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Preface

Plant nutrients are the vital elements for plant growth and survival. Among the sev-
enteen essential plant nutrients, only three (C, H and O) are derived from the atmo-
sphere and the rest are supplied either from soil or by fertilizers. Each of the nutrients 
plays a unique role in plant life cycle and their requirement varies with the plant 
species and growth stages. Both the deficiency and excess of these nutrients render 
negative effects on plant growth and development. Besides, to ensure the efficient 
utilization of the nutrients, the environmental factors should be favourable.

Over the last few decades, abiotic stresses have turned into an important topic of 
concern for plant biologists. Numerous studies have been conducted and are still 
under experiment considering this fact that to survive the time-bound environmental 
changes, plants must possess some tolerance mechanisms within their cellular level. 
A large number of elements have been experimented among which plant nutrition 
has been a promising factor of study as it is an integral part of plant life cycle. Of all 
the plant nutrients, N, P, K, Mg, Mn, Cl and Fe are directly involved in plant photo-
synthetic activities; Ca, B, Cu, Fe, Mn, Zn and Mo are involved in enzymatic activi-
ties; N and S are involved in protein synthesis. These nutrients also play some more 
specific and crucial roles which are essential for sustaining normal plant biology 
and physiology. The unavoidable production of ROS during photosynthesis is inten-
sified by the abiotic stress induced limited use of light energy and CO2 fixation. 
Nutrients like N, K, Ca, Mg and Zn have been reported to maintain the utilization of 
light and CO2 fixation and other photosynthetic activities to a required level. 
Especially K and Zn are observed to interfere with NADPH-oxidizing enzyme and 
as a result render protective roles against ROS-induced damages under abiotic 
stresses.

In the recent decades, some beneficial trace elements (such as Si and Se) at low 
concentration showed tremendous effect in conferring various abiotic stresses. Due 
to the advancement of science, intensive research works have been carried out glob-
ally to explore the underlying mechanisms of plant nutrient uptake, their metabo-
lism, homeostasis and protection against abiotic stresses. Excellent review articles 
on the role of plant nutrients on abiotic stress tolerance have been published in 
journals, annual reviews and as chapters of some books. However, no  comprehensive 
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book on this topic has been published so far. Therefore, the objective of the book is 
to provide the insight into the latest findings on the role of plant nutrients in confer-
ring abiotic stress tolerance to plants. This book will be a time-demanding topic for 
a large group of audience including plant scientists, agronomists, soil scientists, 
botanists, molecular biologists and environmental scientists.

We, the editors, would like to give special thanks to the authors for their out-
standing and timely work in producing such fine chapters. We are highly thankful to 
Ms. Lee, Mei Hann, Editor (Editor, Life Science), Springer, Japan, for her prompt 
responses during the acquisition. We are also thankful to RaagaiPriya 
ChandraSekaran, Project Coordinator of this book and all other editorial staffs for 
precious help in formatting and incorporating editorial changes in the manuscripts. 
Special thanks to Dr. Md. Mahabub Alam, Noakhali Science and Technology 
University, Bangladesh, and Ms. Taufika Islam Anee, Sayed Mohammad Mohsin 
and Khursheda Parvin of Sher-e-Bangla Agricultural University, Bangladesh, for 
their generous help in formatting the manuscripts. The editors and contributing 
authors hope that this book will include a practical update on our knowledge for the 
role of plant nutrients in abiotic stress tolerance.

Dhaka, Bangladesh Mirza Hasanuzzaman 
Kagawa, Japan  Masayuki Fujita 
Okinawa, Japan  Hirosuke Oku 
Dhaka, Bangladesh  Kamrun Nahar 
Lublin, Poland  Barbara Hawrylak-Nowak 
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Chapter 1
Biological Functions, Uptake 
and Transport of Essential Nutrients 
in Relation to Plant Growth

K. S. Karthika, I. Rashmi, and M. S. Parvathi

Abstract Plant nutrition takes care of the interrelationship between soil nutrients 
and plant growth. The role of nutrients in plant growth and physiology is dealt in 
this chapter in its maximum possible extent including the details on essential nutri-
ents, their physiological roles, uptake and assimilation, nutritional disorders, the 
availability of nutrients in soil and their movement to plant roots and availability to 
plants by different modes of absorption. Every nutrient plays an indispensable role 
in carrying out physiological functions of plants enabling proper plant growth, the 
deficiency of which leads to particular disorders. Some nutrients are needed in 
larger quantities and some smaller but still essential for a plant to complete its life 
cycle. The primary roles of major nutrients in plant growth and physiology are 
widely studied and well documented. The functions of beneficial elements in plant 
nutrition may be investigated further. Soil, a complex substrate, acts as a storehouse 
of nutrients and water for plant growth. Plants have extensive root system for the 
nutrient uptake from the soil. However, the availability of all these nutrients in soil 
may fluctuate depending on so many factors. From the soil, nutrients move towards 
the roots by following certain mechanisms of transport, which include mass flow, 
diffusion and root interception. The nutrients thus reaching the roots are absorbed 
by plants either actively by spending energy or passively by no involvement of 
energy. Hence, a better understanding on plant nutrition would help to enhance crop 
productivity and nutritional value for the burgeoning world population.
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1.1  Introduction

For a healthy crop, adequate supply of nutrients is indispensable from soil. Thus 
healthy soils result in a healthy crop. Plant nutrition deals with the effect of nutrients 
present in the soil in plant growth and development. Plants form the basis of several 
food chains; hence, plant nutrition has impacts both on growth of plants and other 
living organisms (Maathuis 2009).

Every nutrient has a particular sufficiency range in plant. An imbalance in this 
range would affect the crop growth, and this imbalance could be either nutrient 
deficiency or toxicity. This could be a result of inadequate level of nutrient supply 
from the soil due to improper, inadequate and imbalanced application of fertilizers 
or nutrient sources. Toxicity occurs when a nutrient is above the sufficiency range 
than the plant needs, and this results in a decrease in growth of plant or its quality 
(McCauley et al. 2011). These disorders in plants are expressed as characteristic 
symptoms. As symptoms in plants arise due to several factors like pests, diseases, 
nutrient deficiency, toxicity, etc., it becomes important to identify the exact reason.

Deficiencies and toxicities of nutrients adversely affect crop health resulting in 
the appearance of unusual visual symptoms, thereby decreasing crop productivity. 
According to McCauley et al. (2011), the role and mobility of each essential nutrient 
need to be well understood as to determine which nutrient is responsible for a par-
ticular symptom, whether deficiency or toxicity. A proper focus on the knowledge 
on role of nutrients in plant growth is therefore important. Hence, a better under-
standing on plant nutrition would help to enhance crop productivity and nutritional 
value for the burgeoning world population. The role of nutrients in plant growth and 
physiology is dealt in this chapter in its maximum possible extent including the 
details on essential nutrients, their physiological roles, uptake and assimilation, 
nutritional disorders, the availability and status of nutrients in soil and their move-
ment to plant roots and availability to plants by different modes of absorption.

1.2  Essential Nutrients

1.2.1  Criteria for Essentiality

An element is considered as essential when the three criteria as proposed by Arnon 
and Stout (1939) are met. These include:

 1. A deficiency of the element makes it impossible for the plant to complete its life 
cycle.

 2. The deficiency is specific to the element and can be prevented or corrected only 
by supplying the element in question.

K. S. Karthika et al.
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 3. The element is directly involved in the nutrition of the plant, for example, as a 
constituent of an essential metabolite or needed for the action of a particular 
enzyme system.

Based on these criteria, the following elements are considered essential for 
higher plants. There are 17 essential nutrients recognized for growth of plants. 
These are carbon (C), hydrogen (H), oxygen (O), nitrogen (N), phosphorus (P), 
potassium (K), calcium (Ca), magnesium (Mg), sulphur (S), iron (Fe), manganese 
(Mn), zinc (Zn), copper (Cu), boron (B), molybdenum (Mo), chlorine (Cl) and 
nickel (Ni). Carbon (C), hydrogen (H) and oxygen (O) are obtained primarily from 
water and carbon dioxide; hence these are not considered mineral nutrients (Taiz 
and Zeiger 2002). Critical information on these essential nutrients is presented in 
Table 1.1.

Table 1.1 Critical information on nutrients in relation to plants

Nutrient
Essentiality discovered 
by

Year of 
discovery

Plant- 
usable form

Average 
conc.in 
plant tissue

Relative number of 
atoms compared to 
Mo as one

H Since time immemorial H2O 6% 60,000,000
O Since time immemorial H2O and O2 45% 30,000,000
C Priestley et al. 1800 CO2 45% 30,000,000
N Theodore de Saussure 1804 NO3

−, NH4
+ 1.5% 1,000,000

K C. Sprengel 1839 K+ 1.0% 400,000
Ca C. Sprengel 1839 Ca2+ 0.5% 200,000
Mg C. Sprengel 1839 Mg2+ 0.2% 100,000
P C. Sprengel 1839 H2PO4

−, HPO4
2− 0.2% 30,000

S Sachs and Knop 1860 SO4
2− 0.1% 30,000

Cl T.C. Broyer, 
A.B. Carlton, 
C.M. Johnson and 
P.R. Stout

1954 Cl− 100 mg kg−1 3000

Fe E. Gris 1843 Fe2+ 100 mg kg−1 2000
B K. Warington 1923 H3BO3, 

H2BO3
−, 

HBO3
2−, BO3

3−

20 mg kg−1 2000

Mn J.S. McHargue 1922 Mn2+ 20 mg kg−1 2000
Zn A.L. Sommer and 

C.P. Lipman
1926 Zn2+ 20 mg kg−1 300

Cu A.L. Sommer, 
C.P. Lipman and 
G.McKinney

1931 Cu2+ 6 mg kg−1 100

Mo D.I.Arnon and 
P.R. Stout

1939 MoO4
2− 0.1 mg kg−1 1

Ni P.H.Brown, 
R.M. Welch and 
E.E.Cary

1987 Ni2+ 0.1 mg kg−1 –

Source: Tisdale et al. (1997)
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1.3  Classification of Nutrients

1.3.1  Classification Based on Quantity

Essential nutrients are classified into macronutrients or micronutrients on the basis 
of their relative concentration in plant tissue. This is the quantity-based classifica-
tion (Rattan 2015).

1.3.1.1  Major or Macronutrients

Those nutrients that are required by plants in large quantities are classified under 
major or macronutrients. These include C, H, O, N, P, K, Ca, Mg and S. Among 
these N, P and K are called primary nutrients and Ca, Mg and S form the secondary 
nutrients.

Primary Nutrients: Nitrogen (N), phosphorus (P) and potassium (K) are the primary 
nutrients as they are required in larger quantities by plants. Application of fertil-
izers containing N, P and K would help in correcting these deficiencies once 
noticed.

Secondary Nutrients: Calcium (Ca), magnesium (Mg) and sulphur (S) are second-
ary nutrients due to their moderate requirements by plants and localized deficien-
cies (Rattan 2015).

1.3.1.2  Micronutrients

Those nutrients that are required by plants in relatively lesser quantities but as 
essential as macronutrients are classified as micronutrients. These include Fe, Mn, 
Zn Cu, Ni, B, Mo and Cl. Micronutrients can be cationic (Fe, Mn, Zn, Cu, Ni) and 
anionic (B, Mo and Cl) in nature. Cationic micronutrients are absorbed as the diva-
lent cations and anionic micronutrients are absorbed in anionic forms by the crops. 
Boron could also be taken up as neutral H3BO3 molecule by the plants.

There are certain elements that promote plant growth and essential for some but 
not for all higher plant species. These are classified as beneficial elements. These 
include silicon (Si), sodium (Na), cobalt (Co) and selenium (Se). These elements 
promote growth for different species under different environmental conditions. 
However, for each element and plant species, the roles played by these nutrients and 
their concentration vary (Pilon-Smits et al. 2009).

1.3.2  Classification Based on Biochemical Behaviour

A classification based on the biochemical properties is arrived at as the classifica-
tion based on relative concentration in plant tissues does not take into consideration 
the physiology of higher plants and the role of nutrients in plant physiology on a 
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large scale. Hence, this classification is adopted as proposed by Mengel and Kirkby 
(1987). The classification is presented in Table 1.2 in which nutrients are classified 
under four basic groups.

 1. Firstly, those elements that are involved in the formation of organic compounds 
in the plant which are assimilated by the plants through biochemical reaction 
involving oxidation and reduction (redox reactions).

Table 1.2 Classification of plant nutrients based on biochemical behaviour

Nutrient Biochemical functions

Group 1 Nutrients that are part of carbon compounds
N Constituent of amino acids, amides, proteins, nucleic acids, nucleotides, coenzymes, 

hexoamines, etc.
S Component of cysteine, cystine, methionine and proteins. Constituent of lipoic acid, 

coenzyme A, thiamine pyrophosphate, glutathione, biotin, adenosine-5′-
phosphosulphate and 3-phosphoadenosine

Group 2 Nutrients that are important in energy storage or structural integrity
P Component of sugar phosphates, nucleic acids, nucleotides, coenzymes, 

phospholipids, phytic acid, etc. Has a key role in reactions that involve ATP
Si Deposited as amorphous silica in cell walls. Contributes to cell wall mechanical 

properties, including rigidity and elasticity
B Complexes with mannitol, mannan, polymannuronic acid and other constituents of 

cell walls. Involved in cell elongation and nucleic acid metabolism
Group 3 Nutrients that remain in ionic form
K Required as a cofactor for more than 40 enzymes. Principal cation in establishing cell 

turgor and maintaining cell electroneutrality
Ca Constituent of the middle lamella of cell walls. Required as a cofactor by some 

enzymes involved in the hydrolysis of ATP and phospholipids. Acts as a second 
messenger in metabolic regulation

Mg Required by many enzymes involved in phosphate transfer. Constituent of the 
chlorophyll molecule

Cl Required for the photosynthetic reactions involved in O2 evolution
Mn Required for activity of some dehydrogenases, decarboxylases, kinases, oxidases and 

peroxidases. Involved with other cation-activated enzymes and photosynthetic O2 
evolution

Na Involved with the regeneration of phosphoenolpyruvate in C4 and CAM plants. 
Substitutes for potassium in some functions

Group 4 Nutrients that are involved in redox reactions
Fe Constituent of cytochromes and non-haem iron proteins involved in photosynthesis,N2 

fixation, and respiration
Zn Constituent of alcohol dehydrogenase, glutamic dehydrogenase, carbonic anhydrase, 

etc.
Cu Component of ascorbic acid oxidase, tyrosinase, monoamine oxidase, uricase, 

cytochrome oxidase, phenolase, laccase and plastocyanin
Ni Constituent of urease. In N2-fixing bacteria, constituent of hydrogenases
Mo Constituent of nitrogenase, nitrate reductase and xanthine dehydrogenase

Source: After Evans and Sorger (1966) and Mengel and Kirkby (1987)
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 2. Secondly, elements that are present in the reactions with involvement of energy 
storage and for structure maintenance. Phosphorus, silicon and boron contribute 
to carry out these functions.

 3. Those nutrients present in ionic forms are classified in this third group, such as 
those that serve the functions of cofactors and in osmoregulation.

 4. Nutrients involved in redox reactions are classified in the fourth group.

1.4  Role of Nutrients in Plant Growth and Physiology

The role of nutrients in plant growth including their assimilation, physiological 
functions, nutrient deficiency symptoms and toxicity symptoms are described indi-
vidually hereunder.

1.4.1  Nitrogen

Nitrogen is required by plants in greatest amounts. Nitrogen, being a very mobile 
element, circulates well between the atmosphere, the soil and the living organisms. 
Nitrogen-sufficient plants contain 1–5% of N (10,000–50,000 ppm or mg kg−1 dry 
matter).

1.4.1.1  Uptake and Assimilation

Nitrogen is absorbed either as nitrate (NO3
−) ion, the prevalent form of uptake, or as 

ammonium (NH4
+) ion depending on plant species and the conditions of soil like pH 

and redox state. Under reduced conditions, such as in the case of rice, N is taken up 
in ammoniacal form. Nitrogen, up on reduction, attains its −3 valence state for its 
assimilation and uptake. Nitrate reductase and nitrite reductase are the two impor-
tant enzymes that ensure the conversion of nitrate (NO3

−) to ammonium (NH4
+). The 

translocation of nitrogen in higher plants takes place mainly as nitrate and amino 
acids mainly through the xylem from the roots towards the upper plant parts. High- 
affinity H+-coupled symporters belonging to the NRT family mediate NO3

− uptake. 
MT transporters or NH3/H+ symporters mediate NH4

+ uptake. Nitrate reduction and 
assimilation occur mostly in the shoot. The mechanism of N uptake and assimila-
tion is represented in Fig. 1.1.

K. S. Karthika et al.
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1.4.1.2  Physiological Functions

• Nitrogen is an important constituent of several plant cell components. It is an 
essential component of nucleic acids, proteins, amino acids, phospholipids and 
many other secondary metabolites. The amino groups in amino acids are pro-
vided by the element N, which thereby remains its foremost function.

• Nitrogen is present in the ring structure of purine and pyrimidine bases of nucle-
otides, which form the basis of nucleic acids. As the component of nucleic acid 
either as deoxyribonucleic acid (DNA) or as ribonucleic acid (RNA), N holds its 
responsibility in the transfer of genetic code to the offsprings (Rattan 2015)

• Chlorophyll, the pigment which imparts green colour to the leaves, contains N in 
it. Nitrogen due to its presence in chlorophyll enhances the quality of leaves, 
especially in leafy vegetables and fodders (Rattan 2015).

• The proportion of amino acids like glutamic acid (C5H9NO4), proline (C5H9NO2), 
phenylalanine (C9H11NO2), cysteine (C6H12N2O4S2), methionine (C5H11NO2S) 
and tyrosin (C9H11NO3) are enhanced, and the amounts of lysine (C6H14N2O2), 
histidine (C6H9N3O2), arginine (C6H14N4O2), aspartic acid (C4H7NO4), threonine 
(C4H9NO3), glycine (C2H5NO2), valine (C5H11NO2) and leucine (C6H13NO2) in 
the grain are decreased with nitrogen fertilization. This improves quality of pro-
tein in the food grains (Rattan 2015).

Fig. 1.1 Mechanism of N uptake and assimilation. Enzyme nitrate reductase reduces nitrates to 
nitrites in the cytoplasm. Reduction of nitrites to ammoniacal form occurs in chloroplasts with the 
help of enzyme nitrite reductase. Ammoniacal N is assimilated into the amino acid glutamate. The 
excess nitrogen is stored in vacuoles as nitrates

1 Biological Functions, Uptake and Transport of Essential Nutrients in Relation…
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• Nitrogen is found to play an essential role in the biochemistry of coenzymes, 
photosynthetic pigments which are nonprotein compounds. In ample supply, 
nitrates get deposited in the vacuole. This plays an important role in turgor gen-
eration (Maathuis 2009).

1.4.1.3  Deficiency Symptoms

• Nitrogen deficiency inhibits overall growth of the plant. The symptoms include 
yellowing or chlorosis of leaves due to a collapse in chloroplasts. Since N is 
mobile in plants, the deficiency appears in the older leaves near the base of the 
plant. Later it advances towards the younger leaves under conditions of severe 
deficiency. This may lead to necrosis of entire leaf or parts of the leaf (Agarwala 
and Sharma 1976).

• The plants appear small with spindly stems. Nitrogen deficiency results in 
smaller leaves, and there occurs premature falling of older leaves. Branching of 
roots gets restricted and this adversely affects the root growth. However an 
increase in the root/shoot ratio is observed with nitrogen deficiency (Mengel and 
Kirkby 2006).

• Amino acids especially Gln, proteins and chlorophyll content are found to 
decrease with a deficiency in N. Nitrogen starvation could also lead to an increase 
in starch and specific flavonoids (e.g. rutin and ferulic acid) and phenyl pro-
panoids (Amtmann and Armengaud 2009).

• In cereals nitrogen deficiency results in decreased tillering, reduction in the num-
ber of ears per unit area and also the number of grains per ear. Though the grains 
remain small, protein concentration remains relatively higher. This is attributed 
to the decrease in the import of carbohydrate into the grains which takes place at 
the later stages of grain filling (Mengel and Kirkby 2006). Nitrogen deficiency 
characterized by pale green or yellowish leaves of corn is shown in Fig. 1.2.

• In case of nitrogen deficiency, synthesis of anthocyanin results due to the non- 
usage of carbohydrates in nitrogen metabolism, leading to its accumulation. In 
tomato and certain varieties of corn, nitrogen deficiency is observed as purple 
coloured leaves, stems and petioles (Taiz and Zeiger 2002).

• In cocoa, leaves turn pale yellow in colour and are reduced in size in case of 
nitrogen deficiency. Older leaves exhibit scorching at the tip, and petioles make 
an acute angle with the stem.

1.4.1.4  Toxicity Symptoms

Excess of nitrogen contributes to darker green colouration of leaves and succulent 
growth of plants. The plants grow taller with heavier heads succumbing plants to 
easy lodging. Thick succulent growth attracts insect, pest and disease attacks (Rattan 
2015).

K. S. Karthika et al.
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1.4.2  Phosphorus

Phosphorus is the second most abundant mineral in the human body. In the soil, the 
dominant form in which phosphorus occurs is orthophosphate ion, whereas in 
plants, it also occurs in pyrophosphate form to a minor extent. Phosphorus is con-
sidered to be an immobile element in soils and mobile element in plants. The P 
concentration in plants with sufficient P varies from 0.1 to 0.4% by weight, which 
is 1/5 to 1/10 of N or K content (Rattan 2015).

1.4.2.1  Uptake and Assimilation

Phosphate taken up directly as inorganic PO4
3_ (Pi) by roots is xylem translocated. 

It moves to the fast-growing young laminae in its oxidized form. Inorganic P forms 
occur mainly as soluble Pi (orthophosphate) or as PP (pyrophosphate). Newer 
leaves receive phosphate both from the roots and from the older leaves. This was 
observed in a study to understand the transport and assimilation of P on castor bean 
by Jeschke et al. (1997). Organic P upon hydrolysis is translocated via the phloem. 
The mechanism of P uptake and assimilation is represented in Fig. 1.3.

1.4.2.2  Physiological Functions

• Phosphorus is an important constituent in the structure of nucleic acids and lipid 
membranes.

Fig. 1.2 N deficiency in corn. (Photo: by K.S. Karthika)

1 Biological Functions, Uptake and Transport of Essential Nutrients in Relation…
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• Phosphorus is an important component of adenosine triphosphate (ATP). 
Phosphorus is involved in all energy transfer reactions in the cell, as ATP is 
known as the energy currency of the cell.

• Phosphorus is involved in photosynthesis, translocation of sugars and starch, 
movement of nutrients within the plant and transfer of genetic characteristics 
from one generation to the next as it is a component in DNA and RNA (Taiz and 
Zeiger 2002).

• It plays an indispensable role in the formation of flower and seeds and in the 
growth of plant. Root proliferation is enhanced by P, and thus it helps the plant 
to explore bigger soil volume for water and nutrients. Phosphorus has another 
essential role in cellular metabolism. Large amounts of P are stored in seeds to 
enable embryo development, germination and seedling growth (Marschner 
1995).

• Rhizobium bacteria which convert atmospheric nitrogen (N2) into ammoniacal 
(NH4

+) form have P as an essential ingredient. Nodule development in nitrogen- 
fixing legumes is enhanced by the availability of P as it is an energy source.

• It reduces the severity of crop diseases and increases resistance to drought and 
salinity. Phosphorus enhances water use efficiency of crops under limited soil 
moisture conditions.

Fig. 1.3 Mechanism of P uptake and assimilation. H+-coupled high-affinity transporters mediate 
the direct uptake of P in the form of inorganic PO4

3_ (Pi). Inorganic P (Pi) inside the cells forms 
high-energy pyrophosphate and ester bonds. This Pi is an essential component of lipid membrane 
in maintaining the integrity of membrane. In chloroplasts, Pi is essential during photosynthesis in 
the formation of high-energy bonds. Pi enters the chloroplast in exchange for glyceraldehyde- 3- 
phosphate (G3P). Phosphorus is stored as phytate together with minerals in plastids

K. S. Karthika et al.
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• Phosphorus also influences several quality factors, and these include lower mois-
ture and higher sugar content of grains, reduced losses due to diseases, improve-
ment in marketable yield fraction and enhanced feed value (Rattan 2015).

1.4.2.3  Deficiency Symptoms

• Phosphorus is considered to be deficient in plants when the concentration falls 
below 0.1% or 1000 ppm P (Rattan 2015).

• Phosphorus deficiency affects the overall growth of plant. Since phosphorus is a 
mobile element in plants, its deficiency symptoms appear initially on the older 
leaves.

• Excess anthocyanin synthesis is observed with P deficiency giving the leaves a 
slight purple colouration. Phosphorus deficiency purple colour is not due to the 
chlorosis in contrast to nitrogen deficiency. Thus particular P deficiency symp-
toms are observed as dark greenish purple leaves which get malformed. There 
will be necrotic spots on the leaves. The overall growth of young plants gets 
stunted (Taiz and Zeiger 2002).

• When P is deficient, stems of many annual plant species may appear reddish due 
to an enhanced formation of anthocyanin. Leaf expansion gets inhibited with a 
reduction in leaf surface area as one of the symptoms in the case of P deficiency 
(Fredeen et al. 1989).

• Phosphorus deficiency results in reduced tillering in cereals, reduced rates of 
new shoots and flower formation in fruit trees, premature drying and shedding of 
leaves, poor growth and shortening of fronds in coconut palms.

• In coconut, as an initial symptom, leaves become purple coloured, and in severe 
cases, leaves may turn yellow. Premature drying and shedding of leaves are also 
seen. Fronds become shortened and growth gets restricted in case of P 
deficiency.

1.4.3  Potassium

Potassium is taken up by plant roots in its cationic form, i.e. K+. The main natural 
source of K+ is the weathering of K-bearing minerals. Potassium exists in a dynamic 
equilibrium in soil and it is highly mobile in plants. Potassium concentration in 
healthy plant tissues varies from 1% to 5%. Though potassium does a regulatory 
role in plant metabolism and development, it does not form a structural component 
of the plant (Rattan 2015).

1 Biological Functions, Uptake and Transport of Essential Nutrients in Relation…
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1.4.3.1  Uptake and Assimilation

Potassium is taken up and translocated throughout the plant at high rate and efficient 
means. Various K+ uptake systems become the reason for the higher rate of uptake 
of potassium which is facilitated by specific channels in the plasmalemma and tono-
plast of plant tissues. Potassium is highly mobile in plants, and K translocation takes 
place via both xylem and phloem. In xylem, root to shoot transport of K+ takes 
place. Whereas via phloem, transport of K+ is towards sink organs. This may be 
seeds or fruits in the shoot or tubers and the storage roots (beets). The mechanism 
of K uptake and assimilation is represented in Fig. 1.4.

1.4.3.2  Physiological Functions

• The foremost role of potassium is in enzyme activation. It helps in more than 60 
enzymes, and it includes many enzymes involved in respiration and photosynthe-
sis (Rattan 2015). Potassium involves directly in the activation of enzymes like 
pyruvate kinase and starch synthase.

• Since potassium is important in ATP production and is involved in regulating the 
photosynthesis rate, with its deficiency, photosynthesis and ATP production rates 

Fig. 1.4 Mechanism of K uptake and assimilation. H+-coupled high-affinity symporters mediate 
potassium uptake. Potassium is also taken up through low-affinity ion channels. Potassium acts as 
a cofactor in enzymatic reactions between substrates and products. It generates turgor to provide 
structure and drive cell expansion as the main cation in vacuoles. Potassium is also involved in the 
regulation of stomatal apertures
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are reduced. This results in slowing down of all the ATP-dependent processes 
(Rattan 2015).

• Potassium helps in improving the efficiency of photosynthesis and CO2 assimila-
tion. In photosynthesis, at the site of ATP production, K maintains electrical 
charge balance (Uchida 2000).

• The functions of K in photosynthesis and ATP production relegate its stomatal 
activity-related function to the second position. It helps in maintaining the water 
balance of plants by controlling the turgor involved in the stomatal opening and 
closure process. It helps in regulating the osmotic pressure in plant cells 
(Maathuis 2009).

• Nutrients and water transport via xylem and photosynthate transport via phloem 
are improved with potassium (Mengel and Kirkby 2006).

• Known as the quality element/nutrient, potassium is very important in maintain-
ing crop quality. It is significant in improving disease resistance, drought toler-
ance and shelf life of fruits and vegetables.

1.4.3.3  Deficiency Symptoms

Symptoms of potassium deficiency are observed initially on older leaves as the ele-
ment is highly mobile in plants. Protein synthesis is adversely affected and seldom 
synthesised with the deficiency of potassium even with the availability of nitrogen. 
Instead, precursors for the synthesis of proteins such as amino acids, amides and 
nitrate accumulate. Visual symptoms are immediately not resulted in the case of 
potassium deficiency; however initial symptoms include a fall in the rate of plant 
growth (Hidden hunger) (Dawson 2014).

• The visual symptoms appear as chlorosis of older leaves. This begins at the leaf 
margins, which later progresses inwards. Leaves curl and crinkle towards 
advanced stages of deficiency.

• Potassium deficiency affects the lignification of the vascular bundles, which in 
turn leads to lodging of crops.

• The stems of potassium-deficient plants may have shorter internodes and also 
occur slender and weak (Taiz and Zeiger 2002).

• In coconut palms, deficiency of K causes orangish yellow discolouration from 
the tip of the leaflets, progressing along the margin towards the base. In case of 
severe deficiency, tip of leaflets withers and becomes necrotic. The midrib 
remains green, and some leaves exhibit a scorched appearance (Fig. 1.5). In gen-
eral, growth of the K-deficient coconut palm gets reduced, with slender trunk, 
shorter leaflets and reduced number of inflorescences, nut set and nuts per bunch.

• Potassium deficiency symptoms in areca palm begin on leaves as necrotic speck-
ling. This gives a light brown-coloured appearance to the leaf. Leaf margin and 
tip scorching are commonly observed in case of K deficiency. Canopy size and 
trunk diameter get reduced in advanced stages of K deficiency.
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• In cocoa, potassium deficiency is characterized by necrosis which begins as yel-
lowish areas in the interveinal regions along the margins. This marginal necrosis 
later progresses between veins as the deficiency of K advances (Wood and Lass 
1985).

• Deficiency of K in soils may affect the stem, lead to lodging of corn plants, and 
also increase the susceptibility of corn roots to root-rotting fungi (Taiz and Zeiger 
2002).

1.4.3.4  Toxicity Symptoms

Potassium can be accumulated in abundant amounts without exhibiting toxicity 
symptoms within the plants, and this behaviour is described as the luxury consump-
tion of potassium.

1.4.4  Calcium

Calcium is very abundant in lithosphere similar to potassium. Uptake of calcium by 
plants is mainly in the form of Ca2+. Calcium is mobile in soil and relatively immo-
bile in plants. In plants Ca content ranges between 0.2% and 1.0% (Rattan 2015).

1.4.4.1  Uptake and Assimilation

Calcium (Ca2+) permeable channels which could be Ca2+ selective or Ca2+ non- 
selective ion channels allow the entry of calcium towards the root. Calcium ion (Ca2+) 
remains sequestered in the vacuole of mature cells, with calcium being immobile in 
plants. This process occurs with the involvement of members of the CAX H+/Ca2+ 
antiport family and by ATP-driven P-type ATPases (McAinsh and Pittman 2009).

Fig. 1.5 K deficiency 
symptoms in coconut leaf. 
(Photo: T.K.Broschat)
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1.4.4.2  Physiological Functions

• Calcium is essential in plant growth and development. It plays an important role 
in meristematic growth. Dominant functions of Ca2+ which are cellular are 
mainly structural.

• Calcium is better known as a secondary messenger as it is required for the nor-
mal functioning of plant membranes. In several cases of responses of plants to 
hormonal and environmental signals, it functions well as a second messenger 
(Sanders et al. 1999). Calmodulin is a protein found in the cytosol of plant cells. 
When Ca functions as a second messenger, it binds to calmodulin and forms 
calmodulin-calcium complex, which thus plays an essential role in regulating 
many metabolic processes

• Calcium pectate is the major constituent of cell wall providing rigidity to it. Thus 
it helps in maintaining the integrity of cell membrane.

• Calcium plays a role in cell elongation and cell division (mitosis), and it also 
helps to maintain the structure of chromosomes.

• In the case of imbalances in nutrient ions in soil, soil reaction, Al3+ toxicity, etc., 
root cells are protected by calcium.

• Nitrogen assimilation into organic constituents, especially proteins, is favoured 
by calcium. High supply of Ca may be a prerequisite for making symbiotic legu-
minous plants susceptible to infection by Rhizobium (Rattan 2015).

• Calcium is involved in the activation of enzymes like phospholipase, arginine 
kinase, amylase and ATPase.

1.4.4.3  Deficiency Symptoms

The deficiency of Ca occurs seldom relatively as most of the soils are abundant in 
soil available calcium. But in cases of severe weathering and extreme leaching of 
soils, deficiency of Ca may occur. This condition is accelerated by lowering of pH 
in the soils. Calcium being immobile in plants, the deficiency symptoms may begin 
to appear in the younger leaves. When the concentration of Ca in plants falls below 
0.1% (or 1000 ppm), it is considered as Ca deficient (Rattan 2015).

• Meristematic tissues are affected negatively in the case of calcium deficiency. 
Characteristic symptoms of Ca deficiency include younger leaves appearing 
small, deformed and chlorotic. As the deficiency advances, the leaves turn 
necrotic. The leaves turn cup shaped and crinkled, and the terminal buds deterio-
rate with breaking down of petioles. The stem gets weakened, and root system 
appears brownish, short, branched and stunted on Ca deficiency (Mengel and 
Kirkby 2006).

• The common Ca deficiency symptoms include:

 1. Blossom end rot in tomatoes (Fig. 1.6)
 2. Bitter pit in apples
 3. Black heart in celery
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 4. Internal browning in Brussels sprouts
 5. Blossom end rot in pepper
 6. Cavity spot in carrots

1.4.5  Magnesium

Magnesium is taken up by plants as Mg2+. In soil and plants, magnesium is mobile 
in nature. Mg concentration in plants ranges between 0.1% and 0.4%. Concentration 
of Mg in soils varies between 0.05% and 0.5% (Maathuis 2009).

1.4.5.1  Uptake and Assimilation

The uptake of Mg2+ from soil solution is lesser than that of K+
, though Mg2+ concen-

tration is relatively higher in soil. The translocation of Mg2+ towards storage tissues 
and fruits is promoted by potassium. Researchers have found that Mg2+ can be trans-
located from older to younger leaves or to the apex as it is very mobile in the phloem 
unlike Ca2+. The transporters of MGT family favour the uptake of Mg2+ at the soil: 
root boundary. This action is similar to that of bacterial CorA Mg2+ transporters 
(Maathuis 2009).

1.4.5.2  Physiological Functions

• Magnesium occurs as a structural component in the central position of chloro-
phyll molecules and helps in imparting green colour to the leaves.

Fig. 1.6 Ca deficiency in 
tomato – blossom end rot. 
(Photo: Scot Nelson, 
University of Hawaii)
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• Magnesium is involved in photosynthesis as light reactions in the stroma get 
promoted by the activity of Mg2+. The key reaction of Mg2+ in photosynthesis is 
the activation of ribulose biphosphate carboxylase (Rubisco). Thus Mg provides 
a favourable effect on CO2 assimilation and sugar and starch production 
(Maathuis 2009).

• Cellular Mg2+ serves a role as enzyme cofactor. Nucleotides and nucleic acids are 
stabilized with the help of Mg2+. The best example is the role of Mg2+ in phos-
porylation/dephosphorylation and energy transfer. ATP, the energy source of the 
cell, becomes biologically active only when it is bound to magnesium ion. 
Phosphotransferases and ATPases release energy in the presence of Mg2+. This is 
accomplished by the formation of a bridge at the protein catalytic site by the 
Mg2+ with the nitrogen atom present there and oxygen atoms on the phosphate 
group.

