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Abstract The Schmidt Kalman Filter is presented in this study for float ambiguity
resolution and attitude estimation of a multi-antenna platform using single-
frequency GNSS measurements. The geometry information of the antenna con-
figuration is fully exploited for ambiguity resolution via formulating the direct
functional relationship between double-differenced carrier phase measurements and
attitude quaternions. A first-order Gauss–Markov process is employed to model the
remaining observation colour noise. The attitude parameters and the colored
observation noise are decoupled in the state equation with Schmidt Kalman Filter.
The Least-squares AMBiguity Decorrelation Adjustment (LAMBDA) algorithm is
implemented for integer ambiguity resolution. The process of attitude determination
algorithm via Schmidt-Kalman filter is designed and a static GNSS test is carried
out to validate the filter performance. Results show that the Schmidt-Kalman filter
performs better than the standard reduced-order Kalman filter and QUEST algo-
rithm in terms of the integer ambiguity resolution (such as, the success rate and
Time-to-Fix) and the accuracy of attitude angles for BDS, GPS and GPS + BDS.
The double GNSS have better performance than single constellation, and there is no
big difference between GPS and BDS for attitude determination.

Keywords Schmidt kalman filter � Float ambiguity resolution � GNSS
Attitude determination

1 Introduction

The Global Navigation Satellite System (GNSS) plays an important role in the
attitude determination, ranging from terrestrial to maritime (guidance of land
vehicles, precise docking of vessels, and automatic pilot), and from air to space

Y. Li � H. Wei (&) � M. Wu � H. Zhu � J. Ye
China Aeronautical Radio Electronics Research Institute, 432 Ziyue Road,
Minhang District, Shanghai, China
e-mail: wei_huabo@126.com

© Springer Nature Singapore Pte Ltd. 2018
J. Sun et al. (eds.), China Satellite Navigation Conference (CSNC) 2018
Proceedings, Lecture Notes in Electrical Engineering 498,
https://doi.org/10.1007/978-981-13-0014-1_51

621

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0014-1_51&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0014-1_51&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0014-1_51&amp;domain=pdf


(landing assistance, unmanned air vehicles (UAVs), and satellites) [1–8].
High-precision attitude estimation usually requires carrier phase observations,
which have higher accuracy than code observations that rely on successful reso-
lution of unknown integer ambiguities. After ambiguity resolution, the attitude of a
multi-antenna platform can be derived via quaternions.

The key to integer ambiguities resolution (IAR) is the accuracy of the float
ambiguity. Current approaches utilize differenced carrier phases to obtain pre-
cise baselines between antennas and then deduce the attitude matrix via solving
the Wahba’s problem [9, 10]. Within this method, the ambiguity resolution and
the attitude matrix extraction are regarded as two individual parts, and the
geometry information of the antenna configuration is only involved in the latter
process.

Numerous studies have been conducted to investigate the feasibility of the
GNSS-based attitude determination in which the geometry information also assists
the ambiguity resolution and attitude estimation. Several researchers exploit the
known baseline length to improve the accuracy of the float ambiguity by solving the
constrained least-squares problem [11–13]. The known baseline length is also used
to modify Least-squares AMBiguity Decorrelation Adjustment (LAMBDA)
method, in which the baseline length is integrated into the ambiguity objective
function with mixed integer parameters to improve the success rate of ambiguity
resolution [5, 14–16]. Several researchers improve the accuracy of the baseline
vector or attitude solution with the known integer ambiguity and the prior infor-
mation [17, 18].

Recall that the double-differenced GNSS code and carrier phase observations
contain autocorrelated noise. An augmented state space model can be formulated
and a full-order Kalman filter can be used to estimate all the state variables.
However, we do not really care about the colored noise. In addition, the first-order
Gauss–Markov process model for the higher-order residual errors is only an
approximation and is not rigorous. Thus a full-order filter may not be the best
choice. The Schmidt-Kalman filter (SKF) is a reduced-order filter dealing with
dynamic estimation of systems in which the subsets of state variables are decoupled
from each other. The attitude determination problem in this study happens to be
such a case, where the attitude parameters and the colored observation noise are
decoupled in the state equation and are regarded as “solve-for” and “consider”
variables, respectively.

