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Abstract. In this paper, we propose a new approach for designing
the biorthogonal wavelet filters (BWFs) of Dual-Tree Complex Wavelet
Transform (DTCWT). Proposed approach provides an effective way to
handle the frequency response characteristics of these filters. This is
done by optimizing the free variables obtained using factorization of
generalized halfband polynomial (GHBP). The designed filters using pro-
posed approach have better frequency response characteristics than those
obtained by using binomial spectral factorization approach. Also, their
associated wavelets show improved analyticity in terms of qualitative
and quantitative measures. Transform-based image denoising using the
proposed filters shows better visual as well as quantitative performance.
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1 Introduction

In recent years, Dual-Tree Complex Wavelet Transform (DTCWT) has gained
popularity as one of the important transform-domain processing tools in wide
range of multimedia applications such as image [1] and video denoising [2], fusion
[3], watermarking [4] to name a few. Unlike discrete wavelet transform (DWT),
it offers better directionality, near-shift invariance and phase information with
limited redundancy. In practice, DTCWT is implemented using two branches
of DWT referred to as primal (filter bank: h) and dual (filter bank: g) tree
and outputs of these are considered as the real and imaginary parts of the
complex coefficient representation of an input signal. With the use of orthog-
onal/biorthogonal finite impulse response (FIR) filters in these trees, the trans-
form is approximately analytic with a redundancy factor of just 2m for an input
of m-dimensional (m-D) signal, while the directionality is 2(m−1)×(2m −1). The
idea for constructing dual-tree complex wavelet transform (DTCWT) was first
proposed by Nick Kingsbury [5,6] and subsequently developed by Selesnick in
[7,8]. We refer to [9] as an excellent tutorial paper on various aspects of DTCWT.

Although, DTCWT output representation is complex valued, real-valued
filter coefficients are used in the construction and no complex arithmetic is
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required which is very much advantageous. However, design of such filters is
quite challenging [10], since the filter coefficients need to satisfy various con-
straints. Selesnick [7] was the first researcher to arrive at certain conditions that
must be satisfied by the DTCWT filters in order to have desired analyticity
property. He showed that if the wavelet functions associated with the two trees
of DTCWT are Hilbert transform pairs, the transform is completely analytic
and shift-invariant. Since, obtaining perfect analyticity is difficult using com-
pactly supported filters, approximate analyticity and near shift-invariance can
be achieved using FIR orthogonal/biorthogonal wavelet filters [8]. In order to
have these properties, filters must satisfy perfect reconstruction (PR), vanishing
moment (VM) and half-sample delay (HSD) constraints as minimum require-
ments. HSD condition plays the role of coupling between two trees of DTCWT to
have approximate Hilbert transform relationship. Intuitively, the HSD require-
ment given by Selesnick is equivalent to Kingsbury’s [6] idea of doubling the
sampling rate at each scale thus largely removing the aliasing caused by down-
samplers and making the transform nearly shift-invariant [9]. The concept of
generalized HSD is used in [11,12] to obtain M-band extensions of orthogonal
and biorthogonal DTCWT, respectively. Theoretical details about the necessary
and sufficient conditions in case of orthogonal and biorthogonal DTCWT filters
can be found in [13,14], respectively.

Traditional wavelet filter design techniques cannot be used directly to design
DTCWT filters since they only consider PR and VM conditions. Considering the
much needed HSD requirement, various approaches are proposed in the literature
to obtain orthogonal/biorthogonal DTCWT filters [9,10].

In this paper, we only consider the design of biorthogonal FIR filters by
modifying the common factor approach [8]. The filters designed using common
factor approach [8] have poor frequency response since it uses maximum number
of vanishing moments i.e., zeros at z = −1 or ω = π resulting in zero degrees of
freedom to shape the filter response characteristics. Hence, it is desired to have
filters with good frequency response characteristics to minimize the inherent
residual amplitude distortion present in the maximally decimated filter banks
used in the two trees of DTCWT.

The paper is organized as follows. In Sect. 2, we give the background to
understand the DTCWT basics and briefly describe the common factor tech-
nique. In Sect. 3, proposed approach is described while Sect. 4 details the design
examples of the proposed approach along with their qualitative and quantitative
measures. In Sect. 5, we discuss image denoising application using the designed
filters. Section 6 concludes the paper.

2 Background Review

Figure 1 shows core structure of the DTCWT. It has two trees consisting of
2-channel filter banks that use 1-D biorthogonal wavelet filters.