• Magnesium is an essential component of polyribosomes and the levels of Mg2+ 
determine the gene transcription and translation.

• Magnesium also helps in promoting the uptake of phosphorus and its transloca-
tion within the plants. Sugar transport within the plants also is improved by 
magnesium.

1.4.5.3  Deficiency Symptoms

Magnesium is adsorbed weakly on to the soil particles due to its small hydration 
shell. This leads to higher rates of Mg leaching from the soil and thereby Mg2+ defi-
ciency. Lower amounts of Mg lead to a decrease in photosynthetic and enzyme 
activity within the plants. There occurs depolymerization of ribosomes on Mg defi-
ciency resulting in premature ageing of the plants. The deficiency occurs when the 
concentration in plants falls below 0.1% Mg.

• Magnesium deficiency symptoms begin to appear in the older or lower leaves 
initially as the nutrient is mobile in plants. In the later stages, it moves to the 
younger leaves. The symptoms include interveinal chlorosis and streaked or 
patchy effects on leaves. Sometimes, the intercostal areas turn necrotic. In more 
advanced stages, the affected leaves turn smaller and curve upwards at margin. 
This may eventually result in drying of the tissues and death (Mengel and Kirkby 
2006).

• The symptoms are similar in the case of cereals like wheat, maize, oats and rye 
during the initial stages, with an exception of maize taking on a more spotted 
appearance at later stages.

• “Grass tetany” is a particular example of Mg deficiency-related nutritional disor-
der common in cattles grazing on Mg-deficient pastures.

• In coconut palms, older leaves of palms exhibit Mg deficiency symptoms ini-
tially. Along the margins the leaves exhibit orange or bright lemon yellow colour 
whereas the leaf centre remains green in case of Mg deficiency (Fig. 1.7).
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• In areca palms, the older leaves exhibit interveinal chlorosis leaving the midrib 
and veins green in colour. The chlorosis starts at the leaf tip progressing down-
wards and inwards along the margins and between the veins. Leaf margins curve 
upwards in the later stages.

• In cocoa, leaf necrosis of older leaves is the characteristic Mg deficiency symp-
tom. This commences as necrosis near leaf margins in interveinal areas of leaves, 
later developing into marginal necrosis. The deficiency-free areas in leaves 
appear paler green. This develops a characteristic oak leaf pattern.

1.4.6  Sulphur

The most important S source for plants is SO4
2-, a form which is mobile in soils. 

Sulphur concentration in plants varies between 0.1% and 0.4%, similar to that of P 
and Mg. Sulphur is very important in oilseed crops as these crops require more S 
than cereal grains. For example, the amount of S required to produce 1 ton of seed 
is about 3–4 kg for cereals (range 1–6), 8 kg for legume crops (range 5–13) and 
12 kg for oil crops (range 5–20) (Jamal et al. 2010).

1.4.6.1  Uptake and Assimilation

Sulphur is taken up mainly in the form of sulphates and it is highly mobile in plants. 
The uptake and movement of sulphates are facilitated by H+ gradient energized 
sulphate transporters. Transport of S takes place as sulphate ions via xylem to the 
shoot, and it undergoes reduction. The sulphate ions get reduced mainly in shoot 
chloroplasts and some in root plastids. Thus the reduction of SO4

2− to SO3
2− and to 

S2− is essential for the assimilation of sulphur. The amino acid cysteine contains 
S2− the highly reduced form. Sulphur that is present in excess gets accumulated as 
SO4

2− in vacuoles (Maathuis 2009).

Fig. 1.7 Mg deficiency in 
coconut. (Photo: by Scot 
Nelson, University of 
Hawaii)
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1.4.6.2  Physiological Functions

• Amino acids like cysteine (C3H7NO2S), cystine (C6H12N2O4S2) and methionine 
(C5H11NO2S-HO2CCH(NH2)CH2CH2SCH2) contain sulphur as an essential con-
stituent. It is also present in several coenzymes and vitamins essential for metab-
olism. For example, CoA and vitamins like biotin and thiamine have sulphur as 
its constituent.

• In onions, volatile sulphur compounds (disulphides or polysulphides) are present 
which attributes to the effect of bringing tears to the eyes, i.e. lachrymatory 
effect. Diallyl disulphide is the main component in garlic oil. In mustard oil, vari-
ous glucosides are synthesised which is favoured by S. Thus S helps in improv-
ing the oil quality in oilseed crops.

1.4.6.3  Deficiency Symptoms

Sulphate ion is relatively weakly bound to soil than phosphate ions. Thus it gets 
easily leached off in cases of heavy rainfall. This results in the depletion of sulphur 
from soils. Sulphur, being a constituent of proteins, its synthesis is inhibited with 
the deficiency of S. Deficiency of S occurs when the concentration in plants is less 
than 0.1–0.2%. Sulphur deficiency symptoms are mainly characterized by chloro-
sis. This results in stunted growth and accumulation of anthocyanin. These are simi-
lar to nitrogen deficiency symptoms (Taiz and Zeiger 2002).

• Sulphur deficiency occurs in younger leaves first. Sulphur being immobile in 
plants, deficiency symptom is initially observed in mature and young leaves. The 
symptoms arise as interveinal chlorosis. Sulphur deficiency chlorosis can occur 
in all leaves at the same time or only in the older leaves initially in many plant 
species (Taiz and Zeiger 2002).

• Typical symptoms of S deficiency include yellowish-green or yellowish-orange 
leaflets in the case of coconut palm. With the weakening of stem, drooping of 
leaves is observed as sulphur deficiency symptom. Decrease in the leaf number 
and a reduction in size of leaves are seen in older palms. The number of live 
fronds becomes fewer. In the advanced stage, the crown loses most of the leaves, 
and severe necrosis is found on the older leaves (Southern 1969).

• In cocoa, leaves develop pale yellowish or yellowish green colouration. The size 
of leaves is not affected. Older leaves exhibit yellow blotches.

1.4.6.4  Toxicity Symptoms

Sulphur toxicity chances are seen in saline soils with excess concentration of sul-
phate salts; otherwise S toxicity seldom occurs. Sulphur toxicity could be in the 
form of atmospheric sulphate. This level may even raise up to 100 μg m−3 as a result 
of industries and burning of coal. According to Maathuis 2009 when the levels of S 
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exceed 50 μg m−3, the toxic effects could prove fatal to forest tree species. Higher 
levels of SO2 in the atmosphere in few industrial regions have eradicated few lichen 
species. The toxicity symptom is seen as leaf necrosis.

1.4.7  Iron

Iron is taken up as ferrous ions (Fe2+) by plants. Iron content ranges between 100 
and 500 mg kg−1 of dry matter in plants. It exists in two oxidation states Fe2+and 
Fe3+in plants (Rattan 2015).

1.4.7.1  Uptake and Assimilation

Iron is taken up as Fe2+ through a specific channel of the plasma membrane. This is 
closely linked to the Fe3+ reduction. Either by diffusion or by mass flow, the iron 
(Fe3+) siderophores in the soil are transported to the roots, and these enter the free 
space in the roots. Through these root-free spaces, these later move to the 
plasmalemma- bound Fe3+ reductase (Mengel and Kirkby 2006).

1.4.7.2  Physiological Functions

• Iron, a redox active metal is involved in several processes like mitochondrial 
respiration; photosynthesis; assimilation of nitrogen; biosynthesis of hormones 
like jasmonic acid, gibberellic acid and ethylene; osmoprotection; and produc-
tion and scavenging of reactive oxygen species and pathogen defence (Hansch 
and Mendel 2009).

• Iron, present in cytochromes, plays a role in electron transfer in redox reactions. 
During electron transfer reactions, iron is reversibly oxidized from Fe2+ to Fe3+ 
(Taiz and Zeiger 2002).

• Three groups of iron-containing proteins, viz.:

 (i) Fe-S proteins – These Fe-S proteins mainly play the roles as enzymes. For 
example, ferredoxin acts as electron carriers in electron transfer reactions. 
Another example is aconitase which functions as regulator protein (Hansch 
and Mendel 2009).

 (ii) Haem-containing proteins – These contain Fe-porphyrin complex as a pros-
thetic group. The major haem proteins known are the respiratory and photo-
synthetic cytochromes enabling electron transfer (Hansch and Mendel 
2009).

• Other iron proteins – These bind iron ions directly, also known as the non-haem 
proteins. Most prominent example includes the ferritins, which occur mostly in 
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etioplasts and amyloplasts (nongreen plastids) but not in green plastids which are 
the mature chloroplasts.

• Iron is involved in the metabolism of nucleic acids. Chlorophyll synthesis and its 
maintenance in plants demand the involvement of iron. (Rattan 2015).

1.4.7.3  Deficiency Symptoms

Occurrence of iron deficiency is relatively more on calcareous or saline alkali soils. 
When the concentration of iron in plants is less than 50 mg kg−1, those plants are 
considered as iron deficient. The symptoms of iron deficiency appear initially on the 
younger leaves as Fe is immobile in plants. This distinguishes it from Mg deficiency 
(Taiz and Zeiger 2002).

• Iron deficiency is characterized by interveinal chlorosis. This begins to appear 
initially on the younger leaves. The margins and veins of leaves remain green. 
These veins later become chlorotic, under conditions of prolonged deficiency 
resulting in turning the entire leaf white. Growth gets affected severely turning 
the whole plant necrotic.

• In coconut, uniform chlorosis is the symptom associated with Fe deficiency. All 
the leaves from the top of the crown to the base will appear pale green or dark 
yellow in colour. There will be gradual yellowing of the leaflets in longitudinal 
strips parallel to the veins. In the advanced stages, the leaf becomes completely 
yellow. There will be shortening of the rachis and the leaflets. Under severe cases 
of Fe deficiency, newly formed leaflets develop necrotic tips. The palms will 
have a stunted growth eventually leading to the death of meristem (Broschat 
2014a).

1.4.7.4  Toxicity Symptoms

• Iron (Fe) toxicity enhances the activity of enzyme polyphenol oxidase, as a result 
of oxidized polyphenols production. This thus causes leaf bronzing, the charac-
teristic symptom of iron toxicity. Root oxidation power is negatively affected 
with the iron toxicity (Dobermann and Fairhurst 2000).

• Characteristic iron toxicity symptoms in rice include occurrence of small brown 
coloured spots on older/lower leaves beginning from tip. In advanced conditions, 
these spread towards the leaf base and combine on leaf interveins. This in turn 
results the whole leaf to turn orange yellow to brown in colour and die eventually. 
In case of severe Fe toxicity, leaves turn purple-brown. Tillering becomes limited 
resulting in stunted growth. This also affects the root system. Coarse, sparse, 
damaged roots are observed with dark brown to black coating on the surface of 
root as a result of Fe toxicity. Freshly uprooted rice hills tend to show poor root 
systems with many black and died roots (Dobermann and Fairhurst 2000).
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1.4.8  Manganese

Manganese is taken up by plants in its cationic form of Mn2+. Concentration of Mn 
in plants ranges between 20 and 300 mg kg−1 of dry matter. It can be easily oxidized 
into two oxidation states Mn3+ and Mn4+ in plants. Manganese resembles magne-
sium in its biochemical functions (Rattan 2015).

1.4.8.1  Uptake and Assimilation

Manganese is mainly taken up in the form of Mn2+, and the uptake rates are lower 
than that of Ca2+ and Mg2+. The uptake is mainly across the plasmalemma by facili-
tated diffusion. The translocation of Mn2+ ions via phloem is limited as the element 
is comparatively less mobile in plants. Manganese is preferentially translocated to 
meristematic tissues (Mengel and Kirkby 2006).

1.4.8.2  Physiological Functions

• Relevance of Mn in plant growth and metabolism is very high as manganese 
exists in many plant cell enzymes in three oxidation states: II, III and IV. This 
involves group of enzymes like oxidoreductases, hydrolases, lyases and ligases. 
(Hebbern et al. 2009).

• Manganese can fulfil two functions in proteins.

 (i) It serves as catalytically active metal: Mn-SOD (Mn-containing superoxide 
dismutase) helps in preventing damage of the cell from free radicals, the 
oxalate oxidase and the Mn-containing water-splitting system of photosys-
tem II.

 (ii) It exerts an activating role on enzymes: Mn-activated enzymes include phe-
nyl alanine ammonia lyase, isocitrate dehydrogenase, malic enzyme and 
PEP carboxykinase (Hansch and Mendel 2009).

• Manganese plays a unique role in water-splitting and oxygen evolution system in 
photosynthesis. The reaction involved is 2H2O + 4e− ➔ 4H+ + O2. Manganese is 
linked with nitrogen assimilation in the plants due to its presence in nitrite reduc-
tase and hydroxylamine reductase enzymes.

1.4.8.3  Deficiency Symptoms

Deficiency occurs when concentration of Mn becomes less than 25 mg kg−1 dry 
matter. The deficiency resembles that of Mg deficiency; however the Mn deficiency 
symptoms initially appear on the younger leaves.
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• In monocots, especially in oats, the symptom is termed as “grey speck”. In this 
case, symptoms develop as grey spots or stripes at the basal region of the leaves. 
There will be a decrease in the turgor of the plants deficient in Mn. In later stages 
leaves wither as the upper part of the leaves breaks over near the middle (Mengel 
and Kirkby 2006).

• Interveinal chlorosis is the major symptom in dicots. Interveinal chlorosis in 
plants like apple, raspberry, cherry, peas, onion and French beans produce a 
“chequered effect” due to the appearance of yellowish leaf with the smallest leaf 
veins remaining green in colour (Rattan 2015).

• The common Mn deficiency symptoms are listed below.

 (i) Grey speck of oats
 (ii) Marsh spot of peas
 (iii) Speckled yellow of sugar beet
 (iv) Frenching of tung trees
 (v) Pahala blight of sugarcane

• In manganese (Mn)-deficient coconut palms, symptoms begin to appear on 
newer leaves. The symptoms begin as chlorosis of leaves, which later turns 
necrotic leading to withering of leaves. During withering the leaflets get curled 
about the rachis. The characteristic symptom in coconut leaf is termed as “frizzle 
top” as the withering gives a frizzled appearance to the leaf. The growth gets 
stunted in case of severe Mn deficiency, and the emerging leaves will be with 
petiole stubs affected with necrosis (Fig. 1.8; Broschat 2014b).

• Manganese deficiency symptoms in cocoa develop as blurred chlorosis in 
younger leaves. The leaves appear pale yellow or yellowish green in colour with 
the veins remaining green. The tip and distal margins get scorching in case of 
severe deficiency.

Fig. 1.8 Mn deficiency in 
coconut. (Photo: 
T.K. Broschat)
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1.4.8.4  Toxicity Symptoms

Manganese toxicity occurs with higher concentrations of Mn2+ which happens 
under highly reduced conditions like in flooded conditions. Acid to very acid soils 
also contain toxic concentrations of manganese. This toxicity is seen especially in 
acid sulphate soils where the soil pH falls below 3.0. Toxicity symptoms develop in 
the older leaves as brown spots of MnO2 enclosed by chlorotic areas.

In cocoa, Mn toxicity symptoms appear on leaves as yellowish or pale green 
areas that are irregular on dark green base. The symptoms are observed on younger 
leaves and not on older leaves. No marginal or tip scorching is seen.

1.4.9  Zinc

Zinc is an essential micronutrient for biological systems. One of the critical physi-
ological roles of Zn in biological systems is its role in protein synthesis and metabo-
lism. Zinc is absorbed by plants as Zn2+. The concentration of zinc in plants varies 
from 25 to 150 mg kg−1 of dry matter. In biological systems Zn is required by largest 
number of proteins. It has been estimated that nearly 2800 human proteins are capa-
ble of binding Zn which corresponds to 10% of human proteome (Andreini et al. 
2006).

1.4.9.1  Uptake and Assimilation

Zinc is translocated from roots to shoots in the form in which it is taken up (Zn2+). 
From the studies, various researchers have concluded that Zn is phloem mobile.

1.4.9.2  Physiological Functions

• Zinc is an important constituent of enzymes for protein synthesis. More than 300 
enzymes contain Zn as its essential catalytic component. The major three 
enzymes containing Zn include carbonic anhydrase, alcoholic dehydrogenase 
and superoxide dismutase (Rattan 2015). These enzymes perform the following 
functions.

 1.  Carbonic anhydrase (CA): presents in the cytoplasm, it facilitates the transfer 
of carbon dioxide or bicarbonates CO2 fixation in photosynthesis. This forms 
the “limiting enzyme” for CO2 fixation in C4 plants.

 2.  Alcoholic dehydrogenase (AD): the conversion of acetaldehyde to ethanol is 
catalysed by this enzyme in anaerobic root respiration.

 3.  Superoxide dismutase (SOD): the Zn-Cu-SOD protects the lipids and proteins 
of the membranes against oxidation by detoxifying superoxide radicals.
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• Zn-containing enzymes are taking part in the regulation of RNA processing, 
translation and DNA transcription (Hansch and Mendel 2009).

• Zinc promotes synthesis of cytochrome C, and Zn plays an inevitable role in the 
N as well as carbohydrate metabolism of plants. The transport and translocation 
of phosphorus also are influenced by Zn (Rattan 2015).

• Zinc is required in seed development (Hansch and Mendel 2009).

1.4.9.3  Deficiency Symptoms

Zinc deficiency appears in the plants when the concentration falls below 15 mg Zn 
kg−1 of dry matter.

• Zinc deficiency is characterized by interveinal chlorosis and shortened 
internodes.

• Young shoots produce small leaves which are stiff in the case of Zn deficiency. 
These little leaves get malformed giving a bushy rosette appearance (Mengel and 
Kirkby 2006).

• A delay in maturity is observed in plants with Zn deficiency with stunted growth 
and a reduction in crop yield.

The common Zn deficiency symptoms are:

 (i) Khaira disease in rice
 (ii) White bud of maize

 (iii) Little leaf of cotton
 (iv) Mottle leaf or frenching of citrus

 (v) Rosette disease of apple
 (vi) Crown choking in areca nut

• In coconut palms, button shedding along with the shortening of the crown is the 
reported symptom of zinc deficiency. There is a reduction in size of the leaf 
almost to its half with the shortage of Zn supply. Chlorosis is observed in leaflets 
which also appear narrower and shorter than normal. Flowering is affected in 
cases of acute Zn deficiency (TNAU 2015).

• In areca palm, crown choking happens in the initial stages with leaves turning 
dark green in colour. A reduction in the size of the leaves is also noticed with Zn 
deficiency.

1.4.9.4  Toxicity Symptoms

Zinc, when excess, limits growth of root and expansion of leaves. The Zn toxicity is 
characterized by chlorosis of leaves.
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1.4.10  Copper

Copper is taken up mostly in the form of Cu2+ by roots. Two oxidation states of cop-
per are Cu+ and Cu2+. It interchanges between these two ionic forms as the monova-
lent form (Cu+) is unstable (Hansch and Mendel 2009). A concentration of 5–30 mg 
Cu kg−1 of dry matter is considered to be the range of Cu in copper-sufficient plants 
(Rattan 2015).

1.4.10.1  Uptake and Assimilation

Copper uptake is considered as a process that is metabolically mediated. Copper as 
Cu2+ can be transported from older to newer leaves, though it is relatively immobile 
in plants.

1.4.10.2  Physiological Functions

• Copper plays an indispensable role in processes like mitochondrial respiration 
and photosynthesis. In the metabolism of carbon and nitrogen and in protection 
against oxidative stress, Cu is essential. It is also essential in carrying out cellular 
tasks. For example, synthesis of cell wall requires Cu (Hansch and Mendel 
2009).

• Copper functions as reducing and oxidizing agent in biochemical reactions.
• Copper is an important component of enzymes like diamine oxidases, cyto-

chrome C oxidase, polyphenol oxidase, ascorbate oxidase, superoxide dismutase 
(Cu-Zn-SOD), etc.

• Copper imparts resistance to plant diseases, and the fertility of male flowers is 
enhanced by copper.

1.4.10.3  Deficiency Symptoms

When the concentration of Cu in plants falls below 5 mg kg−1, those plants are con-
sidered as copper deficient.

• Copper deficiency appears as necrosis, developing as spots at the tips of younger 
leaves, later extending along the margins towards the base of the leaf. Growth of 
the internodes becomes depressed. Malformation of leaves is observed later 
leading to premature abscission under severe Cu deficiency (Taiz and Zeiger 
2002). The characteristic symptoms include necrosis, white tips, die back and 
reclamation disease.

• Copper deficiency results in the sterility of male flowers. It also delays the flow-
ering and senescence is also resulted.
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1.4.10.4  Toxicity Symptoms

Most commonly observed symptom of Cu toxicity is chlorosis, superficially resem-
bling Fe deficiency. Another effect is on the inhibition of root growth.

1.4.11  Boron

The element boron is unique among the essential elements as the range in its con-
centration is very narrow between deficiency and toxicity. Soils contain 0.5–2 ppm 
of available B, but this constitutes only a part of the total B in the soil available to 
plants. Soil organic matter is the storehouse of B (Kelling 1999). Normal B-sufficient 
plants have B concentration ranging from 10 to 200 mg kg−1 of B (Rattan 2015).

1.4.11.1  Uptake and Assimilation

Boron is taken up as boric acid. Boric acid is the form of B that is potentially perme-
able to plant cells. Boron is considered to be phloem mobile for a large range of 
agricultural crops and is transported as a complex with polyols (primary photosyn-
thetic product). Boron is immobile in plants.

1.4.11.2  Physiological Functions

• Boron is involved in the processes of respiration, synthesis of proteins, transport 
of sugars and metabolism of RNA, carbohydrate and plant hormones like indole 
acetic acid (Hansch and Mendel 2009).

• Boron plays a noticeable role in synthesis of cell wall and its lignification and 
cell wall structure. Boron helps in maintaining the structural integrity of bio-
membranes (Hansch and Mendel 2009).

• Chlorine and phosphorus transport is facilitated by boron, and it is also involved 
in the Ca nutrition in plants (Hansch and Mendel 2009).

• Production and retention of flowers, growth and elongation of pollen tube, pollen 
germination and development of seed and fruit require boron (Rattan 2015).

• Boron is essential for the growing tips of plants, as root tips, and new leaf and 
also helps in bud development. This helps in the transport of water, nutrients and 
sugars towards the actively growing regions of plants by maintaining healthy 
storage and conductive tissues. Boron assists in root growth by providing sugars 
needed for root development. This is also involved in ensuring normal develop-
ment of root nodules in legumes, such as soybeans, alfalfa and peanuts (Rattan 
2015).
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1.4.11.3  Deficiency Symptoms

Soils with pH of 7.0 or above are more deficient in B than acid soils. When the B 
concentration in plants is of the order 5–30 mg kg−1, plants are B deficient. B defi-
ciency range varies from 5–10 mg kg−1 in graminaceous plants to 20–70 mg kg−1 in 
most of the dicotyledonous plants (Rattan 2015). Boron deficiency symptoms 
appear initially in the younger leaves as well as growing tips at the apex as B is rela-
tively immobile in the plants. The leaves may get malformed and appear bluish 
green in colour. The internodes become shorter giving a rosette appearance as boron 
deficiency damages actively growing organs such as tips of shoots and roots. The 
deficiency results in stunting of the whole plant.

• Retention of flowers, formation of pollen, elongation and growth of pollen tube, 
germination, fixation of nitrogen and assimilation of nitrates are adversely 
affected due to B deficiency.

• In citrus fruits, uneven thickness of the peel, lumpy fruits and gummy deposits 
result due to B deficiency.

• In coconut palm, B deficiency is widely noticed. The symptoms include short-
ened, crinkling of the unfolding leaflets (Broschat  2009; Fig.  1.9). In more 
advanced stages, terminal leaflets remain fused. The tips of these leaflets may be 
“knife shaped”, with or without a brown solution oozing out through the hook. 
This symptom is also called “hookleaf” (Broschat 2009; Fig. 1.10). The basal 
part of the petiole may be without leaflets. In adult palms, the deficiency leads to 
production of branched spikes, premature death of inflorescence, production of 
inflorescence with lesser female flowers and shedding of buttons (female flow-
ers). Other associated symptoms include “hen and chicken” symptom (a few 
underdeveloped nuts/small-sized nuts along with full developed nuts), cracking 
of nuts externally/internally with meat protruding towards the mesocarp and bar-
ren nuts with partial/unevenly developed kernel having poor-quality copra. 
Pollen production, pollen grain germination and pollen tube development will be 

Fig. 1.9 B deficiency in 
coconut. (Photo: 
T.K. Broschat)
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affected. Often, the malformations may be exhibited either singly or by various 
combinations based on the intensity of the deficiency. Drought may aggravate 
boron deficiency and in some cases seasonal boron deficiency, i.e. the symptoms 
appearing in the dry season and disappearing in the wet season could be noticed.

• The breakdown of internal tissues of root crops appears as darkened areas and is 
referred as brown heart or black heart.

• Common boron deficiency symptoms include:

 1. Internal cork of apple
 2. Top sickness of tobacco
 3. Crown rot/heart rot in sugar beet
 4. Browning and hollow stem of cauliflower
 5. Cracked stem of celery

1.4.11.4  Toxicity Symptoms

If the levels of B exceeds even slightly than the critical range, B toxicity occurs in 
majority of the crops. Boron toxicity occurs mostly in arid and semiarid region soils 
with high concentration of B. More than 5.0 ppm available boron is considered toxic 
to many agronomic crops (Kelling 1999).

• The major B toxicity symptoms begin as yellowing of leaf tips which later pro-
gresses leading to necrosis of leaf. This ends up in scorching of leaves and pre-
mature dropping (Mengel and Kirkby 2006). Some plants may also develop 
black spots on older foliage.

Fig. 1.10 B deficiency in 
coconut. (Photo: 
T.K.Broschat)
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1.4.12  Molybdenum

Molybdenum in soil is predominantly determined by total Mo content in the soil 
and the soil reaction as measured by soil pH. Molybdenum is taken up by plants as 
molybdate (MoO4

2−) ions. Molybdenum exists in three valence states of Mo (IV), 
Mo (V) and Mo (VI). This property imparts its biochemical role.

1.4.12.1  Uptake and Assimilation

Translocation of molybdate across the plasmalemma is facilitated by phosphate 
binding and transport sites, though it is not clear in which form it is translocated 
(Heuwinkel et al. 1992).

1.4.12.2  Physiological Functions

• Plant proteins involved in the assimilation of nitrogen, metabolism of sulphur, 
stress reactions and biosynthesis of phytohormone contain Mo. Molybdenum is 
involved in mechanism of nitrogen assimilation especially in nitrate reductase 
and nitrogenase enzymes. The key enzyme involved in nitrogen assimilation is 
nitrate reductase (brings about the reduction of nitrate to nitrite) whereas nitro-
genase is involved in nitrogen fixation (Hansch and Mendel 2009). Molybdenum 
is a structural component of nitrogenase enzyme, and it consists of a Mo-Fe-S 
protein and a Fe-S cluster protein which are metalloenzyme proteins.

• In the abscisic acid biosynthesis, Mo-containing enzyme aldehyde oxidase is 
involved in the last step of catalytic reactions. Sulphur oxidase, another enzyme 
which contains Mo, helps in protecting the plants against the harmful effects of 
sulphite, resulting from acid rain (Hansch and Mendel 2009).

• Molybdenum affects the activities of enzymes like alanine aminotransferase and 
ribonuclease involved in biosynthesis of proteins. Pollen formation, its viability 
and anther development are also influenced by Mo.

1.4.12.3  Deficiency Symptoms

Molybdenum concentration in Mo-sufficient plants ranges between 0.1 and 2 mg 
kg−1. When this falls below 0.1 mg kg−1, deficiency occurs. Deficiency symptoms in 
young plants include mottling, leaf cupping, grey tinting and flaccid leaves which 
are often found on seedlings that remain dwarfed until dying (Hewitt and Bolle- 
Jones 1952a). Sometimes in older plants, where deficiencies have been corrected or 
when deficiency levels are modest, the symptoms appear in younger leaf tissues 
with the characteristic loss of proper lamina development (whip-tail), leathery 
leaves and meristem necrosis (Hewitt and Bolle-Jones 1952b). Molybdenum 
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deficiency resembles N deficiency. As Mo is readily translocated within plants, the 
symptoms initially appear in older or middle leaves.

• Molybdenum deficiency is characterized by interveinal chlorosis and necrosis 
appearing initially on the older leaves. The typical symptoms develop as upward 
curling of leaf margins. The twisting of leaves with no necrosis is particularly 
observed in cauliflower/broccoli and is termed as the whiptail disease. Eventually 
the leaves die. The formation of flowers is hindered, and premature abscission of 
flowers is also observed in this case.

• In legumes, Mo deficiency impairs nitrate reduction and nitrogen fixation. This 
in turn results in a N deficiency in the affected crop.

1.4.12.4  Toxicity Symptoms

Higher concentration of molybdenum in foliage results when these crops are grown 
in soils with higher concentration of molybdenum. When cattle and sheep are fed on 
such foliage, a diseased condition known as molybdenosis results.

1.4.13  Nickel

Nickel was recognized as essential in the year 1987, i.e. the most recently discov-
ered micronutrient. The Ni requirement by plants is low as <0.5 mg kg−1. Nickel is 
taken up by plants as Ni2+ ions. In plants, it exists in three oxidation states, I, II and 
III (Hansch and Mendel 2009). Nickel is a key component of selected enzymes 
involved in N metabolism and biological N fixation in crops.

1.4.13.1  Uptake and Assimilation

Two nickel transport systems inside plants are explained by Brown (2006) which 
include low-affinity transport system and high-affinity transport system. As the 
name suggests, the low-affinity transport system absorbs lower concentration, and 
high-affinity transport system absorbs higher concentration of Ni2+ ions which, 
respectively, being 4.4 ppb (0.6 ounces Ni per million gallons of water) and 1.8 ppm 
(237.7 ounces Ni per million gallons of water). Nickel ions are easily transported 
within the plant. Due to this reason, Ni from shoots is transported to seeds, which 
could be accounted to 70% of Ni present in the shoots (Brown 2006).
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1.4.13.2  Physiological Functions

• In a number of prokaryotic enzymes like hydrogenases, dehydrogenases and 
methyl reductases, Ni is found essential (Hansch and Mendel 2009).

• Urease enzyme contains Ni and this enzyme is essential in N metabolism in 
plants. Nickel acts as a cofactor in plant urease aiding the hydrolysis of substrate 
(urea) to carbon dioxide and ammonia (Liu et al. 2014). In germination of seeds, 
urease plays an important role (Seregin and Kozhevnikova 2006).

• In certain legumes, for the growth of root nodules and activation of enzyme 
hydrogenase, Ni is required (Seregin and Kozhevnikova 2006). Activity of 
hydrogenase enzyme is optimized with adequate supply of Ni in the case of free- 
living Rhizobium.

• Nutrient transport to seeds or grains is supported by the presence of Ni.

1.4.13.3  Deficiency Symptoms

Typical nickel deficiency symptoms have not been defined adequately. A reduction 
in the urease activity would result in the accumulation of toxic urea. This is resulting 
from Ni deficiency as the absence of Ni adversely affects the hydrolysis of urea to 
carbon dioxide and ammonia.

Essentiality of Ni was first established in the year 1987 when a deficiency was 
noticed in barley. In barley it was observed as the inability to produce viable seeds 
due to poor embryo growth. This was observed as poor or underdevelopment of the 
embryonic root. Reduction in dehydrogenase activity and poor development of 
endosperm were also reported (Seregin and Kozhevnikova 2006). The critical Ni 
concentration in barley tissues that reduced the yield by 15% was 0.1 mg kg−1 of dry 
matter.

• Reduction in dry matter weight, decrease in amino acid content and accumula-
tion of nitrates are few symptoms of Ni deficiency.

• Leaf tip necrosis is the major symptom of Ni deficiency. In cowpea, the defi-
ciency symptoms include leaf tip necrosis and leaf chlorosis (Rattan 2015).

• Ni-deficient pecans develop a particular deficiency symptom in leaves known as 
“mouse-ear” leaves (Fig. 1.11). There occurs a delay in the leaf expansion on 
branches of Ni-deficient pecans as a result of Ni deficiency. It also decreases bud 
break. Rosetting, bronzing, tip necrosis and chlorosis are the common symptoms 
observed on the leaves (Liu et al. 2014).

1.4.13.4  Toxicity Symptoms

Soil is the major source of Ni to plants. Soil conditions affect nickel availability, and 
it is higher in over-moistened soils7 of low humus content and soils with light gran-
ulometric composition. Soil reaction also plays an important role in availability of 

K. S. Karthika et al.



33

Ni. Low pH of the soil solution enhances, and higher pH declines accessibility of Ni 
by plant roots (Seregin and Kozhevnikova 2006). Higher Ni concentration may turn 
toxic to plants.

• Excess of nickel decreases plant transpiration, moisture content and stomatal 
conductance.

• Toxic concentrations of nickel decrease the size and number of chlorophyll and 
its synthesis resulting in reduced rates of photosynthesis. The activities of 
enzymes involved in Calvin cycle are also adversely affected with an excess of 
Ni content (Seregin and Kozhevnikova 2006).

• Nickel toxicity inhibits plant growth. Several species accumulate Ni in their 
roots and are known as the excluder species. In these, inhibition of root growth 
is severe than shoot growth in case of Ni toxicity (Seregin and Kozhevnikova 
2006).

• Symptoms of Ni toxicity include chlorosis in leaves. In cereals, the symptoms 
appear initially as yellowish stripes along the leaves. This later results in turning 
the entire leaf whitish, and leaf margin necrosis develops at extremely toxic con-
ditions. Interveinal chlorosis in the leaves is observed as Ni toxicity symptom in 
the case of dicotyledonous crops, which resembles the symptoms of Mn defi-
ciency (Mengel and Kirkby 2006).

1.4.14  Chlorine

Chlorine absorbed as Cl− ions by plants is the most mobile nutrient in the soil and 
hence gets easily leached under freely drained conditions. In healthy plants, its con-
centration ranges from 100 to 500 mg kg−1 of dry matter. Chloride is a mobile anion 
in plants.

Fig. 1.11 Mouse ear in 
pecan – nickel deficiency 
(Source: http://extension.
uga.edu/publications/
detail.cfm?number=B1304)

1 Biological Functions, Uptake and Transport of Essential Nutrients in Relation…

http://extension.uga.edu/publications/detail.cfm?number=B1304
http://extension.uga.edu/publications/detail.cfm?number=B1304
http://extension.uga.edu/publications/detail.cfm?number=B1304


34

1.4.14.1  Uptake and Assimilation

Chlorine uptake occurs against an electrochemical gradient permeably mediated by 
a Cl−/H+ cotransport across the plasmalemma because low pH promotes Cl− uptake. 
This proves that Cl− uptake is metabolically controlled.

1.4.14.2  Physiological Functions

• The major function of Cl− is in the maintenance of electrical charge balance and 
osmoregulation. This is involved in the opening and closure of stomata.

• Chlorine plays a major role in photosynthesis. It acts as a cofactor in the oxygen- 
evolving complex and thus forms a structural constituent of photosystem II 
(Kusunoki 2007).

• Chlorine imparts resistance to plant diseases in plants, viz. stem rot and sheath 
blight in rice, Fusarium root rot in barley, common root rot in barley, stalk rot in 
corn, grey leaf spot in coconut palms, common root rot and take-all disease in 
wheat, downy mildew in millet, hollow heart and brown centre in potatoes and 
Fusarium yellows in celery.

1.4.14.3  Deficiency Symptoms

Chlorine is highly soluble and therefore can leach away from sandy soils in heavy 
rainfall areas and would lead to chlorine deficiencies. However, Cl deficiency has 
not been reported in India, attributed to the abundance of chlorine in air and addition 
of Cl− ions through different fertilizer carriers like muriate of potash and ammo-
nium chloride (Mengel and Kirkby 2006). When the concentration of Cl− in plants 
is less than 100 mg kg−1, plants are designated as Cl deficient.

• Chlorine deficiency symptoms include chlorosis of leaves, curling of leaves, 
decrease in leaf surface area, restricted branching of root systems and plant wilt-
ing (Hansch and Mendel 2009). Few of these symptoms like leaf wilting and 
chlorosis resemble those of Mn deficiency.

