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Chapter 1
History of the Research on the Glucose 
Receptor

Willy J. Malaisse

Abstract  The history of the research on the glucose receptor represents the main 
matter of the present chapter. A short introduction mentions two reviews published 
in 1972 and introduces the concept of a pancreatic islet B-cell glucoreceptor. 
Attention is then drawn to the anomeric specificity of glucose-stimulated insulin 
secretion and its possible metabolic determinants. The verbal care required for the 
use of the glucoreceptor word is duly underlined. Examples of the modulation of 
key enzyme activity in insulin-producing pancreatic islet cells by D-glucose itself or 
one of its metabolites are then provided in the framework of the interaction of phos-
phorylase a with D-glucose anomers, the activation of glucokinase by a fructose-
1-phosphate-sensitive regulatory protein, and the activation of phosphofructokinase 
by fructose-2,6-bisphosphate. The riddle of L-glucose pentaacetate insulinotropic 
action, the effects of artificial sweeteners on insulin release, and last but not least, 
the presence of the sweet taste TIR3 receptor in pancreatic insulin-producing islet 
cells are eventually and duly also considered.

Keywords  Pancreatic islet · B-cell glucoreceptor · Anomeric specificity of 
D-glucose insulinotropic action · Glucoreceptor myth · Interaction of phosphory-
lase a with D-glucose · Activation of glucokinase by a regulatory protein · 
Activation of phosphofructokinase by fructose-2,6 bisphosphate · L-Glucose 
pentaacetate · Artificial sweeteners · TIR3 receptor

1.1  �Introduction

The major aim of the present chapter is to evoke, in a historical perspective, the 
development of distinct concepts on the process of glucose recognition by pancre-
atic islet beta cells as a stimulus for insulin release.

W. J. Malaisse (*) 
Department of Biochemistry, Brussels Free University, Brussels, Belgium
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Already in 1969, at the occasion of the 13th Nobel Symposium, Cerasi and Luft 
postulated that glucose does not act solely as a substrate metabolized in insulin-
producing cells but also, perhaps by allosteric effect, on a specific receptor which, 
in turn, activates adenyl cyclase [1]. In 1972, an excellent review by Randle and 
Hales was devoted to the glucoreceptor mechanism in the B-cell. These authors 
emphasized that two models could account for the glucoreceptor system: the first 
one based on the combination of glucose itself with a receptor molecule and the 
second one based on the generation of a signal as a product of glucose metabolism 
in the B-cell [2].

In pages 199–214 of volume 1 (“Endocrine Pancreas”) of the section 7 
(“Endocrinology”) of the Handbook of Physiology published in 1972 by the 
American Physiological Society, Frans M. Matschinsky contributed in the part of 
this textbook devoted to “Biochemical Organization of Islet Tissue” the 11th chap-
ter of this volume under the title “Enzyme, metabolites, and cofactors involved in 
intermediary metabolism of islets of Langerhans.” The author carefully underlined 
in the “conclusion” of his chapter that “whether metabolism of glucose is an abso-
lute requirement for all stages of the multiphasic endocrine response evoked by 
glucose is disputed” and “that the two processes (glucose metabolism and insulin 
release) can exist independently of one another” [3]. He also drew attention to the 
fact that in contrast to the almost instantaneous secretory response to a rise in extra-
cellular D-glucose concentration, the intracellular levels of most glycolytic interme-
diates only rise relatively slowly, indicating that only the late phase of insulin release 
might be controlled by the metabolism of the hexose. It was speculated that metabo-
lites may modify the responsiveness of β-cell receptor(s) of the hexose. Such a 
receptor hypothesis was rapidly and largely accepted, in part maybe because of its 
simplicity, by scientists interested in the issue of glucose recognition by the β-cell 
as an insulin secretagogue.

1.2  �The Anomeric Specificity of Glucose-Stimulated Insulin 
Secretion

At about the same time, in 1974, the most crucial finding, in my opinion, on the 
issue of glucose recognition by the insulin-producing β-cell, was reported by 
A. Niki, H. Niki, I Miwa, and J. Okuda in an article published in Science, entitled 
“Insulin secretion by anomers of D-glucose” and documenting that the α-anomer of 
D-glucose is better able than the β-anomer to stimulate insulin secretion [4]. This 
finding was then confirmed, with an amazing rapidity in experiments all conducted 
in 1974 by Grodsky et al. [5], Rossini et al. [6], Matschinsky et al. [7], and Idahl 
et al. [8]. It was also shown that α-D-glucose was more potent than β-D-glucose in 
suppressing glucagon secretion [6, 7, 9], inducing a rapid transient efflux of phos-
phate from perifused islets [10], provoking cyclic AMP accumulation in rat islets 
[11], and protecting β-cell against the cytotoxic action of alloxan [12, 13]. The con-
clusions of these studies were that beta cells distinguish the α and β anomers of 
D-glucose for triggering insulin secretion at the receptor site of the cell membrane 
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[4], that the anomeric specificity of the secretory response to D-glucose provides 
evidence for a glucoreceptor, the action of glucose being independent of intracellu-
lar glucose metabolism [5], that glucose acts on a cell membrane receptor to initiate 
insulin release [11], that the initial signal for stimulation of insulin release and inhi-
bition of glucagon output is at the level of a glucoreceptor, independently of major 
pathways of glucose metabolism [9], and that both α-cells and β-cells contain glu-
coreceptor controlling glucagon and insulin secretion [7]. Rossini and colleagues, 
however, avoided speculations on a comparable issue. Last, Idahl et al. observed that 
β-D-glucose was at least as effective as α-D-glucose in stimulating counter-trans-
port of 3-O-methyl-D-glucose, increasing the islet content of glucose-6-phosphate, 
and diluting 3H2O that results from the metabolism of D-[5-3H]glucose, indicating 
that the anomeric specificity of the insulin-releasing D-glucose recognition systems 
is not shared by the earliest steps of glucose metabolism [8]. In fair agreement with 
the first of the three latter findings, Miwa et al. observed, using L-[1-14C]glucose as 
an extracellular space marker, that over 5 min incubation at 37 °C, the uptake of 
β-D-[1-3H]glucose by rat pancreatic islets was about twice higher than that of α-D-
[1-3H]glucose (16.7  mM each). It was concluded that the anomers of D-glucose 
each has a preferential function in pancreatic beta cells, α-D-glucose stimulating 
insulin secretion and β-D-glucose being transporter into the cells [14].

1.3  �Alternative Hypothesis

Shortly thereafter, in 1976, in an article entitled “Identification of the α-stereospecific 
glucosensor in the pancreatic B-cell,” it was first mentioned that the α-stereospecific 
system responsible for the greater ability of α-D-glucose, as distinct from β-D-
glucose, to stimulate insulin secretion, to increase the concentration of cyclic AMP, 
to provoke the efflux of phosphate ions, and to suppress the release of glucagon in 
pancreatic islets remained unknown. It could be a membrane-associated glucore-
ceptor, a carrier for glucose transport across the cell membrane or an enzyme 
involved in the early steps of glucose metabolism [15]. The latter hypothesis was 
examined [15, 16].

No significant difference could be detected in the rate of α- and β-D-glucose 
phosphorylation by the islet enzymes. Indeed, over 5 min incubation in the presence 
of ATP (0.1 mM) and the islet homogenates, both anomers (9.0 mM) inhibited to the 
same degree the formation of [1-14C]glucose-6-phosphate from [1-14C]glucose 
(1.0  mM) at anomeric equilibrium. Moreover, when the islet homogenate was 
exposed for 6  min to [γ-32P]ATP, the same amount of glucose-[6-32P]phosphate 
accumulated whether in the presence of α- or β-D-glucose (10.0 mM).

The first indication of a difference in the metabolism of the two anomers was 
obtained by examining the affinity of the islet glucose-6-phosphate dehydrogenase 
towards α- and β-glucose-6-phosphate. The hexose-phosphate was extemporane-
ously generated from each anomer in the presence of yeast hexokinase and 
ATP. When the generation of glucose-6-phosphate was the rate-limiting factor, the 
formation of 6-phosphogluconate by the islet homogenate occurred later and at a 
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slower rate in the presence of α- as distinct from β-D-glucose. Since yeast hexoki-
nase does not act more effectively on β- than α-D-glucose, the experimental results 
indicated that in islets, like in other tissues, the enzyme glucose-6-phosphate dehy-
drogenase is stereospecific for β-D-glucose-6-phosphate. Also more sorbitol accu-
mulated in islets exposed for 5  min to freshly dissolved β- and distinct from 
α-D-glucose (16.7 mM). This behavior, which could theoretically be due to a stereo-
specific affinity of the islet aldose reductase, might well result from the preferential 
orientation of β-D-glucose-6-phosphate to the pentose pathway, more NADPH 
being then available for the conversion of glucose to sorbitol.

Since neither the phosphorylation of glucose nor its conversion to either 
6-phosphogluconate or sorbitol offered a satisfactory explanation for the more 
marked insulinotropic action of α-D-glucose, attention was drawn to the possible 
participation of glycolysis in such a process. After 5 min incubation in the presence 
of D-glucose (7.2 mM), the concentration of glucose-6-phosphate was lower and 
that of further glycolytic intermediates higher in the islets exposed to α- as distinct 
from β-D-glucose. This suggested that the phosphoglucose isomerase of the islets, 
like that of other tissues, is stereospecific for α-D-glucose-6-phosphate. Such a view 
was confirmed, using a model comparable to that defined above for the study of the 
islet glucose-6-phosphate dehydrogenase. When the availability of glucose-6-
phosphate was the rate-limiting factor (namely, at low glucose and yeast hexokinase 
levels), the rate of fructose-6-phosphate formation by the islet homogenate was 
almost 50 percent higher with α- than with β-D-glucose-6-phosphate.

Two independent findings indicated that in the intact B-cell like in the islet 
homogenate, the rate of glycolysis was higher in the case of α-D-glucose. First, in 
islets exposed for 6 min to [U-14C]glucose (2.2 mM) in anomeric equilibrium, much 
less radioactivity was recovered in 14CO2 when unlabeled α- as distinct from β-D-
glucose (7.8 mM) was also present in the incubation medium. This indicated that 
the α-anomer is better able to dilute the metabolic pool from which 14CO2 is eventu-
ally derived, under conditions where more than 90 percent of the total 14CO2 produc-
tion is accounted by glycolysis. Second, the output of lactate from islets incubated 
for 5 min with freshly dissolved α-D-glucose (7.4 mM) was significantly higher 
than that found in islets exposed to β-D-glucose.

In islets prelabelled with 45Ca and perifused in the absence of extracellular Ca2+ 
and presence of EGTA (1.0 mM), the inhibitory effect of D-glucose (5.8 mM) upon 
45Ca efflux was more pronounced in the case of α-D-glucose as distinct from β-D-
glucose. Consistent with the latter finding, the glucose-induced increment in 45Ca 
net uptake, above the basal value found in the absence of glucose, was significantly 
higher, after 6 min incubation in the presence of α- as distinct from β-D-glucose 
(8.4 mM). Over 6 min incubation, the α-anomer (8.1 mM) also provoked a higher 
release of insulin than the β-anomer.

Taken as a whole, these data indicated that the more marked insulinotropic action 
of α- as distinct from β-D-glucose is associated with a higher glycolytic flux, itself 
attributable to the stereospecificity of the islet phosphoglucoisomerase, eventually 
resulting in a higher accumulation of Ca2+ in the B-cell and, hence, a higher Ca2+ 
triggered insulin release. These findings were, therefore, considered to provide an 
essential support to the so-called fuel hypothesis for glucose-stimulated insulin 
secretion [16].

W. J. Malaisse
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1.4  �The Glucoreceptor Myth

An article entitled “Insulin release: the glucoreceptor myth” was even published in 
1987 [17]. Its aim, however, was to underline the confusion arising from the current 
use, at that time, of an ill-defined glucoreceptor concept. Three acceptations of such 
a glucoreceptor were considered.

The first acceptation was inspired by the essential debate concerning the mode of 
identification of D-glucose as a stimulus for insulin release, which long opposed the 
supporters of a metabolic hypothesis and a glucoreceptor theory [16]. The former 
hypothesis postulates that the release of inulin is causally linked to an increase of 
D-glucose metabolism in the B-cell [16]. The latter theory postulates that D-glucose 
itself stimulates the B-cell through binding to a stereospecific glucoreceptor located 
in the B-cell, possibly at the level of the plasma membrane [4, 5].

When it was claimed that the secretory response of the B-cell to D-glucose is 
causally linked to an increase in D-glucose metabolism, the concept of a glucore-
ceptor, in its first acceptation, apparently became obsolete. The word glucoreceptor 
did not disappear, however, from the relevant literature. Instead, the same word 
became used, by those investigators who had defended the glucoreceptor concept in 
its first acceptation, to refer to an essential component, such as glucokinase, of the 
biochemical device responsible for the regulation of D-glucose metabolism in the 
B-cell [18, 19].

A third acceptation of the glucoreceptor was not ignored. Thus, without prejudice 
as to the intimate mode of action of D-glucose in the pancreatic islet B-cell, the 
latter could be considered to be equipped with a suitable glucoreceptor system. This 
would indeed represent a third acceptation of the word glucoreceptor. In certain 
cases of noninsulin-dependent diabetes mellitus, the insulinotropic action of 
D-glucose seems to be much more severely affected than that of other secretagogues 
[20]. Likewise, fasting causes a preferential decrease in the B-cell responsiveness to 
D-glucose [21]. In these situations, one could state that the function of the 
glucoreceptor system is apparently perturbed. This mode of expression was not 
uncommon. For instance, Garvey et  al. observed that after a 3-week period of 
continuous subcutaneous insulin infusion to noninsulin-dependent diabetic subjects, 
the pancreatic insulin secretory function was significantly improved [22]. Hence, it 
was proposed that chronic hyperglycemia leads to impaired insulin secretion, 
“possibly by altering the function of beta cell glucoreceptors.” For a reader of this 
interesting report, it was uneasy to decide which type of glucoreceptor the authors 
were actually referring to: a true receptor activated by D-glucose itself (first 
acceptation), a key enzyme of D-glucose catabolism (second acceptation) or the 
glucose-sensing function of the B-cell, whatever its precise nature (third acceptation). 
The decision may be important, since it is likely to condition the design of further 
experiments aiming at the identification of the molecular mechanism(s) responsible 
for this postulated phenomenon of “glucotoxicity.”

Whenever the use of a given word represents a potential source of misunderstanding 
between scientists, it becomes imperative to clarify the issue in order to improve the 
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communication of ideas. Is it possible to ascribe to the word glucoreceptor an 
unambiguous, and yet useful, meaning? In its first acceptation, it could seem 
adequate, if indeed solely used in such an acceptation. Otherwise, it was judged 
adequate, for all practical purposes, to banish the word glucoreceptor from reports 
dealing with the mechanism of glucose-induced insulin release. Each scientist 
would then have the freedom and responsibility to select an adequate word to convey 
his message. Terms such as glucose carrier or glucokinase could be used without 
ambiguity. If one wishes to refer to the system through which D-glucose is identified 
in the B-cell as a stimulus for insulin release, without taking position on the precise 
modality of such a recognition process, the expression “glucose-sensor device” 
could be recommended. Last, if it is thought that the mechanism of glucose 
identification coincides with the catabolism of the hexose in islet cells, why not use 
“glucose metabolism” when indeed referring to glucose metabolism?

The above proposal was considered, at that time, to offer a further advantage. 
Thus, if a true receptor, i.e., a molecule able to bind glucose and to generate, as a 
result of the binding process, a signal for insulin release other than a glucose metab-
olite, the word glucoreceptor could then be adequately reintroduced in our concep-
tion of the mechanism for glucose-stimulated insulin secretion. It was, at that time, 
considered unwise to dismiss such an eventuality [17].

As a matter of fact, in the same article entitled “Insulin release: the glucoreceptor 
myth,” it was duly underlined that even in the framework of the fuel hypothesis for 
nutrient-stimulated insulin release, the concept of a receptor molecule for a given 
nutrient sexretagogue may nevertheless be adequate. For instance, the nonmetabo-
lized analog of L-leucine, 2-aminobicyclo[2,2,1]heptane-2-carboxylic acid (BCH), 
stimulates insulin release apparently by causing allosteric activation of glutamate 
dehydrogenase [23, 24]. The latter enzyme could thus be viewed as a receptor for 
BCH [25].

Likewise, attention was drawn to the fact that the possibility remains that the 
D-glucose molecule itself, at the exclusion of its role as a substrate, modulates the 
activity of enzymes involved in the metabolism of carbohydrates in the islet cells. 
For instance, and by analogy with the situation observed in hepatocytes, it was con-
sidered as conceivable that D-glucose increases the rate of dephosphorylation of the 
active form of glycogen phosphorylase as catalyzed by phosphorylase phosphatase 
[17]. Three years later, such a hypothetical mechanism was indeed documented [26, 
27], representing a fundamental aspect of the phenomenon referred to as an ano-
meric malaise.

The following sections of the present chapter provide further information in such 
a perspective.

1.5  �Interaction of Phosphorylase A with D-Glucose Anomers

In 1977, insulin release due to glycogenolysis in glucose-deprived islets was first 
documented. When pancreatic islets were preincubated for 20 h in the presence of 
D-glucose (83.3  mM) and thereafter transferred to a glucose-free medium, 
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theophylline (1.4 mM) provoked a dramatic stimulation of insulin release. This phe-
nomenon did not occur when the islets were preincubated for either 20 h at low 
glucose concentration (5.6 mM) or only 30 min at the high glucose concentration 
(83.3 mM). The insulinotropic action of theophylline could not be attributed to con-
tamination of the islets with exogenous glucose and was not suppressed by man-
noheptulose. The secretory response to theophylline was an immediate phenomenon, 
but disappeared after 60 min of exposure to the drug. The release of insulin evoked 
by theophylline was abolished in calcium-depleted media containing 
EGTA. Theophylline enhanced the net uptake of 45Ca by the islets. Glycogen accu-
mulated in the islets during preincubation, as judged by both ultrastructural and 
biochemical criteria. Theophylline significantly increased the rate of glycogenolysis 
during the final incubation in the glucose-free medium. The theophylline-induced 
increase in glycogenolysis coincided with a higher rate of both lactate output and 
oxidation of endogenous 14C-labelled substrates. These data suggested that stimula-
tion of glycolysis from endogenous stores of glycogen is sufficient to provoke insu-
lin release even in glucose-deprived islets, as if the binding of extracellular glucose 
to hypothetical plasma-membrane glucoreceptors is not an essential feature of the 
stimulus-secretion coupling process [26].