In Tree-1, the filters h̃0(n) and h̃1(n) represent the analysis lowpass and
highpass filters, respectively. Similarly, the h0(n) and h1(n) represent the same
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Fig. 1. Two trees of 2-channel filter banks used in DTCWT construction

on the synthesis side referred to as synthesis lowpass and highpass filters. They
are related to each other as follows

h̃1(n) = −(−1)nh0(n), 0 ≤ n ≤ N − 1

h1(n) = (−1)nh̃0(n), 0 ≤ n ≤ Ñ − 1.
(1)

Here, Ñ and N represent lengths of the filters h̃0(n) and h0(n), respectively.
Similar relations hold good in the case of filters in Tree-2.

Let, φh(t) and φg(t) be the synthesis scaling functions of Tree-1 and Tree-2,
respectively and ψh(t) and ψg(t) be their corresponding wavelet functions. Then
the two-scale equations associated with these are given as

φh(t) =
√

2
∑

n

h0(n)φh(2t − n)

ψh(t) =
√

2
∑

n

h1(n)φh(2t − n)

φg(t) =
√

2
∑

n

g0(n)φg(2t − n)

ψg(t) =
√

2
∑

n

g1(n)φg(2t − n).

(2)

In a similar way one can define analysis wavelet functions ψ̃h(t) and ψ̃g(t). In
order to have approximate analyticity of DTCWT, we require that ψg(t) ≈
H {ψh(t)} and ψ̃g(t) ≈ H

{
ψ̃h(t)

}
[7,8] representing Hilbert transform pairs

criteria. This indicates that the synthesis and analysis wavelet functions of
Tree-2 are approximately Hilbert transforms of Tree-1 wavelet functions. In
Fourier domain, these relations are given as

Ψg(ω) ≈
{

−jΨh(ω), ω > 0
jΨh(ω), ω < 0.

(3)
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Similar expressions exist for Ψ̃g(ω). Here, Ψh(ω), Ψg(ω), Ψ̃h(ω) and Ψ̃g(ω) rep-
resent Fourier transforms of ψh(t), ψg(t), ψ̃h(t) and ψ̃g(t), respectively. Since,
wavelet functions depend on the scaling functions which in turn depend on the
lowpass filters associated with that scaling function, the problem of designing
the Hilbert transform pairs of wavelet bases reduces to designing the lowpass fil-
ters that satisfy g0(n) ≈ h0(n− 0.5) which is known as half-sample delay (HSD)
constraint [9]. In Fourier domain, this can be expressed as

G0(ω) ≈ e−j ω
2 H0(ω) (4)

where, G0(ω) and H0(ω) are Fourier transforms of g0(n) and h0(n), respectively.
One can design these filters by approximating the magnitude and phase responses
as

|G0(ω)| = |H0(ω)| (5)

∠G0(ω) = −ω

2
+ ∠H0(ω). (6)

Due to the nature of the Eq. (4), one of the two conditions given in Eqs. (5)
and (6) is satisfied exactly or both are approximated. Common factor design
method satisfies the magnitude condition exactly while phase condition is
approximately met by using maximally flat all pass filters which is reviewed
in the next subsection since proposed approach is based on the same.

2.1 Common Factor Technique

Common factor technique [8] proposed by Selesnick uses a two stage design pro-
cess to approximate the relation given in Eq. (4) and finally obtains the required
filters of DTCWT shown in Fig. 1. In the first stage, half-sample delay constraint
is approximated using Thiran’s maximally flat allpass filters [15]. Perfect recon-
struction and vanishing moment constraints are imposed in the second stage
by considering the use of maxflat halfband polynomial factorization approach.
Both the stages are combined to obtain the final product filter P (z) to design
the biorthogonal wavelet filters. Here, we only need to design the product filter
of one of the two trees i.e., either of the following two Eqs. (7) and (8) can be
used.