• Characteristic Cl deficiency symptom is leaf wilting along the margins as tran-
spiration is adversely affected with Cl deficiency and the plants remain chlorotic 
(Mengel and Kirkby 2006).

1.4.14.4  Toxicity Symptoms

Excess of Cl− ions in plants causes chlorine toxicity, and it is commonly observed 
in salt-affected soils. The symptoms of chlorine toxicity include leaf tip or margin 
burning, bronzing, premature yellowing and abscission of leaves, resulting in reduc-
tion in yield and quality in the later stages (Mengel and Kirkby 2006).
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1.4.15  Silicon

Silicon is available to plants mostly in the form of monosilicic acid  – Si(OH)4. 
Silicon was found essential to horsetail (Equisetum arvense) and wetland paddy 
(Oryza sativa) till date (Chen and Lewin 1969; Richmond and Sussman 2003). As a 
deficiency in silicon can negatively affect normal growth and development in a 
plant, silicon could be adjudged as an element “quasi-essential” to plants.

1.4.15.1  Uptake and Assimilation

Silicon is taken up by plants in the form of silicic acid though the mechanism of 
uptake is still not clear. Plants take up Si in the form of silicic acid, which is trans-
ported to the shoot, and after loss of water, it is polymerized as silica gel on the 
surface of leaves and stems. Evidence is lacking concerning the physiological role 
of Si in plant metabolism (Ma et al. 2001).

1.4.15.2  Physiological Functions

• Silicon is accumulated in the cell walls mainly as amorphous silica (SiO2.nH2O). 
This contributes to enhanced rigidity and strength of cell wall as the amorphous 
silica combines with pectins and polyphenols present in the cell wall.

• Silicon helps in preventing stress due to abiotic factors in plants (Pilon-Smits 
et al. 2009). Silicon can ameliorate the toxicity due to heavy metals. The abiotic 
stresses developed due to UV radiation, imbalances in nutrients, salt levels and 
temperature can be alleviated by Si. Enhancement of sodium exclusion and a 
reduction in lipid membrane peroxidation have favoured mitigating stress due to 
salinity reasons according to a study by Saqib et al. (2009).

• Silicon reduces susceptibility of plants to fungal diseases and thus helps in 
improving the plant health. This could be either by preventing penetration of 
fungus to cell wall and thereby preventing the infection or by improving peroxi-
dize, polyphenol oxidase and chitinase enzyme activities, by enhancing the 
 antimicrobial compounds or phenolic compounds production (Pilon-Smits et al. 
2009).

1.4.15.3  Deficiency Symptoms

• Growth and development of plants and reproduction are adversely affected with 
the deficiency of Si. Infections due to fungal attacks and decreased resistance to 
lodging are more common in case of plants deficient in silicon.
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1.5  Growth Laws

1.5.1  Liebig’s Law of the Minimum

The role of nutrients in the plant growth is explained using this law. This law gives 
emphasis on the nutrient which is present in its minimum, which actually regulates 
the growth. Justus von Liebig (1840) in the law observes that “every field contains 
a maximum of one or more and a minimum of one or more nutrients. With this mini-
mum, be it lime, potash, nitrogen, phosphoric acid, magnesia or any other nutrient, 
the yields stand in direct relation. It is the factor that governs and controls yields. 
Should this minimum be lime yield will remain the same and be no greater even 
though the amount of potash, silica, phosphoric acid, etc. be increased a hundred 
fold”. This was later simplified as Liebig’s law of the minimum. This states that 
“Even if all but one of the essential possible elements be present, the absence of that 
one will render the crop barren” (Salisbury 1992). Thus the law states the impor-
tance of the limiting nutrient in the plant nutrition. This was well explained using 
the broken barrel concept, in which the capacity of a barrel with staves of unequal 
length is limited by the shortest stave, which in a similar way, a plant’s growth is 
limited by the nutrient in shortest supply (Fig. 1.12). This nutrient is referred as the 
growth-limiting nutrient. Thus only by improving the availability of the least abun-
dant nutrient, growth can be improved. The law predicts that when the nutrient in 
the minimum (X) is added in increasing amounts to a plant, correspondingly increas-
ing yields (Y) are obtained until a second nutrient comes in to be the minimum.
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Fig. 1.12 Liebig’s law of minimum – broken barrel analogy
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1.5.2  Mitscherlich’s Laws

E.A. Mitscherlich quantified the relationship between yield and growth factors. The 
two laws given by him are:

 1. Mitscherlich’s law of physiological relationship: This states that yield can be 
increased by each single growth factor even when it is not present in the mini-
mum as long as it is not present in the optimum.

 2. Mitscherlich’s growth law: Increase in yield of a crop as a result of increasing a 
single growth factor is proportional to the decrement from the maximum yield 
obtainable by increasing that particular growth factor.

Mitscherlich observed that when plants were supplied with adequate amounts of all 
but one nutrient, their growth was proportional to the amount of this one limiting 
nutrient that was supplied to the soil. Further plant growth increased as the more 
amount of this nutrient was added, but the increase in growth with each successive 
addition of this element was progressively smaller. Mitscherlich (1909) developed a 
mathematical equation relating yield to the supply of plant nutrients. The equation 
is as follows:

 
dy dx A y c A y dy dx c/ / . /= −( ) −( ) =or 1

 

where

dy/dx = increase in yield associated with dx increment in a specific fertilizer 
nutrient

A = maximum potential or attainable yield when all the nutrients are supplied or are
present in the optimum amounts
c = constant, which is the efficiency factor

Upon integration, the above equation assumes the form of

 
log A y cx−( ) = −K

 

where K = constant

1.5.3  Law of Maximum

This principle was developed by Arthur Wallace in 1993. The Law of the Maximum 
does not hold good if there are any Liebig-type limiting factors present. It has two 
major characteristics. First, the effect of a given input is progressively magnified as 
other limiting factors are corrected. The final result is greater than the sum of the 
effects of the individual inputs because of the way in which they interact. The inter-
action multiplies the effects of each. Second, yields can be highest or maximum 
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only if there are no remaining limiting factors; the fewer limiting factors that remain, 
the higher will be the yield. How closely this can be approached, of course, depends 
upon economics. Fortunately, when dealing with Mitscherlich-type factors, those 
most economical to use can be chosen first (Wallace and Wallace 1993).The law 
states that “when the need is fully satisfied for every factor required in the process, 
the rate of process can be at its maximum potential, which is greater than the sum of 
the individual parts because of the sequentially additive interactions”. This is based 
on the philosophy of synergistic interactions.

1.6  Bray’s Concept of Nutrient Availability and Mobility

Nutrient availability involves several factors like the nature of soil nutrients, soil 
conditions and plant root relations by which plant metabolism happens. Roger 
H. Bray in 1938 proposed that the “soil available nutrient is that fraction of total 
amount whose variation in amount is responsible for significant changes in yield 
and response; further, the availability of these soil forms, however, involves not only 
their chemical and physical nature but also the ability of the plant to “forage” them 
with its root system” (Bray 1938).

The concept of nutrient mobility was introduced by Bray in the year 1954. He 
explained mobility as the “overall process whereby nutrients reach the sorbing root 
surfaces, thereby making possible their sorption into the plant” (Bray 1954). This, 
on the whole, describes the movement of nutrients in the soil towards root surface 
or the movement involved in the soil solution or exchange of the nutrient. Soil col-
loids are negatively charged. Hence, positively charged ions (cations like NH4

+, K+, 
Ca2+, Mg2+, Fe2+ or Fe3+, Mn2+, Zn2+, Cu2+, Ni2+) are strongly held on to the soil col-
loidal surface as exchangeable cations or are specifically adsorbed. Whereas, the 
anions negatively charged are not adsorbed by the solid phase. These anions like 
Cl−, NO3

−, SO4
2−, BO3

3−/HBO3
2−/H2BO3

− and HCO3
− remain in soil solution and are 

easily mobile in the soil solution. Phosphate (PO4
3−) and molybdate (MoO4

2−) ions, 
though anions, are held in the soil by anion exchange or ligand exchange mecha-
nisms. These are adsorbed or precipitated as sparingly soluble phosphates of Fe, Al, 
Ca, etc. depending on the soil reaction.

Nutrients should come in touch with the surface of roots to become available to 
the plants. When the nutrients are held in solid phases as exchangeable or labile 
forms, these are easily available for absorption by plant roots in comparison to the 
nutrients in solution. But the farther these ions are from absorbing root surfaces, the 
more is the time taken for adsorption by plant roots, which is indicated using the 
term “immobile” nutrients.

The classification of nutrients into mobile and immobile forms as given by Bray 
(1954) is represented in Table 1.3 and illustrated in Fig. 1.13.
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1.7  Mechanisms of Nutrient Transport

Certain mechanisms exist for the movement of nutrients from soil to roots. These 
include three distinct processes, viz. mass flow, diffusion and root interception. 
These mechanisms are diagrammatically represented in Fig. 1.14.

1.7.1  Mass Flow

Mass flow is described as the movement of nutrients along with the movement of 
water in the soil towards the root surface as a result of transpiration-induced convec-
tive water flow. Mass flow gets decreased with a decrease in water content in soil as 
mass flow depends on the rate of water flow towards the root surface.The amount of 
nutrient supplied by mass flow may be calculated by using the equation

Table 1.3 Classification of mobile and immobile nutrients

Plant Soil
Mobile Immobile Mobile Immobile

Cl B H3BO3/H2BO3
− NH4

+

Mg Ca Cl- Ca2+

Mo Cu NO3
− Mg2+

N Fe SO4
2− Fe2+ or Fe3+

K Mn PO4
3−

Zn MoO4
2−

S Ni2+

K+

Source: Rattan and Goswami (2009)

NO3-

H2PO4-

Mobile Nutrients
In root system sorption

zone

Immobile Nutrients
In root surface sorption

zone

Fig. 1.13 Bray’s nutrient availability concept
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 J v C= × 1  

where

J = nutrient supplied
v = amount of water transpired during the cropping season to produce the given dry 

matter(y)
C1 = average concentration of the nutrient ion in bulk soil solution

Amount of water used by crop during the season is computed using either tran-
spiration ratio or amount of water used by the crop. Essential nutrients like N, Ca, 
Mg, S, Cu, B, Mn and Mo are mainly moved towards the root by the method of mass 
flow.

1.7.1.1  Factors Affecting Mass Flow

 (a) Soil water content: Mass flow decreases as the soil water content decreases.
 (b) Temperature: As the temperature decreases, mass flow decreases. This is due to 

the reduced transpiration rate as well as movement of water due to lower 
temperature.

 (c) Size of the root system: This affects the uptake of water and nutrients moving 
along with water. In the case of nutrient movement by mass flow, root density is 
less critical than by diffusion and root interception (Rattan 2015).

Mass flow

Root

Interception

Diffusion
Shoot

Ion Movement

Fig. 1.14 Mass flow, diffusion and root interception
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1.7.2  Diffusion

The process of diffusion takes place based on a concentration gradient. In diffusion, 
ion moves from a higher concentration to a lower concentration. When the concen-
tration of a particular ion at the root surface is decreased, the movement of ions 
towards the roots increases and vice versa. Diffusion occurs based on Fick’s law, 
which is given by the equation

 F D dc dx= − /  

where

F = diffusion rate (quantity diffused per unit cross section per unit time)
dc/dx = concentration gradient
c = concentration
D = diffusion gradient
x = distance

This law states that the amount of nutrient ions moving/diffusing per unit area 
per unit time is proportional to concentration gradient. Essential nutrients like P, K, 
Zn and Fe are mainly transported by diffusion to the root surface. In comparison to 
the mass flow, diffusion is a slow process for the movement of nutrients to the roots.

1.7.2.1  Factors Affecting Diffusion

 (a) Soil water: Since diffusion of nutrient ions needs water, soil water has a major 
role in the movement of nutrient ions by diffusion. Diffusion reduces in case the 
moisture content becomes less in soil.

 (b) Soil compaction: Soil compaction results in bringing the soil particles closer by 
exclusion of air, and the continuity of moisture flows decreases. This in turn 
results in decreased diffusion rate of nutrients to roots.

 (c) Temperature: Lower temperatures reduce diffusion as ions need minimum acti-
vation energy for enabling them to participate in the reaction. Rise in tempera-
ture in addition to overcoming this activation energy step increases fluidity or 
reduces the viscosity of water. This in turn facilitates the diffusion of ions.

 (d) Chemical amendments: The addition of amendments to soil like lime, gypsum, 
etc. results in a change in the ionic concentration in the soil solution. For exam-
ple, a rise in pH associated with lime decreases the concentration of cations and 
increases the concentration of anions in soil solution. This results in increased 
diffusion of anions and decreased diffusion of cations to roots from soil. 
Addition of gypsum reduces the pH in sodic soil, as a result of which, the effec-
tive diffusion coefficient rises. Added organic manures release low molecular 
weight biochemicals which forms soluble organometallic complexes with the 
cations. This complexation causes reduction in buffer power and increase in the 
effective diffusion coefficient values (Rattan 2015).
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1.7.3  Root Interception

Root interception is the process in which the nutrients come in direct physical con-
tact with the surface of roots. Mass and surface area of roots are deciding factors in 
the process of root interception. The larger the mass and surface area, the larger the 
nutrient supply as it enables the plant to explore from larger area in soil. The root 
volume thus plays a significant role in the quantity of nutrient supply to the plants. 
Mycorrhizal fungi colonize the roots and thereby favour root exploration to a greater 
extent. This enhances root interception. The nutrient which is mainly taken up by 
root interception is calcium. Magnesium, Zn and Mn in lesser amounts follow root 
interception. Factors which restrict growth of roots like compaction, dryness of soil, 
soil acidity, restricted aeration, root diseases including insect attacks, nematode 
infection and abnormally high or low soil temperature reduce the contribution of 
root interception (Rattan 2015).

1.8  Nutrient Uptake into the Root and Plant Cells

The extent of complexity in plant-soil-atmosphere relationships brings in the 
involvement of scientists belonging to different technical backgrounds when it 
comes to plant nutritional physiology. Nutrient uptake by plants can be addressed at 
two stages – uptake by roots from the rhizosphere along with water and subsequent 
uptake and transport in the plant system. Initial absorption of water and nutrients by 
plant roots is essential for their incorporation into plants.

1.8.1  Uptake of Water and Nutrients by Roots

Movement of water towards roots is mainly driven by capillary action and osmosis. 
In roots, root hairs are present which facilitate the uptake of water and nutrients 
from soil by increasing the root surface area. The surface area of contact is deter-
ministic of water uptake potential and is maximum as much as the root and its hairs 
spread into the rhizosphere (Taiz and Zeiger 2002).

Water entry into the root is defined by the root hair zone and subsequently there-
after by two important regions called exodermis (mature outer layer of protective 
tissue) and hypodermis (hydrophobic layer relatively impermeable to water). Soil 
water contains nutrients in dissolved form which can be called as solutes. Osmosis 
occurs as soil water movement from a lower solute concentration to a higher solute 
concentration.
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1.8.1.1  Apoplast, Transmembrane and Symplast Pathways

Water is transported mainly by bulk flow in the soil. Once the bulk flow reaches the 
root surface, from the root epidermis to the endodermis, there are three major mod-
ules of water flow which are as follows:

 1. Apoplast pathway: Water movement occurs only through cell wall and the inter-
cellular air spaces in plant tissues, without passing through any membranes.

 2. Transmembrane pathway: Water moves across plasma membranes of adjacent 
cells in a sequential manner.

 3. Symplast pathway: Water movement occurs from one cell to the next via the 
plasmodesmata also consisting of the interconnected cell cytoplasm.

The apoplast and symplast pathways are represented in Fig. 1.15.
At the endodermis, Casparian strips appear as the first physical barrier for the 

apoplastic movement of water and solutes. Casparian strip is a band of radial cell 
walls in the endodermis with suberin deposits, which are waxlike and hydrophobic 
in nature. Casparian strips force water and solutes in the apoplastic region to cross 
the endodermis by passing through the plasma membrane. The cortex (towards out-
side) and stele (towards inside) are separated by the radially suberized endodermis. 
The plant vasculature is systematically arranged in the stele which consists of xylem 
(water and solute transport from root to shoot) and phloem (metabolite and assimi-
late transport from shoot to root and other parts).

1.8.1.2  Uptake of Nutrient Ions

Diffusion and cation exchange are the two mechanisms by which nutrients move 
towards the plant root. Diffusion takes place on a concentration gradient. Cation 
exchange process occurs in response to the release of a hydrogen ion from the plant 

Fig. 1.15 Apoplast and symplast pathways (Source: https://upload.wikimedia.org/wikibooks/
en/0/00/Waterpathwaysthroughrootcells.gif)
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root, resulting in a change in the soil pH around the root vicinity. When these water 
and nutrient ions enter the plant root, they move through either apoplastic, trans-
membrane or symplastic pathways and subsequently the capillary action allowing 
the upward movement of water. Subsequently transport of nutrients via xylem takes 
place.

There is a considerable diversity in the different areas of the roots that take up or 
absorb nutrients differentially. As has been reported in earlier studies, a few exam-
ples are tabulated in Table 1.4.

1.8.2  Absorption of Nutrients into Plant Cells

Plasma membrane and tonoplast act as barriers that selectively regulate the move-
ment of water and nutrients into and out of the cell. These cell barriers are:

• Permeable to oxygen, carbon dioxide as well as certain compounds
• Semipermeable to water
• Selectively permeable to inorganic ions and organic compounds, such as amino 

acids and sugars

Nutrient ions may move across these barriers actively or passively.

Table 1.4 Different areas of roots for nutrient absorption

Sl. 
No. Crop Nutrient Area of absorption Reference

1 Barley Calcium Root apical region Clarkson (1985)
2 Barley Iron Root apical region Clarkson (1985)
3 Corn Iron Entire root surface Kashirad et al. 

(1973)
4 Several 

crops
Potassium, nitrate, 
ammonium and phosphate

Entire root surface Clarkson (1985)

5 Corn Potassium accumulation Root elongation zone Sharp et al. 
(1990)

6 Corn Nitrate absorption Root elongation zone Taylor and Bloom 
(1998)

7 Corn and 
rice

Ammonium Root apical region Colmer and 
Bloom (1998)

8 Several 
crops

Different ions Apical regions of the root 
axes or branches

Bar-Yosef et al. 
(1972)

9 Several 
crops

Different ions Entire root surface Nye and Tinker 
(1977)
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1.8.2.1  Passive Transport

Passive transport takes place along a concentration gradient. Nutrients diffuse to the 
cell, when the concentration of a particular nutrient falls less inside the cell. This 
type of transport requires no energy, and the nutrient concentration is maintained for 
enhancing nutrient absorption (e.g. nitrate converted to ammonia to elicit more 
nitrate absorption). Passive transport involving absorption of ions without expendi-
ture of energy is defined by three major theories of absorption:

 (a) Ion exchange theory – This involves cation exchange theory (exchange of cat-
ions on soil clay with protons on root surface) and carbonic acid exchange the-
ory (carbonic acid in soil dissociates into protons and bicarbonate ions, and 
these protons exchange with cations present on root surface; when continuous 
orbiting stops, exchange occurs).

 (b) Donnan effect and equilibrium – Cell membrane has a negative charge which 
allows anions to enter. Plants can accumulate about 30 times the cations pas-
sively against concentration gradient to balance the electrochemical potential 
difference thus generated. At equilibrium defined by F. G. Donnan, the ratio of 
positively charged ions inside to outside will be equal to the negatively charged 
ions inside to outside.

 (c) Mass flow – Due to active transpiration, ions are taken up from root to shoot 
xylem. This leads to a concentration gradient and a water pressure gradient 
which drives the mass flow.

1.8.2.2  Active Transport

Active transport happens against a concentration gradient. This type of movement 
involves energy. There are three major mechanisms for active absorption:

 (a) ATP-mediated ATPase pumps – Here ions are actively absorbed by using energy 
released by hydrolysis of ATP, e.g. H+ ATPase pumps.

 (b) Cytochrome pumps – Whenever a tissue is placed in a salt solution, the associ-
ated respiratory increase is called salt respiration which is mediated by iron- 
containing membrane proteins called cytochromes. Protons and electrons are 
produced due to dehydrogenation reaction in the inner side of the impermeable 
membrane due to difference in oxygen concentration. The ferric ions on the 
outside of the membrane-bound cytochrome pumps accept an electron and get 
reduced, and subsequently the electron is transferred or carried outside by the 
cytochrome chain. This cycle repeats after the next anion is taken up by the fer-
ric ion from outside. This concept was proposed by Lundegardh in 1954.

 (c) Phospholipids as carriers, e.g. diacylglycerides like lecithins.
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1.8.2.3  Membrane Transport

Membrane transport is mediated by specialized proteins which are described below:

 1. Channels: These are transmembrane proteins that exist as membrane pores 
which selectively permit solutes based on its biochemical and biophysical prop-
erties. The entry of ions is determined by the layer of hydration, e.g. 
aquaporins.

 2. Pumps: These are transmembrane proteins that transport ions actively by TP 
hydrolysis. Protons are pumped against electrochemical gradient which builds 
up a positive charge due to the protons accumulated.

There are two types of active transport that occur.

 (a)  Primary active transport – Here the energy from ATP hydrolysis is directly 
used for proton transport against concentration gradient thereby creating 
electrochemical potential gradient.

 (b)  Secondary active transport – Due to the electrochemical potential gradient 
that is generated as a result of primary active transport, the protons pumped 
outside against the concentration gradient result in a chemical potential dif-
ference of about 10–100 times, which is used for absorption of other ions. 
There are two forms of secondary active transport.

 (i)  Symport (cotransport) – Where proton moves along with another anion 
in the same direction

 (ii)  Antiport (counter transport) – Where the energy generated due to the 
accumulation of protons is used for expelling cations, wherein the pro-
tons move inside and cations move outside

 3. Carriers: This concept defines a specific carrier for each ion. Charged ions move 
through protein components across a membrane and not through the lipid part. 
The enzyme phosphokinase mediates the formation of an activated carrier (with 
a conformational change) which then accepts the ion to form the carrier-ion 
complex on the outside of the membrane. The carrier-ion complex gets energized 
and moves through the membrane along with the carrier. Enzyme phosphatase 
changes the conformation of the carrier-ion complex and releases the ion in the 
inner membrane.

A very small proportion of the total nutrient requirement is met by bulk flow, 
which reduces the diffusion rates when nutrient absorption by root exceeds the 
available concentration in the soil (Mengel and Kirkby 1987). This results in the 
formation of a nutrient depletion zone adjacent to the root surface, about 0.2–2.0 mm 
from the root surface. Optimal nutrient acquisition depends both on the capacity for 
nutrient uptake and on the ability of the root system to grow into fresh soil.
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1.9  Conclusion

Essential nutrients enable proper plant growth by carrying out physiological func-
tions. The availability of all these nutrients in soil fluctuates depending on many 
factors. This may vary resulting in deficiency or toxicity of nutrients. The deficien-
cies and toxicities of these nutrients lead to particular disorders which could be 
identified by the symptoms on plants and later by proper soil and plant analysis. The 
nutrients from the soil move towards the roots by following certain mechanisms of 
transport, which include mass flow, diffusion and root interception. The nutrients 
thus reaching the roots are absorbed by plants either actively by spending energy or 
passively by no involvement of energy.
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Chapter 2
Role of Plant Nutrients in Plant Growth 
and Physiology

Nalini Pandey

Abstract A mineral element is considered as essential based on the criteria of 
essentiality given by Arnon (Criteria of essentiality of inorganic micronutrients for 
plants. In: Wallace T Trace elements and plant physiology. Chronica Botanica, 
Waltham, pp 31–39, 1954), according to which 16 elements known as mineral nutri-
ents are required for completion of a productive life cycle in plants. These mineral 
nutrients are carbon, hydrogen, oxygen, nitrogen, phosphorus, potassium, calcium, 
magnesium, sulphur, iron, manganese, zinc, copper, boron, molybdenum and chlo-
rine. Of these C and at times S are taken up from air as CO2 and SO2, and oxygen 
and hydrogen are provided as water. The soil is the source for uptake of the other 
elements by plants. Based on their requirement, these nutrients have been classified 
as macronutrients (N, P, K, Ca, Mg and S) because they are required at concentra-
tions higher than 1–150 g per kg of plant dry matter and micronutrients (Fe, Zn, Mn, 
Cu, B, Mo and Cl) which are required at concentration of 0.1–100 mg per kg of 
plant dry matter. However their requirement per se does not alter their significance 
for the plant growth and metabolism. The mineral nutrient elements play essential 
roles such as constituent of cell structures and cell metabolites, in cell osmotic rela-
tions and turgor-related processes, energy transfer reactions, enzyme-catalysed 
reactions and plant reproduction. Plant productivity depends on the efficient dis-
charge of these functions. In this chapter we focus on the main functions of the 
mineral nutrients that have a bearing on the quantitative and qualitative aspects of 
crop productivity.
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2.1  Introduction

Sixteen elements have so far been unequivocally shown to be essential for growth 
and development of higher plants as per the criteria of essentiality given by D. I. 
Arnon in 1954. The mineral nutrient elements play essential roles that can be 
broadly grouped as follows:

 1. As constituent of cell structures and cell metabolites
 2. In cell osmotic relations and turgor-related processes
 3. In energy transfer reactions
 4. In enzyme-catalysed reactions
 5. In plant reproduction

However, some other nutrients such as cobalt (Co) and nickel (Ni) were are 
reported as essential elements in some recent studies. Based on their requirements, 
plant nutrients are known as macronutrients and micronutrients. Mineral nutrients 
required for plants in concentration exceeding one part per million (ppm) or 1–150 g 
per kg of plant dry matter are called macronutrients (C, H, O, N, P, K, Ca, Mg, S), 
and those required in concentration below 1 ppm are micronutrients or 0.1–100 mg 
per kg of plant dry matter (Fe, Mn, Cu, Zn, Mo, B and Cl). This classification is 
arbitrary and has been found to differ with different plant groups and species. It is 
therefore more appropriate to classify nutrients according to their physiological and 
biochemical functions. Mengel and Kirkby (2002) have classified plant nutrients 
into four groups according to their biochemical functions.

Different aspects of nutrient availability, uptake, transport and interactions within 
nutrients and environmental factors as well as plant responses to their deficiencies 
and toxicities and their amelioration have been comprehensively reviewed in several 
publications (Marschner 1995, 2012; Rengel 1999; Mengel and Kirkby 2002; 
Pandey 2010a). In this chapter the focus is on the main physiological and biochemi-
cal roles of nutrients in the plant growth and metabolism.

2.2  Physiological Roles of Macronutrients

2.2.1  Nitrogen

After carbon, hydrogen and oxygen, nitrogen plays a vital role occurring as a major 
structural constituent of plants. It plays a structural role in combination with carbon, 
hydrogen, phosphorus and sulphur, as a constituent of varied organic nitrogenous 
compounds of plants like proteins, nucleotides, porphyrins and alkaloids. Reduction 
of nitrogen to ammonium (NH4) is essential for its incorporation into organic com-
pounds to perform various metabolic functions. This involves nitrate reductase 
which reduces NO3 to NO2 and further reduction of NO2 to NH4 by nitrite reductase 
(Campbell 1999). Glutamine and asparagine constitute the main assimilatory amino 
acids formed by amination of glutamate and aspartate (Temple et al. 1998).
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Nitrogen is involved in plant metabolism in inorganic form and two organic 
forms which maybe LMW (low molecular weight) or HMW compounds (Table 2.1). 
In green plants, protein N constitutes about 80–85%, nucleic acid N 10% and amino 
N up to 5% of the total plant N (Kirkby et al. 2009).

To minimize carbon loss, LMW nitrogen-rich compounds such as glutamine, 
asparagine (amides), arginine (amino acid) and the ureide allantoin are dominant 
products. They form the major storage and transport forms. These LMW nitroge-
nous compounds are precursors of amine synthesis and are intermediates for the 
formation of HMW compounds. Amines form the components of lipid fraction of 
biomembranes, e.g. ethanolamine. The LMW nitrogen compounds are also involved 
in osmoregulation in plants. Under saline conditions or water stress, amino acid 
derivatives proline and glycine betaine counteract the harmful effect of excessive 
Na+ and Cl− and protect enzymes from inactivation (Hasegawa and Bressnan (2000).

The proteins are synthesized from the amino acid. The amino acid involved and 
the sequence in which they join to produce a polypeptide and proteins is determined 
genetically. Through the process known as transcription, the genome (DNA) pro-
duces a template (mRNA) for the synthesis of protein. The order in which the amino 
acids are arranged in a protein is determined by the nucleotides in the mRNA. The 
functional properties of a protein are determined by the folding of the polypeptide 
chains that provides them a three-dimensional structure. This may involve participa-
tion of a special group of proteins known as chaperones (Boston et al. 1996).

The proteins function as structural constituents of cell membranes. Many pro-
teins form ligands with metal cofactors to acquire high catalytic efficiency. As 
intrinsic integrated components of the plasma membranes, the proteins function as 
ion channels across the membranes. A special class of proteins, known as defence- 
related proteins, such as lectins (Puemans and Van Damme 1995) and systemins 
contribute to plant’s defence mechanism against pathogens and mechanical injury 
(wounding).

Amino acids perform several other functions besides functioning as building 
blocks of proteins. They may undergo decarboxylation and generate precursors of 
polyamines, which protect the cellular membranes against toxic effects of superox-
ide ions, inhibit ethylene biosynthesis and function as signalling molecules. 
Nicotianamine derived from L-methionine functions as a precursor of phytosidero-
phores involved in uptake of ferric chelates by strategy II plants and in iron homeo-
stasis (Curie and Briat 2003).

Table 2.1 The nitrogen fractions involved in nitrogen metabolism

Inorganic 
nitrogen

Low molecular weight organic nitrogen 
compounds

Macromolecular organic nitrogen 
compounds

NO3
− → Amino acids Proteins

NH4
+ → Peptides Nucleic acids

N2 → Amides Co-enzymes
Ureides Secondary products; membrane 

constituentsAmines
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As a constituent of the purine and pyrimidine bases, nitrogen is involved in 
nucleic acid metabolism. The purine and pyrimidine bases bind to pentose sugars 
producing nucleosides, which link up through phosphodiester bonds to produce 
nucleotides that are polymerized to produce the nucleic acids (RNA, DNA). DNA 
contains two purine (adenine and guanine) and two pyrimidine (cytosine and thia-
mine) nucleotides (Kirkby et al. 2009). RNA has the same purine components but 
differs in one of the pyrimidine base (uracil in place of thiamine).

Nitrogen is a structural component of several alkaloids known for their pharma-
cological properties and also a protective role against tissue damage caused by her-
bivores. Most alkaloids are synthesized from amino acids – phenylalanine, tyrosine, 
tryptophan, arginine and lysine.

Several roles have recently been attributed to nitric oxide (NO), produced pri-
marily from L-arginine which is converted to L-citrulline, by NO synthetase. Nitric 
oxide is an extremely diffusible gas that functions as a signal molecule in response 
to external and internal factors (Lamattina et al. 2003) and contributes to disease 
resistance (Delledonne et al. 1998; Grant and Loake 2000) and protection against 
toxic effects of oxidants. Nitrogen also provides protection to plants which can 
overcome oxidative stress by maintaining high photosynthesis rates and developing 
protective mechanisms of the xanthophyll cycle by lower % of the zeaxanthin and 
antheroxanthin pigments (Huang et al. 2004). The form in which nitrogen is sup-
plied has also been reported to affect the damage to plants. Thus plants grown with 
nitrate show more tolerance to photodamage than plants grown with ammonium as 
observed by Zhu et al. (2000) in bean plants. The plants grown with ammonium 
showed higher levels of lipid peroxidation. Nitrogen affects the biosynthesis of phe-
nolic compounds and thus alters the oxidative status of the cell (Sanchez et al. 2000; 
Kovacik and Klejdus 2014). Variations were observed in the antioxidant system in 
nitrogen-deficient plants which was also mediated by NO signalling (Kovacik et al. 
2009, 2014). Medina-Pérez et al. (2015) showed that the phenylpropanoid biosyn-
thesis as well as the antioxidant status increased, to overcome the oxidative stress 
under nitrogen deficiency  (Virginia et  al. 2015). Kausar et  al. (2017) recently 
observed that nitrogen could provide protection against oxidative damage by 
enhancing the antioxidant defence system.

2.2.2  Phosphorus

The uptake of phosphorus is active and does not involve reduction, and it remains in 
its oxidized state within the cell. It is taken up primarily as H2PO4

−, and it occurs 
either as its inorganic form (Pi) or as organophosphorus compounds (Raghothama 
1999). Phosphate is bound in a diester linkage (C-P-C) to form essential compounds 
of biological membranes. Its esterification to carbon unit by a hydroxyl group (C-O- 
P) forms an organic phosphate ester (e.g. sugar phosphate), or it may be attached to form 
the energy-rich pyrophosphate bond P~P, e.g. ATP. Another organic P compound 
is phytin, a storage form which occurs as Ca and Mg salts of phytic acid formed 
during seed formation (Bielski 1973).
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The structural role of phosphorus is as a constituent of biomembranes and nucle-
otides. It is a major component of the lipids of the plant membranes occurring as 
phospholipids, e.g. phosphatidylcholine. The phospholipids form the central hydro-
phobic barriers of the cell membrane, and the ease with which they move freely in 
the plane of the membrane and undergo reorientation within the lipid bilayer 
accounts for the fluidity of the membranes. Gniazdowska et al. (1999) reported that 
a low phospholipid concentration and modification of relative composition of mem-
brane would accentuate lipid peroxidation. Kandlbinder et al. (2004) reported the 
increase in H2O2 in phosphorus-deficient bean roots due to triggered redox changes 
resulting in oxidative stress. Juszczuk et al. (2001) showed that the roots deficient in 
phosphorus  showed accumulation of phenolics and enhanced activities of other 
scavenging enzymes such as POD (peroxidase), CAT (catalase) and SOD (superox-
ide dismutase). Recently Hernandez and Munne-Bosch (2015) have shown that 
phosphorus deficiency can alter the photosynthetic apparatus, reduce CO2 assimila-
tion rates, downregulate genes for photosynthesis and ultimately produce photoin-
hibition at the photosystem II level, which result in photooxidative damage.

Structurally phosphorus is also involved in linking up of nucleosides to produce 
nucleotides that polymerize to produce long chains of nucleic acid DNA molecules 
which are carriers of genetic information and RNA which is responsible for translo-
cation of genetic information. The phosphate groups join the 5′ carbon of one nucle-
oside to 3′ carbon of the next nucleoside by a covalent phosphodiester bond. The 
directional nature of these bonds accounts for two distinct ends (5′ or 3′) of the 
nucleic acids. The phosphate linking of the nucleosides accounts for the acidic 
nature of nucleic acids and also for high phosphorus content in the nucleic acid-rich 
meristematic regions of plants (Berg et al. 2015).

Phosphorylated compounds that contain pyrophosphate bonds (Ⓟ~Ⓟ) function as 
an energy-conserving mechanism. The most important compound is adenosine tri-
phosphate (ATP) through which energy is supplied for endergonic process such as 
active uptake and biosynthesis of compounds by transfer of phosphoryl group. The 
pyrophosphate bond of adenine triphosphates can be transferred to other nucleoside 
phosphates (UDP-Ⓟ; GDP~Ⓟ). Hydrolysis of pyrophosphate bond yields energy 
that activates enzymes and drives reactions which are otherwise energetically unfa-
vourable. Energy released by hydrolysis of pyrophosphates by proton pumping 
phosphorylases located in the tonoplast drives the proton pump leading to acidifica-
tion of the vacuole and generation of electrochemical gradients driving membrane 
transport (Palmgren 2001). Phosphorylation of enzyme proteins by protein kinases 
plays an important role in regulation of enzyme like nitrate and phosphoenolpyru-
vate carboxylase.