In this study, we focus on float ambiguity resolution using SKF. The geometrical
information, i.e., the baseline length and orientation, is not used as additional
constraints but essential parameters to reconstruct the measurement model to
improve the accuracy of the float ambiguities. The SKF algorithm is utilized to
estimate float ambiguities and attitude quaternions simultaneously. The LAMBDA
method is then used to fix the ambiguities and to further correct the attitude
solutions. A static BDS experiment is carried out to test the performance.
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2 GNSS-Attitude Model

In this section, we present the underlying model for GNSS-based attitude solution.
The double-differenced carrier phase observation model for a multi-antenna system
is firstly introduced. The antenna configuration, the definition of the body reference
system, as well as the attitude model is then described.

2.1 Functional Model for GNSS Observations

The single-frequency GNSS carrier phase measurements used for receiver
A tracking satellite j at time k are given as follows:

Pj
A ¼ q j

A þ cðdtA � dt jÞþ I jA þ T j
A þ v jP ð1Þ

U j
A ¼ q j

A þ kL1N
j
A þ cðdtA � dt jÞ � I jA þ T j

A þ v jU ð2Þ

where the superscript j indicates the GNSS satellite, the subscript A indicates the
receiver, Pj

A; U
j
A represent the carrier phase observations and pseudorange (m), q j

A
the geometrical distance between the receiver and the satellite (m), c the vacuum
speed of light (m/s), dtA and dt j the receiver and satellite clock offsets (s), I jA and T j

A

the ionospheric and troposphere error terms (m), v jU the thermal noise (m), N j
A the

ambiguity (cycles), and kL1 is the nominal L1 carrier phase wavelength (m).
Suppose that the receivers A and B track m common GNSS satellites. The

double-differenced (DD) carrier phase observations are constructed with differences
between measurements collected by the two receivers from two different satellites
as follows:

Pj#
BA ¼ qj#BA þ vj#UBA

ð3Þ

Uj#
BA ¼ qj#BA þ kL1N

j#
BA þ vj#UBA

ð4Þ

where ð�Þj#BA ¼ ð�Þ jB � ð�Þ#B
h i

� ð�Þ jA � ð�Þ#A
h i

is the double-differenced operator,

# is the reference satellite and is selected according to the maximum elevation.
The clock offsets are eliminated in the equation and the number of unknown
parameters to be determined is thus reduced. Moreover, the atmospheric errors
become negligible in case of short baselines, since that the signals travel approx-
imately along the same path from the satellites to the closely separated antennas.

For full attitude determination, at least three antennas are required. Therefore,
model (4) needs to be extended to a multi-antenna system. Consider a set of m + 1
antennas tracking the same n + 1 GNSS satellites. Let M be the master antenna and
i be the slave antenna ði ¼ 1; 2; . . .;mÞ. The GNSS DD carrier phase observations
formed with the m independent baselines are given as follows:
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where � indicates the Kronecker product, vmn�1 is DD observation noise vector.

2.2 Attitude Model

Suppose that there are mþ 1 antennas firmly mounted on a rigid platform. The
lengths and the orientations of the baselines are known beforehand. The body
reference frame of the platform is defined as follows: the first axis e1 is aligned with
the first baseline, the second axis e2 is perpendicular to e1 lying in the plane formed
by the first two baselines, and the third axis e3 together with e1 and e2 forms a
right-handed orthonormal frame. The attitude matrix A (ATA = I) is defined as the
transformation matrix from the local East-North-Up (ENU) frame to the body
frame. Let B and D denote the matrices consisting of the n baseline vectors in the
body frame and in the ENU frame, respectively. Based on the above definitions, we
have see Giorgi et al. [5].