Much later, in 1990, attention was paid in the framework of the anomeric malaise 
to the anomeric specificity of the interaction of phosphorylase a with D-glucose. At 
very high concentrations (50  mM), D-glucose decreased the activity of muscle 
phosphorylase a by 85%, and the potency of the two anomers of the hexose was 
slightly higher with α- than β-D-glucose. The half maximally effective concentra-
tions were clearly different: 4 mM with the α-anomer and 14 mM with the β-anomer, 
with intermediate value for the mixture of anomers at equilibrium, and about 25 mM 
for 1-deoxy-glucose, which at a very high concentration (50  mM) inhibited the 
enzyme by about 70%. The most striking difference between the two D-glucose 
anomers was evident at the lowest concentrations (1.0–2.5 mM), where β-D-glucose 
was barely inhibitor at all. The inhibition of liver phosphorylase a by the two glu-
cose anomers was also investigated under the same conditions. The results were 
clearly similar to those recorded with muscle phosphorylase a. The anomeric 
specificity of the activation by D-glucose of phosphorylase phosphatase, as result-
ing from the binding of the hexose to the active phosphorylated a-form of phos-
phorylase, was also investigated. The rate of dephosphorylation of muscle 
phosphorylase a by protein phosphatase of the type-1 catalytic subunit was about 
3.5-fold increased by 50 mM of either D-glucose anomers, and 50 mM 1-deoxyglu-
cose was about as effective. Again, the half-maximally effective concentration was 
lower for the α-anomer of D-glucose (3.5 mM) than for the β-anomer (7.6 mM) and 
highest for 1-deoxyglucose (about 25 mM). The superiority of α-D-glucose was 
most pronounced at low sugar concentrations. This coincided with hyperbolic satu-
ration kinetics with α-D-glucose, as distinct from markedly cooperative kinetics 
with β-D-glucose and 1-deoxyglucose. No obvious anomeric discrimination was 
observed, however, in the time-related (zero to 120 seconds) decrease of phosphory-
lase activity in glycogen-depleted rat hepatocytes exposed at 37 °C to D-glucose 
(5.0, 10.0 or 20.0 mM). The different response recorded in intact hepatocytes, as 
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distinct from purified enzyme preparations, was eventually attributed to the rapid 
intracellular anomerization of D-glucose, itself accounted for by the interference of 
mutarotase, the half-life of D-glucose anomerization decreasing from 200  sec in 
cell-free media to 46 and 24 sec in intact cell suspension and sonicated hepatocytes, 
respectively [27].

Nevertheless, in glycogen-enriched rat pancreatic islets preincubated, when so 
required with D-[5-3H]glucose, the mean values for both the inhibition of glycoge-
nolysis by exogenous D-glucose (7.0 mM) and utilization of the exogenous hexose 
over 6 min incubation were higher in the presence of exogenous α- as compared to 
β-D-glucose [28].

Taken as a whole, these findings document not solely the effects of D-glucose 
itself upon the activity of selected enzymes catalyzing reactions involved in the 
intracellular fate of glycogen, but also the anomeric specificity of such effects. As 
such, the involved enzymes could thus be considered as a target for an anomeric 
specific response to the molecule of D-glucose.

1.6  �Glucokinase-Catalyzed Phosphorylation of D-Glucose 
in Pancreatic Islets

In 1996, in a review article devoted to the metabolic signaling of glucose-induced 
insulin release, the four first sections concerned the role of glucokinase in such a 
process [29]. In the present conceptual context of the modulation of target enzymes 
activity by glucose or its metabolites, attention was drawn to the fact that islet cells 
are equipped with a glucokinase regulatory protein, which confers to glucokinase 
the property of being inhibited by D-fructose 6-phosphate and relieved from such an 
inhibition by D-fructose-1-phosphate. Taking advantage of the fact that pancreatic 
islets contain fructokinase [30], it had indeed been observed that in the postmicro-
somal supernatant of pancreatic islets, prepared from fasted or fed rats, D-fructose 
1-phosphate (10.0 mM) increases the activity of glucokinase by 20–30% as mea-
sured in the presence of D-glucose 6-phosphate and D-fructose 6-phosphate 
(4.0 mM). Further experiments documented the presence in pancreatic islets of a 
fructose-1-phosphate-sensitive inhibitor of liver glucokinase and the inhibition of 
islet glucokinase by the hepatic regulatory protein as assessed in the presence of 
0.8 mM fructose-6-phosphates and the relief of such an inhibition by D-fructose 
1-phosphate (1.0 mM). Advantage was further taken from the fact that fructose-1-
phosphate can also be formed by condensation of D-glyceraldehyde with glycerone 
phosphate to document the presence of radioactive fructose 1-phosphate in islets 
incubated for 60  min in the presence of D-[U-14C]glucose (10.7  mM) and 
D-glyceraldehyde (2.0 mM). It was proposed that the latter generation of D-fructose 
1-phosphate may account for an increase in the rate of D-glucose phosphorylation 
and D-[5-3H ]glucose utilization caused by the triose in intact islets exposed to 
10.0 mM D-glucose [31].

W. J. Malaisse
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Thus, these findings indeed provided a second example of the modulation of the 
activity of a target enzyme, in this case glucokinase, by hexose metabolites in pan-
creatic islets.

Incidentally, in a study conducted in the postmicrosomal supernatant of rat liver 
homogenates, the phosphorylation of D-[U-14C ]glucose as measured in the pres-
ence of 5.0 mM ATP, 2.25 mM D-glucose 6-phosphate, and 0.75 mM D-fructose 
6-phosphate indicated, by comparison of results recorded in the liver from either fed 
or 4-days starved rats, that starvation affected not only the temperature dependency 
and affinity for D-glucose of hepatic glucokinase, but also its responsiveness to 
D-fructose-1-phosphate [32].

The activation of glucokinase by its fructose-1-phosphate sensitive regulatory 
protein did not differ significantly, however, in the liver of control rats, Goto-
Kakizaki rats with inherited noninsulin-dependent diabetes mellitus, and rats 
injected with streptozotocin during the neonatal period and, hence, considered as 
animals with acquired noninsulin-dependent diabetes [33]. To my knowledge, a 
comparable study was not yet conducted in pancreatic islets.

Two review articles were eventually devoted to the metabolic signaling of insulin 
secretion. The first of these articles was mainly concerned with the phosphorylation 
of glucose by both hexokinase and glucokinase. Emphasis was placed on the inhibi-
tion of hexokinase by endogenous D-glucose 6-phosphate and, to a lesser extent, 
D-glucose 1,6-bisphosphate in intact islets exposed to a high concentration of extra-
cellular D-glucose, on the participation of cytosolic ATP in a synarchistic and 
sequential-type regulation of D-glucose phosphorylation in islets exposed to 
increasing concentration of the hexose, on the binding of hexokinase isoenzymes to 
mitochondria and its ambiguity susceptible to affect several metabolic variables in 
islet cells, on the intervention of the cytoplasmic regulatory protein conferring to 
glucokinase the property of being antagonistically regulated by D-fructose 
6-phosphate and D-fructose 1-phosphate, and, last, on the possible changes in the 
intrinsic catalytic properties of glucokinase as conceivably resulting from the non-
enzymatic glycation of cytosolic proteins [34]. The second review article drew 
attention to some current concepts concerning the organization of the β-cell 
glucose-sensing device. As such, the glucoreceptor myth, the glucokinase dogma, 
the regulation of D-glucose phosphorylation, the protein-to-protein interaction in 
metabolic processes, the regulation of D-glucose catabolism at sites distal to its 
phosphorylation, the coupling of metabolic to more distal events, the β-cell hetero-
geneity delusion, the physiopathology of metabolic signaling, the β-cell glucotoxic-
ity, and desensitization misconceptions and therapeutic considerations represented 
the major issues under consideration [29].
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1.7  �Activation of Phosphofructokinase by Fructose 
2,6-Bisphosphate

In the same conceptual context proposing that the activation of key glycolytic 
enzymes by selected hexose metabolites may correspond to a signal to receptor 
coupling process, it was documented that fructose 2,6-bisphosphate increases in a 
concentration-related manner (0.1–1.8 μM) the activity of phosphofructokinase in 
rat pancreatic islet homogenates incubated in the presence of fructose 6-phosphate 
(0.25  mM). The increment in velocity attributable to fructose 2,6-bisphosphate 
reached 50% of its maximal value at about 0.2 μM of the activator, the latter maxi-
mal value (recorded at 1.2 μM fructose 2,6-bisphosphate) averaging 337 ± 55 pmol.
islet −1.h−1. At increasing concentrations of fructose 6-phosphate (0.1–5.0 mM) and 
in the absence of fructose 2,6-bisphosphate, the velocity of the reaction catalyzed by 
phosphofructokinase displayed, in semilogarithmic coordinates, a sigmoidal pat-
tern, with half-maximal and maximal values close to 0.3 and 5.0  mM fructose 
6-phosphate. In the presence of fructose 2,6-bisphosphate (1.2 μM), however, the 
relationship between reaction velocity and fructose 6-phosphate concentration in 
the same coordinates appeared hyperbolic with an apparent Km for fructose 
6-phosphate below 0.1 mM. When the islets were first incubated for 60 min in the 
absence or presence of glucose (20 mM) prior to homogenization, the ratio in phos-
phofructokinase activity at 0.25/5.0 mM fructose 6-phosphate averaged 40.5 ± 4.2 
and 61.5 ± 6.8% (n = 8  in both cases, p < 0.02) in islets previously deprived of 
glucose and in islets first exposed to 20 mM D-glucose, respectively. These findings 
suggested that the glucose-induced stimulation of glycolysis in intact rat islets is 
attributable, in part at least, to activation of phosphofructokinase and that such an 
activation is mediated by fructose 2,6-bisphosphate [35].

By analogy with findings reported in July–August 1981 and revealing the 
presence in rat liver of a novel enzyme catalyzing the formation of fructose 
2,6-bisphosphate from fructose 6-phosphate and ATP-Mg, an article, published in 
November 1981, documented the presence of fructose-6-phosphate,2-kinase in rat 
islet homogenates. The procedure used for such a purpose consisted of a first incu-
bation of the islet homogenate in the presence of fructose-6-phosphate (5 mM) and 
ATP (5 mM) and, after alkali-treatment of the reaction mixture, of a second incuba-
tion in which the alkali-treated mixture was added to an assay cuvette containing 
purified phosphofructokinase and found to activate the latter enzyme in a manner 
comparable to that observed with fructose 2,6-bisphosphate [36].

In January 1982, a further article indicated that prior incubation of rat islets for 
90 min in the presence (as distinct from absence) of D-glucose (16.7 mM) increased 
their content in an acid-labile activator of purified muscle phosphofructokinase, as 
judged from the effects of the alkali-treated homogenates upon the velocity of the 
reaction catalyzed by the purified muscle phosphofructokinase in the presence of 
fructose-6-phosphate (0.25 mM) and ATP (10.0 mM). The activity of islet fructose-
6-phosphate,2-kinase could then be characterized in terms of its Km for fructose-6-
phosphate (0.08 mM), the absence of any detectable effect of glucose, and the close 
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analogy between fructose-6-phosphate,2-kinase activity in liver (0.07 ± 0.02 mU/
mg protein) and islets (0.06 mU/mg protein) [37].

One month later, in February 1982, a publication revealed (i) that prior incubation 
of rat pancreatic islets at increasing D-glucose concentrations (zero, 5.6 and 
16.7 mM) causes a graded increase in the glucose-1,6-bisphosphate content of the 
islets, (ii) that glucose-1,6-bisphosphate both activates purified muscle phospho-
fructokinase and increases the velocity of the reaction catalyzed by phosphofructo-
kinase in islet homogenates, (iii) that the combined effect of glucose-1,6-bisphosphate 
(4.0 and 8.0 μM) and fructose-2,6-bisphosphate (0.033 and 0.065 μM) upon muscle 
phosphofructokinase activity exceeded that of each activator tested separately, (iv) 
that the concentration of glucose-1,6-bisphosphate had to be approximately 100 
times higher than that of fructose-2,6-bisphosphate in order to achieve a comparable 
activation of purified muscle phosphofructokinase, and (v) that, likewise, a 50 μM 
concentration of glucose-1,6-bisphosphate exerts effects upon islet phosphofructo-
kinase activity comparable to those of only 1.0 μM fructose-2,6-bisphosphate. 
Nevertheless, the glucose-1,6-bisphosphate content of glucose-stimulated islets was 
considered sufficiently high to postulate that this hexose-bisphosphate participates, 
together with fructose-2,6-bisphosphate, in the activation of phosphofructokinase, 
with a resulting increase in both glycolytic flux and insulin secretory rate [38].

These findings were then the matter of a review article entitled “The glycolytic 
cascade in pancreatic islets” and published in 1982 [39].

A last publication revealed (i) that the increase of fructose-2,6-bisphosphate 
content provoked by exposure of islets to 20.0 mM extracellular D-glucose is much 
more rapid in purified pancreatic islet B-cells than in isolated hepatocytes and (ii) 
that in contrast again with the situation prevailing in the liver, glucagon fails to 
decrease the concentration of fructose 2,6-bisphosphate in either islets or purified 
B-cells. It was proposed that in the process of glucose-stimulated insulin secretion, 
an early increase in fructose 2,6-bisphosphate formation may, by causing activation 
of 6-phosphofructo-1-kinase, allow glycolysis to keep pace with the rate of glucose 
phosphorylation [40].

1.8  �D-Glucose Metabolism in Pancreatic Islets

The fuel hypothesis for insulin release postulates that the process by which glucose 
is recognized as an insulinotropic agent entirely depends on the metabolic changes 
evoked by the sugar in the islet cells. The possible link between glycolysis and insu-
lin release in isolated cells was reviewed in 1976 at the occasion of a meeting of the 
Minkowski Prize-Winners held in Capri [41]. The fuel hypothesis for insulin release 
was then proposed in 1979, in a review article published in Metabolism [42]. In 
1981, the fact that D-glucose acts in the B-cell both as a substrate and enzyme acti-
vator was then proposed to permit reconciliation of the receptor and metabolic 
hypothesis [25]. Emphasis was eventually placed in 1983 on the possible coupling 
between the generation of second messengers (H+, NAD(P)H, ATP) and more distal 
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events in the secretory sequence, such as the remodeling of ionic fluxes across the 
plasma membrane and within the pancreatic B-cell [43].

Not surprisingly, attention was paid to several aspects of glucose metabolism in 
pancreatic islets, such as qualitative and quantitative aspects of glycolysis in iso-
lated islets in 1976 [44], the influence of the environmental glucose concentration 
upon the production rate of metabolic end-products, and the intracellular concentra-
tion of both metabolites and co-factors in 1978 [45], the view that glucokinase could 
not be considered as the pancreatic B-cell glucoreceptor in 1985 [46], and the physi-
ology and pathology of the pancreatic B-cell glucose-sensor device in 1990 [47], to 
cite only a few examples.

Since the anomeric specificity of D-glucose metabolism was considered as a key 
finding in support of such a fuel concept, attention was also paid to the metabolism 
of D-glucose anomers in rat pancreatic islets exposed to equilibrated D-glucose. 
Even in the islets exposed to D-glucose (2.8 and 8.3 mM) at anomeric equilibrium 
for 60 min at 4 °C, the metabolic fate of α-D-glucose differed vastly from that of 
β-D-glucose, the enzyme-to-enzyme channeling between hexokinase isoenzymes, 
especially glucokinase, and phosphoglucoisomerase being restricted to α-D-
glucose 6-phosphate [48]. Under comparable experimental conditions, the β/α ratio 
for the conversion of D-[2-3H]glucose to 3HOH was higher than the β/α ratio for 
D-[5-3H]glucose conversion to 3HOH. These findings were considered as consistent 
with the postulated enzyme-to-enzyme tunneling of glycolytic intermediates 
between hexokinase isoenzyme(s), phosphoglucoisomerase, and possibly, phos-
phofructokinase [49].

1.9  �The Riddle of L-Glucose Pentaacetate Action

Monosaccharides were and still are widely used as experimental tools in biomedical 
research, for example, as natural nutrients or specific inhibitors of carbohydrate 
metabolism. As a rule, their entry into cells is mediated by specific carrier systems. 
In a minireview reported in 1998 and entitled “Monosaccharide esters: new tools in 
biomedical research,” attention was drawn to monosaccharide esters that are appar-
ently able to cross the plasma membrane without requiring the intervention of such 
a transport system and then undergo intracellular hydrolysis in esterase-catalyzed 
reactions, so that the sugar moiety becomes readily available for further metabolism 
or metabolic action [50].

The conceptual background for the use of these monosaccharide esters consisted 
in the fact that, a few years previously, the esters of several carboxylic metabolites, 
such as succinic, glutamic, or pyruvic acids, had been proposed as tools for prevent-
ing ATP depletion in cells endangered by an imbalance between the synthesis and 
breakdown of this adenosine nucleotide [51]. The latter approach was inspired by 
the observation that such esters, e.g., succinic acid monomethyl or dimethyl esters, 
penetrate efficiently into various cell types in which they undergo intracellular 
hydrolysis. They are indeed better metabolized and exert more marked biological 
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effects than the corresponding unesterified carboxylic molecules. For instance, suc-
cinic acid dimethyl ester is metabolized in rat pancreatic islets and, hence, stimu-
lates insulin release, whereas succinic acid is virtually unable to enter islet cells and 
fails to display any insulinotropic action [52, 53]. In the light of these findings, it 
was considered that esters of monosaccharides may also be able to cross the plasma 
membrane and undergo intracellular hydrolysis, possibly resulting in a larger sup-
ply of their carbohydrate moieties than otherwise found in cells exposed to the cor-
responding unesterified sugars [50]. The key further sections of the latter minireview 
were dealing with pilot observations made with the α-anomer of D-glucose penta-
acetate, the metabolic and functional effects of 6-O-acyl-D-glucose in rat erythro-
cytes and pancreatic islets, the fate of D-glucose pentaacetate in rat erythrocytes and 
its metabolism and insulinotropic action in rat pancreatic islets, and comparable 
information for L-glucose pentaacetate, D-mannose and D-fructose pentaacetates, 
D-galactose pentaacetate, D-glucose pentaacyl succinate esters, 2-deoxy-D-glucose 
tetraacetate, D-mannoheptulose hexaacetate, and streptozotocin tetraacetate [50].