The role of phosphorus in energy transduction also stems from its role as a struc-
tural constituent of the coenzymes NAD, NADP, FAD and FMN, which function as 
redox agents during mitochondrial electron transport. Thiamine pyrophosphate, with 
a high-energy group transfer potential, plays a key role in carbohydrate metabolism. 
Coenzyme A is involved in fat, protein and carbohydrate metabolism. Several phos-
phorus-containing compounds such as inositol 1, 4, 5-triphosphate, cAMP, cGMP 
and phosphatidic acid function as second messengers or signalling molecules (Zhang 
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et al. 2003). They have also been shown to be involved in phospholipase C inactiva-
tion and opening and closing of transmembrane channels for K+, Na+ and Ca2+.

Phosphate esters play an important role in cellular metabolism and photosyn-
thetic pathways (Grossman and Takahashi 2001; Maathuis 2009). As many as 50 
sugar phosphates are known from plants. Plants have two major phosphate pools; 
each maintains an equilibrium in concentrations of its constituents through enzyme- 
catalysed reactions (Fujita et al. 2004). One of these pools, the hexose phosphate 
pool, is made up of three intermediates of the glycolytic pathway – glu-6-phosphate, 
glu-1-phosphate and fruc-6-phosphate – maintained in equilibrium by phosphoglu-
comutase and glucose-6-phosphate isomerase. This pool provides the precursor for 
synthesis of sucrose and starch. The other pool – the triosephosphate/pentose phos-
phate metabolic pool – is made up of several sugar phosphates maintained in equi-
librium through enzyme-catalysed interconversions. This pool contributes to the 
energy-conserving reactions (ATP synthesis) during the later phase of glycolysis 
and also for the nucleic acid synthesis. It also provides the precursors of the initial 
reactions of the shikimate pathway (Rychter and Rao 2005).

Fairly large quantities of phosphorus may be stored in seeds in the form of a 
cation salt of myo-inositol hexaphosphoric acid, or phytate. The function of phytate 
is evident during seed germination where it provides the large requirement for nutri-
ents. Phytates form a major pool for the storage of K, Mg and Ca. Phytic acid has a 
high affinity for heavy metals, to which it binds, reducing their free concentration in 
the cytoplasm. This contributes to tolerance of hyperaccumulator plants to excess 
concentrations of heavy metals (Van Steveninck et al. 1993). Binding of heavy met-
als to phytic acid also contributes to bioextraction and phytoremediation of heavy 
metal toxicities (Bolan et al. 2003).

Vacuolar Pi is the non-metabolic pool and serves as a reserve supplying cyto-
plasm with phosphate when necessary. The regulation of metabolic pathways in the 
cytoplasm and chloroplasts is to a large extent controlled by compartmentation of 
Pi. Many key enzymes are controlled by Pi. The activity of ADP-glucose phos-
phorylase is inhibited by Pi and results in poor starch synthesis. Carbon fixation is 
also inhibited by high Pi concentration. The efficiency of translocation of Pi and its 
utilization is involved in N2 fixation and photosynthesis in plants (Tak et al. 2012). 
The sink activity of stem is affected by P deficiency, which suppresses photosyn-
thetic translocation, causes accumulation of carbohydrate in the source leaves and 
ultimately results in depression of photosynthesis (Fujita et  al. 2004; Chaudhary 
et al. 2008). Phosphorus also plays an important role in gene expression and signal 
transduction (Fang et al. 2009).

2.2.3  Potassium

Potassium is taken up at a very high rate by the plants due to the high permeability 
of plant membranes to K+. It is characterized by a high mobility in entire plant, and 
it is translocated towards younger tissue (Wang and Wu 2013). A closely knit 
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regulation between the water channels and the potassium uptake channels helps to 
maintain plant homeostasis (Liu et al. 2006). It is abundant in cytoplasm and helps 
in neutralizing insoluble macromolecular anions to maintain ionic balance and 
osmoregulation in plant cell (Kanai et al. 2011). Its large accumulation in cell vacu-
oles contributes to turgor-driven extension growth of cells. Deficiency of potassium 
leads to decrease in turgor and cell size which is reflected in decrease in leaf area 
and stem elongation (White and Karley 2010). Inadequate supply of potassium 
restricts meristematic growth and cambial activity. Potassium is beneficial for cam-
bial growth and wood formation, and this is related to potassium involvement in 
osmoregulation in the expanding cambial cells (Wind et al. 2004). Potassium plays 
a role in opening and closing of stomata (Talbot and Zeiger 1996; Hosy et al. 2003; 
González Benlloch et al. 2008). Activation of membrane-bound proton pumping 
ATPases causes increased uptake of K+ (Wu and Assmann 1995), which increases 
the osmotic pressure, causing water uptake from the adjoining cells. This increases 
the turgor and leads to opening of stomata. Reversal of this process during darkness 
tends to close the stomata.

In cytosol and chloroplasts, where potassium concentrations are sufficiently high 
(100–200 μM), potassium neutralizes the anionic charges (NH3

−, Cl−, SO4
−). It also 

forms electrostatic bonds with the carboxylic groups of organic acids produced dur-
ing cellular metabolism. Neutralization of acid groups by potassium leads to stabi-
lization of cytosolic and chloroplastic pH to a slightly alkaline reaction (pH 7–8), 
which is favoured for optimal activation of most enzymes localized in cytoplasm or 
chloroplasts. Low rates of CO2 fixation in potassium-deficient plants are attributed 
to its role in stabilizing the pH of the stroma to a level that is optimum for the activ-
ity of the Calvin cycle enzymes. Potassium thus affects the photosynthesis in plants 
(Zhao et al. 2001; Wang et al. 2012).

Potassium activates about 50 enzymes by producing conformational changes in 
enzyme protein (Mengel 2001). Potassium is an activator of formate- 
formyltetrahydrofolate synthetase and succinyl-CoA synthetase. Together with 
Mg2+, it activates acetic thiokinase, pyruvate kinase and glutathione synthetase. It 
has been suggested that potassium activation of enzymes involves a change in con-
formation of the enzyme protein which augments the rates of catalysis and in some 
cases the affinities of the enzymes for the substrates. Low activities of certain 
enzymes such as Rubisco in potassium-deficient plants have been attributed to 
potassium effect on protein synthesis, which is due to a role of potassium in binding 
of tRNA to the ribosomes (Wyn-Jones et al. 1979).

Potassium also plays an important role in providing tolerance to plants exposed 
to various biotic and abiotic stresses including pathogen, water deficit and water 
logging and osmotic and temperature stressing (Shabala and Cuin 2008; Devi et al. 
2012; Wang et al. 2013). Potassium effect on cells turgor also accounts for its role 
in light-driven movements. In cereals, potassium is known to contribute to mechani-
cal strength of the straw that provides protection against lodging. Potassium also 
improves resistance of plants against pathogenic fungi, nematodes and other micro-
organisms (Prabhu et al. 2007).
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Cakmak (2005) observed that potassium provides protection to plants from high 
intensity of light as plants grown under prolonged conditions of high light have a 
greater requirement of potassium for normal growth. They suggested that stomatal 
closure due to potassium deficiency leads to photoinhibition and poor photosyn-
thetic CO2 fixation (Cakmak and Engels 1999). Disturbances in photosynthetic CO2 
fixation lead to activation of molecular O2 to produce ROS which degrade chloro-
phyll and membranes and make the deficient plants more susceptible to damage by 
high light intensity (Zhao et al. 2001).

Another factor involved in production of ROS is increased rates of NADPH oxi-
dase which accelerates production of O2

•– in potassium-deficient plants (Cakmak 
2005). High potassium in plants can decrease ROS by decreasing NADPH oxidase 
activity. Cakmak (2005) also reported that potassium deficiency enhanced activity 
of enzymes like ascorbate peroxidase and guaiacol peroxidase to detoxify H2O2. 
Since ROS production is reduced by potassium, it is suggested that supplying potas-
sium to plants would help them to overcome environmental stress conditions 
(Marschner and Cakmak 1989).

The role of ROS in potassium uptake by roots has also been reported. Shin and 
Schachtman (2004) showed that K+ uptake kinetics is governed by ROS produced in 
the roots due to potassium deficiency by modulating the gene expression and physi-
ological changes. They observed that ROS accumulated in regions of roots that were 
high in K+ uptake and translocation. The up-regulation of genes due to deficiency of 
potassium was also prevented by decrease in NADPH oxidase (which produces 
ROS) in Arabidopsis (rhd2). Shin et al. (2005) determined the role of ROS in wild- 
type Arabidopsis and different root hair mutants under nitrogen, phosphorus and 
potassium deficiency. They observed that changes in ROS concentrations in hair 
cells in case of nitrogen and potassium deficiency and in cortical cells in phosphorus- 
deficient plants played an important role.

Kim et al. (2010) isolated a member of family of peroxidases, RCI3 (for Rare 
Cold Inducible gene 3). They observed overexpression of RCI3 (RCI3-ox) resulted 
in ROS production and AtHAK5 expression in potassium deficiency indicating low- 
potassium signal transduction pathway in roots of Arabidopsis. Previously, it was 
observed by Shin and Schachtman (2004) and Jung et al. (2009) that expression of 
AtHAK5 is related to production of ROS. Both the reports suggest that under potas-
sium deficiency, ROS production due to RCI3 increased expression of AtHAK5. 
Hafsi et al. (2014) reported that activation of signalling cascades such as ROS, phy-
tohormones (ethylene, auxin and jasmonic acid), Ca2+ and phosphatidic acid helped 
in overcoming potassium deficiency.

2.2.4  Sulphur

Sulphur is taken up by plants mainly from soil in form of sulphate (SO4
2−) and is 

subsequently assimilated into several organic compounds (Droux 2004; Anjum 
et  al. 2015). Conversion to organic sulphur compounds may take place both as 
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SO4
2− and after its reduction to sulphide (S2

2−). The reduced and oxidized forms are 
easily interconvertible (SO4

2−↔S2
2−). Sulphate is directly incorporated into sulpho-

lipids, polysaccharides, glucosinolates and certain phytoalexins (Leustek et  al. 
2000; Sanda et al. 2001; Mikkelsen et al. 2002). Reduction of sulphide leads to its 
incorporation into many other compounds such as the amino acids cysteine and 
methionine, coenzymes and secondary metabolites. Both cysteine and methionine 
are important constituents of plant proteins. These amino acids acquire added sig-
nificance because animals and humans lack the ability to reduce sulphur and depend 
on plants for meeting their dietary requirements. Decrease of storage proteins  – 
albumin, globulins, glutelins and prolamins – especially globulins, has been reported 
in response to sulphur deficiency in soya bean seeds (Chandra and Pandey 2016). 
Since cysteine is a major constituent of globulin, the decrease in globulins could be 
due to poor cysteine levels because of sulphur deficiency (Shewry et al. 1995).

The cysteine residues of proteins are critical for their structure and function. The 
tertiary structure of proteins is determined by the oxidation of the thiol (SH) group 
of cysteine to produce covalent disulphide bond (S-S). Interconversion of thiol and 
disulphide bonds also provides a mechanism for regulation of enzyme activities. 
Cysteine functions as a precursor of some low molecular weight peptides of high 
biological activity. Important amongst these are glutathione and thioredoxins. 
Glutathione is a tripeptide formed from glutamine, cysteine and glycine. 
Predominantly present in the reduced form (GSH), it can be readily converted to its 
oxidized form (GSSG), a property which enables it to function as a buffer of cell’s 
redox potential. Enzymatic interconversion of GSH and GSSG provides an efficient 
mechanism for regeneration of ascorbate oxidized to dehydroascorbate by ascorbate 
peroxidase as a part of cell antioxidant mechanism (Noctor and Foyer 1998). 
Glutathione also offers protection to plants against toxic effects of xenobiotics (Gill 
et al. 2013).

Sulphur offers protection against toxic accumulation of heavy metals by phyto-
chelatins. Plants subjected to excess concentrations of heavy metals show induction 
of phytochelatin synthase, which catalyses the synthesis of the low molecular 
weight polypeptides known as phytochelatins from glutathione (Rauser 1995). 
Metallothioneins are a group of polypeptides rich in cysteine and are formed in 
response to heavy metal toxicity (Cd, Zn). Phytochelatins and thioneins provide a 
mechanism for their detoxification by binding of the free heavy metal cations to 
their thiol groups (Cobbett and Goldsbrough 2002).

The sulphur thioredoxins and the associated enzyme thioredoxin reductase are 
important for regulation of enzyme activities. Thioredoxin reductase from chloro-
plasts is ferredoxin dependent (Schrümann and Jacquot 2000). The thioredoxin- 
thioredoxin reductase system activates several enzymes, e.g. fructose 1,6-phosphate, 
by catalysing reduction of their disulphide bonds. Thioredoxin-mediated thiol- 
disulphide reduction is also involved in the activity of peroxiredoxins, which not 
only catalyse peroxidation reactions but also play a role in antioxidant defence 
mechanism and modulation of redox signalling during development (Lee et  al. 
2005; Kapoor et al. 2015).
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Sulphur binds to iron to produce iron-sulphur clusters (Fe-S) that form integral 
part of several iron proteins. The low molecular weight (9 kD) electron-carrier pro-
tein ferredoxin that is widely and abundantly present in plants plays a major role as 
a donor or acceptor of electrons in plant metabolism (Gerber and Lill 2002. It is 
largely localized in chloroplasts and root plastids (Takahashi et al. 2011).

Sulphur, in reduced form, is also a constituent of many vitamins and coen-
zymes  – biotin, coenzyme A and thiamine pyrophosphate. Biotin functions as a 
mobile carbonyl group carrier in a variety of enzyme-catalysed carboxylation 
(Alban et al. 2000) reactions involved in lipid biosynthesis, leucine catabolism and 
isoprenoid metabolism. Secondary metabolites such as glucosinolates, stored in 
plant vacuoles of Brassicaceae and several other dicotyledonous families, and of 
allin, present in Allium sp. are also sulphur compounds.

Polysulphides play an important role in managing the thiols in order to maintain 
a balance in the redox status of the cell and prevent cell death (Jacob and Anwar 
2008). The thiol/polysulphide redox reactions produce the reductant perthiol 
(RSSH) which in turn easily produces O2

•– (Munday et al. 2003). After reducing O2 
to O2

•–, the RSSH is oxidized to RSS∙ (perthiyl radical). The latter dimerizes to form 
RSSSSR (polysulphide) or it reacts with GSH to form RSSSG.- (polysulphide 
anion). The GSH detoxify ROS to generate GSSG, which can be reduced back to 
GSH, by the NADPH-dependent enzyme glutathione reductase (Lillig et al. 2003).

Kandlbinder et  al. (2004) observed that sulphur deficiency resulted in redox 
changes which induce oxidative stress. Under stress conditions, increase in ROS 
enhances the glutathione accumulation (Willekens et al. 1997; Gill et al. 2013). The 
enhanced glutathione accumulation due to H2O2 generation was shown to affect the 
sulphur uptake rate in the barley leaves (Smith et al. 1985). Contrary to other reports, 
Lappartient and Touraine (1997) observed decrease in GSH in roots exposed to 
H2O2. Probably feedback inhibition of γ-ECS by GSH controls the overall GSH 
synthesized (Smith et al. 1985). In sulphur-deprived rice, the concentration of GSH 
was severely reduced (Lunde et al. 2008). A decrease in the concentration of non-
protein thiols and increase in SOD, CAT, POD, APX (ascorbate peroxidase) and GR 
observed in sulphur-deficient wheat and black gram were observed by Chandra and 
Pandey (2014a, b).

2.2.5  Calcium

Calcium is present in plant tissue as Ca2+, or as Ca carbonate, Ca phosphate and Ca 
oxalate. The uptake of Ca2+ is very slow as it is absorbed only by young root tips. 
The uptake is a passive process and is competitively depressed by presence of K+ 
and NH4

+. A low level of calcium is maintained in the cytoplasm to prevent unfa-
vourable interactions with other nutrient ions (PO4

−
, Mg2+) and inactivation of 

enzymes. It is also a prerequisite for its functioning as a second messenger. Low 
concentration of calcium in cytoplasm (~0.2 μM) is maintained by regulation of 
Ca2+ fluxes across the cellular and subcellular membranes (Evans et  al. 1991) 
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involving membrane transporters (Ca2+-ATPase). Efflux of Ca2+ from cytosol into 
the vacuole involving V-Ca2+-ATPase activity builds up high concentration of Ca2+ 
in vacuoles, where it plays a role in neutralization of anions and in osmoregulation. 
Osmoregulation of cells is controlled by the Ca oxalate in the vacuoles. Calcium 
thus plays an electrochemical role by functioning as neutralizing ion for anions. 
Pumped into the vacuole by the membrane transporter (V-Ca2+-ATPase), calcium 
neutralizes the anions – phosphate, citrate, malate and/or oxalate – that may get 
accumulated in vacuoles in high concentrations (Marschner 2012).

Calcium functions as a structural constituent of cell walls because a high concen-
tration is found in the cell wall (apoplasm) in middle lamella region and exterior 
surface of plasma membrane. The carboxylate ions (RCOO−) of polygalacturonic 
acid (pectin) are bound to the calcium in the middle lamella, and thus it performs the 
most essential function of regulating membrane permeability and strengthening the 
cell walls (White and Broadley 2003). Calcium deficiency inhibits the growth of 
middle lamella during the cell expansion. Calcium pectate provides strength to the 
cell wall as it makes the tissue resistant to degradation by polygalacturonase. Ability 
of calcium to act as a bridge between phosphates and carboxyl groups of phospho-
lipids and proteins accounts for its role in providing stability to cellular membranes. 
In calcium-deprived plants, the membrane structure disintegrates, there is poor 
compartmentation of Ca2+, and low molecular weight solutes exhibit leakage. 
Therefore calcium deficiency results in impairment of membrane permeability and 
their disintegration. High calcium content in fruits therefore increases firmness of 
fruit. During ripening intracellular redistribution of Ca2+ results from increased 
activity of polygalacturonase so that the ethylene-generating system is activated, 
thus enhancing fruit ripening. Along with phytohormones, Ca2+ is also involved in 
regulation of senescence (Ali et al. 2007).

Calcium plays an important role in cell extension. Root growth is inhibited by 
calcium deficiency. Pollen tube growth and direction of pollen tube are controlled 
by extracellular calcium gradient. Calcium is present in very small amounts in cyto-
plasm, and this is important as calcium inhibits enzymes located in cytoplasm and 
chloroplast, e.g. PEP carboxylase and hexodiphosphatase. Calcium increases activ-
ity of certain enzyme like α-amylase, phospholipase and ATPases. Activation of 
α-amylase in aleurone layers by gibberellic acid and its inhibition by abscisic acid 
are attributed to their effect on transport of calcium to endoplasmic reticulum, which 
forms the site for the synthesis of the enzyme. Mitochondrial enzymes may be acti-
vated by calcium, e.g. glutamate dehydrogenase. Calcium plays a regulatory role by 
activating biochemical events in response to environmental stresses, mechanical 
stimuli and pathogen infections (Bush 1996; Knight 2000).

A recent role assigned to calcium is that of a second messenger (Hetherington 
and Brownlee 2004; Heplar 2005). Perception of stress signals causes transient 
opening of calcium channels and pumping of calcium into the cytoplasm causing 
increase in its cytosolic concentration. This activates calcium-binding proteins such 
as calmodulin. Calmodulin is a polypeptide which binds four Ca2+, forming a compact 
structure. Calmodulins are also involved in synthesis of actin filaments, cell division 
cycle and pollen-stigma interaction in plants. Binding of Ca2+ to calmodulin changes 
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its tertiary structure exposing a patch of methionine, leucine and phenylalanine 
involved in binding of calmodulin to the target proteins and their activation. 
Calmodulin is involved in most stress responses as well as phospholipid signalling 
(Zielinski 1998; Saijo et al. 2000; Snedden and Fromm 2001; Reddy et al. 2002). It 
regulates the levels of free calcium in cytosol and enzyme activation (Romeis et al. 
2000). Calmodulin is known to activate several higher plant enzymes like cyclic 
nucleotide phosphodiesterase, adenylate cyclase, NAD kinase including Ca2+ 
ATPases and protein kinases involved in cell signalling (Tuteja and Mahaja 2007). 
A pistil-expressed Ca2+-binding protein (PCP) in anther and pistil is suggested to be 
involved in pollen-pistil interaction (Furuyama and Dzelzkalns 1991). Calcium-
dependent protein kinases (CDPKs) are also implicated in pollen development 
(Saijo et al. 2000).

A very significant role has been assigned to the calcium signalling in plants pro-
duced in response to a wide array of unfavourable environmental conditions (Ng 
and McAinsh 2003; White and Broadley 2003; Ma and Berkowitz 2011). Yang and 
Poovaiah (2002) reported that the calcium in the cytoplasm can enhance NADPH 
oxidase resulting in ROS production. According to them, abiotic stress can trigger 
an influx of calcium in the cytosol and stimulate H2O2 production. They suggested 
that cytosolic calcium has a dual role in regulating H2O2 homeostasis. It can either 
reduce H2O2 levels by stimulating the catalase activity via the Ca2+/CaM or generate 
H2O2 by directly activating NADPH oxidase.

2.2.6  Magnesium

Even though abundant in soil solution, magnesium (Mg2+) is taken up by plant con-
centrations much lower than the other cationic macronutrients (Wanli et al. 2016). 
This is possibly because of strong cation competition in uptake and lack of magne-
sium transporters in plasmalemma. The uptake of Mg2+ is depressed by low pH and 
cations like K+, NH4

+, Ca2+ and Mn2+. The uptake rate is very slow and passive. 
Magnesium performs very diverse functions. The function of magnesium is related 
to its mobility within cells. The major function of magnesium stems from its being 
a central atom of chlorophyll molecule. A central magnesium atom is coordinated 
to the nitrogen atoms of the four modified pyrrole rings forming a porphyrin-like 
structure. Chlorophyll magnesium may constitute 10% or more of the total leaf 
magnesium. The total protein (almost 25%) in leaf cells is localized in chloroplasts, 
and therefore magnesium deficiency results in poor chlorophyll content, small size 
of the chloroplasts and reduction in electron transfer in photosystem II. Magnesium 
also helps to maintain the structural integrity of ribosomes and binding of the ribo-
somal aggregates to tRNA, a process necessary for protein synthesis (Maathuis 
2009).

Only a relatively small proportion of total plant Mg2+ (20%) is required for vari-
ous function in chloroplasts and cytoplasm. The rest of Mg2+ occurs as counterions 
for organic acid anions and inorganic anions in the vacuole and for pectates in the 
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middle lamella of cell walls. Like potassium, magnesium is also important in main-
tenance of ionic balance and stabilization of pH. Vacuolar concentration of magne-
sium is particularly important for osmoregulation and turgor-driven cell growth 
(Shaul 2002). Starch is accumulated, and rate of photosynthesis and respiration is 
low under magnesium deficiency.

Magnesium is an activator of several enzymes. Some of these are activated by 
Mg2+ along with another cation (usually K+). In most cases, activation by magne-
sium is not specific and can be achieved, to varying extents, by other cations, mostly 
Mn2+. Most magnesium-activated enzymes catalyse transfer of a phosphate group or 
a carboxyl group. Magnesium functions in enzyme activation in two ways. In some 
enzymes, it functions as a freely dissociable cofactor. In others, it binds to the sub-
strate modifying it to a form that is more favourable to enzyme-substrate interaction 
(Clarkson and Hanson 1980). ATPases, phosphorylases and phosphokinases belong 
to the second category. Mg2+-ATP, and not free ATP, forms the substrate for ATPases 
(Cowan 2002). High concentration of Mg2+ is required in chloroplasts and cyto-
plasm for maintaining a high pH. The high pH is required to form the Mg-ATP 
complex necessary for energy-rich phosphoryl group transfer by the ATPases. The 
Mg2+ forms a bridging component between ADP for synthesis of ATP. In plants that 
are adequately fed with magnesium, essentially all nucleoside triphosphates occur 
in the form of their magnesium complexes. The enzyme fructose-1,6-diphosphatase 
and RuBP carboxylase require Mg2+ and high pH for optimum activity. Key enzyme 
glutamate synthetase has magnesium requirement. Magnesium is essential for RNA 
polymerase and hence synthesis of RNA.  Deficiency of magnesium therefore 
depresses protein synthesis (Marschner 2012).

A major role of magnesium involves phloem loading and unloading of sucrose. 
Magnesium-deficient plants show increased accumulation of sugars in the leaves 
and a high ratio of shoot/root dry weight (Cakmak et al. 1994a, b; Hermans and 
Verbruggen 2005). This results in poor export of phloem photoassimilates from 
Mg-deficient leaves (Cakmak and Kirkby 2008; Cakmak 2013). Low starch content 
of cereal seeds and potato tubers also reflect impaired source-sink relationship. 
Restricted loading of phloem is attributed to low activity of proton pumping ATPases 
(proton-sucrose cotransport) which require magnesium for activation. High concen-
tration of sugars in source leaves of magnesium-deficient plants caused by restricted 
loading of phloem may cause feedback inhibition of carboxylase activity of Rubisco 
and a shift in favour of its oxygenase activity. This pattern of high sugar level and 
shoot/root ratio in magnesium-deficient plants is also similar to that in potassium- 
deficient plants, but this is in contrast to the low shoot/root ratio and low levels of 
sugar in nitrogen- and phosphorus-deficient plants (Cakmak et al. 1994a; Freeden 
et al. 1990; Rufty et al. 1988; Marschner et al. 1996; Hermans et al. 2006) indicating 
that the latter deficiencies have less effect on root growth (Cakmak 2005; Hermans 
et al. 2005; Marschner 1995, 1996). Potassium- and magnesium-deficient plants are 
also highly light sensitive exhibiting leaf chlorosis (Marschner and Cakmak 1989; 
Cakmak 2005) which is not observed in  phosphorus  deficient plants (Cakmak 
1994). Cakmak (1994) and Marschner and Cakmak (1989) correlate this to higher 
sugar accumulation in Mg- and K-deficient plants.
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Severe magnesium deficiency decreases photosynthetic electron transport in the 
PSII and PSI as observed in pine (Laing et al. 2000) and sugar beet plants (Hermans 
et al. 2004). This leads to activation of molecular oxygen (O2) and production of 
ROS, exposing the magnesium-deficient plants to oxidative damage, which acquires 
serious proportions under high intensity of light or photoinhibitory conditions 
(Marschner and Cakmak 1989). Magnesium deficiency thus enhances the antioxi-
dative enzymes like APX and GR (Cakmak and Marschner 1992a, b). Activation of 
antioxidative defence systems due to magnesium deficiency has been reported in 
Mentha by Candan and Tarhan (2003) and in pepper by Riga et al. (2005). Oxidative 
damage as evident by increase in malondialdehyde (MDA), H2O2 and antioxidative 
enzymes like SOD, CAT, APX and GR was also observed by Esfandiari et al. (2010).

2.3  Physiological Roles of Micronutrients

2.3.1  Iron

Iron is a transitional metal that exists as ferrous (Fe2+) and ferric (Fe3+) ions. The 
easy conversion of the two forms (Fe2+ ⇆ Fe3+) accounts for its role in a variety of 
redox reactions (Briat et al. 2007; Rout and Sahoo 2015). Iron has high affinity for 
oxygen and forms stable complexes with organic ligands. It acquires high biological 
activity by binding to proteins. Iron proteins function as enzymes catalysing redox 
reactions and as electron carriers in photosynthetic and mitochondrial electron 
transport systems. Iron is bound to the apoprotein in four forms:

 (a) It forms ionic bonds with the protein amino acids, e.g. superoxide dismutase 
(Fe-SOD). Bonds are also formed between two coupled iron atoms and a pro-
tein (Berthold and Stenmark 2003), e.g. alternative oxidase.

 (b) Iron ions form coordination bonds with sulphide ions and bind to the apoprotein 
in the form of iron-sulphur clusters (Fe-S, 2Fe-2S, 4Fe-4S) as ferredoxin.

 (c) Iron-sulphur cluster along with a flavin nucleotide (FMN or FAD) forms the 
cofactor, e.g. succinic dehydrogenase.

 (d) Iron ion is chelated to nitrogen of the four pyrrole groups of porphyrin IX to 
form a heme prosthetic group, e.g. catalases, peroxidases and cytochrome c 
oxidase.

Iron is a cofactor of many dioxygenases (Presscott and John 1996) and mono-
oxygenases (Chapple 1998), which catalyse the incorporation of oxygen (O2) 
directly into the substrates. Iron dioxygenases are best exemplified by lipoxygen-
ases involved in the hydroperoxy fatty acids, and production of oxylipins,  derivatives 
of which function as signalling molecules (Feussner and Wasternack 2002). Some 
iron-containing dioxygenases require an additional substrate, generally 2-oxogluta-
rate. Several iron-containing gibberellin oxidases belong to this category. The iron 
enzyme 1-aminocyclopropane-1-carboxylic acid oxidase is an ascorbate- dependent 
dioxygenase responsible for synthesis of ethylene. There is involvement of several 
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P450 monooxygenases in synthesis of gibberellins and jasmonic acid. Many genes 
encoding for the cytochrome P450 monooxygenases (the CYP gene family) have 
been cloned and characterized (Chapple 1998).

Iron enzymes and electron-carrier proteins are essential constituents of mito-
chondrial and photosynthetic electron transport. Mitochondrial electron transport 
involves transfer of electrons from NADH and FADH2, produced during the citric 
acid cycle, to molecular oxygen through the electron-carrier proteins localized in 
the mitochondrial membrane which contain iron as an integral constituent. Transport 
of electrons through the electron-carrier proteins generate a proton gradient required 
for the ATP synthesis (oxidative phosphorylation). Iron is essential for harvesting of 
solar energy and transport of electrons resulting from splitting of water (H2O) 
through photosystem II and photosystem I. It is a constituent of the PSII reaction 
centre and that of ferredoxin, the terminal recipient of the electrons from PSI. In the 
former iron occurs in the ionic form and in the latter in the form of iron-sulphur 
(4Fe-4S) cluster. Transport of electrons from PSII to PSI is linked through the heme 
protein complex cytochrome bf and the copper protein plastocyanin.

Being a cofactor of the enzymes, iron is also involved in nitrogen metabolism. 
Nitrate reductase and nitrite reductase are two iron enzymes involved in reduction 
of nitrate to ammonium. Nitrate reductase has three domains – heme, molybdop-
terin and flavin. Nitrite reductase is a 4Fe-4S siroheme. Glutamate synthase 
(GOGAT), which converts glutamine to glutamate, also requires iron for catalysis. 
In legumes iron also acts as a cofactor of dinitrogenase and dinitrogen reductase in 
fixation of atmospheric nitrogen. The inactivation of nitrogenase is prevented by 
iron protein leghemoglobin, which has higher affinity for O2. Iron fertilization of 
nodulating legumes benefits both dry matter production and nitrogen contents (Tang 
et al. 1990). Some important iron enzymes of higher plants and reactions catalysed 
by them are listed in Table 2.2. As an important constituent of the photosynthetic 
and mitochondrial ETC, iron deficiency disrupts the ETC and results in ROS pro-
duction. The Fe3+/Fe2+ redox potential imparts a dual role to iron in free radical 
chemistry. Thus it functions as a prooxidant by generating the highly toxic OH. radi-
cal on one hand, and at the same time, it acts as an antioxidant by being a constituent 
of several antioxidant enzymes (Sharma 2006). Toxic concentrations of iron also 
initiate oxidative damage through Haber-Weiss reaction which produces the overtly 
toxic .OH radical:

 H O O O HO HO2 2 2+
− −→ + +. .

 

It is an iron-catalysed reaction and proceeds via the following steps:

 Fe O Fe O3
2

2
2

+ − ++ → +.

 

 Fe +H O Fe +HO +HO+ +2
2 2

3→ −.

 

 O H O O HO HO2 2 2 2
. .− −+ → + +  
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Fe2+ may also react with molecular oxygen (O2) to produce still more toxic com-
pounds such as ferryl (Fe2+O) or perferryl (Fe2+O2). These highly reactive oxygen 
species cause damage to membrane lipids, proteins and DNA and induce mutations. 
Free radical reactions are initiated by toxic iron by binding to proteins, phospholip-
ids and DNA. Another way iron could contribute to production of ROS is through 
action of lipoxygenase. This iron enzyme may also catalyse the production of 1O2.

While free ionic iron enhances the generation of ROS (Becana et  al. 1998; 
Halliwell and Gutteridge 2007), iron proteins contribute to their effective detoxifi-
cation as an important constituent of heme enzymes (CAT, POD and APX) or non- 
heme enzymes Fe-SOD. The oxidative stress may be induced by iron deficiency due 
to decrease in antioxidant enzymes like SOD, CAT and POD which have iron as a 
constituent. Iron deficiency may affect both the generation of reactive species and 
the antioxidative defences (Iturbe-Ormaetxe et al. 1995; Becana et al. 1998). The 
iron isoenzymes of superoxide dismutase (Fe-SOD) carry out the detoxification of 
O2

.− by dismutating them to H2O2. Kurepa et al. (1997) observed that both the SodB 
transcripts and Fe-SOD enzymes decreased in Fe-deficient Nicotiana tabacum. 
Another iron enzyme, alternative oxidase (AOX) of the mitochondrial ETC  provides 
an alternate pathway to the reducing equivalents from quinol and prevents them 
from interacting with oxygen to generate ROS (Purvis 1997; Millenaar et al. 1996). 
The heme enzymes CAT, POD and APX are important for H2O2 detoxification in 
plants, and their activities are affected by iron deficiency (Raineri et  al. 2001; 
Shigeoka et al. 2002; Sun et al. 2007). Iron deficiency of plants is reported to cause 

Table 2.2 Some important iron enzymes in plants

Enzyme Reaction catalysed

Superoxide dismutase 
(Fe-SOD)

2O2
._ + 2H+ ―→ H2O2 + O2

Alternative oxidase Ubiquinol + O2 ―→ ubiquinone + H2O
Lipoxygenase Linoleic acid ―→ 13 or 9 hydroperoxylinoleic acid
Aconitate hydratase Citrate ―→ isocitrate
Nitrite reductase NO2

− + 6Fdx (red) + 8H+ ―→ NH4
+ + 6Fdx(ox) + 2H2O

Sulphite reductase SO3
2− + 6Fdx(red) ―→ S2

− + 6Fdx(ox)

Glutamate synthase Glutamine + 2 oxoglutarate + 2Fdx(red) or NADH ―→ glutamate + 
2Fdx(ox) or NAD+

Succinate dehydrogenase Succinate + FAD ―→ fumarate + FADH2

NADH – Q oxidoreductase NADH + UQ + 5H+ (matrix) ―→ NAD+ + UQH2 + 5H+ (Cytsol)

Succinate – Q 
oxidoreductase

Succinate ―e→ FAD ―e→ UQ ―e→ UQH2

Fdx – NADP+ 
oxidoreductase

2Fdx(red) + NADP+ ←→ 2Fdx(ox) + NADPH + H+

Catalase H2O2 + H2O2―→ 2H2O + O2

Peroxidases H2O2 + AH2―→ 2H2O + A
Cytochrome c oxidase O2 + 4H+ + 4e− ―→ 2H2O
Cytochrome c reductase QH2 + 2Cyt c(ox) + 2H+ ―→ Q + 2Cyt c(red) + 4H+
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oxidative damage and results in marked decrease of CAT and APX and increased 
accumulation of H2O2 and TBARS (Donnini et al. 2011; Verma and Pandey 2016).