m ¼ 1; D ¼ AB ¼ A

B11

0

0

2
64

3
75

m ¼ 2; D ¼ AB ¼ A

B11 B21

0 B22

0 0

2
64

3
75

m� 3; D ¼ AB ¼ A

B11 B21 B31 � � � Bm1

0 B22 B32 � � � Bm2

0 0 B33 � � � Bm3

2
64

3
75

ð6Þ

The quaternion representation is of common use to attitude estimation and
control applications, since that it guarantees high numerical robustness. In addition,
the estimation of the orthonormal matrix A has low computational loads and no
singularities with the quaternion parameterization. The attitude matrix A is
parameterized in terms of quaternions as follows:

Að�qÞ ¼
q21 � q22 � q23 þ q24 2 q1q2 þ q3q4ð Þ 2 q1q3 � q2q4ð Þ
2 q1q2 � q3q4ð Þ �q21 þ q22 � q23 þ q24 2 q2q3 þ q1q4ð Þ
2 q1q3 þ q2q4ð Þ 2 q2q3 � q1q4ð Þ �q21 � q22 þ q23 þ q24

2
4

3
5 ð7Þ

where �q ¼ q; q4ð Þ; q ¼ q1; q2; q3ð Þ; qqT ¼ 1.
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The three Euler angles can be extracted from the attitude matrix A by

w ¼ arctan �a21=a22ð Þ; h ¼ arctan �a13=a33ð Þ; u ¼ arcsin a23ð Þ ð8Þ

with aij the elements of A.

3 SKF for GNSS-Attitude Determination

The DD carrier phase model and the attitude model described above are combined
to formulate the direct quaternion parameterized observation equation. The state
equation for kinematic attitude determination is also given. Then we utilize the SKF
to deal with this recursive estimation problem.

3.1 The Quaternion Parameterized Observation Equation

The quaternion parameterized observation equation is formulated by fully
exploiting the baseline length and orientation information. For ultra-short baselines,
the double-differenced geometric distance q

jj
iM in Eq. (4) can be linearized as

qjjiM ¼ q j
i � qji

� �� q j
M � qjM

� � ¼ LT
i uj ð9Þ

With

uj ¼ r j � rM
q j
M

� rj � rM
qjM

ð10Þ

where rM is the known position vector of the master antenna, r j and rj are the
position vectors of the jth and reference satellites, and Li is the unknown baseline
vector between the ith antenna and the master antenna. All the vectors in Eq. (9) are
expressed in the Earth-centered Earth-fixed (ECEF) frame. Combine the m baseli-
nes vector into a 3 � m matrix.

L ¼ L1 L2 � � � Lm½ � ð11Þ

According to the definitions of coordinate systems in Sect. 2, we have

L ¼ TD ¼ TAð�qÞB ð12Þ

where T is the rotation matrix from ENU to ECEF. Substituting Eqs. (9) and (11)
into Eq. (4), then we obtain the direct functional relationship between the DD
phases and the quaternions.
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DrU ¼ TAð�qÞBð ÞTuj þ kL1Nj
� �� 1
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.
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A

n�1

þ vmn�1 ð13Þ

where DrU is the DD carrier phase vector, Nj ¼ Nj#
1M Nj#

2M � � � Nj#
mM

� �
the

DD ambiguity vector for the jth satellite. The unknown parameters in Eq. (13)
include the 4-dimensional quaternion �q and a total m � n dimensional DD ambi-

guity vector N ¼ NT
1 NT

2 � � � NT
n

� �T .
The norm of �q always equals 1. This provides a nonlinear constraint for the

quaternion estimation. In this study, the norm constraint is regarded as a virtual
observation. The final observation equation can be written as

z 	 DrU

1

� �
¼ hðxÞþ~v ð14Þ

with

hðxÞ ¼ TAð�qÞBð ÞTuj þ kL1Nj
� �� 1

..

.

