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Abstract. Image inpainting is an extremely challenging and open
problem for the computer vision community. Motivated by the recent
advancement in deep learning algorithms for computer vision applica-
tions, we propose a new end-to-end deep learning based framework for
image inpainting. Firstly, the images are down-sampled as it reduces the
targeted area of inpainting therefore enabling better filling of the target
region. A down-sampled image is inpainted using a trained deep convolu-
tional auto-encoder (CAE). A coupled deep convolutional auto-encoder
(CDCA) is also trained for natural image super resolution. The pre-
trained weights from both of these networks serve as initial weights to an
end-to-end framework during the fine tuning phase. Hence, the network
is jointly optimized for both the aforementioned tasks while maintain-
ing the local structure/information. We tested this proposed framework
with various existing image inpainting datasets and it outperforms exist-
ing natural image blind inpainting algorithms. Our proposed framework
also works well to get noise resilient super-resolution after fine-tuning
on noise-free super-resolution dataset. It provides more visually plausi-
ble and better resultant image in comparison of other conventional and
state-of-the-art noise-resilient super-resolution algorithms.
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1 Introduction

Image inpainting aims to reconstruct missing regions and removal of unwanted
parts of an image [1,2]. This area of research has earned a lot of significance over
the course of time. Image inpainting can be classified as blind and non-blind
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based methods. Blind inpainting is a more complex problem to solve because
there is no prior information provided to the network/algorithm about the exact
position/location of the corrupted, missing or deteriorated regions of an image.
Whereas, in non-blind inpainting the location of the regions to be filled are
provided.

Recently, researchers have used deep learning algorithms for blind inpainting
[3–6]. These algorithms work well for small region but filling of a big region is still
an open challenge. To overcome this issue, we are proposing a new end-to-end
deep learning framework for super-resolution based inpainting. Le Meur et al. [7]
has shown importance of super-resolution based inpainting to fill larger regions.
Aforementioned super-resolution based inpainting method was just a cascading
of inpainting and super-resolution algorithm which was non-blind technique.
It failed to preserve local structure/information but, our proposed framework
jointly optimize both the tasks to get better results for blind inpainting.

Firstly, a convolutional auto-encoder (CAE) was trained for blind inpaint-
ing with down sampled version of images and a coupled deep convolutional
auto-encoder (CDCA) [8] was trained for natural image super resolution (SR)
separately. This results in learned CAE kernels/filters for blind inpainting and
learned CDCA kernels for natural image SR. Then both of these networks were
cascaded and the resulting network was initialized as a single integral network
(CAE-CDCA) with pre-trained weights of the aforementioned networks. After
that, the combined CAE-CDCA was fine-tuned on a data-set having down-
sampled version of images with some missing region (corrupt LR images) as
input and corresponding higher resolution (HR) ground truth images as a tar-
get. Here the parameters of CAE-CDCA is optimized by minimizing final SR
loss. Filters/kernels were updated at each iteration and filters were learned for
inpainting and super resolution simultaneously while preserving local texture
information. The simple cascaded network fails to preserve local structure and
high frequency information whereas our integrated CAE-CDCA is able to pre-
serve the local structure by filling the missing region while optimizing inpainting
and SR tasks jointly. A block diagram of the proposed framework is shown in
Fig. 1.

We can adopt similar framework (CAE-CDCA) with few changes to get noise-
free image SR. Sharma et al. [8] has given end to end deep learning framework
to get noise-resilient SR. In contrast to stacked sparse auto-encoder (SSDA)
used by [8] for image denoising, deep convolutional auto-encoder (CAE) is used
in our framework. Since CAE provides a better resultant de-noised image in
comparison to SSDA [9]. Firstly, CAE was trained for image de-noising and
CDCA was trained for super-resolution separately. This results in learned CAE
weights for de-noising and learned CDCA filters for super-resolution. Then both
networks were cascaded (CAE-CDCA) and this cascaded network is finetuned as
an integral network with pre-trained weights. After that, combined CAE-CDCA
was fine-tuned on dataset having noisy-LR images as input and corresponding
HR images as a target. Here the loss gradient was back-propagated till the first
layer of CAE from the last layer of CDCA. Weights/filters were updated at
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each iteration and weights were learned to super-resolve and de-noising image
simultaneously while preserving textural information.

The main reason behind using CDCA framework [8] of single image super-
resolution (SISR) instead of other deep learning based SISR methods [9–16] is
that CDCA architecture with 3 layers provides comparative results with other
deep learning based SISR methods. Whereas, other architectures are very deep
which require lots of computational complexity.

The rest of the paper is organized as follows. In Sect. 2 we mention related
work. Section 3 covers proposed methodology for super-resolution based inpaint-
ing. Section 4 shows experimental result to show effectiveness of proposed frame-
work and in last we conclude in Sect. 5.

