of rows as I and identify the row as Row(I)
2. Calculate the length of the StegoText in each row and fix it as

textlength(Row(I))
3. Let SecretImage = EmptyGrid(Carrier)
4. For each Row(I) do the following
5. convert the Secret key of Row(I) to binary digit
6. Extract the binary digit in bits of length 3 and store it in an array BIN
7. For each StegoImage of Row(I) do the following
8. Let J = J th tile in Row(I)
9. If BIN(J) = 000, place the Stego Image in the carrier.

10. If not, Identify the modified bits and corresponding modified states or class
11. Modify the stego transition into secret transition and place it in the carrier

and goto step 7.
12. Goto Step 4 and do the process of next Row:
13. Get final SecretImage as output from the Carrier.

4 Conclusion

We have presented a stego-system which generates stego-objects using context
sensitive tiling. A new steganographic algorithm for hiding text in images is
proposed. This new steganographic approach is robust and very efficient for
hiding text in images. We have further planned to develop the system in java
based on the proposed algorithm. Steganography will continue to increase in
popularity over cryptography. The system would be tested on the basis of various
illustrations and the results would be compared with those of existing algorithms.
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Abstract. In this paper a weighted matrix based steganographic scheme
has been developed based on Discrete Cosine Transform (DCT). First,
(8 × 8) quantized DCT coefficient blocks are obtained from the cover
image. Instead of hiding the data directory to the quantized DCT coef-
ficient blocks, a different approach has been taken here. The AC coeffi-
cients, except 0 coefficients, are used to form a series of 3× 3 temporary
matrices. Then, each four bits secret data is converted into an integer
value. An user defined weighted matrix is used to select the position
in the temporary matrix where the data will be embedded. The integer
value is then embedded into that particular position of the selected tem-
porary matrix. The proposed method is tested using different stegano-
graphic attacks like RS analysis and NCC to show that the scheme is
undetectable under these analysis and more robust that other schemes.
This scheme provides good embedding capacity with high visual quality
of stego images.

Keywords: Steganography · Weighted matrix
Quantized DCT coefficient · PSNR · NCC

1 Introduction

Due to the rapid development of computer technology and Internet, hiding data
within the digital format of multimedia became very popular. Many schemes for
hiding data have been proposed till date. These approaches are classified mainly
into two categories: the spatial-domain and the frequency-domain. In spatial
domain, the pixel values are directly manipulated to hide data. Noticeable distor-
tion in any position of the image is a common case in spatial domain. Therefore,
different approaches have been developed to increase the embedding capacity
and to adjust the position to minimise the distortion noticeable to human eye.
Some inherent problem of spatial-domain data hiding is there. For an example,
for lossy compression it is very difficult to find the redundant portion of the
c© Springer Nature Singapore Pte Ltd. 2018
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image for hiding data. But this redundant portion can be easily detected when
we transform the image to frequency domain. The sharp transitions and edges
of an image contribute the high-frequency content to its discrete cosine trans-
form. Thus, to find the appropriate pixels to hide the data, transform domain
scheme is a better approach. In transform domain schemes, some frequency ori-
ented mechanisms like Discrete Cosine Transform (DCT) is used to transform
the cover image. The secret data are then embedded into the cover image by
modifying the frequency coefficients.

The Joint Photographic Experts Group (JPEG) digital image format is most
popularly used image format nowadays. But, as JPEG is a compressed image
format and uses transform domain principles, a slight modification in the trans-
form domain may cause more distortion to the cover image. Most of the existing
steganographic schemes changes one coefficient for hiding one bit of data. So,
hiding more data causes changing more coefficients that gradually degrade the
quality of the cover image which makes it prone to suspicion. We have used
weighted matrix for our scheme to embed more data by changing one DCT
coefficient. This increases the robustness as well as the quality of the image.

The remainder of the paper is constructed as follows: In Sect. 2 Motiva-
tion and objectives of our proposed techniques is described. In Sect. 3 the pro-
posed scheme is presented. Experimental results and comparisons are shown in
Sect. 4. In Sect. 5 Steganalysis and evolution are discussed Finally conclusions
are depicted in Sect. 6.

2 Motivation and Objective

The main motivation and objective of the proposed work are listed below:

(i) Embedding Capacity: In the literature, it is observed that payload is lim-
ited when using weighted matrix in the steganographic scheme. So our
motivation is to increase data embedding capacity.

(ii) Imperceptibility: It is well known that imperceptibility is the main require-
ment in any steganographic scheme. So first and foremost objective is to
maintain imperceptibility in the proposed scheme.

(iii) Robustness: From the literature, it is seen that till now there exist some
security loop hole in any steganographic scheme in real life. So our objec-
tive is to develop a steganographic scheme using weighted matrix through
predefined integer sequence to enhance security and robustness.

3 Proposed Method

In this section, we proposed a novel data hiding technique based on discrete
cosine transformation (DCT) using weighted matrix. We first transform a given
cover image into a sequence of 8 × 8 blocks of DCT coefficients. The schematic
diagram of secret data embedding and extraction are depicted in Figs. 1 and 2
respectively.
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Fig. 1. Details of embedding process

esabataDegamIDICU
(512 x 512)

1. ucid00008 2. ucid00009 3. ucid00011 4. ucid00013 5. ucid00015 

6. ucid00058 7. ucid00061 8. ucid00062 9. ucid000128 10. ucid000166 

egamIIPIS-CSU
Database

(512 x 512)
11. BoatsColor 12. Monarch 13. Yacht 14. Pens 15. Aeroplane 

16. Baboon 17. Sailboat 18. Soccer 19. Lena 20. Barbara

Fig. 2. Cover images with (512 × 512) pixel collected from the standard benchmark
databases like UCID and USC-SIPI
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3.1 Embedding Phase

The embedding technique can be explained by the following steps:

(1) Take the original cover image CIm×n and secret image (SI) as input.
(2) Now to create DCT coefficient matrices DCT is applied to all 8× 8 image

blocks of the CIm×n. Then Quantized DCT is obtained from the DCT
coefficient matrix.

(3) The AC coefficients, except 0 coefficients, from the DCT coefficient matri-
ces are taken to form a series of 3×3 Temporary Matrices (TM) for embed-
ding secret data.

(4) The secret image (SI) is also converted to binary form to create binary
secret message (SM).

(5) First, a Temporary Matrix (TM) is taken for processing.
(6) 4 bits data is taken from the secret message (SM) and then converted to

its equivalent decimal value (DV).
(7) Elementary multiplication is done between the Temporary Matrix (TM)

and the weighted matrix (WM).
(8) The embedding position in the Temporary Matrix (TM) is selected using

the standard weight matrix rule.
(9) The decimal value (DV) is embedded into the particular position in Tem-

porary Matrix (TM).
(10) Step 5 to Step 9 is applied for the rest of the Temporary Matrices (TM).
(11) The quantized DCT block coefficients are updated using the Temporary

Matrices (TM).
(12) Inverse DCT is applied to all the quantized DCT blocks to form the YCbCr

channels.
(13) Finally, using the YCbCr channels, the stego image is created.

3.2 Extraction Phase

The extraction technique can be explained with the following steps:

(1) Take the stego image SIm×n and secret Weighted Matrix (3 × 3) as input.
(2) Now DCT is applied in all 8×8 image blocks of the SIm×n to get the DCT

coefficients. Then Quantized DCT is obtained.
(3) Temporary Matrices (TM3×3) are created from the AC coefficients (except

0 coefficient).
(4) Now 4 bit secret data is extracted from Temporary Matrix (TM) by applying

entry-wise multiplication with the weighted matrix (WM).
(5) This process is done with all other Temporary Matrices to extract all 4 bit

data.
(6) All 4 bit data, extracted from all the Temporary Matrices, are concatenated

to form the secret binary bits.
(7) The original secret image is generated from this secret binary bits.
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4 Experimental Results and Comparisons

The proposed method is discussed in this paper is implemented in Java 9 windows
10 (operating system) environment. The computational platform was a Intel
Core i5-6200U processor with a speed of 2.40 GHz and 4 GB RAM. A set of
standard colour test images with size (512 × 512) are chosen to evaluate the
performance of the proposed scheme. Figure 2 shows some of the standard colour
test images which were collected form “USC-SIPI” image database [9] collected
from the University of Southern California, “UCID” image dataset [5] consist of
1338 uncompressed color image collected from the Nottingham Trent University,
UK. We have used secret message as logo image of size (54×54). The performance
evaluation of the proposed scheme is evaluated using Mean Square Error (MSE),
Peak-Signal-to- Noise-Ratio (PSNR) Normalized Cross Correlation (NCC) and
Structural similarity (SSIM) index.

The imperceptibility of the stego image from the original image is indicated
by the PSNR defined as:

MSE =

Row∑

i=1

Col∑

j=1

[X(i, j) − Y (i, j)]2

(Row × Col)
(1)

PSNR = 10 log20
Imax

MSE
dB (2)

Table 1. Comparison of proposed scheme with Chang et al. and Weng et al’s scheme
in terms of visual quality (PSNR).

Image Chang et al. [1] Weng et al. [11] Proposed scheme

Capacity PSNR Capacity PSNR Capacity PSNR

Lena 12288 35.15 28.364 42.42 36864 49.92

Baboon 12288 31.34 6708 48.17 36864 47.25

Airplane 12288 35.22 27694 45.73 36864 46.33

Boat 12288 34.92 15564 45.72 36864 47.25

Zelda 12288 38.04 22504 43.05 36864 46.89

Pepper 12288 36.32 20191 48.15 36864 46.92

Average 12288 35.17 20170 45.54 36864 47.37

where Row and Col is the size of cover image (X(i, j)) and stego image (Y (i, j)).
Where Imax is the peak signal value of the cover image which is equal to 255
for 8 bit images. High PSNR value assure better image quality and low PSNR
implies poor image quality. Table 1 represent the experimental value of average
PSNR which is greater than 47 dB and the maximum embedding capacity is
= 36, 864 bits. The bpp in this scheme = Total embedded bits

(Row×Col) = 0.14. Structural
similarity (SSIM) index is a parameter for measuring the similarity between two
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images. Its value lies between −1 and +1. Its value approaches to +1 when two
images are identical. The following formula is used to find the SSIM value of the
Cover and Stego images.

SSIM(x, y) =
(2μxμy + c1)(2σxy + c2)

(μ2
x + μ2

y + c1)(σ2
x + σ2

y + c2)
(3)

where, μx is the average of x, μy is the average of y;
σ2

x is the variance of x, σ2
y is the variance of y;

σxy is the covariance of x and y
c1 = (k1L)2 and c2 = (k2L)2, two variables to stabilize the division with weak
denominator.
L is the dynamic range of the pixel-values.
k1 = 0.01 and k2 = 0.03 by default.

The Normalized correlation coefficient (NCC) is used to measure robustness.
It calculates the difference between the original and stego image. It may be
defined as:

NCC =

Row∑

i=1

Col∑

j=1

x(i, j)y(i, j)

Row∑

i=1

Col∑

j=1

|x(i, j)|2
(4)

esabataDegamIDICU
(512 x 512)

1. ucid00008 2. ucid00009 3. ucid00011 4. ucid00013 5. ucid00015 

6. ucid00058 7. ucid00061 8. ucid00062 9. ucid000128 10. ucid000166 

egamIIPIS-CSU
Database

(512 x 512)
11. BoatsColor 12. Monarch 13. Yacht 14. Pens 15. Aeroplane 

16. Baboon 17. ucid00401 18. Soccer 19. Lena 20. Barbara

Fig. 3. Stego images with (512 × 512) pixel after embedding data.
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where Row and Col are the number of row and column in the images, respec-
tively, x(i, j) and y (i, j) are the original cover image and the stego image respec-
tively. Figure 3 shows the stego images after embedding secret data. Experimen-
tal results of our proposed scheme in terms of different comparison metrics are
shown in Tables 2, 3, 4 and 5.

Table 2. The comparison table of our proposed scheme with respect to PSNR, SSIM,
NCC

Image database Cover image PSNR SSIM NCC

USC - SIPI image database (512 × 512) BoatsColor 45.32 0.996 0.996

Monarch 42.3 0.996 0.996

Yatch 41.96 0.996 0.996

Pen 43.25 0.996 0.996

Aeroplane 44.32 0.996 0.996

Baboon 45.32 0.996 0.996

Sailboat 42.3 0.996 0.996

Soccer 41.96 0.996 0.996

Lena 43.25 0.996 0.996

Barbara 44.32 0.996 0.996

UCID image database (512 × 512) Ucid00008 48.3 0.996 0.996

Ucid00009 47.6 0.996 0.998

Ucid00011 45.3 0.996 0.996

Ucid00013 48.6 0.996 0.946

Ucid00015 48.3 0.996 0.996

Ucid00058 47.6 0.996 0.998

Ucid00061 45.3 0.996 0.996

Ucid00062 48.6 0.996 0.946

Ucid00128 48.6 0.996 0.946

Ucid00166 44.7 0.996 0.996

Table 3. Comparison with other schemes with respect to execution time

Techniques Execution time for embedding

Singh and Singh [8] 19.7653 s

Kim and Lee [4] 11.82 s

Lutovac [3] 2.36 s

Proposed scheme 2.25 s
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Table 4. Comparison table with respect to PSNR, NCC and execution time for
embedding

Image Singh and Singh [8] Rahman et al. [6] Proposed scheme

PSNR NCC Execution
time

PSNR NCC Execution
time

PSNR NCC Execution
time

Lena 39.7928 0.9973 19.6405 31.4550 0.9976 ... 49.92 0.9998 2.2365

Boat 39.9285 0.9984 19.7653 30.0704 0.9980 ... 47.25 0.9996 2.1565

Baboon 39.5467 0.9980 19.8433 30.4195 0.9906 ... 48.46 0.9989 2.2641

House 39.1570 0.9981 19.9525 31.4114 0.9959 ... 48.39 0.9984 2.2741

Pepper 40.1907 0.9980 19.9993 30.5127 0.9945 ... 46.92 0.9985 2.2947

Zelda 39.7255 0.9980 19.6405 ... 47.89 0.9991 2.1851

Aeroplane ... ... ... ... ... ... 46.33 0.9979 2.1894

Table 5. Comparison scheme with the other scheme in terms of PSNR and payload

Cover image Lin and Shiu scheme [2] Saidi scheme [7] Wei et al.’s scheme [10] Our proposed scheme

Capacity PSNR Capacity PSNR Capacity PSNR Capacity PSNR

Lena 90,112 35.28 163,840 36.3762 64,008 33.971 36864 49.92

Airplane 90,112 34.53 163,840 36.7870 64,008 31.949 36864 46.33

Boat 90,112 33.05 163,840 34.4317 64,008 31.147 36864 47.25

Baboon 90,112 28.22 163,840 26.4209 64,008 25.995 36864 48.46

Peppers 90,112 35.09 163,840 35.6165 64,008 33.400 36864 46.92

5 Steganalysis and Evolution

The proposed data scheme is highly robust and only authorized person can
extract the secret image by using proper weighted matrix. Six different numbers
are required to form the weighted matrix. Also the sequence of numbers in the
weighted matrix should be proper. Even if a single number is different in weight
matrix or the sequence of these numbers are different, the recovery of the secret
image is not possible. This increases the robustness of the proposed scheme.

6 Conclusion

In this paper, a secured stenographic scheme using weighted matrix in discrete
cosine transform domain is proposed. Here, to embed confidential messages a
shared secret key in the form of a matrix is used. The PSNR is reasonable and
higher than 47 dB. In this scheme it is possible to embed more bits per block by
applying weight matrix more than once to get higher bits per pixel. But in that
case the PSNR will be as low as around 30 dB which makes the image vulnerable
for attacking.

For future research, some authentication features can be included into the
recent technique. This not only can be used for authentication but also can
introduce some randomness and other extra security features into the proposed
scheme. Also the idea of using weighted matrix may be used in other transform
domain in order to improve results of steganography.
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Abstract. In this paper, we develop a simple matrix method of constructing a
parity check matrix for non binary (5k, k; b, q, m) linear codes capable of
correcting m repeated burst errors of length b or less.
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1 Introduction

At a very early stage in the history of coding theory, codes were meant for detecting and
correcting single errors only. But later on, it was noticed that in almost all communica‐
tion channels errors occur more in adjacent positions and quite less in random manner.
Adjacent error correcting codes were introduced by Abramson [1]. The generalization
of this idea was put in the category of errors that is now known as burst error in the
literature of coding theory. But the nature of burst errors differ from channel to channel
depending upon the behavior of the channel and therefore different type of codes were
developed to deal with different type of burst errors. Among many versions of burst
errors are CT burst [3], closed loop burst, open loop burst, low density burst and high
density burst etc. While studying different communication channels and type of burst
errors, it was observed that among all the categories of errors, burst due to Fire [6] is
the most common error that occurs during transmission. By a burst of length b or less,
we mean a vector whose all the nonzero positions are confined to some b consecutive
components the first and the last of which is non zero. In view of this burst error
correcting codes have been developed. Some of such burst error correcting codes have
found great applications in numerous areas of practical importance also and therefore
have acquired important position in the literature in comparison to other variants of burst,
and a good deal of research has gone into the development of bursts and multiple bursts
error connecting codes. For references, see [2, 7, 9–12] and many others. Corresponding
to various variants of the definition of burst, codes have been developed for correction
of random burst or open loop burst errors, low and high density bursts, closed loop bursts
and multiple bursts.
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In very busy and fast communication channels which is the need of present time, it
has been observed that errors repeat themselves more frequently during transmission.
This phenomenon has shown that the normal burst error correcting codes cannot yield
any positive result for repeated burst error detection and correction. As there is not any
uniform terminology for multiple bursts, repeated bursts are also put in this category.

In view of this, it was desirable to develop codes detecting/correcting errors that
were in the form of repeated bursts. Dass and Verma [5] took the initiative in this direc‐
tion and developed codes for repeated burst error detection and correction in binary case.

Following the old technique of parity check matrix construction given by
Varshamov-Gilbert-Sacks bound [8], Dass and Verma [5] obtained upper and lower
bounds on the number of parity check digits required for correcting m repeated burst
errors over GF(q) (see [4, Theorem 4]). Although the method was cumbersome, bounds
were derived on the number of parity check digits. This complicated synthesis procedure
involving unwieldy computations particularly in case of repeated bursts and to study
repeated burst error correcting codes in detail for binary and non binary cases, it was
desirable to simplify the parity check matrix construction procedure.

We will call such codes as (5k, k; b, q, m) linear codes throughout this paper where
n = 5k. For m repeated burst errors of any length with a specific value of m and length
of the burst b, the matrix in binary case comes out to be

H =

⎛
⎜
⎜
⎜
⎜
⎝

Ik

Ik

I4k .
.
Ik

⎞
⎟
⎟
⎟
⎟
⎠

(1)

Such a matrix considered as parity check matrix shall give rise to a code that corrects
m-repeated burst of length b or less. Here I4k is an Identity matrix of order (4k). Ik’s are
identity matrix of order k.

As an example, for k = 3, m = 2, b = 3, the parity check matrix for such (15, 3) binary
code correcting 2 repeated bursts of length 3 or less may be written as

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

In other words this the parity check matrix for (15, 3) repeated burst correcting code
in binary case. This code will always correct 2 repeated bursts of length 3. For detailed
verification see [5].

We in this paper study non-binary repeated bursts error correcting codes over GF(3).
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2 Non Binary Repeated Burst Error Correcting Linear Codes

Our purpose in this communication is to develop a generalized matrix method for all
binary and non binary repeated burst error correcting codes as matrix formulation in (1)
does not work in non binary cases. In view of this, we will have to first try to develop a
different matrix over GF(3). Using hit and trial method, we came across a matrix that
can be described as follows:

Let us define a diagonal matrix J whose diagonal elements are in a sequence 1, 2, 1,
2, 1, 2… etc. in such a way that a 2 × 2 J matrix may be written as

J2 =

(
1 0
0 2

)

and J3 = 
⎛
⎜
⎜
⎝

1 0 0
0 2 0
0 0 1

⎞
⎟
⎟
⎠

 is a 3 × 3 J matrix.

Using the result given in (1), we can now write a matrix HJ for (5k, k; b, q, m) non
binary linear code over GF(3) as follows:

H = HJ =

⎛
⎜
⎜
⎜
⎜
⎝

Jk

J4k

⋅

⋅

⋅

jk

⎞
⎟
⎟
⎟
⎟
⎠

(2)

which is the parity check matrix of order 4k × 5k.
This formulation of general parity check matrix H in (2) shows that it is now easy

to construct parity check matrices for (5k, k; b, q, m) non binary linear code also. Such
a code will correct m repeated bursts of length b or less. Comparing this matrix with the
usual procedure of constructing a parity check matrix H given by Varshamov-Gilbert-
Sacks bound, it can be seen that a column hj can be added to the matrix HJ provided that
it is not a linear combination of immediately preceding b – 1 columns together with any
(2m – 1)b or less consecutive columns from the remaining j – b columns. So we start
with (1000…0), second column (0200…0) and keep on adding the columns in H to get
a 2 mb × (2m  + 1)b matrix as defined above in (3). It can be easily verified that the
condition given by Dass and Verma [5] in the proof of theorem 4 is satisfied. Thus the
(5k, k; b, q, m) non binary code which is the null space the matrix H as constructed
above will correct all m repeated bursts of length b or less.

Also it is clear that for any given feasible integer value of the parameters k, m and
b, a matrix of the type H as given in (2) can always be constructed and can be used to
correct m repeated bursts of length b or less.
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3 Illustration of Burst Error Correcting Linear Code for k = 3,
b = 2, q = 3, m = 2

Consider a parity check matrix for (15, 3) code as shown below. It can be verified from
the Error Pattern - Syndrome table that the code so constructed corrects all repeated
bursts of length 2 or less.

H =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 2 0 0 0 0 0 0 0 0 0 0 0 2 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 2 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 2 0
0 0 0 0 0 2 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 2 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 2 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 2 0
0 0 0 0 0 0 0 0 0 0 0 2 0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

The Syndromes for the parity check matrix given above can be obtained easily with
the help of MS-Excel. When we check these syndromes then we will see that these all
syndromes are distinct. This verifies that the (15, 3) code can correct all repeated bursts
of length 2 and less.

4 Generalization of the Parity Check Matrix for (5k, k; b, q, m)
Linear Codes for All Values of q

Let us define a diagonal matrix A such that A2 is a 2 × 2 matrix denoted as

A2 =

(
1 0
0 q − 1

)

Similarly a 3 × 3 matrix is given as

A3 =

⎛
⎜
⎜
⎝

1 0 0
0 q − 1 0
0 0 1

⎞
⎟
⎟
⎠

(3)

The diagonal elements of this matrix are in the sequence 1, q – 1, 1, q – 1, 1, q – 1,
1… etc. In general the parity check matrix for (5k, k; b, q, m) repeated burst error
correcting codes for all feasible values of q may be written as
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H =HA =

⎛
⎜
⎜
⎜
⎜
⎝

Ak

.
Ak .

.
Ak

⎞
⎟
⎟
⎟
⎟
⎠

(4)

where A’s are matrices of type (3).

5 Discussion

(a) Alternatively, matrix (4), comes out to be

HA =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 . . . 0 1 0 0
0 q − 1 0 0 0 0 0 . . . 0 0 q − 1 0
0 0 1 0 0 0 0 . . . 0 0 0 1
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
0 0 0 0 0 0 0 . . . q − 1 0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(5)

(b) Now substituting q = 2 in matrix (5) we get

HA = H =

⎛
⎜
⎜
⎜
⎜
⎝

Ik

Ik

I4k .
.
Ik

⎞
⎟
⎟
⎟
⎟
⎠

Which is a parity check matrix given by Dass and Verma [4] for m repeated burst
error correcting linear codes in binary case.

(c) Substituting q = 3 in (5), the resultant matrix comes out to be

HA = HJ =

⎛
⎜
⎜
⎜
⎜
⎝

Jk

Jk

J4k .
.

Jk

⎞
⎟
⎟
⎟
⎟
⎠

Where HA is the matrix given above resembles with parity check matrix given in
(2) for non binary linear codes for q = 3.
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6 Conclusion and Open Problem

We have shown in this paper that a non binary repeated burst error correcting code exists
for q = 3, m = 2 and b = 2. We have also given in (4) a parity check matrix for all
possible suitable integer values of k, m and burst length b. Although we have discussed
in detail the formulation of a parity check matrix for repeated burst error correcting codes
over GF(q), we could only verify the matrix for q = 3. It needs further verification for
larger values of q.

Acknowledgement. The authors are thankful to Bharat Garg and Preeti for their technical
assistance.
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Abstract. An H-decomposition of G is a partition P of E(G) into
blocks, each element of which induces a copy of H. Amalgamations
of graphs have proved to be a valuable tool in the construction of
H-decompositions. The method can force decompositions to satisfy
fairness notions. Here the use of the method is further applied to (s, p)-
equitable block-colorings of H-decompostions: a coloring of the blocks
using exactly s colors such that each vertex v is incident with blocks col-
ored with exactly p colors, the blocks containing v being shared out as
evenly as possible among the p color classes. Recently interest has turned
to the color vector V (E) = (c1(E), c2(E), . . . , cs(E)) of such colorings.
Amalgamations are used to construct (s, p)-equitable block-colorings of
C4-decompositions of Kn−F and K2-decompositions of Kn, focusing on
one unsolved case with each where c1 is as small as possible and c2 is as
large as possible.

1 Introduction

An H-decomposition of a graph G is an ordered pair (V,B) where V is the vertex
set of G and B is a partition of the edges of G into sets, each of which induces
a copy of H. The elements of B are known as the blocks of the decomposition.
An H-decomposition (V,B) is said to have an (s, p)-equitable block-coloring
E : B �→ C = {1, 2, . . . , s} if:

(i) the blocks in B are colored with exactly s colors,
(ii) for each vertex u ∈ V (G) the blocks containing u are colored using exactly

p colors, and
(iii) for each vertex u ∈ V (G) and for each {i, j} ⊂ C(E, u),

|b(E, u, i) − b(E, u, j)| ≤ 1,

where C(E, u) = {i | some block incident with u is colored i by E} and b(E, u, i)
is the number of blocks in B containing u that are colored i by E. Such colorings
have been considered by several authors, including L. Gionfriddo, M. Gionfriddo,
Hork, Li, Matson, Milazzo, Ragusa and Rodger (see [5–7,13,14]), the work focus-
ing on cases where H ∈ {C3, C4} and G ∈ {Kn,Kn−F}, where F is a 1-factor of
Kn. The main focus in these papers was to find the smallest and largest possible
values of s for each fixed value of p.
c© Springer Nature Singapore Pte Ltd. 2018
D. Ghosh et al. (Eds.): ICMC 2018, CCIS 834, pp. 42–50, 2018.
https://doi.org/10.1007/978-981-13-0023-3_5
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More recently, the research has turned to the structure of such colorings in the
form of the color vector V (E) = (c1(E), c2(E), . . . , cs(E)) of an (s, p)-equitable
block-coloring E of G, where ci(E) is the number of vertices in G incident with
a block of color i arranged in non-decreasing order. Of most interest are the
extreme values of ci(E), thus motivating the following definitions.

Definition 1. For any graphs G and H and for 1 ≤ i ≤ s, define

(i) φ(H,G; s, p, i) = {ci(E) | E is an (s, p)-equitable block-coloring of an
H-decomposition of G}.

(ii) ψ
′
(H,G; s, p, i) = minφ(H,G; s, p, i),

(iii) and ψ′(H,G; s, p, i) = maxφ(H,G; s, p, i).

Considering the tightest cases where s is as small as possible for a given value
of p is a naturally challenging problem. Often this means that the s = p case is
being addressed, and so it is natural to construct such colorings by using path
interchange techniques that abound in graph theory. But in rarer cases it turns
out that s is always greater than p, requiring new methods to make progress
to construct the colorings, hence the motivation for proving Theorems 1 and 2
below. (Interchanging colors along paths can introduce new colors at the end
blocks, potentially contravening the requirement that exactly p colors appear
on blocks at each vertex.) Before stating Theorem 1, some notation needs to be
introduced.

Throughout this paper the focus is on the case where (H,G) = (C4,Kv′ −F ),
and the related case where (H,G) = (K2,Kv) described below. In this context
it has been shown that the only situation where s is always greater than p is
when v′ ≡ 4t + 2 (mod 8t) (for example, see [14,15]), in which case if s is as
small as possible then (s, p) = (2t + 1, 2t) for some integer t. So for the rest of
the paper we now assume that (s, p) = (2t + 1, 2t) and that v′ = 8tx + 4t + 2
for some integer x; so clearly v′ > 1 and t ≥ 1. It is also convenient to define
ψ

′
(H,G; 2t + 1, 2t, i) = ψ

′
i(H,G) and ψ′(H,G; 2t + 1, 2t, i) = ψ′

i(H,G). Since
each vertex u in Kv′ − F obviously has degree 8tx + 4x, which is divisible by
2p = 4t, u is contained in exactly b′(v′) = v′−2

4t = 2x + 1 blocks in each of the
p = 2t color classes appearing at u (each block, being a 4-cycle, contains 2 edges
incident with u). We are now ready to state the following theorem.

Theorem 1 [15]. Let v′ ≡ 4t + 2 (mod 8t). Let 4t ≤ 2b′(v′) + 2. Then

(1) ψ′
1(C4,Kv′ − F ) = 2b′(v′) + 2 and

(2) for 3 ≤ i ≤ 2t + 1, ψ′
i(C4,Kv′ − F ) = v′ − 2.

Notice that there is an unsolved case left in Theorem 1, namely finding
ψ′
2(C4,Kv′ − F ); this is the one value of i where ψ′

i(C4,Kv′ − F ) is not always
either the obvious lower or upper bound on the size of a color class, so it is
particularly challenging to find. In this paper, ψ′

2(C4,Kv′ − F ) is found (see
Corollary 1) by solving a related edge-coloring problem in Theorem 4 which is
proved using the method of amalgamations of graphs (graph homomorphisms).
This construction is then modified in Sect. 4 to provide a new proof of Theorem 1.
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Amalgamations provide a versatile proof technique that has been used in the
study of factorizations of graphs and Steiner triple systems, but its use in block-
colorings is relatively new.

Pursuing this approach in more detail, it is shown in [15] that Theorem 1 is a
direct consequence of the existence of a (2t+1, 2t)-equitable edge-coloring of Kv,
where v = v′/2 (or, more precisely, a (2t + 1, 2t)-equitable block-coloring of the
obvious K2-decomposition of Kv), so v = 4tx+2t+1 for some integer x; clearly
if v > 1, then t ≥ 1. Each vertex u has degree 4tx+2t, which is clearly divisible
by p = 2t, so u is contained in exactly b(v) = v−1

2t = 2x + 1 = b′(v′) blocks
(edges) in each of the 2t color classes appearing at u. Note that b(v) is odd. In
Sect. 4, a new proof of the following result is presented (and by the discussion
above, a new proof of Theorem 1 as well).

Theorem 2 [15]. Let v ≡ 2t + 1 (mod 4t) with v > 1. Let 2t ≤ b(v) + 1. Then,

(1) ψ′
1(K2,Kv) = b(v) + 1 and

(2) for 3 ≤ i ≤ 2t + 1, ψ′
i(K2,Kv) = v − 1.

It is worth noting that a more generalized result in [15] complements The-
orems 1 and 2, addressing the cases where 4t ≥ 2b′(v′) + 2 and 2t ≥ b(v) + 1,
showing that then ψ′

2(C4,Kv′ −F ) = v′ −1 and ψ′
2(K2,Kv) = v−1 respectively.

The following notation will be useful throughout the paper. Let K[R] denote
the complete graph defined on the vertex set R. Color i is said to appear at a
vertex u if at least one block incident with u is colored i.

2 Some Preliminary Results

In order to find ψ′
2(C4,Kv′ −F ) and ψ′

2(K2,Kv), we begin by finding bounds on
the value of c2 in the following Lemmas, utilizing some results proved in [14,15].
For ease of notation define 	x
e to be the largest even integer less than or equal
to x.

Lemma 1. For v ≡ 2t + 1 (mod 4t) and v′ = 2v,

ψ
′
i(K2,Kv) ≤

⌊
2tv − ∑i−1

j=1 ψ′
j(K2,Kv)

2t + 2 − i

⌋
e

and

ψ
′
i(C4,Kv′ − F ) ≤

⌊
2tv′ − ∑i−1

j=1 ψ′
j(C4,Kv′ − F )

2t + 2 − i

⌋
e

.

Proof. Note the elements of the color vector are listed in non-decreasing order;
and since in Lemma 2.5 of [14] it is shown that for any (2t+1, 2t)-equitable edge-
coloring E of Kv and for any (2t + 1, 2t)-equitable C4-coloring E′ of Kv′ − F ,
both

∑2t+1
i=1 ci(E) = 2tv and

∑2t+1
i=1 ci(E′) = 2tv′, the above holds. ��
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Lemma 2. Let v = v′/2 = 4tx + 2t + 1 for some integer x and b(v) + 1 =
b′(v′) + 1 ≥ 2t. Then,

ψ
′
2(K2,Kv) ≤

⌊
v − x + 1

t

⌋
e

and ψ
′
2(C4,Kv′ − F ) ≤

⌊
v′ − 2x + 2

t

⌋
e

.

Proof. Let b(v)+1 ≥ 2t. By Theorem 3.5 of [15], ψ′
1(K2,Kv) = b(v)+1. Therefore

by Lemma 1:

ψ
′
2(K2,Kv) ≤ 	2tv − (b(v) + 1)

2t + 2 − 2

e

= 	v − (b(v) + 1)
2t


e

= 	v − 2x + 2
2t


e

= 	v − x + 1
t


e.

By Corollary 3.6 of [15], ψ′
1(C4,Kv′ − F ) = 2b′(v′) + 2. Therefore by

Lemma 1:

ψ
′
2(C4,Kv′ − F ) ≤

⌊
2tv′ − (2b′(v′) + 2)

2t + 2 − 2

⌋
e

=
⌊
v′ − (2b′(v′) + 2)

2t

⌋
e

=
⌊
v′ − 2x + 4

2t

⌋
e

=
⌊
v′ − 2x + 2

t

⌋
e

.

��

3 Settling the Unsolved Cases in Theorems 1 and 2

Apart from completing the open case left in Theorems 1 and 2, in this paper the
use of amalgamations in block-decompositions is further demonstrated. Hilton
and Rodger [8,9] used this technique to find embeddings of edge-colorings into
hamiltonian decompositions. Buchanan [2] used amalgamations to find hamilto-
nian decompositions of Kn − E(U) for any 2-regular spanning subgraph U , and
this was extended to various multipartite graphs by Leach and Rodger [10,12].
Leach and Rodger [11] went on to find hamilton decompositions of complete
multipartite graphs where each hamilton cycle spreads its edges out as evenly
as possible among the pairs of parts of the graph. This notion has recently been
extended by Erzurumluoğlu and Rodger [3,4] to factorizations and holey fac-
torizations of complete multipartite graphs and then to C4-decompositions of
Kv − F and edge-decompositions of Kv by Matson and Rodger in [15].
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Formally, a graph H is said to be an amalgamation of a graph G if there exists
a function ψ from V (G) onto V (H) and a bijection ψ

′
: E(G) → E(H) such that

e = {u, v} ∈ E(G) if and only if ψ
′
(e) = {ψ(u), ψ(v)} ∈ E(H). The function ψ

is called an amalgamation function. We say that G is a detachment of H, where
each vertex u of H splits into the vertices of ψ−1({u}). An η-detachment of H
is a detachment in which each vertex u of H splits into η(u) vertices.

To describe the amalgamation result used here more precisely, some notation
will be needed. Let x ≈ y represent the fact that 	y
 ≤ x ≤ �y�. Furthermore,
let �(u) denote the number of loops incident with vertex u, where each loop
contributes twice to the degree of u, let G(j) denote the subgraph of G induced
by the edges colored j, and let m(u, v) denote the number of edges between the
pair of vertices u and v in G.

The following is a special case of Theorem 3.1 in [1] (omitting the condition
that ensures color classes are connected and a balanced property on the color
classes for multigraphs since in our case G is simple).

Theorem 3 (Bahmanian and Rodger [1, Theorem 3.1]). Let H be a k-edge-
colored graph and let η be a function from V (H) into N such that for each
v ∈ V (H), η(v) = 1 implies �H(v) = 0. Then there exists a loopless η-detachment
G of H in which each v ∈ V (H) is detached into v1, . . . , vη(v), such that G
satisfies the following conditions:

1. dG(ui) ≈ dH(u)/η(u) for each u ∈ V (H) and 1 ≤ i ≤ η(u);
2. dG(j)(ui) ≈ dH(j)(u)/η(u) for each u ∈ V (H), 1 ≤ i ≤ η(u), and 1 ≤ j ≤ k;
3. mG(ui, ui′) ≈ �H(u)/

(
η(u)
2

)
for each u ∈ V (H) with η(u) ≥ 2 and 1 ≤ i <

i′ ≤ η(u); and
4. mG(ui, vi′) ≈ mH(u, v)/(η(u)η(v)) for every pair of distinct vertices u, v ∈

V (H), 1 ≤ i ≤ η(u), and 1 ≤ i′ ≤ η(v).

We now complete the open case left in Theorem 2 as stated here as
Theorem 4. As explained in the introduction, as a result of Theorem 4, we
also complete the open case left in Theorem 1, stated here as Corollary 1, using
the method of amalgamations in both.

Theorem 4. Let v ≡ 2t + 1 (mod 4t) with v > 1. Let 2t ≤ b(v) + 1. Then

ψ′
2(K2,Kv) =

⌊
v − x + 1

t

⌋
e

.

Proof. Let v = 4tx + 2t + 1 for some integer x. Form a complete graph G0 on
the set of vertices V0 = {u1, . . . , u2x+2} and color all the edges of G0 with color
2t + 1. So each vertex in G0 is incident with 2x + 1 = b(v) edges colored 2t + 1
as desired. Notice that in the final edge-coloring of Kv, each vertex is missing
(i.e., is not incident with any edges of) exactly one color. We will arrange for
1 ≤ i ≤ 2t, color m(i) = i to be missing from vertex ui, for 2t + 1 ≤ i ≤ 2x + 2
color m(i) = � i−2t

2 � (mod 2t) ∈ {1, . . . , 2t} to be missing from ui, and color
m(αi) = 2t+1 to be missing from the remaining v − 2x − 2 vertices (which will
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be named α1, . . . , αη(α) below). For 1 ≤ i ≤ 2t let M(i) = {uj ∈ V0 | m(j) = i}.
Note for 1 ≤ i < j ≤ 2t, | |M(i)| − |M(j)| |∈ {0, 2} and |M(i)| is odd for all i.

Next form a new edge-colored graph G+
0 from G0 as follows. Add a single

vertex, α. The aim now is to complete the proof by using Theorem 3 with
η(ui) = 1 for 1 ≤ i ≤ 2x+2 and η(α) = v − 2x− 2. For 1 ≤ i ≤ 2x+2 join ui to
α with b(v) edges of each color in {1, 2, . . . , 2t}\{m(i)}. Thus for 1 ≤ i ≤ 2x+2
the number of edges joining ui to α is (2t−1)(2x+1) = 4tx+2t+1−(2x+1)−1 =
v − 1 − (2x + 1) = η(α), and dG+

0
(ui) = v − 1.

Let a(i) be the number of vertices in G+
0 where color i appears and let εi = 2

for 1 ≤ i ≤ x+1− t (mod 2t) and εi = 0 otherwise. Therefore a(2t+1) = 2x+2
and for 1 ≤ i ≤ 2t,

a(i) = 2x + 3 − |M(i)|

= 2x + 2 − 2
⌊
2x + 2 − 2t

4t

⌋
− εi.

Note since x ≥ 0 and t ≥ 1 for 1 ≤ i ≤ 2t,

η(α) − (a(i) − 1) = v − 2x − 2 −
(
2x + 2 − 2

⌊
2x + 2 − 2t

4t

⌋
− εi − 1

)

= v − 4x − 3 − 2
⌊
2x + 2 − 2t

4t

⌋
+ εi

≥ 4tx + 2t − 2 − 4x −
(
2x + 2 − 2t

2t

)

= 4x(t − 1) + 2t − 1 − x + 1
t

= (4x + 1)(t − 1) + t − x + 1
t

≥ 0.

Thus for 1 ≤ i ≤ 2t add (b(v)η(α) − b(v)(a(i) − 1))/2 loops colored i to α,
thus resulting in dG+

0 (i)(α) = b(v)η(α). By the above calculations we know we
will be adding a non-negative number of loops for all colors 1, . . . , 2t.

Let l(α) be the number of loops incident with α and E(V (G0), α) be the set
of edges from a vertex in G0 to α. Therefore,

l(α) =
(
dG+

0
(α) − |E(V (G0), α)|

)
/2

= (η(α)b(v)2t − (2x + 2)[b(v)(2t − 1)]) /2
= (η(α)b(v)2t − (2x + 2)η(α)) /2
= η(α) (b(v)2t − 2x − 2) /2
= η(α) (4tx + 2t + 1 − 2x − 3) /2
= η(α)(v − 2x − 2 − 1)/2
= η(α)(η(α) − 1)/2.
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Now apply Theorem 3 to form the detachment G of G+
0 in which α is detached

into the vertices α1, . . . , αη(α). For 1 ≤ i ≤ 2x + 2, since ui is joined to α with
b(v) edges in G+

0 , by condition (3) ui is joined to each vertex αj for 1 ≤ j ≤ η(α)
by exactly one edge in G. Also, since α is incident with η(α)(η(α)−1)/2 loops in
G+
0 , by condition (4) αi is joined to αj by exactly one edge for 1 ≤ i < j ≤ η(α)

in G. It follows that G is isomorphic to K2x+2+η(α) = Kv. By condition (2),
for each vertex u in G, each color which appears at u does so on b(v) edges.
Therefore the edge-coloring E of G is (2t + 1, 2t)-equitable. Furthermore, in G,
color 2t + 1 appears at b(v) + 1 ≥ 2t vertices and for 1 ≤ i ≤ 2t, the number of
vertices where color i appears is

a(i) − 1 + η(α) = (2x + 2) − 2
⌊

x + 1 − t

2t

⌋
− εi − 1 + v − (2x + 2)

= v − 1 − 2
⌊

x + 1 − t

2t

⌋
− εi.

Therefore, since a(i) and η(α) are both odd integers, if 2t divides (x + 1 − t),
then ε1 = 0 and

a(1) − 1 + η(α) = v − 1 − x + 1 − t

t

= v − x + 1
t

=
⌊
v − x + 1

t

⌋
e

,

and if 2t does not divide (x + 1 − t) then ε1 = 2 and

a(1) − 1 + η(α) = v − 1 −
(
2
⌊

x + 1 − t

2t

⌋
+ 2

)

= v − 1 − 2
⌈

x + 1 − t

2t

⌉

= v − 1 + 2
⌊−(x + 1 − t)

2t

⌋

= 2
⌊

v − 1
2

+
1
2

− x + 1
2t

⌋

= 2
⌊

v

2
− x + 1

2t

⌋

=
⌊
v − x + 1

t

⌋
e

.

Therefore by Lemma 2, ψ′
2(K2,Kv) = 	v− x+1

t 
e and the proof is complete (after
renaming color 2t+1 with 1 and renaming colors 1, 2, . . . , 2t with 2, 3, . . . , 2t+1
respectively). ��
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Corollary 1. Let v′ ≡ 4t + 2 (mod 8t). Let 2t ≤ b′(v′) + 1. Then

ψ′
2(C4,Kv′ − F ) = 	v − 2x + 2

t

e.

Proof. By Theorem 4 fo v = v′/2 there exists a (2t+1, 2t)-equitable edge-coloring
E of Kv such that c2(E) = 	v − x+1

t 
e. So as explained in [15] there exists a
(2t + 1, 2t)-equitable C4-coloring E′ of Kv′ − F such that c2(E′) = 2c2(E) =
2	v − x+1

t 
e = 	2 (
v − x+1

t

)
e = 	2v − 2x+2
t 
e = 	v′ − 2x+2

t 
e. Therefore by
Lemma 2, ψ′

2(C4,Kv′ − F ) = 	v − 2x+2
t 
e. ��

4 A New Proof of Theorems 1 and 2

By modifying the proof of Theorem 4 we obtain a new proof of Theorem 2,
and as explained in the introduction, a new proof of Theorem 1 as well, using
amalgamations.

Proof. Let v = 4tx + 2t + 1 for some integer x. Form G0 in the same way as in
Theorem 4. Here color m(i) = i will be missing from vertex ui for 1 ≤ i ≤ 2t−1,
color m(i) = 2t will be missing from vertex ui for 2t ≤ i ≤ 2x + 2, and color
m(αi) = 2t + 1 will be missing from the remaining v − 2x − 2 vertices (which
will be named α1, . . . , αη(α) below).

Next form a new edge-colored graph G+
0 as in Theorem 4 and again the aim

now is to complete the proof using Theorem 3 with η(ui) = 1 for 1 ≤ i ≤ 2x+2
and η(α) = v−2x−2. For 1 ≤ i ≤ 2x+2 join ui to α with b(v) edges of each color
{1, 2, . . . , 2t}\{m(i)} as in Theorem 4; again the number of edges joining ui to α
is η(α), and dG+

0
(ui) = v−1. For 1 ≤ i ≤ 2t−1 add b(v)(η(v)− (2x+1))/2 loops

of color i to α; so α has degree b(v)η(v) in color class i (where loops contribute
2 to the degree of the incident vertex). Also add b(v)(η(v)− (2t − 1))/2 loops of
color 2t to α; so α has degree b(v)η(v) in color class 2t as well. Notice that the
number of loops incident with α is

l(α) = (2t − 1)b(v)(η(α) − (2x + 1)/2) + b(v)(η(α) − (2t − 1))/2
= (2t(2x + 1)η(α) − (2x + 1)(2t − 1)(2x + 2))/2
= (2x + 1)(2tη(α) − (4xt − 2x − 4t − 2))/2
= (2x + 1)(2tη(α) − (η(α) + 2t − 1))/2
= (2x + 1)(η(α) − 1)(2t − 1))/2
= η(α)(η(α) − 1)/2.

As in the proof of Theorem 4, Theorem 3 allows us to form G isomorphic to Kv

from G+
0 so that the edge-coloring E of G is (2t+1, 2t)-equitable. Furthermore, in

G, color 2t+1 appears at b(v)+1 vertices, color 2t appears at v−2t−1 vertices,
and each other color appears at v−1 vertices. Since in [15] it is shown in this case
that ψ′

i(K2,Kv) ≥ b(v) + 1 and that ψ′
i(K2,Kv) ≤ v − 1 for 1 ≤ i ≤ 2t + 1, the

proof is complete (after renaming the colors 1, 2, . . . , 2t+1 with 2t+1, 2t, . . . , 1
respectively). ��
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Abstract. Outlier detection is an important task as it leads to the dis-
covery of critical information in a variety of the application domains.
The variants of k-nearest neighbor based outlier detection method have
been successfully applied over decades. However, these approaches have
high execution time as they compute a score (known as outlier score)
for each data point. In this paper, we propose a method to reduce the
execution time of k-nearest neighbor based algorithms. Proposed method
quickly identifies the data points which are normal and therefore outlier
score for such points need not be computed in further processing. The
proposed method is generic and can be applied to improve the execu-
tion efficiency of many density-based and distance-based outlier detec-
tion methods. Proposed work is compared with other existing methods
and the result shows that the proposed work outperforms other methods.

Keywords: Density based outlier detection method
k-nearest neighbor · LOF · Execution time

1 Introduction

Outliers are the observations which deviates so much from the other observa-
tions as to arouse suspicions that it was generated from a different mechanism
[1]. Efficient mining of the data is very important as it finds its application
in various domains such as credit card fraud analysis, intrusion detection sys-
tem, medical field, marketing etc. Both supervised and unsupervised learning
methods are used to identify the outliers [8]. In unsupervised learning, no prior
knowledge about the data set is known. This makes the unsupervised outlier
detection methods very popular over supervised approach. Popular unsuper-
vised algorithms include clustering techniques, distance-based outlier, density
based-outlier and k-nearest neighbor based methods.

Among the unsupervised learning algorithms, density based outlier detection
methods are very popular and efficient for identifying the outliers. The main idea
behind density based methods is to compute outlier score for each data point and
declare the points with high scores as outlier points. In order to compute the out-
lier score, k-nearest neighbors of each data point are computed and subsequently
use their statistics according to the individual algorithm. Popular density based
c© Springer Nature Singapore Pte Ltd. 2018
D. Ghosh et al. (Eds.): ICMC 2018, CCIS 834, pp. 53–60, 2018.
https://doi.org/10.1007/978-981-13-0023-3_6
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outlier detection method includes LOF (local outlier factor) [5], COF (connec-
tivity outlier factor) [11], INFLO. The distance based method is also found to
be using k-nearest neighbor information [9].

The outlier score corresponding to normal data point is of limited use espe-
cially when the objective is to mine out the outliers. As density and distance
based approaches calculates the outlier score for every the data point, it makes
the method inefficient. The problem increases in many folds with increasing the
size of the data set.

In this paper, we propose a method to improve the execution time of k-nearest
neighbor based outlier detection methods. In proposed method, we introduce a
novel measure termed as devToMean to identify the normal points for which out-
lier scores are not required to compute in further processing. The novel measure
ensures that none of the outlier points is identified as normal points. Having
filtered these normal points, we only compute outlier score of the remaining
data points based on the individual algorithm. The experiments are carried out
both on synthetic as well as real datasets and the results show a significant
improvement in execution cost over the other methods.

The rest of the paper is organized as follows. Section 2 describes state-of-the-
art works in this direction. We describe proposed work in Sect. 3. Experimental
results and analysis are reported in Sect. 4. We conclude our paper in Sect. 5.

2 Related Work

The broad application of the outlier detection has made the literature very
rich. Widely popular outlier detection techniques include statistical approach,
distance-based, density-based, rule-based, neighborhood based, etc. [8].

Distance and density based outlier detection techniques are widely used when
no prior knowledge about the dataset is known unlike statistical approach. Knorr
and Ng [2] proposed first distance-based outlier detection technique. It uses
the distance parameter to find the outliers. The notion of the distance based
algorithm is further extended to k-nearest neighbor distance or statistics [9]. In
[9], it uses the relative location of an object to its neighbor to determine the
degree to which object deviates from its neighbors. Thus the objects with the
higher LDOF score (Eq. 1) are regarded as outliers.

LDOFk(xp) =
dxp

Dxp

(1)

where, Dxp
= 1

k(k−1)

∑
xi,xi′ ∈kNN(xp)

dist(xi, xi′), dxp
is the average distance

from point xp to all its k nearest neighbors, kNN is the k-nearest neighbors of
the point xp excluding the point xp itself.

Density based outlier detection techniques use local information/statistics of
each data point for computing outlier score of the point. Some of the significant
works done in this area includes LOF (local outlier factor) [5], COF (connectiv-
ity based outlier factor) [11], INFLO [7], etc. In the popular LOF method [5],
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local reachibility density of a point is computed using the statistics of k-nearest
neighbors of the point. Finally, it computes a score called lof which is the average
of the ratio of local reachibility density of a point p to the density of the point
p’s nearest neighbors. If the factor lof is close to 1 then the point is considered
as normal. If the value of the lof �1, then it is declared as an outlier. INFLO
[7] outlier detection approach addresses the problem of LOF in a dataset with
variable density over the feature space. It considers both k-neighbors and reverse
k-neighbors statistics while computing outlier score [3,4,6,10].

All the methods discussed above are proven to be very powerful and efficient
in term of finding outliers. However, these approaches have high execution time
as they compute outlier score for each data point. This problem becomes severe
with the increase of size of the dataset. Few methods are reported to improve the
execution time but they are specific to particular density based outlier detection
technique while compromising the accuracy (precision) of the method.

Some of the work done to improve upon the density based outlier detection
methods include LOF’ [6]. Authors argued that the MinPts-dist is sufficient to
find the density of a point. Subsequently, the basic formula (Eq. 1) for computing
the outlierness of a point is altered. In FastLOF [10], author argue that a good
estimation is fair enough for normal data points but precise nearest neighbors
are required for the outliers. To reduce the execution time of k-nearest neighbor
search, data set is randomly divided into data chunks and search is performed
only within a single chunk for each point in it. Subsequently, approach takes a
decision that which data points can be further considered to find the outliers
and other are safely pruned (removed). However, in this case all outlier points
may not be detected. Other pruning strategies are also developed to reduce the
execution time of density and distance based approaches [3,4]. Basic idea of these
research is to identify the normal points and prune them for further processing.
In [4], k-means clustering method is applied over the dataset and subsequently,
pruning strategy is applied to individual cluster. The points within a cluster
are pruned (removed) if they locate close to the centriod (within the radius
of the cluster). Finally, LDOF is applied to remaining points in the dataset.
However, the genuine outlier point located close to the centriod of a cluster can be
considered as normal point and it can be pruned in this approach. Another major
drawback of the pruning approach is that pruning a normal point may change
the characteristics of its neighbors (i.e., normal to outlier point). Therefore, it
increases the false positive rate. Reduction of execution time of these approaches
is achieved at the cost of accuracy of outlier detection mechanism.

3 Proposed Work

We address the problem of computation overhead involved in the methods dis-
cussed in previous section in a novel way. In those methods, outlier score is calcu-
lated for each data point. Intuitively, outlier scores corresponding to the normal
points are not of significant use and hence this calculation can be avoided. In
this proposed approach, we quickly identify most of the normal points and com-
putation of the outlier score for these points are not performed in subsequent
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step. It can be noted that we do not prune these points unlike pruning strategy.
Therefore, accuracy of the individual method is not compromised in this app-
roach and it leads to reduce the execution cost of the density and distance based
outlier detection methods.

Our proposed approach works in two phases. In the first phase, a linear
clustering method (k-means) is applied to partition the data into a number of
chunks (cluster) and centroid point of each of the cluster is computed. We aim
to mark all normal data points from each of these cluster. It can be intuitively
said that the normal points lie in dense region, hence its deviation (density
deviation) from its neighbors is small, whereas outliers lie in the sparse region
and its deviation from its neighbors would be more as compared to normal
points. We use this assumption in order to identify the normal points within
each cluster. We introduce a metric termed as devToMean for each point within
a cluster. Let Ci be a cluster and mCi

be the mean of Ci. The devToMean of
a point x ∈ Ci is the ratio of deviation of the point x from mean point to the
average deviation of its neighbors from the mean of the cluster. This is computed
using the following Eq. 2.

devToMean(x) =
||x − mCi

||
1
k

∑
xi∈k−NN(x) ||xi − mCi

|| (2)

The devToMean determines how much an object deviates from the mean of the
cluster to which it belongs with respect to its neighbors. If this deviation of a
point is similar to that of its neighbors, then the value of devToMean is close to
1 and the point is considered as a normal point. The value of devToMean for
outlier point can be high (>> 1) (outlier point far away from mean point) or
close to 0 (outlier point close to the mean).

We mark the normal points (devToMean ≈ 1) and avoid computation of
outlier score for these points in next phase. The marked points are not pruned
(removed) from the dataset. Remaining unmarked points are sorted based on
their devToMean values. We apply 10 percentile rule to find probable outliers in
the dataset. We select the top ten (10) percentile and bottom ten (10) percentile
of these sorted unmarked points as probable outliers and investigate them in the
next phase. The idea of this rule is that there are few outlier points compared
to the normal points and the value of devToMean for genuine outlier is either
close to 0 or very high (>> 1).

The second stage involves the calculation of the outlier score of the points
obtained using 10 percent rule. For computing the outlier score, one can use any
popular distance or density based approach discussed in Sect. 2. While computing
the k-nearest neighbor statistics of these selected points, all data points are used
including the marked normal points. Therefore, accuracy of the outlier detection
method is not compromised and results obtained by our approach will be the
same as that of the original approach applied on the same dataset. The proposed
approach is depicted in Algorithm 1. Finally, a ranking list is made for all the
outlier score and top-n outliers are selected.
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Algorithm 1. DevToMean outlier detection
Input: D, num-clust, k
Output: outlier-score
1: Clusters ← k-meansClustering(D,num-clust)
2: for each ci ∈ Clusters do
3: for each pj ∈ ci do
4: Compute devToMean(pj)
5: Mark the point pj if devToMean(pj) = 1.
6: end for
7: end for
8: POutlier ← Filter the unmarked points by applying 10 percentile rule.
9: for each pi ∈ POutlier do

10: Compute outlier score of pi using entire dataset D.
11: end for

As the outlier score corresponding to a very less number of the data point
is calculated, the execution time of the proposed algorithm is quite less as com-
pared to the time taken by the original algorithm. The number of clusters to
be provided in the first phase is very important factor. The number of clusters
should be such that the size of the cluster is neither too big nor too small. If the
size of a cluster is too small, then the genuine outlier point might get overlooked
as it would contain the value of devToMean factor close to 1. Also, if the size
of the cluster is too large, then the reduction in time complexity would be quite
small as large volume of data set would be examined to calculate the value of
devToMean factor. Thus, specifying the appropriate number of clusters accord-
ing to the size of the data set is very important. For testing purpose, we consider
that the minimum size of the cluster to be 100.

4 Experimental Results

The proposed method is tested on synthetic as well as real data set. The synthetic
data set was uniformly distribution within a region. We also injected few outliers
to the dataset. We took one classification dataset named Cover Type Data from
UCI machine learning repository and converted into One class data with few
injection of outlier points from other classes.

We introduce a metric termed as speed up factor S which measures the per-
centage of decrease in the execution time of the proposed method from the
execution time of the original approach. The metric is normalized by the max-
imum decrease in execution time over various input sizes of a dataset. Let tmdev
and tmo be the execution time of proposed approach and original approach while
both of them applied on a subset of size m of a dataset, respectively. The speed
up factor Sm is computed as follows.
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Fig. 1. Speedup factor S with varying data set and parameter k for LOF

Sm =
tmo − tmdev

maxl{tlo − tldev}
× 100 (3)

where, l is the size of a data subset. The minimum value of Sm = 0, when
proposed approach takes exactly the same time (tmo = tmdev) as that of the original
approach.

We speed LOF (density based outlier detection algorithm) up using our app-
roach and speed up factor of the proposed approach is plotted in varying data
size of the synthetic dataset in Fig. 1. It can be easily inferred from the plot that
the proposed method’s efficiency increases with increase in size of the data set
in terms of execution cost. For the considered size of the data set, the reduc-
tion in time is more than 50% for higher values of k. We achieved a significant
reduction in execution time of the LOF method over increasing the size of the
dataset. This shows that proposed approach is effective in large size data. The
popular distance based outlier detection method LDOF [9] speed-ed up using
proposed approach and reported in Fig. 2. Similar trends are observed.

Few works are reported to reduce the execution time of the density based
outlier detection techniques using pruning strategies while some of them modi-
fied the method for finding outlier detection method [4,6,10]. We compare our
proposed method with FastLOF which belongs to first category on real Cover
Type dataset. Results are recorded in Fig. 3. The results clearly show that our
proposed method outperforms FastLOF. It can be noted that comparison with
other pruning based approaches discussed in Sect. 2 are not reported here as
these methods cannot produce exactly the same detection accuracy as that of
the original approaches.
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Fig. 2. Efficiency factor S with varying data set and parameter k for LDOF
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Fig. 3. Comparison of the proposed approach with FastLOF [10] with k = 70.

5 Conclusion

In this paper, we proposed a framework to speed up a set of popular outlier
detection methods which compute outlier score for each data point using k-
nearest neighbor statistics. We introduced a metric devToMean which quickly
identifies normal points and computation of outlier scores for these points are
avoided in decision making. It is observed from experimental results that the
proposed framework is very effective for large dataset and for grater value of the
parameter k. In future, we can further reduce the execution time in speeding up
the identification process of normal points (devToMean).
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Abstract. This paper presents a human recognition system using sin-
gle lead electrocardiogram (ECG). The method corrects the ECG signal
from noise as well as other artifacts to it and extracts major features
from P-QRS-T waveforms. Finite Impulse Response (FIR) equiripple
high pass filter is used for denoising ECG signal. Haar wavelet transform
is used to detect the R peaks. By using this novel approach, different
extensive information like heart rates, interval features, amplitude fea-
tures, angle features area features are received among dominant fiducials
of ECG waveform. The feasibility of ECG as a new biometric is tested
on selected features that report the recognition accuracy to 97.12% on
the data size of 100 recordings of PTB database. The results obtained
from the proposed approach surpasses the other conventional methods
for biometric applications.

Keywords: ECG · Heartbeats · Biometric recognition

1 Introduction

In this modern digital era, an unique and accurate identity is essential need of
the society. Traditional strategies for recognition include PIN numbers, tokens,
passwords and ID cards raise serious security concerns of identity theft. The
major benefit of security systems based on biometrics is that they work on an
individual physiological or behavioral characteristics. One of the flaws of com-
monly used biometrics are the ease of falsification of credentials. For example, a
photo can be counterfeited a face, the iris can be falsified by contact lenses and
even the fingerprint can be fooled from a gel or latex finger.

In order to overcome the issues of conventional biometrics the bioelectric
signals are one of the better choice. They are subjective to an individual and
therefore, harder to mimic them. They are highly secure and are prevent from
any fear of imitation. The electrocardiogram (ECG) is one of the known bioelec-
trical signal used to monitor the health of an individual heart. An ECG records
changes in the electric potential of cardiac cells and possesses unique charac-
teristics. The ECG records the electrophysiologic pattern of depolarizing and
repolarizing during each heartbeat as shown in Fig. 1. Studies show that ECG
exhibits discriminatory patterns among individuals [5–16].
c© Springer Nature Singapore Pte Ltd. 2018
D. Ghosh et al. (Eds.): ICMC 2018, CCIS 834, pp. 61–73, 2018.
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Fig. 1. ECG waveform

Outmoded medicine through efforts to universalize ECG signal to produce a
common diagnostic method applicable to most individual [1], but the uniqueness
of ECG among individuals is an advantage in biometrics as well as challenge in
medicine [17]. Several studies have demonstrated ECG-based recognition is a
robust biometric method. To ascertain that it is possible to identify individual
using ECG, Biel et al. extracted the features from P, QRS and T waveforms and
evaluate the feasibility of ECG signal for human recognition [5]. They performed
multivariate analysis for classification and achieved 100% recognition rate. Israel
et al. have demonstrated the Wilks Lambda technique for feature selection and
linear discriminant analysis for classification [10]. This framework was tried on
a database of 29 subjects with 100% human recognition rate was achieved. Shen
et al. presented one lead ECG based on identity verification with seven fiducial
based features that are related to QRS complex [6]. The consequence of identity
verification has discovered to be 95% using template matching, 80% using deci-
sion based neural network and 100% for consolidating the two methods from a
gathering of 20 people. Singh and Gupta have proposed P and T wave delineators
along with QRS complex to extract different features from dominant fiducials of
the electrocardiogram on each heartbeat [16]. The proposed system is tested on
50 subjects and achieved the classification accuracy to 98%.

In this paper, a robust and an efficient method of ECG biometric recognition
is proposed. For denoising ECG signal, FIR equiripple high pass filter is used
that removes baseline noise. The FIR equiripple low pass filter removes the power
interference noise. Haar wavelet transform is used for accurately detection of the
R peaks (Rpeak). All other dominant features of the ECG waveform are detected
with respect to the R peaks by setting of the windows whose sizes depend on
the length of the corresponding wave duration and location. Features of the
ECG signal including interval features, amplitude features, angle features and
area features where successfully despite. The algorithm has been applied on 100
ECG signals of PTB database from physionet bank and could detect 39 features
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from every ECG signals. By applying PCA and Kernel PCA reduction methods
on 39 features. Finally the similarities within the components of feature set are
calculated on the basis of Euclidean distance.

The rest of the paper is organized as follows. Section 2 presents the method-
ology for the recognition system based on ECG. The delineation techniques of P
and T wave are demonstrated with detailed description of ECG data. The exper-
iment results of recognition system presented in Sect. 3. Finally, conclusions are
drawn in Sect. 4.

2 Methodology

The framework of ECG biometric recognition system is shown in Fig. 2. The
method is implemented in a series of steps: (1) ECG data preprocessing: includes
correction of signal from noise artifacts. (2) Data representation: includes delin-
eation of dominant waveform and recognition of dominant features between the
diagnostic points. (3) Recognition: that matches test template with the template
stored in the database using a suitable technique.

2.1 ECG Data Preprocessing

An electrocardiogram exhibits the electric potential actually electrical voltages
are higher in the heart, it can be characterize as P, Q, R, S, and T waves. When
an ECG is recorded, it contaminates several kind of noises. The contamination of
different artifacts such as baseline wander noise and power line interference may
change the levels, values of amplitudes and time periods of the ECG waveform,
respectively.

Equiripple highpass filter is capable of removing baseline wander noise with-
out affecting the dominant fiducials of the ECG. The equiripple highpass filter
uses a filter order of 2746, cutoff frequency of 1 Hz, stop frequency of 2 Hz, and
stop attenuation of 80 dB. The power interference noise appears as spike in fre-
quency components analysis at 50 Hz. This frequency component can be removed
by using notch filter. The FIR equiripple lowpass filter is used with filter order
of 508 and cutoff frequency is set to 40 Hz. This filter is followed by an IIR filter
to reach sharp frequency notch and avoid phase distortion.

2.2 Data Representation

The ECG signal is now ready to process for features extraction. In this stage,
a systematic analysis of ECG is done using different techniques. The Haar
wavelet transform method is used to extract the ECG features. Haar wavelet
gives promising performance to delineate P-QRS-T wave fiducials.
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Fig. 2. ECG biometric recognition system [16].
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Peak Detection. Using Harr wavelet transform R peaks are easily detected due
to the multiresolution analysis of the ECG signal. In reference to the R peak
location, the P, Q, S and T waveforms are detected. The rhythm of heartbeat is
calculated using the following formula:

Number of heartbeats = R peaks * Length of signal/(Frequency * 60 s) per
minute.



ECG Biometric Recognition 65

P

R

Q
S

T
RT

QR RS

PRs

PR

PR I

RT

RT

STs

STI

QT

P P TT

P R

P R

offset offsetonset onset

onset

onset
offset

offset
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The procedure to detect P-peak is shown as follows: To detect Ppeak location,
window of 160 samples is set. This window extends from 200 to 60 samples to the
left of Rpeak. Within the window, Ppeak is located at the samples that have the
maximum amplitude value. Another window of 90 samples is set. The window
boundary from 100 to 10 samples to the left of Rpeak location. Qpeak is located
where the minimum amplitude value is found within the window. For Speak, the
window of size 95 samples is set and window extends from 5 to 100 samples to the
right side of Rpeak location. The minimum amplitude value within the window
is the Speak location. Tpeak are the farthest waves from Rpeak. Tpeak are detected
using window of 300 samples of width. These windows start at 100 samples on
the right of Rpeak and end at 400 samples away from Rpeak. Tpeak is located at
the maximum amplitude value from right side of Rpeak within the window. A
window of size 300 samples is set. Within this window the minimum amplitude
value at 150 samples from the left of Tpeak is Tonset location and minimum
amplitude value at 150 samples to the right of Tpeak location is Toffset location.
Thus all peaks are successfully detected. Figure 3 shows detected P, Q, R, S, T,
Poffset, Ponset, Toffset and Tonset waves.