1

0
@

1
A

n�1
�qT�q

2
664

3
775; ~v ¼ vmn�1

0

� �
ð15Þ

where x ¼ �q N½ �T is the state vector, h �ð Þ is the nonlinear measurement function,
~v is the observation error and is assumed to be zero-mean Gaussian noise.
The variance-covariance (V-C) matrix of the observations is constructed as [5]

R ¼ RDrU

0

� �
ð16Þ

with

RDrU ¼ r2UIm�m �
4 2 � � � 2
2 4 � � � 2
..
. ..

. . .
. ..

.

2 2 � � � 4

2
664

3
775
n�n

ð17Þ

where rU is the standard deviation of the undifferenced carrier phase noise.

3.2 The Kinematic State Equation

The kinematic motion of the attitude quaternion and the ambiguities can be
represented as a first-order differential equation.
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_�q ¼ 1
2
X�q

_N ¼ 0
ð18Þ

where X is the angular velocity matrix. In order to propagate the state vector to the
next measurement epoch, the discrete form of the kinematic equation is used as
follows:

�qk ¼ e
1
2XDtk�qk�1

Nk ¼ Nk�1
ð19Þ

where, the subscript k denotes the epoch number.
The generalized state equation can be obtained as

xk ¼ Fk;k�1xk�1 þwk�1 ð20Þ

with

Fk;k�1 ¼ e
1
2XDtk

Imn�mn

� �
; wk�1 ¼ wx

0mn�1

� �
ð21Þ

where Fk=k�1 is the state transition matrix, wx is the fictitious process noise due to
the angular velocity uncertainty, and its standard deviation is denoted by rx. For
the static case, X ¼ 0. Then we have

Fk;k�1 ¼ I4�4

Imn�mn

� �
ð22Þ

The process noise matrix Qk�1 is defined as

Qk;k�1 ¼ r2xDt � I4�4

0mn�mn

� �
ð23Þ

3.3 Schmidt-Kalman Filter Design

The DD carrier phase model and the attitude model described above are combined
to formulate the direct quaternion parameterized observation equation. The state
equation for kinematic attitude determination is also given. Then we utilize the SKF
to deal with this recursive estimation problem. The double-differenced GNSS code
and carrier phase observations contain autocorrelated noise. An augmented state
space model can be formulated and a full-order Kalman filter can be used to
estimate all the state variables. However, we do not really care about the colored
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noise. In addition, the first-order Gauss–Markov process model for the higher-order
residual errors is only an approximation and is not rigorous. Thus a full-order filter
may not be the best choice.

The Schmidt-Kalman filter (SKF) is a reduced-order filter dealing with dynamic
estimation of systems in which the subsets of state variables are decoupled from
each other [19, 20]. The attitude determination problem in this study happens to be
such a case, where the attitude parameters and the colored observation noise are
decoupled in the state equation and are regarded as “solve-for” and “consider”
variables, respectively. The solve-for states are updated at each time step, whereas
the considered states are always set to zero. The update process also involves the
covariances of the states. The detailed algorithm of the Schmidt-Kalman filter for
linear system estimation is given in Simon [19], and its superior performance over
the standard reduced-order Kalman filter.

This section presents the overall Schmidt-Kalman filter design for the
single-frequency GNSS attitude determination. The solve-for state vector comprises
the quaternion and the DD ambiguities.

~xT ¼ �q bN� � ð24Þ

The estimate of ~x is denoted by ~̂x and the accompanying covariance is denoted
by eP. Suppose there are n tracked GNSS satellites at the current epoch and the
reference satellite is placed at the #th position in the visible satellites array. The DD
ambiguity vector bN , thus contains M − 1 unknowns baseline DD ambiguity vectorbN iM ði ¼ 1; 2; . . .;M� 1Þ.

bN ¼ bN1M � � � bN iM � � � bNM�1M

h iT
bN iM ¼ bN#1

iM
bN#2

iM � � � bN#j
iM � � � bN#m

iM

� �T ð25Þ

where j 6¼ #: The consider state vector comprises the M � 1� n� 1
double-differenced colored noise terms.