P (z) = H̃0(z)H0(z) (7)

= G̃0(z)G0(z). (8)

Here, H̃0(z), H0(z), G̃0(z) and G0(z) are the z−transforms of h̃0(n), h0(n),
g̃0(n) and g0(n), respectively. If the lengths of the filters h̃0(n) and h0(n) are
Ñ and N , respectively, the filters of Tree-2 can be obtained using time-reversal
relationship as

g̃0(n) = h̃0(Ñ − 1 − n), 0 ≤ n ≤ Ñ − 1 (9)
g0(n) = h0(N − 1 − n), 0 ≤ n ≤ N − 1. (10)
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The filters h̃0(n) and h0(n) are obtained using polynomial factorization of the
form H̃0(z) = F̃0(z)D(z) and H0(z) = F0(z)D(z−1)z−L, where D(z) and
D(z−1)z−L are chosen such that

A(z) =
D(z−1)z−L

D(z)
= z−1/2|z=1. (11)

which represents an all pass filter approximation of half-sample delay. Here,
D(z) Z←→ d(n) represents a z-transform pair and L represents order of the filter
d(n) obtained using Eq. (12).

d(n + 1) = d(n).
(L − n)(L − n − 0.5)
(n + 1)(n + 1 + 0.5)

, 0 ≤ n ≤ L − 1 (12)

where, d(0) = 1. Factors F̃0(z) and F0(z) are maxflat or binomial filters used
in order to satisfy the perfect reconstruction and vanishing moments criteria
and are of the form Q̃(z)(1 + z−1)K̃ and Q(z)(1 + z−1)K , respectively. The
polynomials Q̃(z) and Q(z) are obtained by solving a set of linear equations by
imposing halfband constraint on P (z). Here, K̃ and K represent the number
of VMs for h̃0(n) and h0(n), respectively. Since the filters are chosen to satisfy
Eqs. (9) and (10), the magnitude condition given in Eq. (5) is exactly satisfied,
whereas the phase condition given in Eq. (6) is approximated since the order L
used is finite. Ideally L should be ∞ to satisfy the Eq. (11) exactly.

3 Proposed Approach

In the proposed approach, we use factorization of generalized halfband polyno-
mial (GHBP) [16]. Here, we propose and design generalized halfband polyno-
mial such that perfect reconstruction (PR) and vanishing moment (VM) and
half-sample delay (HSD) constraints are satisfied for any values of the free vari-
ables. Given Eq. (7) or (8), we obtain the generalized halfband polynomial for
P (z) that satisfies PR, VM and HSD constraints in order to design the DTCWT
filters. Let us choose Eq. (7) for designing DTCWT filters of Tree-1 i.e., h̃0(n)
and h0(n). There are three input parameters K̃, K and L. Here, K̃ and K rep-
resent number of vanishing moments for h̃0(n) and h0(n), respectively while L
represents order of d(n) i.e., denominator polynomial of an allpass filter used to
approximate the HSD condition. Since, we wish to design h̃0(n) and h0(n) as
real symmetric odd-length filters of arbitrary lengths, all the input parameters
must be even. Let, nf be the number of free variables used in the optimization
to shape the frequency response characteristics. We then select the GHBP of
order D given by

PD(z) = a0 + a2z
−2 + · · · + a(D/2)−1z

−(D/2)−1 + z−(D/2)

+ a(D/2)−1z
−(D/2)+1 + · · · + a0z

−D,
(13)

where the polynomial order D is chosen as D = 2(M − 1) + 4L + 8nf . Note
that, order D is chosen such that it includes desired number of VMs, Lth order
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all-pass HSD approximation with nf degrees of freedom available to shape the
frequency responses of the filters. Here, M = K̃ + K represents total number of
VMs required in the design. For PD(z) of order D, there exist maximum (D

2 +1)
zeros at z = −1 and (D+2)

4 unknown variables i.e., ai, i = 0, 2, . . . , (D
2 − 1). By

imposing M number of zeros at z = −1, the PD(z) can then be expressed as

PD(z) = (1 + z−1)MR(z) = (1 + z−1)K̃+KR(z)

= F̃0(z)F0(z),
(14)

where, the term (1 + z−1) represents the condition on vanishing moments i.e.,
zero at z = −1 or ω = π which decides smoothness or regularity of the wavelet
functions and R(z) is a remainder polynomial expressed in terms of free variables.
Here, a double zero at z = −1 eliminates one degree of freedom from PD(z),
thus M

2 unknown variables are expressed in terms of nf =
(

D+2
4 − M

2

)
free

variables in the remainder polynomial R(z). With this, our modified product
filter to design the lowpass filters of Tree-1 i.e., h̃0(n) and h0(n) can be chosen
as

P (z) = PD(z)D(z)D(z−1)z−L (15)

P (z) = PD(z)DL(z). (16)

The polynomial factor DL(z) = D(z)D(z−1)z−L used here represents half-
sample delay constraint. Due to this, P (z) is no longer a halfband polynomial
and perfect reconstruction property of the designed filters is lost. Therefore, we
impose halfband constraints on P (z) to make it a halfband polynomial before
the factorization step. Using Eq. (14), P (z) can be then written as