2.3 Feature Extraction

Once the ECG is delineated, peak and limits of QRS complex, P wave and T
wave are known. From known fiducials 39 features which are extracted from each
heartbeat where each derives from one of the classes:
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Fig. 5. Amplitude features of ECG waveform [16].

Interval Features. Following features related to heartbeat intervals are com-
puted. The PRI is the time interval between Ppeak and Rpeak fiducials. PRS is
the time interval between Poffset to QRSonset fiducials. The QT is the corrected
time interval between QRSonset to Toffset fiducials, according to Bazett’s for-
mula. The STS is the time interval from QRSoffset to Tonset fiducials and STI

is the time intervals from QRSoffset to Toffset fiducials. Other interval features
are computed relative to Rpeak fiducial. The time interval from Rpeak to P wave
fiducials, Poffset, Ppeak and Poffset are defined as PoffsetR, PR and PonR,
respectively. The time interval from Rpeak to Qpeak is defined as QR and time
interval from Rpeak to Speak is defined as RS. Similarly, time interval from Rpeak

to T wave fiducials, Tonset and Toffset are defined as RT , RTonset and RToffset

respectively.
The computed time interval features are shown in Fig. 4. Along to these

interval features within a beat three interbeat interval features set RR, PP and
TT are also extracted. RR is defined as the time interval between two successive
R-peaks, similarly PP and TT are also detected. The RR feature is also used
to correct the QT interval from the effects of change in heartrate [16].

Amplitude Features. Following amplitude features are computed relative to
the amplitude of R peak. This class of features are dependent to QRS complex
which is usually invariant to change in the heart rate. The QRa feature is defined
as the difference in amplitude of R and Q waves. The SRa feature is defined as
the difference in amplitude between R and S waves. Similarly, the difference
in amplitude of P wave and T wave to R wave are defined as PRa and TRa,
respectively [16]. These amplitude features are shown in Fig. 5.
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Angle Features. Following features related to angular displacement between
different peak fiducials of P, Q, R, S and T waves are extracted from each
heartbeat. Hence the aim is to extract a class of features which are stable and
prone to the change in heart rate. The ∠Q is defined as the angular displacement
between directed lines joining from Qpeak to Ppeak and Qpeak to Rpeak fiducials
[43]. Using Cosine rule ∠Q can be computed as follows:

cos Q =
PQ2 + QR2 − PR2

2 ∗ PQ ∗ QR
(1)

∠R is defined as the angular displacement between directed lines joining from
Rpeak to Qpeak and from Rpeak to Speak fiducials. Similarly, ∠S is defined as
the angular displacement between directed lines joining from Speak to Rpeak and
from Speak to Tpeak fiducials. ∠P is defined as the angular displacement between
directed lines joining from Ponset to Ppeak and from Ppeak to Poffset fiducials.
∠T is defined as the angular displacement between directed lines joining from
Tonset to Tpeak and from Tpeak to Toffset fiducials. These angle features are
shown in Fig. 6.

Area Features. We compute another set of feature called area features formed
among ECG wave fiducials as follows (Table 1):

The procedure used to compute the area of a triangle having known vertices
(Ax, Ay), (Bx, By) and (Cx, Cy) in a 2D space is given as follows [44]:

Area of Triangle ABC =
Ax(By − Cy) + Bx(Cy − Ay) + Cx(Ay − By)

2
(2)
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Table 1. Area features of a heartbeat

Area features Representation

Area P Area of �P

Area Q Area of �Q

Area R Area of �R

Area S Area of �S

Area T Area of �T

3 Recognition Results

3.1 Database

Physikalisch-Technische Bundesanstalt (PTB), the National Metrology Institute
of Germany, has provided the digitized ECG for research [41]. The ECG signal
were collected from healthy volunteers and patients with different heart diseases
by Professor Michael, M.D., at the Department of Cardiology of University Clinic
Benjamin Franklin in Berlin, Germany. The PTB database contain total records
549 from 290 subjects with the conventional 12 leads is represented as i, ii, iii,
avr, avl, avf, v1, v2, v3, v4, v5, v6 together with three Frank ECG leads that
is vx, vy, vz. Each signal is digitized at 1000 samples per second, with 16 bit
resolution over a range of ±16.384 mV. The performance of the ECG biometric
recognition system is evaluated on the ECG recordings of 100 subjects from
the class Physikalisch Technishe Bundesanstalt (PTB) database. The proposed
methodology is tested on 100 subject of PTB database from each of these subject
6 windows of 30 s is created. A feature vector of 600 × 39 (PTB) dimension.
6 windows from each subject is used as training template from which distance
was calculated for each subject.

3.2 Feature Selection

Feature selection is the process of selecting a subset of relevant features from
the feature vector collected from ECG identification model. In this paper two
dimensionality reduction methods are used that is principal components anal-
ysis (PCA) and kernel principal components analysis (KPCA) [3]. PCA is a
very popular technique for dimensionality reduction. Suppose a data set is of
n-dimensions, the aim of the PCA is to find a linear subspace of d-dimension
which is less than n than this data points lies on the linear subspace. Such a
reduced subspace attempts to maintain the inconsistency of the data. The PCA
approach can be described in five steps: (1) Calculate the covariance matrix of
the given d-dimensional data set. (2) After that calculate the eigenvalues and
eigenvector of the given data set and sort the eigenvalues in a decreasing order.
(3) Select the k eigenvectors that belong to k largest eigenvalues and k is the
dimension of the new feature space. (4) Compute the W projection matrix of
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the k selected eigenvectors. (5) Finally, transform the given data set X to obtain
the k-dimensional feature subspace Y

Y = WT .X (3)

PCA is designed for linear capabilities in high-dimensional data set. However,
high dimensional data sets are nonlinear [3]. In some cases the high-dimensional
data lay on boundary or near the boundary of a nonlinear manifold, so in this
case PCA cannot variability of the data correctly. In kernel PCA, the kernel
is used in PCA to calculate the high-dimensional feature vector efficiently in
nonlinear mapping on the given input data set. The formulation of kernel PCA
as follows:

t∑

i

Θ(xi) − ZqZ
T
q Θ(xi) (4)

where Zq consist of eigenvectors and (xi) is data set.

3.3 Recognition Performance

For recognition we generate the genuine and imposter matching scores. A match-
ing score is a similarity measures between features derived from the test and
training template. For different individuals, the test template is compared to
the template stored in the gallery set using Euclidean distance as the similarity
measure to generate matching scores (Table 2).

Table 2. Evaluation of recognition performance using different method

GAR (%) FAR (%)

Euclidean distance PCA Kernel PCA

100 24.57 25.06 19.67

90 7.7 3.02 1.63

80 4.94 1.02 0.41

70 1.8 0.2 0.29

60 0.4 0.04 0.08

50 0.16 0.00 0.04

The receiver operating characteristic (ROC) curve plot is a function of the
decision threshold which plots the rate of false acceptance against the false rejec-
tion. The equal error rate (EER) is defined as the rate at which the false accep-
tance rate equals the false rejection rate. The accuracy of the recognition system
is determined from subtracting the EER value to 100.

The equal error rate (EER) of the identification system is found to be 2.88%
and accuracy is 97.12% by applying kernel PCA for dimensionality reduction. By
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Table 3. Comparision of proposed method with other known methods

Methods ECG database/
Population size

Features used Classification
method

Recognition
results

Tantawi et al. [34] PTB/38 QRS- complex Radial basis
neural network

97%

Safie et al. [33] PTB/112 QRS- complex Matching score 91.01%

This paper PTB/100 Amplitude &
Interval

Matching score 97.12%

Angle & Area

using PCA EER is 8.86% and accuracy is 91.14% and Euclidean distance having
an EER is 8.98% and accuracy is 91.01%. The performance of the ECG biometric
recognition system is represented using receiver operator characteristic (ROC)
curve as shown in Fig. 7. It shows that the system has genuine acceptance rate
(GAR) for kernel PCA is 100% at 19.67% false acceptance rate (FAR), GAR
for PCA is 100% at 25.06% FAR and GAR for euclidean distance is 100% at
24.57%. The recognition performance is found better for kernel PCA reduction
method. In comparision to other methods, the proposed ECG biometric recog-
nition system give outstanding performance on PTB database and this is shown
in Table 3.

4 Conclusion

This study has proposed a method of biometric recognition of individuals using
their heartbeats. The method has delineated the dominant fiducials of ECG
waveform and then interval, amplitude, angle and area features are computed.
The recognition results are shown that the proposed method of ECG biometric
recognition is and useful to distinguish the heartbeats of normal as well as the
inpatient subjects.
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Universally, individuals have a heart and the nature of the way it beats and
once used as a biometric proves the life of the user in a natural way. Therefore, no
test of liveness is required. Finally, each individual has a unique set of heartbeat
features. Thus, the proposed techniques can be used as a potential biometric for
human recognition which is very secure and robust from falsification.
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Abstract. Automatic image captioning is the process of providing nat-
ural language captions for images automatically. Considering the huge
number of images available in recent time, automatic image captioning
is very beneficial in managing huge image datasets by providing appro-
priate captions. It also finds application in content based image retrieval.
This field includes other image processing areas such as segmentation,
feature extraction, template matching and image classification. It also
includes the field of natural language processing. Scene analysis is a
prominent step in automatic image captioning which is garnering the
attention of many researchers. The better the scene analysis the better
is the image understanding which further leads to generate better image
captions. The survey presents various techniques used by researchers for
scene analysis performed on different image datasets.

Keywords: Image captioning · Scene analysis · Computer vision

1 Introduction

Automatic image captioning is the process of providing natural language cap-
tions for images automatically. The area is garnering attention from researchers
because of the huge unorganized multimedia data pouring in every second. Auto-
matic image captioning is a step ahead of automatic image tagging where images
are tagged with relevant keywords related to the contents in the image. Various
researchers have come up with the definition of automatic image captioning. In
[1], authors in their work define automatic image captioning as the process by
which a computer system automatically assigns metadata in the form of cap-
tioning or keywords to a digital image. Mathews et al. [12] in their paper define
it as automatically describing the objects, people and scene in an image. Wang
et al. [21] in their paper give the definition as recognition of visual objects in
an image and the semantic interactions between objects and translate the visual
understanding to sensible sentence descriptions. Liu et al. [22] mention that the
grammar must be error-free and fluent. For summing up image captioning can
be defined as generating short descriptions representing contents (object, scene
and their interaction) of an image in human-like language automatically.

c© Springer Nature Singapore Pte Ltd. 2018
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Automatic image captioning is viewed as an amalgamation of computer vision
and natural language processing. The computer vision part is about recogniz-
ing the contents of an image and the natural language processing part is about
converting the recognition into sentences. Research has flourished in both the
fields. Computer vision researchers try to better understand the image and nat-
ural language processing research try to better express the image. Because of
this integration, automatic image captioning has come out as an emerging field
in artificial intelligence.

1.1 Applications

Automatic image captioning is an interesting area because of its application in
various fields. It can be used in image retrieval system to organize and locate
images of interest from a database. It is also useful for video retrieval. It can
be used for the development of tools that aid visually impaired individuals to
access pictorial information. It finds application in query-response interfaces.
Journalists find the application useful in finding and captioning images related
to their articles. Human-machine interaction systems can also employ the results
of automatic image captioning. Such systems are also helpful in locating images
verbally. It can also be used for military intelligence generation, surveillance
systems, goods annotation in warehouse and self-aware systems (Fig. 1).

Fig. 1. Example of automatically captioned images [3].

1.2 Scene Analysis

Scene analysis is a module in automatic image captioning and has gained impor-
tance recently. In image captioning, generally, the output is the main object in
the image without caring about what the background of the image is. This neg-
ligence makes the description of the image very vague and unclear.

Consider an image where a person is standing and in the background there is
a river and another image where the background is a desert. If the focus is only
on the object, both the images will be captioned as a person. If the background
scene is taken into consideration, the first image may be captioned as a person
standing in front of a river and the second image may be captioned as a person
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in desert. Suppose a journalist wants a sample image for her article and sends
a query in the image database as keywords person, river. In first case of image
annotation both the images will be retrieved whereas in second case only the
first image will be retrieved. Thus, scene analysis is very important for proper
image captioning which leads to better image retrieval results (Figs. 2 and 3).

Fig. 2. Without scene analysis: a person. With scene analysis: a person in front of river
(Sample image taken from internet)

Fig. 3. Without scene analysis: a person. With scene analysis: a person in a desert
(Sample image taken from internet)

For scene analysis, the image needs to be broken down into segments for
understanding. This leads to the inclusion of another image processing field
- image segmentation. Various segmentation techniques exist and several are
coming up as to segment the images in a way that the machine understands the
image better and can generate better captions. Another field included in scene
analysis is object recognition which in itself is a very broad research area.
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Object detection can be enhanced by adding contextual information. Scene
analysis provides the required contextual information. As the number of scenes
is finite, scene analysis is also considered as scene classification problem. Since
objects are related to the scenes, the probability distribution of each object over
different scenes is different. Convolutional neural networks have been trained
over 25 million images of Places dataset to predict approximately 200 different
scene-types.

In a nutshell, scene analysis of an image is very important. Without this
there is no scope for meaningful captioning of images.

2 Related Works

A lot of research has been done in the field of automatic image captioning. The
whole procedure of generating image captions by machines follow a common
framework which is discussed below.

2.1 Framework

On the whole, the entire procedure can be subdivided into 2 parts: image pro-
cessing and language processing. Image processing part includes: image segmen-
tation, feature extraction and classification. Feature extraction and classification
can be together referred to as object recognition.

After the object recognition, we obtain the keywords corresponding to the
identified objects in the images. These keywords are then fed to language pro-
cessing unit which results in forming meaningful captions for images.

Each of the three modules are independent and can be researched upon indi-
vidually. Techniques applied for one of them does not affect the one used for the
other module. It is beneficial as each module can be studied and analyzed in
isolation (Fig. 4).

Fig. 4. Steps in automatic image captioning
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2.2 Approaches

For segmentation and recognition various techniques can be used: super-
vised learning, unsupervised learning, neural networks or probabilistic methods
(Fig. 5).

Fig. 5. Various approaches applied for image processing part of automatic image cap-
tioning

3 Comparative Study

See Table 1.

Table 1. A comparative study of different works in automatic image captioning

S. No. Year and

Author

Abstract Result Datasets Limitations Merits

1 Sumathi

and

Hemalatha

[1]

Approach: treat

annotation as a

retrieval problem.

Features: low level

image features

Simple

combination of

basic distances

using JEC to find

the nearest

neighbor.

Classification:

SVM

Precision: 77%

Recall: 35%

F1 score: 51%

Flickr Only annotations

no captions

Simple

distance-based

technique

(continued)
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Table 1. (continued)

S. No. Year and

Author

Abstract Result Datasets Limitations Merits

2 Yu and

Sein [2]

Approach:

intensity invariant

approach.

Preprocessing

steps: gray scale

converting, noise

filtering, image

enhancing.

Segmentation:

based on color

intensity

No comparative

results mentioned

Not mentioned Only annotation

tags are generated

Simple graph

technique

3 Ushiku et

al. [3]

Approach:

generate a

sentential caption

for the input

image by

summarizing

captions

BLEU: 0.63 NIST:

0.82

PASCAL

sentence

Caption accuracy

is sensitive to the

retrieval precision

of training

samples

Instead of

generating

captions from

scratch, they

have used

summarization

technique

4 Federico

and Furini

[4]

Approach:

automatic speech

recognition with

caption alignment

mechanism

No comparative

results mentioned

Video lectures

of university

professors

Since the behavior

of ASR depends

on the acoustic

and language

models, the audio

markup insertion

is likely to affect

the performance

of the speech

analyzer

Cost effective

solution

5 Feng and

Lapata [5]

Probabilistic

image annotation

model for content

selection.

Extractive and

abstractive surface

realization model

Translation edit

rate: 1.77.

Grammaticality:

6.42.

Relevance: 4.10

BBC dataset 1. Finite topics

2. Very little

linguistic

knowledge

3. Local features

Extremely

helpful to

journalists

6 Xi and Im

Cho [6]

Features: weighted

feature clustering

based on

statistical

distribution.

Annotation:

maximal

conditional

probability

Precision: 40–60%

Recall 40–60%

Corel Dominated by

weakly relevant

features

Gives an

insight to

information

gain theory

7 Horiuchi et

al. [7]

Approach: collect

general phrases

for generating

image descriptions

17/20 of image

descriptions are

scored higher than

the image

descriptions

selected by 1

million. 6/7 of

image descriptions

are scored higher

than the image

descriptions of

Integer Linear

Programming

PASCAL

visual object

classes

challenge

1. Image

descriptions too

concise

2. Image

descriptions

affected by quality

of image retrieval

system

Selecting

phrases based

on frequency

results in

fewer errors

and more

relevant

descriptions

(continued)
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Table 1. (continued)

S. No. Year and

Author

Abstract Result Datasets Limitations Merits

8 Ramnath,

et al. [8]

Approach:

uploading photo

to a cloud service

and running

parallel modules

to generate

captions

Of 2385 ratings,

49.6% were very

good

Personal

photos

1. Few recognition

capabilities

Keyword

based search

for personal

photos

9 Sivakrishna

Reddy, et

al. [9]

Features: SIFT.

Annotations:

clustering

No comparative

results mentioned

Not mentioned Not generating

new captions

Reusing

existing

caption

10 Shivdikar

et al. [10]

Approach:

combination of

feature detection

algorithms,

context-free

grammar

F1 Score: 94.33%

BLEU: 0.75

Flickr8K

Flickr30K

COCO SBU

1. Changing nature

of output by single

layer learning

2. Smaller n-grams

Forms the

base for

increasingly

complex and

accurate

neural network

algorithms

11 Mathews

[11]

Predicting

human-like names

for visual objects

Sentences

expressing a

strong

positive/negative

sentiment

Among the 2633

visual concepts

the method

improves upon the

Most frequent

name baseline for

1222 concepts

ImageNet Accuracy not good

for ambiguous

names

Introducing

style is good

for generating

customized

caption

12 Mathews

et al. [12]

Predicting

basic-level names

using a series of

classification and

ranking tasks

Precision: 34.7% ImageNet-

Flickr

Only

picture-to-word, no

captions

Naming visual

concepts is

important part

of automatic

image

captioning

13 Plummer

et al. [13]

Coreference

chains. Manually

annotated

bounding boxes

Recall: 76.4% Flickr30k 1. No attempt to

match regions in a

query image and

phrases in a

candidate

matching sentence

2. Does not care

about the nature of

the auxiliary data

Technique

helps to

localize

entities in an

image which is

helpful for

continued

progress in

image

captioning

14 Vijay and

Ramya [14]

Create captions

for news images

No comparative

results mentioned

News articles No auxiliary

information used

Easy

understanding

of news

articles

15 Shahaf et

al. [15]

Influence of the

language of

cartoon captions

on the perceived

humorousness of

the cartoons

The classifier

picked funnier of

the two captions

64% of the time

Crowdsourced

cartoon

captions

1. Brief context

and anomaly

analysis

2. Ignored visual

concept of cartoons

3. Cannot identify

weaknesses of

captions

Opens scope

for caption

understanding

16 Li et al.

[16]

Generate Chinese

sentence

descriptions for

unlabeled images

Machine

translated neural

image captioning

is more suited for

Chinese

captioning

Flickr8K Not much

improvement

observed

Expanding the

scope to

languages can

help build the

system for

people from

different

linguistic

backgrounds

(continued)
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Table 1. (continued)

S. No. Year and

Author

Abstract Result Datasets Limitations Merits

17 Jin and

Nakayama

[17]

Approach: forms

image annotation

task as a sequence

generation problem

predict proper

length of tags

Precision: 36%

Recall: 37%

F1: 34% N+: 267

Corel 5K, ESP

Game, IAPR

TC12

Nave approach to

decide order

Order of tags

in training

phase has a

great impact

on the final

annotation

performance

18 Shi and

Zou [18]

Fully convolutional

networks

Precision: 95.3%

Recall: 94.1%

Google Earth,

GaoFen-2

1. Different

geographical levels

are not considered

2. Lesser ground

features

Expansion of

scope to

remote sensing

images

19 Shetty et

al. [19]

Approach:

augment CNN

features with scene

context features

CIDEr Score:

0.954

MSCOCO 1. Fails to learn

relationship

between object

and image

2. Cannot count

objects properly

3. Vocabulary size

is small

Employing

scene analysis

gives better

information

about the

image

20 Li et al.

[20]

Scene oriented

CNN

BLEU: 0.68

METEOR: 22.8

MSCOCO Scope for

sentiment addition

to captions

Including

scene

information

21 Wang et

al. [21]

Deep CNN

Approach: use of

history and future

context

information Data

augmentation

techniques:

multi-crop,

multi-scale,

vertical mirror

BLEU: 0.67

METEOR: 19.5

CIDEr: 66.0

Flickr8K

Flickr30K

MSCOCO

Less focus on

language

representation

Focus on

language

representation

to generate

better caption

22 Liu et al.

[22]

Approach:

formulate image

captioning as a

multimodal

translation task,

Represent the

input image as a

sequence of

detected objects

No comparative

results mentioned

Not mentioned No detailed

methods

mentioned

High-level

features enrich

the visual part

23 Blandfort

et al. [23]

Approach: deep

convolutional

neural network for

detecting adjective

noun pairs

graphical network.

Architecture:

concept and

Syntax Transition

Network

31.5% of the

captions generated

were reported as

more human-like

in comparison to

the original

caption. In 62.5%

of images atleast

one subject chose

their caption over

the original one

YFCC100M 1. Grammar is

given less

weightage.

2. Considering

concept scores

only for

thresholding not

for ranking

3. Generation of

similar sentences

4. Scope for

network

optimization

Includes

sentiment

factor

24 Tariq and

Foroosh

[24]

Approach: extract

contextual cues

from available

sources of different

data modalities

and transforms

them into a

probability space

METEOR: 0.053

TER: 1.75

TIME

magazine

Only annotations

no captions

Importance of

weighted

auxiliary

information



82 G. Srivastava and R. Srivastava

4 Issues and Challenges

A number of open research issues and challenges have been identified in this
field. A few of them are listed below:

1. Large collections of digital images exist without annotations.
2. The quality and quantity of training set becomes an important factor in

determining the quality of captions that are generated.
3. Images with low resolution, low contrast complex background and texts with

multiple orientation, style, color and alignment increase the complexity of
image understanding.

4. The training set must include as much variety as possible.
5. Searching the optimal method for each of them is very expensive and it has

a major effect on the performance of the overall system.
6. Capturing sentiments in the captions is a major challenge as not many

datasets are available that include sentiment based annotations.
7. Few datasets are available that provide captions in different languages and

moreover machine translation results are not always relevant.

5 Conclusion and Future Work

Automatic image captioning is an emerging area in the field of artificial intelli-
gence and computer vision. The area has real life applications in various fields.
It is an ensemble of various modules which opens a lot of area for exploration.
Better captions can be generated with proper segmentation. Enhanced descrip-
tions can be made using sentiment addition, activity recognition, background
identification and scene analysis. Moreover the areas of deep learning for faster
and accurate results can also be explored further. If the hardware resource cost
is a limitation, traditional machine learning algorithms can also be investigated
for the purpose.
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Abstract. In content based image retrieval (CBIR) process, every
image has been represented in a compact set of local visual features i.e.
color, texture, and/or shape of images. This set of local visual features is
known as feature vector. In the CBIR process, feature vectors of images
have been used to represent or to identify similar images in adequate
way. As a result, feature vector construction has always been considered
as an important issue since it must reflect proper image semantics using
minimal amount of data. The proposed CBIR scheme is based on the
combination of color and texture features. In this work initially, we have
converted the given RGB image into HSV color image. Subsequently,
we have considered H (hue), S (saturation), and V (intensity) compo-
nents for extraction of visual image features. The texture features have
been extracted from the V component of the image using 2D dual-tree
complex wavelet transform (2D DT-CWT) where it analyzes the tex-
tural patterns in six different directions i.e. ±15◦, ±45◦, and ±75◦. At
the same time, we have computed the probability histograms of H and S
components of the image respectively and subsequently those are divided
into non-uniform bins based on cumulative probability for extraction of
color based features. So, in this work both the color and texture fea-
tures have been extracted simultaneously. Finally, the obtained features
have been concatenated to attain the final feature vector and same is
considered in image retrieval process. We have tested the novelty and
performance of the proposed work in two Corel, two objects, and, a
texture image datasets. The experimental results reveal the acceptable
retrieval performances for different types of datasets.

Keywords: Content-based image retrieval
Dual-tree complex wavelet transform · Color and texture features
Probability histogram

1 Introduction

1.1 Background

In the present digital era, a radical expansion has been observed in the field of
digital and Internet technology. As a result, the uses of digital communication
c© Springer Nature Singapore Pte Ltd. 2018
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and Internet applications have been exponentially increasing steadily. People
are exceedingly getting addicted with the Internet applications and spending
more time on the web. Consequently, Internet traffic and digital data on web
repositories are also escalating exponentially. In these web repositories, a huge
chunk of digital data is in form of image. Handling of these gigantic web reposi-
tories by human annotation process is considered as an impractical task and at
the same time, retrieval of images from these web repositories has become even
more difficult. Since, these particular images are not significantly described by
human annotation process. Hence, an effective image retrieval scheme is directly
associated with construction of salient visual features. In literature, three types
of image retrieval schemes have been introduced by contemporary researchers.
These three image retrieval schemes are text-based image retrieval (TBIR) [1],
content-based image retrieval (CBIR) [2], and semantic-based image retrieval
(SBIR) [3]. In TBIR, meta-data (i.e. location name, file name, keywords, tags,
etc.) associated with the images are used for the retrieval purpose. Since these
meta-data does not represent any actual image information, it is impractical
to use them to represent any image. As a result, image retrieval by TBIR sys-
tems usually includes lots of junk images. To overcome limitations of TBIR,
researchers have introduced a CBIR system [4–6] which works on salient visual
contents of the image i.e. shape, texture, and/or color features which are also
referred as low-level image features. These actual image features have been
represented in a single feature set known as feature vector in image retrieval.
Researchers have used shape, texture, and color features alone as well as in
different combinations for CBIR applications.

1.2 Literature Review

In past two decades, many CBIR systems have already been introduced based
on primitive low-level or combination of low-level image features. In 2008, Chun
et al. [4] have proposed a CBIR system in which they have combined the multi-
resolution texture and color features together. They have used color autocor-
relograms for color features and BDIP and BVLC techniques for texture fea-
ture extraction. They have applied wavelet to achieve multi-resolution images
and extracted color and texture features form each resolution. Later, they have
merged all features for retrieving images. In 2009, Lin et al. [6] have introduced
a smart CBIR system which works on three different image features. They have
used difference between pixels of scan pattern (DBPSP) and color co-occurrence
matrix (CCM) to achieve texture and color features simultaneously. Further,
they have also used color histogram for K-mean (CHKM) to extract third image
feature based on the distribution of color values. Finally, they have used the
different combinations of these three image features for CBIR process. In 2010,
Feng et al. [5] have combined the visual attention model with CBIR process to
approximate the users perception. They have also used relevance feedback app-
roach to estimate the high-level semantics of the image. They have used visual
attention model to extract prominent edges from the image for shape feature
extraction. Further, they have used salient region adjacency graphs along with
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edge histogram descriptors based feature extraction approach for CBIR applica-
tion. In 2011, Yue et al. [7] have used color and texture image features for image
retrieval. They have used texture co-occurrence matrix along with the color his-
togram to create a feature vector for CBIR application. Yue et al. have shown
that the combination of different features works better for image retrieval. In
2012, Youssef [8] have used integrated discrete curvelets for CBIR application.
They have proposed a new sub-band clustering technique based on region vec-
tor codebook for color feature extraction from color histogram. Subsequently,
they have used the most similar highest priority (MSHP) principal based image
matching approach for CBIR process. In 2013, Subrahmanyam et al. [9] have
introduced modified color motif co-occurrence matrix (MCMCM) for CBIR pro-
cess. Here, MCMCM extracts the pixel wise inert-correlation of different color
components of an RGB image. They have integrated the DBPSP approach with
the proposed MCMCM technique for better feature extraction for CBIR pro-
cess. In 2014, ElAlami [10] has introduced a new image matching technique for
CBIR application. He has used DBPSP along with CCM to extract texture and
color features simultaneously. Subsequently, he has reduced the feature set by a
dimension reduction approach. Later, he has applied artificial neural network for
classification and calculated the minimum area between two vectors to compute
the distance for CBIR process. In 2015, Guo and Prasetyo [11] have introduced
halftoning and truncation coding based CBIR approach. They have used ordered-
dither block truncation coding (ODBTC) technique for image compression and
extracted bit pattern features (BPF) and color co-occurrence feature (CCF) for
CBIR. In 2016, Varish et al. [12] have used color and texture features in hier-
archical way to filter out the irrelevant images. They have used different visual
features in each level of the hierarchy for image filtration and retrieval from the
database. In 2017, Cui et al. [13] have introduced a hybrid learning technique
based on textual and visual information. They have used this hybrid learning
approach to extract the textual meta-data of the image and combined it with
the visual information for CBIR application.

Another image retrieval approach is SBIR which works on high level image
information. SBIR does not use the low-level image features as like CBIR, it
works on the overall semantic perception of the image. Object detection and
recognition, image classification, semantic templates, bag-of-visual-words, image
semantic tag assignment [3,14] is some fundamental techniques used in SBIR.
SBIR approach needs high pre-processing cost, storage space and CPU time.
These are the main limitations of SBIR approaches.

1.3 Major Contribution

In this paper, we have proposed a novel CBIR scheme which works on color
and texture visual image features. In this work, we have converted the RGB
image into HSV image because in RGB image, color components are highly
correlated as a result color chromatic information gets lost. We have used 2D
dual-tree complex wavelet transform (2D DT-CWT) for texture analysis in V
(intensity) component of the image. Simultaneously, we have created normalized
histograms of H (hue) and S (saturation) components of the image. Later, we
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have computed the probability histograms of the H and S components. Further,
we have divided it into 10 non-uniform bins according to the cumulative probabil-
ity model. Finally, we have combined all visual image features for CBIR process.

1.4 Paper Organization

The Sect. 1 gives the brief introduction about CBIR and current state-of-arts in
CBIR. In Sect. 2, we have explained 2D dual-tree complex wavelet transform.
The proposed CBIR scheme has been explained in Sect. 3. In Sect. 4, we have
presented the retrieval results and furnished the performance comparisons with
related CBIR schemes. At last, Sect. 5 shows the conclusions and future works.

2 Dual-Tree Complex Wavelet Transforms (DT-CWT)

Gabor filters and discrete wavelet transform are the most commonly used tech-
niques for texture analysis but these techniques have some serious disadvantages.
Gabor filters takes more time to extract texture features and also these are not
orthogonal. Similarly, DWT analyzes textural patterns with less number of direc-
tions (i.e. 0◦, 45◦, and 90◦) and also it is not shift invariant. DT-CWT [12] over-
comes all the above problems of Gabor filter and DWT. The DT-CWT works
in similar way like DWT but it generates two different trees of DWT. Both
DWT trees are real with a low-pass and high-pass filters. Both DWT trees ana-
lyze the textural patterns parallelly where, first one is considered as real part
whereas second one is considered as complex part of DT-CWT. In this manner
DT-CWT uses two real DWT with 4 filters to produce real and imaginary parts
of the transform. The 2D DT-CWT analyzes the textural patterns on six dif-
ferent directions by producing wavelets in ±15◦, ±45◦, and ±75◦ for real and
imaginary parts.

Let I(x, y) is an image and 2D DT-CWT decomposes this image by applying
six complex wavelets along with a complex scale function. Let, h is high-pass
and low-pass filter set of real parts and g is the high-pass and low-pass filter
set of imaginary parts of 2D DT-CWT. Here h1 and g1 are high-pass filter sets.
Similarly, h2 and g2 are low-pass filter sets. Based on these assumptions, the
complex wavelet function of 2D DT-CWT is defined as:

f(x, y) = f(x) × f(y) (1)

f(t) = fh(t) + j × fg(t), Such that t = x or y (2)

where, fh(t) and fg(t) are real and imaginary parts of 2D DT-CWT. So, the
complex wavelet function can be expanded as follows:

f(x, y) = {fh(x) + j × fg(x)}{fh(y) + j × fg(y)} (3)

f(x, y) = {fh(x)fh(y) − fg(x)fg(y)} + j × {fh(x)fg(y) + fg(x)fh(y)} (4)

where, Real(f(x, y)) = {fh(x)fh(y) − fg(x)fg(y)} and Imaginary(f(x, y)) =
{fh(x)fg(y) + fg(x)fh(y)}.
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Fig. 1. Six impulse responses of real and imaginary parts of 2D DT-CWT

Figure 1 shows the six directional (i.e. ±15◦, ±45◦, and ±75◦) impulse
responses produced by the real and imaginary parts of the dual-tree complex
wavelet function. Figure 2 shows the filter arrangement diagram of 2D DT-CWT
up to 3 levels of decompositions.

Fig. 2. Filter arrangement in 2D DT-CWT for 3 levels of decompositions

3 Proposed CBIR Scheme

In this section, proposed CBIR scheme has been explained in detail. Our pro-
posed scheme works in two different stages where in first stage we have extracted
the texture and color visual image features simultaneously. In second stage,
image retrieval has been performed. In feature extraction stage, first we have
converted the RGB image into HSV image. Subsequently, we have applied 2D
DT-CWT up to n levels of decomposition on value (V) components. Here, we
have used n = 3 for the retrieval experiments and each level of 2D DT-CWT pro-
duces 4 approximated coefficients, 2 form real parts and 2 from imaginary parts.
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Along with approximated images, it also generates six directional wavelets (i.e.
±15◦, ±45◦, and ±75◦) from real parts and six directional wavelets (i.e. ±15◦,
±45◦, and ±75◦) from imaginary parts. Further, we have calculated statisti-
cal parameters from all wavelet coefficients of each level of decomposition and
approximated coefficients of final level of decomposition. Simultaneously, we have
calculated normalized histograms of hue (H) and saturation (S) components of
the image. Further, we have calculated probability histograms and divided it
into m non-uniform bins and in experiments we have used m = 10. Later, we
have extracted statistical parameters from each bin of the histogram. Finally,
all features have been combined together for CBIR process. Figure 3 shows the
schematic block diagram of the proposed CBIR scheme. Further, Algorithms 1,
2, and 3 explains the detailed steps of CBIR process.

Algorithm 1 takes an RGB image and converts it into HSV image. Further,
2D DT-CWT has been employed on the V component of the image since it
contains most of the textural visual features. The 2D DT-CWT will extract the

Fig. 3. Schematic block diagram of the proposed CBIR scheme
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Algorithm 1. Texture Feature Extraction Algorithm (TFEA).
Input: An RGB color image.
Output: Final set of texture visual image features.
1: Take an RGB colored image as an input from user.
2: Convert RGB image to HSV color image.
3: Select value (V) components from the HSV color image.
4: Apply 2D DT-CWT on V component for 3 levels of decomposition.
5: Calculate mean and standard deviation statistical parameters of all detailed

coefficients of all decomposition levels and approximate coefficients from last
decomposition level.

6: Store all calculated statistical features in a form of texture feature vector.

Algorithm 2. Color Feature Extraction Algorithm (CFEA).
Input: An RGB colored image.
Output: Final set of color visual image features.
1: Take an RGB colored image as an input from user.
2: Convert RGB image to HSV color-space image.
3: Select hue (H) and saturation (S) components from the HSV color-space

image.
4: Create normalized histograms of H and S components.
5: Calculated probability histograms of both H ans S histograms as follows:

Phk(i) =
Hgk(i)∑n
j=1 Hgk(j)

(5)

where, i represents the ith component of a histogram, Phk represents the
probability histogram of kth image, Hgk represents the histogram of kth

image and n is the total count of coefficients.
6: Divide the probability histograms into m non-uniform groups where the

cumulative probability of each group must be ≤ 1
m .

7: Calculate standard deviation, skewness, and kurtosis statistical parameters
from all bins.

8: Store all calculated statistical features in a form of color feature vector.

textural features from six different directions. Simultaneously, in Algorithm2 H
and S components have been used to generated color histograms. Further, both
these color histograms have been converted into probability histogram to reduce
the feature dimension. Statistical color features have been extracted from the m
non-uniform beans of the probability histograms. Final feature vector combines
both the texture ans color features for CBIR process. Finally, Algorithm3, have
been used to extract the similar images from the image dataset.
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Algorithm 3. Content-Based Image Retrieval Algorithm (CBIRA).
Input: An RGB color image.
Output: Retrieved set of similar images.
1: Take an RGB color image as an input from user.
2: Extract texture and color visual features using algorithms TFEA and CFEA.
3: Combine the normalized texture and color features in a form of single feature

vector.
4: Select an image dataset with n numbers of images and extract texture and

color features for all images using algorithms TFEA and CFEA.
5: Combine the normalized texture and color features of each dataset image in

a form of single feature vector.
6: Create a feature space which congregate the feature vectors of all dataset

images with same index value as in dataset.
7: Compute the Euclidean distance in between query feature vector and feature

space feature vectors.
8: Retrieve first k (where k ≤ n) images from dataset having minimum distance

values.

4 Results and Performance Analysis

In this section, we have presented the retrieval results of the proposed CBIR
scheme in terms of precision, recall, and f-score which are defined as follows:

µP (%) =
RI

RI + NI
× 100 (6)

µR(%) =
RI

RI + DI
× 100 (7)

µFs(%) =
2 × µP × µR

µP + µR
× 100 (8)

Here, µP is the precision, µR is the recall, and µFs is the f-score. RI is similar
image in retrieved image set and NI is the dissimilar image in the retrieved
image set. DI is the similar image present in dataset other than RI. Later, we
have used five different image datasets to check the retrieval performance of
the proposed CBIR scheme. In these five datasets, first two are natural image
datasets i.e. Corel-1000 [12] and GHIM-10K [12]. The next two image datasets
are object image datasets i.e. COIL-100 [15] and Produce-1400 [16]. The fifth
dataset is a texture image dataset which is Outex [17]. Table 1 gives the brief
description about all five datasets. Later, sub-section explains the feature vec-
tor length calculation. Sub-section shows the time performance of the proposed
CBIR. Sub-section shows the retrieval performance. Finally, sub-section shows
the performance comparisons.
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Table 1. Brief description of all five image datasets used in retrieval experiment

Image
dataset

Nature of
dataset

No. of
classes

Total no.
of images

No. of images
in each class

Corel-1000 Corel 10 1000 100
GHIM-10K Corel 20 10000 500
COIL-100 Object 100 7200 72
Produce-1400 Object 14 1400 100
Outex Texture 24 4320 180

4.1 Feature Vector Analysis

In this work, we have used 2D DT-CWT with 3 levels of decompositions for
texture analysis where we have used it in value (V) components. In 2D DT-
CWT, each level produces two approximate images with real and imaginary
coefficients for further decomposition. So, in total it generates four approximate
coefficients in each level of decomposition. Along with approximate coefficients,
it also produces six real and six imaginary wavelet coefficients. Here, we have
selected all wavelets coefficients of all 3 levels with 4 approximated coefficients of
third level. Further, we have calculated mean and standard deviation from each
coefficient. Hence, texture feature vector is having 80 feature elements (i.e. 3
levels × 12 wavelet coefficients × 2 parameters + 4 approximated coefficients ×
2 parameters = 80 elements). At the same time, we have calculated 3 statistical
parameters from each bin of hue and saturation probability histograms. Hence,
number of elements in color feature vector is 60 (i.e. 2 histograms × 10 bins
× 3 parameters = 60 elements). As a result, final feature is having 140 feature
elements (i.e. 80 texture elements + 60 color elements = 140 elements).

4.2 Time Performance Analysis

Here, we have presented the time performance analysis in terms of CPU time
required by any process. In this proposed CBIR scheme, there are 4 different
types of processes which are texture feature extraction, color feature extraction,

Table 2. CPU time (in seconds) analysis for different process of proposed CBIR scheme

Image
dataset

Texture feature
extraction

Color feature
extraction

Feature
fusion

Image
retrieval

Corel-1000 0.099 s 0.035 s 0.010 s 0.092 s
GHIM-10K 0.106 s 0.037 s 0.010 s 0.412 s
COIL-100 0.065 s 0.026 s 0.010 s 0.305 s
Produce-1400 0.512 s 0.157 s 0.010 s 0.104 s
Outex 0.064 s 0.025 s 0.010 s 0.215 s
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feature fusion, and image retrieval. Table 2 shows the average CPU time taken
by each process of CBIR while performing image retrieval from all 5 datasets.

4.3 Retrieval Performance Analysis

In this sub-section, we have presented the retrieval performance of the proposed
CBIR scheme for top 10 and top 20 retrieved images in terms of precision (µP ),
recall (µR), and f-score (µFs). We have retrieved these images from five differ-
ent image datasets. Table 3 gives the retrieval performance in terms of average
precision, recall and f-score for all five datasets for top 10 and top 20 retrieved
images. In this table, we can see that all retrieval precisions are above 75%. This
shows that, the proposed method is performing well for different types of images.
Later, Fig. 4(i) to (iv) shows the precision graph of all five image datasets for top

Table 3. Overall average performance of proposed CBIR for top 10 and top 20 retrieved
images from all five image datasets

Image dataset µP (%) µR(%) µFs(%)
Top 10 Top 20 Top 10 Top 20 Top 10 Top 20

Corel-1000 87.67 81.50 8.77 16.30 15.94 27.17
GHIM-10K 87.00 76.10 1.74 3.05 3.41 5.85
COIL-100 93.18 81.08 12.94 22.52 22.73 35.25
Produce-1400 91.19 78.69 9.12 15.74 16.58 26.23
Outex 95.94 87.79 5.33 9.75 10.10 17.56

Fig. 4. Precision graph of (i) Corel-1000 (ii) GHIM-10K (iii) Produce-1400 (iv) Outex
datasets for top 10 and top 20 retrieved images
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10 and top 20 retrieved images. These all precision graphs show the group wise
average precisions values. In all these graphs, we can see that most of the nodes
are showing above 75% precision value so these are acceptable results. Since
Coil-100 has 100 different image groups so we have not presented the precision
graph for Coil-100.

4.4 Performance Comparison

In this paper, we have used 3 standard state-of-arts CBIR scheme to com-
pare with our proposed CBIR scheme. These schemes have been introduced
by ElAlami [10], Guo and Prasetyo [11], and Zeng et al. [18]. In Table 4, we
have demonstrated the comparison of our anticipated CBIR scheme with these
three other standard schemes. Table 4 shows the comparison for top 20 retrieved
images in terms of average precision, recall, and f-score from Corel-1000 dataset.
In this table we can see that, our anticipated CBIR scheme has shown better per-
formance with respect to other three schemes. Later, Fig. 5 shows the category

Table 4. Comparison in terms of average precision, recall, and f-score for top 20
retrieved images from Corel-1000 dataset

Image retrieval methods Corel-1000
µP (%) µR(%) µFs(%)

ElAlami 76.10 16.10 25.90
Guo and Prasetyo 77.90 15.58 26.85
Zeng et al. 80.57 16.11 25.96
Proposed method 81.50 16.30 27.17

Fig. 5. Performance comparison in terms of precision for top 20 retrieved images from
Corel-1000 dataset (Color figure online)
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wise comparisons for top 20 retrieved images from Corel-1000 dataset. In Fig. 5,
we can see that the blue line represents the proposed CBIR scheme and it has
shown maximum high peaks. From Fig. 5, it has been clear that our proposed
CBIR scheme is performing better for most of the cases as compare to other
three schemes.

5 Conclusions

In RGB color space all color components shows high inter-correlations and due
to which chromatic information of the image gets distorted. Hence, HSV color-
space is better option for feature visual extraction. So in this work, the authors
have presented a novel CBIR scheme which extracts texture and color visual
image features simultaneously from HSV color image rather than considering
RGB color-space. Here, we have applied 2D DT-CWT on value (V) components
with 3 levels of decompositions because, it is shift invariant and it analyzes
textures in six directions. Further, we have picked all six directional wavelet
coefficients from real and imaginary part from each level of decomposition. We
have also picked 4 approximated coefficients from third level of decompositions.
Later, statistical parameters have been computed to preserve the texture fea-
tures. Simultaneously, we have computed the probability histograms of hue (H)
and saturation (S) components and we have divided these histograms into m
non-uniform bins. Here, the bin division is based on the cumulative probability
approach such that each bin will have approximately same number of pixel. As
a result, color property of the image will get evenly distributed among all bins.
Finally, the resultant feature vector contains better low-level visual color and
texture features. We have also performed comparisons between our anticipated
CBIR and other schemes in which our scheme has shown better performance.
We have tested the robustness of our anticipated CBIR scheme by performing
image retrieval form 5 different image datasets. The retrieval results validate the
novelty and robustness of the proposed CBIR scheme with respect to different
standard image datasets.
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Abstract. The paper deals with all pairs approximate parameterized
string matching problem with error threshold k, among two sets of
equal length strings. Let P = {p1, p2, . . . , pnP } ⊆ Σm

P and T =
{t1, t2, . . . , tnT } ⊆ Σm

T be two sets of strings where |ΣP | = |ΣT |. For
each pi ∈ P , the problem is to find tj ∈ T which is approximately param-
eterized closest to pi under the threshold. The solution has complexity
O(nP nT m). We introduce Parikh vector filtering technique in order to
preprocess the given strings and avoid the unwanted paired compar-
isons. The PV-filtering does not change the asymptotic time complexity
but rapidly improves running time for small error threshold as shown by
experiments.
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1 Introduction

The problem of searching a given string in a text has a wide range of applications
such as in text-editing programs, search engines and searching for patterns in
a DNA sequence. There are non-indexed and indexed versions of this problem.
In the indexed version, it is allowed to preprocess the string (pattern or text)
before searching for the pattern in the text. The motivation of preprocessing is
to improve the efficiency of the search. The standard variations of string match-
ing problems are exact string matching [7,14], parameterized string matching
[3–5], approximate string matching [23] and approximate parameterized string
matching [8,26].
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The Approximate Parameterized String Matching (APSM) problem is a
well studied problem [1,2,13,19,21,25]. In [19], Hazay et al. have given reduc-
tion between the maximum weighted bipartite matching problem [12,15–17,20]
and APSM problem for two equal length strings. They have used the maxi-
mum weighted bipartite (decomposition) algorithm, originally proposed by Kao
et al. [20], to solve the APSM problem between two equal length strings p ∈ Σ∗

P

and t ∈ Σ∗
T in time O(m1.5), where |p| = |t| = m.

In this paper, we investigate All Pairs (best) Approximate Parameterized
String Matching (APAPSM) problem with error threshold k (with respect to
Hamming distance error model) among two sets of equal length strings. Let
P = {p1, p2, . . . , pnP

} ⊆ Σm
P and T = {t1, t2, . . . , tnT

} ⊆ Σm
T be two sets of

strings where 1 ≤ i ≤ nP , 1 ≤ j ≤ nT and |ΣP | = |ΣT | = σ. The APAPSM
problem is to find: for each pi ∈ P , a string tj ∈ T which is approximately
parameterized closest to pi under k threshold.

Section 2 describes the required preliminaries to understand the APAPSM
problem which is explained in detail in the next section. In Sect. 3, we discuss
a solution to the APAPSM problem with worst-case complexity O(nP nT m),
assuming a constant size alphabet. Next, we design a filtering technique by
using Parikh vector [24] in order to preprocess the given strings and reduce the
number of pair comparisons for solving APSM between the pair of strings with k
error threshold. We call it PV-filter. Even though the filter does not improve the
asymptotic bound theoretically, practical results in Sect. 4 show that it performs
well for small error threshold. Finally, Sect. 5 summarizes the results.

2 Preliminaries and Related Results

We use some basic notions throughout the paper. An alphabet is a non-empty
finite set of symbols. A string over a given alphabet is a finite sequence of sym-
bols. We denote Σ∗ as the set of all finite-length strings over alphabet Σ. The
empty string is denoted by ε. The length of any string w is the total number of
symbols in w and is denoted by |w|; so |ε| = 0. Let Σ+ = Σ∗ \ {ε} and for a
given m ∈ N0, Σm is the set of all strings of length m over the alphabet Σ [26].

Let w = xyz be a string where x, y, z ∈ Σ∗. We call y as a substring of string
w. If x = ε then y is a prefix of w. If z = ε then y is a suffix of w. The i-th symbol
of a string w is denoted by w[i] for 1 ≤ i ≤ |w|. We denote substring y of string
w as w[i..j] if y starts at position i and ends at position j for 1 ≤ i ≤ j ≤ |w|,
and string w[i..j] = ε if i > j [26]. Let N0 be the set of non-negative integers.

Approximate String Matching (ASM): ASM problem considers the string
matching problem with errors. It is an important problem in many branches
of computer science, with several applications to text searching, computational
biology, pattern recognition, signal processing etc. [9,23,26].

Let d: Σ∗ × Σ∗ → N0 be the distance function. The distance d(x, y) between
two strings x = x[1..n] ∈ Σ∗ and y = y[1..m] ∈ Σ∗ is the minimal cost of a
sequence of operations that transform x into y (and ∞ if no such sequence exists).
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The cost of a sequence of operations is the sum of the costs of the individual
operations. In general, the set of possible operations are insertion, deletion, sub-
stitution or replacement and transposition [23]. Therefore under the distance
measure, the ASM problem becomes minimizing the total cost to transform the
pattern and its occurrence in a text to make them equal and find the text
positions where this cost is low enough. Some of the most classical distance
metrics are Levenshtein distance [22], Damerau distance [10] and Hamming dis-
tance [18]. Hamming Distance (HD), denoted as dH , allows only replacements.
It is restricted to equal length strings. In the literature, the search problem in
many cases is called “string matching with mismatches” [23,26].

Since in this paper, the APAPSM problem is considered under HD, the fol-
lowing definitions are considered using HD applied to equal length strings. From
now onwards we assume that d = dH , for notational simplicity. Given an error
threshold k ∈ N0, a pair of strings u ∈ Σ∗

u and v ∈ Σ∗
v where m = |u| = |v|, con-

sider the following definitions. Without loss of generality, we presume both the
alphabet sizes are equal when dealing with a bijection between the alphabets.

Parameterized String Matching (PSM): String u = u[1..m] is said to be
a parameterized match or p-match with v (denoted as u =̂ v) if there exists a
bijection π: Σu → Σv such that π(u) = π(u[1])π(u[2]) . . . π(u[m]) = v [3].

Approximate Parameterized String Matching (Without Error Thresh-
old): Given a bijection π: Σu → Σv, the π-mismatch between u and v is the HD
between the image of u under π and v, i.e., d(π(u), v) [19]. We denote this by
π-mismatch(u, v). Note that, there is an exponential number of possible bijec-
tions from Σu to Σv. Also, such π for which d(π(u), v) is minimum, may not be
unique.

The Approximate Parameterized String Matching (APSM) between u and v
is to find a π such that over all bijections π-mismatch(u, v) is minimized. We
denote this by APSM(u, v). Formally, APSM(u, v) = {π | d(π(u), v) is minimum
over all π}. We define the cost of APSM(u, v) as cost(APSM(u, v)) = d(π(u), v)
where π ∈ APSM(u, v).

Parameterized String Matching (PSM) with k Mismatches: PSM with k
mismatch seeks to find a bijection π: Σu → Σv such that the π-mismatch(u, v) ≤
k. We then say that u parameterized matches v with k threshold. In literature,
this problem is also known as string comparison problem with threshold k [19].
However, any π with π-mismatch(u, v) ≤ k will be satisfactory in this case (i.e.,
π-mismatch(u, v) need not be the minimum one over all π: Σu → Σv).

Both the above problems were solved in O(m1.5) time [19] by reducing them
to maximum weight bipartite matching problem and using Kao et al.’s algo-
rithm [20]. Let us define APSM problem with k error threshold as follows.
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Approximate Parameterized String Matching with k Error Threshold:
APSM with k error threshold, denoted as APSM(u, v, k), seeks to find a π: Σu →
Σv (over all bijections) such that d(π(u), v) is minimum but not greater than k
[19]. More formally, APSM(u, v, k) = {π | π ∈ APSM(u, v) ∧ d(π(u), v) ≤ k}.
We define cost of APSM(u, v, k) as cost(APSM(u, v, k)) = d(π(u), v), where
π ∈ APSM(u, v, k). In case, APSM(u, v, k) = ∅, then cost(APSM(u, v, k)) = ∞.

Example 1 in page 4 shows the difference between the above definitions.

3 All Pairs Approximate Parameterized String Matching

In this section, we investigate all pairs (best) approximate parameterized string
matching (APAPSM) problem with k error threshold (with respect to Hamming
distance error model) among the two sets P and T of equal length strings. The
problem definition is the following along with the other required definitions1.

Definition 1 (Pair Approximate Parameterized String Matching
(PAPSM) with Error Threshold k). Given a string p ∈ Σm

P and T =
{t1, t2, . . . , tnT

} ⊆ Σm
T , where |ΣP | = |ΣT | = σ and 0 ≤ k ≤ m. The PAPSM

problem with k error threshold is to find j such that APSM(p, tj , k) gives πj over
all bijections and d(πj(p), tj) is minimum over all j where 1 ≤ j ≤ nT .

Denote this problem as PAPSM(p, T, k). In more formal notation, PAPSM
(p, T, k) = {j | πj ∈ APSM(p, tj , k) ∧ d(πj(p), tj) = min1≤i≤nT

{cost(APSM
(p, ti, k))}}. In other words, the problem is to find tj ∈ T which is approximately
parameterized closest to p with k error threshold. We call d(πj(p), tj) as the
cost of PAPSM(p, T, k) and let us denote this by cost(PAPSM(p, T, k)). In case,
PAPSM(p, T, k) = ∅, then cost(PAPSM(p, T, k)) = ∞.

Example 1. Given p = abab ∈ Σ4
P = {a, b}4, T = {t1 = cdcd, t2 = dcdc, t3 =

ccdd, t4 = cccd} ⊆ Σ4
T = {c, d}4 and k = 1. Now,

APSM(p, t1, k) = {π1 = {a → c, b → d}}, d(π1(p), t1)) = 0;
APSM(p, t2, k) = {π2 = {a → d, b → c}}, d(π2(p), t2)) = 0;
APSM(p, t3, k) = ∅;
APSM(p, t4, k) = {π4 = {a → c, b → d}}, d(π4(p), t4)) = 1.

Observe that, π3 = {a → c, b → d} ∈ APSM(p, t3) but d(π3(p), t3)) = 2 > k.
So, APSM(p, t3, 1) = ∅. Hence, PAPSM(p, T, 1) = {1, 2}. Also note that, if k = 3,
then for π′

4 = {a → d, b → c}, π′
4-mismatch(p, t4) ≤ k. Hence just finding π′

4

is also satisfactory to say that p is parameterized matched with t4 under k = 3
error threshold; whereas APSM(p, t4, 3) = {π4} and π′

4 /∈ APSM(p, t4, 3) . 	


1 These definitions can also be extended with respect to other error models.
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Note that it is sufficient to report a string from T which is closest to p
under a given error threshold k. Also, it is possible to enumerate all ti ∈ T
which are closest to p. Observe that, if PAPSM(p, T, k) = {i, j} corresponding
to the strings ti and tj , then cost(PAPSM(p, T, k)) ≤ k and more importantly,
cost(PAPSM(p, T, k)) = d(πi(p), ti) = d(πj(p), tj).

Theorem 1. Given p ∈ Σm
P and T = {t1, t2} ⊆ Σm

T . If p is an approximate
parameterized matched with t1 and t1 =̂ t2, then p is also approximate parame-
terized matched with t2 and its cost equal to cost(APSM(p, t1)).

Proof. The proof consists of two phases. Since p is approximate parameterized
matched with t1 (without any error threshold), then say π1 ∈ APSM(p, t1). As a
consequence, cost(APSM(p, t1)) = d(π1(p), t1) and moreover it is minimum over
all bijections from ΣP to ΣT . Also, since t1 =̂ t2, there exist a bijection, say
π: ΣT → ΣT such that π(t1) = t2 and so cost(APSM(t1, t2)) = d(π(t1), t2) = 0.

Let π2 = π ◦ π1: ΣP → ΣT and is defined as π ◦ π1(u) = π(π1(u)) where
u ∈ Σm

P . It can be easily proved by contradiction that d(π2(p), t2) is minimum
over all bijections. So we skip it.

Now, cost(APSM(p, t2)) = d(π2(p), t2) = d(π(π1(p)), t2) = d(π(π1(p)), π(t1))
= d(π1(p), t1) = cost(APSM(p, t1)). Therefore, π2 = π ◦ π1 ∈ APSM(p, t2) and
its cost equal to cost(APSM(p, t1)) unit. 	


The above theorem is extended for APSM problem with k error threshold.

Theorem 2. Given p ∈ Σm
P and T = {t1, t2} ⊆ Σm

T and 0 ≤ k ≤ m. If p is
an approximate parameterized matched with t1 under the k error threshold and
t1 =̂ t2, then p is also approximate parameterized matched with t2 under the k
error threshold and with the cost equal to cost(APSM(p, t1, k)).

Definition 2 (All Pairs Approximate Parameterized String Matching
(APAPSM) with k Threshold). Let P = {p1, p2, . . . , pnP

} ⊆ Σm
P and T =

{t1, t2, . . . , tnT
} ⊆ Σm

T . The problem is to find a mapping η: [1, nP ] → [1, nT ]
such that sum of the cost(APSM(pi, tη(i), k)) over all i (1 ≤ i ≤ nP ) is minimum.

Let us denote this problem as APAPSM(P, T, k). The problem is to search:
for each pi ∈ P (1 ≤ i ≤ nP ), a tj ∈ T (1 ≤ j ≤ nT ) which is
approximately parameterized closest to pi under k error threshold. More
formally, APAPSM(P, T, k)= {(PAPSM(p1, T, k),PAPSM(p2, T, k), . . . ,PAPSM
(pnP

, T, k))}.

Theorem 3. The above problem can be solved in O(nP nT m1.5) time.

Proof. It is direct from the solution of APSM problem proposed by Hazay et
al. [19] by considering all possible pairs between P and T .

Definition 3 (γ(k) -match of strings). Let k ∈ N0. For two given strings
u = u[1..m], v = v[1..m] ∈ Σ∗ and the alphabet set Σ = {a1, a2, . . . , aσ} where
each ai ∈ N0, u is said to be γ(k)-matched with v if and only if

∑m
i=1 |ui−vi| ≤ k.
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The term γ(k) − match is a suitably renamed version of the terminology
γ − approximate which was prescribed in [6] and defined on strings. Similar as
above, we define γ(k)-match on two equal cardinality vectors of numbers.

Definition 4 (γ-distance, γ(k)-match of vectors). Given two vectors u =
(u1, u2, . . . , um), v = (v1, v2, . . . , vm) where ui, vj ∈ N0, 1 ≤ i, j ≤ m and l, k ∈
N0. γ-distance between u and v is l (denoted as γ(u, v) = l) if and only if
l =

∑m
i=1 |ui − vi|. We say that u, γ(k)-matches with v, if and only if γ(u, v)

=
∑m

i=1 |ui − vi| ≤ k.

The notion of Parikh mapping or vector was introduced by R.J. Parikh in
[24]. It provides numerical properties of a string in terms of a vector by counting
the number of occurrences of the symbols in the string. Parikh vector of a string
w is denoted as ψ(w).

Definition 5 (Parikh Vector (PV)). Let Σ = {a1, a2, . . . , aσ}. Given w ∈
Σ∗, ψ(w) = (f(a1, w), f(a2, w), . . . , f(aσ, w)) where f(ai, w) gives the frequency
of the symbol ai ∈ Σ (1 ≤ i ≤ σ) in the string w.

For example, if Σ = {c, d} then ψ(cddcc) = (3, 2). However, much informa-
tion is lost in the transition from a string to its PV. Note that Parikh mapping
is not injective as many strings over an alphabet may have the same PV and
so the information of a string is reduced while changing the string to a PV. For
example, the strings cccdddd and dcdcdcd have the same Parikh vector (3, 4).

Definition 6 (Normalized Parikh Vector (NPV)). NPV of a string w ∈
Σ∗ is ̂ψ(w) = (g1, g2, . . . , gσ) such that ∀i, 1 ≤ i < σ, gi ≥ gi+1 and there
exists a bijective mapping ρ: {1..σ} → {1..σ} such that gi = f(aρ(i), w).

In other words, we sort the elements of ψ(w) in non-increasing order to get
the ̂ψ(w) of string w. For example, ψ(dcdcdcd) = (3, 4) and ̂ψ(dcdcdcd) = (4, 3).

Theorem 4. Given a pair of equal length strings u ∈ Σ∗
P and v ∈ Σ∗

T , if u =̂ v

then γ( ̂ψ(u), ̂ψ(v)) = 0.

Proof. Since u =̂ v, then by definition there exists a bijection π: ΣP → ΣT such
that π(u) = v, i.e. π(u) is obtained by renaming each character of u using π.
Though symbols of ΣP are renamed by π, the frequency of each symbol a ∈ ΣP

in u will be same as the frequency of π(a) ∈ ΣT in v = π(u). As a consequence,
̂ψ(v) = ̂ψ(u), even though there may be the case ψ(u) �= ψ(v). 	


However, the converse is not always true. To show that, we shall give the
following example.

Example 2. Given p = ababa,∈ Σ∗
P = {a, b}∗ and T = {t1 = cdcdd, t2 =

dcdcd} ⊆ Σ∗
T = {c, d}∗. Now,

ψ(p) = (3, 2) and ̂ψ(p) = (3, 2);

ψ(t1) = (2, 3) and ̂ψ(t1) = (3, 2);

ψ(t2) = (2, 3) and ̂ψ(t2) = (3, 2).
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As mentioned in Theorem 4, p =̂ t2 and so γ( ̂ψ(p), ̂ψ(t2)) = 0, even though
ψ(p) �= ψ(t2). Conversely, ̂ψ(t1) = ̂ψ(p) = ̂ψ(t2) = (3, 2), but p ̂�= t1 and p =̂ t2.
Hence, in case γ( ̂ψ(u), ̂ψ(v)) = 0, it is required to check if u =̂ v or not. 	


In general, a filter is a device or subroutine that processes the feasible inputs
and tries to remove some undesirable component. We design an interesting fil-
tering technique by using Parikh vector in order to preprocess the given strings
of P and T and to reduce the number of pair comparisons for solving approx-
imate parameterized string matching between the pair of strings under k error
threshold. We name the filter which is mentioned in Theorem 7 as PV-filter and
the process of filtering the input data by PV-filter as PV-filtering.

The following theorems are useful in minimizing the number of pairs compar-
isons for APAPSM problem to improve the solution from the practical aspect.
Theorem 5 is applicable for ASM problem. It is extended in Theorems 6 and 7 in
the context of APSM problem without and with k error threshold, respectively.

Theorem 5. Let u, v ∈ Σ∗ be a pair of equal length strings and k = d(u, v), is
the Hamming distance. Then γ( ̂ψ(u), ̂ψ(v)) ≤ 2k and γ(ψ(u), ψ(v)) ≤ 2k.

Proof. We prove it by the principle of mathematical induction on k.

Base case: For u = v, k = d(u, v) = 0 and γ( ̂ψ(u), ̂ψ(v)) = 0.
Hypothesis: Assume that for any k with 0 ≤ k = d(u, v) ≤ i, γ( ̂ψ(u), ̂ψ(v)) ≤ 2k.
Inductive step: Let, after introducing one more error by replacement (symbol

a ∈ Σ is replaced by b ∈ Σ in any position of u) operation in u we get u′

such that d(u′, u) = 1 and k = d(u′, v) = i + 1. However, while changing u to
u′ with d(u′, u) = 1, there may be only other case that k = d(u′, v) = i − 1
for which also the inequality is true (by the induction hypothesis). So we
have to argue for the former case: k = i + 1. While introducing one error by
replacement, γ( ̂ψ(u′), ̂ψ(u)) will be increased by at most 2 as the frequency
of symbol a is decreased by one and the frequency of b is increased by one.
Hence, γ( ̂ψ(u′), ̂ψ(v)) ≤ 2i + 2 = 2(i + 1) while k = d(u′, v) = i + 1.

Hence the proof of the first inequality, by the principle of mathematical
induction.

For the other one also, the proof justification is similar. 	

Theorem 6. Given a pair of strings u ∈ Σm

P , v ∈ Σm
T , let k =

cost(APSM(u, v)). Then γ( ̂ψ(u), ̂ψ(v)) ≤ 2k.

Proof. Let π ∈ APSM(u, v). Therefore by definition, k = cost(APSM(u, v)) =
d(π(u), v) is minimum over all bijections. Let π(u) = u′ ∈ Σm

T . Since u =̂ u′

under π, ̂ψ(u) = ̂ψ(u′), by Theorem 4. Hence γ( ̂ψ(u), ̂ψ(v)) = γ( ̂ψ(u′), ̂ψ(v)). By
using Theorem 5, we have γ( ̂ψ(u), ̂ψ(v)) = γ( ̂ψ(u′), ̂ψ(v)) ≤ 2k. 	

Theorem 7. Given u ∈ Σm

P and v ∈ Σm
T . Let ̂k = cost(APSM(u, v, k)). Then

γ( ̂ψ(u), ̂ψ(v)) ≤ 2̂k (which we call as PV-filter).
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Proof. The proof is very similar as Theorem 6. Let π ∈ APSM(u, v, k). Accord-
ingly, there exists a bijection π: ΣP → ΣT such that ̂k = cost(APSM(u, v, k)) =
d(π(u), v) is minimum but not greater than k. Let u′ = π(u) ∈ Σm

T . With similar
argument as above, we have γ( ̂ψ(u), ̂ψ(v)) = γ( ̂ψ(u′), ̂ψ(v)) ≤ 2̂k. 	


We use this PV-filter as a subroutine during the design of a simple algorithm
to solve the APAPSM problem with error threshold k between two sets P and
T of equal length strings. In worst-case (i.e. none of the pairs are filtered out by
PV-filter), it takes O(nP nT m).

Computing APAPSM Under Error Threshold: Let P = {p1, p2, . . . , pnP
}

⊆ Σm
P and T = {t1, t2, . . . , tnT

} ⊆ Σm
T be two sets of strings where |ΣP | =

|ΣT | = σ. In Algorithm 1, we compute APAPSM problem with error threshold
k ∈ N0 among two sets P and T of equal length strings. In Step 3, clustering is
precisely recommended, in case in advance it is known that there are many exact
and parameterized repetition of strings in P and T . To create the equivalence
classes in P and T separately, with respect to parameterization, clustering is done
based on the converse of Theorem 4, i.e., in case for any two strings u, v ∈ P
(and T , respectively) if γ( ̂ψ(u), ̂ψ(v)) = 0, then and only then check for u =̂ v.
If u =̂ v holds, them put u and v into the same cluster.

Algorithm 1. Compute APAPSM(P, T, k) after using the PV-filter
Input: The sets P , T of equal length strings and an error threshold k.
Output: APAPSM(P, T, k) with respect to Hamming distance error model.