~~x ¼ n1M � � � niM � � � nM�1M½ �
niM ¼ n#1iM n#2iM � � � n#jiM � � � n#niM

� �T ð26Þ

where j 6¼ #: The estimate of ~~x is denoted by ~̂~x and the accompanying covariance is

denoted by eeP . The covariance between ~̂x and ~̂~x is denoted by R.

Given initial values of ~x; eP;R, and eeP , the filter processes the double-differenced
carrier phase measurements at consecutive epochs and recursively updates the
solve-for states and all the covariances. The initial values of q is obtained by body

attitude angles. The initial value of R is set to zero. The initial value of eeP is set to
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eeP ¼ r2n

2 1 � � � 1
1 2 � � � 1
..
. ..

. . .
. ..

.

1 1 � � � 2

2
664

3
775
ðn�1Þ�ðn�1Þ

ð27Þ

The recursive estimation at each step consists of time-update and
measurement-update stages. At the time-update stage, the solve-for states are
propagated from previous epoch k − 1 to current epoch k, see Eqs. (19–23).

The covariance eP is propagated as follows:

eP�
k ¼ Fk;k�1eP þ

k�1F
T
k;k�1 þQk;k�1 ð28Þ

The covariances, R and eeP , are also propagated as follows:

R�
k ¼ Uk;k�1R

þ
k�1M

T
k;k�1 ð29Þ

eeP�
k ¼ Mk;k�1

eeP þ
k�1M

T
k;k�1 þQn;k;k�1 ð30Þ

where Mk;k�1 and Qn;k;k�1 are the mapping matrix and process noise matrix of ~~x

Mk;k�1 ¼ e� tk�tk�1ð Þ=sIðn�1Þ�ðn�1Þ ð31Þ

Qn;k;k�1 ¼ r2n 1� e�2 tk�tk�1ð Þ=s
h i 2 1 � � � 1

1 2 � � � 1
..
. ..

. . .
. ..

.

1 1 � � � 2

2
664

3
775
ðm�1Þ�ðm�1Þ

ð32Þ

At the measurement-update stage, the solve-for state vector and its accompa-
nying covariance are updated as follows:

~̂x
þ
k ¼ ~̂x

�
k þ eK k zk � G ~̂x

�� 	h i
ð33Þ

eK k ¼ eP�
k
eHT

k þR�
k
feH T

k


 �
K�1

k ð34Þ

Kk ¼ eHkeP�
k
eHT

k þ eHkR
�
k
feH T

k þfeH k R�
k

� �T eHT
k þfeH k

eeP�
k
feH T

k þRk ð35Þ

eP þ
k ¼ I� eK k eHk

� 	
~P
�
k I� eK k eHk

� 	T
� I� eK k eH k

� 	
R�
k
feH T

k
eKT
k

� eK k
feH k R�

k

� �T I� eK k eH k

� 	T
þ eK kRk eKT

k

ð36Þ
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where eK k is the filter gain, zk is the actual measurement vector, G ~̂x
�� 	

is the

predicted measurement vector, eHk and
feH k are the design matrices corresponding to

~x and ~~x; and Rk is the covariance of the measurement noise vector. In this study, the
measurement vector z refers to the DD observations, see Eq. (14).

The design matrix eH is composed by

eH ¼ Hq IðM�1�n�1Þ�ðM�1�n�1Þ
� � ð37Þ

where Hr contains the normalized line-of-sight vectors and single-differences

thereof. The design matrix feH k is an identify matrix. The measurement covariance is
given by Eq. (17).

The covariances R and eeP are updated as follows:

Rþ
k ¼ I � eK k eH k

� 	
R�
k � eK k

feH k
eeP�
k ð38Þ

The filter starts with the initialization of the solve-for states and all the covari-
ances and then enters cycles of time-update and measurement-update stages. Before
the measurement-update stage, an additional check of the change in observed GPS
satellites is required. A reordering operation will be implemented on bN ; ePA;R, andeeP if new GNSS satellites are available, old satellites disappear, and the reference
satellite changes.