Fig. 1. Block diagram of deep learning framework for super-resolution based inpainting.

2 Related Work

In the first category of inpainting, researchers targeted to segment some specific
regions from a given image and fill that region with similar patterns and textures
present in the background [17]. This category covers only texture synthesis task
at a particular location. Second category is of diffusion based techniques [18]
which fills the targeted region by diffusing the information from known neigh-
bouring regions. These diffusion based algorithms work well for small targeted
regions but fail completely or give a blurring artifact for larger targeted regions.
Exemplar based inpainting [15,17] and sparsity based inpainting [19,20] lie in
the third category. These techniques work better to fill the missing region in
comparison to diffusion based techniques but, there is a need to solve complex
optimization problems during usage. Le Meur et al. [21] has presented new hybrid
inpainting approach which uses both diffusion and exemplar based technique but
with large computational complexity. Super-resolution based inpainting method
[15] was able to fill larger regions but failed to preserve the local structure.
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In the above mentioned methods, it is required to know the location of the
missing region. Dong et al. [22] presented a wavelet based technique for blind
inpainting and Liu et al. [23] have proposed tensor completion approach for
prediction of missing regions. Recently, researchers have presented deep learn-
ing frameworks [3–6] for blind inpainting tasks, where deep learning frameworks
learn end-to-end mapping between input with some missing region and tar-
geted ground truth. After learning, we have to take the inference of the learned
model to inpaint test images with missing region. These algorithms works better
in filling smaller regions than earlier traditional approaches but not for larger
missing regions. In recent years, generative adversarial network based inpainting
approaches [24,25] have gained popularity for filling large missing regions, but
these approaches fills the missing regions with arbitrary details which are quite
different from the required context.

3 Methodology

3.1 Inpainting Using CAE

Let us consider that down-sampled natural image patches with some missing
region (corrupt LR image patches) represented by yi and corresponding down-
sampled ground truth HR patches be represented by xi ∀i = 1, 2..n, where n is
the total number of patches in training dataset. We normalize both the input
and target patches between [0 1] as a pre-processing step. We learn the blind
inpainting function F1 which converts yi into xi.

xi = F1(yi, θ1) (1)

Here, F1 and θ1 are blind inpainting function and parameters respectively.
These parameters are same as used in the RED10 [3] architecture. The function
F1 is learned using similar convolution and de-convolution ten layer architecture.
Size of patches used for training is l×h. The function F1 is learned by minimizing
the following mean square error (MSE):

LossInpainting =
1
n

n∑

i=1

1
2

‖ xi − F1(yi, θ1) ‖22 (2)

3.2 Super-Resolution Using CDCA

Assuming up-sampled low-resolution natural image patches are represented
as Xi and their corresponding ground truth HR patches represented as Zi

∀i = 1, 2..m where m is the total number of patches in SR training dataset. We
normalize both the input and target patches between [0 1] as a pre-processing
step. We learn the SR function F2 which converts Xi into Zi.

Zi = F2(Xi, θ2) (3)
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Here, F2 and θ2 are SR function and parameters respectively. The same
parameters of CDCA [8] architecture is used. The function F2 is learned by
using same architecture and parameters as used in [8]. Size of patches used for
training is s.l×s.h. Where s is the desired super-resolution scaling. The function
F2 is learned by minimizing the following mean square error (MSE):

LossSR =
1
m

m∑

i=1

1
2

‖ Zi − F2(Xi, θ2) ‖22 (4)

3.3 SR Based Inpainting Using CAE-CDCA

The proposed framework for blind inpainting is shown in Fig. 1. and it comprises
of the following steps:

1. Firstly, CAE architecture was learned for coarser version image inpainting.
For this, we trained a CAE on a dataset having down-sampled natural image
patches with some missing region (corrupt LR image patches) as an input and
corresponding down-sampled HR ground truth patches as a target. Learning
at coarser level reduces the area to inpaint which helps in preserving local
structure information.

2. Then, the CDCA was learned for natural image SR on a dataset with natural
LR image patches as input and the corresponding HR patches as target.

3. After having learned the CAE filters for blind inpainting and learned the
CDCA filters/kernels for image super-resolution, we cascaded both these net-
works and termed it as CAE-CDCA. Then CAE-CDCA was treated as one
integral network with pre-trained weights as shown in Fig. 1.

4. This CAE-CDCA was fine-tuned end-to-end on a dataset which consists of
natural LR image patches with some missing region as an input and corre-
sponding HR natural image patches as target. For end-to-end fine-tuning we
use k number of patches in fine-tuning dataset.

After end-to-end fine-tuning, the combined network is jointly optimized for
both the task (natural image inpainting at coarser level and SR) and preserves
the local structure/information at the same time.