The metabolic fate, cationic effects, and insulinotropic action of the polyacetate 
esters of nutrient and nonnutrient monosaccharides in rat pancreatic islets from nor-
mal and diabetic rats were then extensively investigated, being between 1997 and 
2000 the matter of three scores of original articles and two further reviews [54, 55].

For the sake of briefness and in the spirit of the present chapter, further 
considerations are mainly restricted to L-glucose pentaacetate. An extensive study 
of β-L-glucose pentaacetate insulinotropic action provided the following information 
[56].

	 (i)	 Phosphorylation of L-glucose: L-glucose cannot act as a substrate for 
phosphorylation in the reactions catalyzed by pancreatic islet hexokinase 
isoenzymes.

	 (ii)	 Hydrolysis of β-L-glucose pentaacetate in islet homogenates: the hydrolysis 
of β-L-glucose pentaacetate in islet homogenates is about 4 times lower than 
that of α-D-glucose pentaacetate (0.25 mM each) [57].

	 (iii)	 Uptake of β-L-[1-14C]glucose pentaacetate by intact islets: whilst the apparent 
distribution space of L-[1-14C]glucose (2.0 mM) remained lower than that of 
3HOH, the apparent distribution space of β-L-[1-14C]glucose pentaacetate 
(1.7 mM) largely exceeded that of 3HOH, with a paired ratio between these 
two spaces of 3.6, 5.6 and 6.6 after 3, 10 and 20  min incubation, 
respectively.

	 (iv)	 Generation of unesterified L-[1-14C]glucose from β-L-[1-14C]glucose 
pentaacetate: the precise quantification of unesterified L-[1-12C]glucose 
generation in islets exposed for 3  min to β-L-[1-14C]glucose pentaacetate 
(1.7 mM) was hampered by the presence of radioactive molecules, presumably 
partially esterified L-[1-14C]glucose (e.g., L-[1-14C]glucose monoacetate), 
eluting together or in the vicinity of the unesterified hexose; nevertheless, the 
experimental results clearly indicated that the islets obviously and severely 
decreased the amount of β-L-[1-14C]glucose pentaacetate and clearly 
increased that of its metabolites already after only 3 min incubation
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	 (v)	 Metabolism of β-L-glucose pentaacetate: in sharp contrast to the results 
obtained with D-[1-14C]glucose or D-[U-14C]glucose, no significant produc-
tion of 14CO2 or 14C-labelled acidic metabolites and amino acids could be 
detected in islets exposed to either L-[1-14C]glucose or β-L-[1-14C]glucose 
pentaacetate, all nutrients being tested at a 1.7 mM concentration. Both 14CO2 
and 14C-labelled acidic metabolites were, however, produced by islets exposed 
to β-L-glucose penta-[1-14C]acetate (also 1.7 mM) used to characterize the 
metabolic fate of the acetyl moiety of β-L-glucose pentaacetate.

	 (vi)	 Interference of β-L-glucose pentaacetate with the catabolism of other 
nutrients: the effects of β-L-glucose pentaacetate on the metabolism of islet 
endogenous nutrients was examined in islets prelabelled with either L-[U-
14C]glutamine or [U-14C]palmitate. The ester failed to affect L-[U14C]gluta-
mine metabolism and slightly decreased the 14CO2 output to 14C content ratio 
of islets preincubated for 120 min in the presence of [U-14C]palmitate. β-L-
glucose pentaacetate (1.7 mM) failed to affect the oxidation of exogenous 
D-[U-14C]glucose (8.3 mM), and decreased both the conversion of D-[5-3H]
glucose to 3HOH and that of D-[U-14C]glucose to either radioactive acidic 
metabolites or amino acids

	(vii)	 Biosynthetic data: β-L-Glucose pentaacetate (1.7 mM) caused a modest but 
significant decrease of the incorporation of L-[4-3H]phenylalanine into TCA-
precipitable material in islets incubated for 90 min in the presence of either 
D-glucose (4.2 mM) or L-leucine (10.0 mM)

	(viii)	 Secretory data: β-L-Glucose pentaacetate (1.7 mM) only exerts an obvious 
stimulation of insulin release from islets incubated in the presence of a suit-
able nutrient, e.g., D-glucose (7.0 mM), L-leucine (10.0 mM) or succinic acid 
dimethyl ester (10.0 mM). The insulinotropic action of β-L-glucose pentaac-
etate (1.7 mM) in the presence of L-leucine (5.0 mM) was also documented 
in a reverse hemolytic plaque assay of insulin secretion from isolated β-cells. 
β-L-Glucose pentaacetate appeared less potent than α-D-glucose pentaacetate 
in terms of augmenting the secretory response to D-glucose or L-leucine and 
even opposed the insulinotropic action of α-D-glucose pentaacetate.

	 (ix)	 Adenylate cyclase activity and cAMP formation: The pentaacetate ester of 
β-L-glucose (1.7 mM) failed to affect both basal adenylate cyclase activity in 
a membrane-enriched islet subcellular fraction and cyclic AMP production 
by islets incubated for 60 min in the presence of L-leucine (10.0 mM) together 
with 1.0 mM isobutylmethylxanthine

	 (x)	 Phosphoinositide hydrolysis: β-L-Glucose pentaacetate (1.7 mM) had little 
effect upon the production of tritiated inositol phosphate by islet preincubated 
for 180 min at 5.0 mM D-glucose in the presence of myo-[2-3H]inositol and 
then incubated for 30  min in the presence of 10.0  mM LiCl and 
10.0 mM L-leucine.

	 (xi)	 Intracellular pH: β-L-Glucose pentaacetate (1.7 mM) had no obvious effect 
upon the intracellular pH of dispersed islet cells exposed to 8.3 mM D-glucose.

W. J. Malaisse



15

	(xii)	 Cationic data: β-L-Glucose pentaacetate (1.7 mM) failed to affect or tended 
to decrease the net uptake of 45Ca by islets incubated in the absence of any 
exogenous nutrient or in the presence of either D-glucose (8.3  mM) or 
L-leucine (10.0 mM), such a difference only achieving statistical significance 
in the presence of the amino acid. In the absence of any exogenous nutrient, 
β-L-glucose caused a rapid decrease in 86Rb fractional outflow rate from pre-
labelled islets. This rapid, sustained, and rapidly reversible decrease in K+ 
conductance was not associated with any obvious change in 45Ca fractional 
outflow rate. Nevertheless, the administration of β-L-glucose pentaacetate 
caused a rapid increase in insulin output, the secretory rate being already 
significantly higher than the paired basal value within 2 min exposure to the 
ester. In the presence of the dimethyl ester of succinic acid (10  mM), the 
administration of β-L-glucose pentaacetate to prelabelled and perifused islets 
caused a minor increase in 45Ca fractional outflow rate and a rapid increase in 
insulin output.

	(xiii)	 Electrophysiological data: In the presence of 4.0  mM D-glucose or 
10.0 mM L-leucine, the administration of β-L-glucose pentaacetate (1.7 mM) 
to rat B-cells induced within 1–2 min depolarization of the plasma membrane 
and induced electrical activity. Comparable results were observed in mouse 
pancreatic islets, the induction of electrical activity being, on occasion, asso-
ciated with oscillations of the cytosolic Ca2+ concentration [58].

A further study revealed that in isolated perfused rat pancreases exposed to 
10.0 mM L-leucine, β-L-glucose pentaacetate (1.7 mM) stimulated both insulin and 
somatostatin release and provoked an initial and short-lived stimulation of glucagon 
secretion, in sharp contrast to the immediate inhibitory action of unesterified 
D-glucose upon glucagon output. A direct effect of the ester itself, by some as-of-
yet unidentified coupling process, was speculated to account for the stimulation of 
insulin and somatostatin release by β-L-glucose pentaacetate and for the initial 
enhancement of glucagon secretion by the same ester [59].

The results of these experiments were interpreted to indicate that the insulinotropic 
action of β-L-glucose pentaacetate is not attributable to any nutritional value of the 
ester but, instead, appears to result from a direct effect of the ester itself on a yet 
unidentified receptor system, resulting in a decrease of K+ conductance, plasma 
membrane depolarization, and induction of electrical activity [56, 59].

The insulin secretory response to β-L-glucose pentaacetate (1.7 mM) of islets 
incubated in the presence of L-leucine (10.0 mM) was not adversely affected when 
the islets were preincubated for 90 min at 37 °C in the presence of cholera toxin 
(5 μg/ml) or obtained from animals injected intraperitoneally 72 h before sacrifice 
with pertussis toxin (2.8 μg/rat); these findings suggest that G-proteins sensitive to 
either cholera or pertussis toxin are not involved in the modality by which β-L-
glucose pentaacetate stimulates insulin secretion [60].

Selected monosaccharide pentaacetate esters (1.7 mM) were eventually found to 
display a bitter taste. Scores of 4, 3, and 2 arbitrary units were used, respectively, for 
very bitter, bitter, or slightly bitter solutions, a score of 1 corresponding to doubtful 
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answers and a null score to solutions devoid of bitter state. Both α-D-glucose pen-
taacetate (1.98  ±  0.31 arbitrary units; n  =  24) and β-L-glucose pentaacetate 
(2.87 ± 0.36; n = 16) displayed a bitter taste, the latter two mean scores being not 
significantly different from one another and yielding an overall mean value of 
2.34 ± 0.24 arbitrary units (n = 40). Likewise, the mean scores found with β-L-
glucose pentaacetate (2.00  ±  0.36; n  =  16) and α-D-mannose pentaacetate 
(3.12 ± 0.31; n = 16) failed to differ significantly from that found for the anomers of 
D-glucose pentaacetate. Neither α-D-galactose pentaacetate nor β-D-galactose pen-
taacetate yielded a mean score significantly higher than the limit of detection for 
bitter state (i.e., 1.0 arbitrary unit). None of the esters tested in this study were iden-
tified as sweet by any of the subjects who tasted them, in sharp contrast with the 
results recorded for the sweet taste of D-glucose (0.2 mM), L-glucose (0.2 mM), 
D-galactose (0.22 mM), and D-mannoheptulose (0.22 mM). It was proposed that 
the interaction between these esters and a protein involved in the recognition of bit-
ter taste may participate in their insulinotropic action [61].

In a review article entitled “The riddle of L-glucose pentaacetate insulinotropic 
action,” it was underlined that the postulated interaction of L-glucose pentaacetate 
with a yet unidentified receptor leading to membrane depolarization, induction of 
electrical activity, and increase in cytosolic concentration of ionized Ca2+ displays 
analogies with the identification of bitter compounds by taste buds. Purified islet 
B-cells were proposed to contain the α-gustducin G-protein involved in the percep-
tion of bitter taste by taste buds. The effects of β-L-glucose pentaacetate upon glu-
cagon and somatostatin secretion by the isolated perfused pancreas were considered 
to be also compatible with such a hypothesis. It was even proposed that L-glucose 
pentaacetate anomers could conceivably be used as novel insulinotropic tools in the 
treatment of noninsulin-dependent diabetes mellitus [54].

Further support in such a perspective was provided by the finding that the 
intravenous injection of β-L-glucose pentaacetate (8.8 mmol/g body wt) into fed 
anaesthetized rats caused, over 30  min, a biphasic increase in plasma insulin 
concentration, which could not be attributed to the modest rise in plasma D-glucose 
concentration recorded in these experiments [62]. It was also documented that β-L-
glucose pentaacetate can be safely used in human subjects in further work aiming at 
the investigation of its insulinotropic and metabolic effects [63].

Five years later, denatonium, one of the most bitter-tasting substances known, 
was found to stimulate insulin release in both clonal HIT-T15 beta cells and rat 
pancreatic islets. This insulinotropic action, documented in the presence of 8.3 mM 
D-glucose, was abolished in the absence of extracellular Ca2+ or in the presence of 
the Ca2+-channel blocker nitrendipine and inhibited by the α2-adrenergic agonist 
clonidine. Furthermore, it could not be attributed to any distinct effect on voltage-
gated calcium channels or cellular cyclic AMP levels, and no evidence was found to 
suggest activation by denatonium of either gustducin or transducing in the beta 
cells. The insulinotropic action of this bitter compound was eventually ascribed to 
its interaction with ATP-responsive K+ channels, leading to the depolarization of 
beta cells and resulting increase in Ca2+ influx [64].
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1.10  �Effects of Artificial Sweeteners on Insulin Release

In the light of the just mentioned findings concerning the stimulation of insulin 
secretion by the β-anomer of L-glucose pentaacetate, a further study reported in 
1998 aimed at re-evaluating the possible effect of both bitter and nonbitter artificial 
sweeteners on insulin release and cationic fluxes in isolated rat pancreatic islets 
[65]. Sodium saccharine (1.0–10.0 mM), sodium cyclamate (5.0–10.0 mM), stevio-
side (1.0 mM), and acesulfame-K (1.0–15.0 mM), all of which display a bitter taste, 
augmented insulin release from islets incubated in the presence of 7.0  mM 
D-glucose. In contrast, aspartame (1.0–10.0 mM), which is devoid of bitter taste, 
failed to affect insulin secretion. A positive response to acesulfame-K was still 
observed when the extracellular K+ concentration was adjusted to the same value as 
that in control media. Saccharin (10.0 mM) and cyclamate (also 10.0 mM) even 
significantly augmented insulin output from islets incubated in the absence of exog-
enous D-glucose and, to a lesser relative extent, from islets exposed to 20.0 mM 
D-glucose. The enhancing action of both sodium saccharin and sodium cyclamate 
on insulin release from islets incubated for 90  min in the presence of 7.0  mM 
D-glucose was concentration-related in the 1.0–5.0 to 10.0  mM range. Niki and 
Niki had also drawn attention in 1994 to the fact that acetosulfame-Na (10.0 mM) 
augments insulin release evoked by 10.0 mM D-glucose [66]. No major changes in 
86Rb and 45Ca outflow from prelabelled perifused islets could be attributed to the 
saccharin, cyclamic, or acetosulfame anions. It was proposed, therefore, that the 
insulinotropic action of some artificial sweeteners, like that of selected hexose pen-
taacetate esters, may imply G-protein-coupled receptors similar to those operative 
in the recognition of bitter compounds by tasted buds [65].

1.11  �Glucotoxicity: The Anomeric Malaise

The information so far provided on the fate of D-glucose anomers in islet cells is far 
from covering all findings so far collected in this issue. For instance, attention was 
also paid to the low mutarotase activity in normal and tumoral pancreatic islet cells 
[67], on the anomeric specificity of glucose metabolism in the pentose cycle both in 
rat pancreatic islets and tumoral insulin-producing cells [68], on the anomeric spec-
ificity of hexokinase and glucokinase in normal pancreatic islets or insulin-
producing tumoral cells [69], on the reciprocal influence of glucose anomers upon 
their respective phosphorylation by hexokinase in homogenates of tumoral islet 
cells [70], and on the anomeric dissociation between glucokinase activity and gly-
colysis in pancreatic islets [71], to cite only a few examples. This issue concerning 
the anomeric specificity of hexose metabolism in pancreatic islets was also the 
object of three reviews [72–74].
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In my opinion, one of the most essential information concerning the effects of 
D-glucose anomers relates to the anomeric malaise phenomenon, one of the two 
most obvious aspects of the process of B-cell glucotoxicity.

It was generally admitted that in type 2 diabetes, the secretory response of beta 
cells to D-glucose is more severely affected than that evoked by other nutrient or 
nonnutrient secretagogues. Five potential candidates for perturbation of glucose 
metabolism in beta cells were considered in the framework of a concept presented 
as a G quintet [75]. The five candidates were Glut2 underexpression, glucokinase 
mutation, glucose-6-phosphatase hyperactivity, glycerophosphate dehydrogenase 
deficiency, the latter FAD-linked mitochondrial enzyme playing a key role in the 
shuttle for the transfer of reducing equivalents from the cytosol into mitochondria, 
and glycogen accumulation in beta cells as observed in situations of sustained 
hyperglycemia.

An anomaly of glucose transport in insulin-producing cells was first observed in 
tumoral islet cells of the RINm5F line [76–78]. Underexpression of Glut2 was then 
observed not only in diabetic subjects but also in four animal models of type 2 
diabetes [79–83]. A mutation of the glucokinase gene was first identified in 
1992–1993 in subjects with maturity-onset diabetes of the young (MODY) [84, 85]. 
An excessive activity of islet glucose-6-phosphatase was observed in ob/ob mice 
[86]. A decreased activity of mitochondrial glycerophosphate dehydrogenase was 
documented in islets from db/db mice, GK rats, and fa/fa rats [87–89]. Last, the 
accumulation of glycogen in insulin-producing cells represents a key feature of the 
phenomenon of insular glucotoxicity. The latter concept refers to the functional 
perturbations of beta cells provoked by sustained hyperglycemia. The two phenom-
enological aspects of this glucotoxicity process consist in a paradoxical and tran-
sient decrease in insulin output in response to a rapid increase in the extracellular 
concentration of D-glucose and a perturbation of the anomeric specificity of the 
insulin secretory response to the hexose.

Both anomalies were proposed to be attributable to glycogen accumulation in 
islet B-cells.