3.4 Workflow of Algorithm

The workflow of the GNSS-based attitude determination by the SKF is presented as
Fig. 1

• Initialization processing

A reasonable estimate may not be obtained with the SKF, if the initial estimation is
not good. First, the install matrix B is calculated by means of the whole observation
data. A good choice is to first initialize the quaternion by solving Eq. (12) with the
Gauss–Newton method. Then the DD carrier phase and DD C/A code are combined
to generate the initialization of DD ambiguities as follows:

Njj
iM ¼ U

jj
iM � Pjj

iM

� �
=kL1 þ eDP ð39Þ

where Pjj
iM is DD C/A code, eDP is the DD code observation error.

Based on the above initialization, we get initialization state vector x0 and P0
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Initialization
Initialize the quaternion and DD integer 
ambiguity

Time Update
Propagate filter state from k-1 to k
Update the filter covariance

Cycle slips detection and Satellite changes
Cycle slips detection
Newly observation satellite, satellite 
disappear and reference satellites change

Measurement Update
Compute filter gain matrix
Update the filter state and covariance

Integer ambiguity resolution and validation
Estimate integer DD ambiguity using 
LAMBDA algorithm
Validate integer ambiguity by ratio test

Attitude determination
Reconstruct the state and observation 
vector by fixed DD fixed integer ambiguity
Validate integer ambiguity by ratio test
Estimate attitude angles-yaw, pitch and roll 

k= k+1

Fig. 1 The workflow of the proposed method

x̂0 ¼ E x0½ �;P0 ¼ E x0 � x̂0ð Þ x0 � x̂0ð ÞT� � ð40Þ

• Constructing the measurement model

At each epoch, the reference satellite and common tracking satellites for the
baselines are obtained by Single Point Positioning. Then, the DD carrier phase can
be calculated to construct measurement vector by Eq. (14).

• Cycle slip detection

Once the correct integer ambiguity vector is fixed, it can be used permanently until
cycle slip occurrence. Thus the cycle slip detection is of importance to the attitude
determination. We use the distance between the time-update DD float ambiguitybN#i

k;k�1 and the N#j
iM estimated by applying Eq. (41) to detect cycle slip as follows:

N#j
iM � bN#j

iM;k=k�1

��� ���[ f ð41Þ
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where the f is the an empirical threshold, which is set to 3 [21]. If the distance value
is larger than f, we deduce that a cycle slip occurred to the corresponding satellite
and some operation will be implemented to repair it.

• Float ambiguity resolution by the SKF

When the observation vector and state vector have been constructed, the SKF is
utilized to get high accuracy float solutions in which the filter contains time-update
and measurement-update stages.

• Integer ambiguity resolution and validation

To exploit the full accuracy of the carrier phase observations, the filter has fur-
thermore been supplemented with integer ambiguities. The most appropriate integer

vector N
^

for the integer ambiguities is obtained by solving an ILS (integer least
square) problem expressed as

N
^ ¼ arg min

N2Zn
N � bNk

 2
QNN

ð42Þ

A well-known efficient search strategy LAMBDA and its extension
MLAMBDA are employed to solve the ILS problem. LAMBDA and MLAMBDA
offer the combination of a linear transformation to shrink the integer vector search
space and a skillful tree-search procedure in the transformed space [22]. Then the
ratio test is used to test the reliability of the integer ambiguities [23].

• Attitude estimation

The correct DD ambiguity will be used to reconstruct the state and the observation
equation. Then the high accuracy quaternion can be obtained by restarting SKF.
The attitude yaw, pitch, and roll angles will be got via Eqs. (7) and (8).

4 Experimental Testing

In order to assess the performance of the proposed algorithm, a test is carried out for
a platform in this section. Three antennas and GNSS receivers with the same
performance are installed on the platform at Beihang university. The experimental
configuration is depicted in Fig. 2. The single-frequency GNSS data are collected
using the GNSS receivers M300, which are manufactured by ComNav company of
China, with the sample interval of 1 s.