During fine-tuning, the final loss gradients were back-propagated from final
layer of the CDCA to initial layer of the CAE. We want to learn the SR based
inpainting function F such that Zi = F (yi, θ) ∀i = 1, 2..k. Here, k is the total
number of patches in fine-tuning dataset. The kernels/filters were learned to
perform image inpainting at coarser level and SR, simultaneously by minimizing
the final loss.

Lossfinal =
1
k

k∑

i=1

1
2

‖ Zi − F (yi, θ) ‖22 (5)

After learning the CAE-CDCA, we can inpaint any test image by down sam-
pling that input image and by passing through the feed forward path of CAE-
CDCA (taking inference of learned CAE-CDCA).
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4 Experimental Results

4.1 Datasets

To train deep CAE for blind inpainting, we generated a large training database
of 0.2 million corrupted and corresponding ground truth patches (size = 64× 64)
using imagenet [26] and few images from ETH CIL database [27]. To create
blind inpainting database, we corrupt the patches by using random masks at
different locations. Our CDCA framework is trained on imagenet dataset for 2x
SR dataset as given in [26]. Combined CAE-CDCA framework is fine-tuned on
the dataset having down-sampled corrupted patches (64× 64) as an input and
corresponding ground truth patches (128× 128) as a target. Fine-tuning is also
done on imagenet dataset. We tested our framework on BSD300 dataset [28]
and on remaining images from ETH CIL dataset. ImageNet dataset was used
for fine-tuning our proposed deep learning framework to get noise-free super-
resolution.

4.2 Experiments

To train CAE for blind inpainting, we take 10 layer architecture having 5 convo-
lutional and 5 de-convolutional layers with ReLU as the activation function as
given in RED10 [3]. At each convolutional and de-convolutional layer, the kernel
size is 5 × 5, feature map is 64. we set batch size: 150 and learning rate: 10−4.

To train CDCA for 2x SR of natural LR images, we use similar parameters
as given in [8]. To learn convolutional feature maps, we take 9 × 9 filter size for
first layer and 5×5 filter for the last two layers of the SR module. Feature maps
used for first, second and third layers are 64, 32 and 1 respectively. We also set
batch size: 150 and learning rate: 10−4. Fine-tuning of CAE-CDCA was done on
same parameters with a learning rate of 10−5 for the last layer and 10−4 for all
other layers.

All these deep learning frameworks were trained and tested on a HP Z640
desktop workstation with 64 GB RAM, two Intel Xeon-E-5 processors and with
GTX-1080 GPU support. All the experiments are performed on gray scale
images. But the same framework can be extended to work on color images.

To generate noisy input, we add a different type of noises to the down-sampled
ground-truth image patches using inbuilt functions in Matlab. Experiments have
been conducted for noise resilient super-resolution. Proposed framework has been
compared with conventional and state of art noise-free SR techniques.

4.3 Results

To verify effectiveness of proposed CAE-CDCA for blind inpainting, we have
conducted several experiments as shown in Table 1. Proposed CAE-CDCA per-
forms better in terms of PSNR and SSIM with comparison to state-of-the-art
blind inpainting techniques. Mainly, we focus on larger missing region because
state-of-the-art techniques like SSDA [5], BiCNN [4] and RED30 [3] performs
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Table 1. Blind image inpainting results comparison on different images and dataset

Datasets INPUT INPUT SSDA [5] SSDA BiCNN [4] BiCNN RED [3] RED Proposed Proposed

Images PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Image1 16.63 0.7823 20.16 0.7904 20.72 0.7984 25.2316 0.8075 28.36 0.8143

Image2 13.32 0.8104 24.04 0.8375 24.87 0.8654 25.03 0.9013 26.89 0.9704

Image3 18.41 0.8252 23.67 0.8276 24.89 0.8279 28.08 0.8311 29.71 0.8358

Set5+Set14 17.19 0.7129 20.28 0.7591 25.06 0.7878 26.23 0.8110 29.87 0.8765

BSD100 19.73 0.8359 22.60 0.8471 25.01 0.8901 27.39 0.9126 30.86 0.9416

Fig. 2. Visual comparison of different blind inpainting algorithms for Image.1 (upper
one), Image.2 (middle one) and Image.3 (lower one): (a) input, (b) BiCNN [4], (c)
RED30 [3], (d) proposed, (e) ground truth.

exceptionally well for small region (missing line or region 1–10 pixel width)
but for larger region, these algorithms fail to fill region with proper local tex-
ture/information. We get 3.12, 1.86, 1.64, 3.64 and 3.51 dB improvement for
Image.1, Image.2, Image.3, Set5+Set14 [3] and BSD100 dataset [3] respectively
from the RED30 [3]. To make fair comparison, we have also shown results of
other state-of-the-art blind inpainting techniques (No comparison with non-blind
inpainting techniques).