Apapsm(P, T, k)
1: for i ← 1 : nP do compute NPV of pi.
2: for i ← 1 : nT do compute NPV of ti.
3: do parameterized clustering of P and T , i.e., for any (p1, p2) ∈ P × P or T × T

of a cluster, p1 =̂ p2. To speed up the clustering, if γ( ̂ψ(p1), ̂ψ(p2)) = 0 then

only check for p1 =̂ p2, or otherwise, p1 ̂�= p2 (Negation of Theorem 4).
4: for each parameterized cluster of P , pick a representative, say pi

for each parameterized cluster of T , pick a representative, say tj
if γ( ̂ψ(pi), ̂ψ(tj)) ≤ 2k (which is the PV-filtering)

then compute APSM(pi, tj , k).
end if

end for
end for

Complexity Analysis: Steps 1–3 of Algorithm 1 are the preprocessing steps for
computing APAPSM(P, T, k); Steps 1–2 takes O(m(nP + nT )) and Step 3 takes
O(m(n2

P +n2
T )) time, assuming a constant size alphabets. But as mentioned ear-

lier, clustering is optional, it might be skipped depending on the circumstances.
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In Step 4, for any pair (pi, tj) ∈ P × T , computation of APSM(pi, tj , k)
can be done by reducing the problem to maximum weight bipartite matching
(MWBM) problem [19]. Let G = (V,E,W ) be an undirected, weighted (non-
negative integer weight) bipartite graph where V,E and W are the vertex set,
edge set and total weight of G, respectively. MWBM problem can be solved in
O(

√|V |W ′) time, where |E| ≤ W ′ ≤ W [12]. It is a fine-tuned version of the
existing decomposition solution [20]. Using the fine-tuned decomposition solution
for MWBM, APSM(pi, tj , k) can be solved in O(m

√
σ) where W ′ = O(W ) =

O(m) and V = O(σ) [12,13]. In the worst-case scenario: each of the clusters will
have just a single string either from P or T and PV-filter in Step 4 does not
filter out any pair (pi, tj) ∈ P × T . Therefore worst-case running time of the
Algorithm 1 is O(nP nT m

√
σ), which is O(nP nT m), if we assume a constant

alphabet.

4 Experimental Results

To test the efficiency of the PV-filter, we performed several experimental studies,
but only a few are reported in this section because of page limitation. Algorithm 1
which solves APAPSM(P, T, k), is implemented in MATLAB Version 7.8.0.347
(R2009a). All the experiments are conducted on a PC Laptop with an Intel R©
CoreTM 2 Duo (T6570 @ 2.10GHz ) Processor, 3.00 GB RAM and 500 GB Hard
Disk, running the Microsoft Windows 7 Ultimate (32-bit Operating System).

Data Description: We generate the input data sets P and T by using the pre-
defined randi function. It helps to generate uniformly distributed pseudorandom
integers. The function randi(imax,m,n) returns an m-by-n matrix containing
pseudorandom integer values drawn from the discrete uniform distribution on
1:imax.

Efficiency of PV-Filter: The experimental results show that the PV-filter is
efficient, essentially for small error threshold k, to avoid unwanted pairs (u, v)
comparison for APSM(u, v, k), where u ∈ P and v ∈ T . According to the random
experiment, if the error threshold k ≤ m

3 , then almost more than one-third of the
total pairs comparison can be skipped. Moreover, very smaller threshold gives
much better filtering. Please see the experiments.

Experiment 1. Consider, alphabet sets ΣP = {a, b, c, d, e, f, g, h, i, j}, ΣT =
{a′, b′, c′, d′, e′, f′, g′, h′, i′, j′}; P ∈ Σ∗

P , T ∈ Σ∗
T ; cardinality of each of the sets

P and T is |P | = |T | = 100; and |pi| = |tj | = 6 for 1 ≤ i, j ≤ |P | = |T |.
According to the data set generated in Experiment 1, a total of 10,000 (u, v)

pairs of comparisons for APSM(u, v, k), where u ∈ P and v ∈ T , are required
without PV-filtering. Figure 1 shows the efficiency graph of the filter on the
input data set. Each blue “∗” point in the graph indicates the number of elimi-
nation of pairs comparison for a given error threshold, after using the PV-filter.
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Fig. 1. Elimination graph of pairs of strings after using PV-filter for the input data
set with |ΣP | = |ΣT | = 10; |P | = |T | = 100; |pi| = |tj | = 6 for 1 ≤ i, j ≤ |P | = |T |, as
mentioned in Experiment 1.

Table 1. PV-filtering for the data set in Experiment 1.

Number of pairs ↓ k = 0 k = 1 k = 2 k = 3 k = 4

Before using PV-filter 10,000 10,000 10,000 10,000 10,000

Eliminated by PV-filter 7,141 2,099 340 42 0

Passed through PV-filter 2,859 7,901 9,660 9,958 10,000

Whose APSM cost ≤ k 570 3,986 8,699 9,869 10,000

For example, each point (i, j) in Fig. 1 represents that for k = i error threshold, j
number of (u, v) pairs of strings have skipped the comparison for APSM(u, v, i).

Table 1 gives more light to the Experiment 1. The second row represents that
for a given k, a total number of (u, v) pairs are to be checked for APSM(u, v, k),
initially before using PV-filter; the third row says, for respective k the number
of pairs of strings are eliminated by PV-filter; simultaneously, the fourth row
describes that how many string pairs are passed by the filter; and finally, the
last row mentions, for how many (u, v) pairs, actually cost(APSM(u, v)) ≤ k
among the passed pairs.

Experiment 2. Consider the alphabet sets ΣP = {a, b, c, . . . , x, y, z}, ΣT =
{a′, b′, c′, . . . , x′, y′, z′} with |ΣP | = |ΣT | = 26; P ∈ Σ∗

P , T ∈ Σ∗
T ; cardinality of

the sets P and T is |P | = |T | = 100; and |pi| = |tj | = 2000 for 1 ≤ i, j ≤ |P | =
|T |. Figure 2 gives the elimination graph. The corresponding table is skipped due
to space limitation.
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Fig. 2. Elimination graph of pairs of strings after using PV-filter for the input data set
with |ΣP | = |ΣT | = 26; |P | = |T | = 100; |pi| = |tj | = 2000 for 1 ≤ i, j ≤ |P | = |T |, as
mentioned in Experiment 2.

5 Conclusions

In this paper, we have explored all pairs approximate parameterized string
matching problem with k Hamming distance error threshold between two sets
of equal length stings. We have presented a solution with worst-case complexity
O(nP nT m), assuming constant alphabet size. In order to minimize number of
paired comparisons for solving APSM between pair of strings with error thresh-
old, we have proposed a PV-filtering technique by using Parikh vector. Although
the filter does not improve the worst-case asymptotic bound, but the using it as
a subroutine, we can avoid some of the unwanted paired comparisons for APSM.
Experimental results show that the PV-filter is efficient for small error threshold.
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Abstract. An n-th order k-ary de Bruijn sequence is a cyclic sequence
of length kn which contains every possible k-ary subsequence of length
n exactly once during each period. In this paper, we show that, if we fix
the initial n bits, any n-th order de Bruijn sequence can be transformed
to another using a sequence of transformations.

Keywords: De Bruijn sequences · De Bruijn graph
Pseudorandom sequence generator · Shift register

1 Introduction

An n-th order k-ary de Bruijn sequence, DBn(k), is a periodic sequence of
length kn having every possible k-ary subsequence of length n exactly once in
each period. An example of DB2(3) is 001021122. In [3], it has been shown that
there exist ((k − 1)!)k

n−1
kk(n−1)−n k-ary de Bruijn sequences of order n. De

Bruijn sequences satisfy many statistical properties associated with randomness
such as balance property, span-n property, etc. Thus, they find many applications
ranging from cryptography and coding theory to communication systems [11,12].
This paper deals with binary de Bruijn sequences although the results can be
easily extended for k-ary de Bruijn sequences. Feedback Shift Registers (FSRs)
have been used to generate such sequences for many decades [7]. There are a
number of algorithms available in literature to generate de Bruijn sequences
using shift registers [5]. One way of generating de Bruijn sequences is by joining
various FSRs of shorter cycles [4,8]. Given a k-ary de Bruijn sequence of order n,
other such sequences can be obtained by using cross-join pairs [6,10]. Recursive
algorithms to produce higher order de Bruijn sequences from the lower order
de Bruijn sequences have been discussed in [1,9]. In this paper, we use the
enumerative construction given in [2] to show that any n-th order de Bruijn
sequence can be generated from another by using a set of transformations. Here
all de Bruijn sequences that are cyclic shifts of each other shall be considered
equivalent.
c© Springer Nature Singapore Pte Ltd. 2018
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The remainder of this paper is organized as follows. Section 2 introduces de
Bruijn graphs and contains a brief description of the algorithm given in [2].
Section 3 contains the main results of the paper. In Sect. 4, we summarize the
results and conclude the paper.

2 Preliminaries

Let G = (V,E) be a directed graph where V and E denote the vertex (or
node) set and the edge set in G respectively. Every edge e ∈ E is directed
from the source vertex s(e) to the target vertex t(e). For all v ∈ V , indeg(v)
and outdeg(v) are the number of incoming and outgoing edges respectively. An
Eulerian cycle (or Eulerian circuit) in a directed graph is a directed cycle which
uses every edge e ∈ E exactly once. A graph that contains an Eulerian cycle
is called an Eulerian graph. For a connected directed balanced graph G, there
exists at least one Eulerian circuit. De Bruijn sequences are closely associated
with special directed Eulerian graphs known as de Bruijn graphs [3]. A binary
de Bruijn graph of order n, denoted as Gn, is a directed graph with 2n vertices,
each labeled with a unique n bit string. Each edge of the graph is labeled with
a binary string of length (n + 1). The edge labeled as s0s1 . . . sn connects the
source vertex labeled s0s1 . . . sn−1 with the target vertex labeled s1s2 . . . sn.

Example 1. Figure 1 represents a second order binary de Bruijn graph G2.

00

0110

11

000

001

010

011

100

110

101

111

Fig. 1. G2: De Bruijn graph of order 2.

In Gn, each vertex v = (s0s1 . . . sn−1) has two out-edges (s0s1 . . . sn−11) and
(s0s1 . . . sn−10); these edges are known as the one-edge and the zero-edge of v
respectively. Since de Bruijn graphs are connected and balanced they always
contain an Eulerian cycle. Observe that we can obtain an (n + 1)-th order de
Bruijn sequence by considering the sequence of most significant bits of edges
in an Eulerian cycle of Gn. Clearly, there exists a one-to-one correspondence
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between Eulerian cycles of Gn and (n+1)-th order de Bruijn sequences. We now
proceed to briefly describe the process of generating Eulerian cycles of Gn given
in [2].

An oriented spanning tree is an acyclic subgraph of a directed graph G =
(V,E). It has a vertex r ∈ V known as root vertex such that outdeg(r) = 0
and there exists a path from every vertex v ∈ V \{r} to r. For a directed graph
shown in Fig. 1, an oriented spanning tree T rooted at 00 is given in Fig. 2.

00

0110

11

010

100

110

Fig. 2. T: Spanning tree of G2 rooted at 00.

Let T be a spanning tree of Gn = (V,E) where V is the set of vertices and E
is the edge set in Gn. Now, for all v ∈ V , construct the lists lv having indeg(v)
number of edges. This array of lists is known as tree array. For all v ∈ V \{r},
the last element of lv will be the unique outgoing edge of v which occurs in the
spanning tree T . In case of the root vertex r, last element of lr is the symbol Ω
and the first entry of lr can be any of its outgoing edges in Gn.

Example 2. Consider the de Bruijn graph G2 shown in Fig. 1. A spanning tree
of G2 is shown in Fig. 2. A tree array lv corresponding to T is given as follows:

l00 = {(000), Ω }
l01 = {(011), (010)}
l10 = {(101), (100)}
l11 = {(111), (110)}

Now, let T be a spanning tree of Gn rooted at the vertex r and consider its
corresponding tree array. One can obtain the Eulerian cycle of Gn as follows.
Starting with the unique edge of Gn which does not lie in the tree array, each
edge x is followed by the first unused outgoing edge of t(x) in the tree array. This
process stops when the only unused entry of the tree array is Ω. Thus, given a
spanning tree and a tree array we can generate an Eulerian cycle in Gn. Further,
it has been shown in [2] that the correspondence between a spanning tree - tree
array pair and Eulerian cycles is one-to-one and one can easily obtain one from
the other.

Example 3. Consider the G2 given in Fig. 1 and its spanning tree T rooted at
00 shown in Fig. 2. A tree array for the spanning tree is given in Example 2.
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We start with the edge 001 followed by the edge 011 which is the first unused
outgoing edge of the vertex 01 = t(001). By repeating this process, we get the
Eulerian cycle of G2 shown in Fig. 3. The corresponding 3-rd order de Bruijn
sequence is 00111010.

00 0001 1111 10 01 10 00
100 000011 111 110 101 010 100

Fig. 3. Eulerian cycle of the de Bruijn graph G2.

3 Construction of Any Spanning Tree of Gn from
a Spanning Tree of Gn

Recall that, a binary de Bruijn graph Gn having a vertex s = (s0s1 . . . sn−1) has
two out-edges, namely zero-edge and one-edge, which connect s to its successor
vertex (s1s2 . . . sn−10) and (s1s2 . . . sn−11) respectively. These vertices are called
conjugates of each other and corresponding edges are called conjugate edges.
In a spanning tree of Gn, any vertex s is connected to one of its successor
vertices. The all-zero and all-one vertices have only one possible successor in the
spanning tree. Therefore, we consider these vertices merged with their respective
successor vertices in the spanning tree as a single vertex. For example, consider
the spanning tree of G3 shown in Fig. 4. Here 000 and 001 (similarly, 111 and
110) are jointly treated as a single vertex 000 − 001 (111 − 110).

001

011

111

110

101

010

100

000

T1

Fig. 4. A spanning tree of G3 rooted at 011.

Note that fixing the root vertex and its unique outgoing edge that does not lie
in the tree array essentially fixes the starting edge of the Eulerian cycle (there-
fore, the first n-bits of the de Bruijn sequence). Therefore, if we fix the entry
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corresponding to the root vertex in the tree array, we have a one-to-one corre-
spondence between de Bruijn sequences with a given initial state and oriented
spanning trees of Gn. In the remainder of this section we will show that from a
given spanning tree of Gn rooted at a particular vertex we can generate any other
spanning tree of Gn having the same root by a sequence of transformations.

The process of replacing the outgoing edge of one vertex in the spanning tree
by its conjugate edge is known as edge switching. In a spanning tree T , a leaf
node is a node that does not have any incoming edge. For example, consider one
of the binary spanning trees of G2, T , rooted at 00 given in Fig. 2. Here, 01 and
11 are the leaf nodes.

Lemma 1. Switching the outgoing edge of a leaf node in a spanning tree of Gn

generates another spanning tree.

Proof. Let T be a spanning tree of Gn. Suppose an outgoing edge e of a vertex
v ∈ T is replaced by its conjugate edge e′, then this switching results in a
cycle only if t(e) is a vertex from which there exists a path to v. Otherwise the
resulting graph will be an another spanning tree. Now, if the node v ∈ T is a leaf
node then there exists no path to v from any other vertex. Therefore, when the
outgoing edge of a leaf node is switched the resulting graph is another spanning
tree of Gn.

Example 4. Consider the spanning tree, T1, of G3 as given in Fig. 4. T1 has two
leaf nodes viz. 101 and the merged pair 111 − 110. Switching of these edges, 101
and 111 − 110, produce two different spanning trees (see Fig. 5).

001

011

111

110

101

010

100

000

001

011

111

110

101

010

100

000

T2 T3

Fig. 5. Spanning trees of G3 rooted at 011.

In a directed spanning tree T a node x is known as an ancestor of a node v if
there exists a path from x to v in T . For example, in Fig. 4 the ancestors of the
node 100 are 101, 010 and the merged vertex pair 111 − 110. Now, we proceed
to prove our main result.
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Theorem 1. Given a spanning tree T of Gn rooted at r, any other spanning
tree T ′ of Gn having the same root can be obtained from T by a sequence of leaf
nodes edge switching.

Proof. Let the number of nodes in T whose outgoing edges are same as that in
T ′ be κ. Now, consider a node v �= r in T whose outgoing edge is different from
that in T ′ and all of whose ancestor nodes have the same out-edges as in T ′.
Now, we apply post-order depth first traversal on the sub-tree of T rooted at v
and switch the nodes in the order in which they occur in this traversal. Clearly,
this is a sequence of leaf node edge switchings culminating in the switching of the
outgoing edge of v. Once the node v is switched, we switch all the other nodes
that we had switched before v in the reverse order. We now have a new graph
wherein the number of nodes in T whose outgoing edges are same as that in T ′

is κ + 1. We keep repeating this process till the outgoing edges of all vertices in
T become same as T ′. Thus, we transform the spanning tree T into T ′.

Given a de Bruijn sequence we can construct the corresponding spanning tree
and tree array. Now, by randomly performing a sequence of leaf node switches
we can get a random spanning tree of Gn and therefore a random de Bruijn
sequence.

Example 5. Consider a spanning tree, T1, of the 3-rd order de Bruijn graph
shown in Fig. 6(a). Let T ′

1 be any other spanning tree of G3 rooted at the same
vertex as shown in Fig. 6(g). Here κ = 5 and except 101 and 100 all other nodes in
T1 have the same outgoing edges as in T ′

1. Now, 101 is a leaf node and switching
its edge gives us a new spanning tree shown in Fig. 6(b). This spanning tree has
6 nodes whose outgoing edges are same as in T ′

1. Now, the vertex 100 is not a
leaf node. By applying depth first traversal algorithm on the sub-graph rooted
at node 100 we get the list {111−110, 010, 100}. We now switch the nodes in the
order 111− 110, 010 and 100. This gives us the spanning tree shown in Fig. 6(e).
We now again switch the nodes 010 and 111−110. This gives us the spanning tree
T ′
1. These switching operations are depicted in Fig. 6(a–g). The corresponding

tree arrays and 4-th order de Bruijn sequences of the spanning trees T1 and T ′
1

are tabulated in Table 1.

Remark 1. A sequence of Leaf node transformations can be represented by a
string of vertices whose outgoing edges are switched. It is interesting to note
that the set of such strings form a group under string concatenation where the
zero element is the empty string and the inverse of any string is a string where
the same nodes occur in the reverse order.

These results can be easily extended for k-ary de Bruijn graphs. In a k-ary
de Bruijn graph of order n, Gn(k), every vertex v ∈ V will have k incoming edges
and k outgoing edges. Let T be a spanning tree of Gn. Given a vertex v ∈ V\{r},
the row Lv in the tree array has indeg(v) = k elements. The last element of Lv

will be the unique outgoing edge of v that occurs in T . The remaining k − 1
elements in Gn(k) can be arranged in any order. Similarly, in case of the root
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Table 1. Tree arrays and de Bruijn sequences of T1 and T ′
1

Spanning tree (T1) Spanning tree (T ′
1)

Tree array l000 = {(0000), (0001)}
l001 = {(0010), (0011)}
l010 = {(0101), (0100)}
l011 = {(0110), Ω }
l100 = {(1001), (1000)}
l101 = {(1010), (1011)}
l110 = {(1101), (1100)}
l111 = {(1111), (1110)}

l000 = {(0000), (0001)}
l001 = {(0010), (0011)}
l010 = {(0101), (0100)}
l011 = {(0110), Ω }
l100 = {(1000), (1001)}
l101 = {(1010), (1011)}
l110 = {(1101), (1100)}
l111 = {(1111), (1110)}

de Bruijn seq. 0111101011001000 0111101011000010

001

011

111

110

101

010

100

000

(a) Spanning tree of G3
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000

rooted at 011
(b) Edge switching of

the leaf node 101
(c) Edge switching of
the leaf node 111-110

(d) Edge switching of
the leaf node 010

(e) Edge switching of
the leaf node 100

(f) Edge switching of
the leaf node 010

(g) Edge switching of
the leaf node 111-110

T1

T ′
1

Fig. 6. Switching of leaf node edges in a spanning tree of G3.

vertex r, we consider Ω as the last entry of Lr and the other k − 1 entries of
Lr can be chosen from any of its outgoing edges in Gn(k). From this tree array
we can construct an Eulerian cycle of a k-ary de Bruijn graph of order n using
the method given in Sect. 2. Observe that the proof of Theorem 1 would also be
valid in this case.
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4 Conclusion and Future Work

In this paper, we have shown that one can go from a given de Bruijn sequence
to another by a sequence of leaf node edge switchings. By randomly choosing
the sequence of leaf node edge switches we can generate a random spanning tree
of Gn and therefore a random de Bruijn sequence.

Since every n-th order de Bruijn sequence can also be generated from a single
n-th order de Bruijn sequence by using a sequence of cross joining operations, it
would be interesting to find a correspondence between a sequence of leaf node
switchings given in this paper and a sequence of cross joining operations. Further,
it can be investigated if this method can be efficiently translated into a nonlinear
feedback function for FSRs.

Acknowledgment. The authors are grateful to Prof. Harish K. Pillai, Department
of Electrical Engineering, Indian Institute of Technology Bombay, without whom this
work would never have been possible.
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Abstract. Melanoma is a type of skin cancer, which is not that common
like basal cell and squamous carcinoma, but it has dangerous implica-
tions since it has the tendency to migrate to other parts of body. So,
if it is detected at an early stage then we can easily treat; otherwise
it becomes fatal. Many computer-aided diagnostic methods using der-
moscopy images have been proposed to assist the clinicians and derma-
tologists. Along with conventional methods which extract the low level
handcrafted features, nowadays researchers have focused towards deep
learning techniques which extract the deep and more generic features.
Since 2012, deep learning has been applied to classification, segmenta-
tion, localization and many other fields and made an impact. This paper
reviews about the deep learning techniques to detect melanoma cases
from the rest skin lesion in clinical and dermoscopy images.

Keywords: Melanoma · Dermoscope · Deep learning
Computer-assisted · Diagnostics

1 Introduction

There are many types of skin cancer, but the most common among them are
Basal cell carcinoma, Squamous cell carcinoma and Melanoma. Melanoma is due
to rapid growth melanin producing cells, melanocytes. The depth of penetra-
tion determines the different stages of melanoma cancer [1]. Melanoma (mainly
caused due to exposure to ultraviolet radiation) is the most dangerous and is
crucial to detect at its early stages, since it advances and spread to other parts of
the body at later stages. Early detection can significantly reduce the mortality
rate. According to the American Cancer Society (ACS), there will be an esti-
mated 1,688,780 new diagnosed cancer cases and 600,920 cancer deaths in the
United States in 2017 out of which 87,110 new cases of melanoma will be diag-
nosed [2]. Though melanoma accounts for around 1% of all the skin cancer, it has
the highest mortality rate. The rate of occurrence of melanoma from 2004–2014
has increased by 2–3% per year. In 2017, an estimated 9,730 death will occur
due to melanoma. The five year survival rate is of 95% when detected early, and
this reduces to around 13% if detected at the advance stage of melanoma and
the cost of treatment is also quite high [2].
c© Springer Nature Singapore Pte Ltd. 2018
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(a)

(b)

Fig. 1. Illustration of (a) benign Nevus, (b) melanoma

In recent research, various methods have been proposed by clinicians to detect
melanoma from rest of the skin cancer. These methods include ABCDE method
[3], Menzies method [4], pattern analysis [5], texture analysis [6] and the 7-point
checklist [7]. All these methods compare the color changes, shape, symmetry
and texture variations as compared to the normal skin. With the advent of
dermoscopy (also referred as epiluminescence microscopy), it has been possible
to assist clinicians efficiently since dermatoscope captures the dermal features
and eliminates the surface glare. Dermatoscope is a non-invasive technique where
a gel is applied on the surface of the skin lesion and an enhanced image is
acquired using the digital imaging technique, dermatoscope. The device magnify
structures which are otherwise invisible to naked eyes, thus helps in detection
of melanoma from other types of skin cancer. Total body Photography is also
done by dermatologists for early detection of changing lesions and avoidance of
biopsy of stable lesions. Some of the examples of ISIC dataset [8], which is one
of the largest collection of contact non-polarized dermoscopy images are shown
in Fig. 1. The Nevus is a benign skin tumor derived from melanocytes.

The key steps in a computer-vision based diagnosis of melanoma classifica-
tion are: image acquisition, preprocessing, segmentation, extraction of features
and classification as shown in Fig. 2. The disease classification can be binary
(malignant or benign) or n-ary (into many classes). Thus the computer vision
techniques became effective to assist dermatologists and clinicians to reduce
many undesired biopsies. The preprocessing techniques are applied for removal
of hairs, ruler markings, air bubbles, and spurious noise. The example of such
methods include DullRazor hair removal algorithm [9], median filtering [10],
directional filters [11] and illumination enhancement [11]. Segmentation is the
process of separating the lesion from the surrounding skin in order to perform
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Fig. 2. Block diagram of melanoma detection system

lesion analysis and efficient feature extraction [12]. Visual detection by derma-
tologists is done by mostly studying the ABCD rule or the 7-point checklist that
accurately characterizes a melanoma lesion. ABCD rule is more popular because
it includes the salient features such as asymmetry, border irregularity, color vari-
ation and diameter of the lesion. The commonly extracted features are color and
texture features [13] which gives better accuracy. The color statistics include
mean and standard deviation, color variance, color histogram, color asymme-
try and texture features include gradient histogram, gray level co-occurrence
matrix (GLCM dissimilarity index, mean and standard deviation) [6,14]. Finally
for lesion classification, the SVM [15–17], Naive Bayes classifier [6], KNN [18],
logistic regression [19], bag-of-feature classification [20] and decision tree learn-
ing. A review on these traditional methods can be found in [6,21,22]. Due to
high intra-class and low inter-class variations in melanoma, handcrafted feature-
based diagnostic performance is found to be still unsatisfactory [23].

The deep neural networks take the raw image as an input while bypassing
the complex procedure of pre-processing, segmentation, design of handcrafted
features. Convolutional Neural Networks (CNN) has been known in the research
field since few decades, but has been come to the surface quite recently after the
ImageNet classification challenge which reduces the error rate significantly from
26% to 15% using the AlexNet architecture [24] which comprised of different
convolution, pooling and activation layers. Deep learning has overcome the diffi-
culty of computing handcrafted features by modulating the feature engineering
step into a learning process. Instead of extracting several features in laborious
steps, supervised deep learning requires only large sets of labelled data and then
discovers the informative feature representation automatically.

This review paper is organized as follows. Section 2 provides the background
on deep models and describes the various CNN architectures. Section 3 discusses
about the various methods of deep learning for melanoma detection and their
performance metrics. Section 4 concludes the paper.

2 Deep Models

2.1 Neural Networks

Neural networks are the building blocks of deep learning techniques [25]. A neural
network is similar to multilayer perceptron with an input layer, hidden layers
and output layer. It comprises of the activation function, weights and biases {W,
b}. The output at each node can be represented as

a = f(WTx + b) (1)
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Where f(.) represents the non-linearity function. The typical non-linear func-
tions that are traditionally used are sigmoid, hyperbolic and RELU (Rectified
Linear Unit) [26]. RELU has mainly two advantages over the traditional sigmoid,
which gives sparsity and a reduced likelihood of the vanishing gradient. Deep
learning is a hierarchical feature learning process which learns features at mul-
tiple levels, thus allowing to learn a complex function without depending on the
handcrafted features. The weights in the feed forward process is adjusted using
the backpropagation algorithm [27] which uses the gradient descent optimization
to minimize the loss at the output. At the output layer, we have the softmax
function [27] as activation function to ensure that the outputs are probabilities
and they add up to 1. The softmax function is a generalization of the logistic
function which takes a vector of arbitrary real valued scores and squashes it to
a vector of values between zero and one that sum to one [26]. It is used as a cost
function for probabilistic multi-class classification and SVM is used to separate
one class from rest of the classes.

2.2 Convolutional Neural Networks

Multi-layer neural networks accept input in the vector form while convolutional
networks can deal with both structured and unstructured data [25]. CNN has
proven to be very successful in image classification and object detection. Since
2012, the top 5 error rate of the ImageNet challenge has been reduced to 3.6%
while humans have 5% error rate. CNN could recognize visual patterns directly
from pixel level image representation with minimal preprocessing. As such, we
do not have to extract handcrafted features, which is both difficult and domain
specific. A CNN consists of a convolutional layer, a subsampling layer (either
max pooling or average pooling) and optionally followed by a fully connected
layer. The output at the convolution layer is given by the following equation [25].

Al
j = f(

M l−1∑

i=1

Al−1
i ∗ wl

ij + blj) (2)

where M l−1 is the number of feature maps in the (l − 1) layer, Ai
j is the acti-

vation output at the lst layer, wl
ij is the kernel weights from feature map at

layer to feature map j at (l − 1) layer, and bij is the additional bias parameter.
The pooling layer (max pooling or average pooling) downsamples the feature
map from previous convolutional layer. Either before or after the subsampling
layer, an additional bias term is added after which a non-linearity function is
added. The gradient descent with back propagation algorithm is applied to learn
the trainable parameters. In the convolutional layer, CNN share the same filter
weights for each receptive field in a particular layer which reduces the memory
storage of different weights while giving better performance.

In the year 1998, the first convolutional neural network was proposed by
LeCun et al. [28] which brought forth the deep learning architecture. In 2012,
AlexNet [24] was released which incorporated the rectified linear units (RELU)



122 N. N. Sultana and N. B. Puhan

in place of hyperbolic tanh function as an activation function. In 2013, ZFNet
was proposed from Zeiler and Fergus in [29]. This was an improvement over
the AlexNet by tweaking the hyper-parameters like using small filter size, since
it helps in retaining a lot of original pixel information [26]. They explained in
depth about the deconvolution concept which helped in examining a particular
feature map and their relation to the input space. In 2014, the ILSVRC winner
was the popular GoogLeNet [30]. The main contribution was the development
of the inception module as shown in Fig. 3(a). Here, not all of the convolution
and pooling layers were stacked sequentially, but they were arranged in parallel.
They applied the 1× 1 convolution operations before the 3× 3 and 5× 5 layers.
This 1 × 1 convolution operation addressed both dimensionality reduction as
well as nonlinearity addition. This architecture allows the model to recover both
local features via smaller convolutions and highly abstract features with larger
convolution. In VGGNet [31] as shown in Fig. 3(c), all the convolutional filter size
is of 3× 3. They argued that two 3× 3 filters give the receptive field equivalent
to one 5 × 5 and three 3× 3 filter giving a receptive field equivalent to 7× 7
filter size. Thus, they reduced the number of learnable parameters by using the
smaller filter size.

In 2015, ResNet was developed which addressed the problem of gradient
vanishing as we go deeper into the network [32]. It features special skip con-
nections as shown in Fig. 3(b) and heavy use of batch normalization. Huang et
al. proposed the Densely Connected Convolutional Network which concatenates
outputs from the previous layers instead of using the summation [33].

2.3 Deep Generative Model

Autoencoders [34] are similar to Multi-Layer Perceptron (MLP) except that its
output layer is same as its input layer, while in MLP the output layer is equal to
the number of classes. MLP requires labelled data for training while autoencoders
belong to the category of unsupervised learning. It is used for dimensionality
reduction, reconstruction of the original image from noise corrupted version and
also as a feature extractor for classification. Stacked autoencoders are formed
by placing autoencoder layers on top of each other. In medical applications,
autoencoder layers are often trained individually (training a 2nd hidden layer by
the outputs of the 1st layer and so on) after which the full network is fine-tuned
in a supervised manner. Sabbaghi et al. [35] employ stacked sparse autoencoder
for skin lesion classification.

Restricted Boltzmann Machine [36] is a stochastic neural network consists of
one input layer, one hidden layer and a bias unit. A deep Boltzmann machine
is constructed by stacking multiple RBMs. The connection between the nodes
are bidirectional; given an input, we can obtain the latent feature representation
(learning lower dimensional features from high dimensional input space) and
vice-versa. It is useful for dimensionality reduction, classification, regression and
feature learning.

In 2006, Hinton discovered that better results could be achieved using
deeper architectures when each layer (RBM) is pre-trained with an unsupervised
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Fig. 3. (a) Inception module, (b) Residual learning, (c) VGG16 architecture

learning algorithm such as Contrastive Divergence. Deep Belief Nets [37] is simi-
lar to stacked autoencoders except that we stack RBMs here. Finally, the network
is fine-tuned and trained using the backpropagation algorithm in a supervised
manner.

3 Deep Learning Based Melanoma Detection

Deep learning bypasses all the complex methods of pre-processing, segmentation
and low level feature extraction. It learns features important to a specific task
hierarchically with minimal pre-processing. Some of the salient points towards
the need of deep learning in medical imaging is as follows:

• Deep learning has achieved quite good performance in image classification,
object detection, restoration, image captioning, etc. So the same can now be
applied to the field of medical imaging.

• The network is trained end-to-end directly using raw pixels as input, with a
single network.

• Advent of fast GPUs made it possible to have multiple hidden layers in a
neural network.
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• The limited number of annotated data available in medical imaging is quite
a challenge, but recently many publicly available annotated dataset is avail-
able for researchers and academia’s to take active participation towards the
different medical challenges.

• The above challenge can be solved using unsupervised learning like training
with autoencoders, or to deal with limited annotated dataset many techniques
have been proposed. It includes data augmentation, input image as patches,
using pretrained models. Quite recently Bayesian deep learning [38] has been
proposed which is an unsupervised or semi-supervised technique to deal with
limited labelled database.

• In skin lesion due to low contrasts and obscure boundaries, automated recog-
nition tasks become harder and also due to high intra-class and low inter-
class variation, classification is not accurate. Here we can apply deep learning
which is a hierarchical learning process to accurately detect features which
are important for classifying accurately.

3.1 Datasets

There are many datasets available for skin lesion classification. Some are publicly
available and some are licensed.

• Dermofit Image library [18]: The Dermofit Image Library is a collection of
1,300 focal high quality skin lesion images collected under standardized condi-
tions with internal colour standards. The lesions are from ten different classes:
Actinic Kerato-sis, Basal Cell Carcinoma, Melanocytic Nevus (mole), Seb-
orrhoeic Keratosis, Squa-mous Cell Carcinoma, Intraepithelial Carcinoma,
Pyogenic Granuloma, Haemangi-oma, and Dermatofibroma.

• Interactive Atlas of Dermoscopy [39]: The dataset consists of 112 malignant
lesion images (containing melanoma and basal cell carcinoma (BCC)), and
298 benign lesion images (containing congenital, compound, dermal, Clark,
spitz, and blue nevus; dermatofibroma; and seborrheic keratosis). Each image
having two modalities, dermoscopic and clinical image.

• ISIC Archive: It is a publicly available dermoscopic image dataset with 13,000
dermoscopic images.

• ISBI Challenge 2016 Dataset [8]: The Challenge Dataset contains 900
images for training (273 being melanomas) and 379 for testing (115 being
melanomas).

• Dermnet [40]: This database contains over 23,000 skin lesion images separated
into 23 classes of skin diseases.

• PH2 Dataset [41]: This is a dermoscopic image database acquired at the Der-
matology Service of Hospital Pedro Hispano, Portugal. It consists of 200 der-
moscopic images (40 are melanoma cases and 160 are non-melanoma cases).

• ISBI 2017 Challenge Dataset [42]: The official challenge dataset, with 2,000
dermoscopic images (374 melanomas, 254 seborrheic keratoses, and 1,372
benign nevi).
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• IRMA Skin Lesion Dataset: With 747 dermoscopic images (186 melanomas).
This dataset is unlisted, but available under special request, and the signing
of a license agreement.

• MED-NODE dataset [43]: The dataset consists of 100 melanoma and 70 nae-
vus images from the department of Dermatology of University of Medical
Centre, Groningen. This dataset was used for testing in NED-MODE system
for skin cancer detection using non-dermoscopic images.

• MoleMap dataset: The MoleMap NZ Ltd dataset is collected over a period of
2003 to 2015 containing both dermoscopic and clinical images. The number
of images used in the paper [44] is 32,195 images from 15 disease categories
of 14,754 lesions from 8,882 patients.

3.2 Performance Metrics

The model evaluation is performed using the following:

• Sensitivity - It is the ability of the test to correctly identify the diseased state
(true positive rate).

SE =
TP

TP + FN
(3)

• Specificity - It is the ability of the test to correctly diagnose the benign cases
(true negative rate).

SP =
TN

TN + FP
(4)

• Accuracy - The number of correct predictions divided by a total number of
predictions. Ratio of true detected cases to all cases.

ACC =
TP + TN

TP + FP + FN + TN
(5)

• Precision - Fraction of relevant instances among the retrieved instances. It is
also equivalent to positive predictive value.

PREC =
TP

TP + FP
(6)

• Positive Predictive Value (PPV) - It is the probability whether the subject
with a positive test, truly have the disease.

PPV =
TP

TP + FP
(7)

• Negative Predictive Value (NPV) - It is the probability whether the subjects
with a negative screening test, truly don’t have the disease.

NPV =
TN

TN + FN
(8)
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• ROC AUC - Area under receiver operating characteristic. It is equal to the
probability that the classifier will rank a randomly chosen positive example
higher than a randomly chosen negative example. It is the graph between
true positive rate vs false positive rate.

• Dice coefficient - It is also known as overlap index which gives the overlap
measure between the automatic and the ground truth segmentation.

DC =
2.TP

2.TP + FN + FP
(9)

• Jaccard Index - It also measures the same aspect as that of Dice coefficient.

JA =
TP

TP + FN + FP
(10)

3.3 Performance of Recent Deep Learning Methods
for Melanoma Detection

The work of Lopez et al. [45] compares different methods of using deep learning
CNN architecture. They used the VGGNet in three different ways: (1) training
from scratch, (2) transfer learning from a pretrained model on a larger dataset
(ImageNet), (3) transfer learning and fine tuning the CNN architecture. Zhen
et al. [23] combines deep convolutional neural network with fisher vector encod-
ing and SVM classifier. Here, instead of whole images as input to the CNN,
they give samples or sub-images as the input which eliminates the small dataset
problem. On the dataset of ISBI 2016, which consists of 1279 skin images, the
proposed method achieved an accuracy of 83.09%. Menegola et al. [46] does clas-
sification into binary (malignant and benign) and ternary (malignant, benign and
basal cell carcinoma) classes. From the results, it is shown that basal cell car-
cinoma is easier to diagnose than melanoma. The other medical dataset that is
used for pre-training is the Kaggle Challenge for Diabetic Retinopathy Detection
dataset. Esteva et al. [47] train a CNN (Inception v3 model) using a dataset of
129,450 clinical images consisting of 2,032 different diseases. The performance
was measured against 21 board-certified dermatologists and it was on par with
the experts, thus showing that artificial intelligence capable of classifying skin
cancer with a level of competence comparable to dermatologists.

Kawahara et al. [48] proves that CNN can be efficiently used for 10-class
classification and it outperforms (accuracy 81.8%) the present state-of-art tech-
niques. This paper utilizes fully convolutional network to extract multi-scale
features similar to Overfeat [49] method that is used for localization and detec-
tion problems. The full-CNN converts the fully connected layer into a convolu-
tional layer which accepts multiscale input image. Pooling across deep features
for augmented images is proposed to conserve memory and time. The method
by Demyanov et al. [50] is about detection of dermosopic patterns like pigment
network and regular globules. The dataset is split such that segments from the
same image always belong to the same set. They implement different algorithms
like CNN with data augmentation, without augmentation, k-means clustering,
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sparse coding and Fisher kernel. The best mean accuracy for the typical network
and regular globules datasets is 88% and 83% approximately. Esfahani et al. [51]
experiments on clinical images which might have illumination and noises pre-
sent in the images. The images are fed to a 5-layer CNN network after removal
of noise and illumination artifacts.

Yu et al. [52] integrate the FCRN (Fully Convolutional Residual Network for
segmentation) and very deep residual networks (for classification) to form two-
stage framework. Deep residual learning, ResNet solves the problem of degrada-
tion of accuracy (degradation problem states that simply increasing the depth by
stacking layers does not contribute towards further improvement in accuracy but
instead accuracy degrades rapidly). ResNet avoids this problem in being deep
and still achieving quite high accuracy. The result of the experiment shows that
with segmentation performs better since segmentation allows the feature extrac-
tion procedure to be conducted only on the lesion regions and thus generate more
specific and representative features. For classification stage, they implemented
using SVM as well as softmax classifier and found that a simple average fusion
can further improve the classification accuracy. Other comparison on classifi-
cation was with different models (VGG-16, GoogleNet and DRN-50); DRN-50
performed with the best result. This paper ranked 2nd among 28 teams in ISBI
challenge 2016 for segmentation and first place for classification with average
precision 0.637.

Kawahara et al. [53] proposed multi-tract-CNN for skin lesion classification
that learns interaction across multiple image resolutions with same field of view
simultaneously. The fully connected layer is converted to convolutional layer,
since convolutional layers allow for variable sized inputs. Because of limited
GPU memory, they used two tracts, upper tract lower resolution and lower tract
higher resolution image, but it can be applied to any number. The two tract
approach with auxiliary loss gives better performance (accuracy = 0.773) than
without auxiliary loss (accuracy = 0.755) and further improvement in accuracy
is seen if data augmentation (accuracy = 0.795) is done. Codella et al. [54]
performs classification of melanoma vs non-melanoma cases and also melanoma
vs atypical lesions only. The method achieves an accuracy of 93.1% for the first
task and 73.9% for the second. It is observed that distinguishing melanoma from
atypical cases is difficult. This method follows two parallel paths: (1) CNN with
transfer learning from natural dataset, (2) Unsupervised feature learning using
sparse coding. The classifiers are then trained on each using non-linear SVM
using a HIK (histogram intersection kernel) and sigmoid feature normalization,
and then the model is combined in late fusion (score averaging).

Ge et al. [44] deep residual network (ResNet-50) extracts the global infor-
mation and bilinear pooling technique extracts the local information. The paper
implemented com-pact pooling which uses Tensor Sketch to reduce the dimension
in bilinear pooling. For classification, linear SVM is used after l2 normalization
and concatenation of the two local and global features. 15-class disease clas-
sification using MoleMap dataset achieves 71% accuracy and using ISBI 2016
challenge dataset, an 85% accuracy. Noel et al. [55] applies fully convolutional
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Table 1. Performance measures of deep learning methods

Methods Dataset ACC SE SP PREC ACC

Fine-tuning using
VGGNet

ISBI 2016 0.813 0.7866 - 0.7974 -

Fully convolutional
residual network+deep
residual network

ISBI 2016 0.855 0.5407 0.941 0.637 0.804

Multi-resolution-tract
CNN

Dermofit Image
Library

0.795 - - - -

Multi-scale feature
extraction using
full-CNN

Dermofit image
library

0.818 - - - -

CNN+Fisher Encoding ISBI 2016 0.8309 - - 0.535 0.7957

5 layer CNN MED-NODE 0.81 0.81 0.80 - -

ResNet+bilinear MoleMap 0.71 - - - -

pooling ISBI 2016 0.85 - - 0.625 -

Deep learning+Sparse
Coding+SVM

ISIC 0.743 - - - -

Deep learning ensemble ISIC 0.807 0.693 0.836 0.649 0.843

network similar to U-Net architecture [56] for segmentation and non-linear SVM
classifier to classify individual features. They combine all features like color his-
togram, edge histogram, multiscale color LBP, sparse coding, CNN (FC6, 4096
dimension feature vector), DRN-101 (1000 dimension extracted only from the
whole image), Fully Convolutional U-Net (used as a shape descriptor extracted
only from the whole image). Area under receiver operating curve (AUC) is found
as 0.843 and average precision is equal to 0.649. The datasets and the results of
these papers are summarized in Table 1.

4 Conclusion

In this paper, we reviewed different deep learning based methods to detect
melanoma from the rest of the skin lesions. It is seen that using deep learning
there is no need of complex preprocessing techniques except for normalizing the
pixel value, resizing and cropping. It bypasses all the preprocessing, segmenta-
tion and handcrafted feature ex-traction. It is observed that applying deep neural
networks gives better result than conventional methods. For medical imaging,
the most important challenge is that of acquiring labelled images. The ISBI chal-
lenge has provided with large number of datasets (ISIC Archive), which provides
a common platform for researchers and academia to evaluate their work. The
future works might include: using a much larger dataset to reduce the risk of
overfitting and performing additional regularization tweaks and fine-tuning of
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hyper-parameters. In many papers, it is shown that taking both global (deep)
as well as local features into account during feature extraction provides better
results. However, it is still an open issue to increase the accuracy rate. The goal
should be to target highest sensitivity while optimizing to increase specificity,
thereby increasing the overall accuracy for practical applications.
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Abstract. This paper presents an approach for multi criteria decision
making problems based on the Dice similarity measure and weighted
Dice similarity measure for picture fuzzy sets (PFSs). To illustrate the
application of the proposed method, a practical problem has been consid-
ered and the results are compared and verified with an existing method.
The results are well matched and the calculations are compact and much
easier to analyze.
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1 Introduction

The theory of intuitionistic fuzzy sets (IFSs) proposed by Atanassov [1] has been
successfully applied in various fields like decision making, logic programming,
pattern recognition, medical diagnosis and more [2,3]. Although, IFS theory has
been successfully applied in different areas, but there are situations in real life
which cannot be represented by IFS [4]. Voting could be a good example of
such situation as the human voters may be divided into four groups of those
who; vote for, vote against, abstain and refusal of voting. Nevertheless, the IFS
theory care to those who vote for or vote against, and consider those who abstain
and refusal are equivalent. This concept is particularly effective in approaching
the practical problems in relation to the synthesis of ideas; make decision such
as voting, financial forecasting and risks in business [5].

Similarity measures are common tools used widely in measuring the devia-
tion and closeness degree of different arguments. Dengfeng et al. [3] introduced
the degree of similarity between IFS to propose several new similarity measures
and applied those new measures into pattern recognition. A new measure of sim-
ilarity for IFSs, considering the distance to its complement to analyze the exten-
sion of agreement in group of experts was proposed by Szmidt et al. [6]. Ye [7]
extended the concept of the cosine similarity measure for fuzzy sets and therefore
c© Springer Nature Singapore Pte Ltd. 2018
D. Ghosh et al. (Eds.): ICMC 2018, CCIS 834, pp. 135–140, 2018.
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proposed the cosine similarity measure for IFSs. He also proposed the concept of
the reduct intuitionistic fuzzy set of interval valued intuitionistic fuzzy set with
respect to adjustable weight vectors and the dice similarity measure based on
the reduct IFS to explore the effects of optimism, neutralism and pessimism in
decision making [8]. Some cosine similarity measures and weighted cosine sim-
ilarity measures between picture fuzzy sets were discussed by Wei [9] and are
applied to strategic decision making problem for selecting optimal production
strategy. Cosine similarity measure is undefined when one vector is zero, since it
is defined as the inner product of their lengths. In this case, the dice similarity
measure for PFSs can be used which is an extension of Dice similarity measure
for IFSs. Therefore, the purpose of this study is to propose the Dice similarity
measure for picture fuzzy sets (PFSs) and utilize it in decision making problems.

This paper is organized as follows: In Sects. 2, 3 and 4, we review definitions of
picture fuzzy set (PFS), cosine similarity measure and Dice similarity measure.
In Sect. 5, we propose a Dice similarity measure for picture fuzzy sets (PFSs).
The proposed Dice similarity measure based MCDM method in Sect. 6 is also
implemented on a practical problem of known criteria weights in Sect. 7. Final
results are compared with the result of other existing methods in Sect. 8 and
finally the conclusions are presented at the end of the paper.

2 Picture Fuzzy Sets

Cuong et al. [2] proposed picture fuzzy sets, which is defined as follows: A picture
fuzzy set A on a universe X is defined as an object of the following form;

A = {<x, μA (x) , ηA (x) , νA (x)> : x ∈ X} (1)

where the functions μA(x ), ηA(x), νA(x) are respectively called the degree of
positive membership, the degree of neutral membership, the degree of negative
membership of x in A, and following conditions are satisfied;

0 ≤ μA (x) , ηA (x) , νA (x) ≤ 1

μA (x) + ηA (x) + νA (x) ≤ 1∀xεX

Then, ∀x ∈ X : 1 − (μA (x)+ηA (x)+νA (x)) is called the degree of refusal mem-
bership of x in A.

3 Cosine Similarity Measure for PFSs

Wei [9] introduced similarity measures for PFSs based on the concept of cosine
function. Suppose there are two PFSs given as follows:

A = {<x, μA (x) , ηA (x) , νA (x)> : x ∈ X}

B = {<x, μB (x) , ηB (x) , νB (x) > : x ∈ X}
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in the universe of discourse X = {x1x2x3 . . . . . . .xn}. Then cosine similarity
measure between PFSs is as follows:

PFC (A, B) =
1
n

n∑

j=1

μA(xj)μB (xj) + ηA (xj) ηB (xj) + νA(xj) νB (xj)√
μ2
A (xj) + η2

A (xj) + ν
2
A
(xj)

√
μ2
B (xj) + η2

B (xj) + ν2
B (xj)

(2)

4 Dice Similarity Measure

Let X = {x1, x2, x3, . . . . . . . . . xn} and Y = {y1, y2, y3, . . . . . . . . . yn} be two vec-
tors of length n where all the coordinates are positive. Then the Dice similarity
measure [4] is defined as follows:

D =
2X.Y

‖X‖22 + ‖Y ‖22
=

2
∑n

i=1 xiyi∑n
i=1 x2

i +
∑n

i=1 y2
i

where X.Y =
∑n

i=1 xiyi is the inner product of the vectors X and Y and ‖X‖2 =√∑n
i=1 x2 and ‖Y ‖2 =

√∑n
i=1 y2, are the Euclidean norms of X and Y. The

Dice similarity measure takes value in the interval [0, 1]. However, it is undefined
if xi = yi = 0 (i = 1, 2, . . . n).

5 Dice Similarity Measure for PFS

In this section, the dice similarity measure for PFS is proposed as a generalization
of the Dice similarity measure [4] in vector space. Let A and B be two PFSs in
the universe of discourse X = {x1, x2, . . . . . . xn}. Based on the extension of the
Dice similarity measure [4], the Dice similarity measure between picture fuzzy
sets A and B is proposed in vector space as follows;

DPFS (A,B) =
1
n

n∑

i=1

2(μAiμBi + ηAiηBi + νAiνBi)
μ2
Ai + η2

Ai + ν2
Ai + μ2

Bi + η2
Bi + v2

Bi

(3)

The Dice similarity measure between two PFSs A and B satisfies the following
properties:

1. 0 ≤ DPFS (A,B) ≤ 1
2. DPFS (A,B) = DPFS (B,A)
3. DPFS (A,B) = 1 if and only if A = B, i.e., μAi = μBi, υAi = νBi and

ηAi = ηBi

5.1 Proof

1. Let us consider the i th item of the summation in Eq. (3)

Di (Ai, Bi) =
2(μAiμBi + ηAiηBi + νAiνBi)

μ2
Ai + η2

Ai + ν2
Ai + μ2

Bi + η2
Bi + v2

Bi

(4)

It is obvious that Di (Ai, Bi) ≥ 0 and μ2
Ai + η2

Ai + ν2
Ai + μ2

Bi + η2
Bi + v2

Bi ≥
2(μAiμBi+ηAiηBi+νAiνBi) according to the inequality

(
a2 + b2 ≥ 2ab

)
. Thus

0 ≤ Di (Ai, Bi) ≤ 1.
2. It is obvious that the property is true.
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3. When A=B, there are μAi = μBi, υAi = νBi and ηAi = ηBi, for i = 1, 2, . . . n.
So there is DPFS (A,B) = 1. When DPFS (A,B) = 1, there are μAi =
μBi, υAi = νBi and ηAi = ηBi, for i = 1, 2, . . . n. So there is A=B.

If we consider the weight of xi, the weighted Dice similarity measure between
PFSs A and B is proposed as follows:

WPFS (A,B) =
n∑

i=1

wi
2(μAiμBi + ηAiηBi + νAiνBi)

μ2
Ai + η2

Ai + ν2
Ai + μ2

Bi + η2
Bi + v2

Bi

(5)

where wi ∈ [0, 1], i = 1, 2, . . . . . . . . . n, and
∑n

i=1 wi = 1.

6 MCDM Based on Proposed Similarity Measure

In this section, a decision making method by using above defined Dice similarity
measure for PFSs has been presented followed by an illustrative example for
demonstrating the approach.

Let a set of m alternatives denoted by A = {A1, A2 . . . . . . . . . . . . Am} which
has been evaluated by the decision maker under the set of the different criteria
C = {C1, C2 . . . . . . . . . Cn} whose weight vectors are w = {w1, w2 . . . . . . . . . wm}
such that wj > 0 and

∑n
j=1 wj = 1. Assume that the decision maker gave his

preference in the form of PFNs αij = 〈μij , υij , ηij〉. Then, in the following,
we develop an approach based on the proposed similarity measure for MCDM
problem, which involve the following steps.

Step 1. Construct a picture fuzzy decision matrix D = (αij)m×n by the prefer-
ence given by decision maker towards the alternative Ai.

Step 2. If there are different types of criteria, namely cost (C ) and benefit (B),
then we normalize it by using the following equation;

rij =
{

αij , j ∈ B
αij,j ∈ C

(6)

Step 3. Define an ideal picture fuzzy set for each criterion in the ideal alternative
A* as C∗

j = (1, 0, 0) for “excellence”. Then applying Eq. (5), we can obtain
the weighted dice similarity measure between the ideal alternative A* and an
alternative Ai (i = 1, 2, . . . m). The bigger the value of wi(A∗, Ai), the better the
alternative Ai, as the alternative Ai is closer to the ideal alternative A*.

7 Practical Applications

A practical MCDM problem has been taken from Sect. 5.1 of Garg [5]. Suppose
a multinational company in India is planning its financial strategy for the next
year, according to the group strategy objective. For this, the four alternatives
are obtained after their preliminary screening and are defined as A1: to invest
in the “Southern Asian markets”; A2: to invest in the “Eastern Asian markets”;
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A3: to invest in the “Northern Asian markets”; A4: to invest in the “Local
markets”. This evaluation proceeds from four aspects, namely as C 1: the growth
analysis; C 2: the risk analysis; C 3: the social-political impact analysis; C 4: the
environmental impact analysis whose weight vector is w = (0.2, 0.3, 0.1, 0.4).
The following steps have been performed to compute the best one;

Step 1: Picture fuzzy decision matrix given by following:

C 1 C 2 C 3 C 4

A1 〈0.2, 0.1, 0.6〉 〈0.5, 0.3, 0.1〉 〈0.5, 0.1, 0.3〉 〈0.4, 0.3, 0.2〉
A2 〈0.1, 0.4, 0.4〉 〈0.6, 0.3, 0.1〉 〈0.5, 0.2, 0.2〉 〈0.2, 0.1, 0.7〉
A3 〈0.3, 0.2, 0.2〉 〈0.6, 0.2, 0.1〉 〈0.4, 0.1, 0.3〉 〈0.3, 0.3, 0.4〉
A4 〈0.3, 0.1, 0.6〉 〈0.1, 0.2, 0.6〉 〈0.1, 0.3, 0.5〉 〈0.2, 0.3, 0.2〉

Step 2: Since the criteria C2 and C3 are the cost criteria while C1 and C4 are
benefit criteria, so we get normalized decision matrix using Eq. (6) as follows:

C 1 C 2 C 3 C 4

A1 〈0.6, 0.1, 0.2〉 〈0.5, 0.3, 0.1〉 〈0.5, 0.1, 0.3〉 〈0.2, 0.3, 0.4〉
A2 〈0.4, 0.4, 0.1〉 〈0.6, 0.3, 0.1〉 〈0.5, 0.2, 0.2〉 〈0.7, 0.1, 0.2〉
A3 〈0.2, 0.2, 0.3〉 〈0.6, 0.2, 0.1〉 〈0.4, 0.1, 0.3〉 〈0.4, 0.3, 0.3〉
A4 〈0.6, 0.1, 0.3〉 〈0.1, 0.2, 0.6〉 〈0.1, 0.3, 0.5〉 〈0.2, 0.3, 0.2〉

Step 3: Computing the values of weighted Dice similarity measure by applying
Eq. (5).

w (A∗, A1) = 0.59053

w (A∗, A2) = 0.8057

w (A∗, A3) = 0.6259

w (A∗, A4) = 0.3585

Ranking of all alternatives is obtained in accordance with the descending values
of weighted Dice similarity measure, as A2 > A3 > A1 > A4.

Hence the best financial strategy is A2 i.e. to invest in Asian market. We
compare our result with method given in Sect. 5.1 of Garg [5], and our result is
same as obtained using the PFWA operator defined by Garg [5] i.e. A2 > A3 >
A1 > A4.

8 Comparison with Other Methods

1. Comparing our results with the method using cosine similarity measure given
by Wie [9], we get following values of weighted cosine similarity measure

wc (A∗, A1) = 0.7835
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wc (A∗, A2) = 0.8510

wc (A∗, A3) = 0.7557

wc (A∗, A4) = 0.5806

Ranking all the alternatives in accordance with the descending values of
weighted cosine similarity measure, as A2 > A1 > A3 > A4. Hence the
best alternative is A2, which is same as our result.

2. We compare our result with method given in Sect. 5.1 of Garg [5], and our
result is same as obtained using the PFWA operator defined by Garg [5] i.e.
A2 > A3 > A1 > A4.

9 Conclusion

In this paper, we have presented a new method for handling multi criteria deci-
sion making problems, where the characteristics of the alternative are repre-
sented by picture fuzzy sets. Furthermore, a decision making method was estab-
lished by the use of proposed Dice similarity measure and weighted Dice simi-
larity measure for picture fuzzy sets. Illustrative example demonstrated the fea-
sibility of the proposed method in practical applications. The proposed method
differs from previous approaches for multi criteria decision making not only due
to fact that the proposed method uses PFS theory rather than other fuzzy the-
ories, but also due to the Dice similarity measure and weighted Dice similarity
measure based on PFS, the calculations are compact and much easier to analyze.
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Abstract. In this article, we discussed the dynamical behaviour of a
fractional order HIV/AIDS virus dynamics model which takes account
the cure of infected cells and loss of viral particles due to the fusion into
uninfected cells. The local and global stability of the model is studied
for disease-free equilibrium point with the help of next generation matrix
method. Moreover, the numerical solutions for some particular cases are
provided to verify the analytical results.
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1 Introduction

The fractional derivative has been widely applied in many research areas which
have been perceived an enormous growth in the last four decades. For examples,
the models approaching the backgrounds of economics, physics, circuits, heat
transfer, diffusion, electro-chemistry, and even biology are always apprehensive
with fractional derivative [1–5]. In fact, fractional derivative based approaches
establish more advanced and updated models of engineering systems than the
ordinary derivative based approaches do in many applications. The theories of
fractional derivatives generalize the idea of ordinary derivatives to some extent.
The literature shows that there is no field that has remained untouched by
fractional derivatives. However, development still needs to be achieved before
the ordinary derivatives could be truly interpreted as a subset of the fractional
derivatives [6–8].

In 2012, Safiel et al. [9] examines the effect of screening and treatment on
the transmission of HIV/AIDS infection in a population and shows the screen-
ing of HIV infectives and treatment of screened HIV infectives has the effect of
reducing the transmission of the disease. Kaur et al. [10] studied the transmis-
sion of infectives and counselling on the spread of HIV infection. In 2009, Ding
and Ye [11] introduce a fractional-order HIV infection of CD4+ T-cells model,
which determined the non-negative solutions, and carry out a detailed analysis
on the stability of equilibrium. Gkdogan et al. [12] have applied the multi-step
c© Springer Nature Singapore Pte Ltd. 2018
D. Ghosh et al. (Eds.): ICMC 2018, CCIS 834, pp. 141–148, 2018.
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differential transform method to present an analytical solution of nonlinear frac-
tional order HIV model for infection of CD4+ T cells. Recently, Arafa et al. [13]
describes the fractional-order model for HIV infection of CD4+ T cells with ther-
apy effect, and they employed Generalized Euler Method to find the numerical
solution of such problem.

More precisely, we reflect on a HIV/AIDS virus dynamic model describing
the interaction between the host susceptible CD4+ T cells (H), infected CD4+

T cells (I) and virus (V), and it is formulated by the following non-linear system
of fractional differential equations in Caputo sense

Dα
0 H = μ − (δ + γ)HV − d1H + σI (1a)

Dα
0 I = δHV − (d2 + σ)I (1b)

Dα
0 V = βI − γHV − d3V (1c)

and the initial conditions are

H(0) = H0, I(0) = I0, V (0) = V0, (2)

where the formation rate of susceptible host cells is μ, die at a rate d1H and
turn into infected δHV by virus, recovered or cured at a rate σI and destroy
at a rate γHV due to fusion. Infected cells might be killed because of virion in
their nucleus. The loss rate of infected cells is given by (d2 + σ)I, where d2I is
the death rate of infected cells and σI is the cure rate into the susceptible cells.
Finally, virions are produced by infected cells at a rate βI, decays at a rate d3V ,
and destroy at a rate γHV due to fusion.

In this study, we analysed a HIV/AIDS dynamical model with effect of fusion.
One more vital feature of the model is the fact that we incorporate also a cure
rate of the infected cells to the susceptible cells.

2 Analysis of the Model

2.1 Positivity and Boundedness

Denote IR3
+ = {x ∈ IR3 : x ≥ 0} and let x(t) = [H(t), I(t), V (t)]T . To prove

the main theorem, we need the following generalized mean value theorem and
corollary [9,12].

Lemma 1 ([11]). Suppose that f(x) ∈ C[a, b] and Caputo derivative Dα
a f(x) ∈

C[a, b] for 0 < α ≤ 1, then we have

f(x) = f(a) +
1

Γ(α)
(Dα

a f)(τ)(x − a)α (3)

with a ≤ τ ≤ x, ∀x ∈ (a, b].

Corollary 2. Let f(x) ∈ C[a, b] and Caputo derivative Dα
a f(x) ∈ C[a, b] for

0 < α ≤ 1.
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– If Dα
a f(x) ≥ 0, ∀x ∈ (a, b), then f(x) is non-decreasing function for each

x ∈ [a, b].
– If Dα

a f(x) ≤ 0, ∀x ∈ (a, b), then f(x) is non-increasing function for each
x ∈ [a, b].

Theorem 3. There is a unique solution x(t) = [H(t), I(t), V (t)]T to the system
(1) and initial condition (2) on t ≥ 0 and the solution will remain in IR3

+.
Furthermore, H(t) and I(t) are all bounded.

Proof. According to Lin [14], we can determine the solution on (0,+∞), by
solving the model (1) and initial conditions (2), which is not only existent but
also unique. Subsequently, we have to explain the non-negative octant IR3

+ is a
positively invariant region. From Eq. (1), we find

Dα
0 H = μ > 0, Dα

0 I = δHV ≥ 0, Dα
0 V = βI ≥ 0. (4)

By Corollary 2, the solution of model (1) will be remain in IR3
+. Furthermore,

from equation (1) we make out that

Dα
0 Ttotal = μ − γHV − d1H − d2I,

where, Ttotal = H + I.

Death by infected CD4+ T cells occurs faster than death by natural means;
that is, d2 > d1. Therefore,

Dα
0 Ttotal + d1Ttotal < μ. (5)

Thus, by Corollary 2, in the case of HIV infection, the total T-cell population,
Ttotal, i.e., the sub populations H(t) and I(t), are bounded.

2.2 Equilibrium Points, Reproduction Number and Local Stability

Equilibrium Points. To evaluate the equilibrium points of model (1), let

Dα
0 H = 0, Dα

0 I = 0, Dα
0 V = 0. (6)

Then E0 = ( μ
d1

, 0, 0) and E∗ = (H∗, I∗, V ∗) are the infection-free and
endemic equilibrium points, respectively, where

H∗ =
d3(d2 + σ)

βδ − γ(d2 + σ)
,

I∗ =
δ(d1d3(d2 + σ) + μ(γ(d2 + σ) − βδ)
(γ(d2 + σ) − βδ)(d2(γ + δ) + γσ)

,

V ∗ =
μ(βδ − γ(d2 + σ)) − d1d3(d2 + σ)

d2d3(γ + δ) + d3γσ
.
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Reproduction Number. Now, we compute the reproduction number (�0) for
the model (1). �0 is defined as the number of secondary infections due to a single
infection in a completely susceptible population, and it is

�0 =
βδμ

(d1d3 + γμ)(d2 + σ)
. (7)

Local Stability of Equilibria. The Jacobian matrix of model (1) at a general
point is given by

J =

⎛
⎝

−d1 − (γ + δ)V σ −(γ + δ)H
δV −d2 − σ δH

−γV β −d3 − γH

⎞
⎠ (8)

Based on Jacobian matrix approach by evaluating (8) at infection-free equi-
librium point E0, we can obtain the following results:

Lemma 4. The infection-free equilibrium point E0 is locally asymptotically sta-
ble if all eigenvalues λi of the Jacobian matrix J(E0) for model (1), satisfy
|arg(λi)| > απ

2 .

Proof. The Jacobian matrix J(E0) for model (1) evaluated at the infection-free
equilibrium steady state E0, is given by

J(E0) =

⎛
⎝

−d1 σ −(γ + δ) μ
d1

0 −d2 − σ δ μ
d1

0 β −d3 − γ μ
d1

⎞
⎠ (9)

The characteristic equation of the Jacobian matrix J(E0) is

(λ + d1)(λ2 + a1λ + a2) = 0,

where, a1 = (σ + d2 + d3 + γ μ
d1

) > 0, and,

a2 =
(d1d3 + μγ)(d2 + σ) − βδμ

d1
=

1 − �0

d1(d1d3 + μγ)(d2 + σ)
. (10)

Many researchers studied the Routh-Hurwitz stability conditions for frac-
tional order systems [12–15], and describe the necessary and sufficient condition
|arg(λi)| > απ

2 , for various models. Routh–Hurwitz criteria states that all roots
of the characteristic equation (λ+d1)(λ2+a1λ+a2) = 0 have negative real parts
if and only if a1 > 0 and a2 > 0. Therefore, Eq. (10) implies that if �0 < 1 then
all roots will be negative and for this condition the necessary and sufficient con-
dition will satisfy. Hence, a sufficient condition for the local asymptotic stability
of the equilibrium points is that the eigenvalues λi of the Jacobian matrix of
J(E0) satisfy the condition |arg(λi)| > απ

2 . This confirms that fractional-order
differential equations are, at least, as stable as their integer order counterpart.

The global existence of the solution of the fractional differential equation
always becomes a most important concern, which is carry out in the next section.
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2.3 Global Stability of Equilibria

Lemma 5 ([14]). Assume that the function G : IR+ × IR3 → IR3 satisfies the
following conditions in the global space:

(I) The function G(t, x(t)) is Lebesgue measurable with respect to t on IR.
(II) The function G(t, x(t)) is continuous with respect to x(t) on IR3.

(III)
∂G(t, x(t))

∂x
is continuous with respect x(t) on IR3.

(IV) ‖G(t, x(t))‖ ≤ ω + λ‖x‖, for almost every t ∈ IR and all x ∈ IR3.