The paradoxical and transient inhibition of insulin release in response to a rise in 
extracellular D-glucose concentration was first observed in many noninsulin-
dependent diabetic subjects after intravenous administration of D-glucose [90]. The 
latter anomaly was abolished in the same subjects when they were again examined 
after 20 h of glycemia normalization by insulin infusion [90]. The restauration of a 
positive insulin secretory response to glucose persisted in these subjects even when 
the second hyperglycemic test was performed 30 or 60 min after the end of insulin 
infusion followed by intravenous administration of glucose in order to bring the 
glycemia at the same high level as that recorded before the first hyperglycemic test 
conducted the day before [91]. A paradoxical response to either an increase or 
decrease in extracellular D-glucose concentration was also observed in the perfused 
pancreas of rats infused for 48 h with a hypertonic D-glucose solution [92, 93].

The perturbation of the anomeric specificity of the beta cell secretory response to 
D-glucose, referred to as an anomeric malaise [94], was also first observed in a 
study comparing the rapid changes in plasma insulin concentration following the 
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intravenous administration of α- and β-D-glucose to either normal subjects or 
noninsulin-dependent diabetic patients. In seven normal subjects, the α/β paired 
ratio for plasma insulin concentration (expressed relative to the reference value 
measured prior to glucose injection) averaged 160, 129, and 115%, respectively 2, 
4, and 6 min after administration of the D-glucose anomers. In eight diabetic sub-
jects, the insulin response to glucose was too weak to allow characterization of its 
anomeric specificity. In the last five other diabetic subjects, a preferential response 
to α-D-glucose was observed in three cases, but not so in the last two cases. The 
severity of diabetes as judged from the plasma glucose and insulin concentrations 
was more pronounced in the two diabetic subjects with an α/β ratio for plasma insu-
lin concentration not exceeding 88 ± 5%, three to six min after injection of D-glucose 
than in the three diabetic subjects with a mean value for the same ratio of 151 ± 11% 
over the same period. The eight subjects in whom the anomeric specificity of the 
B-cell secretory response could not be established were eventually identified as the 
most severely diabetic patients [95].

Complementary information on the anomeric malaise was then obtained in 
different animal models. For instance, in BioBreeding diabetic rats about 125 days 
old with a plasma glucose concentration close to 25 mM, no difference between 
secretory response to α- or β-D-glucose was observed in the perfused pancreas, 
while in control rats of the same age with a plasma glucose concentration close to 
only 8 mM, the response to β-D-glucose only represented about the two-thirds of 
that found with α-D-glucose. The α/β ratio for the increment in insulin output 
averaged no more than 60% in the diabetic rats, as distinct from 235% in the control 
normoglycemic rats [96]. Incidentally, when both the control rats and those with a 
high incidence of diabetes were examined at a younger age (60–65 days) and were 
all normoglycemic, the insulinotropic capacity of α-D-glucose largely exceeded 
that of β-D-glucose [74]. These observations suggested that the anomeric malaise in 
BB rats resulted from sustained hyperglycemia. The latter hypothesis was compatible 
with the fact that the anomeric preference for α-D-glucose as an insulin secreta-
gogue was also obvious in female Zucker rats (fa/fa), which, at variance with male 
Zucker rats, maintain a close-to-normal glycemia at the age (13–26 weeks) of the 
animals indeed used for the experiments in the isolated perfused pancreas [97]. 
However, a loss of the anomeric specificity of the insulin secretory response to 
D-glucose was also observed in adult rats which had received an intraperitoneal 
administration of streptozotocin during the neonatal period [98]. Likewise, in rab-
bits examined 4–6 weeks after ligation of the pancreatic duct, the preference for 
α-D-glucose, otherwise observed in control rabbits, was no more obvious. As a mat-
ter of fact, the insulin secretory response to β-D-glucose remained unchanged in 
control rabbits and those with ligated pancreatic duct, whether the latter animals 
remained euglycemic or became frankly hyperglycemic after surgery, with an over-
all mean value for the increment in insulin output relative to paired basal value of 
55 ± 9%. In contrast, the secretory response to α-D-glucose, expressed in the same 
manner, progressively decreased from 84 ± 19% in the control rabbits to 65 ± 21% 
and 31 ± 2% in the close-to-normoglycemic and hyperglycemic duct-ligated rab-
bits, respectively [99]. These observations were thus compatible with the concept 
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that the relative severity of the anomeric malaise was linked to the extent of glucose 
intolerance, as already suggested by the experiments conducted in diabetic human 
subjects and BB rats. The validity of the latter concept was further documented in 
rats made modestly and briefly hyperglycemic by repeated oral administration of 
diazoxide and glucose during a period of 48 h before pancreas perfusion. Before 
presurgical anesthesia, the plasma concentration of glucose averaged in these rats 
15.4 ± 2.1 mM as distinct from 7.3 ± 0.6 mM in the control rats. The α/β ratio for 
the increment in insulin output provoked by the D-glucose anomers represented in 
the rats receiving diazoxide no more than half the value found in control animals 
[100]. Taken as a whole, these findings suggested that hyperglycemia provokes, as 
a function of its duration and severity, first an attenuation and then a suppression, if 
not inversion, of the anomeric preference of insulin release for α-D-glucose.

Two further studies conducted, on one hand, in rats which underwent partial 
pancreatectomy a few months prior to perfusion of their pancreas and, on the other 
hand, in rats fasted for 48 h prior to such a pancreatic perfusion documented the 
absence of any significant alteration of the anomeric specificity of glucose stimu-
lated insulin secretion [101, 102]. The experiments thus indicated that the anomeric 
malaise, taken as a manifestation of glucotoxicity, was not attributable to either an 
hyperactive insulin secretion by the B-cells, such as that imposed to rats from which 
80–85% of the pancreas had been removed, or a decrease in the insulin secretory 
response to glucose, as prevailing in islets during starvation.

The biochemical determinants of the process of B-cell glucotoxicity were 
eventually considered. The nonenzymatic glycation of intracellular proteins was not 
considered as a likely explanation. For instance, the nonenzymatic glycation of 
phosphoglucose isomerase, an enzyme which plays an essential role in the ano-
meric specificity of the insulin secretory response to D-glucose, does not alter its 
specific activity, affinity for glucose 6-phosphate, isotopic discrimination, and ano-
meric specificity [103]. Likewise, the modest accumulation of sorbitol observed in 
the islets of rats infused for 48 h with a hypertonic solution of glucose is unlikely to 
account for the anomeric malaise, the insulin secretory response to glucose being 
comparable whether the islets maintained for 20 h at a high concentration of glucose 
were preincubated in the presence or absence of an aldose reductase inhibitor [104].

A set of arguments suggested, however, that the intracellular accumulation of 
glycogen in insulin-producing cells represents a major determinant of the phenom-
enon of insulin glucotoxicity. As already mentioned in this chapter, the interaction 
of phosphorylase a with D-glucose anomers may represent an essential aspect of 
glycogenolysis. The effects of D-glucose anomers upon the rate of glycogenolysis 
were also already considered [28].

Three series of experiments provided the essential information. First, the 
secretory behavior of insulin- and glucagon-producing cells was found to be 
perturbed in isolated perfused pancreases removed from rats infused with hypertonic 
solutions of glucose for 48 h. The anomalies included a high basal release of insulin 
and a paradoxical increase in insulin output and decrease in glucagon release in 
response to a fall in extracellular D-glucose concentration. Likewise, in isolated 
islets prepared from the glucose-infused rats, theophylline stimulates insulin release 
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at a low ambient concentration of D-glucose, at variance with the situation found in 
islets removed from normal rats. These secretory perturbations coincided with an 
abnormal accumulation of glycogen in the B-cell [93].

Second, when glycogen-rich islets, first cultured for a few days in the presence 
of high concentrations of D-glucose (20–80 mM), were incubated for 6–10 min in 
the absence of glucose, the rate of glycogenolysis was grossly proportional to the 
islet glycogen content. Exogenous D-glucose (7–20 mM) inhibited glycogenolysis, 
the latter effect opposing the increase in glycolytic flux attributable to the utilization 
of exogenous glucose. Both the inhibitory effect of D-glucose on glycogenolysis 
and the utilization of the exogenous hexose tended to be higher with α- than with 
β-D-glucose [28].

In the last study, rats were perfused for 48–72 h with a hypertonic solution of 
glucose. The islets of these rats display a paradoxical and transient increase in insu-
lin output when the extracellular concentration of D-glucose is decreased from 16.7 
to 2.8 mM after 45 min of perifusion. The glycogen content of the islets initially 
averaged 37 picomoles of glucose residues per islet. The islets were then incubated 
for two successive periods of 10  min each: first in the presence of 16.7  mM 
D-glucose and then in the presence of only 2.8 mM exogenous D-glucose. The total 
output of lactic acid was comparable during these two successive incubations. 
However, when D-[U-14C]glucose was present in the incubation medium, the lactic 
acid-specific radioactivity was almost four times lower during the second than first 
incubation, indicating a considerably increased contribution of glycogen-derived 
unlabeled glucose to overall glycolytic flux in response to the decrease in extracel-
lular D-glucose concentration [105]. A quantitative model was proposed to account 
(i) for the progressive increase in basal insulin release, (ii) progressive shift in the 
anomeric specificity of glucose-stimulated insulin secretion, and (iii) paradoxical 
inhibition of insulin release by extracellular D-glucose as a function of the glycogen 
content of insulin-producing cells [106].

1.12  �The Sweet Taste Receptor Tir3

In an impressive series of recent publications, Itaru Kojima and colleagues revealed, 
since 2009, the presence of a sweet taste receptor in pancreatic islet cells and docu-
mented its multimodal signaling process in these cells [107–116]. These crucial 
findings, which are detailed in the last chapter of the present book, allowed to pro-
pose that the fuel concept postulating that the stimulation of insulin release by 
nutrient secretagogues reflects their capacity to act as a fuel in pancreatic islet beta 
cells is not incompatible with a receptor hypothesis postulating the participation of 
cell-surface receptors in the recognition of selected nutrients as insulinotropic 
agents [117].

In the prolongation of Itaru Kojima investigations and with his help, the presence 
of the TIR3 receptor in human pancreatic islet B-cells [118] and the effects of both 
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sucralose and lactisole upon the bioelectrical activity in insulin-producing cells 
[119, 120] were also recently investigated.

Prior work of I.  Kojima and colleagues also concerned investigations on the 
calcium-sensing receptor [121], the expression of which in pancreatic B-cells and 
possible role in the regulation of insulin release had been first examined in 1999 
[122–124].

1.13  �Conclusion

Maybe, the major conclusion that could be drawn from the present historical 
perspective resides in the fact that despite not ignoring the limitation, if not 
incorrectness, of prior occasionally rather dogmatic opinions on the process of 
D-glucose identification by pancreatic islet B-cells as an insulin secretagogue, it 
seems now possible to reconcile the receptor and fuel hypotheses for such a process.
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Chapter 2
Cell-Surface Glucoreceptor Recognizing 
Anomers of Glucose in Pancreatic β-Cells

Yuko Nakagawa and Hatsumi Niki

Abstract  Glucose is a major fuel stimulator of insulin secretion. When the effect 
of glucose anomers are compared in rat pancreatic islets, insulin secretion induced 
by the α-anomer is much more than that induced by the β-anomer. Similarly, insulin 
secretion induced by the α-mannose is higher than that induced by the β-anomer of 
mannose. It is well known that the α-anomer of hexose is stronger in activating the 
sweet taste receptor expressed in the taste buds of the tongue. Interestingly, inhibi-
tors of the sweet taste receptor attenuate insulin secretion induced by glucose in 
pancreatic islets. These results raise an interesting possibility that glucose activates 
a cell-surface “glucoreceptor,” which resembles the sweet taste receptor in the 
tongue, and exerts its action in pancreatic β-cells.

Keywords  Glucose · Glucose anomer · Insulin secretion · Glucoreceptor · Sweet 
taste receptor

Glucose is an important energy source and also functions as a signaling molecule 
reflecting the energy state in the body. Therefore, the concentration of glucose is 
monitored strictly in vivo, and failure of the glucose-sensing system leads to disease 
conditions such as diabetes.

The pancreatic β-cell, one of the endocrine cells in the pancreas, secretes insulin 
in response to the elevation of the plasma glucose concentration. Since insulin is 
secreted only in pancreatic β-cells, these cells play a critical role in maintaining 
glucose homeostasis. It is well known that glucose is the most important stimulator 
of insulin secretion. Neurotransmitters such as acetylcholine and various hormones 
including glucagon-like peptide-1 (GLP-1) are also physiologically important regu-
lators. However, these regulators cannot promote insulin secretion by themselves, 
nor can they stimulate secretion only in the presence of glucose. In contrast, glucose 
is an exceptional stimulator that can promote insulin secretion in the absence of any 
other agents. Hence, understanding the mechanism by which glucose promotes 
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insulin secretion is important, and many researchers have been investigating the 
issue. In the 1970s, there were two hypotheses as to the mechanism of action of 
glucose in pancreatic β-cells. One was the “metabolic hypothesis” in which glucose 
is metabolized intracellularly and its metabolic processes or metabolic products lead 
to stimulation of insulin secretion. The fact that blockade of the glucose metabolism 
suppresses insulin secretion is a major basis for this idea. The other is the “glucore-
ceptor hypothesis.” This hypothesis is based on the idea that glucose exerts its action 
by binding to and activating the “glucoreceptor” localized in the plasma membrane. 
In the early days, it was simply an idea opposing the “metabolic hypothesis,” but 
subsequently, a series of data supporting the glucoreceptor were reported. In this 
chapter, we would like to discuss the transition of the idea regarding the mechanism 
of action of glucose in pancreatic β-cells, featuring the glucoreceptor hypothesis.

Regarding the glucose-sensing system in pancreatic β-cells, the metabolic 
hypothesis and the glucoreceptor hypothesis existed in the 1960s, but the metabolic 
hypothesis was dominant. Meanwhile, Niki and colleagues in 1974 found that the 
α-anomer of D-glucose is more potent in stimulating insulin secretion than the 
β-anomer [1]. They isolated islets from Wistar rats by using collagenase and prein-
cubated them for 30 min. For each islet batch, 300 μl each of a solution containing 
no D-glucose, pure α-D-glucose, pure β-D-glucose, or a mixture of two anomers (α: 
β, 36: 64) was added, and the islets were incubated for 5  min. At 37  °C, α-D-
glucose is rapidly converted to β-D-glucose. The final concentration of each 
D-glucose was 2 mg/ml. Changes in the ratios of each anomer before and during 
incubation were determined by using β-D-glucose oxidase. After the incubation 
with each anomer, insulin was quantified by radioimmunoassay. The purity of each 
anomer before incubation was 98% or higher. After the 5 min incubation, the ratio 
of α-anomer to β-anomer was 42.4: 26.8. The amount of insulin in pancreatic islets 
cultured with each solution was as follows. The amount of insulin was 10.5 ± 1.1 
μU/5 min in medium containing no D-glucose, 25.5 ± 2.3 μU/5 min in medium 
containing α-D-glucose, 18.5 ± 1.9 μU/5 min in medium containing β-D-glucose, 
and 20.4 ± 2.4 μU/5 min in medium containing two anomers. Indeed, α-D-glucose 
was approximately 1.5 times more potent than β-D-glucose. The amount of insulin 
secreted from pancreatic islets cultured with a mixture of two anomers was in the 
middle of amount of insulin from pancreatic islets cultured in a solution containing 
a single anomer. Considering that the conversion of α-D-glucose to β-D-glucose is 
rapid, the difference in the actual ability to secret insulin is more than these data 
demonstrate. Based on these findings, it is possible that a molecule(s) capable of 
discriminating α- and β-anomers is expressed in β-cells, and the action of glucose 
is mediated by the putative receptor molecule. Regarding the anomer, monosac-
charides containing glucose have a cyclic structure in addition to the linear alde-
hyde type. When having a cyclic structure, the carbonyl carbon atom becomes a 
new asymmetric carbon atom, so that two diastereomers are generated due to the 
difference in arrangement of hydroxyl groups. These two diastereomers are called 
α- and β-anomers. The hydroxyl group of the carbonyl carbon atom and the sub-
stituent on the asymmetric carbon atom with the largest number are arranged in the 
trans, which is referred to as α-anomer, and the one arranged in the cis is called the 
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β-anomer (Fig. 2.1). The mutarotation between anomers is rapid. Indeed 20% of the 
α-anomer converts to the β-anomer in only 2 min. After 5 min, about 40% of the 
α-anomer converts to the β-anomer and eventually reaches equilibrium. In the study 
by Niki and colleagues, they cultured pancreatic islets for 5 min with two anomers. 
Indeed, pancreatic β-cells discriminated two anomers and induced insulin secretion 
to a different extent. Given that the incubation was for only 5 min, their results sug-
gest that the anomer is not identified in the process of metabolism, but rather it 
promotes insulin secretion by another mechanism independent of metabolism. 
Regarding this mechanism, involvement of two molecules should be considered. 
One is a glucose transporter. According to the previous reports, glucose uptake is 
not different between α and β anomers [2, 3]. It is also known that insulin secretion 
cannot be induced only by incorporation of glucose. Therefore, it seems quite likely 
that another candidate molecule, glucoreceptor, sensing the structural difference in 
glucose anomers controls insulin secretion. The glucoreceptor localized in the 
plasma membrane recognizes the difference in the conformation of each anomer, 
reflects this in signal transduction, and eventually induces insulin secretion. The 
ability of each glucose anomer to stimulate insulin secretion shown in their study 
suggests that the glucoreceptor plays an important role in glucose-induced insulin 
secretion. Accordingly, their results strongly support the glucoreceptor hypothesis. 
Subsequently, Grodsky and colleagues reported an article entitled “Anomeric speci-
ficity of glucose-stimulated insulin release: evidence for a glucoreceptor?” [4]. In 
perifusion experiments using pancreatic islets, various concentrations of α- and 
β-anomer were added and insulin secretion was compared. Compared to the 
β-anomer, α-anomer elicited insulin secretion at low concentrations, but no differ-
ence was found in the maximum stimulatory concentration. Indeed, pancreatic 
β-cells are more sensitive to α-anomer compared to β-anomer. In this report, the 
authors postulated that the glucoreceptor expressed in pancreatic β-cells detects 
differences in the conformation of the anomeric structure, and, when activated by 
glucose, the putative receptor evokes signals, which eventually induces insulin 
secretion. Collectively, these two studies provided support to the “glucoreceptor 
hypothesis” regarding the glucose-sensing system in pancreatic β-cells.