Enzymes coded by the CYP genes (designated CYP for cytochrome P450) are 
involved in fatty acid metabolism and biosynthesis of gibberellins (Hedden and 
Philips 2000), ethylene (Kende 1993) and jasmonic acid (Creelman and Mullet 
1997). Cyclization of ent-kaurene, the first committed precursor of gibberellins, to 
ent-kaurenoic acid is catalysed by ent-kaurene oxidase (KO) which is a cytochrome 
P450-dependent heme monooxygenase. Several 2-oxoacid-dependent heme dioxy-
genases are involved in the conversion of GA12 aldehyde to different gibberellins 
including their bioactive forms (GA1, GA4). Biosynthesis of jasmonic acid involves 
participation of iron enzymes lipoxygenase and allene oxide synthase (AOS). 
Overexpression of AOS gene in transgenics leads to increased production of jas-
monic acid (Creelman and Mullet 1997). The terminal step of ethylene biosynthesis 
from 1-aminocyclopropane 1-carboxylic acid (ACC) to ethylene is catalysed by a 
non-heme iron enzyme ACC oxidase (Kende 1993). Martinis and Mariani (1999) 
suggested poor ethylene levels due to ACC oxidase inhibition resulted in sterile 
pistil formation. They reported that poor ethylene production due to iron deficiency 
in naat expressed in tobacco plants resulted in formation of abnormal pistil. Thus 
the role of iron may have far-reaching consequences in plant reproductive biology 
(Sun and Gubler 2004).

Involvement of iron in pollen-stigma interaction cannot be ruled out since iron is 
a constituent of peroxidase which is known to be enhanced for viable pollen germi-
nation (Bredemeijer 1979). McInnis et al. (2006) have identified class III peroxidase 
gene which is specific to stigma, SSP (stigma-specific peroxidase), and which is 
expressed in the receptive papillae of the stigmas of Senecio squalidus L. 
(Asteraceae). Since peroxidase genes are expressed in response to stress (Valerio 
et al. 2004), the localization of SSP in stigma papillae probably helps in pollen tube 
penetration and growth in the stigma by weakening the stigma wall. The SSP and 
stigma peroxidases may carry signals for species-specific pollen recognition by the 
stigmas. The high constitutive levels of SSP and peroxidase activity in stigmas (and 
style) may provide protection from pathogen attack (Do et al. 2003). Stigma peroxi-
dases, such as SSP, impart a new role to ROS during reproductive stage for pollen- 
stigma interaction and protecting stigmas from microbial attack.

In a recent study, Takahashi et  al. (2003) have shown severe suppression of 
reproductive development in transgenic tobacco plants lacking in synthesis of nico-
tianamine (NA). Nicotianamine plays a role in the chelation of the cationic micro-
nutrients and their delivery to the reproductive tissues. Chlorotic leaves and 
abnormally shaped sterile flowers were observed in transgenic tobacco plants which 
expressed the NAAT (nicotianamine aminotransferase) gene. These anomalies were 
due to NA deficiency which was utilized in NAAT production in these transgenics. 
NA is required for normal reproductive development of the inflorescence, pollen 
grains and seed development. Vert et al. (2002) reported that NA-Fe could be trans-
ported to the floral organs by metal transporters. The heme-Fe is a constituent of 
allene oxidase involved in jasmonic acid synthesis, which is important for anther 
dehiscence (Kubigsteltig et al. 1999). This indicates another role of iron in plant 
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reproduction. NA also may regulate the iron in Fe-requiring protein such as DME 
(DEMETER) which is expressed for endosperm and seed viability (Choi et  al. 
2002).

2.3.2  Manganese

Manganese is a transition metal that exists in several oxidation states of which the 
most dominant oxidation state is manganese (Mn2+) which is easily oxidized to the 
less stable manganic (Mn3+) form. It functions as a cofactor or activator of several 
enzymes (Table 2.3). Manganese activation of enzymes accounts for its role in pho-
tosynthesis, carbohydrate metabolism, nitrogen metabolism and biosynthesis and 
metabolism of aromatic amino acids and secondary plant products (Burnel 1988).

The most significant role of manganese is in oxygen evolution as it is a constitu-
ent of the OEC (oxygen-evolving complex) associated with photosystem II 
(Hoganson et al. 1993). The complex associated with the PSII reaction centre con-
tains a cluster of four manganese ions bound to the D1 protein (P680). The Mn cluster 
functions as a mechanism for charge accumulation that enables it to oxidize the 
water molecule bound to it. In another role manganese enzymes NAD+ malic 
enzyme and phosphoenolpyruvate carboxykinase play a critical role in decarboxyl-
ating the C4 acids to release CO2 that can be fixed by Rubisco and incorporated in 
the carbohydrate pool (Hatch 1987).

Enzymes involved in glycolysis and gluconeogenesis have manganese as a 
cofactor. Thus it is involved in sugar metabolism. It functions as an activator of 
enolase and phosphoenolpyruvate carboxylase, catalysing terminal steps of glycol-
ysis. The manganese enzyme phosphoenolpyruvate carboxykinase (PEPCK) cataly-
ses the decarboxylation of oxaloacetate, produced during citric acid cycle, to 
phosphoenolpyruvate, which is finally converted to sucrose through a series of reac-
tions. PEPCK acquires added importance in plants in which β-oxidation of lipids 
stored in seeds meets the energy requirement during early stages of seedling growth 
(Walker and Chen 2002).

Table 2.3 Some enzymes in plants activated by manganese

Enzyme Reaction catalysed

Superoxide dismutase (Mn-SOD) 2 O2
•–+ 2H → H2O2 + O2

NAD+ -Malate oxidoreductase (malic 
enzyme)

Malate + NAD+ + H+ → pyruvate + NADH + CO2

Phosphoenolpyruvate carboxykinase Oxaloacetate + ATP → phosphoenolpyruvate + 
ADP + CO2

Allantoate amidohydrolase (Mn 
containing)

Allantoate + H2O→ uredoglycine + NH3 + CO2

Arginase L-Arginine + H2O → L-ornithine + urea
Glutamine synthase Glutamate + NH4 + ATP → glutamine + ADP + Pi
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Manganese is the cofactor of the first enzyme of the shikimate pathway that pro-
vides the precursors for the biosynthesis of aromatic amino acids – tyrosine, phenyl-
alanine and tryptophan (Herrmann 1995). The reaction involves the condensation of 
phosphoenolpyruvate and erythose-4-phosphate to produce 3-deoxy-arbino- 
heptulosonate-7-phosphate (DAPH) catalysed by the Mn2+-activated enzyme DAHP 
synthetase. Manganese-activated enzymes also figure in the biosynthesis of gibber-
ellins and polyamines. Kaurene synthase, which is specifically activated by manga-
nese, catalyses the production of ent-kaurene, the first committed precursor of 
gibberellins. Arginase, which catalyses the conversion of arginine to ornithine, is 
also activated by manganese. The latter is the starting material for the biosynthesis 
of polyamines. Manganese involvement in metabolism of phenolics and biosynthe-
sis of lignins contributes to resistance against pathogen attack (Huber and Graham 
1999).

Manganese functions in prevention of toxic effects resulting from ROS produced 
in response to environmental stresses. As a cofactor of the mitochondrial superoxide 
dismutase (Mn-SOD), manganese provides protection against oxidative damage. 
Inadequate supply of manganese produces oxidative stress in plants (Del Río et al. 
1985; Kröniger et al. 1995; Yu et al. 1998; Yu and Rengel 1999). Transgenic tobacco 
overexpressing Mn-SOD in the chloroplasts exhibits improved tolerance to oxida-
tive damage (Slooten et al. 1995). Yu et al. (1999) also observed the overexpression 
of genes for Mn-SOD in chloroplast or mitochondria as well as Fe-SOD in trans-
genic tobacco (Nicotiana tabacum L.), as compared to the non-transgenic. This 
overexpression enhanced the Mn-SOD activity and helped the plants to overcome 
oxidative stress induced by manganese deficiency.

Manganese has been assigned a role in providing protection to the nutrient-rich 
stigma. The role of Mn in providing protection to the receptive surfaces of stigmas 
from microbial attack in spite of its nutrient-rich secretions seems to draw analogy 
from the nectar in which microbial infection by ROS and H2O2 is protected due to 
the presence of a superoxide dismutase – Nectarin 1 (Carter and Thornburg 2004). 
Nectarin I (NEC1) is a germin-like protein (GLP) that has Mn-SOD activity. The 
Mn-SOD activity generates high level of H2O2 in the nectar which protects the 
female reproductive structures from attack by microbes and is expressed during 
nectar production prior to anthesis and ceases after floral pollination (Carter and 
Thornburg 2000, 2004).

2.3.3  Copper

Copper is an essential redox-active transition metal with high redox activity. It has 
two oxidation states – cuprous (Cu+) and cupric (Cu2+) – which are readily intercon-
vertible. The less stable Cu+ is readily oxidized to the stable Cu2+. Like iron, copper 
has high affinity for oxygen (O2) and readily binds to organic ligands. Copper is a 
structural constituent of important proteins and enzymes involved in various bio-
chemical activities ranging from photosynthesis, respiration, reproduction and 
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hormone signalling (Marschner 1995; Raven et al. 1999). Most copper in plants is 
complexed to proteins. Several copper-containing enzymes catalyse redox reactions 
(Table 2.4). As a constituent of the copper protein plastocyanin, copper links photo-
system II to photosystem I (Katoh 1977). Plastocyanin activity is also involved in 
cyclic transport of electrons coupled to ATP production. Involvement of plastocya-
nin in electron transport accounts for decrease in photosynthetic rates and change in 
PSI/PSII rates in copper-deficient plants. A recent study with functional mutants of 
Arabidopsis suggested that decrease in photosynthetic rate of copper-deficient 
plants is caused due to poor transport of copper across the plastid envelope involv-
ing a P-type ATPase (Shikanai et al. 2003). Low rates of photosynthesis in copper- 
deficient plants could also result from structural changes induced in chloroplast 
organization and decrease in chlorophyll content and also leaf conductance to CO2.

As a cofactor of several oxidases, including monooxygenases, copper plays a 
role in metabolism of quinones and phenols affecting synthesis of secondary metab-
olites including lignins. Inadequate supply of copper leads to decreased activities of 
copper enzymes – polyphenol oxidase, ascorbate oxidase and copper amine oxi-
dase – which accounts for increased accumulation of phenolics in copper-deficient 
plants (Chen et al. 2002a, b).

Copper plays a protective role against abiotic and biotic stresses. Superoxide 
dismutase with Cu-Zn cofactor (Cu-Zn SOD) is localized close to the PSI complex 
(Ogawa et al. 1995) and catalyses rapid detoxification of superoxide ions (O2

.-) gen-
erated under photoinhibitory conditions (Fridovich 1995). Decrease in Cu-Zn SOD 
activity resulting from inadequate supply of copper weakens the antioxidant defence 
system of plants making them susceptible to oxidative damage (Yu and Rengel 
1999). Copper involvement in lignin biosynthesis contributes to resistance against 
penetration of pathogens. Protection against pathogens is also offered by elevated 
levels of copper amine oxidases which generate reactive oxygen species that are 
cytotoxic to pathogens and activate defence mechanism of the host (Rea et al. 2002).

Copper plays an important major role in reproductive development of plants, 
which accounts for severe limitations in seed yield under copper deficiency. Several 
aspects of reproductive development are influenced by copper. Copper deficiency 
delays flowering and causes reduction in the number of flowers in large number of 
crops (Davies et al. 1978; Graves and Sutcliffe 1974; Reuter et al. 1981). Delayed 

Table 2.4 Copper enzymes in plants

Enzyme Reaction catalysed

Polyphenol (catechol) oxidase 2O- Diphenol + O2 → 2O- quinone + 2H2O
Laccase 2p-Diphenol + O2 → 2-p-quinone + 2H2O
Ascorbate oxidase 2L-Ascorbate + O2 → 2 dehydroascorbate + 2H2O
Monophenol monoamine 
oxidase (tyrosinase)

Tyrosine + dihydroxyphenylalanine + O2→ 
dihydroxyphenylalanine + quinone + H2O

Diamine oxidase (Cu containing) RCH2NH2 + O2 + H2O → RCHO + NH4 + H2O2

Superoxide dismutase (Cu-Zn 
SOD)

2 O2
•–+ 2H+ → H2O2 + O2
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flowering in Cu-deficient plants (Davies et al. 1978; Reuter et al. 1981) has been 
attributed to decreased polyphenol oxidase and ascorbate oxidase activity leading to 
accumulation of IAA which is inhibitory to flowering. Tanaka et al. (1995) reported 
that flowering in Lemna paucicostata 6746 and Lemna gibba G3 does not take place 
if the copper from the medium is chelated by the addition of EDTA. Deficient cop-
per  supply (<0.063  mg L−1) in safflower (Carthamus tinctorius L.) delayed and 
impaired formation of the capitulum and the floret formed were totally sterile and 
failed to develop seeds (Pandey and Sharma 1999).

Development of anthers and pollen grains is very sensitive to plant copper status, 
and higher concentration of copper in anthers and ovaries than in other floral parts 
suggests involvement of copper in their development. The role of copper in micro-
sporogenesis and pollen fertility may account for the more severe reduction in seed 
yield than dry matter production by copper-deficient plants (Graham 1975). Graham 
(1975) gave evidence for male sterility in copper-deficient wheat plants and showed 
that the deficiency interfered with development of pollen grain near the stage of 
meiosis of pollen mother cell and that decrease in seed setting is a function of male 
sterility and not ovule sterility. Inadequate supply of copper not only limits the size 
of anthers (Graham 1975; Agarwala et al. 1980; Dell 1981) but also prevents their 
dehiscence. Pollen sterility and impairment in development of endothecium were 
consistently observed by Dell (1981) in plants such as wheat, oat, barley, sweet 
corn, sunflower, petunia and sub-clover, grown under Cu-deficient conditions. They 
observed that at low copper supply, the inflorescences were developed, but flowers 
formed were male sterile showing either staminodes or arrow-shaped shrivelled sta-
men without tetrads and reduced lignification. They attributed the failure of anther 
dehiscence in copper-deficient plants to poor lignification of anther cell walls result-
ing from decrease in activity of copper-containing enzymes involved in biosynthesis 
of lignins.

Jewell et al. (1988) reported the formation of a non-functional tapetum in the 
anthers of copper-deficient barley plants which was expansionary and failed to sup-
ply nutrients to the developing pollen grains. Abnormal (polyploid) pollen grains 
were observed in copper-deficient plants of durum wheat (Azouaou and Souvré 
1993). In copper-deficient wheat, number and size of pollen grains is severely 
restricted, pollen grains lack dense cytoplasmic contents and the high starch con-
tent, characteristic of normal, viable pollen grains (Agarwala et  al. 1980; Jewell 
et  al. 1988). Pandey and Sharma (1996) observed decrease in germination and 
changes in ultrastructure of pollen grains of green gram following copper depriva-
tion which were minimized on copper resupply.

2.4  Zinc

Zinc has a single valency state (Zn2+) which makes it different from the other redox- 
active micronutrients. The zinc ion (Zn2+) binds to nitrogen- and sulphur-containing 
ligands through ionic bonds forming a tetrahedral geometry. Zinc is stable in the 
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biological medium since it is inert to oxidation-reduction, and therefore it has a 
number of structural and physiological roles in plants (Pandey 2010b). An impor-
tant role of zinc is maintenance of the structural integrity and permeability of plasma 
membranes. According to Bettger and O’Dell (1981), loss of membrane integrity is 
the earliest biochemical change caused by  zinc deficiency. The involvement of 
zinc in the permeability of plant plasma membranes was first shown by Welch et al. 
(1982). In plants that are not adequately supplied with zinc, the root plasma mem-
brane shows loss of structural integrity and enhanced leakage of ions. This is attrib-
uted to low concentration of phospholipids and thiol (-SH) groups in membranes of 
zinc-deficient plants (Rengel 1995), possibly because of zinc involvement in protec-
tion of thiol groups.

Zinc serves as a structural or catalytic cofactor for many proteins. It is a cofactor 
of a multitude of enzymes that regulate various metabolic activities in plants. The 
zinc proteins, of which over 300 are known, function as enzymes, transcription fac-
tors and regulatory proteins (Coleman 1992). The nature of binding sites in Zn2+-
ligand complexes determine activity of enzymes. The three Zn2+-ligand binding 
sites are structural, catalytic and co-catalytic (Auld 2001; Maret 2005). Four ligands, 
generally cysteine (Cys), forming a tertiary structure of high stability are observed 
in structural site, e.g. alcohol dehydrogenase and protein kinase. The catalytic func-
tion of Zn enzymes is determined by the catalytic sites in which histidine and Zn are 
complexed with water and S, N or O as donors as in carbonic anhydrase, carboxy-
peptidases, etc. In co-catalytic sites, besides His, two or three Zn2+ are also bridged 
by amino acid residues (aspartic acid or glutamic acid) and a water molecule 
(Broadley et al. 2007). Some important enzymes with Zn2+ cofactor and reactions 
catalysed by them are listed in Table 2.5.

Zinc is also involved in stabilizing the protein of the DNA-binding domains of 
regulatory proteins or transcription factors. The Zn-binding domains have been 
termed as ‘Zinc finger’ and are widespread in nature. The ‘Zinc fingers’ function in 
folding of subdomains of regulatory proteins enabling them to recognize and bind 
to specific DNA sequence, inducing gene expression (Coleman 1992). The term 
‘Zinc finger’ represents the sequence motifs in which Zn is coordinated between 
two cysteines and two histidines forming a compact nucleic acid-binding domain. 
Higher plants have about 30 C2H2 ‘Zinc finger’ proteins which have an important 
role in plant development such as leaf and lateral shoot initiation, flower develop-
ment, gametogenesis and seed formation (Colasanti et al. 1998; Luo et al. 1999; 
Takatsuji 1999). Some of the important ‘Zinc fingers’ have been listed in Table 2.6.

Zinc also plays an important role in maintaining the oxidative status of the plants 
by detoxification of ROS, which are potentially damaging to membranes and are 
catalysed by superoxide radical-generating NADPH oxidase (Bray and Bettger 
1990). Thus absence of zinc from biological membranes increases their oxidative 
damage. Zinc offers protection against cellular damage caused by over production 
of active oxygen species (AOS) (Cakmak 2000; Pandey et al. 2002). This is achieved 
by restricting overproduction of ROS and by their rapid detoxification. The former 
is caused by zinc inhibition of membrane-localized NADPH oxidase (Cakmak and 
Marschner 1988; Cakmak 2000), which catalyses production of superoxide ions. 
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The latter is caused by rapid dismutation of the superoxide ions to hydrogen perox-
ide by the chloroplastic superoxide dismutase (Cu-Zn SOD). If not effectively 
detoxified, the superoxide ions (O2

•–) are converted to even more toxic .OH ions 
through Haber-Weiss reaction. Photooxidative damage in zinc-deficient plants 
could also result due to impaired photosynthetic CO2 fixation. The inhibition of 
carbonic anhydrase (CA) activity in zinc-deficient plants leads to poor intercellular 
levels of CO2 due to which CO2 fixation is impaired. This accentuates photogenera-
tion of ROS leading to photooxidative damage of chloroplasts in zinc-deficient 
plants. The oxidative damage under zinc deficiency could also be enhanced by the 
decrease in activity of H2O2-scavenging enzymes CAT and APX (Cakmak and 
Marschner 1993; Pandey et al. 2002b, 2012; Pathak et al. 2005, 2009).

Zinc plays an important role in photosynthesis in higher plants (Salama et al. 
2006). Zinc deficiency effect on photosynthesis may involve changes in chloroplast 
structure, photosynthetic electron transport, CO2 fixation ability and photochemical 
membrane function (Salama et al. 2006). The ability of zinc to be readily incorpo-
rated in the organic complexes of the cells tends to be more abundant in the chloro-
plasts, which affects the photochemical capacity of PS II (Chen et al. 2008). This 
may also be due to CA, a zinc metalloenzyme, which exerts a buffering action by 
mediating pH changes in the stroma and, thus, prevents the chloroplast proteins 
from being denatured.

The plant hormone auxin (IAA) is essential for growth and development of organ 
primordial, from leaves to flower organs (Reinhardt et al. 2000). Zinc is essential for 
the synthesis of tryptophan the precursor of IAA (Alloway 2004; Nahed et al. 2007). 
Besides growth promotion, auxin is important for tropic movements like gravitrop-

Table 2.5 Some important Zn enzymes and their reactions

Enzyme Reaction catalysed

Alcohol dehydrogenase CH3CH2OH + NAD+ → CH3CHO + NADH+ + H+

Glutamate dehydrogenase L-Glutamate + NAD+ ←→ α-ketoglutarate + NH4 + NADH 
+ H+

Superoxide dismutase (Cu-Zn 
SOD)

2 O2
•– + 2H+ → H2O2 + O2

RNA polymerase Nucleoside triphosphate → pyrophosphate + RNA
Alkaline phosphatase Orthophosphoric monoester + H2O → alcohol + 

orthophosphate
Phospholipase Phophatidylcholine+H2O→ choline + phosphatidate
Carboxypeptidase A Peptidyl-L amino acid + H2O ←→ peptide + amino acid
Ribulose bisphosphate carboxylase D-Ribulose 1,5-biphosphate+CO2 → 

2,3- phospho-D-digylcerate
Fructose-bisphosphate aldolase Fructose-1,6-bisphosphate ←→ dihydroxyacetone PO4 + 

D-glyceraldehyde-3-PO4

Carbonic anhydrase H+ + HCO3
− → CO2 +H2O

Porphobilinogen synthase (ALA 
dehydratase)

2δ-Aminolevulenic acid ―→ porphobilinogen

Carbonic anhydrase H+ + HCO3
− → CO2 + H2O
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ism, root initiation, apical dominance, fruit development and abscission. The grow-
ing regions with high auxin levels also had high concentration of zinc (Haslett et al. 
(2001) indicating their requirement for regulation of meristematic growth (Oguchi 
et al. 2004).

Zinc is critical for reproductive development of plants. Inadequate supply of zinc 
affects different aspects of reproduction – flowering, floral development, anthesis, 
gametogenesis, fertilization and seed maturation (Pandey 2010a). Under zinc defi-

Table 2.6 Some important ‘Zinc finger’ proteins involved in plant development

Proteins Function Expression Plant species References

COP1 Seedling development Seedlings Arabidopsis Arnim and 
Deng (1993)

ZPT2-2, 
ZPT2-3

Floral recognition Petal and stamen Petunia Takatsuji et al. 
(1994)

ZPT2-1Z 
ZPT2-1PT2-1
SUPERMAN Cell division in floral 

organ
Stamen primordial Arabidopsis Sakai et al. 

(1995)
CONSTANS Promotes flowering Apical meristem Arabidopsis Putterill et al. 

(1995)
AtZFP1 Photomorphogenesis Shoot apex, apical 

meristem
Arabidopsis Tague et al. 

(1997)
ZPT3-1, 
ZPT3-2

Gametogenesis Tapetum, 
microspores, pollen 
and stomium

Petunia Kobayashi 
et al. (1998)

ZPT4-1, 
ZPT4-2

ZPT3-1, 
ZPT2-6

SERRATE Serrated leaf margins Shoot meristem Arabidopsis Prigge and 
Wagner (2001)

EMF2 Flowering Meristem Arabidopsis Yoshida et al. 
(2001)

TAZ1 Tapetum development Tapetum Petunia Kapoor et al. 
(2002)

RIE1 Seed development Embryo Arabidopsis Xu and Li 
(2003)

LIF Axillary bud Shoot branching Petunia Nakagawa 
et al. (2005)

MEZ1 Pollen meiosis Anther Petunia Kapoor and 
Takatsuji 
(2006)

ZOS Reproductive 
development

Panicle, seeds Oryza sativa Agarwal et al. 
(2007)

IMA Flower and ovule 
development

Floral meristem Solanum 
lycopersicum

Sicard et al. 
(2008)

ALSAP Salt and drought 
tolerance

Leaf glands Aeluropus 
littoralis

Saad et al. 
(2010)
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ciency, anther size and capacity to produce pollen are severely limited, and most 
pollen grains are sterile, which limits fertilization and seed setting. The pollen 
grains of zinc-deficient plants were found to be small in size and exhibited changes 
in the exine morphology which led to poor pollen viability (Sharma et al. 1990; 
Pandey et al. 1995, 2009). Besides aberrations in the pollen grain structure, zinc defi-
ciency also induces changes in size, morphology and exudations of the stigma 
which inhibit pollen-stigma interaction (Pandey et  al. 1995, 2006). The pollen 
receptive surface of the stigmatic head is reduced decreasing the area for pollen 
germination. A cuticle covers the stigmatic papillae due to which stigmatic exudates 
are not properly excreted leading to poor adhesion of the pollen grain, which pre-
vents pistil in providing an extracellular environment conducive to adhesion and 
intracellular growth of the pollen tube through the stylar tract, culminating in fertil-
ization. The rupture of cuticle requires activities of enzymes like cutinases and 
esterases (Dafni and Maues 1998; Hiscock et al. 2002), and the activity of these was 
found to be poorly expressed, whereas those of acid phosphatase which is inhibitory 
to pollen tube growth were found to enhance in stigma as well as pollen grains in 
zinc-deficient plants (Pandey et al. 2006, 2009, 2013). The involvement of zinc in 
reproductive biology has gained immense significance with zinc occurring as a con-
stituent of ‘Zinc  finger’ proteins. Several proteins that contain the TFIIIA-type 
‘Zinc finger’ have been assigned regulatory functions in plant reproduction (Kubo 
et al. 1998; Takatsuji 1999). Thus SUPERMAN, CONSTANS, FIL, TAZ1 and ZOS 
have been implicated in the developmental regulation of various floral organs (Ayre 
and Turgeon 2004; Kapoor and Takatsuji 2006; Agarwal et al. 2007).

2.4.1  Molybdenum

Molybdenum is a metal of the second transitional series. It has four oxidation states, 
of which the most stable is the hexavalent form Mo (VI). Easy convertibility of dif-
ferent oxidation states of molybdenum enables it to participate in redox reactions 
(Mendel 2007). Over 30 enzymes catalysing oxidation-reduction reactions contain 
a molybdenum cofactor (Hille 1996; Mendel and Hänsch 2002; Sauer and Frebort 
2003). The molybdenum cofactor (Moco) is in the form of a molybdopterin (MPT). 
The more important molybdenum enzymes of higher plants are listed in Table 2.7. 
The molybdenum enzymes also contain other cofactor(s), such as the Fe-S cluster, 

Table 2.7 Molybdenum enzymes in plants

Enzyme Reaction catalysed

Nitrate reductase NO3
−+ NAD(P)H + H+ ―→ NO2

− + NAD(P)+ + H2O
Xanthine dehydrogenase Xanthine + O2 + H2O ―→Uric acid + H2O2

Aldehyde oxidase Oxidation of aldehydes (e.g. abscisic aldehyde) to corresponding 
acids

Sulphite oxidase SO3
2− + H2O ―→ SO4

2−+ 2H
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heme and flavin (Bittner 2014). The molybdenum enzyme nitrate reductase has 
recently been shown to be a homodimer, each subunit containing three cofactors – a 
molybdenum cofactor (Moco), a β-type cytochrome (heme) and a flavin (FAD) – 
that are spatially arranged such that they form three distinct structural domains, 
each functioning as a separate redox centre catalysing a specific electron transport 
reaction (Campbell 1999).

As a constituent of prokaryotic nitrogenase, molybdenum is important for sym-
biotic N2 fixation in leguminous as well as some nonleguminous plants (Alnus glu-
tinosa). The nodulating leguminous plants have a higher requirement of molybdenum 
than the non-nodulating plants because the former require molybdenum both for 
root nodule development and growth of the host (Ishizuka 1982).

Molybdenum is a cofactor of assimilatory nitrate reductase, and this results in 
accumulation of nitrate in plants grown with nitrate nitrogen. This is associated with 
reduced levels of protein and total organic nitrogen. Plants grown with reduced 
(ammonical) form of nitrogen do not show such effects, and their molybdenum 
requirement is also low. Molybdenum is also involved in ureide metabolism. Under 
molybdenum deficiency, the root nodules of ureide type of legumes (soya bean, 
cowpea) show enhanced accumulation of xanthine. This is possibly caused by low 
activity of the molybdenum enzyme xanthine oxidase (Schwarz et al. 2009).

Molybdenum nutrition has a significant role in plant reproductive development 
and seed yield. Molybdenum-deficient plants of maize show reduction in cob size, 
failure of styles (silk) to protrude out of the husk and poor seed set. Development of 
tassels and size of pollen grains are severely retarded, and most pollen grains fail to 
germinate (Agarwala et al. 1979). Phenomenal increase in yield of melon (Cucumis 
melo L.), following molybdenum fertilization of acid soils, that are low in molybde-
num, suggests a role of molybdenum in pollen fertility. Molybdenum also effects 
seed development and vigour. Low molybdenum seeds have a low endosperm 
reserve and show qualitative change in seed proteins (Chatterjee and Nautiyal 
2001). Low molybdenum seeds show premature sprouting or vivipary which can be 
controlled by foliar application of molybdenum (Cairns and Kritzinger 1992). 
Possibly the deficiency response is related to ethylene production involving the 
molybdenum enzyme aldehyde oxidase.

2.4.2  Boron

Boron is a metalloid and exists in several different forms, the most important of 
which is boric acid (H3BO3). It forms complexes with hydroxyl radicals of com-
pounds having two closely situated −OH groups in cis configuration. Important 
amongst these are the o–diphenols and sugars. The property of boric acid to form 
strong complexes with cis-diol groups (apiose and fucose) forms the basis for main-
taining the structure of plant cell walls (Loomis and Durst 1992). Recent researches 
have provided evidence to show that boron forms covalent bonds with two mono-
meric rhamnogalacturonan II (RG-II) groups of the cell wall pectic polysaccharides 
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to produce a dimeric rhamnogalacturonan II–boron complex (O’Neill et al. 2004). 
The borate ions are bound to apiose residue of the two RG-II monomers through a 
diester bond and function as an ubiquitous carrier of boron in higher plant cell walls. 
Boron cross-linking of cell wall RG-II provides the cell walls with a structure capa-
ble of turgor-driven growths. Boron requirement for cross-linking of RG-II in cell 
walls is specific and cannot be substituted by germanium (Ishi et al. 1999), which is 
known to substitute for boron in some other functions. Deficiency of boron prevents 
internalization of boron in cell walls (Yu et al. 2002). Boron is also important for 
membrane function. Its deficiency induces changes in membrane potential and H+ 
extrusion (Blaser-Grill et al. 1989) resulting in impairment in membrane function 
(Cakmak and Romheld 1997; Pandey 2013; Archana et al. 2017).

The protection of the cell membranes from ROS may also stem from its role in 
maintaining the membrane structure (Cakmak and Romheld 1997). The role of 
boron in ROS-mediated cellular damage has been studied (Cakmak et  al. 1995; 
Pfeffer et al. 1998; El-Shintinawy 1999; Liu and Yang 2000; Pandey and Archana 
2013a, b; Archana and Pandey 2015a, b). Oxidative stress in plants maybe imposed 
by redox imbalance resulting from boron deficiency-induced changes in cell wall 
structure. Enhanced generation of toxic O2 species in boron-deficient tissues can be 
expected as a result of enhanced production of quinones. Quinones produced by 
oxidation of phenolics can undergo one electron reduction forming a semiquinone 
radical. Subsequent reoxidation of the radical produces the superoxide radical (O2

.−) 
and further toxic O2 species such as hydrogen peroxide (H2O2) and hydroxyl radical 
(OH.) (Appel 1993). In boron-deficient tissues, generation of toxic O2 species can 
also result directly from phenolics during their oxidation. For example, enzymatic 
oxidation of catechin by mushroom tyrosinase and potato phenolase produced both 
O2

− and H2O2 (Jiang and Miles 1993). Moreover, some polyphenols and quinones 
are known to be phototoxic and can be excited by light, producing toxic oxygen 
species such as singlet oxygen (1O2) and H2O2 (Bakker et al. 1983). Accumulation 
of phenolic compounds, particularly caffeic acid and quinones, which are highly 
reactive, leads to enhanced generation of the superoxide ions, which are known to 
cause peroxidative damage to cellular membranes. Cakmak and Romheld (1997) 
have described the changes in membrane structure and function under boron defi-
ciency to peroxidative damage resulting from enhanced accumulation of the reac-
tive phenolic compounds. Boron-deficient plants respond to  oxidative stress by 
changes in antioxidative components. Increase in activity of antioxidative enzymes 
SOD, CAT and POD as observed in Brassica seedlings by Pandey (2013) has also 
been corroborated in earlier studies in boron- deficient (Cakmak and Romheld 1997; 
Kobayashi and Matoh 2004) and toxic plants (Karabal et al. 2003; Cervilla et al. 
2007; Camacho-Cristóbal et al. 2008; Ardic et al. 2009; Archana and Pandey 2016). 
However recently Shah et  al. (2017) observed that SOD, POD, CAT and APX 
decreased in boron-deficient and excess plants.

Boron is involved in the metabolism of carbohydrates. It affects the activity of 
key enzymes of the oxidative phase of the pentose phosphate pathway (PPP), viz. 
glucse-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. Both 
the enzymes show enhanced activities under boron deficiency and contribute to 
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increased accumulation of phenolic compounds in boron-deficient plants (Pilbeam 
and Kirkby 1983). Low activities of phenolases in boron-deficient plants also con-
tribute to enhanced accumulation of phenolics. The phenolic compounds, particu-
larly caffeic acid and quinones, are highly reactive. Their excessive production 
enhances the generation of superoxide ions (O2

.−), causing peroxidative damage to 
cellular constituents. Boron involvement in ascorbate metabolism may also expose 
boron-deficient plants to oxidative injury. Boron enhances the activity of membrane- 
localized NADH oxidase (semidehydroascorbate reductase), which catalyses trans-
fer of electrons to ascorbate free radical (Barr et al. 1993). Decrease in activity of 
NADH oxidase in boron-deficient plants could decrease ascorbate concentration, 
causing a decrease in antioxidative capacity (Lukaszewski and Blevins 1996).

Boron is important for nodule development as well as nitrogen fixation by legu-
minous plants. Boron-deficient plants show decrease in both. The early stages in 
nitrogen fixation are particularly sensitive to boron deficiency (Yamagishi and 
Yamamoto 1994). In the ureide type of nodulating plants (soya bean, cowpea), 
boron deficiency causes enhanced accumulation of allantoate, possibly because of 
inhibition in the activity of allantoate amidohydrolase, which catalyses the oxida-
tive decarboxylation of allantoate.

Boron plays a significant role in plant reproduction. The boron deficiency has a 
more pronounced effect on reproductive yield than biomass production. The repro-
ductive parts of flowers – anthers, ovary and stigma – possess a relatively higher 
concentration of boron than in other plant parts and show aberrations when plants 
are not adequately supplied with boron (Rawson and Noppakoonwong 1996).

Male gametogenesis has been reported to be particularly sensitive to low boron 
supply (Rerkasem and Loneragan 1994). Deficiency of boron can result in plants 
being functionally male sterile especially in cereals (Garg et al. 1979). However 
infertile pistil has also been reported (Coetzer and Robbertse 1987). Several stud-
ies have shown an involvement of boron in microsporogenesis and male fertility 
(Zhang et  al. 1994; Rerkasem et  al. 1997; Huang et  al. 2000). In wheat under 
severe conditions of deficiency, anthers develop as small arrow-shaped structures 
largely devoid of cells in the anther locules and exhibit inhibition of floret fertility 
(Huang et al. 2000).

Anatomical investigation of pollen development in a boron-sensitive (SW41) 
and boron-insensitive (Sonora) wheat failed to detect any abnormality in pollen 
until after the uninucleate vacuolate stage, and pollen grains formed were sterile at 
anthesis (Rerkasem et al. 1997). The pollen grains in well-formed anthers appear 
empty, misshapen, shrivelled, or may be normal in shape but lack reserves of stor-
age materials such as starch. Robbertse et  al. (1990) reported that a gradient of 
boron  concentration along the style facilitated the growth of pollen tubes. Shen 
et al. (1994) observed that the rate of pollen tube elongation was inhibited in boron- 
deficient plants. Pollen grain viability is impaired by boron deficiency especially the 
growth of the pollen tube (Pandey and Gupta 2013). This was also observed in 
in vitro studies carried out in pollen from boron-deficient plants (Wang et al. 2003; 
Archana and Pandey 2015b). O’Neill et  al. (2004) reported that requirement of 

N. Pandey



79

boron for pollen germination is related to the role of boron in stabilizing the RG-II 
structure present in the pectic polysaccharides which form the tip of the germinating 
pollen tube.