Here, ω, λ are two positive constants and x(t) = [H(t), I(t), V (t)]T .
Then, the initial value problem

{
Dα

t x(t) = G(t, x(t)),
x(t0) = x0,

(11)

has a unique solution.

Theorem 6. There is a unique solution for system (1) and solution remains in
IR3

+.

Proof. From Lemma 5, we obtain the unique solution on (0,∞) by solving the
system (1). Firstly, Lin [14] discussed the proof of theorem and shows that the
solution is not only exist but also unique. In Theorem3, we already proof that
the solution of model (1) will be remain in IR3

+. The global stability of the model
also verified with the help of Fig. 1, which shows after some time the susceptible
population is going to constant while the number of infected population and
virions are tends to zero, i.e., we achieve the infection-free stage.

3 Numerical Results and Discussion

In this article, we will solve the system (1) by using Mathematica 9. Con-
sider that μ = 10 mm−3day−1, β = 160 day−1, δ = 0.000024 mm3day−1,
γ = 0.00001 mm3day−1, σ = 0.2 day−1, d3 = 3.4 day−1 [13]. We choose
d1 = 0.05 day−1 and d2 = 0.6 day−1 (since death rate of host infected cells
by virions will be slightly higher than those of susceptible cells) with initial con-
ditions H(0) = 1000, I(0) = 10 and V (0) = 10. The recovery rate σ will vary
for situation of the patient, such as availability of the drugs, etc.

Figure 1(a) shows that the host susceptible CD4+ T cell population decreases
with increase of time and tends to positive equilibrium point μ

d1
. Figure 1(b)

verify that infected CD4+ T cell population is increases in the first ten days,
after that it decreases drastically with increase of time and it tends to zero.
Similarly, Fig. 1(c) exhibit that first ten days the virus population is increases
rapidly compare to infected population later on decreased radically and it tends
to zero.
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(a)

(b)

(c)

Fig. 1. The densities of the host susceptible population H(t), infected population I(t)
and virions V(t) when α = 1, μ = 10, β = 160, δ = 0.000024, γ = 0.00001, d1 = 0.05,
d2 = 0.06, d3 = 3.4. The solid line (σ = 0.23), the dashed line (σ = 0.20), and the
dotted line (σ = 0.17).
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4 Conclusion

In this paper, we establish a system of Caputo sense fractional-order HIV/AIDS
dynamics model with the help of Srivastava and Hattaf et al. [16,17]. The author
explained the non-negative solutions and boundedness as an essential part of any
population dynamics model. The authors have defined the equilibrium points
and reproduction number for the proposed model. By using stability analysis on
an anticipated fractional order system, we obtained a sufficient condition on the
parameters for the stability of the infection-free steady state. The recent appear-
ance of fractional differential equations as models in some fields of applied math-
ematics makes it necessary to investigate analysis of solution for such equations
and we hope that this work is a step in this direction. The numerical solutions
have performed for different values of σ.
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Abstract. This paper deals with a new fuzzy number namely, cloudy
fuzzy number and its new defuzzification method for a classical economic
order quantity (EOQ) inventory management problem. In fuzzy system,
the measures of ambiguity depend upon the area of applicability and the
observations of experimenters. The lack of insight over the set consid-
eration causes the invention of new fuzzy set “cloudy fuzzy set”. The
traditional assumptions over fuzziness were fixed over time, but in this
study we see fuzziness can be removed as time progresses. Here the crisp
model is solved first then taking the demand rate as general fuzzy as well
as cloudy fuzzy number we have solved the problem under usual Yager’s
index method and extension of Yager’s index method respectively. With
the help of numerical example we have compared the objective values for
all cases and the implication of the cloudy fuzzy number has been dis-
cussed exclusively. Graphical illustrations, sensitivity analysis are given
for better justification of the model. Finally, a conclusion is made.

Keywords: Inventory · Cloudy fuzzy number · Cloud index
Extension of Yager’s index method · Optimization

1 Introduction

The classical EOQ model was developed with some limitations in the early stage
of 20th century. Till date it has been expanded in many dimensions towards the
creation of deterministic models. Harris (1915) developed the concept of model-
ing in the management problem. In the threshold period of developing inventory
management Hanssmann (1962), Hadley and Whitin (1963) worked a lot over
inventory system. By this time Ghare and Schrader (1963) studied a model
for exponentially decaying inventory. Haneveld and Teunter (1998) discussed
the effects of discount and demand rate variability on the EOQ model. Hariga
(1996) studied an EOQ model for deteriorating items with time-varying demand.
Fuzzy sets was first developed by Zadeh (1965), subsequently, it was applied by
Bellman and Zadeh (1970) in decision making problem. Since then several
researchers were being engaged to characterize the actual nature of the fuzzy
c© Springer Nature Singapore Pte Ltd. 2018
D. Ghosh et al. (Eds.): ICMC 2018, CCIS 834, pp. 149–163, 2018.
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sets [Dubois and Prade (1978); Kaufmann and Gupta (1992); Báez-Sáncheza
et al. (2012); Ban and Coroianu (2014); De and Sana (2015)]. Goetschel and
Voxman (1985) studied over eigen fuzzy number sets.

In fuzzy environment, the inventory system itself have been developing in its
natural way under great thinkers. In its process, Lee and Yao (1999) developed a
fuzzy EOQ model without back order. De et al. (2003, 2008) studied the inven-
tory model considering fuzzy demand rate, fuzzy deterioration rate and fuzzy
cost co-efficient respectively. De (2013) developed an EOQ model with natural
idle time and wrongly measured demand rate. De and Sana (2013) studied fuzzy
order quantity inventory model with fuzzy shortage quantity and fuzzy promo-
tional index. Kao and Hsu (2002) developed a lot size-reorder point inventory
model with fuzzy demands. Kumar et al. (2012) developed a fuzzy model for
ramp type demand and partial backlogging.

However in defuzzification analysis, specially, on ranking fuzzy numbers the
contribution of Yager (1981) kept a unquestionable destination. Few years later
a huge number of researchers were began to study over the ranking methods and
finally invented numerous formulae over the subject. Researchers like Chu and
Tsao (2002), Ramli and Mohamad (2009), Allahviranloo and Saneifard (2012),
Ezzati et al. (2012), Deng (2014) etc. discussed the methods for ranking fuzzy
numbers based on center of gravity. Cheng (1998) discussed a new approach
for ranking fuzzy numbers by distance method. Buckley and Chanas (1989)
discussed a fast method of ranking alternatives using fuzzy numbers. Ezatti and
Saneifard (2010) developed a method of continuous weighted quasi-arithmetic
means. Based on deviation degree, the extensive works over L-R fuzzy numbers
by Wang et al. (2009), Kumar et al. (2011), Hajjari and Abbasbandy (2011), Xu
et al. (2012) etc. kept a new milestone in the subject. Yu et al. (2013) developed
fuzzy ranking generalized fuzzy numbers in fuzzy decision making based on the
left and right transfer coefficients and areas. Zhang et al. (2014) studied a new
method for ranking fuzzy numbers and its application to group decision making
problems. Rezvani (2015) developed ranking generalized exponential trapezoidal
fuzzy numbers based on variance. De and Beg (2016) used the learning experience
over fuzzy set and introduced the triangular dense fuzzy set (TDFS). Karmakar
et al. (2017) applied the TDFS on a pollution sensitive EOQ model. De (2017)
extended the TDFS and developed triangular dense fuzzy lock set. Very recent
De and Mahata (2017) have studied the cloudy fuzzy numbers on an backordered
inventory model.

In our present study, we have utilized a new fuzzy number namely cloudy
fuzzy number and its corresponding new defuzzification technique via the exten-
sion of Yager (1981)’s ranking index method. By this study we have shown that,
a cloud indicator exists and it cannot be removed in any inventory process. A
simple EOQ model has been considered and the model itself has been solved
by crisp, general fuzzy and cloudy fuzzy environments also. A numerical study
followed a comparative graphical illustrations and a sensitivity analysis as well.
Finally decision is made over the applicable region by realistic feasibility of the
model itself.
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2 Preliminary

2.1 Normalized General Triangular Fuzzy Number (NGTFN) [De
and Mahata (2017)]

Let D̃ be a NGTFN having the form D̃ = 〈D1,D2,D3〉. Then its membership
function (Fig. 1) is defined by

μ(x) =

⎧
⎨

⎩

0 ifD < D1 and D > D3
D−D1
D2−D1

if D1 < D < D2
D3−D
D3−D2

if D2 < D < D3

(1)

Fig. 1. Membership function of NGTFN

Now, the left and right α-cuts of μ(D) are given by

L(α) = D1 + α(D2 − D1) and R(α) = D3 − α(D3 − D2) (2)

Note that the measures of fuzziness can be obtained from the following formula.

2.2 Yager’s (1981) Ranking Index

If L(α) and R(α) are the left and right α-cuts of a fuzzy number D̃ then the
defuzzification rule under Yager’s ranking index is given by

I(D̃) =
1
2

∫ 1

0

{L(α) + R(α)}dα =
1
4
(D1 + 2D2 + D3) (3)

Note that the measures of fuzziness (degree of fuzziness df ) can be obtained
from the formula df = 1

2m (Ub − Lb) where Lb and Ub are the lower bounds and
upper bounds of the fuzzy numbers respectively and m be their respective mode.
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2.3 Cloudy Normalized Triangular Fuzzy Number (CNTFN) [De
and Mahata (2017)]

A fuzzy number of the form Ã = 〈a1, a2, a3〉 is said to be cloudy triangular fuzzy
number if after infinite time the set itself converges to a crisp singleton. This
means that, as t tends to infinity, both a1, a3 → a2.

Let us consider the fuzzy number

Ã = 〈a2(1 − ρ

1 + t
), a2, a2(1 +

σ

1 + t
)〉, for 0 < ρ, σ < 1 (4)

Note that, lim
t→∞a2(1− ρ

1 + t
) → a2 and lim

t→∞a2(1+
σ

1 + t
) → a2, so Ã → a2. Then

the membership function for 0 ≤ t as follows:

μ(x, t) =

⎧
⎪⎪⎨

⎪⎪⎩

0 ifx < a2(1 − ρ
1+t ) and x > a2(1 + σ

1+t )
x−a2(1− ρ

1+t )
ρa2
1+t

if a2(1 − ρ
1+t ) < x < a2

a2(1+
σ

1+t )−x
σa2
1+t

if a2 < x < a2(1 + σ
1+t )

(5)

The graphical representation of CNTFN is given in Fig. 2.

2.4 Defuzzification Method of CNTFN [De and Mahata (2017)]

Let Ã be a CNTFN stated in (4). We take left and right α-cuts of μ(x, t) from
(5) noted as L(α, t) and R(α, t) respectively. Then the defuzzification formula
under time extension of Yager’s ranking index is given by

I(Ã) =
1

2T

∫ α=1

α=0

∫ t=T

t=0

{L(α, t) + R(α, t)}dαdt (6)

Note that, α and t are independent variables. Now by using (6) for CNTFN (4),
we get

I(Ã) =
a2

2T
[2T +

(σ − ρ)
2

Log(1 + T )] (7)

Again (7) can be rewritten as

I(Ã) = a2[1 +
(σ − ρ)

4
Log(1 + T )

T
] (8)

Obviously lim
T→∞

Log(1 + T )
T

→ 0 and therefore I(Ã) → a2.

Now, we may call the factor
Log(1 + T )

T
as cloudy index (CI) (9)
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Fig. 2. Membership function of CNTFN

Here also we notice that, since for practical purpose the time horizon cannot
be infinite so after defuzzification the indexed values do not come back to its
crisp original even the restrictions have been removed in our assumptions.

3 Assumptions and Notations

The following notations and assumptions are used to develop the model.

3.1 Assumptions

1. Replenishments are instantaneous.
2. The time horizon is infinite (months).
3. Shortages are not allowed.

3.2 Notations

q The order quantity per cycle.
d Demand rate per year.
k Setup cost per cycle ($).
h Inventory holding cost per unit quantity per cycle ($).
c Purchasing price of unit item ($).
T Cycle time (days).
z Average total cost of the inventory ($).
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4 Crisp Mathematical Model (Classical EOQ Model)

Let the inventory starts with order quantity q and it depletes with the constant
demand rate d. Then upto the cycle time T it reaches zero. The costs associated
with it are unit purchasing price, unit holding cost and set up cost only. Therefore
the average total cost is given by (shown in Fig. 3.)

{
z = cd + k

T + hdT
2

Subject to q = dT
(10)

Thus our problem is given by
{

Minimize z = cd + k
T + hdT

2
Subject to q = dT

(11)

5 Formulation of the Fuzzy Mathematical Model

Let the demand rate follows the fuzzy flexibility during the inventory run time.
Then fuzzifying (11) we have

{

Minimize z̃ = cd̃ + k
T + hd̃T

2

Subject to q̃ = d̃T
(12)

Now let us consider the fuzzy number d̃ as follows:

d̃ =

⎧
⎨

⎩

〈d1, d2, d3〉 for NGTFN
〈d(1 − ρ

1+t ), d, d(1 + σ
1+t )〉 for CNTFN

for 0 < ρ, σ < 1 and T > 0
(13)

Therefore, using (1) the membership function for the fuzzy objective and order
quantity under NGTFN are given by

μ1(z) =

⎧
⎨

⎩

0 if z ≤ z1 and z ≥ z3
z−z1
z2−z1

if z1 ≤ z ≤ z2
z3−z
z3−z2

if z2 ≤ z ≤ z3

(14)

where z1 = (c + hT
2 )d1 + k

T , z2 = (c + hT
2 )d2 + k

T and z3 = (c + hT
2 )d3 + k

T

μ2(q) =

⎧
⎨

⎩

0 if q ≤ q1 and q ≥ q3
q−q1
q2−q1

if q1 ≤ q ≤ q2
q3−q
q3−q2

if q2 ≤ q ≤ q3

(15)

for q1 = d1T, q2 = d2T and q3 = d3T
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Fig. 3. The Classical EOQ model

Using (2)–(3) the index values of fuzzy objective and order quantities are
respectively given by

{
I(z̃) = 1

4 (z1 + 2z2 + z3) = 1
4 (d1 + 2d2 + d3)(c + hT

2 ) + k
T

I(q̃) = 1
4 (q1 + 2q2 + q3) = 1

4 (d1 + 2d2 + d3)T
(16)

Again, using (5) the membership function for the fuzzy objective and order
quantity under CNTFN are given by

w1(z, T ) =

⎧
⎨

⎩

0 if z ≤ z1 and z ≥ z3
z−z1
z2−z1

if z1 ≤ z ≤ z2
z3−z
z3−z2

if z2 ≤ z ≤ z3

(17)

where z1 = (c + hT
2 )d(1 − ρ

1+T ) + k
T , z2 = (c + hT

2 )d + k
T and z3 = (c + hT

2 )d(1 +
σ

1+T ) + k
T

w2(q, T ) =

⎧
⎨

⎩

0 if q ≤ q1 and q ≥ q3
q−q1
q2−q1

if q1 ≤ q ≤ q2
q3−q
q3−q2

if q2 ≤ q ≤ q3

(18)

for q1 = d(1 − ρ
1+T )T, q2 = dT and q3 = d(1 + σ

1+T )T
Using (6) the index values of fuzzy objective and order quantities are respectively
given by

⎧
⎨

⎩

I(z̃) = cd + hdT
4 + k

T Log|T
ε | + cd(σ−ρ)

4
Log(1+T )

T + hd(σ−ρ)
8

{
1 − Log(1+T )

T

}

I(q̃) = dT
2 + d(σ−ρ)

4

{
1 − Log(1+T )

T

}

(19)
Here we take ε as sufficiently small so that the given objective converges at a
finite value.

6 Implication of Cloudy Fuzzy Environment in Inventory
Process

The concept of fuzziness usually arises from the uncertainties over a particular
subject. Meanwhile suppose x be a crisp number then under uncertainties it will
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be “around x”. Our focus of attention in this uncertainty depends upon the sit-
uation over time. In any inventory process, initially the uncertainties viewed are
high as there is no information available about the production process, demand
and customer’s behavior. But, as the time progresses the decision-maker gains
more information, analyzes the situation and the uncertainties begin to decrease.
With time, experience and knowledge the prediction becomes precise and after
a long period of time it becomes more and more accurate. In such way the ambi-
guities underlying in the inventory system can be removed after a long time and
it is experiencing from the very ancient stage of any management system. When
the inventory cycle time is low the ambiguity is high and reversely if the cycle
time is high then uncertainty is low; it is the most common phenomenon of day
to day life. Let us consider about the ambiguity over the demand rate, a most
vital parameter of an inventory process. Here at the beginning the ambiguity
over demand rate is high because, the people will usually take much time (no
matter what offers have been declared or how attractive the getup of the sys-
tem be) to accept and adopt the process. If the cycle time ends at the “fully
adopted” time period then the cost becomes high. The basic insight in the public
opinion is that ‘the system is less reliable’ as because the DM is hesitating to
run the process more time. This feeling must affect directly to the customers’
satisfactions as well as on demand rate. However as the cycle time becomes more
the customers are began to satisfy. A saturation on adoptability and reliability
reaches. So the ambiguities have been removed from the process and a grand
paradigm shift on progress (financial development, cost minimization, achieve-
ment of large customer) of that system has been viewed. Since the cloud of
uncertainties removes over time from the process so such uncertainties we have
named as ‘cloudy fuzzy’. Hence the concept is noble.

7 Numerical Example-1

Let us consider c = 10, h = 2.5, k = 155, d = 20, 〈d1, d2, d3〉 = 〈16, 20, 22〉,
σ = .15, ρ = .12, ε = .05 in the Eqs. (11), (16) and (19) then we get the following
results.

Table 1. Optimal solution of the classical EOQ model

Model T (days) q∗ z∗($) df = Ub−Lb
2m CI = Log(1+T )

T

Crisp 2.49 49.80 324.50 ... ...

Fuzzy 2.52 49.17 317.93 0.141 ...

Cloudy fuzzy 7.00 70.18 397.50 ... 0.129



A Study of an EOQ Model Under Cloudy Fuzzy Demand Rate 157

Table 2. Objective values under several cycle times

Cycle time Crisp model Fuzzy model Cloudy fuzzy model

T (days) q∗ z∗ q∗ z∗ q∗ z∗

2 40 327.50 39.00 321.25 20.07 511.80

3 60 326.67 58.50 319.79 30.08 449.84

4 80 338.75 78.00 331.25 40.09 420.52

5 100 356.00 97.50 347.88 50.10 405.92

6 120 375.83 117.00 367.08 60.10 399.29

7 140 397.14 136.50 387.77 70.10 397.50

8 160 419.38 156.00 409.38 80.10 398.88

9 180 442.22 175.00 431.60 90.10 402.46

10 200 465.50 195.00 454.25 100.10 407.63

8 Discussion on Tables 1 and 2

From Table 1 we see that, the total average cost ($317.93 only) is minimum
with the order quantity 49.17 units and the replenishment time (cycle time)
2.52 days only whenever a general fuzzy solution is considered. But the cloudy
fuzzy solution is giving the inventory cost something more values ($397.50) with
respect to other solutions. Again Table 2 shows, at cycle time 3 days the crisp and
fuzzy objective giving better solution but among them fuzzy solution is better.
Moreover we see when the cycle time reaches 7 days the crisp as well as cloudy
fuzzy objective behaves almost same but the order quantity is minimum due to
cloudy fuzzy (70.11 units only) where the fuzzy objective gets something less
value throughout.

Also the degree of fuzziness (df ) under general fuzzy numbers is 0.140 (see
Appendix) for all the time and the cloudy fuzzy index at the optimum cycle time
is 0.129 (<df ).

However we may take cloudy fuzzy solution as a final decision whenever (sit-
uation basis) it is impossible to replenish the items each after 3 days exclusively.
By this study we may draw the following merits:

1. Merits of Fuzzy Solutions: It can be accepted if the items are easy to
replenish and a huge number of items are available in the market as per instant
order, it can be applicable in the market situating at the geographically plane
region provinces.

2. Merits of Cloudy Fuzzy Solutions: It can be chosen when the items
are not easy to replenish due to some transportation problem as well as
unavailability in a huge lot in the market as per instant order, it can be
applicable in the market situating at the geographically hilly region provinces.
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9 Sensitivity Analysis

Let us take the sensitivity of the parameters c, h, d, k, ε, ρ and σ from (−50% to
+50%) in Table 3.

Table 3. Sensitivity analysis of the cloudy fuzzy objective

Parameters % change T ∗ (days) q∗ z∗ z∗−z∗
z∗ 100%

c +50% 7.00 70.17 497.72 53.37

+30% 7.00 70.14 457.63 41.02

−30% 7.00 70.07 337.37 3.97

−50% 7.00 70.05 297.28 −8.38

h +50% 5.54 55.53 436.28 34.44

+30% 6.02 60.30 421.83 29.98

−30% 8.58 85.93 368.52 13.55

−50% 10.39 103.98 344.97 6.31

d +50% 5.55 83.35 536.54 63.34

+30% 6.02 78.43 481.97 48.53

−30% 8.58 60.12 308.40 −4.96

−50% 10.38 51.94 244.80 −24.56

k +50% . . . . . . . . . . . .

+30% . . . . . . . . . . . .

−30% 5.71 57.15 362.03 11.56

−50% 4.70 47.06 334.34 3.03

ε +50% 6.57 65.62 388.24 19.64

+30% 6.73 67.37 391.57 20.66

−30% 7.35 73.62 405.20 24.87

−50% 7.66 76.74 412.15 27.01

ρ +50% . . . . . . . . . . . .

+30% 7.00 69.86 396.81 22.28

−30% 7.00 70.36 398.19 22.71

−50% 7.00 70.53 398.65 22.86

σ +50% 7.00 70.63 398.94 22.93

+30% 7.00 70.42 398.37 22.76

−30% 7.00 60.79 396.63 22.22

−50% 7.00 69.59 396.06 22.04

10 Discussion on Sensitivity Analysis Table 3

From Table 3 we see that, the purchasing cost, the holding cost and the demand
rate are highly sensitive parameters. When c and h are increased by +50% then
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the objective values are increased by +53.37% and +63.34% respectively. In other
changes they are sensitive on average. Whenever the demand rate decreases to
−50% the objective value reaches at −24.56% only giving the minimum cost
among all the parametric changes in the whole table. When the ordering cost
changes +50% and +30% and the parameter ρ changes +50% then the objective
function gives no feasible solution. At −30% and −50% changes of the ordering
cost k, a negligible sensitivity occurs for the objective itself. In case of model
convergence parameter ε and fuzzy denoting parameters (ρ, σ), for all changes
the objective function behaves average sensitivity as well.

11 Graphical Illustrations of the Model

Here we draw the figures of the proposed model under three different cases.

Fig. 4. Total average cost vs. cycle time

12 Discussion on Figs. 4 and 5

From the Fig. 4 we see that, when the fuzzy and crisp objective functions follow
an exponential path but the cloudy fuzzy follows a hyperbolic path and they meet
at some points. In cloudy fuzzy objective, at the very beginning its value was high
(due to high ambiguity) and it began to decrease (due to disappearance of the
clouds) with cycle time and finally gets the minimum value at 7 days cycle time
only. However, the fuzzy objective path meets below the cloudy objective path,
it indicates that fuzzy solution giving better solution (due to fuzzy constancy)
for the same cycle time. The crisp objective path passes above side by side
with the fuzzy path without intersecting each other. This shows that they are
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Fig. 5. Order quantity vs. cycle time

independent. Also the Fig. 5 explores that, the order quantities for crisp as well
as fuzzy model are very high (and they are very often overlapping over cycle
time) with respect to that of cloudy fuzzy model. In cloudy fuzzy model the
order quantity is restricted within 10 daysts for 10 days cycle time but it becomes
doubled for the other cases also.

13 Conclusion

Here we have developed a classical EOQ model under cloudy fuzzy environment.
In our work, the fuzzification by cloudy fuzzy set theory has been discussed
elaborately. The proposed method is simple and easy for computation. We have
seen some cases the crisp as well as general fuzzy solution is better but they
do not obey the reality. Also, we have observed the cost function of cloudy
fuzzy cuts those crisp cost and the fuzzy cost near the same points. So the
true solution will be there (no matter whether any one of these curves getting
minimum values beyond these intersecting points or not). The basic drawback
of the general fuzzy model is that it keeps the same uncertainties in all the time
which is an unrealistic assumption. Thus DM’s view point the following decision
can be achieved:

1. Choose a solution so that replenishment time obeys the practice.
2. Choose a solution where the uncertainty/ambiguity is less.
3. Choose the final solution where the curves for fuzzy and cloudy fuzzy meet

at a point.
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Finally, “A birth follows a death”-so nothing is immortal, the concept of infinite
time is vague and hence time is finite. Therefore, solution must come within
cloudy fuzzy environment. Further, we are warning that, in no cases total cloud
can be removed in practice. This is the central focus of attraction of this article.
In future, we can apply the cloudy fuzzy in more complex inventory model,
stochastic model as well as in supply chain models.

Appendix

We have the demand rate as fuzzy number 〈d1, d2, d3〉 = 〈16, 20, 22〉. The lower
and upper bounds are Lb = 16 and Ub = 22 respectively. The mean is 19.333, the
median is 20, so the mode (m) is 3×median−2×mean = 60−38.666 = 21.334.
Therefore, df = 1

2m (Ub − Lb) = 6
42.668 = 0.141 and CI = Log(1+T )

T = Log(1+7)
7 =

0.129.
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Abstract. In this work, we propose a delayed non-autonomous prey-
predator system with Crowley-Martin functional response (CMFR).
Mutual interference by predators at high prey density differentiate
between Beddington-DeAngelis functional response and CMFR. We dis-
cuss the permanence, extinction, stability, existence and uniqueness of a
globally attractive almost periodic solution (APS). In addition to effect
of Crowley-Martin parameter, we also show that the intrinsic growth rate
leaves positive effect on the permanence of the considered model system.
Some numerical examples are also presented to support obtained analyt-
ical results.

Keywords: Almost periodic solution · Delay
Crowley-Martin functional response · Global stability · Permanence
Periodic solution

1 Introduction

Understanding the relationship between predator and prey is a central goal in
ecology [1,2,5,6,11,14,16]. Almost periodicity and periodicity play significant
role in several branches of science and engineering. There are several reasons due
to which environment varies: like, mating habits, food supplies, harvesting and
therefore several vital rates of populations such as death rates, birth rates and
several others, alter in time [4,9]. When temporal inhomogeneity is incorporated
into a model system, the system becomes a non-autonomous system (a system
with time dependent coefficients). Main objective of the present study is the
analysis of a non-autonomous model with delay [17,22] and CMFR [3,7,8].

A non-autonomous (systems with time dependent periodic or almost periodic
parameters) model system indicates the presence of temporal irregularity in the
environment. In the recent years, almost periodicity [10,27] in ecological mod-
elling has been extensively studied by several authors [17,20,21,23–26]. Here we
c© Springer Nature Singapore Pte Ltd. 2018
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investigate the following prey-predator model system with mutual interference
[15,18]:

dx(t)

dt
= x(t)

(
a1(t) − b1(t)x(t − τ(t))

) − r1(t)x(t)

a(t) + b(t)x(t) + c(t)y(t) + e(t)x(t)y(t)
ym(t),

(1)
dy(t)

dt
= y(t)

( − a2(t) − b2(t)y(t)
)

+
r2(t)x(t)

a(t) + b(t)x(t) + c(t)y(t) + e(t)x(t)y(t)
ym(t),

with the initial conditions
x(θ) = φ(θ), θ ∈ [−τ, 0], φ(θ) ∈ C([−τ, 0], R+),
y(0) > 0, y(θ) ≥ 0, θ ∈ [−τ, 0],

Here x(t) is the size of prey population and y(t) is the size of predator
population; 0 < m < 1; τ(t) is nonnegative and continuously differen-
tiable APF on R, and τ = max

t∈R
{τ(t)}, min

t∈R
{1 − τ̇(t)} > 0. The coefficients

ai(t), bi(t), ri(t), a(t), b(t), c(t), e(t) (i = 1, 2) are continuous positive APFs. For
the ecological meaning of these coefficients, one can refer [19].

2 Boundedness and Permanence

Note that the existence of solutions of the model system (1) can be shown for
all t ≥ 0. In this section, we establish the positive invariance, boundedness,
permanence and global asymptotic stability. Let R2

+={(x, y)∈R2|x ≥ 0, y ≥ 0}.
The positive invariance of the positive half cone can be easily proved.

Now we state a theorem that will help us to show the boundedness and
permanence of the model system (1).

Theorem 1. If al
1 >

ru
1Mm−1

2

el
, then the set defined by

κ :=
{
(x, y) ∈ R2|m1 ≤ x ≤ M1,m2 ≤ y ≤ M2

}

is positively invariant with respect to the system (1), where

M1 :=
au
1

bl
1e

−au
1 τ

, m1 :=
(al

1

bu
1
− ru

1 Mm−1
2

elbu
1

)
exp

{(
al
1 − bu

1M1 − ru
1 Mm−1

2

el

)
τ
}

,

M2 :=
(3ru

2

2al
2

) 1
1−m

, m2 :=
[ rl

2m1

2(au + buM1 + cuM2 + euM1M2)(au
2 + b2M2)

] 1
1−m

.

Theorem 2. The system (1) becomes permanent and the set κ defined in

Theorem1 is an ultimately bounded region (1) if al
1 >

ru
1Mm−1

2

el
hold.

Proof. For the proof of the above theorems (Theorems 1 and 2), one can refer,
[17,19].
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3 Global Attractivity and Almost Periodicity

For relevant definitions and results related to almost periodic functions, we refer
to [24,27].

Theorem 3. Let

P1(t) = b1(t)− r1(t)Mm
2 (b(t) + e(t)ηM2c(t))
ζ2(t,m1,m2)

−
∫ ξ−1(t)

t

b1(u)du
(
a1(t)+b1(t)M1+

r1(s)Mm
2

ζ(t,m1,m2)

)
− M1b1(ξ−1(t))

1 − τ̇(ξ−1(t))

∫ ξ−1(ξ−1(t))

ξ−1(t)

b1(u)du − c(t)r2(t)Mm
2

ηζ(t,m1,m2)
,

P2(t) = − ηmr1(t)
ζ(t,m1,m2)

− η(c(t)+e(t)M1)
ζ2(t,m1,m2)

−
(M2

1 ηmr1(t)

(
M1b(t)+e(t)

M2
ηm−1

)
+r1(t)M

3
1 Mm

2 )

(b(t)m1(s)+ηe(t)m1m2)2

)

∫ ξ−1(t)

t
b1(u)du + ηb2(t) − r2(t)Mm−1

2 M1

{c(t) + e(t)M1

ζ(t,m1,m2)

}
. If all the conditions

of Theorems 1 and 2 and lim inf
t→∞ P1(t) > 0, lim inf

t→∞ P2(t) > 0 hold, then for any

two positive solutions X(t) = (x1(t), y1(t)) and Y (t) = (x2(t), y2(t))) of system
(1), we obtain

lim
t→∞ |X(t) − Y (t)| = 0

Proof. If (x(t),y(t)) be a positive solution of the model system (1) then we
have m1 < x(t) < M1, m2 < y(t) < M2. We define η = min{y(t)}, then
η > m2 > 0. Let us consider any two positive solution X(t) = (x1(t), y1(t)) and
Y (t) = (x2(t), y2(t)) of (1) and let

xi(t) = x(t), yi(t) =
y(t)
η

∀ i = 1, 2. (2)

Furthermore, define ζ(t, x(t), y(t)) = a(t) + b(t)x(t) + c(t)y(t) + e(t)x(t)y(t).
Define

V11(t) = | ln x1(t) − ln x2(t)|.
Calculating the upper right derivative of V11(t) along the solution of (1) it follows
that

D+V11(t) = sgn(x1(t) − x2(t))
( ẋ1(t)

x1(t)
− ẋ2(t)

x2(t)

)

= sgn(x1(t) − x2(t))
[

− b1(t)x1(t − τ(t) − x2(t − τ))

− ηmr1(t)
( ym

1 (t)
ζ(t, x1(t), y1(t))

− ym
2 (t)

ζ(t, x2(t), y2(t))

)]

≤ − b1(t)|x1(t) − x2(t)| + b1(t)
∣∣∣
∫ t

t−τ(t)
(ẋ1(s) − ẋ2(s))ds

∣∣∣ + ηmr1(t)|ym
1 (t) − ym

2 (t)|
ζ(t, x1(t), y1(t))

+
ηmr1(t)

[
(b(t) + e(t)ηc(t)y2(t))|x1(t) − x2(t)| + η(c(t) + ex1(t))|y1(t) − y2(t)|

]

ζ(t, x1(t), y1(t))ζ(t, x2(t), y2(t))
.
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Putting the suitable values of ẋ1(t) and ẋ2(t), we have

D+V11(t) ≤ −b1(t)|x1(t) − x2(t)| + b1(t)
∣∣∣
∫ t

t−τ(t)

{
x1(s)

(
a1(s) − b1(s)x1(s − τ(s))

− ηmr1(s)ym
1 (s)

ζ(s, x1(s), ηy1(s))

)
− x2(s)

(
a1(s) − b1(s)x2(s − τ(s))

− ηmr1(s)ym
2 (s)

ζ(s, x2(s), ηy2(s))

)}
ds

∣∣∣ + ηmr1(t)|ym
1 (t) − ym

2 (t)|
ζ(t, x1(t), y1(t))

+
ηmr1(t)

[
(b(t) + e(t)ηc(t)y2(t))|x1(t) − x2(t)| + η(c(t) + ex1(t))|y1(t) − y2(t)|

]

ζ(t, x1(t), y1(t))ζ(t, x2(t), y2(t))

≤ − b1(t)|x1(t) − x2(t)| + b1(t)
∫ t

t−τ(t)

{
x1(s)

(
a1(s) + b1(s)x1(s − τ(s))

+
ηmr1(s)ym

1 (s)
ζ(s, x1(s), ηy1(s))

)
|x1(s) − x2(s)| + x2(s)b1(s)|x1(s − τ(s)) − x2(s − τ(s))|

+
x1(s)x2(s)ηmr1(s)(x2(s)b(s) + ηe(s)y2(s)|ym

2 (s) − ym
1 (s)|)

(b(s)x1(s) + ηe(s)x1(s)y1(s))(b(s)x2(s) + ηe(s)x2(s)y2(s))

+
x2(s)ym

2 |y2(s) − y1(s)|)
(b(s)x1(s) + ηe(s)x1(s)y1(s))(b(s)x2(s) + ηe(s)x2(s)y2(s))

}
ds

+
ηmr1(t)|ym

1 (t) − ym
2 (t)|

ζ(t, x1(t), y1(t))

+
ηmr1(t)

[
(b(t) + e(t)ηc(t)y2(t))|x1(t) − x2(t)| + η(c(t) + ex1(t))|y1(t) − y2(t)|

]

ζ(t, x1(t), y1(t))ζ(t, x2(t), y2(t))
.

(3)

Now from (2) and (3), we have for t ≥ T + τ

D+V11(t) ≤ −b1(t)|x1(t) − x2(t)| + b1(t)
∫ t

t−τ(t)
ζ(s)ds +

ηmr1(t)|ym
1 (t) − ym

2 (t)|
ζ(t, m1, m2)

+
r1(t)Mm

2

[
(b(t) + e(t)ηM2c(t))|x2(t) − x1(t)|+η(c(t)+e(t)M1)|y1(t) − y2(t)|

]

ζ2(t, m1, m2)
,

(4)

where ζ(s) =
(
a1(s) + b1(s)M1 +

r1(s)Mm
2

ζ(t,m1,m2)

)
|x1(s) − x2(s)| + M1b1(s)|x1(s −

τ(s)) − x2(s − τ(s))|

+
M2

1 ηmr1(s)
(
M1b(s)+e(s) M2

ηm−1 |ym
2 (s) − ym

1 (s)|
)
+r1(s)M3

1Mm
2 |y2(s) − y1(s)|

(b(s)m1(s) + ηe(s)m1m2)2
Define

V12 =

∫ ξ−1(t)

t

∫ t

ξ(t)
b1(u)ζ(s)dsdu, V13 =

∫ t

ξ(t)

∫ ξ−1(ξ−1(v))

ξ−1(v)

b1(u)b1(ξ
−1(v))

1 − τ̇(ξ−1(v))
|x1(v)−x2(v)|dudv.

(5)
Thus we define first component of Lyapunov function by

V1(t) = V11(t) + V12(t). (6)
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From (4) and (5) and |ym
1 (t) − ym

2 (t)| ≤ |y1(t) − y2(t)|, we have

D+V1(t) ≤ −b1(t)|x1(t) − x2(t)| + ηmr1(t)|y1(t) − y2(t)|
ζ(t, m1, m2)

+
r1(t)Mm

2

[
(b(t) + e(t)ηM2c(t))|x2(t) − x1(t)| + η(c(t) + e(t)M1)|y1(t) − y2(t)|

]

ζ2(t, m1, m2)

+
∫ ξ−1(t)

t
b1(u)du|x1(t) − x2(t)|

(
a1(t) + b1(t)M1 +

r1(s)Mm
2

ζ(t, m1, m2)

)

(M2
1 ηmr1(t)

(
M1b(t) + e(t) M2

ηm−1 |y1(t) − y2(t)|
)
+ r1(t)M3

1Mm
2 |y1(t) − y2(t)|

(b(t)m1(s) + ηe(t)m1m2)2

)

∫ ξ−1(t)

t
b1(u)du +

M1b1(ξ−1(t))
1 − τ̇(ξ−1(t))

∫ ξ−1(ξ−1(t))

ξ−1(t)
b1(u)du|x1(t) − x2(t)|.

Again, define

V2(t) = | ln y1(t) − ln y2(t)|, which gives

D
+

V2(t) = sgn(y1(t) − y2(t))
( ẏ1(t)

y1(t)
− ẏ2(t)

y2(t)

)

= sgn(y1(t) − y2(t))
[

− ηb2(t)(y1(t) − y2(t)) + η
m−1

r2(t)
( x1(t)y

m−1
1 (t)

ζ(t, x1(t), y1(t))

− x2(t)y
m−1
2 (t)

ζ(t, x2(t), y2(t))

)]

≤ − ηb2(t)|y1(t) − y2(t)| + r2(t)M
m−1
2 M1

(
y1(t) − y2(t)

)
{ c(t)x1(t)(y1(t) − y2(t)) + y2(t)c(t)(x1(t) − x2(t)) + e(t)x1(t)x2(t)(y1(t) − y2(t))

ζ(t, m1, m2)2

}

≤ −ηb2(t)|y1(t) − y2(t))| + r2(t)M
m−1
2 M1

{ c(t) + e(t)M1

ζ(t, m1, m2)

}
|y1(t) − y2(t)|

+
c(t)r2(t)M

m
2

ηζ(t, m1, m2)

∣∣∣x1(t) − x2(t)
∣∣∣.

Define

V (t) = V1(t) + V2(t) then, we obtain D+V (t) = −P1(t)|x1(t) − x2(t)| −
P2(t)|y1(t) − y2(t)|.
Define ρ(t) = min{P1(t), P2(t)} where P1(t) and P2(t) are defined in the
Theorem 3. For t ≥ T + τ, we have

D+V (t) = −ρ(t)[|x1(t) − x2(t)| + |y1(t) − y2(t)|]. (7)

Thus under the condition of the Theorem3, there must exist a constant ω and
T0 > T + τ such that

D+V (t) = −ω[|x1(t) − x2(t)| + |y1(t) − y2(t)|]. (8)

Integrating Eq. (8) from T0 to t, we have

V (t) + ω

∫ t

T0

[
|x1(s) − x2(s)| + |y1(s) − y2(s)|

]
ds < V (T0) < +∞. (9)
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Thus, we find

lim sup
t→∞

∫ t

T0

[
|x1(s) − x2(s)| + |y1(s) − y2(s)|

]
ds <

V (T )
ω

< +∞. (10)

Finally we conclude that

lim
t→∞|x1(t) − x2(t)| = 0, lim

t→∞|y1(t) − y2(t)| = 0.

Thus the existence of a globally attractive solution of (1) is established. Further-
more, the uniqueness of an APS can easily be proved [19].

4 Numerical Example

In the support of analytical results established in the previous sections, we con-
sider and numerically simulate the following examples:

Example 1. Let a1(t) = 2 + 0.1 sin
√

3t, b1(t) = 2 − 0.1 sin t, a2(t) = 0.04 +
0.01 sin

√
5t, b2(t) = 0.05 − 0.01 sin t, r1(t) = 0.05 − 0.01 sin t, r2(t) = 0.02 −

0.01 sin t, a = 1, b = 1.5, c = 0.001, e = 0.01,m = 0.2 then the system (1)
becomes

dx(t)
dt

= x(t)
(
2 + 0.1 sin

√
7t − 2 − 0.1 sin tx(t − 0.01)

)

− 0.05 − 0.01 sin tx(t)
1 + 1.5x(t) + 0.001y(t) + 0.01x(t)y(t)

y0.2(t), (11)

dy(t)
dt

= y(t)
( − 0.02 + 0.01 sin

√
3t − 0.05 − 0.01 sin ty(t)

)

+
0.02 − 0.01 sin tx(t)

1 + 1.5x(t) + 0.001y(t) + 0.01x(t)y(t)
y0.2(t),

with the initial conditions φ(θ) = 0.6, y(θ) = 0.7. Here the bounds of the coef-
ficients are: al

1 = 1.90, au
1 = 2.1, bl

1 = 1.99, bu
1 = 2.1, al

2 = 0.03, au
2 = 0.05, bl

2 =
0.04, bu

2 = 0.06, rl
1 = 0.04, ru

1 = 0.06, rl
2 = 0.01, ru

2 = 0.03, cl = cu = 0.001, el =
eu = 0.1. Furthermore, using these bounds, we obtain

M2 =
(3ru

2

2al
2

) 1
1−m

=
(3

2

) 5
4

= 1.66, al
1 = 1.90 > 0.40 =

0.6 × (1.66)−0.8

0.1
=

ru
1 Mm−1

2

el
.

Figure 1 shows the existence of unique globally attractive APS. The orbits for
predator-prey are shown in the Fig. 2.

Fixing all the parametric values same as in the Example 1 except a1 = 0.99+
0.1 sin

√
7t and e(t) = 0.01, we see that parametric condition of Theorem 2 does

not hold as al
1 = 1 < 3.96 =

0.06 × (1.66)−0.8

0.01
=

ru
1Mm−1

2

el
. However the Fig. 3

ensures the permanence of the model system (1). This ensures that condition
obtained in the Theorem 2 is only sufficient.
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Fig. 1. Solution curves for the model system (11). The predator-y and prey-x are
persistent.
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Fig. 2. Orbit of the predator-prey system (11)
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Fig. 3. The predator-y and prey-x are persistent.
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Fig. 4. The predator-y and prey-x are not persistent.

Moreover, if we consider a1 = 0.01 and all other parametric values same as in
Example 1, these parametric values again do not satisfy the parametric condition

obtained in Theorem2 as al
1 = 0.01 < 0.40 =

ru
1Mm−1

2

el
. The Fig. 4 shows that

model system (1) is not permanent.

5 Concluding Remarks

Variability in environmental factors plays an important role in shaping the intrin-
sic population dynamics. Predator-prey model is one of the basic links among
populations which determine population dynamics and trophic structure. In this
work, environmental variability is captured in the model parameters with time
dependent APFs, which makes the model non-autonomous. Here we proposed
and studied a non-autonomous system with almost periodic coefficients and delay
in competition among preys. We summarize the conclusion as under:

(i) The results (refer the Theorems 2 and 3) obtained for almost periodic model
system (1) also hold for the corresponding periodic system. In other words,
the oscillatory coexistence of all the population involved in the model system
is ensured under the sufficient condition for persistence.

(ii) The sufficient condition obtained for permanence (see, Theorem 2) ensure
that the permanence of the model system (1) depends on Crowley-Martin
parameter e (mutual interference among predator at high prey density) and
intrinsic growth rate a1 of prey species. When the intrinsic growth rate a1

takes value below a threshold level, both the species become extinct. (refer
the Theorem 2 and Fig. 4).

(iii) It is interesting to note that in our illustrative examples, only prey growth
rate and predator natural death rate are assumed to be APFs. However,
it can be observed that consideration of other coefficients as APFs will
give similar dynamics. The mutual interference leaves stabilizing effect.
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The delayed system come back in a stable situation from delay induced
instability for a threshold value of m. Existence and uniqueness of APS of
the model system (1) is established using Bochner’s definition of APF. The
time evolution of prey and predator are almost periodic.
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Abstract. This paper is concerned with generation of surface waves in
an ocean with porous bottom due to initial disturbances at free surface.
Assuming linear theory the problem is formulated as an initial value
problem for the velocity potential describing the motion in the fluid.
Laplace transform in time and Fourier transform in space have been uti-
lized in the mathematical analysis to obtain the form of the free surface
in terms of an integral. This integral is then evaluated asymptotically for
large time and distance by the method of stationary phase for prescribed
initial disturbance at the free surface in the form of depression of the free
surface or an impulse at the free surface concentrated at the origin. The
form of the free surface is depicted graphically for these two types of
initial conditions in a number of figures to demonstrate the effect of the
porosity at the bottom.

Keywords: Cauchy Poisson problem · Porous bottom
Laplace and Fourier transform · Method of stationary phase
Free surface depression

1 Introduction

Problems of unsteady motion in water due to any initial disturbance at the
free surface are known as Cauchy Poisson problems. The disturbance may be
either in the form of prescribed elevation or depression of the free surface or a
distribution of impulse or a combination of these. These problems are in general
difficult to tackle mathematically. However in two dimensions the problems can
be formulated in a comparatively simple manner assuming linear theory and
solution can be obtained easily. For example, the Fourier transform techniques
was used to obtain the form of the free surface in the form of an infinite integral
for the two dimensional Cauchy Poisson problem in deep water in which the
motion is generated due to initial surface disturbances in the form of initial
depression or impulse concentrated at a point on the free surface (cf. Lamb
(1945); Stoker (1957)). The infinite integral was evaluated asymptotically by
c© Springer Nature Singapore Pte Ltd. 2018
D. Ghosh et al. (Eds.): ICMC 2018, CCIS 834, pp. 174–185, 2018.
https://doi.org/10.1007/978-981-13-0023-3_17
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the method of stationary phase for large time and distance so that the form
of the free surface could be found. Kranzer and Keller (1959) obtained explicit
forms of the free surface due to axially symmetric initial disturbances in water of
finite depth. They compared their theoretical results with experimental results
and found that agreement was fairly good. Very recently Baek et al. (2017)
investigated the Cauchy Poisson problem with measured initial profile taking
into account the effect of the surface tension at the free surface and compared
the theoretical results with those obtained by experiment carried out in water
tanks wherein the waves were generated by dropping water droplets and high
speed camera was used to record video clips for wave field. The experimental
results agree quite well with the theoretical results. These validate the use of
linear theory in the study of Cauchy Poisson problem.

The 2D Cauchy Poisson problems could easily be solved for uniform finite
depth water wherein the bottom is assumed to be rigid (cf. Chaudhuri (1968);
Wen (1982)). However, there is not much work involving Cauchy Poisson prob-
lems, if one considers a porous bottom instead of a rigid bottom. An ocean
bottom is far from rigid and in reality it is actually permeable or porous. Thus
it may be interesting to study the effect of bottom porosity on the wave motion
due to initial disturbances at the free surface. Gangopadhyay and Basu (2013)
considered a porous bottom while studying the problem wave generation due to
initial depression of the free surface concentrated at the origin. However, their
mathematical analysis leading to the asymptotic form of the free surface appears
to be incomplete. As in Martha et al. (2007) and Maiti and Mandal (2014), here
a special type of porous bottom is considered for which the porosity parameter
is taken to be only real and has the dimension of (length)−1.

In the present paper we consider Cauchy Poisson problem in water with the
porous bottom. Fourier and Laplace transform techniques are employed to solve
the problem formulated as an initial value problem assuming linear theory. The
form of the free surface is obtained in terms of an integral which is evaluated
asymptotically for large time and distance from the origin, assuming of course
that the initial disturbance on the free surface is concentrated at the origin.
The asymptotic form of the free surface is depicted graphically against non-
dimensional distance for fixed time and against non-dimensional time for fixed
distance and for different values of the porosity parameter (non-dimensionalised)
leas than unity.

2 Mathematical Formulation

A Cartesian co-ordinate system is used wherein the y-axis is chosen vertically
downwards in the fluid region and the xz-plane is the undisturbed free surface
and y = h corresponds to the bottom composed of some specific kind of porous
materials (cf. Fig. 1). The porous bottom is characterized by a real quantity G
which has the dimension of inverse of length. The fluid is assumed to be inviscid
and the motion in the fluid starts from rest so that it is irrotational and thus can
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Fig. 1. Sketch of physical model.

be described by a velocity potential φ(x, y, t) for two dimensional case. Assuming
linear theory it is easy to see that φ satisfies the initial value problem described
by,

∇2φ = 0, 0 ≤ y ≤ h, −∞ < x < ∞,

∂2φ

∂t2
− g

∂φ

∂y
= 0 on y = 0,

∂φ

∂y
− Gφ = 0 on y = h, −∞ < x < ∞

where G is the porosity parameter of the fluid bottom (cf. Martha et al. (2007)).
When the initial depression of the free surface is prescribed then the initial
conditions are,

φ(x, 0, 0) = 0,

φt(x, 0, 0) = gf(x)

where f(x) denotes the prescribed initial depression of the free surface, g is
the acceleration due to gravity. We will assume that the initial depression is
concentrated at the origin.

When the initial disturbance is in the form of an impulsive pressure I(x) per
unit area applied to the free surface, then initial conditions are,

φ(x, 0, 0) = −I(x)
ρ

,

φt(x, 0, 0) = 0

where ρ is the density of water. We will also assume that the initial impulse
is also concentrated at the origin. The expression for free surface depression is
given by

η(x, t) =
1
g
φt(x, 0, t).
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Introducing a characteristic length l, characteristic time
√

l
g , and characteristic

mass m. We define the dimensionless quantities as,

x̄ =
x

l
, ȳ =

y

l
, t̄= t

√
l

g
, η̄ =

η

l
, h̄ =

h

l
, φ̄=

φ

l
√

gl
, Ḡ= Gl, Ī =

lI

m
√

l
g

, ρ̄ =
ρl3

m
.

Removing the bars the dimensionless quantities satisfy,

∇2φ = 0, 0 ≤ y ≤ h, −∞ < x < ∞, (2.1)

∂2φ

∂t2
− ∂φ

∂y
= 0 on y = 0, (2.2)

∂φ

∂y
− Gφ = 0 on y = h, −∞ < x < ∞. (2.3)

Initial conditions for the case of prescribed initial depression of the free surface
are,

φ(x, 0, 0) = 0, (2.4)

φt(x, 0, 0) = δ(x) (2.5)

where δ(x) is the Dirac Delta function.
Initial conditions in case of impulsive pressure applied to the free surface are,

φ(x, 0, 0) = −δ(x)
ρ

, (2.6)

φt(x, 0, 0) = 0. (2.7)

Once φ(x, y, t) is obtained by solving the initial value problem, the corresponding
non dimensional depression of the free surface is obtained as,

η(x, t) = φt(x, 0, t). (2.8)

3 Method of Solution

We use the Fourier and Laplace transform techniques to solve the aforesaid initial
value problems. Fourier transform of φ(x, y, t) with respect to the variable x is,

φ̄(s, y, t) =
1√
2π

∫ ∞

−∞
φ(x, y, t)e−isx dx.

Laplace transform of φ̄(s, y, t) with respect to the variable t is,

¯̄φ(s, y, p) =
∫ ∞

0

φ̄(s, y, t)e−pt dt.
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Taking Fourier transform with respect to the variable x of the Eqs. (2.1), (2.2),
(2.3), (2.4), (2.5), (2.6), (2.7) and (2.8) we have,

φ̄yy − s2φ̄ = 0, 0 ≤ y ≤ h, (3.1)

φ̄tt − φ̄y = 0, on y = 0, (3.2)

φ̄y − Gφ̄ = 0, on y = h. (3.3)

Initial conditions for the case of initial depression of the free surface are,

φ̄(s, 0, 0) = 0, (3.4)

φ̄t(s, 0, 0) = 1. (3.5)

Initial conditions in case of impulsive pressure applied to the free surface are,

φ̄(s, 0, 0) = −1
ρ
, (3.6)

φ̄t(s, 0, 0) = 0. (3.7)

Depression of free surface at time t is,

η̄(s, t) = φ̄t(x, 0, t). (3.8)

Taking Laplace transform of the Eqs. (3.1), (3.2), (3.3) and using the conditions
(3.4), (3.5) we get,

d2 ¯̄φ
dy2

− s2 ¯̄φ = 0, 0 ≤ y ≤ h, (3.9)

d ¯̄φ
dy

− p2 ¯̄φ = −1, on y = 0, (3.10)

d ¯̄φ
dy

− G ¯̄φ = 0, on y = h. (3.11)

Solution of (3.9) satisfying (3.10) and (3.11) is,

¯̄φ(s, y, p) =
A(s, y, h)
p2 + μ(s)

, (3.12)

where

A(s, y, h) =
s cosh(s(y − h)) + G sinh(s(y − h))

cosh(sh)(s − G tanh(sh))

and

μ(s) =
s(G − s tanh(sh))
(G tanh(sh) − s)

.

As s → 0 the function μ(s) has limiting value G
Gh−1 .
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When Gh < 1 the graph of, s(G−s tanh(sh)) and (G tanh(sh)−s) are shown
in Fig. 2. There are three roots of

s(G − s tanh(sh)) = 0

say s = ±λ1 and s = 0. Again at s = 0 both numerator and denominator of μ(s)
vanish and the limit of μ(s) as s → 0 exists and its value is negative.
Graph of μ(s) for Gh < 1 is shown in Fig. 3. From Fig. 3 it is observed that
μ(s) ≥ 0 for |s| ≥ λ1 and μ(s) < 0 for |s| < λ1.

Fig. 2. Graph of s(G− s tanh(sh)) and (G tanh(sh) − s), Gh = 0.9

Let

μ(s) =
{

μ2
1(s) for |s| ≥ λ1,

−μ2
2(s) for |s| < λ1.

Then,

¯̄φ(s, y, p) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A(s, y, h)
p2 + μ2

1(s)
for |s| ≥ λ1,

A(s, y, h)
p2 − μ2

2(s)
for |s| < λ1.

Taking Laplace inversion we obtain,

φ̄(s, y, t) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A(s, y, h)
μ1(s)

sin(μ1t) for |s| ≥ λ1,

A(s, y, h)
μ2(s)

sinh(μ2t) for |s| < λ1.
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Fig. 3. Graph of µ(s) for Gh = 0.9

Then,

η̄1(s, t) =

⎧⎨
⎩

cos(μ1t) for |s| ≥ λ1,

cosh(μ2t) for |s| < λ1.

Taking inverse Fourier transform we find,

η1(x, t) =
1√
2π

[ ∫ λ1

0

2 cosh(μ2t) cos(sx) ds+
∫ ∞

λ1

2 cos(μ1t) cos(sx) ds

]
(3.13)

= I1 + I2(say)

where

I1 =
1√
2π

∫ λ1

0

2 cosh(μ2t) cos(sx) ds

and
I2 =

1√
2π

∫ ∞

λ1

2 cos(μ1t) cos(sx) ds.

If initial impulse is assumed to be concentrated at the origin, then expression
for depression of free surface at time t is obtained by a similar procedure as

η2(x, t) =
1

ρ
√

2π

[
−

∫ λ1

0

2μ2 sinh(μ2t) cos(sx) ds +
∫ ∞

λ1

2μ1 sin(μ1t) cos(sx) ds

]

(3.14)
= I3 + I4(say)

where,

I3 = − 1
ρ
√

2π

∫ λ1

0

2μ2 sinh(μ2t) cos(sx) ds
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and
I4 =

1
ρ
√

2π

∫ ∞

λ1

2μ1 sin(μ1t) cos(sx) ds.

4 Asymptotic Expansion

We are interested in the waves after a long lapse of time and at a large distance
from the origin. For this we use the method of stationary phase to evaluate the
integral (3.13) for large x and t such that x

t > 1. Integral I1 does not contribute
to η1(x, t). Since,

I1 =
1√
2π

∫ λ1

0

2 cosh(μ2t) cos(sx) ds

=
1√
2π

[ ∫ λ1

0

eμ2t + e−μ2t

2
eisxds +

∫ λ1

0

eμ2t + e−μ2t

2
e−isxds

]

For the first integral, we write,

f1(s) = s

and
g1(s) = eμ2t + e−μ2t

and x is large. Now,
f ′
1(s) = 1

which has no zero in the range of integration.
Similarly for the second integral we write

f2(s) = −s, g2(s) = eμ2t + e−μ2t

and x is large. Thus I1 does not contribute to η1(x, t) as

f ′
2(s) = −1

which has no zero in the range of integration.
For I2 we have,

η1(x, t) =
1√
2π

∫ ∞

λ1

[
cos(sx + μ1t) + cos(sx − μ1t)

]
ds

=
1√
2π

Re

[ ∫ ∞

λ1

eit(μ1+s x
t ) ds +

∫ ∞

λ1

eit(μ1−s x
t ) ds

]
. (4.1)

In (4.1) the first integral does not have any stationary point in the range of
the integration. So this integral does not contribute to η1(x, t). For the second
integral let

f3(s) = μ1(s) − s
x

t
,
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g3(s) = 1

and t is large. Now

f ′
3(s) =

1
2

[
(sh − 1)G tanh(sh)

s − G tanh(sh)
μ1(s) +

s( sh
cosh2(sh)

+ tanh(sh))

s − G tanh(sh)
μ−1
1 (s)

]
− x

t
.

We see that f ′
3(s) is monotonically decreasing in (λ1,∞) and has only one zero

in the range of integration for x
t > 1. Let α be the root of

f ′
3(s) = 0

then

η1(x, t) ≈ 1√
2π

(
2π

t|f ′′
3 (α)|

)1/2

cos(tf3(α) − π

4
), (4.2)

negative sign of π
4 being taken since the sign of f ′′

3 (α) is negative.
Similarly in case of (3.14) the integral I3 does not contribute to η2(x, t) and

by similar calculation for large x and t such that x
t > 1 asymptotic expansion of

η2(x, t) is

η2(x, t) ≈ 1
ρ
√

2π

(
2π

t|f ′′
4 (β)|

)1/2

g4(β) sin(tf4(β) − π

4
), (4.3)

where
f4(s) = μ1(s) − s

x

t
, g4(s) = μ1(s)

and β is the unique real root of

f ′
4(s) = 0

in the range of integration and negative sign is taken since the sign of f ′′
4 (β) is

negative.

5 Numerical Results

To display the effect of free surface elevation in an ocean with porous bottom due
to the initial disturbances at the free surface, the non dimensional asymptotic
form of η1(x, t) are depicted graphically against x for fixed t and against t for
fixed x in a number of figures. To visualize the nature of the wave motion due
to prescribed initial disturbance at the free surface η1(x, t) is plotted in Fig. 4
against t for fixed x = 300 and t ranging from 200 to 250 and porosity parameter
G = 0, 0.05, 0.09 and h = 10.

From Fig. 4 it is observed that the amplitude of the wave profile increases
as time increases. Also η1(x, t) is plotted in Fig. 5 for fixed time and variable
distance from the origin. In Fig. 5 η1(x, t) is plotted for fixed t = 180 and x
ranging from 220 to 280 and the porosity parameter G = 0, 0.05, 0.09 and h = 10.
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Fig. 4. Wave motion due to initial displacement for fixed distance x = 300.
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Fig. 5. Wave motion due to initial displacement for fixed time t = 180.

From Fig. 5 it is observed that as x increases amplitude of wave motion
decreases.

Similarly η2(x, t) obtained from Eq. (4.3) due to an initial disturbance in the
form of an impulse concentrated at the origin, is plotted in Figs. 6 and 7. In Fig. 6
ρη2(x, t) is plotted against t for fixed x = 300 and t ranging from 200 to 250
and porosity parameter G = 0, 0.05, 0.09 and h = 10. From Fig. 6 it is observed
that the amplitude of the wave profile increases as time increases. In Fig. 7
ρη2(x, t) is plotted against x for fixed t = 180 and x ranging from 220 to 280 and
porosity parameter G = 0, 0.05, 0.09 and h = 10. From Fig. 7 it is observed that
the amplitude of the wave profile decreases as distance increases. When G = 0
the Eqs. (4.2) and (4.3) coincide with the corresponding result when the ocean
bottom is rigid. In the Figs. 4, 5, 6 and 7 the curves for G = 0 match well with
the corresponding curves for the case of rigid ocean bottom.
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Fig. 6. Wave motion due to impulse for fixed distance x = 300.
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Fig. 7. Wave motion due to impulse for fixed time t = 180.

6 Conclusion

Cauchy Poisson problem for water in an ocean with porous bottom is considered
due to two types of initial disturbances at the free surface, one is prescribed
initial depression of the free surface at time t = 0 and the other one is the initial
disturbance of the free surface due to impulsive pressure. In the present problem
we consider the porosity parameter G to be real and consider the case only when
Gh < 1. It is observed that when G = 0 the figures are almost same when ocean
bottom is rigid.

The case Gh > 1 needs to be studied somewhat carefully which will be done
in future.
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Abstract. This paper is a short survey of the theory of semi-frames and
fusion semi-frames in Hilbert and Banach spaces.

1 Introduction

A frame is a redundant representation of a basis. In general the elements in a
frame need not be linearly independent unlike the elements in a basis. The con-
cept of frame was introduced by Duffin and Schaeffer [7] in 1952 while studying
nonharmonic Fourier series. There was a gap of nearly thirty years, where there
is no work in that area. In early 90’s the work was revived by Daubechies et
al. [6]. They reintroduced it while studying Wavelet theory, thereafter it became
popular in Gabor and Wavelet analysis. A good frame in a Hilbert space is
almost as good as an orthonormal basis for expanding arbitrary elements of a
signal and is often easier to construct.

Definition 1.1. Let H be a Hilbert space. Let I be an index set. A sequence of
elements {fk}k∈I , in H is called a frame for H if there exist positive constants
A and B such that

A‖f‖2 ≤
∑

k∈I

|〈fk, f〉|2 ≤ B‖f‖2, ∀f ∈ H.

A and B are called lower and upper frame bound respectively.

If A = B then the frame is called a tight frame, and if A = B = 1 then the frame
is called a Parseval frame. A frame is called a normalized frame if each frame
element has unit norm. To get more familiar with the theory of frames one may
refer to Christensen [5] and the references there in.

Let H be a Hilbert space. Consider the discrete sequence space l2. A sequence
{fk}k∈I in H is called a Bessel sequence for the Hilbert space H, if there exists
a constant M > 0 such that

∑

k∈I

|〈fk, f〉|2 ≤ M‖f‖2,∀f ∈ H. (1)

c© Springer Nature Singapore Pte Ltd. 2018
D. Ghosh et al. (Eds.): ICMC 2018, CCIS 834, pp. 186–193, 2018.
https://doi.org/10.1007/978-981-13-0023-3_18
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Let T : H → l2 be an operator defined by

Tf = {〈fk, f〉}k∈I . (2)

The adjoint operator T ∗ : l2 → H is given by

T ∗(C) =
∑

k∈I

ckfk, where C = {ck} ∈ l2. (3)

Let S be the composition operator T ∗T : H → H given by

S(f) = T ∗T (f) =
∑

k∈I

〈fk, f〉fk. (4)

When the sequence {fk}k∈I in H is a frame that is if there exist positive con-
stants A and B such that

A‖f‖2 ≤
∑

k∈I

|〈fk, f〉|2 ≤ B‖f‖2, ∀f ∈ H,

then the operator T ∗ is called the analysis operator, the operator T is called the
synthesis operator, the operator S is called the frame operator. In this paper we
shall introduce several important concepts and state results without proof. We
state the first result below:

Theorem 1.1. Let {fk}k∈I be a frame for H, with analysis operator T ∗, syn-
thesis operator T , and the frame operator S, then
(i) {fk}k∈I is total in H. The operator S has a bounded inverse S−1 : H → H,
and the vectors in H can be reconstructed by

f = S−1Sf =
∑

k∈I

〈fk, f〉S−1fk, ∀f ∈ H,

and
f = SS−1f =

∑

k∈I

〈S−1fk, f〉fk, ∀f ∈ H.

(ii) Rng(T ) is a closed subspace of l2. The projection P from l2 onto Rng(T )
is given by P = TS−1T ∗ = TT †, where T † is the pseudo inverse of T .

Frames in Banach spaces have been studied in Casazza and Christensen [3],
Christensen and Heil [4], Gröchenig [9], Kaushik [10] and Stoeva [15]. Stoeva
[16] introduced Xd-frames and their dual in Banach spaces. By using the semi-
inner product structure of Banach spaces, Zhang and Zhang [17] have studied
Xd-frame, X∗

d -frame in Banach spaces.
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2 Semi-frames in Hilbert Space

2.1 Upper Semi-frames

The upper and lower frame bounds are more strict restrictions for a frame
sequence. To loosen that restriction semi-frame was introduced. The notion of
semi-frame in Hilbert space was studied by Antoine and Balazs [1].

Definition 2.1. A sequence of elements {fk}k∈I in a Hilbert space H is said to
be a upper semi-frame if there exists a positive constant M such that

0 <
∑

k∈I

|〈fk, f〉|2 ≤ M‖f‖2, ∀f ∈ H, f 	= 0.

Antoine and Balazs [1] proved the following result:

Theorem 2.1. {fk}k∈I is an upper semi-frame if and only if it is a total Bessel
sequence.

If {fk}k∈I is a frame in a Hilbert space H, then there exists some sequence
{gk}k∈I in H such that

f =
∑

k∈I

〈fk, f〉gk =
∑

k∈I

〈gk, f〉fk, ∀f ∈ H. (5)

If the above equality (5) holds true then {fk}k∈I and {gk}k∈I are said to be dual
of each other.

However there exist an upper semi-frame {fk}k∈I in H which are not nec-
essarily frame for which (5) still holds true for some sequence {gk}k∈I . We see
this in the following example:

Example 2.1. Let H = l2 be the Hilbert space and {ek}k∈I is canonical basis
for l2. Let

{fk}k∈I = {1
k
ek}k∈I

{gk}k∈I = {kek}k∈I .

One can easily see that {fk}k∈I is an upper semi-frame but not a frame as the
lower frame bound is missing. But we have

f =
∑

k∈I

〈fk, f〉gk =
∑

k∈I

〈gk, f〉fk, ∀f ∈ l2.

Antoine and Balazs [1] has proved the following theorem for upper semi-
frame.

Theorem 2.2. Let {fk}k∈I be an upper semi-frame for the Hilbert space H.
Let T ∗ be the analysis operator as defined in (3), T be the synthesis operator as
defined in (2), and S = T ∗T be the operator as defined in (4). Then
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(i) The analysis operator T ∗ is an injective bounded operator, and the synthesis
operator T is a bounded operator with dense range. The operator S is a bounded,
self adjoint and positive operator with dense range. Its inverse S−1 is densely
defined and self adjoint.
(ii) T (Rng(S)) ⊆ Rng(T ) ⊆ Rng(T ).