α-D-Glucose β-D-Glucose

CH2OH CH2OH

O OH
H

H

H
OH

OH

Fig. 2.1  Structure of α- and β-anomer of glucose. When monosaccharide has a cyclic structure, 
two diastereomers are generated because the carbonyl carbon atom is an asymmetric carbon atom. 
The hydroxyl group of the carbonyl carbon atom (red) and the substituent on the asymmetric car-
bon atom having the largest number (blue) are mutually trans isomers of α-anomer, and those of 
cis are β-anomer
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In addition to the above-mentioned reports, several lines of evidence supporting 
the “glucoreceptor hypothesis” have been reported. There is no difference in glu-
cose transport between α- and β-anomers in various cells including β cells, or in 
some situations, the β-anomer predominates [2, 3]. Glucokinase expressed in pan-
creatic β cells does not discriminate anomeric differences [5, 6]. In addition, once 
glucose is phosphorylated, the rate of interconversion of anomers becomes 270 
times higher, and at down-stream steps, both anomers of glucose are equally potent 
in β-cells [5]. Also, the production of H2O by the two anomers is comparable [2, 7]. 
The concentration of glucose-6-phosphate is roughly comparable whether extracel-
lular D-glucose is α-anomer or β-anomer, but rather, it is higher in the case of 
β-anomer [2, 7–9]. All of these results strongly support the “glucoreceptor 
hypothesis.”

On the other hand, regarding the metabolic hypothesis, Malaisse and colleagues 
highlighted phosphoglucose isomerase, an enzyme that converts glucose 6-phosphate 
to fructose 6-phosphate. They showed that phosphoglucose isomerase is more effi-
cient for α-anomer, and postulated that the difference in the action of α- and 
β-anomers depends on “metabolism” [8, 9].

In 1979, Niki and colleagues again stimulated β-cells by mannose anomers and 
compared insulin secretion induced by two anomers, focusing on phosphomannose 
isomerase. This enzyme more efficiently catalyzes the β-anomer. Accordingly, it is 
expected that if the structure of anomers is recognized by the enzyme, β-anomer is 
more potent in stimulating insulin secretion. Nevertheless, insulin secretion induced 
by the α-anomer of mannose is more similar to that induced by the β-anomer [10].

In 1983, Matchinsky reported that glucokinase, which was previously thought to 
be unable to distinguish α- and β-anomers, specifically recognizes α-anomer. They 
suggested that glucokinase perceives anomeric differences and causes a difference 
in insulin secretion. They also suggested that this glucokinase is a glucose sensor, 
since the Km value and the Vmax value of glucokinase for glucose and mannose 
agree with the respective values ​​of glucose metabolism in pancreatic β-cells. Their 
work provided support for the “metabolic hypothesis.”

Meanwhile, results supporting the “glucoreceptor hypothesis” have been 
reported. Mannoheptulose is a metabolic inhibitor of glucokinase and has been 
shown to inhibit secretion of insulin. In 1988, Wolf and colleagues permeabilized 
plasma membrane of pancreatic β-cells with digitonin. Using these permeabilized 
cells, they showed that mannoheptulose inhibits glucose action even in the absence 
of glucose phosphorylation [11]. These data suggest that mannoheptulose acts on a 
molecule(s) distinct from glucokinase and inhibits insulin secretion. In other words, 
glucose is capable of stimulating insulin secretion in a condition without glucose 
metabolism, and mannoheptulose inhibits glucose-induced secretion in this condi-
tion by acting on other target molecules. Since mannoheptulose tastes sweet, it is an 
interesting possibility that it acts on the sweet taste receptor or related molecules. In 
this regard, p-nitrophenyl-D-glucopyranoside (PNP-Glu), which is known as an 
inhibitor of the sweet taste receptor in the tongue, has a strong inhibitory effect on 
the α anomer. Indeed, PNP-Glu also suppresses glucose-induced insulin secretion in 
pancreatic islets. It inhibits insulin secretion induced by the α-anomer in a 
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concentration-dependent manner, but there is almost no inhibitory effect on the 
β-anomer. In addition, PNP-Glu does not affect insulin secretion induced by sulfo-
nylurea  or arginine [12]. It is an intriguing possibility that PNP-Glu acts on the 
sweet taste receptor or related molecules expressed in pancreatic β-cells and inhibits 
the glucose action. If so, this putative receptor functions as the glucoreceptor. It is 
known that alloxan is a glucose analog, and in rodents it selectively destroys pancre-
atic β-cells. Interestingly, the toxicity of alloxan is protected by co-administration of 
glucose. Also in this protective action, the two anomers have different effects. Thus, 
the α-anomer has a stronger protective effect compared to the β-anomer [13]. These 
findings strongly suggest that the site of action of alloxan is the glucoreceptor.

In 1988 Niki and colleagues investigated insulin secretion in animal models of 
diabetes. They isolated pancreatic islets from neonatal streptozotocin-administered 
rats (NSTZ rats) and Goto-Kakizaki rats (GK rats), two animal models of type 2 
diabetes. When α- or β-anomer of glucose was administered, there was no differ-
ence in insulin secretion induced by the two anomers, which should have been 
observed in islets from wild type rats [14, 15]. Furthermore, Leclercq-Meyer and 
colleagues reported that the difference in insulin secretion induced by two the ano-
mers disappeared in isolated pancreatic islets in BB rats, a model of type 1 diabetes 
[16]. The common phenotype for these diabetic model animals is not due to a 
change in the sensitivity to the β-anomer but rather to a decrease in the sensitivity to 
the α-anomer. Therefore, the portion of the glucoreceptor, recognizing that the 
α-anomer is a dominant stimulus, is more impaired than the one recognizing the 
β-anomer. In these animal models of diabetes, glucose metabolism in pancreatic 
islets does not differ from that of the wild type in glycolysis system, but it is still 
controversial as to the difference in the oxidation stage of glucose unrelated to ano-
meric discrimination.

At least a part of the dysfunction of pancreatic β-cells in diabetes is due to 
persistent exposure to hyperglycemia. However, sustained hyperglycemia does not 
down-regulate the activity of glycolytic enzymes. Furthermore, the function of glu-
cokinase is regulated by expression, and hyperglycemia in fact increases the expres-
sion of glucokinase [17]. Hence, it is quite unlikely that hyperglycemia 
down-regulates glucose metabolism. In this regard, Niki and colleagues examined 
whether or not discrimination of glucose anomers was restored after normalization 
of plasma glucose levels in diabetic GK rats by administration of islet-activating 
protein (IAP). They found that pancreatic β-cells in IAP-treated GK rats recognize 
the α-anomer as a dominant stimulus as compared with the β-anomer [15]. Persistent 
hyperglycemia may have caused down-regulation of glucoreceptors and decreased 
the cognitive function of the anomers. These results indicate that the glucose-
sensing mechanism is impaired in the diabetic condition and is restored by improv-
ing the blood glucose levels. Collectively, the function of the glucoreceptor is 
involved in the pathology of diabetes.

More than 40  years have already passed since the debates on “glucoreceptor 
hypothesis” and “metabolic hypothesis” have emerged. Since the discoveries of the 
KATP channel [18] and its molecular identification [19], “metabolic hypothesis” has 
become dominant. In addition, the molecular nature of the glucoreceptor was 
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completely unknown in those days. Accordingly, it is not surprising that the “gluco-
receptor hypothesis” became obscure.

However, numerous data suggesting the existence of “glucoreceptor” shown in 
the 1970s–90s are still valid. Unfortunately, the molecular nature of the “glucore-
ceptor” has not been clarified, yet many data suggest that it is a plasma membrane 
receptor molecule with a function similar to that of the sweet receptor in the taste 
bud [20, 21]. The research by Niki and colleagues may be the first act of glucorecep-
tor research, and elucidation of the molecular nature and function of the glucorecep-
tor is a big issue left for the second act.
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Chapter 3
KATP Channel-Independent Pathway 
and the Glucoreceptor

Toru Aizawa and Mitsuhisa Komatsu

Abstract  The biphasic response is a unique characteristic of glucose-stimulated 
insulin secretion by islet beta cells. Namely, upon exposure to a high concentration 
of glucose, insulin secretion increases sharply for approximately 5 min before it 
gradually wanes at the end of the first phase. The second phase is characterized by 
sustained insulin release that lasts for the entire duration of high extracellular glu-
cose concentration. Recently, new insights into the mechanisms underlying this 
phenomenon have been gained due to molecular identification of beta cell glucore-
ceptors. It has been previously postulated that elevation in cytosolic calcium leading 
to the first phase of insulin secretion is solely due to membrane depolarization 
caused by the closure of ATP-sensitive potassium (KATP) channels. However, the 
rapid increase in intracellular calcium is also caused by glucoreceptor-down signal-
ing. Therefore, the first phase of glucose-induced secretion, i.e., fusion of the beta 
granule and the plasma membrane, likely arises from both glucose-receptor binding 
and closure of KATP channels. The molecular nature of the so-called KATP-
independent glucose action appears to be diverse and still remains elusive. The 
releasable pool of beta granules is replenished by this glucose action, leading to the 
second phase of insulin secretion; signals for this phase also involve the direct rec-
ognition of glucose molecules by specific receptors. In this chapter, we review data 
pertaining to the functions of glucoreceptors in relation to KATP-independent glu-
cose action in beta cells.

Keywords  KATP channel · Biphasic response · Beta granule · Releasable pool · 
Cytosolic calcium

T. Aizawa (*) 
Diabetes Center, Aizawa Hospital, Honjo, Matsumoto, Japan
e-mail: taizawax@ai-hosp.or.jp 

M. Komatsu 
Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, 
Shinshu University School of Medicine, Matsumoto, Japan
e-mail: mitsuk@shinshu-u.ac.jp

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0002-8_3&domain=pdf
mailto:taizawax@ai-hosp.or.jp
mailto:mitsuk@shinshu-u.ac.jp


38

3.1  �Introduction

In order for glucose-stimulated insulin secretion (GSIS) to occur, the glucose 
molecule has to be recognized by beta cells. Approximately 50 years ago, beta cell 
glucose recognition was reported to occur through two separate but additive mecha-
nisms: the first through glucose metabolism and the other through beta cell surface 
glucoreceptors, such as in the tongue [1–4]. Following the identification of glucoki-
nase (GK) as a rate limiter of glucose phosphorylation during glycolysis, GK was 
proposed as a beta cell glucose sensor [5]. However, as overall glucose metabolism 
by islet cells is dictated not at the level of glucose phosphorylation, but by a more 
distal step or steps, the GK glucose sensor paradigm was strongly opposed [6]. 
Nonetheless, for the past 30 years, the majority of beta cell investigators have been 
trying to identify the mechanism linking glucose metabolism and insulin release. 
The term metabolism-secretion coupling was coined in 1997 [7].

Nonetheless, survivors of the “glucoreceptor school” did existed. We identified 
ATP-sensitive K+ channel (KATP)-independent stimulation of insulin secretion by 
glucose in 1992 [8–10], and we speculated that this glucose action is in part medi-
ated by glucoreceptors [9] (Fig. 3.1). To be honest, this was in part due to intuition 
but mostly from a strong influence on us from late Professor Atsushi Niki, the world 

GLUCOSE

TRANSPORT GLUCORECEPTOR?

METABOLISM

[ATP]

DEPOLARIZATION
[Ca2+]1

EXOCYTOSIS

Ca2+ Ca2+ INFLUX

Ca2+ CHANNEL
OPENING

K+
ATP-SENSITIVE

K+ CHANNEL
CLOSURE

Fig. 3.1  Hypothesized dual function of glucose. At this time, we thought calcium elevation caused 
by high concentration of glucose elicits insulin exocytosis on one hand and activate glucoreceptor 
downstream signal(s). (Adapted from Ref. [8] with permission)
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leader of the “glucoreceptor school.” Recently, Dr. Kojima and colleagues have 
shown renewed interest on beta cell glucoreceptors [11–13]. In this chapter, we 
present a reappraisal of our perspective on beta cell glucoreceptor and its signaling 
pathway.

3.2  �Glucose Stimulation of the Islet Beta Cell

A high concentration of glucose is the most important and robust physiological 
stimulus for insulin secretion by the beta cell, which elicits insulin exocytosis within 
minutes in vivo and even within a minute in vitro. In addition, a stimulatory concen-
tration of glucose primes the beta cell, i.e., insulin release provoked by any stimuli 
such as nutrients, pharmacological agents, and forced membrane depolarization, 
which are all enhanced by a prior exposure to high glucose concentration. This glu-
cose action is called time-dependent potentiation (TDP). The underlying mecha-
nisms for the glucose triggering of insulin exocytosis and TDP are different. Namely, 
the former is largely dependent on glucose-induced KATP channel closure, and the 
latter is primarily independent of it. To easily understand the possible involvement 
of glucoreceptor in the KATP-independent glucose action, GSIS is first summarized 
below.

3.2.1  �Insulin Secretion in Response to a High Concentration 
of Glucose

Upon elevation of its extracellular concentration, glucose enters the beta cell via the 
glucose transporter. Glucose is rapidly metabolized in the cell and the metabolic 
milieu of the beta cell changes. Among the variety of metabolic intermediates pro-
duced in the beta cell upon glucose stimulation, an increase in ATP and a decrease 
in ADP, and therefore increased ATP to ADP ratio is regarded as the major signal for 
the KATP channel closure (Fig. 3.2) [14]. Closure of the channel is followed by 
decreased K+ outflow, which in turn causes membrane depolarization and the open-
ing of L-type voltage-dependent Ca2+ channels. A rapid influx of calcium then 
ensues due to a large concentration gradient across the cell membrane; the extracel-
lular free Ca2+ concentration is in the millimolar range, while intracellularly it is in 
the low nanomolar range. This Ca2+ influx raises the submembrane free Ca2+ con-
centration, which triggers a reaction cascade by activating the soluble 
N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex. 
For the fusion of beta granule to the plasma membrane. This cascade leads to a 
dramatic rise in the rate of fusion of the beta granules to the plasma membrane 
[15–17] (Fig. 3.3).
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This concept was originally proposed by Dean and Mathews in 1968 [18] and 
has been confirmed in numerous studies performed thereafter [19]. This explanation 
of the action of glucose is straightforward and easy to follow. Furthermore, insulin 
secretion activated by glucose can be prevented or mimicked by inhibitors or activa-
tors of each step, respectively. For example, an activator of KATP channel (diazox-
ide), an inhibitor of voltage-dependent calcium channels (VDCC) (nifedipine), use 
of to the experimental buffer without added Ca2+ (note that this procedure lowers 
extracellular Ca2+ down to the low micromolar range, not lower than [Ca2+]i), and 
inhibitors of glycolysis or mitochondrial metabolism all interfere with regular 
GSIS. On the other hand, an inhibitor of KATP channels (sulfonylurea), a VDCC 
activator (BAY-K 8644), and non-glucose fuel sources in the beta cell such as cer-
tain amino acids all stimulate insulin exocytosis. Even a simple increase of extracel-
lular Ca2+ causes transient insulin release [20]. These observations are all compatible 
with the KATP dogma.

Fig. 3.2  Relationship between three fuel-driven metabolic cycles that generate metabolic coupling 
factors in the β cell. (Adapted from Ref. [14] with permission)
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3.2.2  �Phasic Insulin Response: A Manifestation of KATP-
Independent Glucose Action

Continued exposure of the islet beta cell to a stimulatory concentration of glucose 
elicits phasic insulin secretion [21]. The initial phase begins within a minute of 
stimulation and subsides at around 5–8 min, if the beta cell is continuously exposed 
to a consistent stimulatory concentration of glucose. The second phase involves a 
gradual increase in the rate of insulin exocytosis. This phase lasts for hours [21, 22] 
or essentially for as long as the beta cell is kept exposed to a high concentration of 
glucose. Importantly, the end of the first phase insulin release is not simply an emp-
tying of the beta cell insulin reserve, as varying concentrations of stimulating glu-
cose elicit a corresponding level of first phase response [21]. Obviously, the amount 
of insulin secreted in, for instance, 30-min incubation of the beta cell with a stimula-
tory concentration of glucose is mostly attributable to the second phase release. The 

Fig. 3.3  Stages of exocytosis. (a) Secretory granule (SG) tethering to the plasma membrane (PM). 
RalA binds Sec5 to promote assembly of the eight-subunit exocyst complex, which tethers the SG 
loosely to the PM. Munc18 binds syntaxin in closed form, which is unable to form a complex with 
synaptosome-associated protein of 25  kDa(SNAP25) and vesicle-associated membrane protein 
(VAMP). (b) Priming. Munc18 is assisted by Munc13–1 in activating syntaxin, which adopts an 
open conformation that can form a soluble N-ethylmaleimide-sensitive factor attachment protein 
receptor (SNARE) complex with SNAP25 and VAMP. This SNARE complex is bound to Ca2+ 
channels to form the excitosome, which positions SGs at sites of maximum Ca2+ influx. (c) Fully 
primed. The SG is held close to the PM by the SNARE complex, which is only partially zippered 
(note the space at the C terminus) due to being clamped by complexin. (d) Fusion. Ca2+ influx 
from open Ca2+ channels (relieved from binding the SNARE complex) acts on the Ca2+ sensor 
synaptotagmin, which removes complexin from the SNARE complex thus allowing full zippering 
of the SNARE complex. Synaptotagmin also promotes lipid mixing between SGs and the PM, 
leading to fusion pore formation. (Adapted from Ref. [17] with permission)
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second phase is relatively larger in rat and human islet beta cells than in mouse 
counterparts, which is considered in part due to difference in the metabolic fate of 
glucose in rat and mouse beta cells [23]. Terminologies such as “augmentation,” 
“amplification,” and “the second phase” have been interchangeably used by investi-
gators in this field [19, 24].