The boron-deficient oilseed rape showed morphological aberrations in stigmatic 
papillae and developed abnormal embryo sacs (Möllers 2017). Enhanced accumula-
tion of phenolic compounds on the stigmatic surface due to boron deficiency inhib-
ited the pollen germination in stigma of Campsis grandiflora (Dhakre et al. 1994). 
Iwai et al. (2006) showed that NpGUT1 gene which encodes for glycosyltransferase 
involved in borate RG-II structure is expressed in the fertile reproductive structures. 
Another component of RG-II, 3-deoxy-D-manno-2-octulosonic acid (Kdo), is also 
required for pollen tube growth and elongation (Delmas et al. 2008). They observed 
that the Kdo-8-P synthase (AtkdsA2-V and AtkdsA2-S) gene expression produces 
effects similar to those induced by NpGUT1 expression and further reiterates that 
pollen germination is governed by the RGII in the cell wall. Recently an increase in 
boron levels has been reported to enhance the induction of embryos in Brassica 
napus (Mahasuk et al. 2017).

2.4.3  Chlorine

Chlorine is a halogen element having only one oxidation state. It occurs in plants as 
a free anion (Cl−) bound to exchange sites and as chlorinated organic compounds. 
Chlorine functions as a structural component of the manganese oxygen-evolving 
complex involved in charge accumulation and water oxidation by photosystem II 
(Merchant and Dreyfuss 1998). Another important function of chlorine in plants 
pertains to maintenance of turgor and osmoregulation. The osmoregulatory roles of 
chlorine include its involvement in turgor-driven growth of cells and stomatal func-
tioning. Chlorine accumulates in relatively high concentrations in root and shoot 
apices, where it functions in the turgor-induced extension growth of cells. Chlorine 
deprivation of maize plants leads to inhibition in root elongation. Rapid growth of 
stigma, following anthesis in Pennisetum americanum L., is attributed to extension 
growths of cells resulting from increase in turgor caused by rapid mobilization of K+ 
and Cl¯ from the neighbouring cells (Heslop-Harrison and Roger 1986). In a recent 
study, stomatal response to enhanced concentration of CO2 in fava bean leaves has 
been shown to be associated with enhanced flux of Cl¯ from guard cells into the 
neighbouring apoplasmic fluid (Hanstein and Felle 2002). Enhancement of Cl¯ flux 
is attributed to CO2-induced activation of anion channels of the guard cell plasma 
membranes. Other examples of chlorine involvement in turgor-driven responses 
include seismonastic movement of Mimosa pudica and circadian rhythms of 
Samanea saman leaf movements. Chlorine also regulates the activities of certain 
enzymes. It is known to activate asparagine synthetase, which catalyses the 
glutamate- dependent synthesis of asparagine (Rognes 1980).
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2.5  Conclusions

This article is based on the overview of available literature encompassing the physi-
ological and biochemical roles of the nutrients in plants. The manifestations of the 
roles are discussed more in the light of the deficiencies of these nutrients since these 
are universally more prevalent and affect the yield and agricultural production of the 
crops. The nutrients like nitrogen, phosphorus, calcium and boron are structurally 
more important for the plants, whereas the other nutrients resulting in impairment 
in are constituents/prosthetic groups of enzymes and thus affect the enzyme-cata-
lysed reactions of plant metabolism including macromolecule synthesis and bio-
chemical reactions therein. They also help in proper cellular redox state and 
homeostasis of the plant system.

The extent of yield losses in plants strongly depends on the availability of the 
nutrient and its interaction with the soil and environmental conditions. In the present 
context for higher productivity, studies on the uptake and translocation mechanism 
and specially the transporters would be helpful to maintain the homeostasis of nutri-
ents favourable for the yield. Several such studies on iron and zinc transporters have 
been fruitful, but more study is required. Research approaches involving protective 
mechanisms against environmental stress and molecular genetics and biotechno-
logical tools need to be further explored to study how plants cope with low nutrient 
levels. This is especially important to meet the food demand which is increasing 
every year. Besides, nutrient biofortification which is a technique to elevate micro-
nutrient levels and improve seedling vigour and yield is equally relevant. The 
genetic modification of crops to enhance nutrient fortification for human and animal 
nutrition welfare would be useful.
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Chapter 3
Foliar Application of Micronutrients 
in Mitigating Abiotic Stress in Crop Plants

Sibgha Noreen, Zartash Fatima, Shakeel Ahmad, Habib-ur-Rehman Athar, 
and Muhammad Ashraf

Abstract Balanced and precise crop nutrients application is a pre-requisite tool 
for meeting the second Sustainable Development Goals for achieving food security 
and improved human nutrition and to promote agriculture under stressful environ-
ments. Large increase in productivity cannot be attained without ensuring that 
plants are supplied with adequate and balanced mineral nutrients. Mineral fertil-
izers are an important basic resource for nearly half of the world’s crop production. 
The productivity of food, feed, fiber, and biofuel is ought to be paralleled with 
global population that is expected to reach nine billion before the middle of twenty-
first century. Among the nutrient management system, the foliar feeding provides 
a potential prospective option to meet the diversity of site- and crop-specific condi-
tions, irrigation water supplies, eco-edaphic factors and farm management, and 
also concurrent economic and environmental prospective. Taking trade-off into 
account, the foliar feeding of essential nutrients will accrue in mitigating the nega-
tive effects of abiotic stresses, with concurrent maximizing productivity. This tech-
nique is cost-effective and beneficial under stressful conditions. The plants well-fed 
with essential nutrients have greater tolerance capacity in response to abiotic 
stresses. Thereby foliar feeding of nutrients is also referred as climate-smart agri-
culture. The response of foliar feeding varies greatly due to crop species, growth 
stages, concentration of added nutrient solution, and the relative water content in 
the plant parts. The plant nutrients, their importance in crop production, and some 
insights into how to best manage them by foliar feeding method in response to 
abiotic stresses are discussed.
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3.1  Introduction

The greatest challenges for agriculture sector over the coming decades will be to 
meet the food demand of ten billion people by 2050 in a sustainable manner around 
the globe. These are estimates that food production has to be increased by 70% over 
the existing productivity of crops by the year 2030 (Headey and Fan 2010). The goal 
can be materialized by bringing more land under plough and/or to enhance produc-
tivity per unit cultivated area by adopting modern crop husbandry practices, particu-
larly adequate and balanced nutrition. In the recent times, the plant nutrition has 
been adopted as component of the 2030 Agenda for Sustainable Development, 
including 17 Sustainable Development Goals (SDGs) to offset the vagaries of envi-
ronmental footprints for sustainable food and feed production. The farmers are on 
the frontline, which face tremendous challenges to harvest potential crop yield 
(FAO 2017). The ultimate goal of nutrient management is to provide an adequate 
amount of essential nutrients for a crop throughout the growing season. The soils 
vary greatly in their ability to provide nutrients in sufficient amounts that needs to 
be supplemented with either through soil and/or foliar application. For the sustain-
ability of normal growth, health, and production of nutritious food and feed, plants 
require 17 essential nutrients out of total 92 natural elements in the plant system. 
Since the 1850s, mineral fertilizers have resulted in immense increase in agricul-
tural production both in quantity and quality of food and fodder. However, intensive 
cultivation and non-replenishment of mined nutrients have resorted to widespread 
deficiency of nutrients in the plants. Among the essential nutrients, the micronutri-
ents, viz., iron, manganese, zinc, copper, boron, molybdenum, chlorine, and nickel, 
are of equally important of micronutrients for mainstreaming functions of plant 
growth. Moreover, they cannot be substituted with other nutrients to perform spe-
cific physiological functions. The plants are always subjected to abiotic and biotic 
stresses throughout their lifespan. The abiotic stress causes substantial impact on 
the productivity of crops.

3.2  Abiotic Stresses

The growth and development of crop plants are affected to the greatest extent by 
virtue of abiotic stresses, i.e., high temperature, nutrient stress, radiation, heavy 
metal stress, drought, waterlogging, salinity, and environmental pollution (Table 3.1; 
Hasanuzzaman et  al. 2012, 2013a, b, 2017a, b, 2018). The compound effects of 
these factors may cause reduction in the productivity ranging from 51% to 82% 
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under different ecologies. Among these factors, temperature and drought produce 
profound effects on productivity than any other ones (Suzuki et al. 2014).

3.3  Stress Sensing in Plants

Plants contain practically 92 natural elements, but 17 elements have been recog-
nized as essential nutrients that are required for plant growth. Three of these, carbon 
(C), hydrogen (H), and oxygen (O), are used in the greatest quantities, which are 
provided by the air and water. Other than these, nitrogen (N), phosphorus (P), and 
potassium (K) nutrients are regarded as macronutrients which are used in large 
quantities. The sulfur (S), calcium (Ca) and magnesium (Mg) are secondary nutri-
ents which are no less necessary for plant growth than the macro-nutrients but are 
needed in somewhat small quantities. Concentration of these nutrients constitutes 
more than 0.1% of the total dry matter. The eight essential nutrients needed by 
plants in small amounts are called micronutrients, and these are iron (Fe), zinc (Zn), 
copper (Cu), manganese (Mn), molybdenum (Mo), chlorine (Cl), boron (B), and 
nickel (Ni). Generally, the concentration is found less than 0.01% of total dry weight 
(Table 3.2). The additional minerals, such as cobalt (Co), silicon (Si), aluminum 
(Al), sodium (Na), selenium (Si), iodine (I), and vanadium (V), have shown to be 
essential for certain plant species, but not required for all. The nonessential ele-
ments such as cadmium (Cd) and chromium (Cr) are detrimental to plant health 
(Jadhav et al. 2005).

The deficiency of micronutrients is called as “hidden hunger” and produces dras-
tic effects on plant growth and development. Visually, plants show restricted growth, 
appearance of chlorosis, interveinal necrosis, and defoliation of leaves. The range 
between deficiency and toxicity is narrow for micronutrients (Brady and Weil 1999; 
Table 3.3). The sufficiency level of boron is 10–200 ppm, while the toxicity symp-
toms range from 50 to 200 ppm. The plants show similar toxicity symptoms for Fe 
and Mn (Yruela 2005). The acute deficiency of micronutrients results in reduced 

Table 3.1 Economic yield loss due to different abiotic stresses

Stress Crop Growth stage
Yield reduction 
(%) References

Drought Maize Low 
reproduction

47–87 Edmeades et al. (1999)

Drought Rice Grain filling 30–60 Basnayake et al. (2006)
Salinity Tomato Maturity 2.0–7.2 Qaryouti et al. (2007)
Salinity Pearl 

millet
Maturity 15.1–60.1 Heidari and Jamshid 

(2010)
Heavy metal Maize Maturity 10 Guo et al. (2010)
Waterlogging Grapes Maturity 12.5–21.3 Zhou and Lin (1995)
UV stress Soybean Maturity 20 Teramura et al. (1990)
Heat stress Wheat Grains/ear 40 Ferris et al. (1998)
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seed germination (Ouzounidou et al. 1992), photosynthesis (Nussbaum et al. 1988), 
biosynthesis of chlorophyll (Munzuroglu and Geckil 2002), and inhibiting plant 
growth (Rehman and Iqbal 2007) and finally under extreme abiotic stress condition 
causes death of the plant (Sett 2017). The micronutrients are either mobile or immo-
bile in their characteristics in plant system. Micronutrients Mo and Mg are mobile, 

Table 3.2 Essential and beneficial mineral nutrients for plants

Category Nutrient Symbol
Primary form of 
uptake

Main form in 
soil reserves

Relative no. of 
atoms in plants

Macronutrient Nitrogen N Nitrate, NO3
−, 

ammonium, NH4
+

Organic matter 1 million

Phosphorus P Phosphate, HPO4
2−, 

H2PO4

Organic matter, 
minerals

60,000

Potassium K Potassium ion, K+ Minerals 250,000
Calcium Ca Calcium ion, Ca2+ Minerals 125,000
Magnesium Mg Magnesium ion, 

Mg2+

Minerals 80,000

Sulfur S Sulfate, SO4
2− Organic matter, 

minerals
30,000

Micronutrient Chlorine Cl Chloride, Cl− Minerals, 
rainfall

3000

Iron Fe Ferrous iron, Fe2+ Minerals 2000
Boron B Boric acid, H3BO3 Organic matter 2000
Manganese Mn Manganese ion, 

Mn2+

Minerals 1000

Zinc Zn Zinc ion, Zn2+ Minerals 300
Copper Cu Cupric ion, Cu2+ Organic matter, 

minerals
100

Molybdenum Mo Molybdate, MoO4
2− Organic matter, 

minerals
1

Nickel Ni Nickel ion, Ni2+ Minerals 1

Table 3.3 Location of nutrient deficiency symptoms on plants

Nutrient
Location of 
symptoms Chlorosis?

Leaf margin 
necrosis? Leaf color, shape

N All leaves Yes No Yellowing of leaves, leaf veins
P Older leaves No No Purplish patches
K Older leaves Yes Yes Yellow patches
Mg Older leaves Yes No Yellow patches (in oil palm) or 

interveinal chlorosis (in rice and 
maize)

S Young leaves Yes No Yellow patches
Mn, Fe Young leaves Yes No Interveinal chlorosis
B, Zn, 
Mo

Young leaves − − Deformed leaves
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and their deficiency appears on the older or lower leaves, while, Fe, Cu, Mn, Ni, and 
B are immobile, and their deficiency appears in younger upper leaves (Chapin 1980).

3.4  Strategies to Improve Tolerance

3.4.1  Nutrient Stress

The plant nutrient forms the basis for the livelihood of the plant. The deficiency and 
excessive quantities of nutrients are both detrimental for plant growth. Among nutri-
ents, nitrogen stress produces greatest impact on the continuity of plant growth 
(Drenovsky et al. 2012). The photosynthetic activity and seed yield of chickpea were 
increased by foliar spray of nitrogen at the onset of drought condition (Palta et al. 
2005). The tolerance was improved substantially with the foliar spray of potassium 
against various abiotic stresses (Ashraf et al. 2013). The deficiency of micronutrients 
mainstreams the physiology of plant species (Marschner 1995; Mengel et al. 2001). 
Boron deficiency reduces grain yield of wheat (Rerkasem and Jamjod 2004), chickpea 
(Johnson et al. 2005), and lentil (Srivastava et al. 2000), while the rice yield is affected 
substantially because of zinc deficiency (Wissuwa et al. 2006; Rehman et al. 2012).

The foliar spray of potassium not only enhances tolerance but also maintains 
osmotic potential, water uptake, and regulating stomatal closure (Waraich et  al. 
2011). It also facilitates in osmotic adjustment at lower water potential and thereby 
improves the ability of plants to tolerate drought conditions (Ashraf et  al. 2013). 
There are evidences that water uptake was improved by foliar spray of potassium 
under water stress and thereby resulted in maintaining turgidity and regulation of 
stomata (Waraich et al. 2011). The nutrient use efficiency and uptake of nutrients 
from the soil are affected by phosphorus supply. It works in conserving and transfer-
ring energy in the cell metabolism (Jin et  al. 2012). The drought stress could be 
lessened by foliar spray of zinc sulfate under drought conditions. The availability of 
added nutrients in the calcareous soils is very low and produces a little effect on the 
improvement of growth and development. Therefore, the foliar application of micro-
nutrients is highly effective in correcting nutrient deficiency (Kabir et al. 2014).

3.4.2  Salt Stress

The salinity stress is the potential limiting factor for sustainable crop production. 
The salts may decrease production ranging from 20% to 50% in most arable crops 
(Shrivastava and Kumar 2015). The salinity has encroached about 33% of the irri-
gated agricultural land in the world. Moreover, the salinization of land is in order of 
10% per annum because of low precipitation, higher evaporation, saline irrigation 
water, and poor agronomic practices (Jamil et al. 2011). The salinity affects germi-
nation, vegetative and reproductive growth, ionic toxicity, osmotic stress, and 
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nutrient imbalance in the plant system (Bano and Fatima 2009; Hussain et al. 2018). 
The salinity produces negative effects on photosynthetic process (Netondo et  al. 
2004) and reproductive development (Munns and Rawson 1999; Table 3.4). Salt 
stress causes negative effects on metabolic processes, i.e., nutrient uptake, photo-
synthesis process, and synthesis of protein and nucleic acids. The adverse effects 
are manifested by low osmotic potential of soil solution, nutrition imbalance, and 
higher concentration of nutrients in the rhizospheres and ultimately reduce uptake 
of nutrients by plants (Ashraf 2001). Under saline condition, the plants experience 
deficiency of micronutrients, because of lower solubility of ions and thereby their 
lowered uptake by plants (Marshcner and Romheld 1994).

The occurrence of salt-induced changes in plant system could be ameliorated by 
foliar application of nutrients (Noaman et al. 2004). The reason being that exoge-
nously applied nutrients are easily available to plants compared to soil applied and, 
moreover, are not fixed or diluted in the large volume of soil (Baloch et al. 2008). 
The foliar application of micronutrients results in enhanced uptake of macro- and 
micronutrients from the rhizospheres because of proliferation of root growth 
(Abdalla and Abdel-Fattah 2000).

3.4.3  Waterlogging

The plants are confronted with transient or permanent waterlogging in their lifes-
pan. Various physiochemical processes, e.g., hypoxia, and osmotic stress hamper 
plant growth and root inhibition. The plants under waterlogged condition accumu-
late ethanol, which produces negative effects in various processes (Hasanuzzaman 
et al. 2017a). The lack of oxygen and deficiency of micronutrients causes reduction 
in the growth and development (Ashraf 2012).

3.4.4  Drought

The establishment of seedling and poor crop stand is affected due to water stress 
(Kaya et al. 2006). Under severe water stress, various physiological, biochemical, 
and morphological events are disrupted (Nonami 1998; Hasanuzzaman et al. 2017b; 
Tables 3.5 and 3.6). The drought reduces productivity of crops and stomatal closure 
and reduces respiration, uptake of nutrients, overproduction of reactive oxygen spe-
cies, deterioration of cell membranes (Foyer and Noctor 2003; Ullah et al. 2017), 
and alteration in partitioning of assimilates among different organs. The combined 
effects of salinity and drought cause oxidative stress, due to restricted nutrient 
uptake from the medium (Fahad et al. 2015). The crop fed with adequate amount of 
nutrients has greater ability to tolerate drought stress (Osakabe et al. 2014).
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Table 3.4 Foliar application of micronutrient on crops facing salt stress

Foliar application of 
micronutrients Crop Affected parameters References

Zn, Fe Sweet 
basil

Increased biomass, plant height, 
essential oil

Said-Al Ahl and 
Mahmoud 
(2010)

Fe, Zn, Mn Wheat Increased growth, nutrient uptake El-Fouly et al. 
(2011)

Fe, Mn, Zn Tomato Increased growth, nutrient uptake El-Fouly et al. 
(2002)

Mn Barley Increased growth, net photosynthetic 
rate

Cramer and 
Nowak (1992)

Se Eggplant Increased growth, yield, N P K level Abul-Soud and 
Abd-Elrahman 
(2016)

Se Canola Increased yield, photosynthetic 
pigment content, improved the 
quality of canola oil

Hashem et al. 
(2013)

Se Lemon 
balm

Increased growth, photosynthesis, 
amino acid, peroxidase, glutathione 
peroxidase

Habibi and 
Sarvary (2015)

Se, Si Canola Increased chlorophyll, MDA, 
proline, anioxidents, RWC, 
photosynthesis, oil percentage

Bybordi (2016)

Zn Rice Increased photosynthetic rate, 
transpiration rate, stomatal 
conductance, water use efficiency, 
total soluble protein, amino acid

Ashraf et al. 
(2014)

B. Mn Sunflower Increased growth, yield Jabeen and 
Ahmad (2011)

Ca (NO3)2. 4H2O (25%), 
K2HPO4.12H2O (21%), 
MnSO4.4H2O (18%)

Rice Increased water potential, osmotic 
potential, K+/Na+ ratio, leaf area, dry 
matter, growth stage, yield (18%)

Sultana et al. 
(2001)

KOH Sunflower Increased biomass, K+/Na+ ratio, 
yield (7%)

Akram et al. 
(2007)

Ca (NO3)2. 4H2O (25%) Cowpea Increased plant growth, ion uptake, 
chlorophyll fluorescence

Murillo- 
Amador et al. 
(2006)

Ca (NO3)2. 4H2O (25%) Strawberry Increased biomass, chlorophyll 
content, yield (11%)

Kaya et al. 
(2002)

B Canola Increased straw and seed yield 
increased by 37%

Abid et al. 
(2014)

B Rice More number of tillers/plant, high 
yield

Mahmood et al. 
(2009)

Zn Maize Increased crop yield, 100-grain 
weight

Chaab et al. 
(2011)
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Table 3.5 Impact of drought stress on various physiological parameters

Physiological 
responses Biochemical responses Molecular response

Recognition of root 
signals

Transient decrease in 
photochemical efficiency

Stress-responsive gene expression

Loss of turgor and 
osmotic adjustment

Decreased efficiency of Rubisco Increased expression in ABA 
biosynthetic genes

Reduced leaf water 
potential

Accumulation of stress metabolites 
like MDHA, glutathione, Pro, 
Glybet, polyamines, and 
α-tocopherol

Expression of ABA-responsive 
genes

Decrease in stomatal 
conductance to CO2

Synthesis of specific proteins like 
LEA (late embryogenesis abundant 
proteins), DSP (desmoplakin), 
dehydrins

Reduced internal 
CO2 concentration

Increase in antioxidative enzymes 
like, SOD, CAT, APX, POD, GR, 
and MDHARDecline in net 

photosynthesis
Reduced growth 
rates

Reduced ROS accumulation Drought stress tolerance

Table 3.6 Foliar application of micronutrient on crops facing drought stress

Foliar application 
of micronutrients Crop Affected parameters References

Fe + Zn + Mn Sunflower Increased proline concentration, 
carbohydrates

Babaeian et al. (2011)

Fe Wheat Increased height of plants, RWC, 
proline, protein

Jalilvand et al. (2014)

Se Wheat RWC, leaf area Teimouri et al. (2014)
Zn. B. Mn Wheat Increased grain yield Karim et al. (2012)
Fe, Zn, Cu Sunflower Increased plant height, chlorophyll, 

seed diameter
Rahimizadeh et al. 
(2010)

Se Wheat Increased turgid pressure, 
transpiration rate, total soluble 
sugar, free amino acid, and 
antioxidant activity

Nawaz et al. (2015)

Zn Soybean Increased biomass, improved K, Ca, 
and Cu

Weisany et al. (2014)

ZnO, B2O3, CuO Soybean 
and 
cucumber

Increased biomass, improved N, P, 
Zn

Dimkpa et al. (2017)

Zn, Fe, Mn Soybean Increased oil, protein, grain weight Kobraee et al. (2014)
Fe Fennel Increased chlorophyll “a” and b,” 

relative water content, water 
potential (ψw), carotenoids, 
ascorbate peroxidase, seed yield, 
and plant dry mass

Mirjahanmardi and 
Ehsanzadeh (2016)

K Wheat Increased plant height, spike length, 
yield (21%)

Aown et al. (2012)

(continued)
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3.4.5  Ultraviolet Radiation

The plants are exposed to UV light, UV-C, (200–280 nm), UV-B (280–320 nm), and 
UV-A (320–400 nm), while UV-C radiation produces profound negative effects on 
growth and development. Among these, UV-B, being 1.5% of the total radiation, 
impacts greatly than any other forms of radiation. The severe radiation targets DNA, 
lipids, protein, and photosynthesis (Hollósy 2002). The sensitive crop species are 
more prone to obnoxious effects of UV radiation (Zlatev et al. 2012).

3.4.6  Heat Stress

The heat stress in plants is manifested with sudden rise of temperature by 5–7 °C 
in the surrounding environment (Table  3.7). The prolonged prevalence of tem-
perature causes abnormalities in the physiological and biochemical processes, 
which lead to the reduced growth and development (Kelly et  al. 2010; 
Hasanuzzaman et  al. 2013c). Photosynthetic rate is affected severely, which 
affects in reduction in sink duration and development of shriveled and less grain 
weight (Shpiler and Blum 1990).

Foliar application 
of micronutrients Crop Affected parameters References

Fe + Zn + Mn Sunflower Increased proline concentration, 
carbohydrates, yield (5.5%)

Babaeian et al. (2011)

F2 Wheat Increased height of plants, RWC, 
proline, protein

Jalilvand et al. (2014)

Se Wheat RWC, leaf area, yield (29%) Teimouri et al. (2014)
N+P+K Wheat Increased yield components, grains/

spike, 7% increased grain weight
Shabbir et al. (2016)

K Wheat Enhanced grain yield, number of 
tillers 1000-grain weight

Mehdi et al. (2001), 
Evans and Riedell 
(2006), and Aown et al. 
(2012)

Zn Mung bean Increased pod/plant, number of 
seeds/pod, seed dry weight

Thalooth et al. (2006)

N+P+K Wheat Yield components, grains/spike, 7% 
increased grain weight

Shabbir et al. (2016)

N+P+K Sorghum Increased yield by 122% Waraich et al. (2011)

Table 3.6 (continued)
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3.4.7  Heavy Metal Stress

Heavy metal stress causes substantial downscaling of physiological and biochemi-
cal processes (Da-Lin et al. 2011). The plants are unable to express their full genetic 
potential due to the toxicity of heavy metals (Yadav 2010; Ghosh and Singh 2005; 
Speir et al. 2003; Hasanuzzaman and Fujita 2012). The heavy metals (cobalt, cop-
per, nickel, cadmium, chromium, zinc) coming from industrial effluents and spill-
age of petroleum products during their transportation are affecting productivity of 
agricultural land (Modi et al. 2013).

3.5  Role of Micronutrients

The micronutrients play a key role in analogous to macronutrients in mainstreaming 
normal functioning of plant processes. The crop fertilized with micronutrients along 
with macronutrients has greater ability to address environmental stresses (Tables 
3.8 and 3.9).

3.5.1  Iron

Iron (Fe) in the soil is reduced to Fe2+ before it is taken up by the plant and is trans-
located in the form of ferric citrate. Its uptake is significantly affected by the pres-
ence of Mn2+, Cu2+, Ca2+, Mg2+, K+, and Zn2+. The iron element having an ability to 
undergo a valence change is tended to form the chelate complexes. It is involved in 

Table 3.7 Foliar application of micronutrient on crops facing temperature stress

Foliar application  
of micronutrients Crop Affected parameters References

Zn, Mn Maize Increased antioxidants Bradáčová et al. 
(2016)

Se Wheat Increased yield, photosynthetic pigments, 
antioxidants

Iqbal et al. (2015)

Se Wheat Increased biomass, chlorophyll, 
antioxidants

Chu et al. (2010)

Se Sorghum Increased growth, proline, ascorbic acid, 
enzymes

Abbas (2012)

Se Sorghum Increased photosynthesis, grain yield, 
antioxidants

Djanaguiraman 
et al. (2010)

Mo Wheat Increased superoxide dismutase (SOD), 
catalase (CAT), peroxidase (POD), and 
ascorbate peroxidase (APX)

Songwei et al. 
(2014)

Zn, Fe Wheat Increased seed yield and quality Habib (2009)
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Table 3.8 Foliar application of micronutrient on crops facing heavy metal stress

Foliar application 
of micronutrients Crop Affected parameters References

Si Rice Increased growth, Mg, Fe, and Zn nutrition, 
and the contents of chlorophyll “a” 
malondialdehyde (MDA)

Wang et al. 
(2015)

SOD, peroxidase (POD), catalase (CAT), and a 
lower GSH

Si Rice Increased endogenous phytohormones, ATPase Kim et al. (2014)
Si Maize Increased biomass and xylem diameter, 

mesophyll and epidermis thickness, and 
transversal area occupied by collenchyma and 
midvein

da Cunha and do 
Nascimento 
(2009)

Table 3.9 Micronutrients essential for plant growth and some of their sources and characteristics

Micronutrient
Sources for corrective 
action Management functionality Reference

Fe Usually applied as a foliar 
spray in the form of 
chelates such as Fe-EDTA 
(9% Fe) or Fe-EDDHA 
(6% Fe)

For soil application, Fe-EDDHA has 
the advantage that it is more stable in 
neutral soils

Habib 
(2009)

Mn Deficiency occurs mainly 
in slightly acidic to neutral 
soils. Both Mn sulfate 
(24–32% Mn) and 
Mn-EDTA (13% Mn) are 
water-soluble and 
quick-acting and are 
suitable for foliar or soil 
application

Mn oxides may be used as a means of 
increasing the reserves. Indirect 
improvement of the soil supply may be 
achieved using acidifying additives

Cramer 
and Nowak 
(1992)

Cu Deficiency may most 
easily be corrected for a 
longer period by soil 
application as Cu sulfate 
or oxides, etc.

Chelates and neutralized Cu sulfate 
(25% Cu) are suitable for foliar 
spraying of deficient crops

Dimkpa 
et al. 
(2017)

Zn Usually applied to 
deficient crops as a foliar 
spray of Zn sulfate (e.g., 
23% Zn) or Zn chelate 
(e.g., Zn-EDTA)

High levels of P in the soil may result 
in reduced availability of Zn

Thalooth 
et al. 
(2006)

Cl Usually found in the soil 
as the chloride ion (Cl−). 
Most commonly, it is 
applied with K in potash 
fertilizer (KCl) or with 
other salts

It is easily leached in drainage water Liu et al. 
(2003)

(continued)
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heme enzyme system which includes catalase, peroxidase, and cytochrome oxidase. 
The concentration varies from 20 to 600 ppm, and adequate amount is 100 ppm. In 
the redox system, it helps in photosynthesis, nitrate and sulfate reduction, and 
nitrogen assimilation. Iron in combination with molybdenum helps the plant to fix 
atmospheric nitrogen (Malvi 2011).

3.5.2  Manganese

Manganese (Mn) occurs in the form of Mn2+ and other easily reducible forms. Its 
availability in soil is affected by oxidation-reduction reactions, decarboxylation, 
and hydrolyte reactions. Its uptake by plant is metabolically mediated in the form of 
Mn2+. Manganese is immobile element and is not translocated from one organ to 
another in the plants. The range of concentration is 10–600 ppm, and 50 ppm is 
considered as an adequate level. Manganese is involved in redox reaction with pho-
tosynthetic electron transport system. The chloroplast is greatly affected by Mn2+ 
deficiency, thereby results in interveinal chlorosis and retardation of growth. It helps 
in preventing lodging and disease tolerance (Jacobsen and Jasper 1991; Rae et al. 
1991; Mengel et al. 2001; Weisany et al. 2013).

Table 3.9 (continued)

Micronutrient
Sources for corrective 
action Management functionality Reference

B As a prophylactic 
treatment for crops with 
high demands, soil 
application of borax (11% 
or 22% B) is advisable

Needs vary widely, the rate depending 
on the crop (0.5–2.0 kg/ha B); risk of a 
damaging surplus affecting a 
succeeding crop with a low 
requirement. A better distribution can 
be obtained by incorporating the boron 
in phosphate or multi-nutrient 
fertilizers. Polyborates seem to be 
superior to borax for foliar application 
(at about 1 kg/ha)

Jabeen and 
Ahmad 
(2011)

Ni Nickel was confirmed as 
an essential plant nutrient 
in 1987

One of its essential functions is in the 
urease reaction in soil N nutrition. It is 
thought to be important to grain 
development and maturation and in the 
movement of Fe into plant cells and is 
a factor in grain quality

Liu et al. 
(2003)

Co Cobalt has recently been 
considered for addition as 
the 18th essential nutrient 
for plants, but has not been 
“officially” recognized. 
For now, it is considered 
beneficial, but not essential

Cobalt is necessary for nitrogen (N) 
fixation occurring within the nodules 
of legume plants. In N-fixing bacteria, 
Co is a vital component needed to 
synthesize vitamin B12, which is 
necessary to form hemoglobin, which 
is directly related to successful N 
fixation in legume root nodules

Liu et al. 
(2003)
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3.5.3  Copper

The concentration of Cu2+ ranges from 2 to 50 ppm in plants, and its uptake is in the 
form of Cu2+ from soil solution. The optimum level is 6 ppm, while its uptake is 
inhibited in the presence of Zn2+element. It is involved in nitrogen, protein and hor-
mone metabolism, photosynthesis, respiration, pollen formation, and fertilization. It 
participates in oxidation-reduction reaction, due to its valency change characteris-
tic. Copper is a cofactor in protein and enzyme system (Yurekli and Porgali 2006; 
Shar et al. 2011). Deficiency causes chlorosis in younger leaves, stunted growth and 
delayed maturity, melanosis, and even fungal attack (Solberg et al. 1999). The pro-
duction of cereal is greatly affected as a result of severe copper deficiency.

3.5.4  Nickel

Nickel (Ni) is an essential element for plant growth. Its value ranges from 0.05 to 
5 ppm, while its requirement is less than 0.05 ppm. It is involved in seven enzymes, 
i.e., glyoxalases, peptide deformylases, Methyl-coA reductase, superoxide dis-
mutase, hydrogenases, and ureases. Nickel works as cofactor to convert urea into 
ammonia ion, which is used as a source of nitrogen by plants. It is accumulated in 
plant organs and tissues (Liu et al. 2003; Zhu et al. 2014).

3.5.5  Molybdenum

Molybdenum (Mo) is absorbed by plants in the form of MoO4
2− ion from soil solu-

tion; however, its uptake is reduced in the presence of sulfate ions. The concentration 
in plants varies from 0.10 to 10 ppm and optimum range is 0.10 ppm. It is translocated 
in the plant as molybdenum-sulfur amino acid complexes along with polyhydroxy 
compound. Its concentration is usually less than 10 ppm dry matter. The molybdenum 
enzymes including nitrogenase, nitrate reductase, xanthine dehydrogenase, aldehyde 
oxidase, and sulfate oxidase are activated by this element. It also works in nitrogen 
(N2) fixation, nitrate reduction, and transport of nitrogen in plants. The nitrogen 
fixation in legumes is hampered due to deficiency of Mo (Yohe et al. 2016). The 
deficiency symptoms include pale leaves and scorched, cupped, or rossetted leaves.

3.5.6  Zinc

The amount of zinc (Zn) is generally 100 ppm in plant dry matter. Its uptake occurs 
in the form of Zn2+. It is a constituent of more than 70 metabolic enzymes. It works 
in biochemical processes such as cytochrome, nucleotide synthesis, auxin, 

3 Foliar Application of Micronutrients in Mitigating Abiotic Stress in Crop Plants



108

metabolism, and maintenance of membranes. The carbonic anhydrase enzyme is 
activated by Zn2+ ion. The enzymes such as alcohol dehydrogenase, oxidoreduc-
tases, hydrolases, transferases, isomerase, lyases, and ligases also regulated in the 
presence of Zn2+. The application of zinc mitigated the negative effects of salt stress 
due to inhibition and uptake of Na+ and/or Cl− from the soil. The grain yield of 
wheat was improved by 16% through foliar feeding of zinc (Yruela 2009).

3.5.7  Boron

Boron (B) is present in an undissociated form in the soil solution and is taken up by 
plant in the form of H3BO3 and B(OH)3. The amount of boron is generally 0.2–
800 ppm and requirement is 20 ppm. It is relatively immobile in plants and is not 
component of other enzymes. Boron is involved in nucleic acid, protein and RNA 
metabolism, photosynthesis, and cell membrane stability. Deficiency of boron 
affects meristematic growth. It works in cell division, flowering, pollen germina-
tion, salt absorption, and water relations. The presence of B improves the uptake of 
K by plants (Malvi 2011). Its deficiency causes infertility, smalling of leaves, and 
poor yield (Davis et al. 2003). In the absence of boron, there are no fertilization and 
production of seed in some crop plants. Zinc, copper, and boron are involved in 
synthesizing of lignin, which is used to strengthen cell walls of biological mem-
branes (Osakabe et al. 2014).

3.5.8  Chlorine

Chlorine is absorbed in a large quantity in the form of Cl− from the soil solution. Its 
uptake is metabolically controlled and sensitive to temperature and metabolic inhib-
itors. It is cofactor in oxygen-evolving enzymes concerned with photosystem II. It 
affects photosynthesis through stomatal regulation. Chlorine maintains cytoplasm 
at higher pH in the vacuole. It has the ability to fulfill osmotic and cation neutraliza-
tion roles.