For an upper semi-frame, the frame operator is bounded, but has an
unbounded inverse.

Definition 2.2. An upper semi-frame {fk}k∈I is said to be regular if {fk}k∈I ∈
Dom(S−1) = Rng(S).

Theorem 2.3. If {fk}k∈I is an upper semi-frame for the Hilbert space H, then

f = S−1Sf =
∑

k∈I

〈fk, S−1f〉fk, ∀f ∈ Rng(S).

Note that if the upper semi-frame is regular, then we can write the recon-
struction formula using a dual sequence.

Theorem 2.4. Let {fk}k∈I be a regular upper semi-frame for H. Then

f = SS−1f =
∑

k∈I

〈S−1fk, f〉fk.

2.2 Lower Semi-frames

Definition 2.3. A sequence {fk}k∈I in a Hilbert space H is said to be a lower
semi-frame if there exists a positive constant m such that

m‖f‖2 ≤
∑

k∈I

|〈fk, f〉|2, ∀f ∈ H.

In upper semi-frame, the positivity requirement on the left hand side ensures that
the sequence {fk}k∈I is total, whereas in lower semi-frame {fk}k∈I is total auto-
matically. A lower semi frame has an unbounded frame operator, with bounded
inverse.

Example 2.2. Let {ek}k∈I be orthonormal basis for the Hilbert space l2. Let
fk = ek

k , k ∈ I. We see that for every f ∈ l2,

0 <
∑

k∈I

|〈fk, f〉|2 =
∑

k∈I

|1
k

〈ek, f〉|2 =
∑

k∈I

1
k2

|〈ek, f〉|2

≤
∑

k∈I

|〈ek, f〉|2 =
∑

k∈I

|fk|2 = ‖f‖2.

Hence the sequence { ek
k }k∈I is an upper semi-frame for l2.
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On the other hand the sequence { ek
k }k∈I is not a lower semi-frame for l2, as

it is failed to satisfy the lower frame bound condition. We can see this by taking
f = ep, ∑

k∈I

|〈fk, f〉|2 =
∑

k∈I

|〈ek
k
, ep〉|2 =

1
p2

.

Example 2.3. Let {ek}k∈I be orthonormal basis for the Hilbert space l2. Let
fk = ek

k , k ∈ I and φk = kek, k ∈ I. In the previous example, we have seen
that the sequence {fk}k∈I is an upper semi-frame for l2. Again we observe that
for every f ∈ l2,

∑

k∈I

〈fk, f〉φk =
∑

k∈I

〈ek
k
, f〉kek =

∑

k∈I

〈ek, f〉ek =
∑

k∈I

fkek = f.

Hence {φk}k∈I is a dual semi-frame for {fk}k∈I .
Moreover, for every f ∈ l2,

∑

k∈I

|〈φk, f〉|2 =
∑

k∈I

|〈kek, f〉|2 =
∑

k∈I

k2|〈ek, f〉|2

≥
∑

k∈I

|〈ek, f〉|2 = ‖f‖2.

Hence {φk}k∈I is a lower semi-frame which is dual to the upper semi-frame
{fk}k∈I .

3 Semi-frames in Banach Spaces

Semi-frames in Banach spaces have been introduced by Antoine and Balazs [1].
Sahu and Mohapatra [14] introduced semi-Xd-frames in Banach spaces. They
have used the semi-inner product structure available in Banach spaces to define
semi-frames. The notion of semi-inner product was introduced by Lumer [13],
and further investigation was done by Giles [8] and Koehler [12].

Definition 3.1. Let X be a Banach space with a compatible semi-inner product
[., .] and norm ‖.‖X . Let Xd be an associated BK-space with norm ‖.‖Xd

. A
sequence of elements {fj} ⊆ X is called upper semi-Xd-frame for X if
(i) {fj} is total in X;
(ii) {[f, fj ]} ∈ Xd for all f ∈ X;
(iii) there exists a positive constant B such that

0 ≤ ‖{[f, fj ]}‖Xd
≤ B‖f‖X for all f ∈ X.

Definition 3.2. Let X be a Banach space with a compatible semi-inner product
[., .] and norm ‖.‖X . Let Xd be an associated BK-space with norm ‖.‖Xd

. A
sequence of elements {fj} ⊆ X is called lower semi-Xd-frame for X if
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(i) {fj} is total in X;
(ii) {[f, fj ]} ∈ Xd for all f ∈ X;
(iii) there exists a positive constants A such that

A‖f‖X ≤ ‖{[f, fj ]}‖Xd
for all f ∈ X.

Similarly, we define upper semi-X∗
d -frame and lower semi-X∗

d -frame for the dual
space X∗.

Definition 3.3. Let X be a Banach space with a compatible semi-inner product
[., .] and norm ‖.‖X . Let X∗ be the dual space of X. Let Xd be an associated
BK-space with norm ‖.‖Xd

, and X∗
d be the dual space of Xd. A sequence of

elements {f∗
j } ⊆ X∗ is upper semi-X∗

d -frame for X∗ if
(i) {f∗

j } is total in X∗;
(ii) {[fj , f ]} ∈ X∗

d for all f ∈ X;
(iii) there exists a positive constants B such that

0 ≤ ‖{[fj , f ]}‖X∗
d

≤ B‖f‖X for all f ∈ X.

Definition 3.4. Let X be a Banach space with a compatible semi-inner product
[., .] and norm ‖.‖X . Let X∗ be the dual space of X. Let Xd be an associated
BK-space with norm ‖.‖Xd

, and X∗
d be the dual space of Xd. A sequence of

elements {f∗
j } ⊆ X∗ is lower semi-X∗

d -frame for X∗ if
(i) {f∗

j } is total in X∗;
(ii) {[fj , f ]} ∈ X∗

d for all f ∈ X;
(iii) there exists a positive constants A such that

A‖f‖X ≤ ‖{[fj , f ]}‖X∗
d

for all f ∈ X.

4 Fusion Semi-frames

The fusion frame also called as frame of subspaces, is a natural generalization of
frame theory and related to the construction of global frames from local frames
in Hilbert spaces. The fusion frame in Hilbert spaces was introduced by Casazza
and Kutyniok [2].

Definition 4.1 [2]. Let H be a Hilbert space and {Wi}i∈I be sequence of
closed subspaces of H. Let {wi}i∈I be a family of positive weights. Let πWi

:
H → Wi be the orthogonal projections onto the subspaces Wi. Then the sequence
{(Wi, wi)}i∈I is said to be a fusion frame for H, if there exist positive constants
A and B such that

A‖f‖2 ≤
∑

i∈I

w2
i ‖πWi

(f)‖2 ≤ B‖f‖2, ∀f ∈ H. (6)

Fusion semi-frames in Hilbert space was introduced by Antoine and
Balazs [1].
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Definition 4.2 [1]. Let H be a Hilbert space and {Wi}i∈I be sequence of
closed subspaces of H. Let {wi}i∈I be a family of positive weights. Let πWi

:
H → Wi be the orthogonal projections onto the subspaces Wi. Then the sequence
{(Wi, wi)}i∈I is said to be a fusion upper semi-frame for H, if there exists positive
constant M such that

0 ≤
∑

i∈I

w2
i ‖πWi

(f)‖2 ≤ M‖f‖2, ∀f ∈ H. (7)

Fusion frame in Banach space was introduced by Khosravi and Khosravi [11].

Definition 4.3 [11]. Let X be a Banach space, {πi}i∈I be a sequence of
continuous linear projections on X, Wi = πi(X) for each i ∈ I. Let {wi}i∈I be
a sequence of positive weights. The sequence {(wi,Wi)}i∈I is said to be a fusion
frame for X if there exists a sequence {qi ∈ B(Wi,X) : i ∈ I} and an invertible
operator S ∈ B(X) such that
(i) The series

∑
i∈I w

2
i qi o pi(x) converges to S(x);

(ii) There exists a solid BK−space Xd and positive constants A and B such
that for every x ∈ X

A‖x‖X ≤ ‖{‖πi(x)‖}‖Xd
≤ B‖x‖. (8)

Now we are in a position to define fusion semi-frame in Banach spaces.

Definition 4.4. Let X be a Banach space, {πi}i∈I be a sequence of continuous
linear projections on X, Wi = πi(X) for each i ∈ I. Let {wi}i∈I be a sequence of
positive weights. The sequence {(wi,Wi)}i∈I is said to be a fusion upper semi-
frame for X if there exists a sequence {qi ∈ B(Wi,X) : i ∈ I} and a bounded
operator S ∈ B(X) such that
(i) The series

∑
i∈I w

2
i qi o pi(x) converges to S(x);

(ii) There exists a solid BK−space Xd and positive constants A and B such
that for every x ∈ X

0 ≤ ‖{‖πi(x)‖}‖Xd
≤ B‖x‖. (9)

5 Conclusion

So far there is no work on fusion semi-frames in Banach spaces. This opens up a
new direction of research. Presently, the authors are working on this area. This
paper is a short survey to get the readers into this area of research and the
papers in our list of references will be useful to the readers.
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Abstract. Molecular self-assembly gives rise to a great diversity of com-
plex forms from crystals and DNA helices to microtubules and holoen-
zymes. We study a formal self-assembly model called the Diamond Tile
Assembly System in which a diamond tile may be added to the growing
object when the total interaction strength with its neighbours exceeds a
parameter T . Self-assembled objects can also be studied from the point of
view of computational complexity. Here, we define the program-size com-
plexity of an N ×N diamond to be the minimum number of distinct tiles
required to self-assemble the diamond. We study this complexity under
the Diamond Tile Assembly Model and find a dramatic decrease in com-
plexity from N2 tiles to O(logN) tiles, as T is increased from 1 where
bonding is non co-operative to 2 allowing co-operative bonding. Further,
we observe that the size of the largest diamond uniquely produced by a
set of n tiles grows faster than any computable function.

Keywords: Self-assembly · Diamond Tile Assembly
Program-size complexity

1 Introduction

Self-assembly is the process by which a collection of relatively simple compo-
nents, beginning in a disorganized state, spontaneously and without external
guidance coalesce to form more complex structures. The process is guided by
only local interactions between the components, which typically follow a basic
set of rules. Despite the seemingly simplistic nature of self-assembly, its power
can be harnessed to form structures of incredible complexity and intricacy. In
order to model such systems, theoretical models have been developed and one of
the most popular among these is the Tile Assembly Model introduced by Erik
Winfree in his Ph.D. thesis [Wi2]. The complexity of self-assembled shapes is
investigated in [LL1,SE1,Su1].

Branched DNA molecules [Se1] provide a direct physical motivation for the
Tile Assembly Model. DNA double-crossover molecules, each bearing four sticky
ends analogous to the four sides of a Wang tile, have been designed to self-
assemble into a periodic two dimensional lattice [WL1]. The binding interactions
between double-crossover molecules may be redesigned by changing the base
c© Springer Nature Singapore Pte Ltd. 2018
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sequence of their sticky ends, thus allowing arbitrary sets of molecular Wang tiles.
From a physically-based stochastic model of such a system, the Tile Assembly
Model is obtained in the limit of strong binding domains and low monomer
concentrations [Ra1,Wi1]. This model is an extension of the theory of Wang
tiles [Wa1] to include a specific mechanism for growth based on the physics of
molecular self-assembly.

A program consists of a finite set of unit diamond tiles with sides having
molecular binding domain and thus each side has an associated binding strength,
which in our model must be an integer. Starting from a chosen seed tile, growth
occurs by addition of single tiles. Tiles bind a growing assembly only if their
binding interactions are of sufficient strength as determined by the temperature
parameter T . T measures the co-operativity of the binding interactions. It is
interesting to observe that cooperative effects play a major role in gene regulation
and many other biological systems.

In this paper, we introduce a new model called Diamond Tile Self-assembly
System. It is a formal model for the self-assembly of molecules, such as protein
or DNA, constrained to self-assembly on a diamond lattice. We measure the
complexity of self-assembly by considering diamond instead of square [RE1].
Standard complexity measures in computer science are based on time, space,
program size and decidability. Here, we discuss the program-size complexity
of self-assembled diamonds, where complexity is measured by the number of
distinct tile types involved.

2 Diamond Tile Self-assembly System

In this section, we introduce a new model called Diamond Tile Self-assembly
System.

Definition 1. A Diamond Tile Self-assembly System DTAS is defined by
the quadruple

T = <T, S, g, T >

where T is a finite set of diamond tile types containing empty, S is a seed assem-
bly with finite domain, g is a strength function and T ≥ 0 is the temperature.
We consider only |S| = 1, where S = A

(0,0)
s .

Diamond tile self-assembly is defined by a relation between configurations:
A →T B if there exists a diamond tile t ∈ T and a site (x, y) such that B =
A + A

(x,y)
t and B is T -stable. In particular, at T = 1, a diamond tile may be

added if it makes any bond to a neighbour, whereas at T = 2, the diamond tile
to be added must either make two weak bonds or a single strong bond. →∗

T
is the

reflexive and transitive closure of →T. The diamond tile self-assembly system
defines a partially ordered set, the produced assemblies DProd(T) where

DProd(T) = {A,∃S ∈ T s.t. S →∗
T

A} andA ≤ B iff A →∗
T

B.

Another set, the terminal assemblies Dterm(T) is defined as the maximal
elements of DProd(T):
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DTerm(T) = {A ∈ DProd(T), �B s.t. A < B}.

The produced assemblies include intermediate products of the self-assembly
process, whereas the terminal assemblies are just the end products and may be
considered as the output. If

A ∈ DProd(T) ⇒ ∃B ∈ DTerm(T) s.t. A →∗
T

B

then T is said to be haltable, in the sense that every path of self-assembly can
eventually terminate. If T is haltable and DTerm(T) is finite, T is said to be
halting in the sense that every path of self-assembly does eventually terminate.
In general, if DProd(T) is a lattice, we say that T produces a unique pattern-T
need not be halting nor even haltable.

Example 1. Consider the Diamond Tile Self-assembly System T = <T, S, g, T >
where

The tile set T , consists of four diamond rule tiles with strength-1 binding
domains, two border diamond tiles with strength-1 and 2 binding domains and
one seed diamond tile with strength-2 binding domains. At T = 2, these tiles

Fig. 1. Simulating a binary counter with diamond self-assembly
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count in binary; the nth row above the origin represents the integer n (which
is rotated 45◦ anticlockwise). This self-assembly program is analogous to an
infinite loop-there are no terminal assemblies. Diamond rule tiles may be added
only if both their southwest and southeast neighbors are already in place and
there is a unique diamond rule tile for each possible pair of binding domains
the neighbors could present; furthermore, the property that only northwest and
northeast sides exposed in the assembly is preserved from step to step. The
computation is possible when the system temperature = 2 and at least two
strength −1 bonds must cooperate for a tile to be added to an assembly. The
assembly is not terminal and arrows indicate positions at which may grow. The
picture pattern generated by DTAS is shown in Fig. 1.

3 Complexity of Diamond Self-assembly

In this section, we introduce Complexity of Diamond Self-Assembly. We will be
measuring program-size complexity using asymptotic notion.

All functions will be from N → N. A function f(n) is non-decreasing iff ∀ n,
f(n) ≤ f(n+1). A function f(n) is un bounded iff ∀ c, ∃ n s.t. f(n) ≥ c. We say
f(n) = O(g(n)) iff ∃ c, n0 s.t. ∀ n > n0, f(n) ≤ cg(n). We say f(n) = Ω(g(n)) iff
∃ c, n0 s.t. ∀ n > n0, f(n) ≥ cg(n). We assert proposition P (n) infinitely often
iff ∀ n0 > 0, ∃ n > n0 s.t. P (n). Define Oi.o. (big-O infinitely often) such that
f(n)= Oi.o.(g(n)) iff ∃ c s.t. f(n) ≤ cg(n) infinitely often. We assert proposition
P (n) for almost all n iff limn0→∞

|1≤n≤n0s.t.P (n)|
n0

= 1. Define Ωa.a (big-Ω
almost always) such that f(n) = Ωa.a(g(n)) iff ∃ c s.t. f(n) ≥ cg(n) for almost
all n.

We can now formally describe the program-size complexity of an N × N
diamond. An assembly A is an N × N diamond if there exists a site (x0, y0)
such that (x, y) ∈ A iff x ≥ x0 and x < x0 + N and y ≥ y0 and y < y0 + N .
In other words the choice of tiles may be arbitrary, so long as they are there.
Diamond A is a full diamond if for all (x, y) and (x′, y′) ∈ A such that (x, y) and
(x′, y′) are neighbours (x, y) and (x′, y′) bind with non-zero strength. In other
words, every adjacent pair of tiles must have non-zero interaction strength. We
are interested in which diamonds can be self-assembled by tile systems:

DT = {(N,n) ∈ N × N s.t. there exists a tile system
T = <T, S, g, T >, |T | = n + 1 and T

uniquely produces an N × N full diamond}.

We define the program size complexity KT
DA(N) of a diamond to be the minimum

number of distinct non-empty tiles required to uniquely produce the diamond-
physically the number of distinct types of molecules that must be prepared.

KT
DA(N) = min{n s.t. (N,n) ∈ DT }

Our investigations rely on several constructions. We need an easy way to verify
that these constructions do indeed uniquely produce the target structure. For
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each construction, the argument is an elaboration of the argument given for the
binary counter tiles, only now an assembly may have more than one diagonal
growth front. Specifically, the property that is preserved from step to step is that
the assembly is stop-sign-shaped: the orientations of the exposed sides along the
(clockwise) perimeter are of the form

NE∗{NE,SE}∗SE∗{SE, SW}∗SW ∗{SW,NW}∗NW ∗{NW,NE}∗.

These arguments rely on showing that there is exactly one strength-2 bond
joining each row and each column.

We begin by studying KT
DA(N) for T = 1 and obtain the following theorem.

Theorem 1. K1
DA(N) = N2.

Proof. To show K1
DA(N) ≤ N2, we construct N2 diamond tiles, one for each

position in the diamond, with a unique strength-1 binding domain for each adja-
cent pair of diamond tiles as in Fig. 2. In Fig. 2 (a): N2 = 16 tiles with unique
side labels uniquely produce a terminal 4 × 4 full diamond at T = 1. (b):
2N − 1 = 7 tiles uniquely produce a 4 × 4 diamond (but this is not a full
diamond since thick sides have strength 0). Except for the sides labels with a
circle, each interacting pair of tiles share a unique side label. This construction
is conjectured to be minimal for diamonds assembled at T = 1.

Fig. 2. Formation of diamonds at T = 1.

To show K1
DA(N) ≥ N2, suppose a diamond tile set T with |T | < N2 produces

an N × N full diamond A (Fig. 3). In Fig. 3, a full N × N diamond with fewer
than N2 diamond tiles must have some tile i present at two sites. Consider the
assembly W (the white diamond tiles) which includes an assembly V (bounded
diamond tile i), the seed tile S and a tile that connects the seed tile to V . W can
be extended indefinitely with the addition of translated segments of V (e.g. V 2

+1

shown in gray). Then some tile i is present at two sites in A, say (x1, y1) and
(x2, y2).

Let V be the V -shaped (or possibly linear) assembly consisting only of the
tiles at (x1, y1), . . . , (x2, y2); let V 1 be the assembly such that V 1 + (x2, y2) = V ;
let V 2 be the assembly such that V 2 + (x1, y1) = V ; let V k

n = [V k(x + n ∗ (x2 −
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Fig. 3. No T = 1 tile system with fewer than N2 diamond tiles can uniquely produce
an N ×N diamond.

x1), y +n∗ (y2 −y1)) be a translated version of V k for k = 1, 2 and let W consist
of V, S and the fewest diamond tiles in A required to connect S to V . Because
W is contained in A and A is a full diamond, all adjacent pairs of diamond tiles
interact on a strength-(at least)-1 side and therefore S →∗

T
W . At least one of

{V 1
−1, V

1
+1, V

2
−1, V

2
+1}, say V r

s , can be added to W , resulting in a larger assembly
also produced by T. This can be continued indefinitely: if s = +1 then for all
n, W + Σn

i=+1V
r
i is in DProd(T); if s = −1 then for all n, W + Σ−1

i=−nV r
i is in

DProd(T). This contradicts the assumption that T is halting and terminates in
N × N full diamonds. •

At T = 2 the situation is markedly different.

Theorem 2. K2
DA(N) = O(N).

Proof. Figure 4 shows two constructions for an N × N full diamond using
2N (Fig. 4a) and N + 4 (Fig. 4b) diamond tiles respectively. Diamond tile self-
assembly from the seed diamond tile A expands initially by single strength-2 inter-
actions creating the northeast and northwest borders with the alphabetic diamond
tiles. As the border grows, two cooperative strength-1 interactions allow the blank
tile to fill in and complete the diamond.

In Fig. 4b, diamond tile self-assembly from the seed diamond tile A expands
initially by single strength-2 interactions creating the northeast border with the
numbered diamond tiles. The U and V diamond tiles proceeds in the diagonal
sides from west to east by their strength-2 interactions. Thus allowing the rest of
the column to be filled with blanks. The N ×N full diamond can be easily verified
to be a terminal assembly. •

This is only the beginning. The construction in Fig. 4b can be combined with
a fixed-width version of the binary counter of Fig. 1 to obtain a set of tiles that
produce the full diamond by counting in binary instead of by counting in unary.
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Fig. 4. Formation of full diamonds at T = 2.

Theorem 3. K2
DA(N) = O(logN).

Proof. Figure 5 constructs an N × N full diamond using n+ 22 diamond tiles,
where n = 
logN�. n+2 diamond tiles, including the diamond seed tile, produce
an (n − 1) × (n − 1) diamond as in the previous construct (Fig. 4b). Here N =
52, n = 6 and 28 tiles are used. Additionally, the n − 1 diamond tiles in the seed
row have northwest sides encoding the bits of the integer c = 1 + 2n−1 − (N −
n)/2, the initial value of the counter. We must use a fixed-width version of the
counter diamond tiles of Fig. 1; this requires a special set of diamond tiles for the
southwest and southeast columns of bits. The counter counts from c to 2n−1 using
two rows for each integer. In order to detect when the counter has finished, we
use alternating rows to increment the counter from southeast to northwest then
to copy of the bits from northwest to southeast unless the northwest bit just
rolled over to northeast from 1 to 0. In the latter case, the diamond tile presents
a strength-2 side with a label not found on any other diamond tiles, thus halting
the counter. (The strength-2 side will be used in our next construction; here,
any strength would suffice). There is a special diamond tile for the rightmost
bit in the first increment row right the seed row. This diamond tile contains
a strength-2 side to initiate the u − v diagonal, thus filling in the rest of the
diamond. Overall, the counter requires 17 tiles; the seed row requires n − 1 tiles;
the two diagonals require 4 tiles and there are two blank tiles.

We can do much better: by recursively iterating the above construction one

can produce N × N diamonds with N ≥
22

2...
2

︸ ︷︷ ︸

ntimes
def
= 2 ∗ ∗ n. Define log∗N as the

least n such that 2 ∗ ∗ n ≥ N .

Theorem 4. K2
DA(N) = Oi.0.(log∗N).

Proof. Our proof is by induction. Let Sn refer to a diamond tile system contain-
ing fewer than 22n diamond tiles (including the u,v and blank diamond tiles)
that uniquely produces an N × N full diamond such that

• N > 2 ∗ ∗ n.
• All binding domains on the northwest and northwest bottom are strength 1

or 0.
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Fig. 5. Formation of an N ×N diamond using O(logN) tiles.

• All binding domains on the southwest have the strength-1 blank label.
• The binding domains on the northwest upper side conform to the pattern

xy∗zb∗a where x is a strength-2 binding domain that occurs nowhere else and
y, z, b and a are distinct strength-1 binding domains.

We show that Sn exists for all n. The base case n = 1 is trivial. The inductive
step is illustrated in Fig. 6. (In Fig. 6, given a set of tiles Sn+1 that produce an
N × N full diamond that satisfies recurrence, the addition of 22 new tiles results
in Sn+1 and produces a (N + 2 × 2N ) × (N + 2 × 2N ) full diamond. New side
labels (with doubled symbols) prevent counter tiles from Sn from incorporating in
the Sn+1 counter). First, there are 5 diamond tiles that, initiated by x, produce
an initial string of 0′s for a new fixed-width counter and provide a strength-2
side for a new u − v diagonal. Then there are 16 diamond tiles equivalent to the
counter diamond tile in Theorem 3 but using new side labels; the counter counts
to 2N . The diagonal fills in the rest of the diamond, now with sides of length
N + 2 × 2N > 2N > 2 ∗ ∗ (n+ 1). Therefore Sn exist for all n and for those n,

22 log∗N ≥ 22n ≥ D2
DA(N).

• log∗ N is an exceedingly slowly growing function; the above construction shows
that very large diamonds can be assembled with a very small number of dia-
mond tiles. But we can do much better yet! By embedding the simulation of
a Turing Machine in the growth of a diamond we show that:

Theorem 5. K2
DA(N) = Oi.0.(f(N)) for f(N) any non-decreasing unbounded

computable function.
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Fig. 6. Formation of an N × N diamond using Oi.0.(log
∗N)

Proof. Our proof relies on a self-assembly version of the Busy Beaver problem
[Ra1]. Define:

BT
DA(n) = max{Ns.t.N, n) ∈ DT }.

To prove Theorem5, we first show

B2
DA(n) = Ω(F (n)) for any computable function F (n). (1)

Theorem5 follows from (1) by contradiction: if false, then there exists a com-
putable, non-decreasing, unbounded function f(N) such that ∃ N0 s.t. ∀ N > N0,
K2

DA(N) ≥ f(N).
Let F (n) = max {N s.t N = 0 or f(N) ≤ n}; this is a computational

function. Note that B2
DA(n) ≥ F (n) requires that ∃ (N,n) ∈ D2 s.t. N ≥ F (n)

and therefore f(N) > n and K2
DA(N) ≤ n. For N > N0 this contradicts K2

DA(N)
≥ f(N). Therefore, for all n > f(N0), B2

DA(n) < F (n), contradicting (1) and
establishing Theorem5.

Recall that Bt(m) = Ω(F ′(m)) for any computable function F ′(m) where:

Bt(m) = max{t s.t. m = qs and there exists a q-state, s-symbol
Turing machine that halts on a blank tape in t steps}

Let M be a q-state, s-symbol Turing machine that halts on a blank tape in Bt(m)
steps, where m = qs. We will construct a diamond of size N = 2Bt(m) + 3
using n = 12qs + 4s + 9 diamond tiles by simulating M with tiles, similar to
the construction of Robinson [Ro1]. Given any n > 41, we will use sn = 2,
qn = �n−17

24  and mn = qnsn; our construction will need only 12qnsn +4sn +9 <
n diamond tiles. Then B2

DA(n) ≥ 2Bt(mn)+3 = Ω(F ′(mn)). For any computable
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function F (n), we can find another computable function F ′(m) s.t. ∀ n, F ′(mn) >
F (n). Therefore, we arrive at (1). In Fig. 7, The Busy Beaver machine simulated
here has three states (q0 = A, q1 = B, q2 = C) and two symbols (s0 = 0, s1 = 1).
Note that R denotes right, L denotes left and 4x indicates that four variations
of a tile are used, one for each compass direction.

Fig. 7. Formation of an N × N diamond by growing four identical simulations of a
given Turing machine.

We construct the diamond by growing four identical simulations of the Turing
machine M , one from each side of a seed tile. Each simulation stays within one
of the four regions bounded by the diagonals of the diamond; when M halts,
the diamond is complete. We require 4 diamond tiles to create the four half-
diagonals defining these boundaries between simulations. For each simulation
we require 1 initial state that matches the seed diamond tile, s symbol diamond
tiles, qs write diamond tiles and 2qs read diamond tiles giving a total of 3qs +
s + 1 diamond tiles per simulation. We describe these diamond tiles for the TM
simulation to the northeast of the diamond seed tile. Recall that a diamond tile is
a 4-tuple (σNW , σNE , σSE , σSW ) representing the northwest, northeast, southeast
and southwest binding domains. Binding domain strengths are 1 unless noted.
Each of the four simulations has its own version of the side labels described,
distinguished by superscripts (we omit the superscript N from the description of
northwest facing simulation below).

The symbol diamond tile for symbol s is (σs, σe, σs, σe) where σs is a binding
domain representing the symbol s and σe is a binding domain indicating that the
TM head is not present. For each state-symbol pair (q, s) the left read diamond
tile (σq,s, σe, σs, σq) and the right read tile (σq,s, σq, σs, σe) represent the TM
head in state q entering a tape cell (from the left or from the right) and read-
ing the symbol s. The binding domain σq,s have strength 2; this is necessary for
the TM head to enter the next row of the simulation. The write diamond tiles,
representing the action the TM head takes depend on the form of the state tran-
sition table entry. For each entry of the form (q, s) → (q′, s′, L) there is a write
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diamond tile (σs′ , σe, σq,s, σq′); for each entry of the form (q, s) → (q′, s′, R) there
is a write diamond tile (σs′ , σq′ , σq,s, σe); for each entry of the form (q, s) → halt
there is a write diamond tile (σhalt, σe, σq,s, σe).

To start the Turing Machine in state q0 reading the blank symbol s0, the
initial tile for the northeast simulation is NE = (σq0,s0 , σe, σS , σe) where σS is a
strength-2 binding domain. The initial diamond tiles for all four simulations bind
to the diamond seed tile S = (σNW

S , σNE
S , σSE

S , σSW
S ). The four diagonal diamond

tiles, N = (σN
s0 , σ

N
e , σW

e , σW
s0 ), E = (σN

s0 , σ
E
s0 , σ

E
e , σN

e ), S = (σE
e , σE

s0 , σ
S
s0 , σ

S
e ) and

W = (σW
e , σS

e , σS
s0 , σ

W
s0 ) pad the tapes with extra cells containing the blank symbol

s0 and delimit the four simulations.

4 Conclusion

This paper discussed the program-size complexity of self-assembled diamonds,
where complexity is measured by the number of distinct diamond tile types
involved. An alternative complexity measure is the minimum number of distinct
side labels required uniquely to produce the object. The number of labels will be
relevant in a physical system where the number of distinct binding interactions
are limited due to imperfect specificity of binding. A main conclusion of this
paper is that the program-size complexity of self-assembled objects (at T = 2)
looks remarkably similar to the usual program-size complexity with respect to
Turing Machines.
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Abstract. In this paper, a numerical method based on exponential
spline for solving one dimensional nonlinear Benjamin-Bona-Mahony-
Burgers equation is presented. Stability analysis of the present method
is analyzed by means of Von Neumann stability analysis and is proven
to be unconditionally stable. Few numerical evidences are given to prove
the validation of the proposed method.
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1 Introduction

Nonlinear partial differential equations are used in many real world applica-
tions [8]. To study such nonlinear partial differential equations, we analyze each
individual nonlinear partial differential equation separately either by analyti-
cal methods or numerical methods. Benjamin-Bona-Mahony-Burgers (BBMB)
equation is one among such nonlinear partial differential equations. Several ana-
lytic methods and numerical methods are developed for solving BBMB equation,
for instance, Tanh Method [5], He’s Variational Iteration Method [4], Homo-
topy Analysis Method [3], Adomian Decomposition Method [1], Lie Symme-
try Method [6], Finite Difference Method [7], Radial Basis Function (RBF)
Method [2] and Cubic B-spline Collocation Method [10].

In this article, we use the exponential spline method for solving one dimen-
sional nonlinear BBMB equation

ut − uxxt − ζuxx + ηux + uux = 0, (x, t) ∈ [a, b] × [0, T ] , (1)

subject to the boundary conditions

u(a, t) = 0, u(b, t) = 0, t ∈ [0, T ] , (2)

c© Springer Nature Singapore Pte Ltd. 2018
D. Ghosh et al. (Eds.): ICMC 2018, CCIS 834, pp. 205–215, 2018.
https://doi.org/10.1007/978-981-13-0023-3_20
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and the initial condition

u(x, 0) = f(x), a ≤ x ≤ b, (3)

represents the unidirectional propagation of long waves having small amplitudes
in nonlinear dispersive media, u(x, t) is the velocity of the fluid, x is the distance
in the horizontal direction of propagation and ζ, η are the positive constants.

In comparison with the finite difference method, spline method provides the
functional values and its derivative values between the mesh points. Functional
values are only available at the chosen knots in the case of finite difference
method. And in comparison with the finite element method, there is no need
to evaluate the quadratures in spline method. The polynomial spline of lower
order decreases the accuracy while the higher order leads the complexity of
calculations, the use of exponential spline overcomes this problem because of its
smoothing and handy nature.

The article is organised as follows: In Sect. 2, we first design the numerical
scheme for the model problem (1)–(3). Then we discuss the stability estimates
of the presented scheme in Sect. 3. In Sect. 4, we demonstrate the performance
of the proposed numerical method by extensive numerical examples. Section 5
ends with conclusion.

2 Exponential Spline Method

For the positive integers N and M , let the partition of [a, b] × [0, T ] be
defined by Ω : Ωh × Ωk where Ωh = {xi | xi = a + ih, 0 ≤ i ≤ N} , Ωk =
{tj | tj = jk, 0 ≤ j ≤ M} and k = T

M , h = b−a
N are the temporal and spatial

step size respectively.
Let Zj

i = Z(xi, tj) be an approximation to uj
i = u(xi, tj) obtained by the

segment Pi(x, tj) of the mixed spline function passing through the points (xi, Z
j
i )

and (xi+1, Z
j
i+1). Each segment can be written as [9]

Pi(x, tj) = ai(tj)eω(x−xi) + bi(tj)e−ω(x−xi)

+ ci(tj)(x − xi) + di(tj), (4)

for each i = 0, 1, . . . , N − 1. To obtain the coefficients ai(tj), bi(tj), ci(tj) and
di(tj) in terms of Zj

i , Zj
i+1, S

j
i and Sj

i+1, we define
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Pi(xi, tj) = Zj
i ,

Pi(xi+1, tj) = Zj
i+1,

P
(2)
i (xi, tj) = Sj

i ,

P
(2)
i (xi+1, tj) = Sj

i+1,

(5)

where

P
(2)
i (x, t) =

∂2

∂x2
Pi(x, t).
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By using Eqs. (4) and (5), we obtain
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ai =
h2(Sj

i+1−e−θSj
i )

2θ2 sinh(θ) ,

bi =
h2(eθSj

i −Sj
i+1)

2θ2 sinh(θ) ,

ci = (Zj
i+1−Zj

i )
h − h(Sj

i+1−Sj
i )

θ2 ,

di = Zj
i − h2Sj

i

θ2 ,

(6)

where ai = ai(tj), bi = bi(tj), ci = ci(tj), di = di(tj) and θ = hω.

Using the continuity condition of first derivative at x = xi

P
(1)
i (xi, tj) = P

(1)
i−1(xi, tj).

Equations (4) and (6) yield the relation

α Sj
i−1 + 2β Sj

i + α Sj
i+1 =

1
h2

[
Zj

i−1 − 2 Zj
i + Zj

i+1

]
,

i = 1, 2, . . . , N − 1, j ≥ 0, (7)

where

α =
sinh(θ) − θ

θ2 sinh(θ)
, β =

θ cosh(θ) − sinh(θ)
θ2 sinh(θ)

.

Considering Eq. (7) at (j + 1)th time level, we have

α Sj+1
i−1 + 2β Sj+1

i + α Sj+1
i+1 =

1
h2

[
Zj+1

i−1 − 2 Zj+1
i + Zj+1

i+1

]
,

i = 1, 2, . . . , N − 1, j ≥ 0. (8)

The discretized representation of Eq. (1) at the grid point (xi, tj) is given by

(Zt)
j
i − (Zxxt)

j
i − ζ(Zxx)j

i + η(Zx)j
i + (ZZx)j

i = 0. (9)

To incorporate the proposed method, we first discretize the time derivative in
the usual forward finite difference way and then applying the Crank-Nicolson
scheme for Eq. (9), we get

Zj+1
i − Zj

i

k
− (Zxx)j+1

i − (Zxx)j
i

k
− ζ

(Zxx)j+1
i + (Zxx)j

i

2

+ η
(Zx)j+1

i + (Zx)j
i

2
+

(ZZx)j+1
i + (ZZx)j

i

2
+ O(k2 + h2) = 0. (10)

Using the Taylor series, we have the following finite difference approximation

(ZZx)j+1
i = Zj+1

i (Zx)j
i + Zj

i (Zx)j+1
i − Zj

i (Zx)j
i + O(k2), (11)

(Zx)j
i−1 =

−Zj
i+1 + 4Zj

i − 3Zj
i−1

2h
+ O(h2), (12)
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(Zx)j
i =

Zj
i+1 − Zj

i−1

2h
+ O(h2), (13)

(Zx)j
i+1 =

3Zj
i+1 − 4Zj

i + Zj
i−1

2h
+ O(h2). (14)

Using Eqs. (11)–(14) in Eq. (10) and rearranging the terms, we obtain

(ζk + 2)(Zxx)j+1
i + (ζk − 2)(Zxx)j

i = 2
(
Zj+1

i − Zj
i

)
+

k

2h

(
η + Zj

i

)

(
Zj+1

i+1 − Zj+1
i−1

)
+

k

2h

(
η + Zj+1

i

) (
Zj

i+1 − Zj
i−1

)
+ O(k3 + kh2). (15)

Multiplying Eqs. (7)–(8) by the factors (ζk − 2) and (ζk + 2), respectively and
adding them, we get

(ζk + 2)
[
αSj+1

i−1 + 2βSj+1
i + αSj+1

i+1

]
+ (ζk − 2)

[
αSj

i−1 + 2βSj
i + αSj

i+1

]

=
1
h2

(ζk + 2)
[
Zj+1

i−1 − 2Zj+1
i + Zj+1

i+1

]
+

1
h2

(ζk − 2)
[
Zj

i−1 − 2Zj
i + Zj

i+1

]
.

(16)

Using the operator notations E(Z(x, t)) = Z(x + h, t),D(Z(x, t)) = Zx(x, t),
I(Z(x, t)) = Z(x, t), E = ehD, we obtain

(ζk + 2)Sj+1
i + (ζk − 2)Sj

i =
1
h2

(
E−1 − 2I + E+1

αE−1 + 2βI + αE+1

)

(
(ζk + 2)Zj+1

i + (ζk − 2)Zj
i

)
. (17)

Expanding them in powers of hD, we obtain

(ζk + 2)Sj+1
i + (ζk − 2)Sj

i =
1

2(α + β)

(
(ζk + 2)(Zxx)j+1

i + (ζk − 2)(Zxx)j
i

)

+
1 − 6γ

24(α + β)
h2

(
(ζk + 2)(Zxxxx)j+1

i + (ζk − 2)(Zxxxx)j
i

)
+ O(h4),

(18)

where γ = α
α+β .

Substituting Eq. (15) in Eq. (18), we get

(ζk + 2)Sj+1
i + (ζk − 2)Sj

i =
1

(α + β)

(
Zj+1

i − Zj
i

)
+

k

4h(α + β)

(
η + Zj

i

)

(
Zj+1

i+1 − Zj+1
i−1

)
+

k

4h(α + β)

(
η + Zj+1

i

)(
Zj

i+1 − Zj
i−1

)

+
1 − 6γ

24(α + β)
h2

(
(ζk + 2)(Zxxxx)j+1

i + (ζk − 2)(Zxxxx)j
i

)
+ O(k3 + kh2 + h4).

(19)



Exponential Spline Method for Benjamin-Bona-Mahony-Burgers Equation 209

In order to eliminate Sj
i from Eq. (16) substituting Eq. (19) in Eq. (16), we get

[

− (ζk + 2)
h2

+
α

α + β
− kη

2h
− 3kα

2h(α + β)
Zj

i−1 − (β − 2α)k
2h(α + β)

Zj
i

]

Zj+1
i−1

+
[
2(ζk + 2)

h2
+

2β

(α + β)
+

k(β − 2α)
2h(α + β)

Zj
i+1 − k(β − 2α)

2h(α + β)
Zj

i−1

]

Zj+1
i

+
[

− (ζk + 2)
h2

+
α

α + β
+

kη

2h
+

3kα

2h(α + β)
Zj

i+1 +
(β − 2α)k
2h(α + β)

Zj
i

]

Zj+1
i+1

=
[
ζk − 2

h2
+

α

α + β
+

kη

2h

]

Zj
i−1 +

[−2(ζk − 2)
h2

+
2β

α + β

]

Zj
i

+
[
ζk − 2

h2
+

α

α + β
− kη

2h

]

Zj
i+1 + T j

i ,

i = 1, 2, . . . , N − 1, j ≥ 0. (20)

where

T j
i =

1 − 6γ

24(α + β)
h2

{
α

(
(ζk + 2)(Zxxxx)j+1

i−1 + (ζk − 2)(Zxxxx)j
i−1

)

+ 2β
(
(ζk + 2)(Zxxxx)j+1

i + (ζk − 2)(Zxxxx)j
i

)

+α
(
(ζk + 2)(Zxxxx)j+1

i+1 + (ζk − 2)(Zxxxx)j
i+1

)}
+ O(k3 + kh2 + h4).

is the truncation error of the system (20). The system (20) contains (N − 1)
equations with (N +1) unknowns. To get a solution to this system, we need two
additional equations. These equations are obtained from the boundary conditions
(2), the discretized form for the boundary conditions are

Zj
0 = 0, Zj

N = 0, j ≥ 0.

Remark: It is clear from the system (20) that:

(i) For suitable arbitrary values of α, β, our scheme is of O(k2 + h2).
(ii) For γ = 1

6 i.e, β = 5α, our scheme is of O(k3 + kh2 + h4).

3 Stability Analysis

The stability has been proven by using the Von Neumann technique. We replace
the nonlinear term in Eq. (20) by a local constant (d∗) and the numerical solution
can be expressed by means of a Fourier series

Zj
i = ξj exp(nφih), (21)

where n =
√−1, φ is the wave number and ξj is the amplitude at the jth time

level. Substituting Eq. (21) in Eq. (20), we obtain
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ξj+1
{(

− (ζk + 2)

h2 +
α

α + β
− k(η + d∗)

2h

)
exp(n(i − 1)σ) +

(
2(ζk + 2)

h2 +
2β

α + β

)

exp(niσ) +

(
− (ζk + 2)

h2 +
α

α + β
+

k(η + d∗)
2h

)
exp(n(i + 1)σ)

}

= ξj
{(

(ζk − 2)

h2 +
α

α + β
+

kη

2h

)
exp(n(i − 1)σ) +

(−2(ζk − 2)

h2 +
2β

α + β

)

exp(niσ) +

(
(ζk − 2)

h2 +
α

α + β
− kη

2h

)
exp(n(i + 1)σ)

}
,

(22)

where σ = φh. Using the Euler’s formula in Eq. (22), we get

ξ =
X1 + nY1

X2 + nY2
,

where

X1 =
−2(ζk − 2)

h2
(1 − cos θ) +

2
α + β

(α cos θ + β),

X2 =
2(ζk + 2)

h2
(1 − cos θ) +

2
α + β

(α cos θ + β),

Y1 =
−kη

h
sin θ, Y2 =

k(η + d∗)(α + β)
h

sin θ.

For stability we need |ξ| ≤ 1, for this we require A = X2
1 + Y 2

1 − X2
2 − Y 2

2 ≤ 0.
Since

A =
−16ζk(1 − cos θ)

h4

[

2(1 − cos θ) +
h2

(α + β)
(α cos θ + β)

]

(23)

− k2 sin2 θ

h2

[
(η + d∗)2 − η2

]
.

As A ≤ 0 provided α > 0 and β > 0, so |ξ| ≤ 1 thus the proposed method is
unconditionally stable.

4 Numerical Results

To show the applicability and efficiency of the proposed numerical scheme, we
solve the following problems:

Example-1: Consider the one dimensional nonlinear homogenous BBMB
equation

ut − uxxt − ζuxx + ηux + uux = 0,

(x, t) ∈ [a, b] × [0, T ] , (24)

subject to the boundary conditions

u(a, t) = g0(t) = 0, u(b, t) = g1(t) = 0, t ∈ [0, T ] , (25)
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and the initial condition

u(x, 0) = f(x) = exp(−x2), a ≤ x ≤ b. (26)

Table 1 shows the maximum absolute errors for various values of h at time levels
t = 5 and t = 10 for 0 ≤ x ≤ 1. It can be observe from the table that as the
spatial mesh points are increasing, the error norm L∞ is decreasing. In Fig. 1, the
numerical solutions at the various time levels are presented for −10 ≤ x ≤ 10.

Table 1. Maximum absolute errors for Example 1 at k = 1/20, α = 1/6, β = 1/3, ζ = 1
and η = 1.

h t = 5 t = 10

L∞ L∞

1/4 1.5727 × 10−3 1.7380 × 10−5

1/8 9.7825 × 10−4 1.4682 × 10−5

1/16 5.4456 × 10−4 9.1292 × 10−6

1/32 2.8622 × 10−4 5.0628 × 10−6

1/64 1.4668 × 10−4 2.6598 × 10−6

1/128 7.4255 × 10−5 1.3628 × 10−6

1/256 3.7355 × 10−5 6.8978 × 10−7

Example-2: Consider the one dimensional nonlinear homogenous BBMB
equation

ut − uxxt − ζuxx + ηux + uux = 0,

(x, t) ∈ [0, 1] × [0, T ] , (27)

subject to the boundary conditions

u(0, t) = 0, u(1, t) = 0, t ∈ [0, T ] , (28)

and the initial condition

u(x, 0) = f(x) = exp(−x) sin(πx), 0 ≤ x ≤ 1. (29)

The physical interpretation of Example 2 is plotted in Figs. 2 and 3. There is
dispersive effects for various values of η and fixed ζ which is shown in Fig. 2.
From Fig. 3, it is noticed that there is no dissipative effects for various values of
ζ with fixed η.

Example-3: Consider the one dimensional nonlinear non-homogenous BBMB
equation

ut − uxxt − ζuxx + ηux + uux = g(x, t),
(x, t) ∈ [0, π] × [0, T ] , (30)
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Fig. 1. Graphs of numerical solution for Example 1 with h = 1/10, k = 1/100,
α = 1/12, β = 5/12, ζ = 1 and η = 1.

subject to the boundary conditions

u(0, t) = 0, u(π, t) = 0, t ∈ [0, T ] , (31)

and the initial condition

u(x, 0) = f(x) = sinx, 0 ≤ x ≤ π, (32)
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Fig. 2. Graphs of numerical solution for Example 2 with h = 1/100, k = 1/100,
α = 1/12, β = 5/12 and T = 1
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Fig. 3. Graphs of numerical solution for Example 2 with h = 1/100, k = 1/100,
α = 1/12, β = 5/12 and T = 1.

where g(x, t) = exp(−t)
[
cos x − sin x + 1

2 exp(−t) sin(2x)
]
. The exact solution

of this problem is

u(x, t) = exp(−t) sin x. (33)
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Table 2. Errors for the present method for Example 3 with h = π/20, α = 1/12,
β = 5/12, T = 1, ζ = 1 and η = 1.

k RMS L2 L∞

1/2 6.9000 × 10−3 1.2230 × 10−2 1.1385 × 10−2

1/4 1.7238 × 10−3 3.0554 × 10−3 2.8992 × 10−3

1/8 4.6532 × 10−4 8.2477 × 10−4 8.1760 × 10−4

1/16 1.8894 × 10−4 3.3488 × 10−4 3.1616 × 10−4

1/32 1.4823 × 10−4 2.6273 × 10−4 2.1109 × 10−4

Table 3. Errors for the present method for Example 3 with k = 1/20, α = 1/12,
β = 5/12, T = 1, ζ = 1 and η = 1.

h RMS L2 L∞

π/4 4.0726 × 10−3 7.2185 × 10−3 6.1837 × 10−3

π/8 9.3034 × 10−4 1.6489 × 10−3 1.3856 × 10−3

π/16 2.4215 × 10−4 4.2920 × 10−4 3.5166 × 10−4

π/32 9.3192 × 10−5 1.6517 × 10−4 1.6462 × 10−4

π/64 7.0796 × 10−5 1.2548 × 10−4 1.2254 × 10−4

0 0.5 1 1.5 2 2.5 3
−6

−5

−4

−3

−2

−1

0

1

2
x 10−7

x

Er
ro

r

T=5

0 0.5 1 1.5 2 2.5 3
−4

−2

0

2

4

6

8

10

12
x 10−9

x

Er
ro

r

T=10

0 0.5 1 1.5 2 2.5 3
−1

0

1

2

3

4

5
x 10−10

x

Er
ro

r

T=15

0 0.5 1 1.5 2 2.5 3
−3

−2

−1

0

1

2

3

4

5

6

7
x 10−12

x

Er
ro

r

T=20

Fig. 4. Plots of errors for Example 3 taking N = 200, k = 0.01, α = 1/12, β = 5/12,
ζ = 1 and η = 1.
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Table 2 exhibits the RMS, L2 and L∞ error norms for the fixed value of h = π/20
and for the different values of k. The same error norms are computed for fixed
k = 1/20 with different values of h which are reported in Table 3 and it can be
noticed from both the tables that the errors are in better agreement with the
exact solution. The error plots are given for different values of time in Fig. 4, the
continuous decrement of error can be noticed from the figures.

5 Conclusion

Exponential spline method is used for the numerical solution of BBMB type
equations. The method is proven to be unconditionally stable by using the Von
Neumann stability process. The truncation error of the numerical scheme is also
discussed. Numerical results establish the efficiency of the proposed method.
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Abstract. In this short article, a method to obtain a fuzzy regression
curve for a set of imprecise locations is proposed. The given imprecise
locations are presented by fuzzy points. The studied fuzzy regression
curve is obtained with the help of a smooth regression technique for a
set of precise locations. We observe the given imprecise points as a bunch
of same points with varied membership values. For a set of same points,
we obtain a smooth regression curve. The union of all these smooth
regression curves, with different membership values, for the same points
yields the proposed fuzzy regression curve. The method is demonstrated
with a numerical example.

Keywords: Fuzzy points · Same points · Fuzzy curves
Smooth regression · Fuzzy regression

1 Introduction

Identification of a fuzzy regression curve to recognize the pattern of a given set
of imprecise locations or data is an important topic of research in recent days.
Although there is a plethora of regression methods to recognize the pattern of
a set of crisp or precise data, the regression analysis for a set of imprecise data
is not yet focused rigorously. After the introduction of fuzzy geometry [2–4],
it is observed that a mathematical presentation of imprecise locations can be
appropriately done by fuzzy points. In this article, we thus attempt to show how
simply we can obtain a fuzzy regression curve for a set of fuzzy points.

It is shown in [2,5] that in the construction of a fuzzy line, the concept of
same points is very useful. As fuzzy regression is closely associated with fuzzy
line/curve fitting, in this article on fuzzy regression, we attempt to observe the
given set of fuzzy points as a collection of same points with varied membership
values. Hence, collectively, the problem under consideration can be observed as
identifying a fuzzy regression curve that passes through the same points.

The fuzzy regression curve, in this article, is observed as a collection of con-
ventional regression curves for each set of same points with different membership
c© Springer Nature Singapore Pte Ltd. 2018
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values. Towards identifying an appropriate regression curve for a set of same
points, we use the conventional smooth regression method given in [1]. We have
chosen the smooth regression technique of [1] due to the facts that it is a simple
heuristic approach and it is well-known by its applicability in diversified fields.

The delineation of the presented work is as follows. The next Sect. 2 gives
some basic definitions and a brief presentation of a conventional smooth regres-
sion technique which is applied to obtain the proposed fuzzy regression technique.
Section 3 gives the proposed method with a numerical illustration.

2 Preliminaries

In this section, at first, we give a brief sketch of the smooth regression technique
presented in [1]. Then, a few definitions from fuzzy geometry is presented and
those are used throughout the paper.

2.1 A Smooth Regression Technique

Consider n pairs of independent random variables (X1, Y1), (X2, Y2), . . . ,
(Xn, Yn) with joint probability density function f(x, y). The goal of regression
is to discover a functional relationship between X and Y , given by

m(x) = E(Y | X) =
∫

yf(x, y)dy
∫

f(x, y)dy
. (1)

A heuristic approach has been presented by Watson in [1] to obtain an esti-
mate of m̂(x), using the sample of n variables that tends to m(x) as n → ∞
regardless of the nature of f(x, y). An estimate of the marginal probability den-
sity function on X can be expressed in terms of sum of non-negative functions
of the sequence δn(z), where δn(z) has a total area as unity and tends to the
Dirac delta function as n → ∞:

f̂1(x) =
1
n

n∑

i=1

δn(x − Xi). (2)

At the continuous points, the estimate (2) converges to f1(x) as n → ∞,
provided δn(z) → δ(z). On applying a similar analogy, in two dimension, by
substituting a joint density estimator f̂n(x, y) in (1), we get the required esti-
mator for m(x) in finding a smoothed regression as

m̂(x) =
∑n

i=1 Yiδn(x − Xi)∑n
i=1 δn(x − Xi)

.

In simple terms, it forms a weighted average of Yi’s corresponding to Xi’s
that are in nearby region of x and thus satisfying the domain of δn(x − Xi). It
is clear that the weight of Yi on Xi must decrease as one goes away from x and
vary according to the sample in consideration.
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This is a non-parametric regression where the degree of smoothing is depen-
dent on function δn(z) parametrized by a smoothing parameter denoted by δ.
The choice of this smoothing function may vary according to the sample in obser-
vation. Some of the commonly used choices are Triangular, Epanechnikov and
Gaussian functions. The triangular smoothing is used in [1] for the purpose of
fuzzy regression. It is given by the following function

δn(z) =

{
δ (1 − δ|z|) for |z| ≤ 1/δ

0 for |z| > 1/δ.

The value of δ can be chosen according to the sample. However, the judgement
is being based mainly on whether the associated estimate seems sensible and
smoothed.

2.2 The Extension Principle and Same Points

• The extension principle

Let ϕ be a real-valued function of n variables x1, x2, . . . , xn. The extension princi-
ple extends this function to a fuzzy set Ỹ = ϕ̃(x̃1, x̃2, . . . , x̃n) whose membership
function is defined by

μ(y|Ỹ ) =

⎧
⎨

⎩

sup
y=ϕ(x1,x2,...,xn)

min
i=1,2,...,n

(μ(xi|x̃i)) if ϕ−1(y) �= ∅

0 if ϕ−1(y) = ∅.

Definition 1 (α-cut of a fuzzy set). For a fuzzy set Ã of Rn its α-cut, denoted
Ã(α), is defined by

Ã(α) =

{
{x : μ(x|Ã) ≥ α} if 0 < α ≤ 1
closure{x : μ(x|Ã) > 0} if α = 0.

The set {x : μ(x|Ã) > 0} is called the support of the fuzzy set Ã. The 0-cut
is named as base of the fuzzy set Ã.

Definition 2 (Fuzzy point [3]). A fuzzy point at (a1, a2) in R
2, denoted

P̃ (a1, a2), is defined by the membership function

(i) μ((x1, x2)|P̃ (a1, a2)) is upper semi-continuous,
(ii) μ((x1, x2)|P̃ (a1, a2)) = 1 if and only if (x1, x2) = (a1, a2), and
(iii) P̃ (a1, a2)(α) is a compact and convex subset of R2, for all α in [0, 1].

The notations P̃1, P̃2, P̃3, . . . are usually used to represent fuzzy points.
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Example 1. Let (a1, b1) be a point in R
2. Consider the right elliptical cone with

elliptical base {(x, y) : (x−a1
�1

)2 + (x2−a2
�2

)2 ≤ 1} and vertex (a1, a2). This right
elliptical cone can be taken as the membership function of a fuzzy point P̃ (a1, a2)
at (a1, a2). The mathematical form of μ(.|P̃ (a1, a2)) is:

μ((x1, x2)| ˜P (a1, a2)) =

⎧

⎨

⎩

1 −
√

(

x1−a1
�1

)2

+
(

x2−a2
�2

)2

if (x1−a1
�1

)2 + (x2−a2
�2

)2 ≤ 1

0 elsewhere.

Definition 3 (Same points for fuzzy numbers [3]). Let x1 and x2 be two numbers
in the supports of the continuous fuzzy numbers ã1 and ã2, respectively. The
numbers x1 and x2 are said to be same points with respect to ã1 and ã2 if:

(i) μ(x1|ã1) = μ(x2|ã2), and
(ii) x1 ≤ a1 and x2 ≤ a2, or x1 ≥ a1 and x2 ≥ a2, where a1 and b1 are midpoints

of ã1(1) and ã2(1), respectively.

Definition 4 (Same points for fuzzy points [3]). Let (x1, y1) and (x2, y2) be two
points on the supports of the continuous fuzzy points P̃ (a1, b1) and P̃ (a2, b2),
respectively. Suppose that L1 be the line joining (x1, y1) and (a1, b1); L2 be the
line joining (x2, y2) and (a2, b2).

As P̃ (a1, b1) is a fuzzy point, along the line L1 there is a fuzzy number, r̃1
say, on the support of P̃ (a1, b1). The membership function of this fuzzy number
r̃1 can be written as: μ((x1, y1)|r̃1) = μ((x1, y1)|P̃ (a1, b1)) for (x1, y1) in L1, and
0 otherwise.

Similarly, along the line L2 there is a fuzzy number on the support of
P̃ (a2, b2). We let this fuzzy number be r̃2. The points (x1, y1) and (x2, y2) are
said to be same points with respect to P̃ (a1, b1) and P̃ (a2, b2) if

(i) (x1, y1) and (x2, y2) are same points with respect to r̃1 and r̃2, and
(ii) L1 and L2 make the same angle with the line joining (a1, b1) and (a2, b2).

For instance, we consider the fuzzy points P̃1(a1, b1) and P̃2(a2, b2) in the
Fig. 1. In the Fig. 1, the dotted circles are the boundaries of P̃1 and P̃2, respec-
tively. The two dotted lines inside the circles make an identical angle θ with

Fig. 1. Illustration of same points
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the straight line joining (a1, b1) and (a2, b2). We note that the points (xθ
1α, yθ

1α)
and (xθ

2α, yθ
2α) are with the same membership value and satisfies the restriction

(ii) in the Definition 4. Thus, (xθ
1α, yθ

1α) and (xθ
2α, yθ

2α) is a same points with
respect to P̃1 and P̃2.

3 Proposed Technique on Fuzzy Regression

The aim of this paper is to demonstrate a fuzzy regression technique for a given
set of n fuzzy points P̃1(a1, b1), P̃2(a2, b2), . . . , P̃n(an, bn) using the concept of
same points illustrated in the previous section. For the purpose of feasibility,
we consider the membership function for each of the fuzzy points to be a right
circular cone with vertex at (ai, bi). The membership function, for each i =
1, 2, . . . , n, is given by

μ
(
(x, y)

∣
∣
∣P̃i(ai, bi)

)
=

{
1 −

√
(x−ai

Ri
)2 + (y−bi

Ri
)2 (x − ai)2 + (y − bi)2 ≤ R2

i

0 otherwise.

Each Ri is a positive quantity.
We discretize the base of each fuzzy point into several sets of crisp points and

form a set of points such that each set of crisp points have identical membership
value. Further, for a given membership value α, the sets of crisp points with
membership value α from different fuzzy points forms same points.

The rule for discretization is based on repetitive selection of different α’s and
θ’s, where

(i) α is chosen from a set of discrete membership values in [0, 1] and
(ii) θ, that represents the angle made by the lines through the cores of a fuzzy

point and the x-axis, is chosen from a discrete set of values from [0, 2π].

For each value of α we consider the α-cuts of the fuzzy points. Then we consider
a θ value. We note that the line Li, passing through the core and has an angle
θ with the x-axis will intersect the boundary of the α-cut of the fuzzy point
exactly at two points. The collection of the intersecting points that lie on the
same half-space of the lines joining the consecutive cores of the fuzzy points will
give us a set of same points. Thus, for a given α and θ values we will have two
sets of same points. Varying α and θ across their possible values will yield the
complete collection of same points.

The boundary of the α-cut for Pi(ai, bi) is a circle around the core with radius
Riα = Ri(1−α), i.e., the collection of points (x, y)’s so that (x−ai)2+(y−bi)2 =
R2

iα. There are, evidently, infinitely many points on this circle representing the
boundary of the α-cut. We consider a finite number of collection of same points
for the given fuzzy points. We represent a collection of same points by the core
points (a1, b1), (a2, b2), . . . , (an, bn).
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Each set of same points
{
(xθ

iα, yθ
iα)

∣
∣i = 1, 2, · · · , n

}
is parameterized by the

value of α and θ as follows:

(xθ
iα, yθ

iα) = (ai + Riα cos θ, bi + Riα sin θ) .

In order to have a fuzzy regression curve for the given set of fuzzy points,
we construct a regression curve for a set of same points with the help of the
regression method illustrated in Subsect. 2.1. Each set of same points with the
membership value α corresponds to a unique regression curve. We denote the
regression for the same points with a given α and θ value by Rθ

α. We associate
a membership value α to the regression curve Rθ

α. The fuzzy regression curve
C̃, say, for the fuzzy points P̃1, P̃2, . . . , P̃n is defined by the union, through the
sup-min composition of the extension principle, of all the regression curves Rθ

α

with memebrship value α. That is,

C̃ =
∨

α∈[0,1], θ∈[0,2π]

Rθ
α.

For a geometric visualization of the constructed fuzzy regression curve, we
try to observe the membership values by an optical density. We put a grey level
associated to the α-value to Rθ

α. The higher membership value is represented
darker region. On applying this process for different α-values, we obtain a fuzzy
curve by the collection of smooth regression curves of discretized same points. It
is important to note that the resultant group of overlapping curves correspond-
ing to different membership values can be superimposed by the curve having
the largest membership value according to the extension principle of fuzzy sets
explained in the previous section. The shapes obtained from this method are
shown in next section through an illustrative example.

4 Algorithm

Let A = {0.01, 0.02, . . . 1} be the set of discrete values of α.

Let Φ = {10◦, 20◦, . . . 360◦} be the set of discrete values of θ.

Smoothing parameter δ = 2, 5, 10, · · · .

Data: A sample of n fuzzy points, P̃1(a1, b1), P̃2(a2, b2), · · · , P̃n(an, bn) with
the radius of the circular support given by R1, R2, · · · , Rn, respectively.

Task : Estimate a smooth regression fuzzy curve for given set of arbitrary fuzzy
numbers Q1(x̃1), . . . , Qm(x̃m), m ≤ n with spread given by Sj .

Step 1: Initialize
Associate sample data into five sets each containing crisp data points for Xi, Yi,
xj , Ri and Sj .



222 D. Ghosh et al.

Step 2: Discretize
Given an α in A, compute Riα and Rjα and iterate over each θ in Φ to obtain
crisp points {(xθ

iα, yθ
iα)} and {(xθ

jα, yθ
jα)}.

Step 3: for any xθ
jα, iterate over all xθ

iα such that xθ
jα − xθ

iα ≤ 1
δ and com-

pute the average on yθ
iα.

Step 4: Repeat Step 3 for all j,

Step 5: Join the estimated yθ
jα by straight lines and assign it a grey-level inversely

proportional to α.

Step 6: Repeat Step 2 for all α in A.

5 Illustrative Example

A sample of 100 points are taken where X is N(0, 1) and Y , given X = x,
is N

(
3x2

100 , 1
)

thus, m(x) = 3x2

100 . In addition, fuzziness was introduced to each
(Xi, Yi) in the form of randomized radius or spread across the core, Ri from a
uniform distribution on [0, 0.125]. Thereafter, a smooth estimate is depicted for
eleven fuzzy points P̃i(ai, bi), chosen at intervals of length 1.0 from [−5, 5] and
randomized in the same manner as (Xi, Yi). This experiment is done using the
triangular function for different values of smoothing parameter δ = 2, 4, 6, . . .
as shown in Figs. 2, 3 and 4, respectively. The results in the Table 1 shows the
predicted value of crisp yk along with the lower and upper bounds induced by
fuzziness (Rk) represented by lk and uk, respectively.

Fig. 2. Fuzzy regression curves with δ = 2
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Fig. 3. Fuzzy regression curves with δ = 4

Fig. 4. Fuzzy regression curves with δ = 6

Table 1. Illustration of smooth fuzzy regression using same points

Sample data Predicted data

k P̃i(xk, yk) Rk (lk, yk, uk)δ =2 (lk, yk, uk)δ =4 (lk, yk, uk)δ =6

1 (−5, 0.75) 0.0706 (0.6466, 0.7061, 0.7657) (0.6786, 0.7352, 0.7917) (0.6900, 0.745, 0.8)

2 (−4, 0.48) 0.1100 (0.4015, 0.4812, 0.5610) (0.3989, 0.4802, 0.5614) (0.3992, 0.48, 0.5609)

3 (−3, 0.27) 0.0780 (0. 2136, 0.2712, 0.3289) (0.2011, 0.2702, 0.3392) (0.1813, 0.27, 0.3588)

4 (−2, 0.12) 0.0093 (0.0717, 0.1212, 0.1708) (0.0668, 0.1202, 0.1736) (0.0684, 0.12, 0.1717)

5 (−1, 0.03) 0.0293 (−0.0325, 0.0312, 0.0950) (−0.0415, 0.0302, 0.1018) (−0.0496, 0.03, 0.1097)

6 (0, 0) 0.1061 (−0.0484, 0.0012, 0.0509) (−0.0349, 0.0002, 0.0353) (−0.0268, 0, 0.0269)

7 (1, 0.03) 0.0197 (−0.0267, 0.0312, 0.0892) (−0.0297, 0.0302, 0.0901) (−0.0214, 0.03, 0.0815)

8 (2, 0.12) 0.0754 (0.0534, 0.1212, 0.1891) (0.0430, 0.1202, 0.1973) (0.0440, 0.12, 0.1961)

9 (3, 0.27) 0.0794 (0.2111, 0.2712, 0.3313) (0.2103, 0.2702, 0.3301) (0.1934, 0.27, 0.3466)

10 (4, 0.48) 0.0978 (0.4066, 0.4812, 0.5559) (0.4004, 0.4802, 0.5600) (0.4049, 0.48, 0.5552)

11 (5, 0.75) 0.0393 (0.6376, 0.7061, 0.7746) (0.6857, 0.7352, 0.7846) (0.6948, 0.745, 0.7953)
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Abstract. This article purports to present a systematically developed
survey on the influence of zones of no activation/dead zones in bidirec-
tional associative memory (BAM) neural networks. The modeling effort
based on the concept of dead zones is capable of explaining very intri-
cate phenomena concerned with the functioning of the human brain.
Activation dynamic models presented in this article provide a platform
for the development of artificial neural network models. Several questions
of importance that arise in the modeling of these systems have been dis-
cussed in this article. More precisely, the influence of a dead zone on
the global stability, which is associated with the recall of memories, is
investigated and various easily verifiable sets of sufficient conditions are
provided. Directions for further research related to the incorporation of
various possible kinds of dead zones that occur naturally in biological or
artificial systems are discussed.

1 Introduction

The basic building block of the nervous system is the neuron, the cell that
communicates information to and from the various parts of the body. Networks in
which neurons are connected amongst themselves are known as Neural Networks.
We shall discuss briefly the functioning of biological neural systems (BNS for
short). A neuron has a cell body with a nucleus called the soma, an axon that
carries the signal away from the neuron and dendrites that receive the signals
from other neurons (see Fig. 1).