P (z) = (1 + z−1)K̃+KR(z)DL(z) (17)
P (z) = B(z)R(z). (18)

Imposing Halfband Constraints: In Eq. (18), coefficients of the B(z) polynomial
are exactly known while R(z) is a symmetric polynomial having unknown vari-
ables ai, i = 0, 2, . . . , (D/2) − 1 as coefficients. After collecting the terms of the
product B(z)R(z), we get P (z) which has both odd and even powers of z i.e., it
violates the halfband condition. Hence, coefficients of even powers of z are made
0 while the center term (or constant term) is chosen to be 1 in order to obtain
the halfband polynomial P (z). Remainder polynomial R(z) in Eq. (18) is now
expressed in terms of desired nf number of free variables.

We use MATLAB optimization toolbox routine fminunc to obtain the filters
H̃0(z) and H0(z) by minimizing the following objective function with respect to
nf number of free variables as
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Fobj =

ωp∫

0

∣∣∣1 − H̃0(ω)
∣∣∣
2

dω +

π∫

ωs

∣∣∣H̃0(ω)
∣∣∣
2

dω

+

ωp∫

0

|1 − H0(ω)|2 dω +

π∫

ωs

|H0(ω)|2 dω.

(19)

Here, ωp and ωs represent passband and stopband cut-off frequencies (in radian),
respectively. Expressions for H̃0(ω) and H0(ω) are given as:

H̃0(ω) = (1 + z−1)K̃R1(z)D(z)|z=ejω (20)

H0(ω) = (1 + z−1)KR2(z)D(z−1)z−L|z=ejω . (21)

During the optimization, for given values of the free variables polynomial R(z) is
first evaluated and factorized into polynomials R1(z) and R2(z). Since, this fac-
torization is not unique the objective function value is then computed for all pos-
sible combinations of real-valued symmetric polynomials R1(z) and R2(z). We
choose them to be symmetric polynomials such that h̃0(n) and h0(n) obtained
are real-valued biorthogonal filters having near-orthogonal frequency response
characteristics. Due to approximation of the HSD condition using finite length
polynomial, the designed filters have approximate linear-phase property.

4 Design Example

Input parameters chosen are K̃ = 2, K = 4, L = 2 and nf = 1. The lengths
of the designed filters h̃0(n) and h0(n) is 11 and 13, respectively. Biorthogonal
filters given in Table 3 of [8] also have the same lengths for the filters h̃0(n)
and h0(n). These filters were obtained using max-flat factorization approach of
Daubechies [17] with input parameters K̃ = K = 4 and L = 2. We see from
Table 1 that the filter coefficients obtained in our case are entirely different from
[8]. Due to same lengths of the obtained filters and Selesnick’s 11/13 filters [8],
we compare the frequency response characteristics of both the filters. Figure 2
shows magnitude response comparison between proposed and Selesnick’s 11/13
filters. It is clear that frequency response characteristics of the proposed filters
are much better and closely mimic near-orthogonal filter response characteristics
than those designed using maxflat approach. Wavelet plots for the proposed
filters are shown in Fig. 3. Here, one can observe that apart from near-orthogonal
frequency response characteristics of the designed filters, analyticity of their
associated wavelets is also good. For ω < 0, one see that the magnitude frequency
plots of |Ψ̃h(ω)+jΨ̃g(ω)| and |Ψh(ω)+jΨg(ω)| have negligible frequency contents.
Wavelets of the two trees are approximately Hilbert transform pairs of each other.



Design of BWFs of DTCWT Using Factorization of Halfband Polynomials 157

Table 1. Coefficients of the designed filters.

n h̃0(n) h0(n)

1 0.0015 0.0002

2 0.0007 −0.0001

3 0.0381 −0.0195

4 0.0080 0.0113

5 −0.3869 0.0772

6 −0.5781 −0.1724

7 −0.1584 −0.5473

8 0.0670 −0.3851

9 0.0055 0.0031

10 0.0025 0.0551

11 0.0003 −0.0149

12 - −0.0088

13 - 0.0010

Fig. 2. Magnitude response comparison between Tree-1 analysis filters of the proposed
11/13 filters and Selesnick’s 11/13 filters.