3.6  Foliar Feeding of Nutrients

Foliar feeding is being adapted as a regular farm management practices for increased 
growth and yield (Fernandez and Eichert 2009). There are evidences that yield 
potential and growth of crops could be improved to a greater proportion through 
foliar feeding of micronutrients in crops showing deficiency of nutrients (Rehm and 
Albert 2006). Foliar sprays of ferrous sulfate or chelates were found highly effica-
cious in correcting Fe chlorosis in wheat crop. There are estimates that 30% of 
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world’s cultivated soil is deficient in iron nutrient (Cakmak 2002). The total amount 
of Fe is much higher than its requirement by crop, but solubility in the form of its 
ferric citrate for uptake of plants is very low (Chen and Barak 1982). Under such 
edaphic conditions, it would be valuable to spray iron through foliage. The exoge-
nous applied iron has been found useful in salt tolerance to sunflower and maize 
(Ebrahimian et  al. 2010), increased concentration of iron in rice grain (Jin et  al. 
2008), and leaf chlorophyll in peach (Prunus persica L.). Foliar fertilization would 
prove efficient in crop having higher leaf area index for its quick absorption within 
a short time. Therefore, its efficacy can be increased by spraying more than once 
(Fageria et  al. 2009). The foliar feeding of nitrogen, phosphorus, and potassium 
improves the waterlogging tolerance in rapeseed (Ashraf et al. 2011a, b).

3.7  Limitation in Quantity of Micronutrient Used for Foliar 
Application

The deficiency of micronutrients is corrected either through soil or foliar applica-
tion. The rationale for the use of foliar fertilizer includes (a) the availability of soil 
applied nutrient is limited, (b) having loss of soil applied nutrients, and (c) environ-
mental conditions limiting application through soil medium. Under these condi-
tions, the decision for foliar application is determined by the magnitude of financial 
risk and gathering the yield target (Fernandez and Brown 2013). However, foliar 
application is considered with regard to performance of mineral elements, their 
rates of absorption, and mobility within plant organs (Fernandez and Brown 2013). 
For example, boron has equivalence to urea absorption but has limited translocation 
within the plant (Will et al. 2011). The translocation of boron is also limited in hor-
ticultural crops, and absorption is localized (Brown and Shelp 1997) while it is 
generally absorbed in cereal crops (Kutman et al. 2012). The foliar feeding of crop 
is being practiced extensively due to presence of high soil pH, salinity, and calcar-
eousness of soils (Zhao et al. 2014). Recently, nanoparticles containing micronutri-
ents are being effectively used for foliar application, which are cost-effective, and to 
avoid environmental pollution (Kumar et al. 2013) (Table 3.10). The size of nanopar-
ticles is less than 100 nm; thereby, its decreased size results increased specific area 
of nutrients. The dissolution rate of low-solubility chemicals, e.g., zinc oxide, is 
increased (Alloway 2009).

3.8  Conclusion

The plant species always remain at war with the environmental conditions to com-
plete their lifespan. The environmental vagaries include abiotic stress (temperature, 
heat, drought, mineral stress, heavy metals) and biotic stresses (diseases and insect 
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pests). Among these stresses, the nutrient stress produces far greater impact on the 
growth and development of crop plants. The plants facing severe nutrient deficiency 
are highly prone to climate change and thereby cannot exploit their yield potential 
to their greatest proportion. The deficiencies of nutrient are being corrected through 
soil and/or foliar application during the active plant growth. The foliar spray is 
becoming common in most of the crops, where environmental conditions do not 
allow the farmers to apply fertilizers through soil medium.

The foliar spray is cost-effective and provides immediate remedial measures to 
correct the deficiency during certain growth stage. Thereby, the farmers could fetch 
greater harvest through foliar application of micronutrients, i.e., increased produc-
tivity from 10% to 20% across different horticultural and arable crops.
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Chapter 4
Biofortification of Plant Nutrients: Present 
Scenario

Sonal Dixit, Rajni Shukla, and Yogesh Kumar Sharma

Abstract A huge portion of global population is facing nutrient deficiency; particu-
larly peoples of developing countries are the foremost sufferers. Although much 
development has been made till now, the problem of malnutrition seems to be unset-
tled. Recent estimates suggested that this problem will become more pronounced in 
the upcoming years. Unfortunately all of our key edible crops are deficient of certain 
vital micronutrients and vitamins which are crucial for normal growth, such as milled 
cereal grains which are deprived of lysine, vitamin A, folic acid, iron, zinc and sele-
nium. Several strategies are there to enhance the quality and quantity of edible crops; 
among them biofortification seems to be an emerging tool to solve this malnutrition 
problem by elevating the concentration of bioavailable vitamins and nutrients. 
Biofortification is a cost-effective technique as there is only single time investment in 
research; it improves nutritional status of those crops which lack sufficient quantity 
of nutrients and is sustainable also because seeds and proliferation materials can be 
stored for long time. This approach owns great promise in achieving improved nutri-
tional status of peoples and should carry on to be explored. The main focus of present 
chapter is to give a broad outlook of causes and solutions for micronutrient malnutri-
tion in the world and also to discuss the current information, developments and future 
potential of biofortification for improvement of major edible crops.

Keywords Biofortification · Edible crops · Malnutrition · Micronutrients · 
Nutrient deficiency

4.1  Introduction

The nutrients which are the core substance for our body growth ultimately come 
from plants in the human diet. Foods provide calories for energy, in addition to 
which humans entail more than 40 nutrients and 20 minerals from daily food to 
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keep themselves hale and hearty. Unfortunately, our meals are usually deficit of 
ample amount of these vital nutrients, which often give rise to under nutrition also 
termed as micronutrient malnutrition (Dutta et al. 2014). In developing countries 
like India, millions of people experience this insidious type of starvation of micro-
nutrient malnutrition. Malnutrition is the most important reason of more than three 
million demises each year in the world. India is leading in having the largest number 
of malnourished people found in any single country. India, with a population of 
more than a billion, has about 48 million malnourished people (UNICEF 2009). 
Recent data from UNICEF shows that despite significant progress, about 42.5 mil-
lion under 5 years are under weight. In India, malnutrition has been recognised as 
the major reason behind slow down progress in human development, and it also 
hampers the reduction in infant mortality (Measham et al. 1999).

This problem of malnutrition can be cured by enhancing the plant nutritional 
quantity and quality both. Plants can provide us these vital nutrients, and they obtain 
these from the soil or their growing medium. The study which deals with the chemi-
cal elements and compounds which are essential for the nourishment of plant, 
growth of plant, their metabolism and their external supply is known as plant nutri-
tion. Besides carbon dioxide, water and oxygen, plants also need about 14 minerals 
for their sufficient growth. The list consists of macronutrients, calcium (Ca), mag-
nesium (Mg), nitrogen (N), phosphorus (P), potassium (K) and sulphur (S), and the 
micronutrients, boron (B), chlorine (Cl), copper (Cu), iron (Fe), manganese (Mn), 
molybdenum (Mo), nickel (Ni) and zinc (Zn). Plant growth and crop yield were 
often affected by deficiency or low phytoavailability of any of these essential ele-
ments (Marschner 1995; Mengel et  al. 2001). Enhancement and fortification of 
foodstuff have been used since decades, for instance, vitamin D added to milk or 
iodine to salt. Fortified food manufacturing is a long-term strategy that involves 
high costs to develop and test these food products before launching them in the 
market. Therefore they are very expensive and unaffordable to the majority of 
population.

Nowadays, scientists are very successfully using process of biofortification for 
enhancing plant’s nutritional properties. Unlike conventional fortifications which 
involve the purchase of commercial food, biofortification of plant nutrients offers 
customers the ability to produce higher-nutrient foods. This is a relatively new con-
cept, using multiple techniques to increase the nutrient content of edible food. Using 
certain techniques (genetical, breeding, biotechnological, physiological, agronomic, 
etc.), the plant traits are modified, or the absorption of nutrients from the soil and 
their accumulation in fruits or seeds (edible parts) are increased, and once these 
crop varieties are stabilised with these traits, they may be released. Hence, contin-
ued investment will no longer be required, and huge number of persons will be 
benefited from enhanced nutrition in agriculture products. Biofortification plays 
very vital role in improving nutrient value of staple food, which reduce the inci-
dence of heart disease, anaemia, blindness, early mortality, etc.
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4.2  Essential Micronutrients and Consequences of Their 
Deficiency

4.2.1  Iron

Iron is a vital nutrient for plants as well as humans. More than one-third of the 
world’s population is suffering from anaemia, due to the deficiency of iron in human 
body (ACC/SCN 2000; Stoltzfus 2001; Tables 4.1 and 4.2); half of these cases are 
caused by dietary deficiency of iron (WHO 2001). Other than anaemia, deficiency 
of iron also adversely affects cognitive development, immune system, working 
capacity, efficiency and lot of problems in pregnant lady (Mayer et al. 2008).

4.2.2  Vitamin A

Vitamin A plays a very significant role in maintenance of vision of eyes, immune 
response, cell and bone growth, reproduction, development of embryo and adult 
gene regulation. Night blindness is a very common disease that occurs due to 

Table 4.1 Consequences of micronutrient deficiency

Deficient 
micronutrient

Occurrence in 
developing 
country

Most affected 
groups Consequences

Iron 2 billion All but mainly 
women and 
children

Reduced cognitive ability, childbirth 
complications, reduced physical capacity 
and productivity

Vitamin A 250 million Children and 
pregnant 
women

Increased child and maternal mortality, 
blindness

Zinc 1.5–2 billion Women and 
children

Illness from infectious diseases, poor 
child growth, pregnancy and childbirth 
complications, reduced birth weight

Source: ACC/SCN (2000)

Table 4.2 Nutritional quality for mega-staple crops

Nutrient Maize Rice Wheat

Calcium (Ca) (mg/100 g) 6 1 34
Iron (Fe) (mg/100 g) 3.45 1.46 3.88
Vitamin A (mg/100 g) 0 0 0
Vitamin C (mg/100 g) 0 0 0
Vitamin E (mg/100 g) 0.42 0 0.82
Niacin (mg/100 g) 3.63 1.49 6.37
Protein (g/100 g) 8.12 2.36 13.70

Source: Kumari et al. (2014)

4 Biofortification of Plant Nutrients: Present Scenario



122

deficiency of vitamin A (Mayer et al. 2008). Deficiency of vitamin A is common 
among the persons who preferably use micronutrient-deficient and carbohydrate- 
rich diets (Potrykus 2003).

4.2.3  Iodine

Iodine is an essential factor for the thyroid gland hormones, which mainly regulates 
the basal metabolic rate and also the growth and development of the body (WHO, 
FAO 1998; Lyons et al. 2004a). Iodine also have some of the combined function 
with selenium, iron and zinc (Lyons et al. 2004a, b; Zimmermann and Qaim 2004). 
It is reported that deficiency of iodine causes physical and mental retardation (WHO 
2004).

4.2.4  Zinc

Zinc is an essential cofactor for the enzymes which are involved with RNA and 
DNA synthesis. Zinc deficiency commonly occurs in plants as well as humans and 
is responsible for diarrhoea, impairment of physical growth, low immunity, weak 
learning ability and inadequate repair of DNA damage which can lead to cancer 
(Hotz and Brown 2004; Prasad 2007). On average one-third of world’s population 
is affected with zinc deficiency (Hotz and Brown 2004). The severity and frequency 
of dietary zinc deficiency have been acknowledged by WHO and FAO, and both 
have jointly recommended for the zinc fortification (Allen et al. 2006).

4.2.5  Calcium

Calcium is one of the most copious mineral elements in the human body, greater 
than 99% of which is located in the skeleton. Calcium maintain the rigidity and 
potency of the bones; along with this it is also concerned with several metabolic 
processes such as clotting of blood, cell proliferation, differentiation and linkage, 
muscle contraction and expansion, release of hormones and neurotransmitters, gly-
cogen metabolism, etc. (Theobald 2005). Deficiency of calcium causes osteoporo-
sis, a disease which is characterised by skeletal fragility and fractures.
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4.2.6  Folate

Folates are vitamin B, extensive losses of which have been reported in boiled 
vegetables (Dang et al. 2000). Folate deficiency is related with a higher risk of 
cardiovascular diseases, impaired cognitive function and causes of cancer and also 
found associated with an increased risk of neural tube defects in newborns (Botto 
et al. 1999). Its deficiency is also related with megaloblastic anaemia in pregnant 
ladies and often intensifies the previously existing anaemia (Rush 2000).

4.2.7  Tocopherol

Tocopherols are vitamin E-containing chemical compounds. The rich sources of 
vitamin E are vegetable oils, for instance, oil from olive, corn, palm, sunflower and 
soybean. Nut products, whole grains, fish and green leafy vegetables also provide 
rich dietary supply of vitamin E. The antioxidant activity of vitamin E has proved 
its ability to prevent chronic diseases, especially an oxidative stress component such 
as cardiovascular diseases, atherosclerosis and cancer (Brigelius-flohe and Traber 
1999).

4.3  Causes of Micronutrient Malnutrition

The prime reason of micronutrient malnutrition is intake of diets deprived of nutri-
ents. People usually take high amount of staple food but consume very less amount 
of lentils, fruits, vegetables, fish and animal produce, which are major sources of 
bioavailable mineral elements and vitamins (CIAT/IFPRI 2002). The human body 
has no capacity to synthesise vitamins. Most of the atrophied are poor people whose 
major food are rice, as they cannot buy high-quality, micronutrient-rich food in 
large quantities because of its high cost. These people want to consume animal and 
fish products which contain rich supply of available micronutrients but are unable to 
meet the expense of this type of food. The plant foods like vegetables, fruits and 
lentils offer very dense supply of mineral elements and vitamins, but the rising trend 
of nonstaple food prices keeps them away from the reach of common people.

Nowadays, the cropping system has changed completely; the excessive use of 
cereals and cash crops and total reliance on cultivars which give high yield have 
resulted in remarkable decrease in food diversity as well as micronutrient intake. To 
make the most profit, farmers chose to grow high-yielding crops and use very few 
production technologies leading to a drop-off in the micronutrient and protein dense 
legumes (Pfeiffer et  al. 2005). This trend is marked by a proportional decline in 
cereal cost and an increase in the cost of legumes, vegetables, fruits, animal and fish 
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protein. It has been contributed considerably in micronutrient deficiency caused by 
these less nutritious cereal crops becoming readily accessible and more affordable.

4.4  Approach to Reduce Micronutrient Malnutrition

Poor people tend to eat large amounts of one or two staple foods daily that often 
contributes up to 70–85% of their total calorie intake. Such poor monotonous diets 
low in micronutrients lead to micronutrient deficiencies. There are three types of 
intervention to reduce such micronutrient deficiencies – food-based approaches for 
diversifying diets, distribution of supplements and public health interventions.

4.4.1  Dietary Diversification

For healthy life it is important to have an assorted diet whether it is a vegetarian or 
non-vegetarian diet; both may have similar concentrations for important nutrients, 
but their bioavailability may vary. For instance, the iron from a vegetarian diet is 
less accessible for absorption due to the dissimilarity in the heme and nonheme 
form of iron and also due to the presence of phytochemicals that allow or hinder 
iron absorption (Food and Nutrition Board 2001). Heme form of iron is more read-
ily absorbed as compared to the nonheme form of iron present in foods (Roughead 
and Hunt 2000). Vegetarian diet is deprived of this available heme form of iron, and 
about 40% of non-vegetarian diet contain the iron in heme form. Although it is fea-
sible to plan an iron-rich vegetarian diet, most estimations related to female vegetar-
ians suggest that most people fail to do so, which results in much lower average iron 
intakes (11–18 mg/day) (Alexander et al. 1994; Perry et al. 2002).

4.4.2  Supplementation

Supplementation means stipulation of large dosage of micronutrients as medicine, 
directly in the form of tablets, capsules and/or syrups. These programmes have been 
extensively used in developing countries to supply iron, folic acid and vitamin A to 
the needy people like pregnant women, postpartum women, infants and children 
(Nantel and Tontisirin 2002; WHO 2009). World Food Programme (WFP), WHO 
and UNICEF suggested supplementation to be used in extreme conditions like in 
refugee camps to provide micronutrient as well as also in treatment of some dis-
eases, such as in acute diarrhoea (Hotz and Brown 2004; WHO/WFP/UNICEF 
2007). The circulation of vitamin A and iron supplements has most economical and 
successful programmes in the developing countries (Hunt 2002; Shrimpton and 
Schultink 2002). But, due to each year investment and requirement for highly 
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trained health-care workers, certainly high cost involved in supplementation, and 
also there is a possibility of toxicity due to over-ingestion of supplements. These 
things make supplementation unsustainable.

4.4.3  Food Fortification

Food fortification means the adding up of more and more micronutrients in the pro-
cessed food. This is one of the most worthwhile long-term schemes for enhancing 
mineral elements (Horton 2006). It has been used effectively since long back as a 
part of public health initiative for solving the problem of nutritional deficiencies 
which was a cause for extensive national public health problems (L’abbe et  al. 
2008). In the early 1920s, medical researchers announced that iodine could prevent 
goitre, which was widespread at that time. Iodisation of table salt reduced goitre 
incidence by 74–90% in the areas surveyed (Gomez-Galera et al. 2010). The suc-
cess stories for food fortification are fewer for the rural poor and in developing 
countries since this strategy depends on the economic condition of the people to buy 
the product and the accessibility to the product (Parker et al. 2008). This approach 
has led to comparatively fast improvements in upgrading the micronutrient content 
of peoples. If help of available technologies and local distribution network is pro-
vided, this strategy will prove to be very cost-effective. However, in the absence of 
distribution networks, roads and shops, food product supplementation is simply 
ineffective in reaching the rural poor.

4.4.4  Agricultural Solutions

Agricultural solutions are the other means of reducing micronutrient malnutrition. 
The earlier described solutions improve the micronutrient in human diet by using 
diverse diets, supplements or modified food products, but agricultural solutions give 
a way to enhance the micronutrients directly in growing plants that produce the food 
products. This can be achieved by one of the following ways: fertilisation and 
biofortification.

Fertilisation is the process of supplying vital mineral elements to crops in the 
form of fertilisers to attain greater yields. It is mainly used for small-scale crop 
production and especially in areas with low phytoavailability. Macronutrient fertil-
isers containing nitrogen, phosphorus, potassium and sulphur and micronutrient 
fertilisers that consist of zinc, nickel, iodine, cobalt, molybdenum and selenium can 
cause significant effects on the accretion of nutrients in edible plant parts (Allaway 
1986). Even though this strategy seems simple and inexpensive, it is doing well only 
in some cases of particular geographical area, due to the limitations of fertiliser and 
soil chemistry, together with the added complications of nutrient mobility and stor-
age within the plant (Zhu et al. 2007). In soil zinc is found in mobile state, so the 
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application of zinc sulphate will enhance the plant yield and also the zinc concentra-
tions in legumes and cereals (White and Broadley 2005). For other important micro-
nutrients such as iodine, nickel and selenium, enhancing soil-available supply of 
these micronutrients to edible crops can result in considerable increase in their 
amount in edible part of the plant (Graham et al. 2007; Hartikainen 2005). Similar 
to supplementation and fortification, agricultural intervention is probably more use-
ful in niche conditions and when combine with other approaches (Cakmak 2008). In 
contrast, micronutrient elements like iron have not been successful to obtain a posi-
tive result using fertilisers because of low mobility of iron in soil (Fernandez et al. 
2004; Grusak and DellaPenna 1999). For increasing concentration of iron in grains, 
foliar application of the iron-containing solutions is the only effective fertilisation 
practice (Rengel et al. 1999). Proper use of fertilisers also requires training by the 
applicators, to protect themselves and the rest of the environment (Graham 2003; 
Sors et al. 2005). Generally, these types of approaches cannot be universally appli-
cable as a strategy to improve the nutritional quality of edible crops because these 
are appropriate to particular crops and minerals (Kendal 2009).

Biofortification is economical and environmentally feasible approach which can 
utilise either plant breeding or genetic engineering or both (Stein et al. 2008). It can 
supply micronutrients to a large number of persons at relatively very low cost 
(Nestel et al. 2006; Pfeiffer and McClafferty 2007). In addition, biofortification is 
more likely to reach all family members as staple crops are eaten by everyone and 
do not rely on proper implementation of a protocol (Bouis et al. 2000). Biofortified 
staple crops are also capable of serving the rural and urban poor, simultaneously, 
unlike the other micronutrient malnutrition intervention strategies (Nestel et  al. 
2006). Detail of biofortification approach for micronutrient enhancement is given 
below.

4.5  Biofortification

All of the previously mentioned solutions to micronutrient malnutrition suffer from 
some common problems. All require an annual investment, whether the investment 
is made by a governmental agency or non-governmental organisation (for supple-
mentation schemes) or by private industry and the individual (for food fortification 
and fertilisation schemes). All require some degree of local infrastructure, to distrib-
ute the products to people that have been educated in their use. These limitations are 
major barriers to the implementation of sustainable solutions for malnutrition 
affecting those at the lowest end of the socio-economic scale. Biofortification is 
therefore an alternative reliable approach for improving mineral nutritional quality 
of crops and thus addresses micronutrient malnutrition in humans (Zhu et al. 2007). 
Perhaps the strongest argument for biofortification is the cost-effectiveness (Bouis 
et al. 2000), because investment is needed only once during the growth of the germ-
plasm relative to ongoing costs associated with other strategies (Table 4.3) (Jeong 
and Guerinot 2008).
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Micronutrient bioavailability can be defined as the proportion of nutrient that is 
absorbed in the human body after storage, processing and cooking of the diet and is 
used for normal body function (White and Broadley 2005; Nestel et  al. 2006). 
Biofortified crops must win over farmers by maintaining the yield productivity 
along with offering a benefit to health of human; micronutrient enhancement char-
acters must be comparatively constant across diverse type of soil and climatic con-
ditions and finally must meet consumer acceptance for taste and cooking quality 
(Welch and Graham 1999). Biofortified crops such as iron rice and golden rice hold 
a particular promise for India, as the people are predominately vegetarians. The 
massive Indian population must obtain their micronutrient content and vitamins 
through plants because of their vegetarian nature. Even if we succeeded in achiev-
ing a small increase in the plant nutrient contents, it will cause a great impact on the 
human health.

Biofortification has multiple advantages over the previously mentioned solutions:

• Biofortification takes advantage of increasing micronutrient in staple foods 
which are daily consumed on regular basis by all family members in a house. As 
staple foods dominate in the plate of poor people, this policy aims completely 
towards the low-income family (Nestel et al. 2006).

• This technique is a one-time investment, since, once the crop has been fortified, 
the seeds will fortify themselves.

• Biofortification is an advancement over fortification in case of providing nutrients 
to the deprived rural population because they hardly have any approach to obtain the 
nutrients from commercially fortified foods, by placing the means to the micronutri-
ent malnutrition problem in the hands of the rural poor themselves (Yassir 2007).

4.5.1  Types of Biofortification

4.5.1.1  Conventional Breeding

The goal for most plant breeders has been to increase yield potential for their target 
crops. This has largely been accomplished by increasing yield but also via. the intro-
duction of resistance genes for various diseases and pests. Attention has been given 

Table 4.3 Cost comparison between micronutrient malnutrition-reducing strategies, considering 
an US$ 80 million investment

Supplementation Food fortification Biofortification

Provides vitamin A 
supplementation to 80 million 
women and children in South Asia 
for 2 years, 1 in 15 persons in the 
total population, at a cost of 25 
cents for delivery of each pill, each 
effective for 6 months

Provides iron 
fortification to 33% of 
the population in South 
Asia for 2 years. Costs 
of fortification are 
estimated to be 10 cents 
per person per year

Develops six nutrient-dense 
staple crops for dissemination to 
the entire world’s people for 
consumption year after year. 
This includes dissemination and 
evaluation of nutritional impact 
in selected countries

Source: CIAT and IFPRI (2002)
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to improving crop quality, which can include improving nutritional content (WHO 
2007). The effective biofortification programme should be able to reach the rural 
poor. The available genetic variation in vital nutrient content should permit breeding 
programmes to enhance the content of mineral elements and vitamins in crop plants 
(Cakmak 2008; Monasterio and Graham 2000). There are a variety of possibilities 
for improvement of micronutrient content through plant breeding, which include:

 (i) Enhancement in micronutrient contents such as iron or zinc, or vitamins as 
beta-carotene

 (ii) Reduction in the quantity of anti-nutrients, for example, phytic acid
 (iii) Increasing the amount of sulphur-containing acids, which support the assimila-

tion of zinc (Ruel and Bouis 1998)

It has been recommended to cross wild species with cultured varieties to increase 
the micronutrient concentration (Cakmak 2002; Monasterio and Graham 2000). 
Through mutagenesis new characters can directly be introduced in the required vari-
eties (Raboy 2002).

4.5.1.2  Transgenic Approach

Conventional breeding-based biofortification strategy has not accomplished all the 
requirement and hence gathers very limited success). This technique of conven-
tional breeding would require several years to attain noteworthy improvement 
in  locally adapted plant varieties. The complications of the process also increase 
when breeding is concerned with more number of minerals and vitamins. Hence, an 
appropriate approach to improve these schemes is the introduction of genes encod-
ing key enzymes using transgenic methods (Christou and Twyman 2004; Zhu et al. 
2007). Plant transformation may be faster than the conventional breeding to achieve 
the nutritional target. Transgenic approaches can be a valid alternative, where breed-
ing approaches are not successful (Brinch Pedersen et al. 2006; Zhu et al. 2007). 
The two primary limitations to biofortification via. transgenic crop improvement are 
lack of knowledge and regulatory difficulties. First, the transgenic approach requires 
genes with known functions to affect the trait of interest. In the absence of such 
knowledge, it is not possible to use plant transformation. Second and perhaps more 
important, regulatory issues greatly restrict the use of plant transformation for 
biofortification. These related regulatory obstacles with transgenic strategy make 
this technology commercially unviable (Johnson et al. 2007; Powell 2007). These 
problems also extend because of trade barriers and dissimilarity in national regulatory 
schemes, which hinder the manufacture, transportation and utilisation of transgenic 
produce (Ramessar et  al. 2008). Developing countries like India and China are 
forced not to produce transgenic crops for the export, although they might be 
benefitted with the approach (Stein et al. 2008; Christou and Twyman 2004).
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4.6  Utility of Biofortification in Present Scenario

Conventional breeding methods and biotechnological approaches can be helpful to 
bring the desirable changes in quantity and quality of micronutrient. The micronu-
trient contents can be enhanced by improving the content of desired micronutrient 
directly in cultivated crops or by the method of bioengineering. The nutritious crops 
which are unable to grow vigorously or which have dropped out during Green 
Revolution due to the enormous development made to cereals can be managed by 
bioengineering. Thus, it decreases the farm cost involved and improves the produc-
tivity and earning power of farmer along with meeting nutrient requirement (CIAT/
IFPRI 2002). The requirement and demand of a biofortified food have to be suffi-
cient to drive the product through complicated developmental stages and to equalise 
the associated expenditure. This purpose can be solved by publicising the health 
benefits of biofortified food clearly to the consumers. The following section shows 
few studies that have confirmed the nutritional value and cost-effectiveness of some 
biofortified crops.

4.6.1  Crops Rich in Iron

Iron-rich crops, for example, iron pearl millet, are enhancing the nutritional status 
of selected populations. The effectiveness of this iron-rich crop was estimated in 
secondary school children of Maharashtra, India. The children were fed twice in a 
day for 4 months with biofortified pearl millet flat bread, and a noteworthy enhance-
ment in body iron content was observed in young boys and girls which were previ-
ously iron deficient. The children who were at the baseline of iron deficiency were 
significantly (64%) more likely to resolve their iron deficit problem in 6 months 
(Finkelstein et al. 2015).

4.6.2  Crops Rich in Vitamin A

Orange sweet potato (OSP) has the elevated levels of beta-carotene which is a build-
ing block for vitamin A.  Studies conducted on the bioavailability of vitamin A 
showed efficient conversion of provitamin A to retinol, a usable form of vitamin A 
by the human body. Observations confirmed that an increase in consumption of 
provitamin A through biofortified crops as OSP resulted in increased beta-carotene 
concentration and also has a significant effect on vitamin A status of individuals. 
Analysis showed that 75% of the beta-carotene is retained in OSP even after its boil-
ing during preparation of a meal. Intake of OSP has resulted in a considerable 
increase in vitamin A concentration among several age groups (Haskell et al. 2004; 
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Van Jaarsveld et al. 2005). Satisfaction of consumers and nutritional impacts of OSP 
have made this crop widely accepted.

4.6.3  Zinc-Rich Crops

Biofortification study with zinc has confirmed that biofortified wheat contains zinc 
in bioavailable form which can readily be absorbed in human body (Rosado et al. 
2009). Because of the limitations of the available zinc biomarkers in evaluating the 
alteration in dietary zinc, research to discover more sensitive biomarkers are in 
progress these days.

4.7  Future Aspects of Biofortified Crops

As malnutrition is one of the major problems worldwide, biofortification along with 
conventional breeding and nutritional modification has become the first choice of 
the researchers for crop improvement in the future. To eradicate micronutrient mal-
nutrition, biofortification is a promising and potential crop-based approach at pres-
ent. Still, some essential exploration gap is present in existing biofortification 
technique, and currently it is a challenging venture (Singh et al. 2016).

• A wide knowledge gap exists between the bioavailability of micronutrients in 
food grain and mineral distribution pattern in plant system.

• The comprehensive perceptiveness of the mineral translocation mechanisms 
from soil to seed is missing in most of the edible crops.

• Before making the biofortified crops available to the customers, a detailed exam-
ination of its safety concerns is necessary.

• Some micronutrient loss that occurs during the processing of crops has not been 
analysed in majority of the crops which need to be investigated.

• Presently, the biofortification procedure is limited to a few important crops only 
and in some crops which have local significance. But to cope up with the micro-
nutrient malnutrition, it is necessary to investigate all the crops which are related 
with the micronutrient deficiencies.

• Sometimes, enhancement of vitamins and micronutrient causes a negative impact 
on the colour and flavour of the finished product which was often not up to the 
standard of consumer expectations. Therefore, for greater adoption biofortified 
crops will be in acceptable form.

• The most important factor for malnutrition is the high cost of nutrient-rich food, 
so the biofortified crop has to be economically viable to common people.

Some of the important strategies to deal with these problems of biofortified crops 
would lie in molecular cytogenetics, in which through gene transfer, zinc and iron 
contents can be increased (Nestel et al. 2006). The drop-down in the micronutrient 
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content during postharvest processing can be minimised by uniform allocation of 
minerals in the grain. To improve the bioavailability of micronutrients, manipula-
tion of phytic acid level should be done during biofortification of crops (Nestel et al. 
2006). The accomplishment of biofortification programme is directly related with 
the introduction of improved policies which must include agricultural policies, 
nutrition education, marketing and public awareness. Therefore, to completely erad-
icate the micronutrient malnutrition in human and further to ensure the food and 
nutritional safety, more organised steps towards the progress of biofortified crops 
together with appropriate alternatives for agronomic management are needed in the 
future.

4.8  Nutrient Biofortification and Abiotic Stress Tolerance

Productivity of crops and their quality have been adversely affected by several abi-
otic stress factors such as drought, frost heat, salinity and ion toxicities 
(Hasanuzzaman et al. 2012, 2017). Lack of micronutrients in agricultural soils is a 
fast-growing trend and is also an ever-increasing abiotic stress in agricultural world. 
Increasing the essential micronutrients by biofortification approach could be a sig-
nificant alternative in enhancing the nutritional value and stress tolerance capability 
of crop plants. There are many evidences which showed that biofortification of 
nutrients in crops improved their resistance to abiotic stresses. Sufficient amount of 
silicon present in a large variety of plant provides them ability to resist in a stress 
environment (Ashraf et al. 2010). The benefits related with the increased content of 
vitamin B6, for instance, higher biomass and greater tolerance level to stress, sug-
gest that improvement in the concentration of vitamin B6 could be a significant 
alternative for crop plants to improve the nutritional status and also to cope up with 
the abiotic stress (Vanderschuren et al. 2013). Some studies showed that biofortifi-
cation of iodine leads to increased tolerance in some plants against specific type of 
abiotic stresses like heavy metal and salinity stress (Leyva et al. 2011; Gupta et al. 
2015). Calcium is a crucial macronutrient for both plants and animals, associated 
with important structural and signalling function, deficiency of which can affect the 
crop quality and yield and also result in reduced resistance towards biotic and abi-
otic stresses.

To alleviate the stresses caused by several stress-inducing factors, concentration 
of reactive oxygen species increased in plants at their cellular level. Hence, the 
stimulation of antioxidants is acknowledged as a significant aspect of the adaptive 
response of plants leading to tolerance against stress (Gill and Tuteja 2010). Iodine 
was found to be the first inorganic antioxidants which give the ability to organism 
to mitigate stress level after the origin of oxygenic photosynthesis (Crockford 2009; 
Küpper et  al. 2011; Venturi 2011). The treatment of temperature- and humidity- 
affected seeds of sunflower and soybean with calcium carbonate and iodine 
decreases the physiological deterioration rate and provides stress tolerance (Macias 
et al. 2016). Similar observations were also found with peanut seeds where pretreat-
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ment of seeds with zinc resulted in the increased tolerance of seeds to the fungal 
pathogen Aspergillus niger (Jajda and Thakkar 2012). Further investigations are 
needed on the prospective of micronutrients to increase the stress tolerance in plants. 
The advantage of biofortification is that it is more feasible from an economic per-
spective, accomplishing dual functions as a micronutrient enhancer and stress 
defender.

4.9  Conclusion

This chapter has tried to tackle the role of agricultural solutions and biofortification 
in addressing micronutrient malnutrition. In the future, mineral and vitamin defi-
ciencies are likely to be more menacing, but the biofortification approach is emerg-
ing as a promising means to deal with this problem. Biofortification is a simple, 
cost-effective, crop-based strategy; that’s why it gives assurance for coping up with 
the micronutrient malnutrition crisis and is best suitable method in the developing 
countries. But, the scientific approach alone is not sufficient, although a holistic 
approach is needed to cope up with the problem of micronutrient malnutrition. 
There is a need to generate awareness among people about the advantage of food 
diversity and suggesting them feasible solutions how they can improve their dietary 
requirement. Remarkable improvements have been already going on in this area; 
further suitable strategies and potential planned studies could result in biofortifica-
tion’s immense accomplishment in the near future.
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Chapter 5
Trace Elements in Abiotic Stress Tolerance

Mumtaz Khan, Rehan Ahmad, Muhammad Daud Khan, 
Muhammad Rizwan, Shafaqat Ali, Muhammad Jamil Khan, 
Muhammad Azam, Ghazala Irum, Mirza Nadeem Ahmad, and Shuijin Zhu

Abstract Trace elements are minutely required elements for normal growth and 
functioning of biological systems. They perform several intricate roles in complex 
cellular phenomena including plant protection against stress conditions. The role of 
various trace elements in enhancing plant’s tolerance to abiotic stresses is multifac-
eted. At primary level, they are the constituents of cell organelles and membranes 
and serve as metalloproteins and metal cofactors or activating agents for key ROS 
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scavenging enzymes. At secondary level, they regulate key metabolic pathways 
involved in gene expression; biosynthesis of proteins, carbohydrates, and lipids; and 
production of phytohormones which protect plants from ROS-induced injury. The 
role of some important individual trace elements in enhancing plant’s tolerance to 
various abiotic stresses is explained here in different plant species.