The temporal profile of KATP channel closure, membrane depolarization, and 
elevation of cytosolic Ca2+ do not match to the phasic insulin response as described 
above [25]. Glucose can induce second phase insulin secretion in the presence of 
diazoxide, a KATP channel opener, if cytosolic Ca2+ is elevated by a depolarizing 
concentration of K+ [8] or a VDCC opener, Bay-K 8644 [26]. Glucose induces Ca2+ 
oscillation in the cell, but simple depolarization by high concentration of K+ does 
not. Therefore, the Ca2+ oscillation was proposed as a putative drive for the second 
phase insulin release. However, the glucose-induced second phase insulin release is 
present under full opening of KATP channels [8], which denies the legitimacy of 
this hypothesis. Selective inhibition of the first phase does not affect the amplitude 
or temporal profile of the second phase response [25]. Therefore, this so-called sec-
ond phase insulin secretion in response to glucose is attributable to KATP-
independent mechanism or mechanisms.

3.2.3  �Time-Dependent Potentiation: An Alternative 
Manifestation of KATP-Independent Glucose Action

When islet beta cells are preexposed to a stimulatory concentration of glucose, they 
secrete a greater amount of insulin than those not preexposed, in response to stimuli 
applied later. This phenomenon is called time-dependent potentiation (TDP), prim-
ing, or glucose memory [26–28]. It has been well established that not only glucose, 
but other nutrients, which are metabolized in beta cells, elicit TDP. Certain amino 
acids and free fatty acids are representative of such nutrients. On the other hand, 
ionic events, such as depolarization or elevation of cytosolic [Ca2+]i or activation of 
cAMP-dependent processes by incretin hormones, do not cause TDP if nutrients 
were not present. Activation of protein kinase C may be an exception; pretreatment 
of the beta cell with an activator of protein kinase C, such as phorbol ester, causes 
TDP even in the absence of a stimulatory concentration of glucose [29].

Independence of TDP from the KATP channel was first phenomenologically 
shown by Grill et al. [30]. Here, they elegantly demonstrated that glucose-induced 
TDP occurs even if glucose priming was performed in the presence of a high con-
centration of diazoxide; diazoxide was not considered as an opener of the KATP 
channel, however. We established that TDP is totally independent of KATP channel 
closure and therefore independent of an elevation of cytosolic Ca2+ [26, 27]. 
Moreover, TDP occurs seemingly normal in the buffer without added calcium and 
containing 1 mM EGTA [28].
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3.2.4  �“Fusion” Rather than Triggering and “Replenishment” 
in Place of Augmentation/Amplification: “The 
Inside Story”

Insulin secretion by the islet beta cell has been quantified primarily by insulin 
immunoassay, by which amount of insulin molecule coming out of the cell was 
measured. The term “triggering and amplification/augmentation” [19, 24] has 
stemmed from such measurements, which we would call “the outside story.” In such 
studies, the process of glucose-stimulated insulin secretion is “interpreted” from the 
cell exterior to speculate what is occurring intracellularly. More recently, the intra-
cellular dynamics of beta cells has increasing been elucidated by direct visualization 
of beta granule trafficking [17]. Previously, we proposed a scheme in which the 
traditional, indirect “outside” view of phasic insulin secretion was replaced with a 
more direct inside view [16]. Here, we push further and present a more comprehen-
sive scheme encompassing the glucoreceptor and its downstream signaling (Fig. 3.4).
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Fig. 3.4  Phasic insulin secretion upon stimulation with high concentration of glucose. Putative 
role of glucoreceptor-down signaling was illustrated in addition to KATP-dependent and KATP-
independent glucose actions. See Text for the detail
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The beta granule is not homogeneous. Only a small proportion of insulin in the 
cell (15% maximum) is packaged in the releasable pool of the granule [27], that is, 
the readily releasable (RRP) and remote pool (RP) combined. Namely, the majority 
of insulin resides in non-releasable pool(s) [50]. The so-called first phase insulin 
secretion, or triggered insulin, consists of insulin from the readily releasable pool, 
through rapid membrane fusion of the beta granule and the plasma membrane (PM). 
Concurrently, replenishment/refilling of the readily releasable pool occurs. This 
replenishment may be in part due to physical movement of the beta granule into the 
pools closer to the PM but can primarily be attributed to chemical modification of 
the granule surface SNARE complex rendering them to be readily releasable. In 
other words, there may be a mature and immature beta granule with the former 
being the first (immediate) comers and the latter late (slow) comers [14, 17].

Second phase insulin secretion, amplification, augmentation, and TDP could all 
be regarded as a manifestation of replenishment. Specifically, “second phase of 
GSIS,” “amplification,” “augmentation,” and “time-dependent potentiation” are dif-
ferent “outside” names for the same “inside” event, which is the replenishment of 
the RRP from the RP. This process is entirely governed by the KATP-independent 
glucose action.

3.3  �The Glucoreceptor Hypothesis and the KATP Channel-
Independent Glucose Action

The involvement of glucoreceptors for KATP channel-independent glucose action 
was speculated by our group in 1992 [9]. Subsequently, we have evaluated this 
hypothesis by several different modalities, including pharmacological inhibition of 
the sweet taste inhibitor, the metabolic inhibition of beta cells, and the stringent Ca2+ 
removal from the media.

3.3.1  �Impact of Pharmacological Inhibition of Glucoreceptors 
on the KATP Channel-Independent Glucose Action

Sweet substances including glucose are recognized by the cell surface glucoreceptor 
of sweet sensing cells of the taste bud. As para-nitrophenyl-alpha-D-glucopyranoside 
is a blocker of glucoreceptors in the tongue, its effect on the KATP channel-
independent glucose action was tested [31]. A high concentration of glucose robustly 
enhanced insulin release, evoked by a depolarizing concentration of K+ in the 
presence of diazoxide and a KATP channel opener, which is the core of KATP-
independent glucose action.

T. Aizawa and M. Komatsu
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Pretreatment of the rat islet cells for 30 min with 5–10 mM p-nitrophenyl-alpha-
D-glucopyranoside, but not its beta isomer, significantly suppressed (by 20–60%) 
such glucose action. Conversely, the sweet taste inhibitor did not suppress insulin 
release induced by a depolarizing concentration of K+ in the absence of a stimula-
tory concentration of glucose. The sweet taste inhibitor did not suppress glucose 
metabolism in the beta cell [31]. This was evidence indicating that KATP channel-
independent glucose action is in part mediated by glucoreceptors.

3.3.2  �Resistance to Metabolic Inhibition of KATP Channel-
Independent Glucose Action

It is well established that glucose metabolism in the beta cell is attenuated by 
prolonged fasting of animals or by the lowering of incubation temperature. We 
utilized this unique feature of beta cells to prove the relative independence of the 
KATP channel-independent glucose action on glucose metabolism [31, 32]. First, as 
in previous experiments, the KATP-independent glucose action was confirmed in 
the release experiment where glucose was added on top of depolarizing concentration 
of K+ in the presence of diazoxide, an activator of the KATP channel. Islet beta cells 
derived from rats fasted for 4 days prior to the experiment showed almost no insulin 
secretion in response to 16.7  mmol/l glucose. Alternatively, the KATP channel-
independent glucose-mediated stimulation of insulin secretion was only 50% lower 
compared to that seen in normally fed rats’ beta cells. Under a low temperature of 
22 °C, insulin release induced by 16.7 mmol/l glucose alone was negligible. In con-
trast, KATP-independent glucose action was clearly detectable at this low tempera-
ture. Glucose metabolism, glycolysis, and glucose oxidation in the islet cells were 
suppressed by 20% and 50%, respectively, after 4 days fasting. At a low tempera-
ture, both glycolysis and glucose oxidation were lowered by 60% [31, 32].

Such KATP channel-independent glucose action can be demonstrated even in 
stringent calcium-free conditions [33]. Namely, even after incubation in the buffer 
without added calcium and 1 mM EGTA present, glucose robustly stimulated insu-
lin secretion if TPA, a classic protein kinase C activator, was present [33]. In addi-
tion, the rapid oscillation of insulin release from single islets upon glucose 
stimulation was present even under these stringent Ca2+ free conditions [34]. It has 
been reported that glycolysis and glucose oxidation were negligible in stringently 
Ca2+-free media [35]. Rapid oscillatory, pulsatile insulin release in response to high 
glucose was also retained despite KATP channels were fully open [36].

Therefore, KATP-independent glucose stimulation of insulin release is resistant 
to the inhibition of metabolism, which again indicates the role of glucoreceptor in 
this branch of glucose action.
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3.3.3  �KATP-Independent Glucose Action in Patients or 
Experimental Animals with Genetic Loss of a Functional 
KATP Channel

The most convincing evidence so far to support the proposed functioning of the 
glucoreceptor in human beta cells is the following observation in patients with 
genetic abnormality resulting in the absence of KATP channel: persistent hyperin-
sulinemic hypoglycemia of infancy (PHHI) [37]. An abrupt rise in plasma glucose 
concentration from 75 to 350 mg/dl (4.2–19.4 mM) through intravenous bolus glu-
cose injection to the children with this mutation elicited a near normal insulin secre-
tion. The absence of a functional KATP channel was proven both by genetic analysis 
of ex vivo pancreatic tissue and by the absence of insulin secretion upon injection 
of a pharmacological dose of sulfonylurea, a KATP inhibitor insulin secretagogue 
used for patients with diabetes. In vivo, islet beta cells are kept primed with an 
ambient level of incretins, amino acids, fatty acids, and parasympathetic input. 
Instantaneous elevation of glucose to the above-described level may be able to cause 
a near-normal insulin secretion, despite the absence of KATP channels. Additionally, 
loss of insulin response to IV bolus glucose is an early abnormality of the islet beta 
cell [38]. In unison, the above findings are of prime importance, strongly suggesting 
the KATP-independent, possibly glucoreceptor-mediated mechanism leading to 
insulin exocytosis, is defective in human diabetes. Subtotal pancreatectomy in 
patients with genetic loss of KATP channels resulted in normal glucose metabolism 
or mild diabetes that lasted for years [39–41]. Such clinical data implies that 
nutrient-regulated insulin secretion occurs in vivo in the absence of the beta cell 
KATP channels. Pancreatic islets from PHHI patients responded well to glucose 
in vitro [42].

The data obtained from the KATP channel knockout (KO) mouse are variable 
and highly discordant to each other. Namely, in islet beta cells from this KATP 
channel KO mouse, glucose-induced insulin release was absent, impaired, or 
retained. In one strain, KO of the KATP channel obliterated GSIS in vivo [43]. On 
the other hand, GSIS by the beta cell was clearly retained [44] or close to normal 
[45] in the KATP-KO mouse of other strains. Recovery of glucose responsiveness 
of the islets from KATP channel KO mouse by overnight culture was demonstrated 
[45]. The inconsistency of phenotype of the KATP channel KO mouse might be due 
to genetic background of the parent mouse. There are two subunits for the KATP 
channel: one an inward rectifying potassium channel 6.2 (Kir 6.2) and the other a 
sulfonylurea receptor 1 (SUR1) [46]. Total obliteration of GSIS by the islet beta cell 
has been reported in mice with Kir6.2 KO [43]. On the other hand, retention of 
GSIS has been found in SUR1 KO mouse [44, 45, 47] and in the beta cells from 
PHHI patients with SUR1 mutation [42]. Considering that the regulatory/accessory 
proteins for Kir6.2 and SUR1 are totally different, it might be possible that the phe-
notypic difference of the two groups of KATP-KO mice is attributable to the distinct 
set of proteins wiped out by the Kir6.2 and SUR1 deletion (Prof. Kakei, personal 
communication).
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3.4  �Summary

For over 80  years, the mechanism of glucose-mediated stimulation of insulin 
secretion has been studied by many researchers using divergent techniques. 
However, we do not yet fully understand it. Specifically, the mediator(s) of KATP-
independent glucose action, namely, factor(s) mediating glucose replenishment of 
the RRP, are still ambiguous [48, 49]. Glucoreceptors may well be an important 
player in glucose stimulation of beta cells. Particularly, it may function as a bridge 
among ionic, nonionic, and metabolic signaling pathways and is needed for the 
maximum manifestation of glucose stimulation of the beta cell.
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Chapter 4
Signaling System Activated by the  
Glucose-Sensing Receptor

Johan Medina and Yuko Nakagawa

Abstract  Glucose is a primary stimulator of insulin secretion in pancreatic β-cells. 
It has long been thought that glucose augments insulin secretion solely by a mecha-
nism dependent on glucose metabolism. Consequently, it takes a certain period of 
time for glucose to initiate cellular responses. With regard to the membrane poten-
tial, for example, it takes at least half a minute to observe glucose-induced depolar-
ization of the plasma membrane. This lag period is thought to be a time required for 
glucose metabolism. To address the possibility that glucose activates a cell-surface 
receptor, we developed sensitive methods to monitor changes in cytoplasmic free 
calcium ([Ca2+]c), cyclic AMP ([cAMP]c), and activation of protein kinase C (PKC). 
Using sensitive methods, we investigated whether or not glucose induces immediate 
signals in β-cells. Indeed, glucose evoked immediate changes in [Ca2+]c, [cAMP]c 
and PKC activity. Importantly, these rapid signals were independent of glucose 
metabolism and were reproduced by addition of nonmetabolizable glucose analogs. 
Since these signals were inhibited by inhibition of Gq or Gs, it is quite likely that 
glucose activates a cell-surface receptor and generates immediate intracellular sig-
nals in pancreatic β-cells.

Keywords  Glucose · Insulin secretion · Glucose-sensing receptor · T1R3 · 
Calcium-sensing receptor · Calcium · Cyclic AMP · Protein kinase C

4.1  �Introduction

Insulin is a major regulator of glucose metabolism and is secreted from pancreatic 
β-cells [1]. Secretion of insulin is modulated by various regulators including nutri-
ents, hormones, and neurotransmitters [1, 2]. Among them, glucose is the most 
important stimulator of insulin secretion. The action of glucose is unique in that it is 
able to stimulate insulin secretion by itself, and because of this, glucose is thought 
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to be a primary stimulator of insulin secretion [1]. Many researchers have been 
studying the mechanism by which glucose stimulates insulin secretion. Dean and 
Mathew [3] found in their electrophysiological study that glucose induces action 
potentials in β-cells, which are dependent on extracellular Ca2+. Subsequent studies 
have revealed that permeability of potassium is reduced by an elevation of ambient 
glucose concentration [4]. In 1984, Aschroft and colleagues [5] found the ATP-
sensitive potassium channel (KATP channel) in pancreatic β-cells. Their results indi-
cate that glucose is metabolized in β-cells, and a resultant increase in ATP or ATP/
ADP ratio inhibits the KATP channel, which leads to depolarization of the plasma 
membrane. When the membrane potential exceeds the threshold, the voltage-
dependent Ca2+ channel is opened and Ca2+ enters the cell [6]. These changes in ion 
fluxes are caused by changes in ATP, a product of glucose metabolism. Accordingly, 
these results led to the idea that glucose exerts its action by a mechanism dependent 
on its metabolism [7, 8].

4.2  �Action of Glucose on Cellular Ca2+ Metabolism

As mentioned above, glucose induces changes in electrical activity in pancreatic 
β-cells [3]. Specifically, glucose causes depolarization of the plasma membrane. It 
should be mentioned that glucose-induced depolarization takes place after a certain 
lag time and it takes 1 min or sometimes longer. Following this, there are a series of 
action potentials, which is dependent on extracellular calcium. It has been generally 
thought that the lag period corresponds to the time required for generation of ATP. In 
other words, it takes a certain amount of time for glucose to be metabolized through 
the glycolytic pathway and in the mitochondria. An increase in the ATP/ADP ratio 
causes closure of the KATP channel and depolarizes the plasma membrane [5].

When changes in cytoplasmic-free calcium concentration ([Ca2+]c) are monitored 
by using a fluorescent Ca2+ indicator, for example, Fura-2, elevation of ambient 
glucose induces rather unexpected responses. Thus, a high concentration of glucose 
first causes reduction of [Ca2+]c [9, 10]. This reduction of [Ca2+]c lasts 50–60 s or 
even more, which is followed by oscillatory elevations of [Ca2+]c. Typically, 
oscillation of [Ca2+]c lasts as long as the time it takes glucose to stimulate β-cells. 
Generally speaking, calcium mobilizing agonists induce an immediate elevation of 
[Ca2+]c and, in β-cells, a muscarinic agonist carbachol, for example, evokes an 
immediate elevation of [Ca2+]c [11]. Accordingly, the reduction of [Ca2+]c induced 
by a high concentration of glucose is rather unexpected. Many researchers have 
been studying the mechanism by which glucose first reduces [Ca2+]c in β-cells. They 
have found that the initial reduction of [Ca2+]c is due to uptake of Ca2+ into intracel-
lular organelle and that the endoplasmic reticulum (ER) may be the major site to 
which Ca2+ is taken up [12, 13]. Thus, glucose activates the Ca2+ pump in ER and 
thereby extrudes cytoplasmic Ca2+ into ER. This is the initial action of glucose on 
cellular Ca2+. Although many studies have focused on the initial action of glucose 
on intracellular Ca2+, it is still unclear how glucose activates the Ca2+ pump in ER 
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and reduces [Ca2+]c. Also, the physiological significance of the reduction of [Ca2+]c 
is not totally clear. Furthermore, it is even uncertain whether or not the initial reduc-
tion of [Ca2+]c is dependent on glucose metabolism. Taken together, the rapid actions 
of glucose in β-cells still remain elusive.