Apart from qualitative results, we also give quantitative evaluation of
the designed filters using proposed approach to measure analyticity of their
associated wavelets as well as orthogonality of their frequency response char-
acteristics. The error measuring analyticity is quantified using two quantitative
measures E1 and E2 given by Tay et al. in [18]. Ideally, E1 and E2 must be 0. For
qualitative evaluation of the frequency response characteristics of the proposed
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Fig. 3. Plots for the designed example (a) magnitude responses for analysis filters of
Tree-1 i.e., H̃0(ω) and H̃1(ω) (b) magnitude responses for synthesis filters of Tree-1
i.e., H0(ω) and H1(ω). (c) Analysis wavelet functions ψ̃h(t), ψ̃g(t) and |ψ̃h(t) + jψ̃g(t)|
(d) Magnitude frequency spectrum for |Ψ̃h(ω)+jΨ̃g(ω)| (e) Synthesis wavelet functions
ψh(t), ψg(t) and |ψh(t)+jψg(t)| (f) Magnitude frequency spectrum for |Ψh(ω)+jΨg(ω)|.
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filters, we use two orthogonality measures given in [19,20]. They indicate how
good the response characteristics match to the orthogonal filters which have ideal
value of 0. Expression for the first measure used is ON1 = 1

π

∫ π

0
(2 − O(ω))2dω,

where O(ω) = O(z)|z=ejω with O(z) = H0(z)H0(z−1) + H1(z)H1(z−1). Expres-
sion for the second measure is ON2 =

∣∣∣∣H0

(
π
2

)∣∣ − ∣∣H1

(
π
2

)∣∣∣∣. Here, H0(z) and
H1(z) denote analysis lowpass and highpass filters, respectively. Table 2 shows
quantitative comparison of the filters designed using the proposed approach and
common factor technique.

Table 2. Quantitative comparison of the filters.

E1 [18] E2 [18] ON1 [19] ON2 [20]

Proposed 0.0239 0.0008 0.0010 0.0145

Selesnick 11/13 [8] 0.0171 3.4E−04 0.0372 0.3510

5 Image Denoising Application

In this section, we show the performance of the proposed filter set for the image
denoising application. We have used filters of the proposed set to obtain the 2-D
DTCWT by using the construction given [9]. For comparing the image denoising
performance, we have used the MATLAB software provided by Ivan W. Selesnick
on his website [21]. We have compared our results with 2-D DTCWT obtained
using Selesnick’s 11/13 filters [8]. Additive white Gaussian noise (AWGN) of
standard deviation σ is added to the original image in order to test the perfor-
mance on noisy images. We have used bivariate shrinkage method [22] to obtain
the denoised results. MATLAB implementation of the same can be found in the
software mentioned above. Figure 4 shows image denoising results on widely used
Lena image for AWGN of standard deviation σ = 30. It can be observed that
image denoising performance of 2-D DTCWT obtained using proposed filter set
outperforms Selesnick’s 11/13 filters [8] in terms of Peak Signal-to-Noise Ratio
(PSNR) value while considerable improvement is observed in case of recent image
quality indicator values namely Structural Similarity Index Measure (SSIM) [23]
and Feature Similarity Index Measure (FSIM) [24]. Both SSIM and FSIM have
ideal value of 1. Denoising output shown in Fig. 4(d) for proposed filter set have
better visual performance when compared to the output for Selesnick’s filters
shown in Fig. 4(c). Directional image features are better captured using the pro-
posed filters due to better directional selectivity of their 2-D dual-tree directional
wavelets. Also, due to near-orthogonality of the proposed filters, noise is better
removed than that of Selesnick’s filters.
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Fig. 4. Image denoising using 2-D DTCWT (a) original image (b) noisy image
with σ = 30, PSNR = 18.59 dB. Denoising using (c) Selesnick’s 11/13 filters
[8], PSNR = 28.73 dB, SSIM [23] = 0.73 and FSIM [24] = 0.90. (d) proposed filters,
PSNR = 29.52 dB, SSIM [23] = 0.77 and FSIM [24] = 0.92.

6 Conclusion

In this paper, we proposed a new approach to design the biorthogonal wavelet
filters of DTCWT. The proposed approach is based on optimization of free vari-
ables obtained through factorization of generalized halfband polynomial. The
designed filters using the proposed approach have better frequency response
characteristics. Also, their associated wavelets show better analyticity in terms
of qualitative as well as quantitative evaluation. Transform-based image denois-
ing experiment using the proposed filters shows better performance in terms of
qualitative and quantitative evaluation when compared to the filters designed
using common factor approach.
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