As illustrated in Fig. 2, the antenna A1 is the master antenna, and A2 and A3 are
the slave antennas. The install matrix of the three antennas configuration is deter-
mined from the whole observation data with 5 mm accuracy and is given as
follows:
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B ¼
0:5101

0
0

0:2930
0:4935

0

2
4

3
5 ð43Þ

A 1106 s dataset referring to August 29, 2015 starting from 11:28:17.000 UTC
to 11:46:42.000 UTC has been provided. 9 BDS satellites and 8 GPS satellites are
tracked in our experiment. The number of common tracking satellites ranges from
15 to 17. The BDS, GPS and GNSS (GPS + BDS) data will be used to make an
analysis, respectively. After obtaining the float ambiguity by KF or SKF, integer
ambiguities are resolved by the LAMBDA algorithm. For analysis of the perfor-
mance of the proposed methods, we compare the correct integer ambiguity vector
(the ‘correct solution’ estimated from post-processing with real data) and the esti-
mated integer ambiguity vector at every epoch.

In this test, Time-To-Fix (TTF) is defined as the number of measurement epochs
required to firstly fix the ambiguity. We define the empirical success rate as the ratio
of the number of epochs with all correctly fixed ambiguity to the total epoch
number as follows:

P ¼ ncor=ntot � 100% ð44Þ

where ncor and ntot are the number of computations with all ambiguities being
correctly fixed and the number of total computations.

Antenna A1

Antenna Configuration

Antenna A2

Receiver

Antenna A3

Fig. 2 The BDS measurement experiment
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The summary success rate and TTF of fixed ambiguity for the SKF and KF with
the LAMBDA is given as Table 1.

Table 1 shows the success rate and TTF of the ambiguity resolution for two
baselines with SKF or KF method. With the SKF, the success rate and TTF of the
ambiguity resolution present higher performance than the full-order KF for BDS,
GPS and GNSS. Note that the success rates and the ratio number for the baseline 2
are higher than those for the baseline 1 when employing the LAMBDA method.
This is due to the more tracking GNSS satellites of the baseline 2 than the baseline
1. As expected, the SKF substantially affects the capacity of fixing the correct
integer ambiguity vector. A benefit of the SKF is that it decouples the attitude
parameters and the colored observation noise to only consider the attitude param-
eters. Then the accuracy of the float ambiguity is improved and the solutions are
stabilized.

Table 1 also shows there is no big difference between BDS and GPS. When
combining GPS and BDS, the success rate is much higher than either single con-
stellation and the TTF is much lower than either single constellation. This
improvement shows that the GPS + BDS combination provides the higher avail-
ability of satellites to improve the accuracy of float ambiguity and therefore increase
the success rate of ambiguity resolution.

After getting fixed ambiguity, the state equation and the measurement equation
of the SKF will be reconstructed using the fixed correct ambiguity vector. Then
high-precision quaternion can be obtained by restarting the SKF filter.

Figure 3 describes the quaternion �q with correctly fixed ambiguity. Because
there is no big difference for quaternion with different method and constellation, it
could not be described in the same figure. Therefore, the statistic characteristics of
quaternion are given and listed in Table 2.

Table 2 shows the quaternion performance of the correctly fixed solutions for
different method and constellation.

As we can see from the Table 2, the accuracy of Quaternion with the SKF is
much better than the full-order KF for BDS, GPS and GPS + BDS. Due to
decoupling the attitude parameters and the colored observation noise, high accuracy
of the quaternion can be also achieved. Some conclusion can be obtained that the
SKF can achieve much more efficiency than the full-order KF for integer ambiguity
resolution and attitude determination with GNSS.