It is known that in the mammals, the processing of information at the neu-
ronal level is rather slow implying that the neuron is not very efficient, but it
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Fig. 1. A biological neuron.

is noticed that when these neurons are connected in a network, their efficiency
increases. Hence, the study of networks of neurons is very significant. Networks
are usually thought of as an aggregate of neurons spread across various layers
and connected amongst themselves in the same layer and also with those in
different layers (Fig. 2).

Fig. 2. A network of biological neurons.

Human brain is such a complex system that the mathematics available to day
is not enough to describe its characteristics completely. Thus, activities of brain
are segregated into various kinds and they are described by mathematical model
equations. They may be termed as basic models of the brain. These models are
used to develop artificial intelligent machines. These are called artificial neural
systems. If human brain is regarded as an infinite dimensional space, an artificial
neural system corresponds to a finite dimensional subspace of it. Efforts are going
by the human brain to create its replica modifying the artificial neural systems
(Fig. 3).

Study of networks of neurons has, thus, gained increasing prominence over the
past decades and several networks of neurons such as spiking neural networks,
cellular neural networks, bidirectional associative networks etc. are developed for



Dead Zones in BAM Neural Networks 227

Fig. 3. Brain and an artificial neural system.

real world applications besides understanding of the brain. In particular, BAM
networks are those, in which the flow of information will be both in forward and
backward directions, with some stable behavior. In mathematical description,
these networks are regard as dynamical systems. Two types of dynamics namely
synaptic dynamics and activation dynamics are studied in general. Synaptic
dynamics are concerned with the learning (training) aspects of the study while
activation dynamics are associated with the recall of memory. Simply, synap-
tic dynamics correspond to evolution process and activation dynamics represent
consolidation of evolved brain. Though evolution is important and is of primary
concern, it is the activation dynamics that makes the system ready for appli-
cation or tackle the issues - behavior is the concern here. It is the activation
dynamic that verifies whether the learning is properly done or not. It is thus,
both a testing tool and an application tool.

Knowing well that a brain is not simple we begin with a network of n number
of neurons, n could be large, as desired. A simple BAM network, popularly known
as Hopfield model, describing the activation dynamics of neurons in one single
neuronal field may be expressed by the following system of equations.

x′
i(t) = −aixi(t) +

n∑

j=1

bijfj(xj(t)) + Ii, (1.1)

i = 1, 2, . . . , n.
In Eq. (1.1), ai for i = 1, 2, . . . , n represents the passive decay rates, bij

represents the synaptic connection weight between the ith and the jth neurons,
fj(xj) for j = 1, 2, . . . , n represents the signal propagation functions and Ii for
i = 1, 2, . . . , n represents the exogenous inputs to the ith neuron. This network
is auto-associative in the sense that its topology is confined to a single neuronal
field.

The generalization of the above Hopfield model for a network of neurons in
two neuronal fields assumes the following form.

x′
i(t) = −aixi(t) +

n∑

j=1

bijfj(yj(t)) + Ii,

y′
i(t) = −ciyi(t) +

n∑

j=1

dijfj(xj(t)) + Ji (1.2)

for i = 1, 2, . . . , n, and is studied by [13–15,21]. In (1.3), ai, ci are positive
constants known as decay rates. Ii, Ji are exogenous inputs and bij , dij are the
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synaptic connection weights and all these are assumed to be real constants.
These weight connections connect the ith neuron in one neuronal field to the jth
neuron in another neuronal field. The functions fi and gi are the neuronal output
response functions more commonly known as the signal functions. This network
exhibits the hetero-associative property as it involves the dynamics of neurons
in two neuronal fields, in which the synaptic connection matrices B = (bij) and
D = (dij) are symmetric and satisfy BT = D.

Further, these models donot take into account the time delays that occur in
the transmission of information. Keeping these observations in view, the follow-
ing system of equations is proposed in [22] to describe a BAM network model.

x′
i(t) = −aixi(t) +

n∑

j=1

bij

∫ t

∞
Kij(t − s)fj(λj , yj(s))ds + Ii

y′
i(t) = −ciyi(t) +

n∑

j=1

dij

∫ t

−∞
Lij(t − s)gj(μj , xj(s))ds + Ji (1.3)

for i, j = 1, 2, · · · , n.
Other terms being explained above, the constants λi and μi in (1.3) represent

the neuronal gains associated with the neuronal activations. The delay kernels
Kij and Lij for i = 1, 2, · · · , n, j = 1, 2, · · · , n are real valued non negative
continuous functions defined on [0,∞).

The system (1.3) is more general in the sense that it allows both synaptic
connection matrices to be non-symmetric and also need not satisfy the relation
BT = D. Further, signal response functions can be chosen from a more gen-
eral class of functions, which need not necessarily satisfy a Lipschitz condition
in order to establish the existence of unique equilibrium patterns to the given
system. A set of sufficient conditions for the existence of equilibrium patterns to
the system Eq. (1.3) and also various sets of sufficient conditions for the global
asymptotic stability of the positive equilibrium are presented in [22–24].

Activation dynamics of a system are usually concluded by (i) global stability
which is the eventual stabilization of activations of all processing elements (neu-
rons) from any initial input and/or (ii) global convergence which is the eventual
minimization of error between the desired and the computed processing elements.

Global stability guarantees that all inputs are mapped on to the same fixed
point. The importance of global stability may be described as follows. Recall of
memories is one of the processes by which the brain returns in some sense from
a current state to another state in which it has been before. In neural network
models, memory corresponds to a temporally stationery or non- stationery equi-
librium and recall is modelled by the convergence of neuronal activations in the
neuronal activation space, to the equilibrium.

We shall now come to the main aspect of this study. It is well known that
in biological/behavioural systems, abnormal fluctuations, often drive the system
to instability. For example, in human systems seizures, blood clots, sudden ris-
ing of blood pressure or blood sugar, in some cases lead to cerebral hemorrhage
which may turn out to be fatal. This undesired behavior may be controlled by
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(i) slowing down the activations with the help of drugs etc. or (ii) by removal of
damaged portions by surgery or controlling by yoga and meditation. The first
approach is a global one and the second way is a local approach. One of the
most practical ways of controlling such behavior in a system is to create a dead
zone or a zone of no activation. Often dead zones are created in biological sys-
tems, which exhibit over excitations due to some irregular/defective functioning
of vital organs, mainly to avoid fatality. Often brain fails to recall an already
stored memory - exhibits signs of instability. This may be due to the absence of
enough information (missing or fading) during the process of recollection. Such
symptoms are common in old age,dementia, in people with Alzhemier’s disease,
children with autism etc. Similarly, hyperactivity in children or overreactions in
brain to certain inputs also represent a dead zone.

In analog communication network systems, a concept somewhat related to
our dead zones, known as dead bands are introduced to annihilate noise, since
the noise and the signal operate at different frequency levels. Another analogy
to our dead zones may be observed in VLSI technology which primarily aims at
designing a fault tolerant system [17]. The non functioning of one or more vital
components of a VLSI system is generally viewed as a fault. The main problem
here is to design a circuit which performs despite the occurrence of fault(s).
Thus, in neural network models, fault tolerance may be viewed as a graceful
degradation when the connections are damaged For fault tolerant neural network
models both biological and artificial, we refer the readers to [1–4,7–12,18]. On
the other hand, in [21,26–28] dead zones are viewed as missing information in
input and methods are proposed to obtain the same output as zone free system.

Our approach here is not to look at the dead zones as faults or missing infor-
mation in the system but to answer the important question as how the presence
of dead zones influences the stability behavior of the system. Henceforth, we use
term Dead Zone to mean the creation of a region of no activation.

Mathematically a dead zone may be defined as

φ(u(t)) =

⎧
⎨

⎩

φ∗(u(t), δ) for u(t) > δ,
φ∗∗(u(t), δ) for u(t) < −δ,
0 otherwise.

(1.4)

The following figure (Fig. 4) describes a dead zone in a given signal function.

Fig. 4. A dead zone of given length.
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A model incorporating a dead zone of activation for a BAM network may be
described by the following system of equations:

u′
i(t) = −ai ui(t) +

n∑

j=1

bij

∫ ∞

0

Kij(s) ψj (vj(t − s)) ds,

v′
i(t) = −ci vi(t) +

n∑

j=1

dij

∫ ∞

0

Lij(s) φj (uj(t − s)) ds. (1.5)

for i = 1, 2, . . . , n, in which the functions φi and ψi are defined as follows:

φi(ui(t)) =

⎧
⎨

⎩

g∗
i (ui(t), hi) for ui(t) > hi,

g∗∗
i (ui(t), hi) for ui(t) < −hi,

0 otherwise.
(1.6)

and

ψi(vi(t)) =

⎧
⎨

⎩

f∗
i (vi(t), ki) for vi(t) > ki,

f∗∗
i (vi(t), ki) for vi(t) < −ki,

0 otherwise.
(1.7)

for each i = 1, 2, . . . , n, hi, ki are positive numbers for each i = 1, 2, . . . , n.
In view of the above, it is very important to study the influence of the presence

of a dead zone in a system on the global asymptotic stability of the positive
equilibrium pattern and our work in this paper is taken from [23,24]. The concept
of dead zone in communication systems and control systems is studied by [5,6,
19,20,26–28]. The authors would understand the conceptual difference between
the present study and those mentioned above as we go further.

The paper is organized as follows. For the present model (1.5), results on the
existence of unique equilibrium patterns under fairly general circumstances are
discussed in Sect. 2 of this paper. We present, in Sect. 3, different sets of sufficient
conditions for the global asymptotic stability of the positive equilibrium pattern
for the system (1.5) in the presence of a dead zone.

In Sect. 4, we present various kinds of dead zones that occur in artificial and
natural systems to enthuse readers providing further scope of research in this
area. A discussion concludes our study in the final section.

2 Equilibrium Patterns

The equilibria of system (1.5) are the solutions of the following algebraic system

aix
∗
i =

n∑

j=1

bijfj(λj , y
∗
j ) + Ii

ciy
∗
i =

n∑

j=1

dijgj(μj , x
∗
j ) + Ji (2.1)

for i = 1, 2, · · · , n.
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We refer the readers to Theorem 2.1 of [22] which gives sufficient conditions
for the existence of a unique positive equilibrium pattern.

The following initial conditions are assumed on the system (1.5).

xi(s) = p̃i(s), yi(s) = q̃i(s) for s ∈ (−∞, 0], i = 1, 2, · · · n, (2.2)

where p̃i, q̃i are continuous, bounded functions on (−∞, 0].
We now rewrite system (1.5) as

X ′(t) = F (X(t)) (2.3)

in which
X(t) = (x1(t), x2(t), · · · xn(t)) and

F (X(t)) = (ξ1(t), ξ2(t), · · · , ξn(t), η1(t), η2(t), · · · , ηn(t)) where

ξ′
p(t) = −apξp(t) +

n∑

j=1

bpj

∫ t

−∞
Kpj(t − s)fj(λj , ηj(s))ds + Ip

and

η′
q(t) = −cqηq(t) +

n∑

j=1

dqj

∫ t

−∞
Lqj(t − s)gj(μj , ξj(s))ds + Jq,

for p, q = 1, 2, · · · , n.
Now let S be an open subset of �2n and for any ξ ∈ �2n define |ξ| =

∑2n
i=1 |ξi|.

We now state our first result from [24].

Theorem 2.1. Let F : S → �2n be continuous and satisfy the following con-
dition: Corresponding to each point ξ ∈ S and its neighbourhood U , there exist
constants k1 and k2 which are non negative and satisfy k1+k2 �= 0, and functions
hj and φl for j = 1, 2, · · · , n and l = 1, 2, · · · , n, n + 1, · · · , 2n such that

|F (ξ) − F (η)| ≤ k1|ξ − η| + k2

2n∑

l=1

|φl(hj(ξ)) − φl(hj(η))| (2.4)

on U where each hj : R → R is continuously differential function in ξ satisfying
the relation

n∑

i=1

∂hj(ξ)
∂ξi

Fi(ξ) �= 0 on U and

each φl : R → R, l = 1, 2, · · · , 2n is continuous and of bounded variation on
bounded sub intervals. Then the initial value problem (2.3), (2.2) has a unique
solution on any interval containing the initial functions (2.2).

The next result ensures that the system (1.5) has a unique equilibrium pat-
tern. It is interesting to note that the signal functions fj and gj need not neces-
sarily satisfy a Lipschitzian hypothesis here.
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Theorem 2.2 ([24]). Assume that response functions fj and gj , j = 1, 2, · · · , n
satisfy the hypotheses of Theorem 2.1. Then the system (2.3) admits a unique
solution, yielding a unique equilibrium pattern for the system (1.5).

Henceforth, we tacitly assume that system (1.5) has a unique positive equi-
librium (x∗, y∗) where x∗ = (x∗

1, x
∗
2, . . . , x

∗
n) and y∗ = (y∗

1 , y
∗
2 , . . . , y

∗
n).

Example 2.3. The system of equations

x′(t) = −a x(t) +
∫ t

−∞
y

5
9 (s) ds + I,

y′(t) = −c y(t) +
∫ t

−∞
x

5
9 (s) ds + J, (2.5)

with x(s) = 0 = y(s) for s ∈ (−∞, 0], has a unique solution by virtue of The-
orem 2.1 although the functions f(y) = y

5
3 and g(x) = x

5
3 do not satisfy the

Lipschitz conditions.

Remark 2.4. It is important to mention here that Theorem 3.4 of [23] follows
from Theorem 2.2 for the choice of k1 = k2 = k. Theorem 3.4 of [23] works
only for those Nonlinear signal functions that have a Lipschitz part where as
Theorem 2.2 above applies to both Lipschitz and non Lipschtz functions or com-
binations of both. Moreover, Theorem 3.4 of [23] is limited to sublinearities in
signal functions. The study in [24] allows us to super linear response functions
also. For some commonly used response functions which are not Lipschitzian,
we refer the readers to [16] in this context.

3 Global Stability for Dead Zone Model

In this Section, we present some important results of [23,24] that analyzed the
influence of a dead zone on the global asymptotic stability of the equilibrium
pattern (x∗, y∗) of system (1.5).

By the following change of variables,

ui(t) = xi(t) − x∗
i vi(t) = yi(t) − y∗

i ,

φi(ui) = gi(μi, xi(t)) − gi(μi, x
∗
i ) = gi(μi, ui(t) + x∗

i ) − gi(μi, x
∗
i )

ψi(vi) = fi(λi, yi(t)) − fi(λi, y
∗
i ) = fi(λi, vi(t) + y∗

i ) − fi(λi, y
∗
i )

for each i = 1, 2, · · · , n,
system (1.5) assumes the form,

u′
i(t) = −aiui(t) +

n∑

j=1

bij

∫ t

−∞
Kij(t − s)ψj(vj(s))ds

v′
i(t) = −civi(t) +

n∑

j=1

dij

∫ t

−∞
Lij(t − s)φj(uj(s))ds, (3.1)

i = 1, 2, · · · , n.
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Observe that (0, 0) is the unique equilibrium pattern of (3.1).
We assume that the delay kernels Kij and Lij for i, j = 1, 2, . . . , n satisfy the

following conditions.
∫ ∞

0

Kij(s)ds = 1 =
∫ ∞

0

Lij(s)ds, (3.2)

∫ ∞

0

sKij(s)ds < ∞,

∫ ∞

0

sLij(s)ds < ∞ (3.3)

To incorporate a dead zone in the BAM network, we consider the model Eq. (3.1)
with φj , ψj defined as follows:

φj(uj(t)) =

⎧
⎨

⎩

φj
∗(uj(t), δj) for uj(t) > δj

0 for |uj(t)| ≤ δj

φj
∗∗(uj(t), δj) for uj(t) < −δj

and

ψj(vj(t)) =

⎧
⎨

⎩

ψj
∗(vj(t), γj) for vj(t) > γj

0 for |vj(t)| ≤ γj

ψj
∗∗(vj(t), γj) for vj(t) < −γj ,

(3.4)

where δj and γj are positive numbers for each j = 1, 2, · · · n.
The forthcoming results of this section are from [23]. For the sake of an

enthusiastic reader and to understand the techniques we use to prove some of
the results. The following theorem describes a situation, in which the equilibrium
of (3.1) is globally asymptotically stable in the presence of a dead zone.

Theorem 3.1. Assume that the hypotheses (3.2) and (3.3) are satisfied. Further
assume that

ai >
1
2

n∑

j=1

|bij |, ci >
1
2

n∑

j=1

|dij | (3.5)

for i = 1, 2, . . . , n are satisfied. Then the equilibrium pattern of (3.1) is globally
asymptotically stable provided the following inequalities hold:

For each i = 1, 2, . . . , n,

min {Ai + mi, Ai + m̃i} > 0 and min {Bi + ni, Bi + ñi} > 0 (3.6)

where for each i = 1, 2, . . . , n

Ai = ai − 1
2

n∑

j=1

|bij |, Bi = ci − 1
2

n∑

j=1

|dij |,

mi = min
ui(t)>hi

[
ai

(
g∗

i (ui(t), hi)

ui(t)

)
−

(
g∗

i (ui(t), hi)

ui(t)

)2 n∑
j=1

(
1

2
|bij | + |dji|

)]
,

m̃i = min
ui(t)<−hi

[
ai

(
g∗∗

i (ui(t), hi)

ui(t)

)
−

(
g∗∗

i (ui(t), hi)

ui(t)

)2 n∑
j=1

(
1

2
|bij | + |dji|

)]
,
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ni = min
vi(t)>ki

[
ci

(
f∗

i (vi(t), ki)

vi(t)

)
−

(
f∗

i (vi(t), ki)

vi(t)

)2 n∑
j=1

(
1

2
|dij | + |bji|)

]
,

ñi = min
vi(t)<−ki

[
ci

(
f∗∗

i (vi(t), ki)

vi(t)

)
−

(
f∗∗

i (vi(t), ki)

vi(t)

)2 n∑
j=1

(
1

2
|dij | + |bji|

)]
.

The following is a special case of Theorem 3.1.

Corollary 3.2. Assume that the conditions (3.2), (3.3) and (3.5) are satisfied.
Further suppose that the following conditions hold:

(i) xF (x, c) > 0 for x �= 0 (3.7)

and any constant c > 0, where F in (3.11) is replaced by each of f∗
i , f∗∗

i , g∗
i and

g∗∗
i .

(ii)
lim vi(t)→∞

f∗
i (vi(t),ki)

vi(t)
= 0 = lim vi(t)→−∞

f∗∗
i (vi(t),ki)

vi(t)

lim ui(t)→∞
g∗

i (ui(t),hi)
ui(t)

= 0 = lim ui(t)→−∞
g∗∗

i (ui(t),hi)
ui(t)

(3.8)

for each i = 1, 2, . . . , n.
Then the equilibrium pattern of (3.1) is globally asymptotically stable.
We now illustrate our theorem in detail with the following example.

Example 3.3. We now consider the system (3.1) in which the functions φi and
ψi assume the following form:

φi(ui) =

⎧
⎨

⎩

βi(hi)(ui − hi) for ui > hi,
βi(hi)(ui + hi) for ui < −hi,
0 otherwise.

(3.9)

and

ψi(vi) =

⎧
⎨

⎩

αi(ki)(vi − ki) for vi > ki,
αi(ki)(vi + ki) for vi < −ki,
0 otherwise.

(3.10)

for i = 1, 2, . . . , n, where the functions αi(ki), βi(hi) satisfy the following condi-
tions:

lim
ki→0

αi(ki) =
ci∑n

j=1

(
1
2 |dij | + |bji|

) , lim
hi→0

βi(hi) =
ai∑n

j=1

(
1
2 |bij | + |dji|

)

(3.11)
for each i = 1, 2, . . . , n.

Here, we have f∗
i (vi, ki) = αi(ki)(vi − ki), f∗∗

i (vi, ki) = αi(ki)(vi +
ki), g∗

i (ui, hi) = βi(hi)(ui − hi) and g∗∗
i (ui, hi) = βi(hi)(ui + hi) for each

i = 1, 2, . . . , n. Then

mi = m̃i = ai βi(hi) − β2
i (hi)

n∑

j=1

(
1
2
|bij | + |dji|

)



Dead Zones in BAM Neural Networks 235

and

ni = ñi = ci αi(ki) − α2
i (ki)

n∑

j=1

(
1
2
|dij | + |bji|

)

for each i = 1, 2, . . . , n.
Finally, we see that all the hypotheses of Theorem 3.1 are satisfied and accord-

ingly the equilibrium, the origin of (3.1) is globally asymptotically stable, pro-
vided

Ai + mi > 0 and Bi + ni > 0 (3.12)

for each i = 1, 2, . . . , n.
It should be noted that conditions (3.12) guarantee global stability when the

dead zones are in a sense permanent. In this context, a natural question that
needs to be examined is how best one could improve the neural gains so as to
have a satisfactory (globally stable) performance of the network?

We now write the conditions (3.12) as

βi <

ai +
√

a2
i + 4

(∑n
j=1

(
1
2 |bij | + |dji|

)) (
ai − ∑n

j=1
1
2 |bij |

)

2
(∑n

j=1

(
1
2 |bij | + |dji|

))

αi <

ci +
√

c2i + 4
(∑n

j=1

(
1
2 |dij | + |bji|

)) (
ci − ∑n

j=1
1
2 |dij |

)

2
(∑n

j=1

(
1
2 |dij | + |bji|

)) (3.13)

for each i = 1, 2, . . . , n.

The inequalities (3.13) clearly provide the upper bounds for αi and βi. That
is, if the decay rates and the synaptic connection weights are fixed (in a certain
sense) then, one can understand that αi and βi should not exceed the optimal
bounds as in (3.13).

Further, we notice that if the width of the dead zones hi and ki → 0 (which
corresponds to the case of diminishing dead zones), then the Eq. (3.11) will
provide the minimum values for the neural gains αi and βi respectively and the
corresponding global stability conditions reduces to Ai > 0 and Bi > 0 for each
i = 1, 2, . . . , n.

In order to highlight further the influence of dead zones on the global stability
of the equilibrium pattern, we consider the network described by the equations

ẋi = −ai xi(t) +
∑2

j=1 bij

∫ t

−∞ Kij(t − s) ψj(yj(s)) ds,

ẏi = −ci yi(t) +
∑2

j=1 dij

∫ t

−∞ Lij(t − s) φj(xj(s)) ds.
(3.14)

where i = 1, 2, in which we choose

a1 = 0.5, a2 = 0.42, c1 = 0.51, c2 = 0.49,
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[bij ] =
[

1/6 1/4
−1/4 1/4

]
, [dij ] =

[
1/3 1/5
1/10 1/8

]
.

With regard to this numerical example, we now compute the various estimates
described in the relations (3.11)–(3.13).

Accordingly,

limk1→0 α1 = 0.81, limk2→0 α2 = 0.80,
limh1→0 β1 = 0.78, limh2→0 β2 = 0.73,

(3.15)

which clearly provide the lower bounds. Again following the inequalities (3.13)
and writing the lower bounds in (3.15) we see that the neural gains αi and βi

for i = 1, 2 should satisfy the following inequalities:

0.81 ≤ α1(k1) < 1.19, 0.78 ≤ β1(h1) < 1.17,
0.80 ≤ α2(k2) < 2.94, 0.73 ≤ β2(h2) < 2.17.

(3.16)

Thus, it follows that the equilibrium pattern described by (3.14) is globally
asymptotically stable provided the neural gains satisfy the inequalities (3.16).

In our attempt to model the situation arising out of wild activations in a bio-
logical (or artificial) neural network, we began our analysis with the presumption
that creation of a dead zone would help control wild activities (thus bringing a
system otherwise tending to instability to normalcy). In this special situation,
in which the activation functions φi and ψi assuming the form given in (3.9)
and (3.10), we have suggested a mechanism to control the wildness by providing
the upper bounds (inequalities (3.13)) and the lower bounds (Eq. (3.11)) for the
neural gains which clearly depend on the widths of the zones.

In the case of human neurobiological systems modeled by the network equa-
tions involving dead zones as above, a clinical procedure may correspond either
to administering a drug with doses depending upon the bounds on the neural
gains or to a surgical procedure leading to the removal of a carefully selected
tissue of the brain in such a manner that the functionality of other mechanisms
of the body are not disturbed (or foregone).

Following results improve the applicability of our methods by expanding
the space of parameters for the stability of equilibrium pattern using a useful
inequality [24].

Theorem 3.5. Assume that the delay kernels satisfy (3.2) and (3.3) and the
response functions satisfy the conditions

uiφi(ui) > 0 for ui �= 0 and viψi(vi) > 0 for vi �= 0. (3.17)

Then the equilibrium pattern (0, 0) of (3.1) is globally asymptotically stable pro-
vided there exist constants η1, η2, η3 and η4, all positive, such that the following
inequalities hold for i = 1, 2, · · · , n,

min {Ai + mi, Ai + m̄i} > 0 and min {Bi + ni, Bi + n̄i} > 0,
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where

Ai = ai − 1
4η1

n∑

j=1

|bij |, Bi = ci − 1
4η2

n∑

j=1

|dij |,

mi = min
ui(t)>δi

{
ai(

φ∗
i (ui(t))

ui(t)
) −

[ 1

4η3

m∑
j=1

|bij | + (η2 + η4)

n∑
j=1

|dji|
]
(
φ∗

i (ui(t))

ui(t)
)2

}
,

ni = min
vi(t)>γi

{
ci(

ψ∗
i (vi(t))

vi(t)
) −

[ 1

4η4

n∑
j=1

|dij | + (η1 + η3)

n∑
j=1

|bji|
]
(
ψ∗

i (vi(t))

vi(t)
)2

}
,

m̄i = min
ui(t)<−δi

{
ai(

φ∗∗
i (ui(t))

ui(t)
) −

[ 1

4η3

m∑
j=1

|bij | + (η2 + η4)
n∑

j=1

|dji|
]
(
φ∗∗

i (ui(t))

ui(t)
)2

}
,

n̄i = min
vi(t)<−γi

{
ci(

ψ∗∗
i (vi(t))

vi(t)
) −

[ 1

4η4

n∑
j=1

|dij | + (η1 + η3)
n∑

j=1

|bji|
]
(
ψ∗∗

i (vi(t))

vi(t)
)2

}
.

Remark 3.6. In Theorems 3.1 or 3.5, in view of the conditions (3.8), the quan-
tities mi, m̄i, ni and n̄i may assume values in the extended real number system
implying that the functions φi

∗, φi
∗∗, ψi

∗ and ψi
∗∗ cannot be super linear in their

arguments. In order to deal with situations when the response functions can be
super linear, we use the following definition.

φ∗
j (uj(t)) = F ∗

j (uj(t)) for δj < uj(t) ≤ Δj

φ∗
j (uj(t)) = F ∗

j (Δj) for uj(t) > Δj

φ∗∗
j (uj(t)) = F ∗∗

j (uj(t)) for − Δj ≤ uj(t) < −δj

φ∗∗
j (uj(t)) = F ∗∗

j (−Δj) for uj(t) < −Δj

ψ∗
j (vj(t)) = G∗

j (vj(t)) for γj < vj(t) ≤ Γj

ψ∗
j (vj(t)) = G∗

j (Γj) for vj(t) > Γj

ψ∗∗
j (vj(t)) = G∗∗

j (vj(t)) for − Γj ≤ vj(t) < −γj

ψ∗∗
j (vj(t)) = G∗∗

j (−Γj) for vj(t) < −Γj

in which the functions F ∗
j , F ∗∗

j , G∗
j , G

∗∗
j can be super linear in their arguments.

Theorem 3.7. Assume that the delay kernels satisfy (3.2) and (3.3) and the
response functions satisfy (3.4). Then the equilibrium pattern (0, 0) of (3.1) is
globally asymptotically stable provided there exist positive constants η1, η2, η3
and η4 such that

min {Ai + m∗
i , Ai + m̄∗

i } > 0, min {Bi + n∗
i , Bi + n̄∗

i } > 0,

for each i = 1, 2, · · · , n where

Ai = ai − 1
4η1

n∑

j=1

|bij |, Bi = ci − 1
4η2

n∑

j=1

|dij |
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and

m∗
i = min

u(t)>δi

{
ai(

F ∗
i (ui(t))

ui(t)
) −

[ 1

4η3

n∑
j=1

|bij | + (η2 + η4)
n∑

j=1

|dji|
]
(
F ∗

i (ui(t))

ui(t)
)2

}
,

m̄∗
i = min

u(t)<−δi

{
ai(

F ∗∗
i (ui(t))

ui(t)
) −

[ 1

4η3

n∑
j=1

|bij | + (η2 + η4)
n∑

j=1

|dji|
]
(
F ∗∗

i (ui(t))

ui(t)
)2

}
,

n∗
i = min

ui(t)>γi

{
ci(

G∗
i (vi(t))

vi(t)
) −

[ 1

4η4

n∑
j=1

|dij | + (η1 + η3)
n∑

j=1

|bji|
]
(
G∗

i (vi(t))

vi(t)
)2

}
,

n̄∗
i = min

vi(t)<−γi

{
ci(

G∗∗
i (vi(t))

vi(t)
) −

[ 1

4η4

n∑
j=1

|dij | + (η1 + η3)
n∑

j=1

|bji|
]
(
G∗∗

i (vi(t))

vi(t)
)2

}
.

Remark 3.8. Theorems 3.5 and 3.7 improve significantly Theorem3.1 in a num-
ber of ways. Theorem 3.1 follows from Theorem 3.5 for the choice of η1 = η2 = 1

2 ,
and clearly, Theorem3.5 provides a larger region of stability. Further, Theo-
rem 3.7 here is the super linear analogue of Theorem3.1.

Now replacing the conditions (3.17) on the response functions φj and ψj by
the assumption that there exist positive constants αj(λj) and βj(μj) such that

||φj || ≤ αj |uj |, ||ψj || ≤ βj |vj |. (3.18)

one may prove

Theorem 3.9. Assume that the delay kernels satisfy (3.2), (3.3) and the
response functions satisfy (3.18). Then the equilibrium pattern (0, 0) of
(3.1) is globally asymptotically stable provided there exist positive constants
αi∗, αi∗∗, βi∗, βi∗∗ such that

min

⎧
⎨

⎩ai − αi∗
n∑

j=1

|dji|, ai − αi∗∗
n∑

j=1

|dji|
⎫
⎬

⎭ > 0

and

min

⎧
⎨

⎩ci − βi∗
n∑

j=1

|bji|, ci − βi∗∗
n∑

j=1

|bji|
⎫
⎬

⎭ > 0.

In the next result the condition (3.3) on the delay kernels is removed. However,
this results in placing more restrictions on the parameters.

Theorem 3.10. Assume that the delay kernels satisfy (3.2) and the response
functions satisfy (3.18). Then the equilibrium solution (0, 0) of (3.1) is globally
asymptotically stable provided,

Ki = min{ai, ci} > max

⎛

⎝
n∑

j=1

(αj∗|dij | + βj∗|bij |),
n∑

j=1

(αj∗∗|dij | + βj∗∗|bij |)
⎞

⎠ ,

for i = 1, 2, . . . , n where the positive constants αj∗, αj∗∗, βj∗ and βj∗∗ are as in
Theorem 3.9.
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4 Future Work

We have seen that dead zones are considered in two ways. One as a missing infor-
mation or a fault in the system and is regarded as a nonlinear, non smooth char-
acteristic of the process [26–28]. On the positive sense, a dead zone is regarded as
a control mechanism for either a collapsing or a turbulent system [23,24]. Under-
standing of system behavior and creation of appropriate zone of no activation is
of utmost importance and is the first step in this area.

In both situations arising here, it is the preservation of stability that is under
question. We have studied here the global stability of the system which is referred
to as a physician’s approach - control by drugs through any means - veins, oral
or muscles. But the local stability is equally important as a surgeon’s approach
to remove the defective or infected parts or the practices of yoga or meditation
focusing on problem locally. Thus, local stability analysis of (1.5) with (1.6) and
(1.7) would be a useful topic for exploration.

Neurons are usually stimulated by external inputs which may be either fixed
constants or time variants. Any gap or temporary absence of inputs may also
influence the dynamics of the system considerable. Also a system with vari-
able inputs is regarded as non autonomous in mathematical sense. For such
systems inputs could be either discontinuous or impulsive. Thus, a dead zone
in external inputs may introduce entirely new dynamics into the system. This
is also an interesting area to explore along with the dead zones considered in
state vector in this study. Further, non autonomous systems may not possess an
equilibrium and hence, the stability of equilibrium as studied here makes little
sense. Researchers may explore the situations such as the one in previous section
(asymptotic equivalence). Also the study in [25] provides an innovative technique
to select inputs to make the system approach pre-specified output values for such
non autonomous systems. It would be interesting to see how the technique works
out in case of dead zones.

In the present study we have considered the dead zone around an equilibrium
pattern which may not always exist. A more natural way of setting a zone could
be

φ(u(t)) =

⎧
⎨

⎩

φ∗(u(t), δ) for u(t) > δ,
φ∗∗(u(t), δ) for u(t) < −δ,

φ otherwise.
(4.1)

It is easy to see that (1.4) and (3.4) may be obtained from above definition
letting φ ≡ 0 and φ ≡ φ(u∗) respectively.

Now consider the situation where

lim
u→δ+

φ∗(u(t), δ) = lim
u→−δ−

φ∗∗(u(t),−δ−).

Then φ → 0. This situation describes the presence of a diminishing zone in
the system.

We shall now consider the case of multiple dead zones. Systems with missing
information at many points during communication or supply of medicine at reg-
ular or appropriate time points during treatment are examples of such situations.
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The following definition describes a function with two dead zones.

φ(u(t)) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

φ∗(u(t), δ1) for u(t) < δ1,
0 for δ1 ≤ u(t) ≤ δ2,
φ∗∗(u(t), δ2) for δ2 < u(t) < δ3,
0 for δ3 ≤ u(t) ≤ δ4,
φ∗∗∗(u(t), δ4) for u(t) > δ4.

(4.2)

One may easily extend the results of Sect. 3 with same Lyapunov functionals
and arguments for multiple dead zones. It would be interesting to see how the
parameters withstand the pressure of dead zones to preserve the stability of the
system.

We shall now consider the situation where the width of zone defined by δ is
not a simple fixed constant but a variable one. This may be due to correction
measures taken up to minimize the faults in the system or alternate methods
or immunity developed during treatment the length of zone reduces. Similarly,
if system suffers some more complications or develops side effects, the length
of zone increases. Many practical systems suffer from such unwanted troubles.
Thus, we need to consider the role of variable zones on the system dynamics.
We propose the following.

An Oscillating Zone
Consider δ = δ+f(λ), where the real parameter λ corresponds to an external

factor that influences on the zone length. We have the following cases.

(i) f(λ) = (−1)λ

λ , λ �= 0. This produces oscillations in the zone which, however,
eventually die out and hence, for large λ zone length tends to the given
value δ.

(ii) f(λ) = sin λπ. This produces standard oscillations and occasionally visits
the original value δ at integer values of λ.

(iii) f(λ) = e−λ sin λπ also produces an oscillatory dead zone but approaches δ
for large values of λ and takes the same value δ for all integer values of λ
as in above case.

One may similarly define expanding zones contrary to examples (i) and (iii) in
which variations are contracting to original zone length to δ.

How about considering a zone of the type δ ≡ f(δ, λ)? Here also λ corresponds
to an influencing factor on zone. This definition could represent a variety of zones
including those described above.

5 Discussion

In this paper, we have considered a bidirectionalassociative memory neural net-
work model described in [22,23] to study the activation dynamics of neurons
in a pair of neuronal fields involving exogenous inputs, transmission delays and
dead zones. A result on the existence and uniqueness of equilibrium patterns for
the model (1.5) is presented that applies to not necessarily Lipschitz functions
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that could be sub linear or super linear. We have explained the concept of a
dead zone introduced in [23] and provided several results on the global asymp-
totic stability of the equilibrium pattern in the presence of a dead zone. Several
naturally possible types of dead zones are described for further exploration and
development of theory to understand real world phenomena. These are left as
open problems for interested readers.

Digital technology is the order of the day and almost every thing is trending
towards digitization. In most of the real world situations, the data or information
is available or measured in discrete time intervals only, though the phenomena
are continuous time processes. Thus, discrete forms of continuous systems only
are available for study in many cases. Then how far this discrete analogue reflects
the original system is a basic question interest to deal with. We begin with a
simple example. Consider the differential equation

y′′ + 3y′ + 2y = 0.

It is easy to see that solutions of this differential equation approach 0 as t → ∞
where as the solutions of corresponding difference equation (its discrete version)

y(n + 2) + y(n + 1) = 0,

obtained by replacing y′ with ∇y(n) and y′′ with y(n + 2) − 2y(n + 1) + y(n)
do not preserve this property.

Thus, enough care should be taken while representing continuous dynami-
cal systems by discrete systems. In this context, it is highly important to find
suitable discretization schemes that preserve the dynamical behaviour of the
continuous systems in the corresponding discretized systems and in addition,
appropriate dead zones and analyze their influence via discrete analogues corre-
sponding to the systems represented by continuous dynamics. We hope to pursue
this challenge in our subsequent expositions.
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Abstract. There has been a number of problems closely connected with
the classical Bohr inequality for bounded analytic functions defined on
the unit disk centered at the origin. Several extensions, generalizations
and modifications of it are established by many researchers and they can
be found in the literature, for example, in the multidimensional setting
and in the case of the Dirichlet series, functional series, function spaces,
etc. In this survey article, we mainly focus on the recent developments
on this topic and in particular, we discuss new and sharp improvements
on the classical Bohr inequality and on the Bohr inequality for harmonic
functions.

Keywords: Bounded analytic functions · Univalent functions
Bohr radius · Rogosinski radius · Schwarz-Pick lemma · Subordination
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1 Introduction

A well-known inequality of H. Bohr–often referred to as the classical Bohr the-
orem, states the following [12]:

Theorem A. If a power series f(z) =
∑∞

k=0 akzk converges in the unit disk
D := {z ∈ C : |z| < 1} and its sum f(z) has modulus less than 1 in D, then

Mf (r) :=
∞∑

n=1

|an| |z|n ≤ 1 − |a0| = dist(f(0), ∂D) (1)

for |z| = r < 1/3. Moreover, the constant 1/3 cannot be improved. Here
dist(f(0), ∂D) denotes the Euclidean distance between f(0) and the boundary
∂D of the unit disk D. Equality in (1) holds for constant functions only.
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It is worth pointing out that Bohr’s original article, compiled by G.H. Hardy
from correspondence, indicates that Bohr initially obtained the inequality (1)
for r ≤ 1/6 which was quickly sharpened to r ≤ 1/3 by M. Riesz, I. Schur and
F. Wiener, independently. The number 1/3 is called the classical Bohr radius for
the class of analytic self-maps of the unit disk D. Bohr’s article contains both
his own proof and the one of his colleagues. Bohr considered this problem while
working on the absolute convergence problem for Dirichlet series but presently it
has become an important area of interest in many different contexts. The proof
of Theorem A is well-known and an elegant proof of this theorem may also be
found in a recent article [23].

We remark that the existence of the number r, asserted by Theorem A, is
independent of the coefficients of the power series. We describe this fact by
saying that a Bohr phenomenon occurs in the class of analytic self-maps of
the unit disk D. In [6], the existence of a Bohr phenomenon in the space of
holomorphic functions on complex manifold is proved. In this case, the proof
uses the algebraic structure of holomorphic functions and the underlying fact
seems to be nothing but the maximum principle.

Various extensions of Bohr’s inequality have been proposed by different
authors after Dixon [17] used it in the construction of a Banach algebra satisfy-
ing the non-unital von Neumann inequality and non-isomorphic to a subalgebra
of L(H), the algebra of bounded linear operators on the Hilbert space H. For
example, Boas and Khavinson [11] and Aizenburg [4] studied Bohr’s result for
n-variable power series defined on polydisks in C

n and on ball or other domains.
Bohr’s phenomenon in a more general setting has created enormous interest on
Bohr’s inequality in variety of situations including function spaces point of view.
See for example, [9,10,35], the recent survey on this topic by Abu-Muhanna
et al. [7] and the references therein. See for instance, [1–3,5,7–9,11,35].

After the appearance of the survey [7], several new results have appeared on
this topic. See for example [23–26,28,29,32].

Here is another well-known result equivalent to TheoremA for analytic func-
tions with positive real part less than 1.

Theorem B. If a power series f(z) =
∑∞

k=0 akzk converges in the unit disk D

and its sum f has its real part less than 1 in D such that f(0) = a0 is positive,
then (1) holds for |z| < 1/3 and the constant 1/3 cannot be improved.

One of the ways of proving Bohr’s phenomenon in concrete cases is by estab-
lishing bounds on the coefficients to the functions in the hypothesis. The proofs
of Theorems A and B are essentially same in the sense that in Theorem A one
uses the inequality |an| ≤ 1 − |a0|2 for all n ≥ 1 whereas in Theorem B, the
inequality |an| ≤ 2(1 − a0) for all n ≥ 1, is used. We see that Theorems A and B
are special cases of Theorem C where the proof is simple and new.

The aim of this article is to present overview on the recent results as sup-
plementary to the recent survey articles [7,23] and at the same time, we present
also some new and improved Bohr’s inequality for analytic functions.
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2 Several Extensions of Bohr’s Inequality

2.1 Bohr’s Phenomenon for a Class of Subordinations

Many authors have discussed the Bohr radius and extended this notion to various
settings which led to the introduction of Bohr’s phenomenon in different but
similar contexts. For example, using the “distance form” formulation of Bohr
inequality stated as above, the notion of Bohr radius can be generalized to the
class of functions f analytic in D which take values in a given simply connected
domain Ω.

Definition 1. Let f and g be analytic in D. Then g is said to subordinate to
f , written g ≺ f or g(z) ≺ f(z), iff there exists a function w analytic in D

satisfying w(0) = 0, |w(z)| < 1 and g(z) = f(w(z)) for z ∈ D.

If f is univalent in D, then g ≺ f if and only if g(0) = f(0) and g(D) ⊂ f(D)
(see [19, p. 190 and p. 253] and [34]). By the Schwarz lemma, it follows that

|g′(0)| = |f ′(w(0))w′(0)| ≤ |f ′(0)|.
Now for a given f , let S(f) = {g : g ≺ f} and Ω = f(D). The family S(f)

is said to satisfy a Bohr phenomenon if there exists an rf , 0 < rf ≤ 1 such that
whenever g(z) =

∑∞
n=0 bnzn ∈ S(f), then

∞∑

n=1

|bn|rn ≤ dist(f(0), ∂Ω) (2)

for |z| = r < rf . Here dist(f(0), ∂Ω) denotes the Euclidean distance between
f(0) and the boundary ∂Ω of the domain Ω = f(D).

We observe that if f(z) = (a0 − z)/(1 − a0z) with |a0| < 1, Ω = D and
g ∈ S(f), then f(0) = a0 and dist(f(0), ∂Ω) = 1 − |a0| = 1 − |b0| so that (2)
holds with rf = 1/3.

Here is a more general result which contains the proof of Theorems A and B.

Theorem C ([1]). If f, g are analytic in D such that f is univalent and convex
in D and g ∈ S(f), then inequality (2) holds with rf = 1/3. The sharpness of rf

is shown by the convex function f(z) = z/(1 − z).

Proof. Let g(z) =
∑∞

n=0 bnzn ≺ f(z), where f is a univalent mapping of D onto
a convex domain Ω = f(D). Then it is well known that (see, for instance, [19,
p. 195, Theorem 6.4])

1
2
|f ′(0)| ≤ dist(f(0), ∂Ω) ≤ |f ′(0)| and |bn| ≤ |f ′(0)|. (3)

It follows that |bn| ≤ 2dist(f(0), ∂Ω), and thus
∞∑

n=1

|bn|rn ≤ dist(f(0), ∂Ω)
2r

1 − r
≤ dist(f(0), ∂Ω)

provided 2r/(1 − r) ≤ 1, i.e., r ≤ 1/3. When f(z) = z/(1 − z), we obtain
dist(f(0), ∂Ω) = 1/2 which gives sharpness.
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An appropriate modification of (3) yields the following result obtained in [1,
Theorem 1].

Theorem D. If f, g are analytic in D such that f is univalent in D and g ∈
S(f), then inequality (2) holds with rf = 3 − 2

√
2 ≈ 0.17157. The sharpness of

rf is shown by the Koebe function f(z) = z/(1 − z)2.

Proof. In this case, instead of (3), we just need to use the following (see [19,
p. 196] and [15]):

1
4
|f ′(0)| ≤ dist(f(0), ∂Ω) ≤ |f ′(0)| and |bn| ≤ n|f ′(0)|.

As a consequence of it, one quickly gets

∞∑

n=1

|bn|rn ≤ |f ′(0)|
∞∑

n=1

nrn ≤ dist(f(0), ∂Ω)
4r

(1 − r)2
≤ dist(f(0), ∂Ω)

provided 4r ≤ (1−r)2, that is, for r ≤ 3−2
√

2. Sharpness part follows similarly.

There are still many cases where Theorem D could be improved. To state
one such result, we need a result of Rogosinski [36, p. 64] which states that
if g(z) =

∑∞
n=1 bnzn ≺ f(z) =

∑∞
n=1 anzn in D and if, for 1 ≤ k ≤ n, the

numbers ak are nonnegative, non-increasing, and convex, then |bk| ≤ |a1| for
k = 1, 2, . . . , n. Using this result and [22, Theorem 5], we have the following
result.

Theorem 1. If f, g are analytic in D such that Re f ′(z) > 0 in D and g ∈ S(f),
then inequality (2) holds with rf = 1/5.

Proof. In this case, instead of (3), one just needs to use the following inequalities
(see [22, Theorem 5] which uses the ideas of convex decreasing sequences)

1
4
|f ′(0)| ≤ dist(f(0), ∂Ω) ≤ |f ′(0)| and |bn| ≤ |f ′(0)|.

As a consequence of it, one quickly gets

∞∑

n=1

|bn|rn ≤ |f ′(0)|
∞∑

n=1

rn ≤ dist(f(0), ∂Ω)
4r

1 − r
≤ dist(f(0), ∂Ω)

provided r ≤ 1/5.

Remark 1. Note that f satisfying the condition Re f ′(z) > 0 in D is univalent
in D, but not necessarily convex in D, and thus Bohr radius is expected to be
bigger than the number 3 − 2

√
2.
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2.2 Improved Bohr’s Inequality

Kayumov and Ponnusamy [25] improved the classical version of the Bohr theorem
in four different formulations. Later in a survey article in [23], the authors have
further improved couple of these results. We now recall them here.

Theorem E. Suppose that f(z) =
∑∞

k=0 akzk is analytic in D, |f(z)| ≤ 1 in D

and Sr denotes the area of the Riemann surface of the function f−1 defined on
the image of the subdisk |z| < r under the mapping f . Then we have

∞∑

k=0

|ak|rk +
16
9

(
Sr

π − Sr

)

≤ 1 for r ≤ 1
3

(4)

and the number 16/9 cannot be improved. Furthermore,

|a0|2 +
∞∑

k=1

|ak|rk +
9
8

(
Sr

π − Sr

)

≤ 1 for r ≤ 1
2

(5)

and the number 9/8 cannot be improved.

It is worth pointing out that in [25], these two inequalities were proved by
using the quantity Sr/π in place of Sr/(π − Sr) in the inequalities (4) and (5).
This observation shows that the inequalities (4) and (5) are indeed an improved
versions of [25, Theorem 1]. In [25], the following results were also proved.

Theorem F. Suppose that f(z) =
∑∞

k=0 akzk is analytic in D and |f(z)| ≤ 1
in D. Then we have

1. |a0| +
∞∑

k=1

(

|ak| +
1
2
|ak|2

)

rk ≤ 1 for r ≤ 1
3
, and the constants 1/3 and 1/2

cannot be improved.

2.
∞∑

k=0

|ak|rk + |f(z) − a0|2 ≤ 1 for r ≤ 1
3
, and the constant 1/3 cannot be

improved.

3. |f(z)|2 +
∞∑

k=1

|ak|2r2k ≤ 1 for r ≤
√

11
27

, and the constant
√

11/27 cannot be

improved.

2.3 Bohr inequality for p-Symmetric Analytic Functions

Ali et al. [8], considered the problem of determining Bohr radius for symmet-
ric functions and suggested to determine the Bohr radius for the class of odd
functions f satisfying |f(z)| ≤ 1 for all z ∈ D. Indeed, motivated by the work
of Ali et al. [8], Kayumov and Ponnusamy [24] considered the following general
problem.
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Problem 1 ([24]). Given p ∈ N and 0 ≤ m ≤ p, determine the Bohr radius for
the class of functions f(z) = zm

∑∞
k=0 apkzpk analytic in D and |f(z)| ≤ 1 in D.

As a solution to this problem, the following result was established in [24].

Theorem G. Let p ∈ N and 0 ≤ m ≤ p, f(z) = zm
∑∞

k=0 apkzpk be analytic in
D and |f(z)| ≤ 1 in D. Then

Mf (r) ≤ 1 for r ≤ rp,m,

where rp,m is the maximal positive root of the equation

−6rp−m + r2(p−m) + 8r2p + 1 = 0.

The number rp,m is sharp. Moreover, in the case m ≥ 1 there exists an extremal
function of the form zm(zp − a)/(1 − azp), where

a =

(

1 −
√

1 − rp,m
2p

√
2

)
1

rp,m
p
.

Several choices of r and m provide Bohr radii for gap series of different types.
For example, for the case p = m, 2m, 3m, the Bohr radii give

rm,m = 1/
2m
√

2, r2m,m = m
√

r2, and r3m,m =
2m

√

7 +
√

17
16

,

respectively, where r2 = 0.789991 . . . is given by

r2 =
1
4

√
B − 2

6
+

1
2

√

3

√
6

B − 2
− B

24
− 1

6
,

with
B = (3601 − 192

√
327)

1
3 + (3601 + 192

√
327)

1
3 .

It is worth pointing out from the last case that r3,1 gives the value (
√

7 +
√

17)/4.
The result for m = 0 gives

Corollary 1. Let p ≥ 1. If f(z) =
∑∞

k=0 apkzpk is analytic in D, and |f(z)| ≤ 1
in D, then Mf (r) ≤ 1 for 0 ≤ r ≤ rp,0 = 1/ p

√
3. The radius rp,0 = 1/ p

√
3 is best

possible.

For the case a0 = 0, it was pointed out that the number rp,0 = 1/ p
√

3 in
Corollary 1 can be evidently replaced by rp,0 = 1/ 2p

√
2 which is the Bohr radius

in this case. Moreover, the radius r = 1/ 2p
√

2 in this case is best possible as
demonstrated by the function

ϕα(z) = zp

(
α − zp

1 − αzp

)

with α = 1/ 2p
√

2.
It is now appropriate to recall the following problem proposed in [24]. The

problem remains open.

Problem 2. Find the Bohr radius for the class of odd functions f satisfying
0 < |f(z)| ≤ 1 for all 0 < |z| < 1.
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2.4 Powered Bohr Inequality

In 2000, Djakov and Ramanujan [18] investigated the Bohr phenomenon from
different point of view. For the class B of analytic self-maps f of the unit disk
D and a fixed p > 0, we consider the powered Bohr sum Mf

p (r) defined by

Mf
p (r) =

∞∑

k=0

|ak|prk.

Observe that for p = 1, Mf
p (r) reduces to the classical Bohr sum defined in (1)

by Mf (r). The best possible constant ρp for which

Mf
p (r) ≤ 1 for all r ≤ ρp

is called the (powered) Bohr radius for the family B. To recall some known
results, let us introduce

Mp(r) := sup
f∈B

Mf
p (r)

and

rp := sup
{

r : ap +
r(1 − a2)p

1 − rap
≤ 1, 0 ≤ a < 1

}

= inf
a∈[0,1)

1 − ap

ap(1 − ap) + (1 − a2)p
.

Theorem H ([18, Theorem 3]). For each p ∈ (1, 2) and f(z) =
∑∞

k=0 akzk

belongs to B, we have Mf
p (r) ≤ 1 for r ≤ Tp, where

mp ≤ Tp ≤ rp

where rp is as above and

mp :=
p

(
21/(2−p) + p1/(2−p)

)2−p .

Djakov and Ramanujan [18] posed the following problem about the Bohr
radius for Mf

p (r).

Problem 3 ([18, Question 1, p. 71]). What is the exact value of the (powered)
Bohr radius ρp, p ∈ (1, 2)? Is it true that ρp = rp?

Using the recent approach from [24,26], this problem is solved affirmatively
in the following form.

Theorem 2 (Kayumov and Ponnusamy [27]). If f(z) =
∑∞

k=0 akzk belongs to
B and p ≤ 2, then

Mp(r) = max
a∈[0,1]

[

ap +
r(1 − a2)p

1 − rap

]

, 0 ≤ r ≤ 2p/2−1,

and

Mp(r) <

(
1

1 − r2/(2−p)

)1−p/2

, 2p/2−1 < r < 1.
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In particular, the following result of Bombieri [13] (see also Bombieri and
Bourgain [14]) is obtained as a special case.

Corollary 2. If p ∈ (1, 2), then Mp(r) = 1 for r ≤ rp. Also, we have the sharp
estimate:

M1(r) =
1
r
(3 −

√
8(1 − r2)) for r ∈

[
1
3
,

1√
2

]

.

2.5 Improved Bohr’s Inequality for Locally Univalent Harmonic
Mappings

A complex-valued function f = u+iv defined on D is harmonic if u and v are real-
harmonic in D. Every harmonic function f admits the canonical representation
f = h + g, where h and g are analytic in D such that g(0) = 0 = f(0). A
locally univalent harmonic function f in D is said to be sense-preserving if the
Jacobian Jf (z), Jf (z) = |h′(z)|2 − |g′(z)|2, is positive in D or equivalently, its
dilatation ωf (z) = g′(z)/h′(z) satisfies the inequality |ωf (z)| < 1 for z ∈ D

(see [16,20,31,33]). Properties of harmonic mappings have been investigated
extensively, especially after the appearance of the pioneering work of Clunie and
Sheil-Small [16] in 1984.

A sense-preserving homeomorphism f from the unit disk D onto Ω′, contained
in the Sobolev class W 1,2

loc (D), is said to be a K-quasiconformal mapping if, for
z ∈ D,

|fz| + |fz|
|fz| − |fz| =

1 + |ωf (z)|
1 − |ωf (z)| ≤ K, i.e., |ωf (z)| ≤ k =

K − 1
K + 1

,

where K ≥ 1 so that k ∈ [0, 1) (cf. [30,37]).
As a harmonic extension of the classical Bohr theorem, the following results

were established in [29].

Theorem I. Suppose that f(z) = h(z) + g(z) =
∑∞

n=0 anzn +
∑∞

n=1 bnzn is a
sense-preserving K–quasiconformal harmonic mapping of the disk D, where h is
a bounded function in D. Then we have

1.
∞∑

n=0

|an|rn +
∞∑

n=1

|bn|rn ≤ ||h||∞ for r ≤ K + 1
5K + 1

. The constant (K + 1)/

(5K + 1) is sharp.

2. |a0|2 +
∞∑

n=1

(|an| + |bn|)rn ≤ ||h||∞ for r ≤ K + 1
3K + 1

. The constant (K + 1)/

(3K + 1) is sharp.

Theorem J. Suppose that either f = h + g or f = h + g, where h(z) =∑∞
n=1 anzn and g(z) =

∑∞
n=1 bnzn are bounded analytic functions in D. Then

∞∑

n=1

(|an| + |bn|)rn ≤ max{||h||∞, ||g||∞} for r ≤
√

7
32

.

This number
√

7/32 is sharp.
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As in the symmetric case of analytic functions (see [8,24,26]), we have the
following analog result for harmonic functions.

Theorem K. Let p ≥ 2. Suppose that f(z) = h(z) + g(z) =
∑∞

n=0 anzpn+1 +
∑∞

n=0 bnzpn+1 is a harmonic p–symmetric function in D, where h and g are
bounded functions in D. Then

∞∑

n=0

(|an| + |bn|)rpn+1 ≤ max{||h||∞, ||g||∞} for r ≤ 1
2
.

The number 1/2 is sharp.

Moreover, Kayumov and Ponnusamy [27] investigated the powered Bohr
radius also for sense-preserving harmonic mappings defined on the unit disk D.
In addition to a number of several new results, the authors proved the following
results.

Theorem 3 ([27]). Suppose that f(z) = h(z) + g(z) =
∑∞

k=0 akzk +
∑∞

k=1 bkzk

is a harmonic mapping of the disk D, where h is a bounded function in D and
|g′(z)| ≤ |h′(z)| for z ∈ D (the later condition obviously holds if f is sense-
preserving). If p ∈ [0, 2] then the following sharp inequality holds:

|a0|p +
∞∑

k=1

(|ak|p + |bk|p)rk ≤ ||h||∞ max
a∈[0,1]

[

ap +
2r(1 − a2)p

1 − rap

]

for r ≤ (21/(p−2) + 1)p/2−1. In the case p > 2, we have

|a0|p +
∞∑

k=1

(|ak|p + |bk|p)rk ≤ ||h||∞ max{1, 2r}.

Corollary 3. Suppose that f(z) = h(z) + g(z) =
∑∞

k=0 akzk +
∑∞

k=1 bkzk is a
sense-preserving harmonic mapping of the disk D, where h is a bounded function
in D. Then the following sharp inequalities holds:

1. |a0| +
∞∑

k=1

(|ak| + |bk|)rk ≤ ||h||∞
r

(5 − 2
√

6
√

1 − r2) for
1
5

≤ r ≤
√

2
3
,

2. |a0| +
∞∑

k=1

(|ak| + |bk|)rk ≤ ||h||∞ for r ≤ 1
5
.

For further results on Bohr radius for quasiconformal harmonic mappings,
we refer to [29] where there are a couple of conjectures and Bohr radius for the
space of harmonic Bloch functions. In the same spirit, as with the analytic case,
Evdoridis et al. [21] improve the results of [25] for locally univalent harmonic
mappings. We now recall them here.
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Theorem L. Suppose that f(z) = h(z) + g(z) =
∑∞

k=0 akzk +
∑∞

k=1 bkzk is a
harmonic mapping of the disk D, where h is a bounded function in D such that
|h(z)| < 1 and |g′(z)| ≤ |h′(z)| for z ∈ D. If Sr, as in TheoremE, denotes the
area of the image of the subdisk |z| < r under the mapping f , then

H1(r) := |a0| +
∞∑

k=1

(|ak| + |bk|)rk +
108
25

(
Sr

π

)

≤ 1 for r ≤ 1
5
,

and the constants 1/5 and c = 108/25 cannot be improved. Moreover,

H2(r) := |a0|2 +
∞∑

k=1

(|ak| + |bk|)rk +
4
3

(
Sr

π

)

≤ 1 for r ≤ 1
3
,

and the constants 1/3 and 4/3 cannot be improved.

Theorem M. Suppose that f(z) = h(z) + g(z) =
∑∞

k=0 akzk +
∑∞

k=1 bkzk is a
harmonic mapping in D, with ‖h‖∞ = 1 and |g′(z)| ≤ |h′(z)| for z ∈ D. Then

L(r) := |a0| +
∞∑

k=1

(|ak| + |bk|)rk +
3
8

∞∑

k=1

(|ak|2 + |bk|2)rk ≤ 1 for r ≤ 1
5
.

The constants 3/8 and 1/5 cannot be improved.

Theorem N. Suppose that f(z) = h(z) + g(z) =
∑∞

k=0 akzk +
∑∞

k=1 bkzk is a
harmonic mapping in D, where ‖h‖∞ = 1 and |g′(z)| ≤ |h′(z)| for z ∈ D. Then

N(r) := |a0| +
∞∑

k=1

(|ak| + |bk|)rk + |h(z) − a0|2 ≤ 1 for r ≤ 1/5.

The constant 1/5 is best possible.

Theorem O. Suppose that f(z) = h(z) + g(z) =
∑∞

k=0 akzk +
∑∞

k=1 bkzk is a
harmonic mapping of the disk D, where h is a bounded function in D such that
‖h‖∞ = 1 and |g′(z)| ≤ |h′(z)| for z ∈ D. Then,

|h(z)|2 +
∞∑

k=1

(|ak|2 + |bk|2)r2k ≤ 1 for r ≤ r0,

where r0 =
√

5/(9 + 4
√

5) ≈ 0.527864 is the unique positive root of the equation

(10 + 6r2)3/2 + 144r2 − 80 = 0

in the interval (0, 1/
√

2). The number r0 is the best possible.

In the case of harmonic mappings, more flexible approach was suggested in a
recent paper [26]. This approach is expected to be more efficient as demonstrated
in a number results proved in [26].
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Abstract. The fractional differential transform method is employed
here for solving first kind Abel integral equation. Abel integral equa-
tion occurs in the mathematical modeling of several models in physics,
astrophysics, solid mechanics and applied sciences. An analytic technique
for solving Abel integral equation of first kind by the proposed method is
introduced here. Also illustrative examples with exact solutions are con-
sidered to show the validity and applicability of the proposed method.
Numerical results reveal that the proposed method works well and has
good accuracy. The method introduces a promising tool for solving many
linear and nonlinear fractional integral equation.

Keywords: Abel integral equation · Differential transform method
Fractional differential transform method

1 Introduction

Abel integral equation is one of the most important integral equations that is
derived directly from a problem of mechanics. Abel integral equation was derived
by Abel in the year 1826 when he was generalizing and solving the Tautochrone
problem. It involves finding the total time required for a particle to fall along
a given smooth curve in the vertical plane. Here we consider the Abel integral
equations of first kind given by

x∫

0

φ(t)
(x − t)α

dt = f(x), x > 0 (f(0) = 0) (1.1)

where α is a real constant such that 0 < α < 1, f(x) is a known function and
φ(x) is an unknown function to be determined. The Eq. (1.1) is a particular case
of a linear Volterra integral equation of the first kind, where the order of the
fractional integral Eq. (1.1) is (1 − α).
c© Springer Nature Singapore Pte Ltd. 2018
D. Ghosh et al. (Eds.): ICMC 2018, CCIS 834, pp. 257–267, 2018.
https://doi.org/10.1007/978-981-13-0023-3_24
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Mandal et al. (1996) solved a system of generalized Abel integral equations
by using fractional calculus. Yousefi (2006) obtained the numerical solution of
Abel integral equation by using Legendre wavelets. Liu and Tao (2007) used
mechanical quadrature methods for solving first kind Abel integral equations.
Derili and Sohrabi (2008) obtained the numerical solution of Abel integral equa-
tions by using orthogonal functions. De et al. (2009) reinvestigated the water
wave scattering problem involving two submerged plane thin vertical barriers by
an approach leading to the problem of solving a system of Abel integral equa-
tions. Alipour and Rostamy (2011) used Bernstein polynomials to solve Abel
integral equations. Kumar et al. (2015) obtained an analytical solution of Abel
integral equation arising in astrophysics using homotopy perturbation transform
method.

In this paper, we employ a new analytical technique, namely fractional differ-
ential transform method from fractional calculus, to solve first kind Abel inte-
gral equations. This semi-analytical numerical technique formalizes fractional
power series expansion in a manner that differential transform method formalizes
Taylor series expansion. The main aim of this paper is to present analytical and
numerical solution of Abel integral equation by using new mathematical tool like
fractional differential transform method where we have used the result

x∫

0

t
k
β

(x − t)α
dt =

Γ (1 + k
β )Γ (1 − α)

Γ (2 + k
β − α)

x1+ k
β −α, 0 < α < 1. (1.2)

2 Analysis of the Differential Transform Method (DTM)

The basic definitions and fundamental operations of the one-dimensional dif-
ferential transform method (DTM) and its applicability for various kinds of
differential equations, integral equations are given by Odibat (2008). For conve-
nience, we present here a review of the DTM. The differential transform of the
kth derivative of a function f(x) in one variable is

F (k) =
1
k!

[
dkf(x)

dxk

]
x=x0

(2.1)

where f(x) is the original function and F (k) is the transformed function. The
differential inverse transform of F (k) is defined as

f(x) =
∞∑

k=0

F (k)(x − x0)k. (2.2)

Eq. (2.2) implies that the concept of differential transform is derived from the
Taylor series expansion.

In real applications, the function f(x) is expressed by a finite series and Eq.
(2.2) can be written as

f(x) =
n∑

k=0

F (k)(x − x0)k. (2.3)
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3 The Fractional Differential Transform Method (FDTM)

Arikoglu and Ozkol (2007) introduced the fractional differential transform
method for solving fractional differential equations. For convenience, in this
section a short review of the FDTM is presented with some preliminary con-
cepts and definitions.

The fractional differential transform of the kth derivative of the analytic
function f(x) is defined as

F (k) =

⎧⎨
⎩

0 k
β �∈ Z

+

1
( k

β )!

(
d

k
β

dx
k
β

f(x)
)

x=x0

, k
β ∈ Z

+ (3.1)

where β is the order of the fraction.
There are several approaches to the generalization of the notion of differen-

tiation to fractional orders. The fractional differentiation in Riemann-Liouville
sense is defined by

Dq
x0

f(x) =
1

Γ (m − q)
dm

dxm

⎡
⎣

x∫

x0

f(t)
(x − t)1+q−m

dt

⎤
⎦ (3.2)

for m − 1 ≤ q < m, m ∈ Z
+, x > x0 and q is the order of the corresponding

fractional equation.
Concerning the practical applications encountered in various branches of sci-

ence, the fractional initial conditions are frequently not available, and it may
not be clear what their physical meaning is. Therefore, the definition in Eq. (3.2)
should be modified to deal with integer ordered initial conditions in Caputo sense
(1967) as follows:

D∗q
x0

f(x) = Dq
x0

[
f(x) −

m−1∑
k=0

1
k!

(x − x0)kf (k)(x0)

]

=
1

Γ (m − q)
dm

dxm

⎡
⎢⎢⎣

x∫

x0

f(t) −
m−1∑
k=0

1
k! (t − x0)kf (k)(x0)

(x − t)1+q−m
dt

⎤
⎥⎥⎦ (3.3)

for k = 0, 1, 2, . . . (βq − 1).
Thus the fractional differential inverse transform of F (k) is defined as

f(x) =
∞∑

k=0

F (k)(x − x0)
k
β , (3.4)

which implies that the concept of fractional differential transform is derived from
fractional power series expansion. In practical application, the function f(x) can
be approximated by the finite series
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f(x) ≡
n∑

k=0

F (k)(x − x0)
k
β . (3.5)

The fundamental operations of fractional differential transform method are
listed in Table 1 below.