In Fig. 2, we have shown the visual comparison of different algorithms for
blind inpainting. For Image.1, missing region is of size (32 × 32) at the mid
of image. Here, the texture information in resultant image of proposed method
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is clearer than RED30 [3] and BiCNN [4] resultant image. In case of Image.2,
missing region is of size (64×64) at random location. We can visualize that, pro-
posed method is able to restore sharp edges of pot compared to other methods.
We also show result on Image.3 with text as a mask. Here our result is visually
comparable with RED30 [3] but gives much better results than BiCNN [4].

We are showing results with different mask at different locations to prove gen-
eralization and robustness of proposed framework. To make comparisons more
generalized for all natural images, we compare all algorithms for BSD100 dataset
images with random missing region (square of 32 × 32) at different locations.
Our architecture performs inpainting at coarser version with 5 convolutional
and 5 de-convolutional layers. Due to performing inpainting at down-sampled
version, our framework have less computational complexity and reduced area to
be inpainted (missing region). We use CDCA [8] to perform SR because it pro-
vides state-of-the-art results with less computational complexity (only 3 layer
convolutional network). Thus, our combined CAE-CDCA provides better result
with less complexity in comparison of RED30 [3] for blind inpainting.

We have also tested proposed framework (CAE+CDCA) for 3X and 4X SR
on BSD100 dataset to fill more bigger region (missing region of size greater than
100× 100). Our framework get 3.61 dB and 3.87 dB improvement in PSNR from
RED30 [3] for inpainting missing region of size (120× 120) using 3X and 4X SR,
respectively. Our framework also works better than [8] for getting noise resilient
SR. We get 0.87 dB, 1.19 dB and 0.98 dB improvement on BSD200 dataset for
getting 2X, 3X and 4X noise (Gaussian noise with different variance) resilient
super resolution, respectively.

Comparison of proposed framework with conventional and state of art 3x
noise resilient image SR has been shown in Table 2. The table shows that results
of proposed frameworks are better than state-of-art and traditional frameworks.
Here, conventional method refers to best algorithm for image de-noising followed
by best algorithm for image super-resolution (i.e, CAE+CDCA). Here, the +
sign shows just cascading of methods. In Table 2, CAE+CDCA is just cascading
of learned CAE for de-noising and learned CDCA for super-resolution (with-
out fine-tuning). CAE-CDCA is proposed framework with fine-tuned weights of
combined network. We have also compared the result of integrated architecture
with cascaded network and the result shows that proposed framework performs
better than a cascaded framework. In Table 2, results are shown on Set5, Set14
and BSD200 dataset with the gaussian noise of different variance (10, 20 and 30)
for 3X super-resolution. To test the robustness of our architecture, we applied
other noises as well. The improvement in PSNR, when compared to conventional
method, was 2.2 dB for blurring and 2.9 dB for salt and pepper noise in case of
2x noise resilient SR. The test images for experiments were obtained from, set5,
set14 and BSD200 dataset [28].

In Fig. 3, we can easily visualize that high-frequency information is far bet-
ter than state of art and conventional approach. This figure clearly represents
that conventional techniques are not able to recover high frequency and texture
information.
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Table 2. Comparison of different methods with gaussian noise for 3x noise resilient
super-resolution

Algo./Datasets Set5 Set14 BSD200 Set5 Set14 BSD200 Set5 Set14 BSD200

(σ = 10) (σ = 10) (σ = 10) (σ = 20) (σ = 20) (σ = 20) (σ = 30) (σ = 30) (σ = 30)

PSNR PSNR PSNR PSNR PSNR PSNR PSNR PSNR PSNR

SSDA+CDCA 29.11 26.47 24.65 28.59 26.28 25.06 28.17 25.96 23.08

CAE+CDCA 29.17 26.49 24.67 28.67 26.34 25.12 28.19 26.22 23.15

SSDA-CDCA 32.24 28.86 26.83 32.03 28.71 26.41 31.63 28.36 25.96

CAE-CDCA 32.53 28.99 27.06 32.49 28.99 26.94 31.72 28.48 26.33

Fig. 3. Noise resilient image SR (2x) comparison on lamma. (a) LR image with Gaus-
sian noise (σ = 30). (b) Conventional. (c) Proposed CAE-CDCA. (d) Original.

5 Conclusion

We proposed a novel end-to-end deep learning based framework for blind inpaint-
ing which is more efficient in filling larger missing regions. Our framework per-
forms inpainting at coarser level and super-resolution simultaneously preserv-
ing the local structure/information. We did exhaustive experiments with sev-
eral state-of-the-art image inpainting techniques. Our framework can be eas-
ily adopted for getting noise-free super-resolution after fine-tunning on noise-
free super resolution dataset. Experimental results show the effectiveness of our
framework. End-to-end optimization is the main reason behind our better results.
In future, we plan to experiment with color images for blind inpainting.
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