4.3  �Rapid Signals Induced by Glucose

We were interested in the action of glucose in pancreatic β-cells and specifically 
interested in the initial action of glucose. Our research involved monitoring various 
changes in intracellular signals in a living β-cell evoked by high concentrations of 
glucose. To this end, we first developed a method to monitor the activation process 
of protein kinase C (PKC) by using total internal reflection fluorescence (TIRF) 
microscopy [14]. This is a very sensitive method to monitor translocation of PKC-α 
from cytosol to the plasma membrane. Conventional PKC including PKC-α is 
located in the cytosol in unstimulated conditions. When activated by various Ca2+-
mobilizing agonists, conventional PKC translocates to the plasma membrane. PKC 
is then released from the plasma membrane to the cytosol when the agonist signal is 
terminated. Accordingly, the activation process of PKC can be observed by moni-
toring the changes in the amount of PKC in the plasma membrane. As shown in 
Fig 4.1a, when a β-cell is stimulated by a high concentration of glucose, there is a 
small and gradual elevation of the amount of PKCα. This response is rapid and is 
detected within 10 s of the stimulation by glucose. A few min later, there is a large 
elevation of the amount of PKC in the plasma membrane. Considering the time 
frame of changes in [Ca2+]c in glucose-stimulated β-cells, the second large elevation 
of PKC may correspond to the second phase of [Ca2+]c response. A critical question 
is whether or not these changes in PKC are dependent on glucose metabolism. 
Glucose metabolism can be blocked by adding mannoheptulose, an inhibitor of 

PK
C

a 
(F

/F
0)

-1       0        1       2       3        4
Time (min)

Glucose 

6

4

2

-1         0        1         2 3 4
Time (min)

PK
C

a 
(F

/F
0) Glucose

6

4

2

Mannoheptulose

A B

Fig. 4.1  Effect of glucose on translocation of PKC. (a) PKCα-expressing MIN6 cell was 
stimulated by 16.7 mM glucose and translocation of PKCα was monitored by TIRF microscopy. 
(b) Effect of glucose was examined as in a in the presence of 10 mM mannoheptulose
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glucokinase [15]. In the presence of mannoheptulose, the rapid gradual elevation of 
PKC is observed, whereas the second oscillatory elevation of PKC is completely 
blocked (Fig 4.1b). This result indicates that the first response of PKC is indepen-
dent of glucose metabolism, while the second oscillatory elevation of PKC is depen-
dent on glucose metabolism. For the first time metabolism-independent signals 
evoked by glucose can be observed. To confirm this, we administered nonmetabo-
lizable glucose analog 3-O-methylglucose (3OMG). If the signal is produced by a 
mechanism independent of glucose metabolism, it would be expected that 3OMG is 
able to reproduce the signal. Indeed, 3OMG reproduces the first gradual elevation 
of PKC in the plasma membrane. In contrast, the second oscillatory elevation of 
PKC is not observed. These results suggest that the first response of PKC induced 
by glucose is independent of glucose metabolism. Since the first response occurs 
rapidly, the first response of PKC may be due to the activation of cell-surface recep-
tor for glucose. We tentatively named this putative receptor, glucose-sensing recep-
tor (GSR) [16].

To confirm the rapid activation of PKC induced by glucose, we monitored 
phosphorylation of myristoylated alanine-rich C-kinase substrate (MARCKS) [17]. 
In an unstimulated condition, MARCKS is bound to the plasma membrane. When 
phosphorylated by PKC, MARCKS is released to the cytosol [18]. Therefore, the 
phosphorylation state of MARCKS can be observed by monitoring the changes in 
the amount of MARCKS in the cytosol. As shown in Fig  4.2, administration of 
glucose induces biphasic elevation of MARCKS in the cytosol. Glucose induces a 
rapid transient elevation of MARCKS, which is followed by the second larger ele-
vation of MARCKS in the cytosol. Interestingly, inhibition of glucose metabolism 
by administration of mannoheptulose abolishes the second response of MARCKS, 
whereas the first response is not affected by the inhibition of glucose metabolism. In 
accordance with this, administration of nonmetabolizable 3OMG induces the first 
phase of elevation of MARCKS, while the second elevation of MARCKS is not 
observed. Once again, glucose evokes a rapid phosphorylation of MARCKS by a 
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Fig. 4.2  Effect of glucose on phosphorylation of MARCKS. GFP-MARCKS-expressing MIN6 
cell was stimulated by 16.7 mM glucose and changes in the amount of GFP-MARCKS in cytosol 
was monitored
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mechanism independent of glucose metabolism. It should be noted that the rapid 
activation of PKC occurs when [Ca2+]c is reduced by glucose. This seems somewhat 
peculiar since conventional PKC is activated by Ca2+ and diacylglycerol (DAG) 
[19]. We wondered whether we failed to detect initial changes in [Ca2+]c induced by 
glucose. Several possibilities are considered. First, glucose may induce a tiny 
change in [Ca2+]c, which cannot be detected by the conventional method. Second, 
glucose increases [Ca2+] in some compartment of the cell, for example, in the sub-
plasma membrane area. Third, fluxes of Ca2+ are balanced so that [Ca2+] in the balk 
of cytosol is not changed significantly.

Considering these possibilities, we decided to detect tiny changes in [Ca2+]c in 
β-cells and developed a new method to monitor subplasma membrane [Ca2+] con-
centration ([Ca2+]s) using ultra-sensitive Ca2+ indicator yellow cameleon-nano15 
(YC-nano15) [20]. We targeted yellow cameleon-nano15 to the plasma membrane 
in order to monitor [Ca2+]s in a very sensitive way [21]. Using this method, we mea-
sured changes in [Ca2+]s in a glucose-stimulated β-cell. As depicted in Fig 4.3, addi-
tion of glucose evokes triphasic changes in [Ca2+]c [21]. Thus, glucose induces an 
immediate sharp peak of [Ca2+]s. This sharp peak of [Ca2+]s is followed by a sus-
tained reduction of [Ca2+]s, which lasts a min or more. Then, there is a large oscilla-
tory elevation of [Ca2+]c, which lasts as long as the glucose concentration is high. 
The rapid peak of [Ca2+]s has never been detected before. In fact, if Fura-2 is loaded 
in YC-nano15-expressing cell, the rapid peak is not observed [21]. Presumably, 
Ca2+-chelating activity of Fura-2 may have abolished tiny changes in [Ca2+] in Fura-
2-loaded cells. In any case, glucose evokes an immediate elevation of [Ca2+]s in 
β-cells. Among three phases of changes in [Ca2+]s, rapid transient and sustained 
reduction are independent of glucose metabolism. Thus, addition of mannoheptu-
lose abolished third oscillatory elevation of [Ca2+]s, whereas initial transient and 
subsequent sustained decrease in [Ca2+]s were observed in the presence of manno-
heptulose. In addition, addition of nonmetabolizable glucose analog 3OMG induced 
a rapid transient and subsequent sustained decrease in [Ca2+]s. Unlike glucose, 
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Fig. 4.3  Effect of Glucose on [Ca2+]s [21]. PM-Cameleon-expressing MIN6 cell was stimulated 
by 16.7 mM glucose and changes in [Ca2+]s monitored
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3OMG did not induce oscillatory elevation of [Ca2+]s. Consequently, the first rapid 
peak and subsequent reduction of [Ca2+]s are independent of glucose metabolism, 
whereas oscillatory elevation of [Ca2+]s is dependent on glucose metabolism. It is 
noteworthy that the initial sharp peak and sustained reduction of [Ca2+]s are blocked 
by an inhibitor of Gq and an inhibitor of phospholipase C (PLC) [21], suggesting 
that these two kinds of signals are generated by receptor-mediated activation of Gq 
and PLC. In contrast, the third oscillatory elevation of [Ca2+]s may be dependent on 
KATP channel and voltage-dependent calcium channel.

It is well known that a high concentration of glucose elevates cyclic AMP 
(cAMP) in pancreatic β-cells [22, 23]. Elevation of intracellular cAMP concentra-
tion ([cAMP]c) has been thought to be due to elevation of [Ca2+]c, which is depen-
dent on glucose metabolism, since calcium-dependent adenylyl cyclase is expressed 
in these cells. If this is the case, it would be expected that elevation of [cAMP]c 
would be observed after a certain lag period. To examine this, we developed a sensi-
tive method to monitor the subplasma membrane concentration of cAMP, ([cAMP]s) 
using a cAMP indicator Epac1-camp bound to the plasma membrane [21].

Using this method, we monitored changes in [cAMP]s in glucose-stimulated 
β-cell. As shown in Fig  4.4, administration of a high concentration of glucose 
induced a rapid monophasic elevation of [cAMP]s. Elevation of [cAMP]c was 
observed immediately after the addition of glucose. This response of [cAMP]s is 
quite rapid and, more importantly, is not affected by the addition of mannoheptu-
lose, an inhibitor of glucokinase [21]. Consequently, the glucose-mediated rapid 
elevation of [cAMP]s is independent of glucose metabolism. In accordance with this 
notion, 3OMG, a nonmetabolizable glucose analog, evoked a rapid elevation of 
[cAMP]s in β-cells [21]. This rapid response of [cAMP]s may have been due to the 
activation of a cell-surface receptor since glucose-mediated increase in [cAMP]s is 
inhibited by transducting a gene of dominant-negative mutant of Gs, a GTP-binding 
protein activating adenylyl cyclase [21]. It seem quite likely that glucose evoked a 
rapid [cAMP]s response by receptor-mediated activation of Gs.
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The above results indicate that in addition to the well-known metabolism-
dependent Ca2+ signal, that is, KATP channel-dependent Ca2+ entry, glucose produces 
rapid signals, and it is not dependent on glucose metabolism. Rather, glucose may 
activate a cell-surface receptor and generate immediate Ca2+ and cAMP signals by 
activating G proteins, Gq and Gs. We named this putative cell-surface receptor 
glucose-sensing receptor (GSR) [16]. Since GSR is activated by glucose and non-
metabolizable 3OMG, it resembles the sweet taste receptor in the tongue. The sweet 
taste receptor is expressed in the taste cells of the tongue and is thought to be a 
heterodimer of two subunits of the type 2 and type 3 taste receptor 1 family (T1R2 
and T1R3, respectively) [24, 25]. Both T1R2 and T1R3 are also expressed in pan-
creatic β-cells [17]. Regarding the expression levels of T1R2 and T1R3, T1R3 is 
abundantly expressed in β-cells while the expression of T1R2 is low and, in fact, 
undetectable at the protein level [26]. Hence, T1R3 is a dominant subunit expressed 
in β-cells. A key question is whether or not T1R3 is involved in the action of glu-
cose. To address this question, we first used lactisole, an inhibitor of T1R3 [27]. In 
the presence of lactisole, glucose-induced elevation of [Ca2+]s was altered [21, 28]. 
Thus, glucose did not induce the rapid peak of [Ca2+]s. Likewise, glucose-induced 
reduction of [Ca2+]s was not observed. In addition, the large oscillatory elevation of 
[Ca2+]s was reduced in the presence of lactisole. Similar results are obtained when 
β-cells obtained from T1R3-knock out mice are stimulated by glucose [21]. Thus, in 
T1R3-deleted β-cells, glucose does not cause an immediate elevation of [Ca2+]s nor 
sustained reduction of [Ca2+]s. Additionally, oscillatory elevation of [Ca2+]s is 
delayed and the magnitude of the response is reduced in β-cells obtained from 
T1R3-deleted mice. These results indicate that T1R3 is necessary for the rapid 
action of glucose on [Ca2+]s. In addition, reduction of [Ca2+]s caused by glucose 
requires the function of T1R3. These two signals are mediated by GSR, and T1R3 
may be a necessary component of the receptor. Moreover, delayed oscillatory eleva-
tion of [Ca2+]s also partly requires the function of T1R3. Considering the fact that 
the oscillatory elevation is dependent on glucose metabolism and is due to entry of 
calcium via the voltage-dependent Ca2+ channel, it is reasonable to speculate that 
GSR may modulate glucose metabolism and/or directly channel functions. In this 
regard, we have shown that glucose promotes its own metabolism and facilitates 
generation of ATP by activating GSR [15]. Activation of GSR thus further increases 
ATP production, further inhibits the KATP channel, causes further depolarization, 
and promotes Ca2+ entry. Collectively, glucose does not only evoke metabolism-
dependent Ca2+ signal, but it also generates receptor-mediated Ca2+ and cAMP sig-
nals [21]. In particular, glucose induces rapid signals by activating a cell-surface 
receptor GSR.  The role of GSR in the action of glucose should be further 
investigated.
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Chapter 5
The Role of the Glucose-Sensing Receptor 
in Glucose-Induced Insulin Secretion 
in Pancreatic β-Cells

Yuko Nakagawa and Johan Medina

Abstract  Glucose activates the glucose-sensing receptor and induces rapid 
intracellular signals in pancreatic β-cells. When the glucose-sensing receptor is 
blocked by an inhibitor of T1R3 or deletion of the T1R3 gene, glucose-induced 
insulin secretion (GIIS) is significantly reduced. In perifusion system, both first and 
second phases of GIIS are attenuated by the inhibition of the glucose-sensing 
receptor. Collectively, the glucose-sensing receptor is involved in both rapid and 
sustained action of glucose. Indeed, activation of the receptor by either artificial 
sweeteners or nonmetabolizable glucose analog increases ATP levels in β-cells. 
Furthermore, inhibition of the glucose-sensing receptor attenuates glucose-induced 
increase in ATP. These results indicate that activation of the glucose-sensing receptor 
promotes glucose metabolism and thereby augments ATP production in β-cells. 
Thus, glucose first acts on the cell-surface glucose-sensing receptor and primes the 
metabolic pathway of glucose. Glucose then enters β-cells and is metabolized 
through already activated metabolic pathway. The receptor pathway and the 
metabolic pathway act coordinately to stimulate insulin secretion.

Keywords  Insulin secretion · Pancreatic β-cell · Glucose · Glucose-sensing 
receptor · Glucose metabolism

5.1  �Introduction

Glucose is a principal fuel in the body that acts as a critical stimulator of insulin 
secretion from pancreatic β-cells. The mechanism by which glucose stimulates 
insulin secretion is an important issue from basic and clinical points of view, and it 
has been investigated for several decades by many researchers. It is now thought 
that glucose exerts its action though its metabolism [1]. Thus, glucose enters β-cells, 
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is catalyzed by glucokinase and downstream glycolytic enzymes and in mitochon-
dria, and the resultant increase in the ATP/ADP ratio causes closure of the ATP-
sensitive potassium channel (KATP channel). Resultant depolarization leads to 
opening of the voltage-gated calcium channel, and Ca2+ enters the cell. These 
sequences of events are dependent on glucose metabolism, and when glucokinase is 
blocked by mannoheptulose, for example, both Ca2+ response and insulin secretion 
do not take place [1].

5.2  �Sweet Taste Receptor in Pancreatic β-Cells

We found recently that glucose generates rapid intracellular signals in pancreatic 
β-cells, which are not dependent on glucose metabolism [2]. Thus, glucose evokes 
rapid Ca2+ signals that are not blocked by mannoheptulose, an inhibitor of glucoki-
nase [3]. Also, these rapid Ca2+ signals are reproduced by adding 3-O-methylglucose 
(3OMG), a glucose analog not catalyzed in β-cells. Furthermore, these Ca2+ signals 
are attenuated by a Gq inhibitor and an inhibitor of phospholipase C (PLC) [3]. 
Likewise, glucose evokes a rapid elevation of cyclic AMP (cAMP), which is not 
affected by mannoheptulose but is reproduced by 3OMG.  In addition, glucose-
induced elevation of cAMP is attenuated by transduction of a gene encoding 
dominant-negative mutant of Gs [3]. All these results suggest that glucose activates 
a cell-surface receptor and produces rapid intracellular signals by activating G pro-
teins. We named this receptor glucose-sensing receptor (GSR) [4].

What is the molecular nature of the GSR? In this regard, Niki and colleagues 
showed three decades ago that an inhibitor of sweet taste sensation, p-nitrophenyl-
D-glucopyranoside (PNP-Glu), attenuated glucose-induced insulin secretion [5]. In 
contrast, PNP-Glu did not affect insulin secretion induced by a high concentration 
of potassium. Their results raised a possibility that the sweet taste receptor or related 
molecules may be expressed in pancreatic β-cells and mediates the action of 
glucose.

The sweet taste receptor is expressed in taste cells of the taste bud in the tongue. 
In 2001, the molecular nature of the sweet taste receptor was revealed by molecular 
cloning and functional analyses [6, 7]. It is now generally thought that the sweet 
taste receptor is a heterodimer comprised of the two members of the taste receptor-1 
(T1R) family, type 2 and type 3 T1R (T1R2 and T1R3, respectively). Both T1R2 
and T1R3 are members of the class C G protein-coupled receptor (GPCR) super-
family. We speculated that the sweet taste receptor subunits are expressed in pancre-
atic β-cells and mediate the action of glucose [2]. Indeed, reverse-transcription PCR 
(RT-PCR) revealed that mRNA for T1R2 and T1R3 is expressed in mouse pancre-
atic islets [8]. Also, in MIN6 cells, a glucose-responsive mouse β-cell line [9], 
mRNA for T1R2 and T1R3 has been detected. Furthermore, immunoreactive T1R3 
has been detected in the core of mouse islets and in MIN6 cells [8]. Based on these 
data, we initially thought that the canonical sweet taste receptor, i.e., a heterodimer 
of T1R2 and T1R3 (T1R2/T1R3), is expressed in pancreatic β-cells [8]. The function 

Y. Nakagawa and J. Medina



63

of the sweet taste receptor can be assessed by activating it using artificial sweeten-
ers. Indeed, when sucralose, a potent artificial sweetener, is added, insulin secretion 
is augmented [8]. Likewise, other sweeteners, for example, acesulfame-potassium, 
saccharin, and glycyrrhizin all increase insulin secretion [8]. Therefore, the “sweet 
taste receptor” in β-cells seems to be functional. It should be mentioned that rela-
tively high concentrations of artificial sweeteners, for example, 10–20  mM, are 
needed to stimulate insulin secretion. We assessed the signal transduction pathways 
activated by the “sweet taste receptor” using MIN6 cells [8]. Because of the com-
plex structure of the taste buds, the signal transduction pathway activated by the 
sweet taste receptor has not been investigated thoroughly in taste cells of the tongue. 
β-cells may provide a good system to study the signal transduction of the sweet taste 
receptor. In fact, when MIN6 cells are stimulated by sucralose, both cytoplasmic 
Ca2+ concentration ([Ca2+]c) and cytoplasmic cAMP concentration ([cAMP]c) are 
elevated [8]. Sucralose also activates protein kinase C (PKC) [8]. Consequently, 
both Ca2+ and cAMP messenger systems are activated by an artificial sweetener 
sucralose. This is an interesting feature of the “sweet taste receptor” in β-cells. It 
should be noted that the effect of sucralose on [Ca2+]c is attenuated by gurmarin [8], 
an inhibitor of the sweet taste receptor, and lactisole [10], an inhibitor of T1R3. 
Knockdown of T1R3 also attenuates the effect of sucralose [11]. Hence, sucralose 
exerts its effect by acting on the T1R3-containing receptor, presumably the “sweet 
taste receptor.” An intriguing aspect of the “sweet taste receptor” in β-cells is that it 
produces a variety of patterns of signals. When MIN6 cells are stimulated by other 
sweeteners, considerably different types of signals are produced compared to those 
evoked by sucralose [12]. For example, when cells are stimulated by saccharin, a 
classical artificial sweetener, [cAMP]c, is increased, whereas [Ca2+]c is not affected. 
In contrast, glycyrrhizin, a natural sweetener derived from licorice, increases [Ca2+]c 
but not [cAMP]c [12]. Five or more sweeteners examined so far induce different 
patterns of intracellular signals presumably by activating different transducers and/
or effectors [12]. The signal transduction mechanism activated by the “sweet taste 
receptor” is quite unique: different types of agonists generate distinct patters of 
signals. In this regard, these ligands may act as biased agonists. In fact, the sweet 
taste receptor in the tongue is activated by numerous natural or artificial sweet sub-
stances with a variety of chemical structures (7). Those ligands have multiple bind-
ing sites in the receptor molecule [7]. Ligands binding to distinct binding sites may 
activate different sets of responses. It is also possible that the “sweet taste receptor” 
in β-cells is not a single receptor molecule but is comprised of multiple types of 
receptor molecules. Then, it is possible that multiple ligands produce multiple types 
of signals by binding to different subtypes of the receptor. In this situation, these 
receptor molecules should contain T1R3 since inhibition or deletion of T1R3 atten-
uates the receptor functions. If T1R3 is a component of the receptor, it is unlikely 
that five or more types of receptors exist. Collectively, at least some of the ligands 
act as biased agonists.