Table 1. Operations of fractional differential transform

Original function Transformed function

f(x) = g(x) ± h(x) F (k) = G(k) ± H(k)

f(x) = g(x)h(x) F (k) =
k∑

l=0
G(l)H(k − l)

f(x) = cg(x) F (k) = cG(k)

f(x) = xp F (k) = δ(k − βp) =

{
1 if k = βp

0 if k �= βp

f(x) = D∗q
x0g(x) F (k) =

Γ (q+1+ k
β
)

Γ (1+ k
β
)

G(k + βq)

f(x) =
x∫

x0

g(t)dt F (k) = βG(k−β)
k

, k ≥ β

f(x) = g(x)
x∫

x0

h(t)dt F (k) = β
k∑

k1=β

H(k1−β)
k1

G(k − k1) , k ≥ β

4 Analytical Solution of Abel Integral Equation

To illustrate the basic idea of the FDTM for solution of singular integral equation
of Abel type, we consider the following Abel integral equation of first kind as

x∫

0

φ(t)√
x − t

dt = f(x), f(0) = 0 (4.1)

whose exact solution is

φ(x) =
1
π

d

dx

⎡
⎣

x∫

0

f(t)√
x − t

dt

⎤
⎦ (4.2)

It is easy to see that the order of fraction of the fractional integral Eq. (4.1)
is 2.

Let

φ(x) =
∞∑

k=0

Φ(k)x
k
2 . (4.3)

Then
x∫

0

φ(t)√
x − t

dt =
∞∑

k=0

Φ(k)

x∫

0

t
k
2√

x − t
dt. (4.4)
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Let

f(x) =
∞∑

k=0

F (k)x
k
2 =

∞∑
k=1

F (k)x
k
2 [F (0) = 0] (4.5)

By using Eq. (4.4), Eq. (4.5) and the result (1.2) in Eq. (4.1), we obtain

∞∑
k=1

F (k)x
k
2 =

∞∑
k=0

Φ(k)
√

πΓ (1 + k
2 )

Γ (k
2 + 3

2 )
x

k+1
2

=
∞∑

k=1

Φ(k − 1)
√

πΓ (k+1
2 )

Γ (k
2 + 1)

x
k
2 .

Therefore,

F (k) =
√

π Φ(k − 1)
Γ (k+1

2 )
Γ (k

2 + 1)

and hence

Φ(k) =
1√
π

F (k + 1)
Γ (k+1

2 + 1)
Γ (k

2 + 1)
. (4.6)

Using Eq. (4.6) in Eq. (4.3) we get

φ(x) =
∞∑

k=0

1√
π

F (k + 1)
Γ (k+1

2 + 1)
Γ (k

2 + 1)
x

k
2

=
1√
π

∞∑
k=0

F (k + 1)
Γ (k+1

2 + 1)
Γ (k

2 + 2)
(
k

2
+ 1) x

k
2

=
1
π

∞∑
k=1

F (k)
√

πΓ (k
2 + 1)

Γ (k
2 + 3

2 )

(
k

2
+

1
2

)
x( k

2+
1
2 )−1

=
1
π

∞∑
k=1

F (k)
√

πΓ (k
2 + 1)

Γ (k
2 + 3

2 )
d

dx

[
x

k
2+

1
2

]

=
1
π

∞∑
k=1

F (k)
d

dx

[√
πΓ (k

2 + 1)
Γ (k

2 + 3
2 )

x
k
2+

1
2

]
. (4.7)

Using the result (1.2) we get from Eq. (4.7),

φ(x) =
1
π

d

dx

⎡
⎢⎢⎣

x∫

0

∞∑
k=0

F (k) t
k
2

√
x − t

dt

⎤
⎥⎥⎦ [F (0) = 0] (4.8)

Now, using Eq. (4.5) we obtain from Eq. (4.8) the solution of the integral Eq. (4.1)
as given by Eq. (4.2).



262 S. Mondal and B. N. Mandal

5 Numerical Solution of Abel Integral Equation

To obtain the numerical solution of Eq. (1.1) we need to prove and use the
following Theorem.

Theorem 1. If
x∫
0

φ(t)
(x−t)α dt = f(x), (0 < α < 1) then the fractional differential

transform of the integral equation is

N∑
k=0

Φ(k)
Γ (1 − α)Γ (1 + k

β )

Γ (2 + k
β − α)

δ[ k̄ − (1 +
k

β
− α) β ] = F (k̄), N → ∞

where Φ(k) is the fractional differential transform of φ(x) and β is the order of
the fraction.

Proof. Here β is the order of the fraction of the fractional integral equation
x∫

0

φ(t)
(x − t)α

dt = f(x), (f(0) = 0) (5.1)

Using fractional power series about origin and result (1.2) we obtain the L.H.S.
of Eq. (5.1) as

∞∑
k=0

Φ(k)

x∫

0

t
k
β

(x − t)α
dt

=
∞∑

k=0

Φ(k)

[
Γ (1 − α)Γ (1 + k

β )

Γ (2 + k
β − α)

x1+ k
β −α

]
. (5.2)

Let F (k̄) be the fractional differential transform of f(x). Then by using the
fundamental operations in Table 1, we obtain from Eqs. (5.1) and (5.2)

∞∑
k=0

Φ(k)
Γ (1 − α)Γ (1 + k

β )

Γ (2 + k
β − α)

δ[ k̄ − (1 +
k

β
− α) β ] = F (k̄). (5.3)

6 Illustrative Examples

In order to illustrate the advantages and the accuracy of the fractional differential
transform method for solving the Abel integral equation, we have applied the
method to solve some examples.

Example 1. Consider the following Abel integral equation of the first kind
x∫

0

φ(t)√
x − t

dt = x , (6.1)

with exact solution φ(x) = 2
π

√
x.
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Here f(x) = x and α = 1
2 . We see that the order of fraction of Eq. (6.1)

is β = 2.
Using the fundamental operations of Table 1, we obtain the fractional differ-

ential transform of f(x) = x as F (k̄) = δ(k̄ − 2).
Therefore,

F (k̄) =

⎧⎨
⎩1 k̄ = 2

0, otherwise.

By using Theorem 1, the fractional differential transform of Eq. (6.1) becomes

∞∑
k=0

Φ(k)
Γ ( 12 )Γ (1 + k

2 )
Γ ( 32 + k

2 )
δ [k̄ − (1 + k)] = δ(k̄ − 2)

so that Φ(k̄ − 1)
Γ ( 12 )Γ (1 + k̄−1

2 )

Γ ( 32 + k̄−1
2 )

= δ(k̄ − 2).

Putting k̄ = 1, 2, 3, . . . we obtain

Φ(k) =

⎧⎨
⎩ 2

π k = 1
0, otherwise.

Now, we have from inverse fractional differential transform

φ(x) =
∞∑

k=0

Φ(k) x
k
2

= Φ(1) x
1
2

=
2
π

√
x.

Thus we get the solution of Eq. (6.1) as φ(x) = 2
π

√
x, which is identical to the

exact solution.

Example 2. As the second example consider the following Abel integral equa-
tion of the first kind

x∫

0

φ(t)√
x − t

dt =
2

105
√

x(105 − 56x2 + 48x3), (6.2)

with exact solution φ(x) = x3 − x2 + 1.

Here f(x) = 2
105

√
x(105 − 56x2 + 48x3) and α = 1

2 . We see that the order
of fraction of Eq. (6.2) is β = 2.

Using the fundamental operations of Table 1, we obtain the fractional differ-
ential transform of f(x) = 2

105

√
x(105 − 56x2 + 48x3) as

F (k̄) = 2δ(k̄ − 1) − 16
15

δ(k̄ − 5) +
32
35

δ(k̄ − 7).
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Therefore,

F (k̄) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2 k̄ = 1
− 16

15 k̄ = 5
32
35 k̄ = 7
0, otherwise.

By using Theorem 1, the fractional differential transform of Eq. (6.2)
becomes

∞∑
k=0

Φ(k)
Γ ( 12 )Γ (1 + k

2 )
Γ ( 32 + k

2 )
δ[k̄ − (1 + k)] = 2δ(k̄ − 1) − 16

15
δ(k̄ − 5) +

32
35

δ(k̄ − 7)

so that Φ(k̄ − 1)
Γ ( 12 )Γ (1 + k̄−1

2 )

Γ ( 32 + k̄−1
2 )

= 2δ(k̄ − 1) − 16
15

δ(k̄ − 5) +
32
35

δ(k̄ − 7).

Putting k̄ = 1, 2, 3, . . . we obtain

Φ(k) =

⎧⎪⎪⎨
⎪⎪⎩

1 k = 0, 6
−1 k = 4
0, otherwise.

Now, we have from inverse fractional differential transform

φ(x) =
∞∑

k=0

Φ(k) x
k
2

= Φ(0) + Φ(4) x2 + Φ(6) x3

= 1 − x2 + x3.

Thus we get the solution of Eq. (6.2) as φ(x) = 1 − x2 + x3, which is identical
to the exact solution.

Example 3. Consider the following Abel integral equation of the first kind with
another form

x∫

0

φ(t)
(x − t)

1
3

dt =
2

3
√

3
πx, (6.3)

with exact solution φ(x) = x
1
3 .

Here f(x) = 2
3
√
3

πx and α = 1
3 . We see that the order of fraction of Eq.

(6.3) is β = 3.
Using the fundamental operations of Table 1, we obtain the fractional differ-

ential transform of f(x) = 2
3
√
3

πx as

F (k̄) =
2

3
√

3
π δ(k̄ − 3).
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Therefore,

F (k̄) =

⎧⎨
⎩

2
3
√
3

π k̄ = 3
0, otherwise.

By using Theorem 1, the fractional differential transform of Eq. (6.3)
becomes

∞∑
k=0

Φ(k)
Γ ( 23 )Γ (1 + k

3 )
Γ ( 53 + k

3 )
δ [k̄ − (2 + k)] =

2
3
√

3
π δ(k̄ − 3)

so that Φ(k̄ − 2)
Γ ( 23 )Γ (1 + k̄−2

3 )

Γ ( 53 + k̄−2
3 )

=
2

3
√

3
π δ(k̄ − 3).

Putting k̄ = 2, 3, . . . we obtain

Φ(k) =
{

1 k = 1
0, otherwise.

Now, we have from inverse fractional differential transform

φ(x) =
∞∑

k=0

Φ(k) x
k
3

= Φ(1) x
1
3

= x
1
3 .

Thus we get the solution of Eq. (6.3) as φ(x) = x
1
3 , which is identical to the

exact solution.

Example 4. As the last example consider the following Abel integral equation
of the first kind

x∫

0

φ(t)
(x − t)

1
2

dt = ex − 1, (6.4)

with exact solution φ(x) = exerf(
√

x)√
π

.

Here f(x) = ex − 1 and α = 1
2 . We see that the order of fraction of Eq.

(6.4) is β = 2.
Using the fundamental operations of Table 1, we obtain the fractional differ-

ential transform of f(x) = ex − 1 as

F (k̄) = δ(k̄ − 2) +
1
2!

δ(k̄ − 4) +
1
3!

δ(k̄ − 6) + . . .

Therefore,

F (k̄) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 k̄ = 2
1
2! k̄ = 4
1
3! k̄ = 6
1
4! k̄ = 8

. . . and so on
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By using Theorem 1, the fractional differential transform of Eq. (6.4) becomes

∞∑
k=0

Φ(k)
Γ ( 12 )Γ (1 + k

2 )
Γ ( 32 + k

2 )
δ [k̄ − (1 + k)] = F (k̄)

so that Φ(k̄ − 1)
Γ ( 12 )Γ (1 + k̄−1

2 )

Γ ( 32 + k̄−1
2 )

= F (k̄).

Putting k̄ = 1, 2, 3, . . . we obtain

Φ(k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2
π k = 1
4
3π k = 3
8

15π k = 5.
. . . . and so on

Now, we have from inverse fractional differential transform

φ(x) =
∞∑

k=0

Φ(k) x
k
2

= Φ(1) x
1
2 + Φ(3) x

3
2 + Φ(5) x

5
2 + . . .

=
2
π

x
1
2 +

4
3π

x
3
2 +

8
15π

x
5
2 + . . .

=
exerf(

√
x)√

π
.

Thus we get the solution of Eq. (6.4) as φ(x) = exerf(
√

x)√
π

, which is identical
to the exact solution.

7 Conclusion

In this paper, a new fractional differential transform method is employed to
obtain a quick and accurate solution of the singular integral equation of Abel
type. The method provides the solutions in terms of convergent series with easily
computable components in a direct way. The efficiency and reliability of the
proposed technique has been demonstrated by considering several examples with
known exact solution. From the results, it is seen that the solutions are identical
to the exact solutions for all considered examples which show that the FDTM
is a reliable tool for the solution of singular integral equation of Abel type.
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1 Introduction

Rough sets, firstly introduced by Pawlak [11] has been advanced notably with
worthy of attention due to its widespread applications in both mathematics
and computer sciences for the study of intelligent systems having insufficient,
imprecise, uncertain and incomplete information. The partition or equivalence
(indiscernibility) relations were the fundamental and abstract tools of the rough
set theory introduced by Pawlak. Researchers have made several generalizations
of rough sets using an arbitrary relation in place of an equivalence relation
(cf., [4,7,21,22]). Dubois and Prade [3], proposed fuzzy version of rough sets
in which fuzzy relations play a key roll instead of crisp relations. The fuzzy
rough sets and their relationship with fuzzy topological spaces were described
in detail by several authors (e.g., cf., [2,6,10,12–14,16,17,19,20]). Moreover, in
[6,10,17], the set of all L-fuzzy preorder approximation spaces together with
the set of all saturated L-fuzzy topological spaces were center of interest, and
it was shown that under a certain extra condition there exists a bijective cor-
respondence between them. The silence on such relationship between the set of
other generalized approximation spaces (such as L-fuzzy reflexive approximation
space and L-fuzzy tolerance approximation spaces) and the set of some L-fuzzy
topological structures, in the cited work, attract our attention and lead us an
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attempt to establish such relationships by using the concept of L-fuzzy closure
spaces. Finally, we have established the similar result for the set of all, L-fuzzy
preorder approximation spaces and L-fuzzy closure spaces, respectively.

2 Preliminaries

We begin by recalling the following concept of a residuated lattice from [1].

Definition 1. An algebra L = (L,∧,∨, ∗,→, 0, 1) define a residuated lattice,
if (L,∧,∨, 0, 1) is a lattice having 0 and 1 as least and greatest element, respec-
tively, (L, ∗, 1) is a commutative monoid having unit 1, and ∗ and → form an
adjoint pair, i.e., ∀ x, y, z ∈ L, x ∗ y ≤ z ⇔ x ≤ y → z. Also, L is said to be a
complete residuated lattice if lattice (L,∨,∧, 0, 1) is complete.

Definition 2. The precomplement on L is a map ⇁: L −→ L such that
⇁ x = x → 0,∀x ∈ L.

Throughout, L denotes the complete residuated lattice. For a nonempty set X,
LX denote the collection of all L-fuzzy sets in X, for α ∈ L, ᾱ denotes the
constant L-fuzzy set.

Definition 3. A complete residuated lattice L is called regular if ⇁ (⇁ a) = a,
∀a ∈ L.

The basic properties of a complete regular residuated lattice, which we use in
subsequent sections are listed in following proposition.

Proposition 1. For all a, b, ai ∈ L, i ∈ J an index set, we have

(i) a ∗ b =⇁ (a → (⇁ b)),
(ii) a → b =⇁ (a ∗ (⇁ b)),
(iii) ⇁ (∧{ai}) = ∨{⇁ ai},
(iv) ⇁ (∨{ai}) = ∧{⇁ ai}.

Definition 4 [5]. Let X be a nonempty set, then L-fuzzy relation on X is a map
R : X × X → L.
For, properties of an L-fuzzy relation we refer to [5,10,15]. However, for com-
pleteness we emphasize from [10,15] that an L-fuzzy reflexive and L-fuzzy sym-
metric relation R is known as L-fuzzy tolerance relation and, if R is L-fuzzy
reflexive as well as L-fuzzy transitive then it is called L-fuzzy preorder.

Definition 5 [6,10,15,17]. Let R be an L-fuzzy relation on a nonempty set X,
then an L-fuzzy approximation space is a pair (X,R), which is further known
as L-fuzzy reflexive/tolerance/preorder approximation space, respec-
tively, according as underlying L-fuzzy relation R is an reflexive, tolerance or
preorder.

Throughout, set of all L-fuzzy approximation space over a nonempty set X is
denoted by Ω.
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Definition 6 [10,15,17]. Consider an (X,R) ∈ Ω and A ∈ LX . The lower
approximation apr

R
(A) of A and the upper approximation aprR(A) of A

in (X,R) are respectively defined as follows:

apr
R
(A)(x) = ∧{R(x, y) → A(y) : y ∈ X}, and

aprR(A)(x) = ∨{R(x, y) ∗ A(y) : y ∈ X}.

For an (X,R) ∈ Ω and A ∈ LX , we called the pair (apr
R
(A), aprR(A)) an

L-fuzzy rough set.

Proposition 2 [17]. Consider an (X,R) ∈ Ω, where L is regular as well, then
forallA ∈ LX ,

(i) apr
R
(A) =⇁ aprR(⇁ A), and

(ii) aprR(A) =⇁ apr
R
(⇁ A).

Proposition 3 [6,15,17]. Consider an (X,R) ∈ Ω, then ∀Ai ∈ LX , i ∈ J and
α ∈ L,

(i) aprR(∨{Ai : i ∈ J}) = ∨aprR{Ai : i ∈ J},
(ii) apr

R
(∧{Ai : i ∈ J}) = ∧apr

R
{Ai : i ∈ J}, and

(iii) aprR(A ∗ ᾱ) = aprR(A) ∗ ᾱ.

Proposition 4 [17]. Consider an (X,R) ∈ Ω, which is reflexive and A ∈ LX ,
then

(i) apr
R
(A) ≤ A, and

(ii) A ≤ aprR(A).

Proposition 5 [17]. Consider an (X,R) ∈ Ω and A ∈ LX , then R is an L-fuzzy
transitive relation on X iff aprR(aprR(A)) ≤ aprR(A).

Proposition 6. Let (X,R), (X,S) ∈ Ω, then R ≤ S iff aprR(A) ≤ aprS(A),
∀A ∈ LX .

Proof. Let aprR(A) ≤ aprS(A), ∀A ∈ LX , i.e., ∨{R(x, y) ∗ A(y)} ≤ ∨{S(x, y) ∗
A(y)}, ∀A ∈ LX . Thus R ≤ S, ∀x, y ∈ X.
Conversely, let R ≤ S and x ∈ X. Then aprR(A)(x) = ∨{R(x, y) ∗ A(y) :
y ∈ X} ≤ ∨{S(x, y) ∗ A(y) : y ∈ X} = aprS(A)(x). Thus aprR(A) ≤ aprS(A).

The L-fuzzy topological concepts, we use here, are fairly standard and based
on [8].

Definition 7. An L-fuzzy topology τ over a nonempty set X is a subset
of LX closed under arbitrary suprema and finite infima and which contains all
constant L-fuzzy sets.

The pair (X, τ) is called an L-bffuzzy topological space. As usual, the member
of τ are called L-fuzzy τ -open sets.
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Definition 8. A Kuratowski L-fuzzy closure operator over a nonempty
set X is a map k : LX → LX , whit property that ∀A,∈ LX and ∀α ∈ L,

(i) k(ᾱ) = ᾱ,
(ii) A ≤ k(A),
(iii) k(A ∨ B) = k(A) ∨ k(B), and
(iv) k(k(A)) = k(A).

Proposition 7 [6]. Consider an (X,R) ∈ Ω, where R be an L-fuzzy reflexive
relation, then τR = {A ∈ LX : apr

R
(A) = A} is an L-fuzzy topology.

One can easily verify that τR is a saturated1 L-fuzzy topology over X.

Proposition 8 [17]. Let k be as defined in Definition 8, then ∃ an L-fuzzy
preorder Sk over X for which aprSk

(A) = k(A) iff (i) ∀i ∈ J an indexed set
k(∨{Ai}) = ∨{k(Ai)}, ∀Ai ∈ LX and (ii) k(A ∗ ᾱ) = k(A) ∗ ᾱ, ∀A ∈ LX ,
∀α ∈ L.

The concept of fuzzy closure spaces was proposed in (cf., [9]). Further, the con-
cepts of subspace of a fuzzy closure space, sum of a family of pairwise disjoint
fuzzy closure spaces and product of a family of fuzzy closure spaces were studied
in [18]. Now, we introduce here the following concept of an L-fuzzy closure space
as a generalization of the concept of a fuzzy closure space studied in [9,18].

Definition 9. An L-fuzzy closure space over a nonempty set X is a pair (X, c),
where the map c : LX → LX is such that ∀A,B ∈ LX and ∀α ∈ L,

(i) c(ᾱ) = ᾱ,
(ii) A ≤ c(A), and
(iii) c(A ∨ B) = c(A) ∨ c(B).

Definition 10. An L-fuzzy closure space (X, c) is called

(i) quasi-discrete if c{∨{Ai : i ∈ J}} = ∨{c(Ai) : i ∈ J}, ∀Ai ∈ LX ,
(ii) symmetric if c(1y)(x) = c(1x)(y), ∀x, y ∈ X, and
(iii) A ∈ LX is called L-fuzzy closed if c(A) = A.

Proposition 9. Let (X, c) be as in 9, then

(i) for A,B ∈ LX if A ≤ B then c(A) ≤ c(B),
(ii) c{∧{Ai : i ∈ J}} ≤ ∧{c(Ai) : i ∈ J}, ∀Ai ∈ LX , i ∈ J .

Proof. Follows obviously.

Proposition 10. Consider L-fuzzy closure space (X, c), H ∈ LX and c̄ : LX →
LX be a map such that c̄(H) = ∧{K ∈ LX : H ≤ K and c(K) = K}. Then c̄ is
a Kuratowski L-fuzzy closure operator on X.

1 In the sense that arbitrary infimum of L-fuzzy τR-open sets is also, an L-fuzzy
τR-open.
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Proof. Obviously ∀α ∈ L, c(ᾱ) = ᾱ and ∀H ∈ LX ,H ≤ c̄(H). Now, let H,K ∈
X. Then c̄(H ∨ K) = ∧{G ∈ LX : (H ∨ K) ≤ G and c(G) = G}. Thus
c̄(H ∨ K) = ∧{G ∈ LX : H ≤ G,K ≤ G and c(G) = G} = {∧{G ∈ LX :
H ≤ G and c(G) = G} ∨ {∧(G ∈ LX : K ≤ G and c(G) = G)}} = c̄(H) ∨ c̄(K).
Finally, c̄(c̄(H)) = c̄{{∧{K ∈ LX : H ≤ K and c(K) = K}} ≤ ∧{c̄(K) : H ≤
K, c(K) = K} = ∧{∧{G : K ≤ G, c(G) = G} : H ≤ K, c(K) = K} = ∧{G :
H ≤ G, c(G) = G} = c̄(H).

Thus c̄ induces an L-fuzzy topology, say, τc̄ and is given by τc̄ = {H ∈ LX :
c̄(⇁ H) =⇁ H}.

Proposition 11. Let (X, c) be an L-fuzzy closure space. Then ∀H ∈ LX ,

(i) c(c̄(H)) = c̄(H), i.e., c̄(H) is L-fuzzy closed.
(ii) c(H) ≤ c̄(H),
(iii) c(H) = H iff c̄(H) = H.

Proof. (i) Let H ∈ LX . Then from Proposition 9, c(c̄(H)) = c(∧{K : H ≤ K
and c(K) = K}) ≤ ∧{c(K) : H ≤ K and c(K) = K} = ∧{K : H ≤ K and
c(K) = K} = c̄(H).
(ii) H ≤ c̄(H) ⇒ c(H) ≤ c(c̄(H)) = c̄(H).
(iii) Let c(H) = H, ∀H ∈ LX . Then H is L-fuzzy closed. Therefore c̄(H) ≤ H
(cf., Proposition 10). This together with H ≤ c̄(H) shows that c̄(H) = H.
Conversely, let c̄(H) = H. Then from (ii), H ≤ c(H) ≤ c̄(H) = H. Thus
c̄(H) = H, whereby c(H) = H.

Proposition 12. Let (X, c) be an L-fuzzy closure space. Then ∀H ∈ LX ,
c(H) = c̄(H) iff c(c(H)) = c(H).

Proof. Let c(H) = c̄(H), H ∈ LX . Then c(c(H)) = c(c̄(H)) = c̄(H) = c(H).
Conversely, let c(c(H)) = c(H). Then c(H) is L-fuzzy closed. Hence from Propo-
sition 11 (iii), c(H) = c̄(H).

Proposition 13. Let (X, c) be a quasi-discrete L-fuzzy closure space. Then the
L-fuzzy topology τc̄ on X is a saturated L-fuzzy topology.

Proof. Follows from Definition 10 and Propositions 10 and 12.

3 L-fuzzy Closure Spaces and L-fuzzy Approximation
Spaces

The existence of a bijective correspondence between the set of all L-fuzzy reflex-
ive approximation spaces and the set of all quasi-discrete L-fuzzy closure spaces
under a certain extra condition is established here. The similar relationship
between the set of all L-fuzzy tolerance approximation spaces and the set of
all symmetric quasi-discrete L-fuzzy closure spaces satisfying a certain extra
condition is also demonstrated.
We begin with the following.
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Proposition 14. Consider an (X,R) ∈ Ω, where R is L-fuzzy reflexive relation
then (X, aprR) is a quasi-discrete L-fuzzy closure space such that aprR(A ∗ ᾱ) =
aprR(A) ∗ ᾱ, ∀A ∈ LX and ∀α ∈ L.

Proof. Follows from Propositions 3 and 4.

Definition 11. For y ∈ X and α ∈ L, the L-fuzzy subset 1y ∗ ᾱ of X is called
an L-fuzzy point in X, and is denoted as yα.

Proposition 15. Let (X, c) be a quasi-discrete L-fuzzy closure space such that
c(A ∗ ᾱ) = c(A) ∗ ᾱ, ∀A ∈ LX and ∀α ∈ L. Then ∃ a L-fuzzy reflexive relation
Rc over X which is unique and satisfy aprRc

(A) = c(A), ∀A ∈ LX .

Proof. Let (X, c) be a quasi-discrete L-fuzzy closure space such that c(A ∗ ᾱ) =
c(A)∗ ᾱ, ∀A ∈ LX and ∀α ∈ L. Also, let Rc(x, t) = c(1t)(x), ∀x, t ∈ X. Then Rc

is an L-fuzzy relation on X such that 1 = 1x(x) ≤ c(1x)(x). Thus c(1x)(x) = 1,
whereby Rc is an L-fuzzy reflexive relation over X. Now, let A ∈ LX , α ∈ L and
x ∈ X. Then

aprRc
(A)(x) = aprRc

(∨{tα : t ∈ X})(x), where α = A(t)
= ∨{∨{Rc(x, r) ∗ tα(r) : r ∈ X} : t ∈ X}
= ∨{∨{Rc(x, r) ∗ tα(r) : r ∈ X, r �= t},

∨{Rc(x, t) ∗ tα(r) : r ∈ X, r = t} : t ∈ X}
= ∨{0 ∨ (Rc(x, t) ∗ α) : t ∈ X}
= ∨{Rc(x, t) ∗ α : t ∈ X}
= ∨{c(1t)(x) ∗ α : t ∈ X}
= ∨{c{(1t) ∗ ᾱ}(x) : t ∈ X}
= c{∨{1t ∗ ᾱ : t ∈ X}(x)}
= c(A).

Hence aprRc
(A) = c(A). To show the uniqueness of L-fuzzy relation Rc, let R′

be another L-fuzzy reflexive relation on X such that aprR′(A) = c(A), ∀A ∈ LX .
Then Rc(x, t) = c(1t)(x) = aprR′(1t)(x) = ∨{R′(x, r) ∗1t(r) : r ∈ X} = R′(x, t).
Thus Rc = R′. Hence the L-fuzzy relation Rc on X is unique.

Now, Propositions 14 and 15 lead us to the following.

Proposition 16. Let F be the set of all L-fuzzy reflexive approximation spaces
and T be the set of all quasi-discrete L-fuzzy closure spaces satisfying c(A∗ ᾱ) =
c(A) ∗ ᾱ, ∀A ∈ LX and ∀α ∈ L. Then there exists a bijective correspondence
between F and T .

Remark 1. In [6], it has been pointed out that for A ∈ LX , apr
R
(A) and aprR(A)

are not dual to each other. Therefore τRc
�= τc̄. The next proposition says that

the equality holds if L is regular.



274 V. K. Yadav et al.

Proposition 17. Let L be regular and (X, c) be a quasi-discrete satisfying
c(A ∗ ᾱ) = c(A) ∗ ᾱ,∀A ∈ LX ,∀α ∈ L. Then τRc

= τc̄, where Rc is an
L-fuzzy reflexive relation on X induced by c.

Proof. Let A ∈ τc̄. Then c̄(⇁ A) =⇁ A. As from Proposition 11, c(A)≤ c̄(A),
∀A ∈ LX , c(⇁ A) ≤ c̄(⇁ A), or that A ≤ ⇁ c(⇁ A).

Now, ⇁ c(⇁ A) = ⇁ aprRc
(⇁ A)

= ⇁ {∨{Rc(w, t) ∗ (⇁ A(t))} : t ∈ X}
= ⇁ {∨{⇁ {Rc(w, t) → (⇁ (⇁ A(t)))}} : t ∈ X}
= ⇁ {∨{⇁ {Rc(w, t) → A(t)}} : t ∈ X}
= ∧{⇁⇁ {Rc(w, t) → A(t)} : t ∈ X}
= ∧{Rc(w, t) → A(t)}
= apr

Rc
(A).

Thus A ≤ apr
Rc

(A). Also, apr
Rc

≤ A, whereby apr
Rc

= A. Hence τc̄ ≤ τRc
.

Conversely, let A ∈ τRc
. Then apr

Rc
(A) = A, or that ∧{Rc(w, t) → A(t) :

t ∈ X} = A, i.e., ∧{⇁ {Rc(w, t) ∗ (⇁ A(t)) : t ∈ X}} = A, or that
⇁ {∨{Rc(w, t) ∗ (⇁ A(t)) : t ∈ X}} = A, i.e., ∨{Rc(w, t) ∗ (⇁ A(t)) : t ∈
X} =⇁ A, or that aprRc

(⇁ A) =⇁ A, whereby c(⇁ A) =⇁ A. Thus from
Proposition 11, c̄(⇁ A) =⇁ A, whereby A ∈ τc̄, or that τRc

≤ τc̄. Hence
τRc

= τc̄.

For a given quasi-discrete L-fuzzy closure space (X, c) satisfying c(A ∗ ᾱ) =
c(A) ∗ ᾱ, ∀A ∈ LX , ∀α ∈ L and its associated Kuratowski L-fuzzy closure
operator c̄, (X, c̄) is obviously a quasi-discrete L-fuzzy closure space such that
c̄(A ∗ ᾱ) = c̄(A) ∗ ᾱ, ∀A ∈ LX , ∀α ∈ L. Hence from Proposition 15, there exists
an L-fuzzy reflexive relation, say, Sc̄ on X, given by Sc̄(w, t)= c̄(1t)(w),∀w, t∈X.

Before stating next, we introduce the following.

Definition 12. Let R and T be two L-fuzzy relations on X. Then T is called
L-fuzzy transitive closure of R if T is the smallest L-fuzzy transitive relation
containing R.

Now, we have the following.

Proposition 18. Let (X, c) be a quasi-discrete L-fuzzy closure space such that
c(H ∗ ᾱ) = c(H) ∗ ᾱ, ∀H ∈ LX , ∀α ∈ L and c̄ be the associated Kuratowski
L-fuzzy closure operator. Then the L-fuzzy relation Sc̄ is L-fuzzy transitive clo-
sure of L-fuzzy relation Rc.

Proof. Let Sc̄ = c̄(1y)(x),∀x, y ∈ X.Transitivity of Sc̄ follows from Propositions
5 and 15. Also, Rc ≤ Sc̄ follows from Proposition 11. To show the relation Sc̄ is



On the Rel. between L-fuzzy Closure Spaces and L-fuzzy Rough Sets 275

an L-fuzzy transitive closure of L-fuzzy relation Rc, it only remains to show that
Sc̄ is the smallest L-fuzzy reflexive and transitive relation containing Rc. For this,
let T be another L-fuzzy reflexive and transitive relation on X such that Rc ≤ T .
Then from the reflexivity of T , (X, aprT ) is quasi-discrete L-fuzzy closure space.
Now, from transitivity of T and Proposition 12 followed by Proposition 10, we
have aprT (H) = ∧{K ∈ LX : H ≤ K, aprT (K) = K},∀H ∈ LX . Also, Sc̄ being
L-fuzzy reflexive and L-fuzzy transitive relation associated with Kuratowski L-
fuzzy closure operator c̄, from Proposition 8 aprSc̄

(H) = c̄(H),∀H ∈ LX and
c̄ being Kuratowski L-fuzzy closure operator associated with quasi-discrete L-
fuzzy closure space (X, c), ∀H ∈ LX , it follows from Proposition 15 that c̄(H) =
∧{K ∈ LX : H ≤ K, c(K) = K} = ∧{K ∈ LX : H ≤ K, aprRc

(K) = K}. Thus
from Proposition 6, aprSc̄

(H) = ∧{K ∈ LX : H ≤ K, aprRc
(K) = K} ≤ ∧{K ∈

LX : H ≤ K, aprT (K) = K} = aprT (H), whereby aprSc̄
(H) ≤ aprT (H),

showing that Sc̄ ≤ T .

Now, we show that there is a bijective correspondence between the set of all
L-fuzzy tolerance approximation spaces and the set of all symmetric quasi-
discrete L-fuzzy closure spaces satisfying an extra condition.

Proposition 19. Let (X,R) be an L-fuzzy tolerance approximation space.
Then (X, aprR) is a symmetric quasi-discrete L-fuzzy closure space such that
aprR(H ∗ ᾱ) = aprR(H) ∗ ᾱ, ∀H ∈ LX and ∀α ∈ L.

Proof. From Propositions 3 and 4 it follows that (X, aprR) is an L-fuzzy closure
space and quasi-discrete. Now, ∀x, y ∈ X, aprR(1y)(x) = ∨{R(x, t) ∗ 1y(t) : t ∈
X} = ∨{R(y, t) ∗ 1x(t) : t ∈ X} = aprR(1x)(y), showing that (X, aprR) is
symmetric. Also, for all H ∈ LX and α ∈ L, aprR(H ∗ ᾱ) = aprR(H) ∗ ᾱ follows
from Proposition 3.

Proposition 20. Let (X, c) be a symmetric quasi-discrete L-fuzzy closure space
such that c(H ∗ ᾱ) = c(H) ∗ ᾱ, ∀H ∈ LX and ∀α ∈ L. Then ∃ a L-fuzzy tolerance
relation Rc over X which is unique and satisfy aprRc

(H) = c(H), ∀H ∈ LX .

Proof. Let (X, c) be a quasi-discrete and such that c(H ∗ ᾱ) = c(H) ∗
ᾱ,∀H ∈ LX ,∀α ∈ L. Let L-fuzzy relation Rc on X be such that Rc(x, y) =
c(1y)(x),∀x, y ∈ X. Then 1 = 1x(x) ≤ c(1x)(x). Thus c(1x)(x) = 1. Hence Rc

is an L-fuzzy reflexive relation on X. Also, (X, c) being an L-fuzzy symmetric
closure space, the L-fuzzy relation Rc is symmetric and aprRc

(H) = c(H) (cf.,
Proposition 15). To show the uniqueness of L-fuzzy relation Rc, let R′ be another
L-fuzzy tolerance relation on X such that aprR′(H) = c(H), ∀H ∈ LX . Then
Rc(x, y) = c(1y)(x) = aprR′(1y)(x) = ∨{R′(x, t) ∗ 1y(t) : t ∈ X} = R′(x, y).
Thus Rc = R′. Hence the L-fuzzy relation Rc on X is unique.

Proposition 21. Let F be the set of all L-fuzzy tolerance approximation spaces
and T be the set of all symmetric quasi-discrete L-fuzzy closure spaces satisfying
c(H ∗ ᾱ) = c(H) ∗ ᾱ, ∀H ∈ LX and ∀ α ∈ L, then ∃ a bijective correspondence
between F and T .
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Proof. Follows from Propositions 19 and 20.

Proposition 22. Let (X, c) be a symmetric quasi-discrete L-fuzzy closure space
such that c(H ∗ ᾱ) = c(H) ∗ ᾱ, ∀H ∈ LX , ∀α ∈ L and c̄ be the associated
Kuratowski L-fuzzy closure operator. Then the L-fuzzy relation Sc̄ is an L-fuzzy
transitive closure of L-fuzzy relation Rc.

Proof. Similar to that of Proposition 18.

Proposition 23. Let (X,R) be an L-fuzzy preorder approximation space.
Then (X, aprR) is a quasi-discrete L-fuzzy closure space such that (i)
aprR(aprR(H)) = H and (ii) aprR(H ∗ ᾱ) = aprR(H) ∗ ᾱ, ∀H ∈ LX , ∀α ∈ L.

Proof. Follows from Propositions 5 and 14.

Proposition 24. Let (X, c) be a quasi-discrete L-fuzzy closure space such that
(i) c(c(H)) = c(H) and (ii) c(H ∗ ᾱ) = c(H) ∗ ᾱ, ∀H ∈ LX , ∀α ∈ L. Then
there exists an unique L-fuzzy preorder Rc on X such that aprRc

(H) = c(H),
∀H ∈ LX .

Proof. Follows from Propositions 8, 12 and 15.

Finally, the following is an equivalent characterization of the result regarding
the bijective correspondence between the set of all L-fuzzy preorder approxi-
mation spaces and the set of all saturated L-fuzzy topological spaces observed
in [6,10,17].

Proposition 25. Let F be the set of all L-fuzzy preorder approximation spaces
and T be the set of all quasi-discrete L-fuzzy closure spaces satisfying (i)
c(c(H)) = c(H) and (ii) c(H ∗ ᾱ) = c(H) ∗ ᾱ, ∀H ∈ LX , ∀α ∈ L. Then there
exists a bijective correspondence between F and T .

Proof. Follows from Propositions 23 and 24.

4 Conclusion

The present paper established an association between L-fuzzy rough sets and
L-fuzzy closure spaces. In literature, the bijective correspondence between the set
of all L-fuzzy preorder approximation spaces and the set of all L-fuzzy topological
spaces of certain type is well known (cf., [6,10]). But the work done in this
paper shows that actual theory for such bijective correspondence begins from
the notion of L-fuzzy closure spaces. In future we will try to associate L-fuzzy
approximation spaces and L-fuzzy topological spaces in categorical point of view.
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Abstract. In the present work, a fixed point result for generalized
weakly contractive mapping in fuzzy metric space has been established.
An example is cited to illustrate the obtained result.

Keywords: Weak contraction · Fuzzy metric · Fixed points

1 Introduction and Preliminaries

The concept of fuzzy metric spaces have been introduced in different ways by
many authors. Among which, KM-fuzzy metric space, introduced by Kramosil
and Michalek [2] and GV-fuzzy metric space, introduced by George and
Veeramani [3], are two most widely used fuzzy metric spaces. KM-fuzzy metric
space is similar to generalized Menger space [4]. George and Veeramani imposed
a strong condition on the definition of Kramosil and Michalek for topological
reasons. Several fixed point results in these fuzzy metric spaces can be found in
[5,7,8,10,11].

Alber et al. extended the concept of Banach contraction to the weak con-
traction and established a fixed point result in Hilbert space [1]. There after
B.E. Rhoades investigated this result in metric space [6]. Fixed point prob-
lem for weak contraction mapping have been investigated by many authors
[12–15,17–24]. In [9] Dutta et al. extended the results of Rhoades. Motivated
by the works of [9,16,25], in the present work, a fixed point result in fuzzy met-
ric space, introduced by George and Veeramani, is obtained and an example is
added in the support of main result.

Definition 1.1 [4]. A continuous t-norm ∗ is a binary operation on [0, 1], which
satisfies the following conditions:

(i) ∗ is associative and commutative,
(ii) x ∗ 1 = x, for all x ∈ [0, 1] ,
(iii) x ∗ y ≤ u ∗ v, whenever x ≤ u and y ≤ v, for all x, y, u, v ∈ [0, 1] ,
(iv) ∗ is continuous.

For example: (a) The minimum t-norm, ∗M , defined by x ∗M y = min {x, y};
(b) The product t-norm, ∗P , defined by x ∗P y = x.y, are two basic t-norms.
c© Springer Nature Singapore Pte Ltd. 2018
D. Ghosh et al. (Eds.): ICMC 2018, CCIS 834, pp. 278–285, 2018.
https://doi.org/10.1007/978-981-13-0023-3_26
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Definition 1.2 [3]. The triplet (X,M, ∗) is called fuzzy metric space if X is a
non-empty set, ∗ is continuous t-norm and M is a fuzzy set on X2 × (0,∞)
satisfying the following conditions:

(i) M (x, y, t) > 0,
(ii) M (x, y, t) = 1 if and only if x = y,
(iii) M (x, y, t) = M (y, x, t) ,
(iv) M (x, z, t + s) ≥ M(x, y, t) ∗ M(y, z, s),
(v) M (x, y, .) : (0,∞) → [0, 1] is continuous,

for all t, s ∈ (0,∞) and x, y, z ∈ X.

In this paper, we use the notion of fuzzy metric space introduced by George
and Veeramani.

Definition 1.3 [3]. Let (X,M, ∗) be a fuzzy metric space. Then

(i) A sequence {xn} ⊆ X is said to converge to a point x ∈ X if
lim

n→∞M (xn, x, t) = 1, for all t > 0.

(ii) A sequence {xn} ⊆ X is called a Cauchy sequence if for each 0 < ε < 1
and t > 0, there exists an N ∈ N such that M (xn, xm, t) > 1 − ε, for each
m,n ≥ N.

(iii) A fuzzy metric space is called complete if every Cauchy sequence in this
space is convergent.

Lemma 1.1 [5]. Let (X,M, ∗) be a fuzzy metric space. Then (X,M, .) is non-
decreasing for all x, y ∈ X.

Lemma 1.2 [25]. If ∗ is a continuous t-norm, and {αn}, {βn} and {γn} are
sequences such that αn → α, γn → γ as n → ∞, then lim

k→∞
(αk ∗ βk ∗ γk) =

α ∗ lim
k→∞

βk ∗ γ and lim
k→∞

(αk ∗ βk ∗ γk) = α ∗ lim
k→∞

βk ∗ γ.

Lemma 1.3 [25]. Let {f(k, .) : (0,∞) → (0, 1], k = 0, 1, 2, ........} be a sequence
of functions such that f(k, .) is continuous and monotone increasing for each
k ≥ 0. Then lim

k→∞
f(k, t) is a left continuous function in t and lim

k→∞
f(k, t) is a

right continuous function in t.

2 Main Results

Theorem 2.1. Let (X,M, ∗) be a complete fuzzy metric space with an arbitrary
continuous t-norm ′∗′ and let T : X → X be a self mapping satisfying the
following condition:

ψ(M(Tx, Ty, t)) ≤ ψ(min(M(x, y, t),M(x, Tx, t),M(y, Ty, t))) (2.1)
−φ(min(M(x, y, t),M(y, Ty, t))),

where ψ, φ : (0, 1] → [0,∞) are two functions such that:
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(i) ψ is continuous and monotone decreasing function with ψ(t) = 0 if and only
if t = 1,

(ii) φ is lower semi continuous function with φ(t) = 0 if and only if t = 1.

Then T has a unique fixed point.

Proof: Let x0 ∈ X. We define the sequence {xn} in X such that xn+1 = Txn,
for each n ≥ 0. If there exists a positive integer k such that xk = xk+1, then xk

is a fixed point of T. Hence, we shall assume that xn 	= xn+1, for all n ≥ 0. Now,
from (2.1)

ψ(M(xn+1, xn+2, t))=ψ(M(Txn, Txn+1, t))
≤ψ(min{M(xn, xn+1, t),M(xn, xn+1, t),M(xn+1, xn+2, t)})

−φ(min{M(xn, xn+1, t),M(xn+1, xn+2, t)}). (2.2)

Suppose that M(xn, xn+1, t) > M(xn+1, xn+2, t), for some positive integer
n. Then from (2.2), we have

ψ(M(xn+1, xn+2, t)) ≤ ψ(M(xn+1, xn+2, t)) − φ(M(xn+1, xn+2, t)), that is,
φ(M(xn+1, xn+2, t)) ≤ 0, which implies that M(xn+1, xn+2, t) = 1. This gives
that xn+1 = xn+2, which is a contradiction.

Therefore, M(xn+1, xn+2, t) ≤ M(xn, xn+1, t) for all n ≥ 0, and
{M(xn, xn+1, t)} is a monotone increasing sequence of non-negative real num-
bers. Hence, there exists an r > 0 such that lim

n→∞M (xn, xn+1, t) = r.

In view of the above facts, from (2.2), we have

ψ(M(xn+1, xn+2, t)) ≤ ψ(M(xn, xn+1, t)) − φ(M(xn, xn+1, t)), for all n ≥ 0,

Taking the limit as n → ∞ in the above inequality and using the continuities
of φ and ψ we have ψ(r) ≤ ψ(r) − φ(r), which is a contradiction unless r = 1.
Hence

M(xn, xn+1, t) → 1 as n → ∞. (2.3)

Next, we show that {xn} is Cauchy sequence. If otherwise, there exist λ, ε > 0
with λ ∈ (0, 1) such that for each integer k, there are two integers l(k) and m(k)
such that m(k) > l(k) ≥ k and

M(xl(k), xm(k), ε) ≤ 1 − λ, for all k > 0. (2.4)

By choosing m(k) to be the smallest integer exceeding l(k) for which (2.4) holds,
then for all k > 0, we have

M(xl(k), xm(k)−1, ε) > 1 − λ.

Now, by triangle inequality, for any s with 0 < s < ε
2 , for all k > 0, we have

1 − λ ≥ M(xl(k), xm(k), ε)
≥ M(xl(k), xl(k)+1, s) ∗ M(xl(k)+1, xm(k)+1, ε − 2s) ∗ M(xm(k)+1, xm(k), s).

(2.5)

For t > 0, we define the function h1(t) = lim
n→∞M

(
xl(k)+1, xm(k)+1, t

)
.
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Taking lim sup on both the sides of (2.5), using (2.3) and the continuity
property of ∗, by Lemma (1.2), we conclude that

1 − λ ≥ 1 ∗ lim
k→∞

M(xl(k)+1, xm(k)+1, ε − 2s) ∗ 1

= lim
k→∞

M(xl(k)+1, xm(k)+1, ε − 2s)

= h1(ε − 2s).

By an application of Lemma (1.3), h1 is left continuous.
Letting limit as s → 0 in the above inequality, we obtain

h1(ε) = lim
k→∞

M(xl(k)+1, xm(k)+1, ε) ≤ 1 − λ. (2.6)

Next, for all t > 0, we define the function
h2(t) = lim

k→∞
M

(
xl(k)+1, xm(k)+1, t

)
.

In above similar process, we can prove that

h2(ε) = lim
k→∞

M
(
xl(k)+1, xm(k)+1, ε

) ≥ 1 − λ. (2.7)

Combining (2.6) and (2.7), we get
lim

k→∞
M(xl(k)+1, xm(k)+1, ε) ≤ 1 − λ ≤ lim

k→∞
M(xl(k)+1, xm(k)+1, ε).

This implies that

lim
n→∞M(xl(k)+1, xm(k)+1, t) = 1 − λ. (2.8)

Again by (2.6),
lim

k→∞
M(xl(k), xm(k), ε) ≤ 1 − λ.

For t > 0, we define the function

h3(t) = lim
k→∞

M(xl(k), xm(k), ε). (2.9)

Now for s > 0,
M(xl(k), xm(k), ε + 2s) ≥ M(xl(k), xl(k)+1, s) ∗ M(xl(k)+1, xm(k)+1, ε) ∗

M(xm(k)+1, xm(k), s).
Taking lim inf both the sides, we have
lim

k→∞
M(xl(k), xm(k), ε + 2s) ≥ 1 ∗ lim

k→∞
M(xl(k)+1, xm(k)+1, ε) ∗ 1 = 1 − λ.

Thus,
h3(ε + 2s) ≥ 1 − λ. (2.10)

Taking limit as s → 0, we get h3(ε) ≥ 1 − λ. Combining (2.9) and (2.10) we
obtain

lim
n→∞M(xl(k), xm(k), ε) = 1.
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Now,

ψ(M(xl(k)+1, xm(k)+1, ε)) ≤ ψ(min(M(xl(k), xm(k), ε),
M(xl(k), xl(k)+1, ε)),M(xm(k), xm(k)+1, ε))
−φ(min(M(xl(k), xm(k), ε),M(xm(k), xm(k)+1, ε))).

Taking limit as k → ∞, we get
ψ(1 − λ) ≤ ψ(1 − λ) − φ(1 − λ), which is a contradiction.
Thus, {xn} is Cauchy sequence. Since X is complete, there exists p ∈ X such

that xn → p as n → ∞. Now,

ψ(M(xn+1, Tp, t)) = ψ(M(Txn, Tp, t))
≤ ψ(min{M(xn, p, t),M(xn, xn+1, t),M(p, Tp, t)})

−φ(min{M(xn, p, t),M(p, Tp, t)}).

Taking limit as n → ∞, we get
ψ(M(p, Tp, t)) ≤ ψ(M(p, Tp, t)) − φ(M(p, Tp, t)),

which implies that φ(M(p, Tp, t)) = 0, that is,
M(p, Tp, t) = 1 or p = Tp.
We next establish that fixed point is unique. Let p and q be two fixed points

of T.
Putting x = p and y = q in (2.1),
ψ(M(Tp, Tq, t)) ≤ ψ(min M(p, q, t),M(p, Tp, t),M(q, T q, t)) − φ(min

M(p, q, t),M(q, T q, t)) or, ψ(M(p, q, t)) ≤ ψ(min M(p, q, t),M(p, p, t),M(q, q, t))
−φ(min M(p, q, t),M(q, q, t)) or, ψ(M(p, q, t)) ≤ ψ(M(p, q, t))−φ(M(p, q, t)) or,
φ(M(p, q, t)) ≤ 0, or, equivalently, M(p, q, t) = 1, that is, p = q.

The following example is in support of Theorem 2.1.

Example 2.1. Let X = [0, 1]. Let

M(x, y, t) = e− |x−y|
t ,

for all x, y ∈ X and t > 0, then (X,M, ∗) is a complete fuzzy metric space, where
′∗′ is product t-norm. Let ψ, φ : (0, 1] → [0,∞) be defined by ψ(s) = 1

s − 1 and
φ(s) = 1

s − 1√
s
. Then ψ and φ satisfy all the conditions of Theorem (2.1). Let

the mapping T : X → X be defined by Tx = x
2 , for all x ∈ X.

Now, we will show that

ψ(M(Tx, Ty, t)) ≤ ψ(M(x, y)) − φ(N(x, y)), (2.11)

where M(x, y) = min{M(x, y, t), M(x, Tx, t), M(y, Ty, t)} and N(x, y) =
φ(min{M(x, y, t), M(y, Ty, t)}). Herein;

max{|x − y|, x

2
,

y

2
} =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x − y 0 ≤ y ≤ x
2

x
2

x
2 < y ≤ x

y
2 x < y ≤ 2x

y − x 2x < y ≤ 1
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and

max{|x − y|, y

2
} =

⎧
⎪⎨

⎪⎩

x − y 0 ≤ y ≤ 2x
3

y
2

2x
3 < y ≤ 2x

y − x 2x < y ≤ 1.

Case (1): When 0 ≤ y ≤ x
2 or 2x < y ≤ 1, then

ψ(M(Tx, Ty, t)) = ψ(e−| x−y
2t |) = e| x−y

2t | − 1

and

ψ(M(x, y)) − φ(N(x, y)) = ψ(e− |x−y|
t ) − φ(e− |x−y|

t ) = e| x−y
2t | − 1.

Obviously, in this case, (2.11) is satisfied.

Case (2): When x
2 < y ≤ 2x

3 , then

ψ(M(Tx, Ty, t)) = ψ(e− x−y
2t ) = e

x−y
2t − 1

and

ψ(M(x, y)) − φ(N(x, y)) = ψ(e− x
2t ) − φ(e− x−y

t ) = e
x
2t − 1 − e

x−y
t + e

x−y
2t .

In this case, x
2 ≥ x − y and exponential function is an increasing function.

Therefore, e
x−y
2t ≤ e

x
2t − e

x−y
t + e

x−y
2t and hence (2.11) is satisfied.

Case (3): When 2x
3 < y ≤ x, then

ψ(M(Tx, Ty, t)) = ψ(e− x−y
2t ) = e

x−y
2t − 1

and

ψ(M(x, y)) − φ(N(x, y)) = ψ(e− x
2t ) − φ(e− y

2t ) = e
x
2t − 1 − e

y
2t + e

y
4t .

Since, in this case, x−y
2 ≤ y

4 and x
2 ≥ y

2 , (2.11) is satisfied.

Case (4): x < y ≤ 2x, then

ψ(M(Tx, Ty, t)) = ψ(e− y−x
2t ) = e

y−x
2t − 1

and
ψ(M(x, y)) − φ(N(x, y)) = ψ(e− y

2t ) − φ(e− y
2t ) = e

x
4t − 1.

Since, in this case, y
2 ≥ y − x, (2.11) is satisfied. Hence, all the conditions of

Theorem (2.1) are satisfied. Thus, 0 is the unique fixed point of T.
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Abstract. From the last one and a half decades, the electrocardiogram
(ECG) has emerged as a new modality for human identification. The
research shows that the people heartbeats recorded using diagnostic
method called ECG exhibit discriminatory features that can distinguish
themselves. The ECG as a biometric inherently provides liveness detec-
tion and robustness against falsification. This paper presents a novel
method of ECG analysis for human identification using Fourier and lin-
ear discriminant analysis, which does not require detection of fiducial
points of ECG wave. The method utilizes autocorrelation coefficients of
filtered ECG signal, to extract significant features of it. The performance
of the proposed method is evaluated on MIT-BIH arrhythmia and QT
database of physionet. The experimental results show the equal error rate
(EER) of 0.17% and 0.03% on MIT-BIH arrhythmia and QT database,
respectively that outperform the other methods on these databases.

Keywords: Individual identification · Electrocardiogram
Fourier transform · Discriminant analysis

1 Introduction

The emerging technology that recognizes people based on their unique physiolog-
ical and behavioral characteristics, termed as biometrics. These days, biometric
traits are used in a wide variety of applications such as in access control, finan-
cial and business transactions, health care and other applications [1]. Automatic
and accurate identification of an individual is critical along with reducing the
probability of intruders getting access to an authentication system [2]. As the
proliferation of computer and internet, identity theft becomes the major concern
of the modern society [3]. Traditional personal authentication systems based on
passwords, PIN numbers and ID cards are unable to fulfil the requirement of
high security applications and they are more susceptible to identity theft [4].
c© Springer Nature Singapore Pte Ltd. 2018
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Biometrics has emerged as a potential tool for accurate and efficient authentica-
tion of an individual but there are some challenging issues such as confidentiality
and vitalityness making the system more prone to spoofing attacks [5].

Fig. 1. ECG waveform features.

In order to address these issues one of the state-of-the-art biometrics electro-
cardiogram (ECG) is a better alternative to the conventional biometrics. ECG is
generated from a complex self regulatory system of the heart. It is highly secure,
confidential and impossible to mimic. It is universally present in all living indi-
viduals thus provides real-time vitality testing [6]. The basic elements of a single
heartbeat of ECG consist of P-QRS-T waveforms are shown in Fig. 1.

Beil et al. have demonstrated the use of ECG to discriminate 20 subjects
using a set of temporal and amplitude features [7]. They have achieved 100%
identification rate by multivariate analysis of ECG features. Shen et al. have
used the appearance and time domain features of the heartbeat and achieved
classification accuracy of 95% and 80% for template matching and decision based
neural network approaches, respectively [8]. Israel et al. have investigated the
timing characteristics of ECG signal, from the heartbeat of 29 individuals using
linear discriminant analysis (LDA) [9].

Wang et al. used analytical feature extraction with discrete cosine transform
(DCT) of autocorrelated heartbeat signals [10]. Singh and Gupta have used
signal processing methods to delineate ECG wave fiducials from each heart-
beat and achieved 98% classification accuracy for 50 subjects [11]. Plataniotis
et al. have developed an ECG biometric system based on classification of DCT
coefficients of the autocorrelated ECG data segment [12]. Agrafioti and Hatzi-
nakos have demonstrated an autocorrelation based feature extraction approach
in conjunction with DCT or LDA [13]. In a recent study, Srivastva and Singh
have introduced a new method for ECG analysis used in biometric recogni-
tion [14,15]. They have reported 97% identification performance using Walsh
Hadamard transform and LDA [14]. The authentication performance achieved
by DCT and LDA have minimum EER of 0.06% [15].

The major concerns of most of the studies include detection accuracy of
fiducial points, selection of features those are insensitive to change in physiology
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of the heart, variations of heart rate, age and time. The individuality of ECG
over a large population is yet to be explored. To address the issues related to
ECG biometrics, the paper advocates the use of proposed method. It does not
require specific fiducial points of the ECG waveforms and thus not requires
pulse synchronization. Therefore, the method is computationally efficient and
exhibits better identification performance. The proposed method utilizes the
autocorrelation (AC) coefficients, calculated from the filtered ECG signals. The
Fourier analysis of autocorrelated ECG segments is performed to form a feature
vector. The dimensionality of the feature vector is reduced using LDA before
calculating match score for classification. The rest of the paper is outlined as
follows: Sect. 2 presents the novel method of ECG waveform analysis and its
characterization that is used for the biometric applications. The experimental
results are presented in Sect. 3. Finally, the conclusion is noted in Sect. 4.

2 Methodology

Human recognition is essentially a pattern recognition process involves prepro-
cessing, feature extraction, feature normalization, and classification. The pro-
posed biometric system is depicted in Fig. 2. Preprocessing involves noise and
artifact removal step. Features are extracted from an ECG data by autocor-
relation followed by Fourier transform of ECG window. The LDA is used for

Fig. 2. Proposed ECG biometric system.
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dimensionality reduction and the last step of the identification process is classi-
fication based on similarity scores of the subjects.

Normally different type of noises contaminate ECG signals. These include
low-frequency noise components resulted from baseline oscillations, respiration
or body movements and high frequency noise components from power line inter-
ferences. The combination of low pass and high pass filters is used to eliminate
the effects of noise with the following difference equations, respectively [16].

yn = 2yn−1 − yn−2 + xn − 2xn−6 + xn−12 (1)

yn = 32xn−16 − (yn−1 + xn − xn−32) (2)

The cutoff frequency of low pass filter and high pass filter is about 11 Hz and
5 Hz respectively, which has been chosen considering that the frequency band of
normal ECG signal lies within this range.

The filtered ECG signals are segmented into non-overlapping segments. The
only restriction regarding the division of ECG data is that the segments have
to be longer than the normal cardiac cycle to include at least two or more
heartbeats. The length of the window can be chosen heuristically and varies
with the sampling frequency of data. For this experiment, all the records are
re-sampled at the sampling rate of 200 Hz, and the data window of 50 s and 10 s
are selected for MIT-BIH arrhythmia database and QT database, respectively.

ECG is highly repetitive signal that exhibits distinctive characteristics in a
population. ECG analysis based on its dominant fiducials require pulse synchro-
nization, and exact localization of wave boundaries. To extract features from
ECG data without fiducial detectors, autocorrelation is applied on windowed
ECG, that blend samples into a sequence of sums of products. The AC provides
an automatic, shift invariant representation of similarity features over multiple
cardiac cycles. The normalized AC ( ̂Rxx[m]) of filtered ECG signal, x[i] of length
N is computed using the following formula,

̂Rxx[m] =
N−|m|−1

∑

i=0

x[i] ∗ x[i + m]
̂Rxx[0]

(3)

where x[i + m] is the time shifted version of the windowed ECG with a time lag
of m = 0, 1, . . . .(M − 1);M << N .

The discrete Fourier transform (DFT) coefficients are calculated from auto-
correlated ECG signals. It maximizes the inter-class variability and intra-class
similarity. The DFT is frequency domain representation of the original input
sequence in the time domain. Let x0, x1 . . . . . . . . . xN−1 be the sequence of N
complex numbers. It can be transformed into an N -periodic sequence of com-
plex numbers by the following formula,

Xk =
N−1
∑

n=0

xne
−2πikn

N , k = 0, 1 . . . .N − 1 (4)
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Here each Xk is a complex number, that encodes both amplitude and phase
of a complex sinusoidal component (e2πikn/N ) of function xn. The sinusoid’s
frequency is k cycles per N samples.

The LDA is a known method of dimensionality reduction and feature extrac-
tion. It preserves the class specific discriminability by linearly transforming the
feature characteristics into a low dimension space. More formally, for a given
training set Z = {Zi}C

i=1 containing the patterns of C classes. Each class
Zi = {Zij}Ci

j=1 has a number of windows Zij and a set of K feature basis vectors
{ψm}K

m=1 is estimated by maximizing Fisher’s ratio. This ratio is defined as the
between-class to within class scatter matrix. The maximization is equivalent to
the solution of the following eigenvalue problem:

ψ = argmax
( |ψT Sbψ|

|ψT Swψ|
)

(5)

where ψ = [ψ1, . . . , ψK ], and Sb and Sw are the between and within class scatter
matrices, respectively defined as,

Sb =
1
N

C
∑

i=1

Ci(Zi − Z)(Zi − Z)T (6)

Sw =
1
N

C
∑

i=1

Ci
∑

j=1

(Zij − Zi)(Zij − Zi)T (7)

where Zi = 1
Ci

∑Ci

j=1 Zij is the mean of class Zi and N is the total number of

training windows and N =
∑C

i=1 Ci. The LDA finds ψ as the K most significant
eigenvectors of (Sw)−1Sb that correspond to the first K largest eigenvalues. Using
these basis vectors, a test input window Z is subjected to the linear projection
y = ψT Z.

3 Experimental Results

The performance of the identification system is analyzed through equal error
rate (EER) [17]. The EER is an error rate where the frequency of false accep-
tance (FAR) and the frequency of false rejection (FRR) assume the same value.
In order to confirm the benefit of the combined system the receiver operating
characteristics (ROC) curve of the authentication process has also been consid-
ered. The ROC curve is a two-dimensional measure of classification performance
that plots the likelihood of false acceptance (FAR) against the likelihood of gen-
uine acceptance (GAR) [5]. The accuracy of the identification system can be
defined as,

Accuracy(%) = 100 − EER(%) (8)

The performance of the proposed method is tested on MIT-BIH arrhyth-
mia database and QT database of physionet [22]. Both databases include ECG
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recordings of normal subjects and arrhythmia patients (men and women) of
age between 20 and 84 years. Forty-eight ECG recordings of MIT-BIH arrhyth-
mia database and thirty-nine records of QT database are used in this study.
The original sampling rate is 360 Hz and 250 Hz for MIT-BIH arrhythmia and
QT database, respectively. All these records are re-sampled at 200 Hz for this
experiment. After preprocessing, eleven windows of 50 s (10000 samples) and 10 s
(2000 samples) in length are chosen from preprocessed ECG signal of MIT-BIH
arrhythmia database and QT database, respectively. The windows exclude the
10 s samples from start and end of the recording to avoid sensor and body sta-
bilization effects. To extract features a data set of 528(48 × 11) × 10000 for
MIT-BIH arrhythmia database and of 429(39 × 11) × 2000 for QT database are
formed.

Autocorrelation is applied to these data set which forms a feature vector of
528 × 180 and 429 × 180 for MIT-BIH arrhythmia database and QT database,
respectively. The autocorrelation time lag can be set to different settings for
maximum correlation between samples. For this experiment, it is set to 180
samples due to the fact that a normal heart rate for adults ranges from 60 to
100 beats a minute. The Fourier analysis of these feature vectors is performed in
order to minimize the intrasubject variations and to maximize the intersubject
variations. The LDA is used for dimensionality reduction of feature vectors to
different dimensions. The intrasubject variability and intersubject similarity on
first three dimensions as achieved by LDA for ten subjects from each database
is shown in Fig. 3.

The results of EER at different dimensions on different databases are pre-
sented in Table 1. On MIT-BIH arrhythmia database the EER value is found to
be 10% at dimension 1, and it decreases to 0.17% at dimension 10. The EER
is linearly increasing above the dimension 10. On QT database the EER values
are found to be 12%, 1.9%, 0.35%, 0.2%, 0.35%, 0.04% 0.04% and 0.03% at
dimensions 1, 2, 4, 5, 7, 10, 13 and 15, respectively. The EER value increases
above dimension 15. The lowest values of EER are reported to 0.17% and 0.03%,
respectively on MIT-BIH arrhythmia database and QT database at dimension
10 and 15, respectively. The ROC curves represent the ratio of GAR and FAR at
different dimensions are shown in Fig. 4. The identification results on MIT-BIH
arrhythmia database achieve 100% GAR on FAR of 0.75%, 0.22%, 0.71%, 0.35%
and 0.35% at the dimensions 5, 10, 15, 20 and 25, respectively that are shown
in Fig. 4(a). Similarly, the performance on QT database achieves 100% GAR on
FAR of 0.2%, 0.13%, 0.07%, 0.07% and 0.2% at the dimensions 5, 10, 15, 20 and
25, respectively that are shown in Fig. 4(b).

The highest identification accuracy on both databases is found to be about
100% which is better than all known approaches tested on these databases. For
example, when we compare the proposed method with fiducial based identifica-
tion methods, it’s performance is better than [18]. Although [7,8] achieve 100%
identification accuracy, these methods were tested on only a group of 20 sub-
jects. The result of proposed method can also be compared with non-fiducial
based ECG identification methods [10,12,19–21]. Among these, the methods
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Fig. 3. Intrasubject similarity and intersubject variability represented by first three
dimensions as shown by DIM1, DIM2 and DIM3 for ten different subjects of (a) MIT-
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[10,12,19,21] reports better performance but these methods were tested only on
small set of subjects. The issues like sensitivity to the accurate localization of
fiducial points of ECG wave and individuality of ECG over larger population
are resolved by applying the proposed method.

Table 1. Equal error rates for different databases at different dimensions

Number of
dimensions

Equal error rate (%)

1 2 4 5 7 10 13 15 18 20 22 25

MIT-BIH
Arrhythmia
database

10 5 0.84 0.79 0.37 0.17 0.21 0.37 0.52 0.59 0.69 0.73

QT database 12 1.9 0.35 0.2 0.35 0.04 0.04 0.03 0.035 0.035 0.04 0.2

4 Conclusion

The conventional biometrics are susceptible to the falsification and spoofing
attacks. The ECG has the strong potential to overcome these issues of conven-
tional biometrics. It is proven to be a liveliness indicator. The paper has proposed
a novel method of human identification using Fourier and discriminant analysis
of the ECG. The method need not to require any fiducial point detection of ECG
waveforms rather it has inherently explored the significant points of the ECG
signals. Fourier analysis is used to represent the discriminatory features of the
ECG while LDA is used to preserve them. The proposed method is proved to be
robust as it has reported higher accuracy to normal subjects as well as subjects
suffering from severe arrhythmia.
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Abstract. In this paper, we introduce a new type of convergence for
a sequence of function, namely, λ-statistically convergent sequences of
functions in random 2-normed space, which is a natural generalization
of convergence in random 2-normed space. In particular, following the
line of recent work of Karakaya et al. [12], we introduce the concepts of
uniform λ-statistical convergence and pointwise λ-statistical convergence
in the topology induced by random 2-normed spaces. We define the λ-
statistical analog of the Cauchy convergence criterion for pointwise and
uniform λ-statistical convergence in a random 2-normed space and give
some basic properties of these concepts. In addition, the preservation of
continuity by pointwise and uniform λ-statistical convergence is proven.