Table 1 The success rate and TTF of fixed ambiguity

Success rate SKF KF

Success rate (%) TTF/s Success rate (%) TTF/s

Baseline1 A1–A2 BDS 99.49 5 94.94 28

GPS 99.73 3 97.65 26

GNSS 99.9 1 98.55 16

Baseline2 A1–A3 BDS 99.82 2 95.04 25

GPS 99.73 3 95.04 25

GNSS 99.9 1 98.64 15
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Then, the Eqs. (7) and (8) are utilized to get yaw ðwÞ, pitch ðhÞ and roll ðuÞ
angles. In order to analyze the performance of attitude angles, the epochs of the
unfixed ambiguity are replaced by the correct ambiguity. In this case, the three
attitude angles are characterized by standard deviations (Std). To assess the accu-
racy of this method, the QUEST algorithm was used to estimate attitude angles.

Figure 4 demonstrates that the value of yaw ðwÞ, pitch ðhÞ, and roll ðuÞ angles
with interval of 1 s. Because there is no bigger difference of the accuracy between
SKF and full order KF for BDS, GPS and GPS + BDS, we cannot make difference
use the same figure. So the Fig. 4 just concludes the attitude estimate with SKF and
QUEST algorithm for GPS + BDS. The angles estimated with QUEST and SKF
are described with the dotted line and solid line, respectively. The accuracy of the
total attitude solutions is provided in Table 3.
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Fig. 3 The quaternion of the SKF with GPS + BDS

Table 2 The statistic characteristics of quaternion

Quaternion SKF KF

BDS GPS GNSS BDS GPS GNSS

q1 0.0012 0.0012 0.001 0.0016 0.0015 0.0014

q2 0.0016 0.0013 0.0011 0.0017 0.0017 0.0015

q3 0.0039 0.0040 0.0035 0.0041 0.0038 0.0036

q4 0.0041 0.0038 0.0031 0.0042 0.0041 0.0037
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From the Std in Table 3, the yaw angle is estimated with the highest precision,
whereas the pitch estimation is characterized by the highest noise levels for both the
SKF and the QUEST for BDS, GPS and GPS + BDS. According to the achieved
performance of quaternion, the SKF can be got more accuracy of attitude angles
than the full order KF. Moreover, the SKF and the full order KF have more superior
performance than the QUEST for per-axis attitude angles. The higher precision of
the yaw angle is due to the intrinsic characteristic of the GNSS working principle:
the satellites cover, with respect to the receiver, only a hemisphere, causing higher
dilution of precision in the vertical plane than in the horizontal plane.
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Fig. 4 The performance of yaw, pitch and roll angles with GPS + BDS

Table 3 The standard deviations of the attitude angle

Attitude SKF KF QUEST

BDS GPS GNSS BDS GPS GNSS

Yaw 0.1837 0.1831 0.1609 0.2046 0.1902 0.1721 0.2266

Pitch 0.5836 0.5766 0.5585 0.6039 0.5966 0.5786 0.6579

Roll 0.4244 0.424 0.4002 0.4548 0.441 0.4212 0.5527
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5 Conclusions

In this paper, the SKF for GNSS-based attitude determination has been presented to
float ambiguity resolution and attitude estimation. The geometry information of the
antenna configuration is fully exploited for ambiguity resolution via formulating the
direct functional relationship between double-differenced carrier phase measure-
ments and attitude quaternions. By using the SKF, the attitude parameters and the
colored observation noise can be decoupled in the state equation. The higher
accuracy of attitude angles and float ambiguity vector with only considering attitude
parameters can be achieved than the full order KF. The performance of the pro-
posed method has been assessed by an actual GNSS experiment test. Results
demonstrated that the higher success rate and the less Time-to-Fix ambiguity res-
olution are achievable than the current method for BDS, GPS and GPS + BDS. The
distribution of the available GNSS satellites has an influence on the accuracy of
attitude angles. The proposed method has better accuracy than the full order KF and
the QUEST algorithm for BDS, GPS and GPS + BDS. The GPS + BDS combi-
nation have better performance than single BDS or GPS constellation, and there is
no big difference between GPS and BDS for attitude resolution.
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