As mentioned above, GSR responds to physiological concentrations of glucose 
and produces immediate signals in β-cells [3]. A critical question is whether or not 
GSR is identical to the canonical sweet taste receptor expressed in the tongue, i.e., 
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T1R2/T1R3 heterodimer. In other words, whether or not the canonical sweet taste 
receptor is activated by physiological concentrations of glucose in the plasma is a 
critical question. The answer may be No. In the taste buds, it is known that glucose 
is much less potent than sucrose in activating the sweet taste receptor [7]. It is there-
fore unlikely that the canonical sweet taste receptor, i.e., T1R2/T1R3, functions as 
GSR.  An important point is that T1R3 is required for the function of GSR [3]. 
Consequently, it is reasonable to speculate that GSR may be a dimer containing 
T1R3, which is distinct from T1R2/T1R3. We therefore re-examined the expression 
of T1Rs in pancreatic β-cells in more detail. When we measured the expression of 
T1R2 and T1R3 by quantitative RT-PCR, the expression of T1R3 was abundant 
whereas the expression of T1R2 was far less [13]. In fact, when we measured the 
protein expression by either immunohistochemistry or immunoblotting, T1R3 was 
detected abundantly in β-cells while T1R2 was undetectable [13]. These results indi-
cate that in pancreatic β-cells, the expression of T1R2 is negligible and the canonical 
sweet taste receptor, T1R2/T1R3, is therefore a very minor component, if any.

5.3  �Glucose-Sensing Receptor in Pancreatic β-Cells

The above results indicate that the receptor activated by glucose and sweeteners in 
β-cells may be slightly different from the canonical sweet taste receptor, T1R2/
T1R3. Then what is it? Since class C GPCR functions as a dimer [15], and T1R3 is 
a major T1R in β-cells, it is reasonable to speculate that the putative receptor may 
be T1R3-containing dimer other than T1R2/T1R3. Theoretically, candidate recep-
tors are a homodimer of T1R3 (T1R3/T1R3) and a heterodimer of T1R3 and X, 
where X is a class C GPCR expressed in pancreatic β-cells. To this end, we first 
examined whether or not T1R3/T1R3 functions as GSR. As we showed previously, 
T1R3/T1R3 is able to function as a signaling receptor [14]. Using HEK cells stably 
expressing T1R3 (HEK-T1R3 cells), we examined whether or not glucose increases 
[Ca2+]c. As depicted in Fig. 5.1, basal [Ca2+]c is stable and a high concentration of 
glucose induces an immediate elevation of [Ca2+]c. This elevation is only transient 
and is followed by a small but sustained reduction of [Ca2+]c. Noteworthy is the fact 
that this pattern of [Ca2+]c response is quite similar to that observed in β-cells stimu-
lated by nonmetabolizable glucose analog 3OMG [3]. T1R3/T1R3 is therefore 
capable of producing this pattern of [Ca2+]c response. This is an intriguing feature of 
T1R3/T1R3, and such responses are not observed in cells expressing ordinary class 
A GPCR. Interestingly, glucose-induced changes in [Ca2+]c are attenuated by a Gq 
inhibitor and an inhibitor of PLC, suggesting that both elevation and reduction of 
[Ca2+]c are coupled and are mediated by Gq and subsequent PLC. This is the reason 
reduction of [Ca2+]c is observed after the transient elevation of [Ca2+]c. A possible 
interpretation is that Ca2+ is taken up to ER, and simultaneously, Ca2+ entry is inhib-
ited by unknown reasons. When various concentrations of glucose are tested, how-
ever, a relatively high concentration of glucose, for example 25 mM, is required to 
elicit [Ca2+]c responses in HEK-T1R3 cells. This means that although T1R3/T1R3 
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is an interesting candidate for GSR, glucose sensitivity is not high enough. Another 
candidate receptor needs to be considered.

As mentioned above, GSR could be a heterodimer of T1R3 and X, where X is a 
class C GPCR expressed in pancreatic β-cells. The most interesting candidate for X 
is the calcium-sensing receptor (CaSR), which is expressed abundantly in pancre-
atic β-cells [15]. CaSR is identified as a cell-surface receptor detecting the changes 
in extracellular Ca2+ concentrations. It is expressed in parathyroid cells, renal tubu-
lar cells, and bone cells, three major organs regulating calcium metabolism in the 
body. Subsequently, the molecular structure of CaSR has been identified by molecu-
lar cloning, and the results show that CaSR belongs to the class C GPCR family 
acting as a homodimer. It is a multifunctional receptor and is in fact activated not 
only by Ca2+ but also by many other compounds including various amino acids and 
cationic compounds [16]. We established a stable HEK cell line expressing CaSR 
[17] and examined whether or not glucose is able to activate the receptor. We found 
that many sweet substances including sugars and artificial sweeteners activated 
CaSR [17]. Indeed, an addition of glucose induced a rapid increase in [Ca2+]c. The 
rapid Ca2+ transient was followed by sustained reduction of [Ca2+]c [17]. This pat-
tern of [Ca2+]c response is rather unique but resembles that induced by 3OMG in 
β-cells. Glucose-induced biphasic changes in [Ca2+]c were inhibited by inhibitors of 
Gq and PLC.  Hence, the unique pattern of [Ca2+]c response is dependent on 
Gq-mediated activation of PLC. To our surprise, CaSR is very sensitive to glucose 
and as low as 5 mM of glucose-induced the maximal response. Thus, when ambient 
glucose concentration was raised from 3 to 5 mM, a marked transient of [Ca2+]c was 
observed, which was followed by sustained reduction of [Ca2+]c. CaSR homodimer 
is too sensitive to function as a physiological receptor for glucose. However, CaSR 
may be a good candidate receptor that dimerizes with T1R3.

We then examined the effect of glucose in stable HEK cell line expressing both 
T1R3 and CaSR (HEK-T1R3/CaSR cells). In these cells, formation of a heterodi-
mer of T1R3 and CaSR was detected. As shown in Fig. 5.2, oscillation of [Ca2+]c 
was observed in an unstimulated condition. Addition of a high concentration of 
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glucose induces biphasic response of [Ca2+]c in HEK-T1R3/CaSR cells: a rapid 
transient peak followed by a small but sustained decrease in [Ca2+]c. Again, this pat-
tern of changes in [Ca2+]c is similar to that observed in β-cells stimulated by 3OMG 
[3]. In these cells, 7 to 8 mM of glucose is able to induce [Ca2+]c response. A het-
erodimer of T1R3/CaSR is therefore an interesting candidate for GSR.  In MIN6 
cells, NPS-2143, an inhibitor of CaSR, blocks the [Ca2+]c response induced by 
3OMG. Similarly, lactisole, an inhibitor of T1R3 blocks [Ca2+]c, responses induced 
by 3OMG. Consequently, both T1R3 and CaSR are required for the action of 3OMG 
on [Ca2+]c. A heterodimer of T1R3 and CaSR is the best candidate for the GSR.

5.4  �Role of GSR in Glucose-Induced Insulin Secretion

Glucose activates cell-surface GSR and evokes rapid signals including elevation of 
[Ca2+]c, activation of protein kinase C (PKC), and elevation of [cAMP]c. Elevation 
of Ca2+ concentration, especially in the subplasma membrane area, is a trigger for 
exocytosis of insulin granules, and both cAMP and diacylglycerol act as allosteric 
modulators of exocytosis and increase the Ca2+-sensitivity of exocytosis. It is thus 
quite likely that intracellular signals evoked by activation of GSR facilitate insulin 
secretion. In fact, inhibition of T1R3 by adding lactisole significantly reduces 
glucose-induced insulin secretion [10]. Since GSR signals are rapid, we initially 
speculated that the GSR signals are important for the first phase of glucose-induced 
insulin secretion. We tested this idea by perifusion experiments. When we compared 
glucose-induced insulin secretion in a perifusion system using islets obtained from 
normal and T1R3-knockout mice, the results were slightly different from what we 
expected. As shown in Fig. 5.3, both first and second phases of glucose-induced 
insulin secretion were significantly reduced in islets obtained from T1R3-knockout 
mice. These results are rather unexpected but coincide with the results obtained by 
measuring [Ca2+]c response [3]. Inhibition of T1R3 reduces not only the rapid 
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response but also subsequent oscillatory [Ca2+]c responses observed several minutes 
after the stimulation by a high concentration of glucose in β-cells [3]. The oscilla-
tory elevation of [Ca2+]c has been thought to be due to Ca2+ entry caused by the 
inhibition of KATP channel. These results indicate that GSR not only induces rapid 
signals, but it also modulates sustained action of glucose in β-cells. How does GSR 
modulate the long-term action of glucose? Since glucose metabolism is important 
for sustained action of glucose, we speculated that the GSR signals modulate glu-
cose metabolism in β-cells. To test this idea, we monitored changes in intracellular 
ATP ([ATP]c) using luciferase-expressing MIN6 cells [11]. We first examined 
changes in [ATP]c induced by various concentration of glucose. As depicted in 
Fig. 5.4a, glucose induced biphasic elevation of [ATP]c in MIN6 cells, and the effect 
of glucose was dose-dependent. Conversely, [ATP]c was rapidly reduced by inhibi-
tion of mitochondrial function by either dinitrophenol or 2-cycrohexen-1-one, indi-
cating that changes in [ATP]c in MIN6 cells could be monitored. Using this system, 
we first tested whether or not activation of GSR by sucralose affected [ATP]c. To our 
surprise, addition of sucralose markedly increased [ATP]c in MIN6 cells (Fig. 5.4b). 
This experiment was performed in the presence of 5.5 mM of glucose in the incuba-
tion medium. It should be noted that sucralose is an artificial sweetener and there-
fore does not enter β-cells nor serve as a fuel. Nevertheless, sucralose markedly 
elevated [ATP]c in MIN6 cells. The effect of sucralose was also confirmed by moni-
toring the ATP/ADP ratio by using Percival [11]. This effect of sucralose is not 
simply due to the elevation of [Ca2+]c or [cAMP]c induced by sucralose since addi-
tion of muscarinic agonist carbachol or glucagon-like peptide-1, which increases 
[Ca2+]c or [cAMP]c, respectively, did not affect [ATP]c [11]. Furthermore, the effect 
of sucralose on [ATP]c was observed even in the absence of ambient glucose. When 
MIN6 cells were incubated for 60 min in medium containing no glucose, the basal 
level of [ATP]c was reduced. However, sucralose was still able to increase [ATP]c in 
this condition. Since glycogen content, if any, should be severely reduced in this 
condition, the result suggests that sucralose is able to increase ATP by not utilizing 
glucose-6-phosphate as a substrate. This effect of sucralose is due to the activation 
of GSR since nonmetabolizable analog of glucose 3OMG reproduced the sucralose 
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effect. Also, lactisole, an inhibitor of T1R3, attenuated the effect of sucralose [10]. 
GSR signals thus activate the metabolic pathway and increase [ATP]c. One of the 
sites of action of the GSR signals is promotion of the metabolism in mitochondria 
since sucralose and mitochondrial fuel methylsuccinate act synergistically to 
increase [ATP]c. As mentioned above, 3OMG increases [ATP]c. This means that 
glucose not only serves as a substrate but it also activates GSR as a ligand and pro-
motes its own metabolism. In fact, the effects of glucose on [ATP]c and insulin 
secretion were attenuated by knocking down T1R3 (Fig 5.4c, d) [11]. Collectively, 
glucose exerts its action by two different mechanisms. Glucose first acts on the 
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cell-surface GSR and activates the receptor. Activation of this receptor causes prim-
ing of the metabolic pathway and thereby facilitates glucose metabolism. Then glu-
cose enters β-cells and is catalyzed through the already activated metabolic pathway 
(Fig. 5.5). Thus, glucose acts as a ligand and also a substrate in β-cells, and it acti-
vates two distinct pathways: the GSR pathway and the metabolic pathway. These 
two pathways merge inside the β-cells, leading to production of more ATP and sub-
sequent inhibition of KATP channel. These two pathways act coordinately to stimu-
late insulin secretion [4]. This is a new model showing the mechanism of action of 
glucose in β-cells. This model is an extension of the “glucoreceptor hypothesis” [2, 
4], but it is also includes the “metabolic hypothesis.” In fact, in this model, there 
exists an interaction of the “receptor hypothesis” and the “metabolic hypothesis,” 
and the receptor pathway positively regulates the metabolic pathway. These two 
pathways act coordinately to exert the action of glucose.

5.5  �Future Direction of the GRS Research

Many questions still remain unanswered. First, which step(s) of the glucose 
metabolism is modulated by the GSR signals? In this regard, glucokinase is a rate-
limiting enzyme in the glycolytic pathway, and it has been thought to act as a 
glucose sensor [18]. Whether or not glucokinase activity is modulated by GSR is an 
interesting question. There are many steps in the downstream of glucokinase, which 
could be a target(s) of the GSR. It is necessary to identify the step(s) modulated by 
the receptor signal. Second, how do the GSR signals stimulate the glucose 
metabolism? In other words, by what mechanisms does GSR modulate the glucose 
metabolism? Third, what is the physiological and pathophysiological significance 
of the GSR pathway?
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ATP
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KATP
VDCC

G6P

GA3P

pyruvat
e

Ca2+

Ca2+

Fig. 5.5  Action of glucose in pancreatic β-cells [11]. Glucose first activates the cell-surface 
glucose-sensing receptor (GSR) and primes the metabolic pathway. Glucose then enters β-cell and 
is metabolized through already activated metabolic pathway. The receptor pathway and the meta-
bolic pathway act coordinately to stimulate insulin secretion
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With regard to the first question, GSR appears to modulate multiple steps in the 
metabolic pathway of glucose. Since activation of the GSR increases [ATP]c even in 
the absence of ambient glucose, GSR modulates the step(s) downstream of glucose-
6-phosphate. Indeed, GSR acts synergistically with methylsuccinate to increase 
[ATP]c [11], indicating that GSR facilitates metabolism in mitochondria. In fact, the 
effect of sucralose on [ATP]c is inhibited by inhibition or deletion of the enzyme 
involved in the malate-aspartate shuttle. Also, metabolome analyses show that acti-
vation of the GSR increases the delivery of substrates to the glycolytic pathway 
from alanine and glycerol (unpublished observation). Collectively, GSR augments 
glucose metabolism by acting on the multiple steps in the metabolic pathways. 
Further studies are clearly needed to determine the precise steps and the regulatory 
mechanism responsible for promotion of the metabolism. Regarding the second 
question, we addressed the signal transduction pathways responsible for the eleva-
tion of [ATP]c [19]. Among the signaling pathways activated by the GSR, depolar-
ization of the plasma membrane and resultant entry of Ca2+ are important for 
promotion of glucose metabolism [19]. This is not surprising because there are three 
dehydrogenases in the mitochondria regulating the TCA cycle. Also, the malate-
aspartate shuttle is modulated by Ca2+. In addition, depolarization of the plasma 
membrane per se may facilitate the metabolism by a yet unknown mechanism [19]. 
It should be mentioned that the role of the GSR-mediated rapid signals is still 
unclear. Again, further studies are necessary to identify these mechanisms. 
Regarding the third question, the GSR signals are necessary for the full action of 
glucose since inhibition of the GSR function and deletion of the receptor subunit 
significantly reduce the insulin secretory response to glucose [2]. As mentioned 
above, both first and second phases of glucose-induced insulin secretion are inhib-
ited without the GSR signal. Since GSR is required for the full action of glucose, it 
is possible that derangement of the GSR pathway is involved in the pathophysiology 
of type 2 diabetes. In fact, our results obtained in animal models of diabetes show 
that the expression of T1R3 is markedly reduced in diabetic animals [13]. This 
reduction of the expression is due at least partly to prolonged hyperglycemia. When 
hyperglycemia is corrected by treatment with insulin, the expression of T1R3 is 
recovered [13]. It is reasonable to speculate that impairment of insulin secretion 
observed in diabetes is partly due to down-regulation of the GSR by prolonged 
hyperglycemia. Reduction of the expression of GSR is one of the features of gluco-
toxicity in diabetes. Elucidation of the regulation of the expression level of the GSR 
would help with better understanding of the pathophysiology of type 2 diabetes.
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