Keywords: λ-statistical convergence · Random 2-normed space
The sequences of functions

1 Introduction and Preliminaries

Our aim is to propose some new variants of statistical convergence (and more
general λ-statistical convergence) for sequences of functions in random 2-normed
spaces. We put special attention on functions in random 2-normed spaces, in a
sense extending original ideas of Balcerzak et al. [3] and Karakaya et al. [12].

The theory of probabilistic normed (PN) spaces is important area of research
in functional analysis. Lots of work have been done by this theory and it has
many important applications in real life situations. PN spaces are the vector
spaces in which the norms of the vectors are uncertain due to randomness. A
PN space is a generalization of an ordinary normed linear space. In a PN space,
the norms of the vectors are represented by probability distribution functions
instead of non-negative real numbers. If x is an element of a PN space, then its
norm is denoted by Fx, and the value Fx(t) is interpreted as the probability that
the norm of x is smaller than t. The probabilistic metric space was introduced by
Menger [13] which is an interesting and an important generalization of the notion
c© Springer Nature Singapore Pte Ltd. 2018
D. Ghosh et al. (Eds.): ICMC 2018, CCIS 834, pp. 296–308, 2018.
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of a metric space. The theory of probabilistic normed (or metric) space was initi-
ated and developed in [1,19–21]; further it was extended to random/probabilistic
2-normed spaces by Golet [9] using the concept of 2-norm which is defined by
Gähler (see [7]); and Gürdal and Pehlivan [10] studied statistical convergence in
2-Banach spaces.

In order to extend the notion of convergence of sequences, statistical conver-
gence of sequences was introduced by Fast [5]. A lot of developments have been
made in this areas after the work of Fridy [6]. Over the years and under differ-
ent names, statistical convergence has been discussed in the theory of Fourier
analysis, summability theory and number theory. Recently, Mursaleen [14] stud-
ied λ-statistical convergence as a generalization of the statistical convergence,
and in [15] he considered the concept of statistical convergence of sequences in
random 2-normed spaces. Quite recently, Savaş and Mohiuddine [18] defined λ-
statistical convergence for double sequences in probabilistic normed spaces, and
also Savaş [16] studied generalized statistical convergence in random 2-normed
space (also see [17]).

In another direction the idea of statistical convergence of sequences of real
functions was studied in [3], and some important results and references on statis-
tical convergence and function sequences can be found in [4,8]. Recently, in [12],
Karakaya et al. studied the statistical convergence of sequences of functions with
respect to the intuitionistic fuzzy normed spaces. Also in [11], Karakaya et al.
introduced the concept of λ-statistical convergence of sequences of functions in
the intuitionistic fuzzy normed spaces.

The notion of λ-statistical convergence of sequences of functions has not
been studied previously in the setting of random 2-normed spaces. Motivated
by this fact, in this paper, as a variant of statistical convergence, the notion
of λ-statistical convergence of sequences of functions is introduced in a random
2-normed space. In Sect. 2, we prove some results concerning to convergence
in pointwise λ-statistical convergence and uniform λ-statistical convergence of
sequences of functions in a random 2-normed spaces. We demonstrate the λ-
statistical analog of the Cauchy convergence criterion for pointwise and uniform
λ-statistical convergence in a random 2-normed space and give some basic prop-
erties of these concepts. Finally, we prove that pointwise and uniform λ-statistical
convergence preserves continuity.

First we recall some of the basic concepts, that will be used in this paper.
The notion of statistical convergence depends on the density of subsets of N,

the set of natural numbers. Let K be a subset of N. Then the asymptotic density
of the set K denoted by δ (K) is defined as

δ (K) = lim
n→∞

1
n

|{k ≤ n : k ∈ K}| ,

where the vertical bars denote the cardinality of the enclosed set. A number
sequence x = (xk)k∈N

is said to be statistically convergent to a point L if for
every ε > 0, the set K (ε) = {k ≤ n : |xk − L| ≥ ε} has asymptotic density zero,
i.e.,
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lim
n→∞

1
n

|{k ≤ n : |xk − L| ≥ ε}| = 0.

In this case we write S-lim x = L or xk → L (S) (see [5,6]).
The following definitions are due to Mursaleen [14].

Definition 1. Let K be a subset of N and λ = (λn) be a non-decreasing
sequences of positive real numbers tending to ∞ and such that

λn+1 ≤ λn + 1, λ1 = 0.

Let K be a subset of N, the set of natural numbers. The number

δλ (K) = lim
n

1
λn

|{k ∈ K : n − λn + 1 ≤ k ≤ n}| ,

is said to be the λ-density of K.

Definition 2. A sequence x = (xk) in X is said to be λ-statistically convergent
to L ∈ X and is denoted by Sλ-lim x = L, if, for every ε > 0, the set K (ε) has
λ-density zero, i.e.,

lim
n

1
λn

|Kn (ε)| = 0,

where Kn (ε) = {k ∈ In : |xk − L| ≥ ε} and In = [n − λn + 1, n] .

Definition 3 ([7]). Let X be a real vector space of dimension d, where 2 ≤
d < ∞. A 2-norm on X is a function ‖·, ·‖ : X × X → R which satisfies (i)
‖x, y‖ = 0 if and only if x and y are linearly dependent; (ii) ‖x, y‖ = ‖y, x‖ ;
(iii) ‖αx, y‖ = |α| ‖x, y‖ , α ∈ R; (iv) ‖x, y + z‖ ≤ ‖x, y‖ + ‖x, z‖ . The pair
(X, ‖·, ·‖) is then called a 2-normed space.

As an example of a 2-normed space we may take X = R
2 being equipped

with the 2-norm ‖x, y‖ := the area of the parallelogram spanned by the vectors
x and y, which may be given explicitly by the formula

‖x, y‖ = |x1y2 − x2y1| , x = (x1, x2) , y = (y1, y2) .

All the concepts listed below are studied in depth in the fundamental book
by Schweizer and Sklar [19].

Definition 4. Let R denote the set of real numbers, R+ = {x ∈ R : x ≥ 0} and
S = [0, 1] the closed unit interval. A mapping f : R → S is called a distribution
function if, it is non-decreasing and left continuous with inft∈R f (t) = 0 and
supt∈R

f (t) = 1.

We denote the set of all distribution functions by D+ such that f (0) = 0. If
a ∈ R+, then Ha ∈ D+, where

Ha (t) =
{

1 if t > a,
0 if t ≤ a.

It is obvious that H0 ≥ f for all f ∈ D+.
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Definition 5. A triangular norm (t-norm) is a continuous mapping ∗ : S×S →
S be such that (S, ∗) is an abelian monoid with unit one and c∗d ≤ a∗ b if c ≤ a
and d ≤ b for all a, b, c, d ∈ S. A triangle function τ is a binary operation on
D+ which is commutative, associative and τ (f,H0) = f for every f ∈ D+.

Definition 6. Let X be a linear space of dimension greater than one, τ be a
triangle function, and F : X × X → D+. Then F is called a probabilistic 2-
norm and (X,F, τ) a probabilistic 2-normed space if the following conditions are
satisfied:

(i) F (x, y; t) = H0(t) if x and y are linearly dependent, where F (x, y; t) denotes
the value of F (x, y) at t ∈ R,

(ii) F (x, y; t) 	= H0(t) if x and y are linearly independent,
(iii) F (x, y; t) = F (y, x; t) for all x, y ∈ X,
(iv) F (αx, y; t) = F (x, y; t

|α| ) for every t > 0, α 	= 0 and x, y ∈ X,
(v) F (x + y, z; t) ≥ τ(F (x, z; t), F (y, z; t)) whenever x, y, z ∈ X, and t > 0. If

(v) is replaced by
(vi) F (x+y, z; t1+t2) ≥ F (x, z; t1)∗F (y, z; t2) for all x, y, z ∈ X and t1, t2 ∈ R+;

then (X,F, ∗) is called a random 2-normed space (for short, RTNS).

We provide the following example.

Example 1. Let (X, ‖., .‖) be a 2-normed space, and let a∗b = ab for all a, b ∈ S.
For all x, y ∈ X and every t > 0, consider

F (x, y; t) =
t

t + ‖x, y‖ .

Clearly (X,F, ∗) is a random 2-normed space.

Let (X,F, ∗) be a RTN space. Since ∗ is a continuous t-norm, the system of
(ε, η)-neighbourhoods of θ (the null vector in X){N(θ,z)(ε, η) : ε > 0, η ∈ (0, 1), z ∈ X

}
,

where
N(θ,z)(ε, η) =

{
(x, z) ∈ X × X : F(x,z)(ε) > 1 − η

}
.

determines a first countable Hausdorff topology on X×X, called the F -topology.
Thus, the F -topology can be completely specified by means of F -convergence of
sequences. It is clear that x − y ∈ N(θ,z) means y ∈ N(x,z) and vice-versa.

A sequence x = (xk) in X is said to be F -convergent to L ∈ X if for every
ε > 0, η ∈ (0, 1) and for each non-zero z ∈ X there exists a positive integer N
such that;

(xk, z − L) ∈ N(θ,z)(ε, η) for each k ≥ N

or equivalently,
(xk, z) ∈ N(L,z)(ε, η) for each k ≥ N.

In this case we write F -lim (xk, z) = L.
We also recall that the concept of convergence and Cauchy sequence in a

random 2-normed space is studied in [2].
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Definition 7. Let (X,F, ∗) be a RN space. Then, a sequence x = {xk} is said
to be convergent to L ∈ X with respect to the random norm F if, for every ε > 0
and η ∈ (0, 1) , there exists k0 ∈ N such that F(xk−L,z) (ε) > 1 − η whenever
k ≥ k0. It is denoted by F -lim x = L or xk →F L as k → ∞.

Definition 8. Let (X,F, ∗) be a RN space. Then, a sequence x = {xk} is called
a Cauchy sequence with respect to the random norm F if, for every ε > 0 and
η ∈ (0, 1) , there exists k0 ∈ N such that F(xk−xm,z) (ε) > 1 − η for all k,m ≥ k0.

Definition 9. Let (X,F, ∗) be a RN space. Then, a sequence x = {xk} is said
to be λ-statistically convergent to L ∈ X with respect to the F -topology if for
every ε > 0, η ∈ (0, 1) and each non-zero z ∈ X such that;

δλ

({
k ∈ N : F(xk−L,z) (ε) ≤ 1 − η

})
= 0

or equivalently
δλ

({
k ∈ N : F(xk−L,z) (ε) > 1 − η

})
= 1.

In this case we write SR2N
λ -lim x = L or xk → L

(
SR2N

λ

)
.

If λn = n for every n then every λ-statistically convergent sequences in
random 2-normed space (X,F, ∗) reduce to statistically convergent sequences in
random 2-normed space (X,F, ∗) .

Definition 10. Let (X,F, ∗) be a RN space. Then, a sequence x = {xk} is
said to be λ-statistical Cauchy to L ∈ X with respect to the F -topology if, for
every ε > 0, η ∈ (0, 1) and each non-zero z ∈ X there exists a positive integer
N = N (ε) such that

δλ

({
k ∈ N : F(xk−xN ,z) (ε) ≤ 1 − η

})
= 0

or equivalently

δλ

({
k ∈ N : F(xk−xN ,z) (ε) > 1 − η

})
= 1.

In this case we write SR2N
λ -lim x = L or xk → L

(
SR2N

λ

)
.

2 Kinds of λ-Statistical Convergence for Functions
in RTNS

In this section we are concerned with convergence in pointwise λ-statistical con-
vergence and uniform λ-statistical convergence of sequences of functions in a
random 2-normed spaces. Particularly, we introduce the λ-statistical analog of
the Cauchy convergence criterion for pointwise and uniform λ-statistical conver-
gence in a random 2-normed space. Finally, we prove that pointwise and uniform
λ-statistical convergence preserves continuity.
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2.1 Pointwise λ-Statistical Convergence in RTNS

Fix a random 2-normed space (Y, F ′, ∗) . Assume that (X,F, ∗) is a RTN
space and that N ′

(θ,z)(ε, η) =
{

x, z ∈ X × X : F ′
(x,z)(ε) > 1 − η

}
, called the F ′-

topology, is given.
Let fk : (X,F, ∗) → (Y, F ′, ∗) , k ∈ N, be a sequence of functions. A sequences

of functions (fk)k∈N
(on X) is said to be F -convergence to f (on X) if for every

ε > 0, η ∈ (0, 1) and for each non-zero z ∈ X, there exists a positive integer
N = N (ε, η, x) such that

(fk (x) − f (x) , z) ∈ N ′
θ,z(ε, η) =

{
(x, z) ∈ X × X : F ′

((fk(x)−f(x)),z)(ε) > 1 − η
}

for each k ≥ N and for each x ∈ X or equivalently,

(fk (x) , z) ∈ N ′
(f(x),z)(ε, η) for each k ≥ N and for each x ∈ X.

In this case we write fk →F 2 f.
First let us define pointwise λ-statistical convergence in a random 2-normed

space.

Definition 11. Let fk : (X,F, ∗) → (Y, F ′, ∗) , k ∈ N, be a sequence of func-
tions. (fk)k∈N

is said to be pointwise λ-statistical convergence to a function f
(on X) with respect to F -topology if, for every x ∈ X, ε > 0, η ∈ (0, 1) and each
non-zero z ∈ X the set

δλ

({
k ∈ N : (fk (x) , z) /∈ N ′

(f(x),z)(ε, η)
})

= 0,

or equivalently

δλ

({
k ∈ N : (fk (x) , z) ∈ N ′

(f(x),z)(ε, η)
})

= 1.

In this case we write fk → f
(
SRTN

λ

)
.

Theorem 1. Let (X,F, ∗), (Y, F ′, ∗) be RTN spaces. Assume that (fk)k∈N
is

pointwise convergent (on X) with respect to F -topology where fk : (X,F, ∗) →
(Y, F ′, ∗) , k ∈ N. Then fk → f

(
SRTN

λ

)
(on X). However the converse of this is

not true.

Proof. Let ε > 0 and η ∈ (0, 1) . Suppose (fk)k∈N
is F -convergent on X. In this

case the sequence (fk (x)) is convergent with respect to F ′-topology for each
x ∈ X. Then, there exists a number k0 = k0 (ε) ∈ N such that (fk (x) , z) ∈
N ′

(f(x),z)(ε, η) for every k ≥ k0, every non-zero z ∈ X and for each x ∈ X. This
implies that the set

A (ε, η) =
{

k ∈ N : (fk (x) , z) /∈ N ′
f(x),z(ε, η)

}
⊆ {1, 2, 3, ..., k0 − 1} .

Since finite subset of N has λ-density 0, we have δλ (A (ε, η)) = 0. That is,
fk → f

(
SRTN

λ

)
(on X).
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Example 2. Considering X as in Example 1, we have (X,F, ∗) as a RTN space
induced by the random 2-norm F(x,y)(ε) = ε

ε+‖x,y‖ . Define a sequence of func-
tions fk : [0, 1] → R via

fk (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xk + 1 if n − √
λn + 1 ≤ k ≤ n and x ∈ [0, 1

2 )
0 if otherwise and x ∈ [0, 1

2 )
xk + 1

2 if n − √
λn + 1 ≤ k ≤ n and x ∈ [12 , 1)

1 if otherwise and x ∈ [12 , 1)
2 if x = 1.

Then, for every ε > 0, η ∈ (0, 1), x ∈ [0, 1
2 ) and each non-zero z ∈ X, let

An (ε, η) =
{

k ∈ N : (fk (x) , z) /∈ N ′
(f(x),z)(ε, λ)

}
. We observe that;

An (ε, η) =
{

k ∈ In :
ε

ε + ‖fk (x) , z‖ ≤ 1 − η)
}

=
{

k ∈ In : ‖fk (x) , z‖ ≥ εη

1 − ε

}

=
{
k ∈ In : fk (x) = xk + 1

}
.

and |An (ε, λ)| ≤ √
λn. Thus, for each x ∈ [0, 1

2 ), since

δλ (An (ε, η)) = lim
n→∞

|An (ε, η)|
λn

= lim
n→∞

√
λn

λn
= 0

(fk)k∈N
is λ-statistically convergent to 0 with respect to F -topology. Similarly,

if we take x ∈ [12 , 1) and x = 1, it can be easily seen that (fk)k∈N
is λ-statistical

convergence to 1
2 and 2 with respect to F -topology, respectively. Hence (fk)k∈N

is pointwise λ-statistical convergent with respect to F -topology (on X).

Theorem 2. Let (X,F, ∗), (Y, F ′, ∗) be RTN spaces and let fk : (X,F, ∗) →
(Y, F ′, ∗) , k ∈ N, be a sequence of functions. Then the following statements are
equivalent:

(i) fk → f
(
SRTN

λ

)
.

(ii) δλ

({
k ∈ N : (fk (x) , z) /∈ N ′

(f(x),z)(ε, η)
})

= 0 for every ε > 0, η ∈ (0, 1),
for each x ∈ X and each non-zero z ∈ X.

(iii) δλ

({
k ∈ N : (fk (x) , z) ∈ N ′

(f(x),z)(ε, η)
})

= 1 for every ε > 0, η ∈ (0, 1),
for each x ∈ X and each non-zero z ∈ X.

(iv) Sλ-lim F ′
(fk(x)−f(x),z) (ε) = 1 for every x ∈ X and each non-zero z ∈ X.

Proof is standard.

Theorem 3. Let (fk)k∈N
and (gk)k∈N

be two sequences of functions from
(X,F, ∗) to (Y, F ′, ∗) with a ∗ a > a for every a ∈ (0, 1) . If fk → f

(
SRTN

λ

)
and gk → g

(
SRTN

λ

)
, then (αfk + βgk) → (αf + βg)

(
SRTN

λ

)
where α, β ∈ R

(or C).
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Proof. Let ε > 0 and η ∈ (0, 1) . Since fk → f
(
SRTN

λ

)
and gk → g

(
SRTN

λ

)
for

each x ∈ X, if we define

A1 =
{

k ∈ N : (fk (x) , z) /∈ N ′
(f(x),z)(

ε

2
, η)

}
and A2 =

{
k ∈ N : (gk (x) , z) /∈ N ′

(g(x),z)(
ε

2
, η)

}

then δλ (A1) = 0 and δλ (A2) = 0. Since δλ (A1) = 0 and δλ (A2) = 0, if we
represent A by (A1 ∪ A2) then δλ (A) = 0. Hence A1 ∪ A2 	= N and there exists
∃k0 ∈ N such that;

(fk0 (x) , z) ∈ N ′
(f(x),z)(

ε

2
, η) and (gk0 (x) , z) ∈ N ′

(g(x),z)(
ε

2
, η)

Let

B =
{

k ∈ N : ((αfk (x) + βgk (x)) , z) /∈ N ′
((αf(x)+βg(x)),z)(ε, η)

}
.

We shall show that Ac ⊂ B for each x ∈ X. Let k0 ∈ Ac. In this case,

(fk0 (x) , z) ∈ N ′
(f(x),z)(

ε

2
, η) and (gk0 (x) , z) ∈ N ′

(g(x),z)(
ε

2
, η).

From the above expressions, we have

F ′
((αfk(x)+βgk(x)−αf(x)+βg(x)),z) (ε) ≥ F ′

((αfk(x)−αf(x)),z)

( ε

2

)
∗ F ′

((βgk(x)−βg(x)),z)

( ε

2

)

= F ′
((fk(x)−f(x)),z)

( ε

2α

)
∗ F ′

((gk(x)−g(x)),z)

(
ε

2β

)

> (1 − η) ∗ (1 − η)

> 1 − η.

This implies Ac ⊂ B. Since Bc ⊂ A and δλ (A) = 0, hence δλ (Bc) = 0. That is

δλ

({
k ∈ N : ((αfk (x) + βgk (x)) , z) /∈ N ′

((αf(x)+βg(x)),z)(ε, η)
})

= 0.

Definition 12. Let (X,F, ∗), (Y, F ′, ∗) be RTN spaces and let fk : (X,F, ∗) →
(Y, F ′, ∗) , k ∈ N, be a sequence of functions. A sequence (fk)k∈N

is called point-
wise λ-statistical Cauchy sequence in RTN space if, for every ε > 0, η ∈ (0, 1)
and each non-zero z ∈ X there exists M = M (ε, η, x) ∈ N such that;

δλ

({
k ∈ N : (fk (x) − fM (x) , z) /∈ N ′

(θ,z)(ε, η)
})

= 0.

Theorem 4. Let (X,F, ∗), (Y, F ′, ∗) be RTN spaces such that a ∗ a > a for
every a ∈ (0, 1) and let fk : (X,F, ∗) → (Y, F ′, ∗) , k ∈ N, be a sequence of
functions. If (fk)k∈N

is a pointwise λ-statistical convergent sequence with respect
to F -topology, then (fk)k∈N

is a pointwise λ-statistical Cauchy sequence with
respect to F -topology. However the converse of this is not true.

Proof. Suppose that (fk)k∈N
is a pointwise λ-statistical convergent to f with

respect to F -topology. Let ε > 0 and η ∈ (0, 1) be given. If we state A and Ac

by

A =
{

k ∈ N : (fk (x) , z) /∈ N ′
(f(x),z)(

ε

2
, η)

}
and A

c
=

{
k ∈ N : (fk (x) , z) ∈ N ′

(f(x),z)(
ε

2
, η)

}
,
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then δλ (A) = 0 and δλ (Ac) = 1. Now, for every k,m ∈ Ac,

F ′
(fk(x)−fm(x),z) (ε) ≥ F ′

(fk(x)−f(x),z)

(ε

2

)
∗ F ′

(fm(x)−f(x),z)

(ε

2

)

> (1 − η) ∗ (1 − η)
> 1 − η.

So, δλ

({
k ∈ N : (fk (x) − fm (x) , z) ∈ N ′

(θ,z)(ε, η)
})

= 1. Therefore

δλ

({
k ∈ N : (fk (x) − fm (x) , z) /∈ N ′

(θ,z)(ε, η)
})

= 0,

i.e., (fk)k∈N
is a pointwise λ-statistical Cauchy sequence with respect to F -

topology.

The next result is a modification of a well-known result.

Theorem 5. Let (X,F, ∗), (Y, F ′, ∗) be a RTN spaces such that a ∗ a > a for
every a ∈ (0, 1) . Assume that fk → f

(
SRTN

λ

)
(on X) where functions fk :

(X,F, ∗) → (Y, F ′, ∗) , k ∈ N, are equi-continuous (on X) and f : (X,F, ∗) →
(Y, F ′, ∗) . Then f is continuous (on X) with respect to F -topology.

Proof. We prove that f is continuous with respect to F -topology. Let x0 ∈ X
and (x − x0, z) ∈ Nθ,z(ε, η) be fixed. By the equi-continuity of fk’s, for every
ε > 0 and each non-zero z ∈ X, there exists a γ ∈ (0, 1) with γ < η such that
(fk (x) − fk (x0) , z) ∈ N ′

(θ,z)(
ε
3 , γ) for every k ∈ N. Since fk → f

(
SRTN

λ

)
, if we

state respectively A and B by the sets A=
{

k∈N : (fk (x0) , z) /∈N ′
(f(x0),z)

( ε
3 , γ)

}

and B =
{

k ∈ N : (fk (x) , z) /∈ N ′
(f(x),z)(

ε
3 , γ)

}
, then δλ (A) = 0 and δλ (B) = 0.

Therefore, δλ (A ∪ B) = 0 and A ∪ B is different from N. So, there exists k ∈ N

such that (fk (x0) , z) ∈ N ′
(f(x0),z)

( ε
3 , γ) and (fk (x) , z) ∈ N ′

(f(x),z)(
ε
3 , γ). We

have

F ′
(f(x0)−f(x),z) (ε) ≥ F ′

(f(x0)−fk(x0),z)

( ε

3

)
∗

[
F ′
(fk(x0)−fk(x),z)

( ε

3

)
∗ F ′

(fk(x)−f(x),z)

( ε

3

)]

> (1 − γ) ∗ [(1 − γ) ∗ (1 − γ)]

> (1 − γ) ∗ (1 − γ)

> 1 − γ

> 1 − η

and the continuity of f with respect to F -topology is proved.

2.2 Uniformly λ-Statistical Convergence in RTNS

Let us define uniform λ-statistical convergence in a random 2-normed space.
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Definition 13. Let (X,F, ∗), (Y, F ′, ∗) be RTN spaces. We say that a sequence
of functions fk : (X,F, ∗) → (Y, F ′, ∗) , k ∈ N, is uniform λ-statistically conver-
gent to a function f (on X) with respect to F -topology if and only if ∀ε > 0,
∃M ⊂ N, δλ (M) = 1, ∃k0 = k0 (ε, η, x) ∈ M � ∀k > k0, k ∈ M, ∀z ∈ X and
∀x ∈ X, η ∈ (0, 1) (fk (x) , z) ∈ N ′

(f(x),z)(ε, η).
In this case we write fk ⇒ f

(
SRTN

λ

)
.

We state the following result without proof, which can be established using
standard technique.

Theorem 6. Let (X,F, ∗), (Y, F ′, ∗) be RTN spaces and let fk : (X,F, ∗) →
(Y, F ′, ∗) , k ∈ N, be a sequence of functions. Then for every ε > 0 and η ∈ (0, 1),
the following statements are equivalent:

(i) fk ⇒ f
(
SRTN

λ

)
.

(ii) δλ

({
k ∈ N : (fk (x) , z) /∈ N ′

(f(x),z)(ε, η)
})

= 0 for every x ∈ X and each
non-zero z ∈ X.

(iii) δλ

({
k ∈ N : (fk (x) , z) ∈ N ′

(f(x),z)(ε, η)
})

= 1 for every x ∈ X and each
non-zero z ∈ X.

(iv) Sλ–lim F ′
(fk(x)−f(x),z) (ε) = 1 for every x ∈ X and each non-zero z ∈ X.

Definition 14. Let (X,F, ∗) be a RTN space. A subset Y of X is said to be
bounded on RTN spaces if for every η ∈ (0, 1) there exists ε > 0 such that
(x, z) ∈ N(θ,z)(ε, η) for all x ∈ Y and every non-zero z ∈ X.

Definition 15. Let (X,F, ∗), (Y, F ′, ∗) be RTN spaces and let fk : (X,F, ∗) →
(Y, F ′, ∗) , k ∈ N, and f : (X,F, ∗) → (Y, F ′, ∗) be bounded functions. Then
fk ⇒ f

(
SRTN

λ

)
if and only if Sλ-lim

(
infx∈X F ′

(fk(x)−f(x),z) (ε)
)

= 1.

Example 3. Let (X,F, ∗) be as considered in Example 1. Define a sequence of
functions fk : [0, 1) → R via

fk (x) =
{

xk + 1 if n − √
λn + 1 ≤ k ≤ n

2 otherwise.

Then, for every ε > 0, η ∈ (0, 1) and each non-zero z ∈ X, let An (ε, η) ={
k ∈ In : (fk (x) , z) /∈ N ′

(1,z)(ε, λ)
}

. For all x ∈ X, we have δλ (An (ε, λ)) = 0.

Since fk → 1
(
SRTN

λ

)
for all x ∈ X, fk ⇒ 1

(
SRTN

λ

)
(on [0, 1)).

Remark 1. If fk ⇒ f
(
SRTN

λ

)
, then fk → f

(
SRTN

λ

)
. But not necessarily con-

versely.

We establish the above remark providing the following example.

Example 4. Define the sequence of functions

fk (x) =
{

0 if n − √
λn + 1 ≤ k ≤ n

k2x
1+k3x2 otherwise
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on [0, 1] . Since fk

(
1
k

) → 1
(
SRTN

λ

)
and fk (0) → 0

(
SRTN

λ

)
, this sequence of

functions is pointwise λ-statistically convergence to 0 with respect to F -topology.
But by Definition 11, it is not uniform λ-statistical convergence with respect to
F -topology.

Theorem 7. Let (X,F, ∗), (Y, F ′, ∗) be RTN spaces. Assume that (fk)k∈N
is

uniformly convergent (on X) with respect to F -topology where fk : (X,F, ∗) →
(Y, F ′, ∗) , k ∈ N. Then fk ⇒ f

(
SRTN

λ

)
(on X). However the converse of this is

not true.

Proof. Assume that (fk)k∈N
is uniformly convergent to f on X with respect to

F -topology. In this case, for every ε > 0, η ∈ (0, 1) and every non-zero z ∈ X,
there exists a positive integer k0 = k0 (ε, η) such that ∀x ∈ X and ∀k > k0,
(fk (x) , z) ∈ N ′

(f(x),z)(ε, η). That is, for k ≤ k0

A (ε, η) =
{

k ∈ N : (fk (x) , z) /∈ N ′
(f(x),z)(ε, η)

}
⊆ {1, 2, 3, ..., k0} .

Since finite subset of N has λ-density 0, we have δλ (A (ε, η)) = 0. That is,
fk ⇒ f

(
SRTN

λ

)
(on X).

Definition 16. Let (X,F, ∗), (Y, F ′, ∗) be RTN spaces and let fk : (X,F, ∗) →
(Y, F ′, ∗) , k ∈ N, be a sequence of functions. Then a sequence (fk)k∈N

is called
uniform λ-statistical Cauchy sequence in RTN space if for every ε > 0, η ∈ (0, 1)
and each non-zero z ∈ X there exists N = N (ε, η) ∈ N such that

δλ

({
k ∈ N : (fk (x) − fN (x) , z) /∈ N ′

(θ,z)(ε, η)
})

= 0.

Theorem 8. Let (X,F, ∗), (Y, F ′, ∗) be RTN spaces such that a∗a > a for every
a ∈ (0, 1) and let fk : (X,F, ∗) → (Y, F ′, ∗) , k ∈ N, be a sequence of functions.
If (fk)k∈N

is a uniform λ-statistical convergence sequence with respect to F -
topology, then (fk)k∈N

is a uniform λ-statistical Cauchy sequence with respect to
F -topology. However the converse of this is not true.

Proof. Suppose that fk ⇒ f
(
SRTN

λ

)
. Let A =

{
k ∈ N : (fk (x) , z) ∈ N ′

f(x),z

(ε, η)
}

. By Definition 9, for every ε > 0, η ∈ (0, 1) and each non-zero z ∈ X,
there exists A ⊂ N, δλ (A) = 0 and ∃k0 = k0 (ε, η) ∈ A such that ∀k > k0, k ∈ A
and ∀x ∈ X, (fk (x) , z) ∈ N ′

(f(x),z)(
ε
2 , η). Choose N = N (ε, η) ∈ A, N > k0. So,

(fN (x) , z) ∈ N ′
(f(x),z)(

ε
2 , η). For every k ∈ A, we have

F ′
(fk(x)−fN (x),z) (ε) ≥ F ′

(fk(x)−f(x),z)

(ε

2

)
∗ F ′

(f(x)−fN (x),z)

(ε

2

)

> (1 − η) ∗ (1 − η)
> 1 − η.
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Hence, δλ

({
k ∈ N : (fk (x) − fN (x) , z) ∈ N ′

(θ,z)(ε, η)
})

= 1. Therefore

δλ

({
k ∈ N : (fk (x) − fN (x) , z) /∈ N ′

(θ,z)(ε, η)
})

= 0,

i.e., (fk) is an uniformly λ-statistical Cauchy sequence in RTN space.

The next result is a modification of a well-known result.

Theorem 9. Let (X,F, ∗), (Y, F ′, ∗) be RTN spaces such that a∗a > a for every
a ∈ (0, 1) and the map fk : (X,F, ∗) → (Y, F ′, ∗) , k ∈ N, be continuous (on X)
with respect to F -topology. If fk ⇒ f

(
SRTN

λ

)
(on X) then f : (X,F, ∗) →

(Y, F ′, ∗) is continuous (on X) with respect to F -topology. However the converse
of this is not true.

Proof. Let x0 ∈ X and (x0 − x, z) ∈ N(θ,z)(ε, η) be fixed. By F -continuity
of fk’s, for every ε > 0 and each non-zero z ∈ X, there exists a γ ∈ (0, 1)
with γ < η such that (fk (x0) − fk (x) , z) ∈ N ′

(θ,z)(
ε
3 , γ) for every k ∈ N.

Since fk ⇒ f
(
SRTN

λ

)
, for all x ∈ X, if we state respectively A (ε, η) and

B (ε, η) by the sets A =
{

k ∈ N : (fk (x0) , z) /∈ N ′
(f(x0),z)

( ε
3 , γ)

}
and B ={

k ∈ N : (fk (x) , z) /∈ N ′
(f(x),z)(

ε
3 , γ)

}
, then δλ (A) = 0 and δλ (B) = 0. There-

fore, δλ (A ∪ B) = 0 and A ∪ B is different from N. So, there exists k ∈ N such
that (fk (x0) , z) ∈ N ′

(f(x0),z)
( ε
3 , γ) and (fk (x) , z) ∈ N ′

(f(x),z)(
ε
3 , γ). It follows

that

F
′
(f(x)−f(x0),z) (ε) ≥ F

′
(f(x)−fm(x),z)

( ε

3

)
∗

[
F

′
(fm(x0)−fm(x0),z)

( ε

3

)
∗ F

′
(fm(x0)−f(x0),z)

( ε

3

)]

> (1 − γ) ∗ [(1 − γ) ∗ (1 − γ)]

> (1 − γ) ∗ (1 − γ)

> 1 − γ

> 1 − η.

This implies that f is continuous (on X) with respect to F -topology.
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10. Gürdal, M., Pehlivan, S.: The statistical convergence in 2-banach spaces. Thai J.

Math. 2, 107–113 (2004)
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Abstract. The aim of this paper is to discuss about a new thermoe-
lasticity theory for a homogeneous and anisotropic medium in the con-
text of a recent heat conduction model proposed by Quintanilla (2011).
The coupled thermoelasticity being the branch of science that deals with
the mutual interactions between temperature and strain in an elastic
medium had become the interest of researchers since 1956. Quintanilla
(2011) have introduced a new model of heat conduction in order to refor-
mulate the heat conduction law with three phase-lags and established
mathematical consistency in this new model as compared to the three
phase-lag model. This model has also been extended to thermoelasticity
theory. Various Taylor’s expansion of this model has gained the interest
of many researchers in recent times. Hence, we considered the model’s
backward time expansion of Taylor’s series upto second-order and estab-
lish some important theorems. Firstly, uniqueness theorem of a mixed
type boundary and initial value problem is proved using specific inter-
nal energy function. Later, we give the alternative formulation of the
problem using convolution which incorporates the initial conditions into
the field equations. Using this formulation, the convolution type varia-
tional theorem is proved. Further, we establish a reciprocal relation for
the model.

Keywords: Non-Fourier heat conduction model
Generalized thermoelasticiy · Uniqueness · Variational principle
Reciprocity theorem

1 Introduction

The infinite speed of propagation of thermal signal proposed by Fourier’s law
violates Einstein’s relativity theory which motivated the researchers to work
in the direction of eliminating this apparent physical drawback. Many modi-
fications had been done to develop new theories which tried to eliminate the
infinite behaviour of heat propagation. These modified heat conduction laws are
subsequently referred to as non-Fourier heat conduction models. Classical cou-
pled dynamical theory of thermoelasticity was introduced by Biot [1] which was
c© Springer Nature Singapore Pte Ltd. 2018
D. Ghosh et al. (Eds.): ICMC 2018, CCIS 834, pp. 309–324, 2018.
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based on the Fourier’s law of heat conduction and hence suffered from the simi-
lar drawback. Consequently, thermoelasticity theories are developed on the basis
of non-Fourier heat conduction models. Gradual and systematic development of
the heat conduction and thermoelasticity theory is observed which had been
recorded in many review articles and books [2–10].

The theories of Lord and Shulman [11] and Green and Lindsay [12] pro-
vided us the innovative theories of thermoelasticity which described the finite
speed of the thermal signal. The first theory was based on Cattaneo–Vernotte
heat conduction model [13–15] which deals with one thermal relaxation time
parameter i.e.

−→q (x, t + τ) = −k
−→∇T (i)

where −→q is the heat flux, k is the thermal material, T is the temperature and τ
is relaxation time. Then, later Green and Naghdi [16–18] developed completely
new thermoelasticity theory by modifying the equation of heat propagation by
incorporating the thermal pulse transmission. Green and Naghdi’s theory is cat-
egorized into three parts, namely, GN-I, GN-II, and GN-III, in which thermal
displacement (ν) and temperature (T) are considered as the constitutive vari-
ables with ν̇ = T . GN-III represents the more general form with equation as

−→q = −[k
−→∇T + k∗−→∇ν] (ii)

where newly introduced k* is positive constant called as rate of thermal con-
ductivity of the material. In 1995, Tzou [19,20] introduced the effect of micro-
structural interactions in the fast transient process of the heat transport phe-
nomenon and expressed it as

−→q (x, t + τq) = −[k
−→∇T (x, t + τT )] (iii)

where tq and tT are positive delay parameters. It is called a dual-phase-lag heat
conduction model as it involves two delay times,known as phase lags. Later,
Roychoudhuri [21] presented an extension of the dual-phase-lag by including an
extra delay time, τν , which is termed as the phase lag of thermal displacement
gradient. The corresponding equation for heat flux is

−→q (x, t + τq) = −[k
−→∇T (x, t + τT ) + k∗−→∇ν(x, t + τν)]. (iv)

These theories have dragged the interest of many researchers in recent years and
encouraged them to discuss their various features. For example, Dreher et al. [22]
analysed dual-phase-lag and three-phase-lag heat conduction model and shown
that this constitutive equation along with the energy equation

−∇−→q (x, t) = cṪ (x, t), (v)

gives a sequence of eigenvalues in the point spectrum such that its real parts
tend to infinity which further proved the ill-posedness of the problem in the
Hadamard sense.
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The taylor’s approximation of these heat conduction equation have become
the new area of interest in the sense of research [23–32]. Lately, Quintanilla [33]
worked on the three-phase-lag model in a different way and examined the sta-
bility and spatial behavior of the new proposed model by taking τν > τq = τT .
Subsequently, the study by Leseduarte and Quintanilla [34] on this model, pre-
sented a Phragmen–Lindelof type alternative which demonstrated that the solu-
tions either decay in an exponential way or amplify at infinity in an exponential
way. This result further extended to the Taylor series approximation of the equa-
tion of heat conduction to the delay term and derived the forward and backward
in time equations in the forms as folows:
(i)

−→q (x, t) = −k
−→∇T − k∗(

−→∇ν(x, t) + τ
−→∇ ν̇ +

τ2

2
−→∇ ν̈), (vi)

where τ = τν − τq > 0.
(ii)

−→q (x, t) = −k
−→∇T − k∗(

−→∇ν(x, t) − τ
−→∇ ν̇ +

τ2

2
−→∇ ν̈), (vii)

where, τ = τq − τν > 0.
They further obtained Phragmen–Lindelof type alternatives for the solutions

of the heat conduction equations corresponding to both the heat conduction laws
as given above. Subsequently, Kumari and Mukhopadhyay [54] studied some
theorems related to model (vi). Also, Quintanilla [35] checked the uniqueness
and stability of the model considering (vi) in an alternative way.

Some pioneering work on thermoelasticity theory have been reported by emi-
nent researchers like, Nickell and Sackman [40], Iesan [38,39], Ignaczak [36],
Gurtin [37], etc. and it has been shown that the state of dynamics of a ther-
moelastic system can be determined by using the variational method which
describes it as the extremum of functional or function. Ignaczak [36] and Gurtin
[37] explained the variational principle for the initial-boundary value problem
by incorporating the initial condtions into the field equations. With the help of
this alternative formulation, Iesan [38,39] and then Nickell and Sackman [40],
established a convolution type variational principle for the linear coupled ther-
moelasticity. Later, the first variational theorem of Gurtin type for solids with
micro-structure was presented by Iesan [41].

The reciprocity theorem is used to derive various methods of integrating the
elasticity equations in terms of Green’s function and it has significant practical
applications in the solution of engineering problems [42]. Maysel [43] developed
the Betti–Maxwell reciprocity theorem for the static problems in theory of ther-
moelasticity. Later, the reciprocity theorem was extended to uncoupled thermoe-
lasticity, coupled thermoelasticity and coupled thermoelasticity for anisotropic
homogeneous material by Predeleanu [44], Ionescu-Cazimir [45] and Nowacki
[42], respectively. Iesan [41] presented the first reciprocal relation without using
the Laplace transform. Convolution type reciprocity theorems were also derived
by Iesan [38,39]. Scalia [46] used a method to deduce reciprocity relations with-
out using the Laplace transform and without incorporation of the initial data
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in the field equations. An exhaustive treatment of the variational principles in
thermoelasticity is available in the books by Lebon [47], Carlson [48], Hetnarski
and Ignaczak [49] and Hetnarski and Eslami [50]. Recently, the convolution type
variational principles and reciprocal relations on different theories of thermoe-
lasticity were given by Chirita and Ciarletta [51], Mukhopadhyay and Prasad
[52], Kothari and Mukhopadhyay [53] and Kumari and Mukhopadhyay [54].

Here, we have considered the second-order Taylor’s approximation of the
proposed model of the form (vii) given by Leseduarte and Quintanilla [33] with
a single delay term in which the micro-structural effects in the heat transport
phenomenon is considered. We tried to prove some theorems for this model for
homogeneous and anisotropic medium which have many applications. We start
with describing the basic equations with respect to the considered model and
consider a mixed initial-boundary value problem with non-homogeneous initial
conditions. Then, we work in the direction to prove the uniqueness by using the
specific internal energy function. Next, we present the alternative formulation of
the mixed initial-boundary value problem using convolution. The benefit of this
formulation is that it incorporates the initial conditions into the field equations,
due to which there is no need to consider the initial conditions separately. Lastly,
using this formulation, we have presented the variational principle of convolution
type and a reciprocity theorem. The present model has not yet been studied in
this direction by any researcher with the best of our knowledge. Hence, it is
believed that the theorems established in the present paper will be useful for
further study in this area.

2 Basic Equations and Problem Formulation

Following Leseduarte and Quintanilla [34], we consider the constitutive relation
for heat flux, temperature gradient and thermal displacement in the form given
in equation (vii). Hence, we consider the basic governing and the constitutive
relations in context of this Quintanilla model under linear theory of thermoelas-
ticity for a homogeneous and anisotropic material as follows:

The Equation of Motion:

σij,j + ρHi = ρüi. (1)

The Equation of Energy:

ρT0Ṡ = −qi,i + ρh. (2)

The Constitutive Equations:

σij = Cijklekl−αijθ; (3)

ρS = ρcE
θ

T0
+ αijeij ; (4)
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q̇i = −{Kij
∂

∂t
+ K∗

ij(1 − τ
∂

∂t
+

τ2

2
∂2

∂t2
)}ηj . (5)

The Geometrical Relations:

ηj = θ,j ; (6)

eij =
1
2
(ui,j + uj,i) = u(i,j). (7)

In this system of equations, we use a rectangular coordinate system xk in three
dimensional Euclidean space with usual indicial notations and used the following
notations:

σij-the components of stress tensor, ui-the displacement components, eij-the
components of strain tensor, Hi-the components of body force vector per unit
mass, qi-the components of heat flux vector, θ-the temperature variation from
the uniform reference temperature T0, ηi-the components of temperature gra-
dient vector, h-the heat source per unit mass, S-the entropy per unit mass, ρ
- the mass density and cE-specific heat at constant strain. The comma in the
subscript is used to represent the partial derivatives with respect to the space
variables and the over-headed dots denote the differentiation with respect to
the time variable t. Cijkl, αij and Kij and K∗

ij denote the elasticity tensor,
thermoelasticity tensor, thermal conductivity tensor and rate of thermal con-
ductivity tensor respectively. The subscripts i, j, k and l take the values 1, 2, 3
and the summation is represented by repetition of index.

Mixed Initial Boundary Value Problem
Now, we consider V as the closure of an open, bounded, connected domain
with boundary, ∂V , enclosing an homogeneous and anisotropic thermoelastic
material. Let V denote the interior of V and ni be the components of an outward
drawn unit normal to ∂V . Let Bi, (i = 1, 2, 3, 4) be the subsets of ∂V such that
B1 ∪ B2 = B3 ∪ B4 = ∂V and B1 ∩ B2 = B3 ∩ B4 = φ. The motion relative to
an undistorted stress free reference state is considered for the present study.

For a mixed initial and boundary value problem, we consider the field equa-
tions and constitutive relations given by Eqs. (1–7) defined in V ×[0,∞) together
with the following initial conditions and boundary conditions:

Initial Conditions: On V

ui(x, 0) = u0i
(x), u̇i(x, 0) = vi(x),

θ(x, 0) = θ0(x), θ̇(x, 0) = θ1(x), qi(x, 0) = q0i
(x).

}
(8)

Boundary Conditions:

ui = ũi(x, t) on B1 × [0,∞),
σi = σijnj = σ̃i(x, t) on B2 × [0,∞),
q = qini = q̃(x, t) on B3 × [0,∞),

θ = θ̃(x, t) on B4 × [0,∞).

⎫⎪⎪⎬
⎪⎪⎭

(9)
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Here, u0i
, vi, θ0, θ1, q0i

represent the specified initial displacement compo-
nent, velocity component, temperature, rate of temperature and heat flux,
respectively together with ũi, σ̃i, θ̃, q̃, which denote the known surface displace-
ment component, component of traction vector, temperature and normal heat
flux, respectively. The smoothness requirements and other regularity assump-
tions on the ascribable functions are also considered as hypotheses on data. Also,
we assume that u0i

, vi, θ0, θ1, q0i
are continuous on V , Hi and h are continuously

differentiable on V × [0,∞). q̃ and σ̃ are piecewise continuous on B3 × [0,∞) and
B2 × [0,∞), respectively. ũi and θ̃ are continuous on B1 × [0,∞) and B4 × [0,∞),
respectively.

Further, we assume that the Cijkl, αij , Kij and K∗
ij are smooth on V and

satisfy

Cijkl = Cklij = Cjikl = Cijlk, αij = αji, Kij = Kji, K∗
ij = K∗

ji, (10)

Cijkleijekl > 0, for all eij on V × [0,∞), (11)

Kijϕiϕj > 0 for any real ϕi on V × [0,∞), (12)

K∗
ijψiψj > 0 for any real ψi on V × [0,∞), (13)

The material constants and delay time parameters satisfy the following inequal-
ities:

ρ > 0, cE > 0, T0 > 0, τ > 0, Kij − τK∗
ij > 0 on V. (14)

Now we define an admissible state as R = {ui, θ, ηi, eij , σij , qi, S}, which is an
ordered array of functions ui, θ, ηi, eij , σij , qi, S defined on V × [0,∞) with the
properties that ui ∈ C2,2, θ ∈ C1,2, ηi ∈ C0,2, σij ∈ C1,0, qi ∈ C1,1, S ∈ C0,1

and eij = eji, σij = σji on V ×[0,∞). We further define two operations, addition
of two admissible states and multiplication of an admissible state with a scalar
as follows:

R + R
′
= {ui + ui, θ + θ

′
, . . . . . . , S + S

′},
λ∗R

′
= {λ∗ui, λ∗θ, . . . . . . , λ∗S},

where λ∗ is any scalar. Then the set of all admissible states is clearly a linear
space.

Further, an admissible state is the solution of the present mixed problem if
it satisfies all the field Eqs. (1–7), the initial conditions (8) and the boundary
conditions (9).

3 Uniqueness of Solution

For the uniqueness of solution, we consider the specific internal energy for the
present initial-boundary value problem which is in the form

E =
1
2
Cijklėklėij +

ρcE

2T0
θ̇2, (15)
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Clearly, from Eqs. (11) and (14), we can say that the specific internal energy
(Eq. 15) is positive definite and using Eqs. (3), (4) and (10), we get

Ė = σ̇ij ëij + ρS̈θ̇. (16)

Now, by using relations (2), (5), (6) and (7), we obtain

Ė = σ̇ij üi,j − 1
T0

q̇i,iθ̇ +
ρḣ

T0
θ̇

= (σ̇ij üi),j − σ̇ij,j üi − 1
T0

(q̇iθ̇)i +
1
T0

(q̇iη̇i) +
ρḣ

T0
θ̇

= (σ̇ij üi),j − 1
T0

(q̇iθ̇),i + ρḢiüi +
ρḣ

T0
θ̇ − ρ

...
u iüi

− η̇i

T0
{Kij η̇j + K∗

ijηj − τK∗
ij η̇j +

τ2

2
K∗

ij η̈j}. (17)

Integrating both sides of Eq. (17) over V , using divergence theorem and by using
(1), we get

∂

∂t

∫
V

(E +
ρ

2
üiüi +

K∗
ij

2T0
ηiηj +

τ2K∗
ij

4T0
η̇iη̇j)dV +

1
T0

∫
V

(Kij − τK∗
ij)η̇iη̇jdV

=
∫
V

(ρḢiüi +
ρḣθ̇

T0
)dV +

∫
A

( ˙̃σiüi − 1
T0

θ̇ ˙̃q)dA.

(18)

We will now establish the uniqueness of solution of the present mixed initial-
boundary value problem by the following uniqueness theorem.

Theorem 3.1 (Uniqueness theorem):
Statement: The mixed initial-boundary value problem given by Eqs. (1)–(7),
which satisfies the initial conditions (8) and boundary conditions (9) has at most
one solution.

Proof: We assume that there are two sets of solutions u
(γ)
i , θ(γ), e

(γ)
ij , σ

(γ)
ij ,

q
(γ)
i , S(γ) for γ = 1, 2. Then, we will construct the difference between these

two sets of functions as

ui = u
(1)
i − u

(2)
i , θ = θ(1) − θ(2), . . . . . . . . . . . . . . . , S = S(1) − S(2). (19)

Since, the set of all admissible states is a linear space, so the difference functions
defined by (19) also satisfy the Eqs. (1–7) with zero body forces and heat source,
the initial conditions (8) and the boundary conditions (9) in their homogeneous
form and hence Eq. (18) too. Therefore from Eq. (18), we obtain

∂

∂t

∫
V

(E +
ρ

2
üiüi +

K∗
ij

2T0
ηiηj +

τ2K∗
ij

4T0
η̇iη̇j)dV +

1
T0

∫
V

(Kij − τK∗
ij)η̇iη̇jdV = 0.

(20)
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Interchanging the variable t with ξ and integrating above equation over time
interval (0, t) and using the homogeneous initial conditions for difference func-
tions, we obtain

∫
V

(E +
ρ

2
üiüi +

K∗
ij

2T0
ηiηj +

τ2K∗
ij

4T0
η̇iη̇j)dV +

1
T0

t∫
0

∫
V

(Kij − τK∗
ij)η̇iη̇jdV dξ = 0.

(21)
From Eqs. (11), (12), (13) and (14) we observe that the component in each term
present on the left hand side of Eq. (21) is non-negative. Thus we conclude that
each term in Eq. (21) must be zero which implies that

üi = 0, θ̇ = 0 on V × [0,∞). (22)

From (16), we get

∂2ui

∂t2
= 0,

∂θ

∂t
= 0, on V × [0,∞). (23)

Therefore, in view of the initial conditions ui(x, 0) = 0, u̇i(x, 0) = 0 and θ(x, 0) =
0, we get from Eq. (23) that

ui = 0, θ = 0 on V × [0,∞),

i.e.,
u

(1)
i = u

(2)
i , θ(1) = θ(2) on V × [0,∞).

This completes the proof of the uniqueness theorem.

4 Alternative Formulation of Mixed Problem

This section discusses the alternative formulation of the above mixed initial-
boundary value problem in which the initial conditions are combined into the
field equations (Gurtin [37]). For this purpose, we proceed as follows:

Let φ and ψ be two functions defined on V × [0,∞) such that both are
continuous on [0, ∞) for each x ∈ V . Then the convolution φ ∗ ψ of φ and ψ is
defined as

[φ ∗ ψ](x, t) =

t∫
0

φ(x, t − τ)ψ(x, τ)dτ, (x, t) ∈ V × [0,∞).

We will use the commutativity, associativity and distributivity of convolution
and the property that

φ ∗ ψ = 0 ⇒ φ = 0 or ψ = 0 (24)
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Now, we define the functions g and l on [0, ∞) as

g(t) = t, l(t) = 1. (25)

Also, let functions fi and W be defined on V × [0,∞) as

fi = g ∗ ρHi + ρ(tvi + u0i
), (26)

W = l ∗ ρh

T0
+ ρcE

θ0

T0
+ αiju0i,j

, (27)

and let

Ni = l ∗ (tq0i
+ tθ0,jKij − tτθ0,jK

∗
ij + tθ1,j

τ2

2
K∗

ij + θ0,j
τ2

2
K∗

ij), (28)

Consider p(x, t) and ṗ(x, t), two functions defined on V × [0,∞) such that both
are continuous and differentiable on [0, ∞). Then the following results hold
clearly:

g ∗ p̈(x, t) = p(x, t) − [tṗ(x, 0) + p(x, 0)], (29)

l ∗ ṗ(x, t) = p(x, t) − p(x, 0), (30)

g ∗ ṗ(x, t) = l ∗ (l ∗ ṗ(x, t)) = l ∗ [p(x, t) − p(x, 0)] = l ∗ p(x, t) − tp(x, 0). (31)

By this formulation we, therefore, obtain the following theorem that characterises
our mixed problem in an alternative way.

Theorem 4.1:
Statement: The function ui, θ, ηi, eij , σij , qi, S satisfy Eqs. (1), (2) and (5)
and the initial conditions (8) if and only if

g ∗ σij,j + fi = ρui, (32)

ρS = −l ∗ qi,i

T0
+ W, (33)

L1 ∗ qi = −L1 ∗ Kijηj − L2 ∗ K∗
ijηj + Ni, (34)

where L1 = l ∗ l and L2 = l ∗ (g + τ l + τ2

2 ), fi, W and Ni are given by Eqs. (26),
(27), and (28), respectively.

Proof: Firstly, assuming the governing Eqs. (1), (2) and (5) and initial condi-
tions (8) hold good. Then, taking the convolution of Eq. (1) with g and using
the results from Eqs. (29) and (8), we arrive at the Eq. (32). Similarly, taking
the convolution of the Eq. (2) with l and using (30), (4) and (8) we obtain the
Eq. (33). Again, taking the convolution of Eq. (5) with l∗g, and using the relation
from (29), (31) and (8) we get the Eq. (34).

Similarly, we can prove the converse of the above theorem, by reverse argu-
ments. Hence, finally we get the following theorem.

Theorem 4.2: Let R = {ui, θ, ηi, eij , σij , qi, S} be an admissible state. Then
R is a solution of the mixed problem if and only if it satisfies the Eqs. (32)–(34),
(3), (4), (6), (7) and the boundary conditions (9).
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5 Variational Theorem

Using the alternative formulation and the theorem established in the previous
section, we will formulate a variational principle on linear theory of thermoelas-
ticity for anisotropic and homogeneous medium under the present heat conduc-
tion model (using backward expansion of Taylor’s series) given by Leseduarte
and Quintanilla [34].

Theorem 5.1:
Statement: Let Λ be a linear space of all admissible states with addition and
scalar multiplication as describe in Sect. 2. If for each t ∈ [0,∞) and for every
Γ = {ui, θ, ηj , eij , σij , qi, S} ∈ Λ, we define a functional Ft{Γ} on Λ by

Ft{Γ} =
∫
V

[
1
2
L1 ∗ g ∗ Cijklekl ∗ eij − 1

2
L1 ∗ ρui ∗ ui

−L1 ∗ g ∗ σij ∗ eij − L1 ∗ g ∗ l ∗ 1
T0

qi ∗ ηi

+L1 ∗ ui ∗ (ρui − g ∗ σij,j − fi) − L1 ∗ g ∗ θ ∗ (ρS + l ∗ qi,i

T0
− W )

+ g ∗ l ∗ 1
T0

(−L1 ∗ 1
2
Kijηj − L2 ∗ 1

2
K∗

ijηj + Ni) ∗ ηi

+
T0

2ρcE
L1 ∗ g ∗ (ρS−αrsers) ∗ (ρS − αijeij)]dV +

∫
B1

L1 ∗ g ∗ ũi ∗ σidA

+
∫
B2

L1 ∗ g ∗ (σi − σ̃i) ∗ uidA +
1
T0

∫
B3

L1 ∗ g ∗ l ∗ q ∗ θ̃dA

+
1
T0

∫
B4

M1 ∗ g ∗ l ∗ (q − q̃) ∗ θdA, (35)

then the variation of this functional,

δFt{Γ} = 0, t ∈ [0,∞), (36)

if and only if, Γ is a solution of the mixed initial-boundary value problem given
by Eqs. (1)–(7) with the initial conditions (8) and the boundary conditions (9).

Proof: Let Γ
′

= {u
′
i, θ

′
, η

′
i, e

′
ij , σ

′
ij , q

′
i, S

′} ∈ Λ, which implies that Γ + λΓ
′∈

Λ, for every real λ. Then Eq. (35) together with properties of convolution, the
definition of variation and the divergence theorem, implies

δΓ′ Ωt{Γ} =
∫
V

[L1 ∗ g ∗ {Cijklekl − T0αij

ρcE
(ρS − αrsers) − σij} ∗ e

′
ij

+L1 ∗ g ∗ { T0

ρcE
(ρS − αrsers) − θ} ∗ ρS

′
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+ g ∗ l ∗ 1
T0

(−L1 ∗ Kijηj − L2 ∗ K∗
ijηj + Ni − L1 ∗ qi) ∗ η

′
i]dV

−
∫
V

[L1 ∗ (g ∗ σij,j +fi−ρui)∗u
′
i+L1 ∗ g ∗ (ρS+l ∗ qi,i

T0
−W )∗θ

′
]dV

−
∫
V

[L1 ∗ g ∗ (eij − u(i,j)) ∗ σ
′
ij − L1 ∗ g ∗ l ∗ 1

T0
(θ,i − ηi) ∗ q

′
i]dV

+
∫
B1

L1 ∗ g ∗ (ũi − ui) ∗ σ
′
idA +

∫
B2

L1 ∗ g ∗ (σi − σ̃i) ∗ u
′
idA

+
1
T0

∫
B3

L1 ∗ g ∗ l ∗ (θ̃ − θ) ∗ q
′
dA +

1
T0

∫
B4

L1 ∗ g ∗ l ∗ (q − q̃) ∗ θ
′
dA,

(37)

for all t ∈ [0,∞).

Firstly, assuming that Γ is a solution of the mixed initial-boundary value
problem, then from Theorem 4.1, the relations (32) to (34) and the boundary
conditions (9) gives

δΓ′ Ωt{Γ} = 0, t ∈ [0,∞) (38)

for every Γ
′
= {u

′
i, θ

′
, γ

′
i , e

′
ij , σ

′
ij , q

′
i, S

′} ∈ Λ, and therefore we get (36). This
completes the proof of the necessary part of the Theorem5.1.

Conversely, let (36) holds true and hence (38) holds for every Γ
′

=
{u

′
i, θ

′
, η

′
i, e

′
ij , σ

′
ij , q

′
i, S

′} ∈ Λ. Then, we have to show that Γ is a solution
of mixed initial-boundary value problem.

Since (38) holds for every Γ
′ ∈ Λ, we choose Γ

′
= {u

′
i, 0, 0, 0, 0, 0, 0} and

let u
′
i, along with all the space derivatives, vanish on ∂V × [0,∞). Therefore, we

deduce from Eqs. (37) and (38)∫
V

(g ∗ σij,j + fi − ρui) ∗ u
′
idV = 0 for t ∈ [0,∞). (39)

By using Lemma-1 (see Gurtin [37]) and convolution properties, we find that
Eq. (32) holds.

Similarly, by substituting appropriate choices of Γ
′

into (37), we can prove
with the help of three Lemmas (1–3) (Gurtin [37]) that Γ also satisfies the
Eqs. (33), (34), (3), (4), (6), (7) and the boundary conditions (9). Therefore,
from Theorem 4.2, Γ is the solution of the present mixed problem. The proof of
the above theorem is therefore complete.

6 Reciprocity Theorem

Now, we consider two different systems of thermoelastic loadings

Lβ = (H(β)
i , h(β), ũi

(β), θ̃
(β)

, q̃
(β)
i , σ̃

(β)
i , u

(β)
0i

, v
(β)
i , θ

(β)
0 , θ

(β)
1 , q

(β)
0i

), β = 1, 2
(40)
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The corresponding thermoelastic configurations are denoted as

Iβ = (u(β)
i , θ(β)) (41)

that satisfy (32)–(34), (3), (4), (6), (7) and (9).
We aim to establish a reciprocity theorem that states the relation between

these two sets of thermoelastic loadings and thermoelastic configurations. For
this, we use the following notations:

f
(β)
i = ρ(g ∗ H

(β)
i + tv

(β)
i + u

(β)
0i

), (42)

W (β) = l ∗ ρh(β)

T0
+ ρcE

θ
(β)
0

T0
+ αiju

(β)
0i,j

, (43)

N
(β)
i = l ∗ (tq(β)

0i
+ tKijθ

β
0,j − tτK∗

ijθ
β
0,j + t

τ2

2
K∗

ijθ
β
1,j +

τ2

2
K∗

ijθ
β
0,j), (44)

for β = 1, 2. Then, we have the reciprocity theorem as given below.

Theorem 6.1 (Reciprocity theorem): If a thermoelastic solid is associ-
ated with two different systems of thermoelastic loadings, Lβ , (β = 1, 2) and
Iβ , (β = 1, 2) are the corresponding thermoelastic configurations, then the fol-
lowing reciprocity relation holds:
∫
V

L1∗[f (1)
i ∗u

(2)
i −g∗W (1)∗θ(2)]dV +

∫
A

L1∗g∗
[
σ

(1)
i ∗ u

(2)
i +

1
T0

l ∗ q(1) ∗ θ(2)

]
dA

−
∫
V

g ∗ l ∗
[

1
T0

N
(1)
i ∗ η

(2)
i

]
dV =

∫
V

L1 ∗
[
f

(2)
i ∗ u

(1)
i − g ∗ W (2) ∗ θ(1)

]
dV

+
∫
A

L1 ∗ g ∗
[
σ

(2)
i ∗ u

(1)
i +

1
T0

l ∗ q(2) ∗ θ(1)

]
dA −

∫
V

g ∗ l ∗
[

1
T0

N
(2)
i ∗ η

(1)
i

]
dV,

(45)

where, f
(β)
i , W (β), N

(β)
i (β = 1, 2) associated with two systems are given by

Eqs. (42), (43), (44) respectively.

Proof: From Eq. (3) we have

σ
(β)
ij = Cijkle

(β)
kl − αijθ

(β), (46)

Now, taking convolution of Eq. (46) for β = 1 with e
(2)
ij and for β = 2 with

e
(1)
ij and then subtracting the results, we get

(σ(1)
ij + αijθ

(1)) ∗ e
(2)
ij = (σ(2)

ij + αijθ
(2)) ∗ e

(1)
ij + Cijkl(e

(1)
kl ∗ e

(2)
ij − e

(2)
kl ∗ e

(1)
ij ).
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Hence due to the symmetry properties of Cijkl, we have

Cijkl(e
(1)
kl ∗ e

(2)
ij − e

(2)
kl ∗ e

(1)
ij ) = Cijkle

(1)
kl ∗ e

(2)
ij − Cklije

(1)
kl ∗ e

(2)
ij = 0 (47)

Therefore,
(σ(1)

ij + αijθ
(1)) ∗ e

(2)
ij = (σ(2)

ij + αijθ
(2)) ∗ e

(1)
ij . (48)

Again from Eq. (4), we can write

ρS(β) − αije
(β)
ij = ρcE

θ(β)

T0
, β = 1, 2 (49)

Taking convolution of Eq. (49) for β = 1 with θ(2) and for β = 2 with θ(1) and
subtracting, we get

(ρS(1) − αije
(1)
ij ) ∗ θ(2) = (ρS(2) − αije

(2)
ij ) ∗ θ(1). (50)

Equations (48) and (50) yield

(σ(1)
ij ∗ e

(2)
ij − ρS(1) ∗ θ(2)) = (σ(2)

ij ∗ e
(1)
ij − ρS(2) ∗ θ(1)). (51)

Now, we introduce the notation

Lαβ =
∫
V

L1 ∗ g ∗
[
σ

(α)
ij ∗ e

(β)
ij − ρS(α) ∗ θ(β)

]
dV, α, β = 1, 2. (52)

Now, from Eqs. (7) and (32)–(34), we get

L1 ∗ g ∗ (σ(α)
ij ∗ e

(β)
ij − ρS(α) ∗ θ(β))

= L1 ∗ g ∗ σ
(α)
ij ∗ uβ

i,j − L1 ∗ g ∗ (−l ∗ q
(α)
i,i

T0
+ W (α)) ∗ θ(β)

= L1 ∗ g ∗ (σ(α)
ij ∗ uβ

i ),j − L1 ∗ g ∗ (σ(α)
ij,j ∗ uβ

i )

+
1
T0

L1 ∗ g ∗ (l ∗ q
(α)
i ∗ θ(β)),i − 1

T0
L1 ∗ g ∗ l ∗ q

(α)
i ∗ η

(β)
i

− L1 ∗ g ∗ W (α) ∗ θ(β)

L1 ∗ g ∗ (σ(α)
ij ∗ e

(β)
ij − ρS(α) ∗ θ(β))

= L1 ∗ g ∗ (σ(α)
ij ∗ u

(β)
i ),j − L1 ∗ ρu

(α)
i ∗ u

(β)
i + L1 ∗ f

(α)
i ∗ u

(β)
i

+
1
T0

L1 ∗ g ∗ l ∗ (q(α)
i ∗ θ(β)),i +

1
T0

g ∗ l ∗ (L1 ∗ Kijη
(α)
j

+L2 ∗ K∗
ijη

(α)
j ) ∗ η

(β)
i − 1

T0
g ∗ l ∗ N

(α)
i ∗ η

(β)
i

−L1 ∗ g ∗ W (α) ∗ θ(β). (53)
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From Eqs. (52) and (53), we therefore obtain

Lαβ =
∫
V

L1 ∗
[
f

(α)
i ∗ u

(β)
i − g ∗ W (α) ∗ θ(β)

]
dV

+
∫

∂V

L1 ∗ g ∗
[
σ

(α)
i ∗ uβ

i +
1
T0

l ∗ q
(α)
i ∗ θ(β)

]
dA

−
∫
V

[
L1 ∗ ρu

(α)
i ∗ u

(β)
i − 1

T0
g ∗ l ∗ L1 ∗ Kijη

(α)
j ∗ η

(β)
i

− 1
T0

g ∗ l ∗ L2 ∗ K∗
ijη

(α)
j ∗ η

(β)
i

]
dV

−
∫
V

[
1
T0

g ∗ l ∗ N
(α)
i ∗ η

(β)
i

]
dV. (54)

Clearly, from Eqs. (51) and (52), we have

L12 = L21. (55)

Hence, Eqs. (54) and (55) prove the reciprocity relation (45), which completes
the proof of the Theorem6.1.
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