Keywords Trace elements · Abiotic stresses · Tolerance mechanisms · Biomolecules 
· Metal cofactors · Abiotic stress · Micronutrients · Oxidative stress · Phytohormones 
· Reactive oxygen species · Soil fertility

5.1  Introduction

Modern analytical techniques have confirmed the presence of a number of elements 
in biological tissues with specific designated functions. Some elements are major 
constituents of the cells and required in larger quantities such as carbon (C), hydro-
gen (H), oxygen (O), nitrogen (N), phosphorous (P), and potassium (K), while oth-
ers are present in very small amounts like iron (Fe), copper (Cu), chlorine (Cl), 
magnesium (Mg), zinc (Zn), manganese (Mn), molybdenum (Mo), boron (B), 
cobalt (Co), selenium (Se), nickel (Ni), aluminum (Al), etc. Due to their lesser 
abundance in biological tissues and detection in trace amounts by earlier techniques, 
the minor components got several names in the earlier literature such as “minor ele-
ments,” “oligo-elements,” “oligo-metals,” “micronutrients,” “trace metals,” and 
“trace elements.” By definition, trace elements are minutely required elements to 
maintain normal growth, development, and biological functions in plants and other 
biota. However, some of the trace elements, commonly known as “heavy metals,” 
have no known biological role in plants including cadmium (Cd), lead (Pb), and 
mercury (Hg); rather elevated levels of such metals may cause toxicity and injury in 
plants (Ali et al. 2014; Khan et al. 2014; Daud et al. 2009). In this chapter, trace 
elements having positive roles in plants are discussed with special emphasis on 
abiotic stress tolerance.

Importance of trace elements in higher plants has been previously judged by 
physiological and metabolic roles and deficiency symptoms (Maksymiec 1998; 
Cakmak and Kirkby 2008; Hajiboland and Farhanghi 2011). They play roles in a 
number of intricate cellular phenomena. Examples include but not limited to syn-
thesis of biomolecules, formation of secondary metabolites, cell wall lignifications, 
stabilization of ribosomal fractions, primary and secondary metabolism, genes reg-
ulation, hormonal balance, ionic homeostasis, nitrogen assimilation, cell signaling, 
and protection of cells against biotic and abiotic stresses (Stiles 2013). Moreover, 
several key physiological functions in plants, such as regulation of stomata opening 
and closing, transport across xylem and phloem, and permeability of membranes, 
are all trace element-dependent mechanisms (Hänsch and Mendel 2009). To discuss 
here the physiological role of each trace element in great detail will be out of the 
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scope of this chapter. Therefore, emphasis here is on the roles of trace elements in 
combating different abiotic stresses through various tolerance mechanisms.

Several factors may induce abiotic stresses in plants such as temperature, water, 
light, salinity, toxic chemicals, and heavy metals (HMs). They generate excess reac-
tive oxygen species (ROS) in cells such as hydrogen peroxide (H2O2), superoxide 
anion (O•−

2), hydroxyl radical (•OH), and singlet oxygen (1O2), causing oxidative 
stress. The oxidative stress may affect synthesis of biomolecules such as DNA, pro-
tein, carbohydrate, and antioxidant network and may induce changes in cell wall 
morphology, biomembranes, peroxisomes, mitochondria, chloroplasts, ribosomes, 
peroxisomes, nuclear envelop, etc.

Plants have a complete set of defense mechanisms in the form of antioxidant 
enzyme and antioxidant nonenzyme components to tackle oxidative stress. Trace 
elements constitute and regulate plant defense systems. Some important antioxidant 
enzymes are catalase (CAT), ascorbate peroxidase (APX), superoxide dismutase 
(SOD), peroxidase (POD), and glutathione reductase (GR). Nonenzyme compo-
nents may include glutathione, ascorbate, phenolic compounds, and carotenoids. 
Besides antioxidant machinery, some other mechanisms may also be involved in 
circumventing abiotic stresses such as avoiding contaminant uptake, restricted- 
translocation of HMs, root exudation, metal chelation, and induction of stress- 
related proteins. Besides this, trace elements are the constituents of various cell 
organelles and part of several metabolic activities. They are constituents of basic 
biomolecules such as DNA, RNA, protein, lipids, and carbohydrates that directly or 
indirectly play role in plant tolerance to abiotic stresses.

Response of plants to abiotic stress is very complex, both at biochemical and 
genetic level. However, gene transformation and expression of stress conditions 
may provide an opportunity for building stress tolerance in plants. The task may be 
accomplished by manipulating the genetic make of the stressed-host plant and 
transferring single or multiple genes from wild-type or resistant plants to the desired 
plant. There may be several aspects in which genetic tolerance can be developed in 
stressed plants: firstly, by transferring genes related to cell signaling and regulatory 
pathways; secondly, by exploiting genes that encode enzymes of metabolic path-
ways related to structure and functions; thirdly, by exploiting genes that encode 
proteins involved in cell membranes and other proteins protection; and fourthly, by 
manipulating genes involved in maintaining ionic balance, i.e., aquaporins and iron 
transporter genes.

The role of trace elements in combating abiotic stresses is multifaceted. They are 
integral part of almost all cell compartments and metabolic activities. It has been 
suggested that the concentration of iron (F+2) in cytosol remains between 10−7 and 
10−6 M (Hider and Kong 2013). Similarly, chloroplasts contain 80% of the cell iron. 
These compartments have several key enzymes that play roles in plant protection 
against stress conditions. For example, mitochondria contain alternative oxidases 
(AOs) and NADPH dehydrogenase. Mitochondrial inner membrane, on both sides, 
possesses NADPH dehydrogenase. AOs and NADPH dehydrogenase, along with 
glutathione in mitochondria, help scavenge ROS. The roles of individual trace ele-
ments in combating different abiotic stresses are discussed in the following section 
in greater detail.
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5.2  Role of Individual Trace Elements in Abiotic Stress 
Tolerance

5.2.1  Iron

Iron is a redox-active element found in two oxidation states. Its interchange between 
Fe+2 and Fe+3 oxidation states drives several metabolic reactions in plants including 
ETC. The Fe concentration of soils may range from 0.6% to 2% (Kabata-Pendias 
2010). After plant uptake, Fe is mainly stored in the vacuoles and apoplastic regions 
and then transported to various cell compartments via copper transporters (Pilon 
2011). Iron, in its free state, triggers ROS generation and causes oxidative damage; 
hence, it is complexed as Fe chelates in the cells and later released and transported 
to various cellular compartments under the influence of transporter genes. It is an 
integral structural part of the cell organelles. The Fe concentration in different cell 
compartments is variable; however, chloroplasts contain maximum Fe (80%).

Iron has potential role in photosynthesis, mitochondrial functioning, N assimila-
tion, biosynthesis of hormones, and controlling ROS generation. It is also an impor-
tant constituent of proteins: which on the basis of Fe legends are generally grouped 
into Fe-S cluster proteins, heme group proteins, and other Fe-containing proteins. 
Moreover, it is a constituent of nonheme proteins such as ferritins that contain 4500 
Fe atoms per molecule and play a significant role in Fe balance and oxidative stress 
tolerance. Copper serves as cofactor for SOD enzymes which are important metal-
loenzymes distributed in various cellular compartments. SOD enzymes reduce O•−

2 
into H2O2 and then to O2 and serve as primary defense of plants against ROS- 
induced oxidative damage. SODs also reduce risk of OH• formation. These enzymes 
are grouped into FeSOD, MnSOD, and Cu-Zn SOD. FeSOD is mainly found in 
chloroplasts and is further divided into homodimer and tetramer containing FeSODs: 
having two and four equal protein subunits, respectively. The homodimer FeSOD is 
made of 20  kDa subunit protein, while tetrameter has 80–90  kDa with 1–2 and 
2–4  g atoms of Fe in their active centers, respectively (Alscher et  al. 2002). 
Homodimer FeSOD is mainly found in microbes while tetramer FeSOD prevails in 
higher plants. However, in Arabidopsis thaliana, three FeSODs have been detected 
in which FSD2 and FSD3 contribute to chloroplast synthesis (Myouga et al. 2008).

The role of FeSODs, in conferring tolerance to abiotic stresses, has been high-
lighted in several transgenic studies (Van Camp et al. 1996; Van Breusegem et al. 
1999b; Deák et al. 1999). These studies are either focused on transferring FeSOD 
gene from different plants and its expression in the host plant or transferring other 
genes related to abiotic stress tolerance and monitoring their effects on host antioxi-
dant machinery such as FeSOD. In transgenic tobacco, overexpression of FeSOD 
gene protected plasmalemma and photosystem II (PS II) from methyl viologen 
(MV) (Van Camp et al. 1996). Similarly, overproduction of FeSOD enhanced toler-
ance against MV in transgenic maize (Van Breusegem et  al. 1999b). In another 
study, cysteine proteinase inhibitor gene from Oryza sativa enhanced Nicotiana 
tabacum tolerance to drought, high temperature, and high light intensity stresses by 
elevating FeSOD and guaiacol peroxidase activities (Demirevska et al. 2010).
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Iron is also an important constituent of heme proteins such as cytochromes and 
globins: synthesized in chloroplasts and mitochondria. In globins, nonsymbiotic 
hemoglobins, due to their affinity for oxygen, combat ROS and enhance plant toler-
ance to different abiotic stresses (Dordas 2009). Similarly, plant ferritins, the Fe-rich 
proteins mainly localized in chloroplasts, maintain free intracellular iron homeosta-
sis to avoid Fe-induced hydroxyl radical formation and subsequent oxidative dam-
age. Previously, overproduction of alfalfa ferritin enabled transgenic tobacco to 
withstand biotic and abiotic stresses (Deák et al. 1999).

5.2.2  Copper

Copper is structural and functional component of plant cells. It is needed for biosyn-
thesis of chlorophyll and proteins, to maintain integrity of cell wall and chromo-
somes, cell respiration, carbon (C) and N metabolism, Fe homeostasis, and 
protection against oxidative stress. It is relatively immobile in plants and concen-
trated in chloroplasts with an average concentration of 10 μg g−1, on dry weight 
basis. Copper deficiency may cause impaired vegetative and reproductive plant 
growth and disturbed metabolic pathways. Previously, Cu deficiency had caused 
disintegration of thylakoids and inhibition of PSII (Maksymiec 1998). It exists in 
multiple oxidation forms and entrusted with reducing and oxidizing properties. 
However, interchange of copper, in  vivo, between its ionic forms, i.e., Cu+2 and 
Cu+1, induces OH• generation, causing damage to cell ultrastructure and biomole-
cules. Recently, copper chaperones have been identified which maintain Cu homeo-
stasis and its routing to proteins whose function is dependent on Cu. This helps cells 
to avoid free Cu accumulation and subsequent damage to cellular compartments 
(Harrison et al. 2000).

Copper acts as redox catalyst for more than 30 enzymes involved in various 
metabolic pathways (Harrison et al. 1999). Plastocyanin, cytochrome c oxidase, 
and Cu-Zn SODs constitute principal Cu proteins in plant cells. Plastocyanin, 
found in chloroplasts, is vital for photosynthesis as it works as electron carrier 
between PSI and PSII. Cytochrome c oxidase, a transmembrane protein localized 
in mitochondria, is also involved in electron transfer that ultimately leads to H2O 
and ATP synthesis. Based on localization, Cu-Zn SODs are grouped into chloro-
plastic and cytosolic Cu-Zn SODs, respectively. Chloroplastic Cu-Zn SOD is 
mainly found in stroma of the thylakoids while cytosolic Cu-Zn SOD is distrib-
uted in apoplastic regions and nucleus. Cu-Zn SODs help quenching ROS in 
plants. Response of Cu-Zn SOD is differential in tolerant and sensitive varieties of 
plants. Most of the earlier studies have reported increased Cu-Zn SOD activity in 
tolerant varieties. For example, the activity of Cu-Zn SOD was increased in salt-
tolerant variety of Setaria italica when its seedlings were exposed to salinity 
stress (Sreenivasulu et al. 2000). Similarly, chloroplasts, isolated from salt-toler-
ant pea, demonstrated increased activities of Cu-Zn SOD as compared with sensi-
tive varieties (Hernandez et al. 1995).
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Transgenic plants, overexpressing Cu-Zn SOD genes, are potential subjects for 
inducing and studying tolerance mechanism in plants under stress conditions. In a 
previous study, rice’s tolerance to MV and salt stresses was enhanced by transform-
ing Oryza sativa with Cu-Zn SOD gene from Avicennia marina (Prashanth et al. 
2008). Likewise, upregulated Cu-Zn SOD genes improved transgenic tobacco’s tol-
erance to stress induced by low temperature and water deficiency (Faize et al. 2011). 
Moreover, downregulating microRNAs in Arabidopsis thaliana stimulated expres-
sion of Cu-Zn SOD genes under high light and MV stresses (Sunkar et al. 2006).

5.2.3  Zinc

Zinc is one of the most extensively used microelements in biological systems. Its 
deficiency is common among major field crops. Zinc-deficient plants exhibit symp-
toms like retarded growth, chlorosis, necrosis, and delayed seed development. 
That’s why recent research is focused on fortification of major crops with zinc 
(Poletti et al. 2004; Lu et al. 2008). Numerous biological roles are attributed to Zn 
in plants such as stability of cell membranes, chlorophyll formation, protein synthe-
sis and stabilization, enzyme activation, auxin regulation, etc. It is an integral part 
of approximately 1200 proteins: related to regulation of DNA, transcription, RNA 
synthesis and editing, and protein-protein interactions. A large family of regulating 
proteins containing Zn as Zn-finger motif plays important roles in tolerance to abi-
otic stresses (Yang et al. 2009).

Zinc’s role in stress tolerance mechanisms is multidimensional. Zinc nutrition 
contributes to stress tolerance by triggering antioxidant machinery of the plants. 
Previously, Zn application triggered SOD and POD activities in Triticum aestivum 
under drought conditions (Yavas and Unay 2016). Likewise, Zn enhanced ascorbic 
acid and tocopherol production in green chili to scavenge free radical species 
(Manas et al. 2014). Zinc supplementation restored various types of lipids such as 
galactolipids, neutral lipids, total lipids, and phospholipids in Cd-affected tomato 
plants (Ammar et al. 2015). Zinc’s role, as Cu-Zn SOD enzymes, is well established 
in combating drought stress in several plants like sugar beet (Hajheidari et al. 2005), 
periwinkle (Jaleel et  al. 2007), and oilseed rape (Abedi and Pakniyat 2010). 
Similarly, the role of Cu-Zn SOD has been documented in lentil (Bandeoğlu et al. 
2004), citrus (Gueta-Dahan et  al. 1997), tobacco (Wang et  al. 2003), and rice 
(Tanaka et al. 1999) to combat salt stress. Upregulation of two Cu-Zn SODs genes 
in various organs of tomato seedlings was also observed during plant development 
and stress induced by light (Perl-Treves and Galun 1991).
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5.2.4  Chlorine

Essentiality of chlorine for various biological activities in plants is at par with other 
micronutrients. However, unlike other micronutrients, it is abundantly available in 
the soils and comparatively in greater amounts in plant tissues. Previous research 
has shown that average concentration of Cl in plants ranged from 2 to 20 mg/g on 
dry weight basis, while its average need is 0.2–0.4 mg/g for most of the plant spe-
cies (Marschner 1995). Chlorine deficiency has been rarely reported in plants except 
in experimental setups to establish the role of Cl in biological systems. In a rare field 
study, Cl deficiency was proposed in coconut plant during dry season that led to 
disturbed stomatal functioning and changes in transpiration rates and reduced pho-
tosynthesis (Braconnier and Bonneau 1998). Chlorine maintains balance of charge 
in cells. The turgidity of guard cells in stomata is maintained by K influx from sub-
sidiary cells and osmo-regulating property of chloride ion. Chlorine also plays role 
in photosynthesis as it binds covalently to Mn clusters in oxygen evolving complex 
in PSII (Rompel et  al. 1997). Previously, chlorinated chlorophyll RC1 was sug-
gested; however, later it was declared as experimental artifact (Senge et al. 1988).

Chlorine is an integral anion for more than 130 organic compounds in plants. A 
comprehensive detail of chlorine-containing compounds in higher plants has been 
given elsewhere (Engvild 1986). Chlorinated auxin such as chlorinated indole ace-
tic acid (4-Cl-IAA) is found in the reproductive parts of the plants and stimulates 
synthesis of gibberellins and inhibition of ethylene action (Lam et  al. 2015). 
Sesquiterpenoids are also Cl-containing compounds that have known role of disease 
resistance in plants (Weissenborn et al. 1995). Similarly, chlorinated phenols such 
as caffeoylquinic acids also called as chlorogenic acids, having antioxidant role, are 
accumulated in postharvest stress conditions (Jacobo-Velazquez et al. 2011).

5.2.5  Magnesium

Magnesium has several essential roles in plants. It is very crucial to photosynthesis 
as it is the central ion in both chlorophyll a and chlorophyll b. It is the key element 
to absorb sun’s energy in the tetrapyrrol ring and helps fixing CO2 in chloroplasts by 
modulating RuBP carboxylase activity. It is fundamental to numerous enzymes 
involved in synthesizing proteins, carbohydrates, lipids, and nucleic acids. Almost 
all enzymes in phosphorylation process and mitochondrial enzymes such as phos-
phatases, ATPases, and carboxylases have Mg as important component. Magnesium 
is implicated in sugar assimilation and starch synthesis by regulating nitrate 
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reductase and glutamine synthetase. It activates amino acid synthesis, initiates and 
elongates polypeptide chain, and stabilizes structural and functional characteristics 
of ribosomes. Magnesium is also part of the metalloproteins involved in signal 
transduction.

Magnesium’s deficiency can create stress conditions in plants. Previous research 
has shown that mulberry plants suffered Mg deficiency from stress (Tewari et al. 
2006). Similarly, excessive ROS was generated in the photosynthetic EST in com-
mon bean and sugar beet deficient in Mg (Cakmak and Kirkby 2008). Similarly, in 
Citrus sinensis, proteomic analysis revealed that several proteins, related to photo-
synthesis and stress tolerance, were downregulated in leaves under Mg deficiency 
(Peng et al. 2015). Magnesium alleviated rhizotoxicity induced by aluminum stress 
in sensitive genotypes of soybean plants (Silva et al. 2001). Magnesium chelatase H 
subunit, an abscisic acid receptor and a protein of multifunction nature, is an impor-
tant enzyme involved in chlorophyll biosynthesis and cell signaling. A study 
revealed that overexpression of Mg chelatase H subunit in Arabidopsis thaliana 
guard cells developed plant’s tolerance to water deficiency-induced stress (Tsuzuki 
et al. 2013). In another study, leaf senescence in rice cultivars sensitive to salinity 
stress was enhanced due to reduced chlorophyll biosynthesis and decline in Mg 
concentration in leaves (Lutts et al. 1996).

5.2.6  Manganese

Manganese has several essential roles in plants such as maintaining chloroplast 
integrity, biosynthesis of fatty acids (FAs) and gibberellic acid (GA), and activation 
of RNA polymerase. However, contrary to other micronutrients, Mn mostly serves 
as activator or cofactor to enzymes. It is an integral part of metalloproteins and is 
required for the functioning of at least 35 different enzymes: either as activating 
agent or as metal cofactor. Three Mn-containing enzymes have been widely studied 
in plants, i.e., MnSOD, Mn-acid phosphatases, and Mn-enriched photosynthetic 
complex.

Manganese contributes to plant abiotic stress tolerance in several ways. It cata-
lyzes MnSOD enzyme which quenches ROS in mitochondria. In a previous study, 
MnSOD overproduction protected transgenic tobacco plants from ozone-induced 
oxidative stress (Van Camp et al. 1994). Transgenic rice, transformed with MnSOD 
gene from pea, exhibited less cellular injury and enhanced tolerance to drought 
effects (Wang et al. 2005). Similarly, improved tolerance to cold stress was observed 
in maize chloroplasts transformed with tobacco MnSOD (Van Breusegem et  al. 
1999a). In winter wheat, foliar application of Mn along with Zn and B not only 
alleviated the harmful effects of water deficiency in late season but also enhanced 
agronomic traits of wheat (Karim et  al. 2012). Likewise, transgenic Arabidopsis 
thaliana demonstrated resistance to salt stress by overexpressing MnSOD genes 
(Wang et al. 2004).
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5.2.7  Molybdenum

Molybdenum is essential for several physiological functions of plants. Numerous 
biochemical functions in plants need Mo such as N assimilation, hormonal synthe-
sis, etc. Molybdenum-containing enzymes are essential components of antioxidant 
system, for example, aldehyde oxidase, xanthine dehydrogenase, and nitrate reduc-
tase (Ventura et al. 2010; Brychkova et al. 2008; Yesbergenova et al. 2005). Members 
of aldehyde oxidase multigene family play role in biosynthesizing phytohormones 
such as abscisic acid and indole-3-acetic acid (IAA), by converting abscisic alde-
hyde and indoleacetoaldehyde to their related phytohormones (Leydecker et  al. 
1995; Koshiba et al. 1996; Sauer and Frebort 2003). IAA is placed in important 
plant hormone family known as auxins, which had abiotic stress role (Dunlap and 
Binzel 1996). Similarly, abscisic acid responds to different environmental stresses 
induced by salinity, drought, and temperature (Jiang and Zhang 2001; Walton and 
Yi 1995). Xanthine dehydrogenase is required in ureide biosynthesis and purine 
catabolism (Mendel and Bittner 2006; Mendel 2009; Brychkova et al. 2008). It trig-
gers hypoxanthine hydroxylation to xanthine and uric acid. The latter is oxidized to 
ureides, enzymatically by uricase and nonenzymatically by ROS (Brychkova et al. 
2008; Ventura et al. 2010; Santos et al. 1999). Nitrate reductase, another molybde-
noenzyme, is vital for nitrogen metabolism in plants. It acts as catalyst in reducing 
nitrate ion to nitrite and then to ammonium (Bittner and Mendel 2010; Mendel 
2009). In saline conditions, plants prefer nitrate as a N source, which increase plant 
resistance to salt stress (Cordovilla et al. 1996). Molybdenum application to wheat-
grass also enhanced plant adaptation to salinity stress due to enhanced activities of 
molybdenum-containing enzymes, xanthine dehydrogenase, nitrate reductase, and 
aldehyde oxidase (Babenko et al. 2015).

5.2.8  Boron

Boron exhibits diverse structural, physiological, and biochemical functions in plants. 
It helps maintaining structural integrity and stability of cell walls and biomembranes. 
Growth and expansion of meristematic tissues and leaves are also B-mediated pro-
cesses. Besides these, B plays role in cell division, ion absorption, water relations, 
metabolism of carbohydrates, hormones and IAA, and synthesis of nucleic acids, 
sugar transport, and protein synthesis. Earlier research has shown that B application 
enhances plant growth and development by maintaining the enzyme activation, pol-
len development, and charge balance in plant system (Ozturk et al. 2010).

Boron deficiency may cause slow or impaired vegetative and reproductive 
growth; however, biochemically, homeostasis of some important biomolecules and 
enzyme activities may be affected. Previously, B deficiency in tobacco seedlings 
caused decline in nitrate concentration and activity of nitrate reductase (Camacho- 
Cristóbal and González-Fontes 1999). Similarly, B deficiency significantly reduced 
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stomatal conductance and photosynthetic rate in drought-stressed Brassica rapa 
plants (Hajiboland and Farhanghi 2011). Boron, in combination with Ca, improved 
seed germination and root elongation in salt-stressed Pisum sativum plants (Bonilla 
et al. 2004). Excess salts in root zone affect symbiotic relationship between plant 
roots and rhizobium. Boron, in combination with Ca, had demonstrated positive 
role in establishing rhizobial symbiosis in Pisum sativum under saline conditions 
(El-Hamdaoui et al. 2003). However, contrary to earlier findings, B co-application 
with NaCl caused more oxidative damage in Lycopersicon esculentum and 
Cucumis sativus leaves in the form of dry weight decline and increased membrane 
permeability (Alpaslan and Gunes 2001). This may be due to high dose of NaCl 
used in the experiment. In another study, deficiency of B activated antioxidant 
system in Camellia sinensis plants to alleviate stress induced by high light 
(Hajiboland et al. 2011).

5.2.9  Cobalt

Cobalt, a transition metal, performs several biological functions in plants like resis-
tance to drought stress, regulating alkaloid accumulation, inhibition of ethylene bio-
synthesis, and synthesis of chlorophyll b. Cobalt is an integral part of vitamin B12 
and helps in N fixation by root nodules. Moreover, Co is used in sterilization of 
fruits to increases their shelf life. Cobalt helps spectroscopic probing of metalloen-
zymes such as Zn enzymes to identify their structural characteristics (Dennis and 
Kolattukudy 1992).

To date, several enzymes containing Co have been identified in plants. Vitamin 
B12-depedent enzymes contain axial Co group. Research has shown that Co is 
essential for the synthesis of hydrocarbons which are found under pathological 
conditions in plants. Co-porphyrin containing enzymes trigger decarbonylation of 
aldehydes which serve as precursors for hydrocarbon synthesis (Dennis and 
Kolattukudy 1992).

The direct role of Co, in abiotic stress tolerance, is mainly via modulation of 
antioxidants in plant systems. Suspension cell culture of Crotalaria cobalticola, a 
Co-hyperaccumulator plant, demonstrated increased citric acid and free cysteine 
contents, suggesting the later involvement in Co complexation in the plant under 
study (Oven et al. 2002). Indirectly, Co may add to abiotic stress tolerance by inhib-
iting toxicants or ROS generators in plants. It is suggested that Co may cause Fe 
deficiency in some plants and may inhibit cadmium (Cd) uptake. Under water 
stress, Co is supposed to inhibit biosynthesis of IAA-induced ethylene formation in 
various plant species such as wheat, kidney beans, ferns, etc. In another study, 
excess Co caused oxidative stress in Phaseolus aureus; however, H2O2 generation 
and lipid peroxidation were reduced due to enhanced activities of SOD and APX 
(Tewari et al. 2002).
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5.2.10  Selenium

Selenium is a nonessential but beneficial trace element for higher plants. Generally, 
Se concentration in soils is very low; however, in seleniferous soils, it builds up to 
100 mg kg−1 (Pilon-Smits 2015). Selenium is analogous to sulfur (S) having similar 
valencies on its ionic forms and follows S assimilation pathways to assimilate as 
selenocysteine (SeCys) which is easily incorporated into proteins, selenomethio-
nine (SeMet), and other S compounds. Basically, Se, as SeCys, is an active part of 
selenoproteins like glutathione peroxidase and thioredoxin reductase which have 
ROS scavenging abilities.

Selenium’s role in combating abiotic stresses caused by UV light, drought, heavy 
metals, cold, and salts is well documented in earlier literature. Previously, it helped 
promoting growth of rye grass, delaying drought, and inducing tolerance to 
UV-induced stress (Cartes et  al. 2010; Hasanuzzaman and Fujita 2011; 
Hasanuzzaman et al. 2014). Similarly, under drought stress, Se pretreatment of 
rapeseed enhanced antioxidant enzyme activities and increased concentration of 
AsA and glutathione (Hasanuzzaman and Fujita 2011). In another study, Se 
improved physiological growth of wheat seedlings under drought stress in the form 
of increased biomass accumulation and root elongation and elevated CAT and POD 
activities (Yao et al. 2009). Selenium treatment also protected sunflower seedlings 
from cadmium-induced oxidative stress by boosting CAT, APX, and GR activities 
(Saidi et al. 2014). In another hydroponic experiment, exogenously applied Se miti-
gated Cd stress in rice by inhibiting Cd uptake, maintaining nutrient balance, and 
modulating ATPase activities in roots and leaves (Lin et al. 2012). In another study, 
exogenous Se application increased plant biomass and chlorophyll concentration in 
wheat seedlings along with elevated contents of anthocyanins, phenols, and flavo-
noids under cold stress (Chu et al. 2010).

5.3  Conclusion

Trace elements are vital components of cell structures and play roles in plant metab-
olisms. However, adverse conditions like drought, salinity, toxic compounds, abnor-
mal temperatures, and excess light may disturb normal cellular activities and plant 
growth. Trace elements help plants to cope with these abiotic stresses by several 
mechanisms including activation of antioxidant defense system, regulation of meta-
bolic activities, synthesis of biomolecules, and maintenance of ionic homeostasis. 
Thus, adequate supply of trace elements, as per plant requirement, can promote 
plant growth both under normal and abiotic-stressed conditions.
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Chapter 6
Biomolecular Functions of Micronutrients 
Toward Abiotic Stress Tolerance in Plants

Shyam N. Pandey

Abstract Many of the world’s cultivated areas are facing various abiotic stresses 
such as drought, salinity, temperature extremes, and nutrient abnormalities. For the 
maintenance of crop productivity, improvement of the micronutrient status in plants 
under abiotic stress is very important. In most cases of abiotic stress, plants experi-
ence either poor or excessive availability of micronutrients, which alters their bio-
chemical composition and minimizes growth and yield. Micronutrient availability 
greatly affects the ability of plants to adapt to unfavorable conditions. Essential 
micronutrients, such as zinc (Zn), copper (Cu), manganese (Mn), boron (B), iron 
(Fe), molybdenum (Mo), chloride (Cl), nickel (Ni), and cobalt (Co), have direct 
roles in plant metabolism. Most of these nutrients have two or more oxidation states, 
and therefore participate in oxidation–reduction reactions through electron trans-
port. These elements form metalloenzymes, function as catalysts, and are vital in 
osmoregulation and protection against abiotic stress in plants. Micronutrients pro-
tect plants by functioning as constituents and activators of several enzymes in their 
defense system [such as catalase, ascarbate peroxidase, superoxide dismutase 
(Zn-SOD, Cu-Zn SOD, Fe-SOD, Mn-SOD)] that are involved in the detoxification 
of highly reactive oxygen species (ROS) produced during abiotic stress. In the pres-
ent study, the role of micronutrients in the growth and metabolism of plants, as well 
as their support to the plants for protection, adaptation, and tolerance against abiotic 
stress through supporting biochemical activities, is emphasized.

Keywords Micronutrients · Abiotic stress · Biochemical constituents · Reactive 
oxygen species
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6.1  Introduction

Our increasing population and shrinking agricultural land areas impose tremendous 
pressure on plant production throughout the world. The economy of almost all 
countries, directly and indirectly, is dependent on plant yield. But a huge area of the 
Earth’s land mass is facing various adverse environmental problems such as salinity, 
drought, heavy metal pollution, and water surpluses or deficits (Singh et al. 2015). 
These abiotic stress conditions cause great depletion in plant productivity (Verma 
et  al. 2014). In recent years, climatic changes have continuously placed various 
stresses on plants and the survival of other living organisms (Romero et al. 2017). 
Every species must be in harmony between its internal and external constituents and 
the environment in which they live (Ma et al. 2017); when they are not adapted to 
the changing environment, they are expelled. Abiotic stresses are caused by changes 
in environmental components such as gases (ozone, CO2, nitrogen oxide), water, 
temperature, minerals, and climatic variables. For plant growth and food produc-
tion, nutritional balance in the growth medium is very important, as well as normal 
environmental conditions. The mineral status of plants affects their ability to adapt 
under the influence of abiotic stresses (Singh et al. 2015). Under the influence of 
abiotic stresses such as salinity, drought, or high temperature, plants require addi-
tional micronutrients (Pandey 2006; Pandey et  al. 2009; Kannaujiya and Pandey 
2013). The important micronutrients such as zinc (Zn), manganese (Mn), copper 
(Cu), iron (Fe), molybdenum (Mo), boron (B), and chloride (Cl) have been studied 
for their part in the survival of plant life during abiotic stresses (Alscher et al. 2002; 
Asad et al. 2003; O’Neill et al. 2004; Beak et al. 2015). When plants that are grow-
ing under abiotic stress conditions receive more light more than their requirements 
for photosynthesis during electron transport and the fixation of carbon dioxide, 
reactive oxygen species (ROS) are formed. The excess accumulation of radiant 
energy and photoreductants in the chloroplast activates molecular oxygen (O2) and 
highly reactive oxygen species (Gibbs and Greenway 2003). The one-step reaction 
of oxygen and hydrogen peroxide generates superoxide ions (O2

•−); such superoxide 
ions when dismutated by the superoxide dismutases generate two reactive oxygen 
species that lead to oxidation of lipid membranes and damage of cellular constitu-
ents. O2

•− and H2O2 react with each other, producing more toxic hydroxyl radicals 
(Haber–Weiss reaction). This reaction is catalyzed by ionic iron (Sharma 2006). 
Free ferrous ion reacts with H2O2 to produce hydroxyl radicals (Fenton reaction):

 Fe H O Fe OH OH2
2 2

3+ + -+ ® + +·  

The ferric ions produced in this reaction, on reacting with superoxide ions, are 
cycled back to ferrous ions. Thus, a small quantity of free inorganic ion accelerates 
the reaction, producing highly toxic hydroxyl radicals that damage the cell. Although 
such micronutrients aid in the production of superoxide radicals by functioning as a 
part of the enzymes of the defense system (Beak et al. 2015), they are important in 
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neutralizing O2
•− by dismutating the radicals to H2O2. During abiotic stress, the 

generation of highly reactive oxygen species damages membrane lipids, protein, 
and DNA, inducing mutations (Ditch and Paull 2012). Some important enzymes 
that contain micronutrients as constituents, such as catalase (CAT), ascorbate per-
oxidase (APX), and superoxide dismutase (Fe-SOD, Mn-SOD, Cu-Zn SOD), act as 
a defense against oxidative stress.

6.2  Micronutrients

Based on quantitative requirements for functional activities of plants, micronutri-
ents are required in smaller quantities (<1 ppm). Many times more macronutrients 
are required by plants (>1 ppm). Micronutrients such as Mn, Cu, Zn, Fe, Mo, B, Cl, 
and Ni have direct roles in plant metabolism (Pandey 2014). Cobalt and nickel have 
been added recently to the list of essential nutrients. The essential role of cobalt in 
nitrogen fixation in leguminous plants (Ahmed and Evans 1960; Dilworth et  al. 
1979) and non-leguminous plants (Hewitt and Bond 1966; Johnson et al. 1996) has 
been reported. Its essential function for rhizobial growth (Cowles et al. 1969), as a 
cofactor of cobalamine (vitamin B6), which functions as a coenzyme in nitrogen 
fixation and nodule growth, has been identified (Dilworth et al. 1979; Jordan and 
Reichard 1998; Pandey and Verma 2010). Gerendas et al. (1999) claimed nickel as 
an essential nutrient, present in substantial concentrations in the xylem and phloem 
sap as chelate (Ni-citrate) and a cofactor of jack bean urease (Gerendas and 
Sattelmacher 1997).

In the periodic table, Fe, Mn, Cu, Zn, Ni, and Co are in the cationic group in 
periods 4 and 5 (Mo). Most of the micronutrients, except B and Cl, are transitional 
elements. These micronutrients create a stable complex with organic ligands. 
They form metalloenzymes that function as catalysts and form a complex with 
proteins. Excepting Ni and Zn, they have two or more oxidation states, and there-
fore participate in oxidation–reduction reactions through electron transport 
(Sharma 2006).

6.3  Functions of Micronutrients

Micronutrients are important constituents of organic structure activators of enzymes 
and electron carriers and are present in the osmoregulation process (Bughio et al. 
2002; Upadhyay et al. 2013): they are involved in cellular metabolism, reproduction 
processes, and protection against abiotic and biotic stress (Asad et al. 2003). The 
essential micronutrients support plant growth and development under abiotic stress 
conditions by their direct role in the growth, metabolism, and biosynthesis of mol-
ecules in the plant cells (Pandey 2014).
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6.3.1  Constituents in Organic Structures

Some micronutrients such as boron and zinc are constituents of the plant cell wall 
(O’Neill et al. 2004), maintaining the function and structural integrity of the plasma 
membrane (Yu et  al. 2003). Membrane structure is stabilized by the binding of 
boron to polyhydroxy groups of the membrane constituents (Brown et al. 2002). 
Zinc has a role in plasma membrane permeability (Cakmak and Marschner 1988) 
and in the protection of plant cells from damage by reactive oxygen species (Cakmak 
2000; Apel and Hirt 2004; Pandey 2014).

6.3.2  Enzyme Action

The main function of micronutrients is catalytic, regulating enzyme-catalyzed 
reactions. Also, micronutrients are constituents of several enzymes (Alscher 
et  al. 2002). The micronutrients zinc, copper, molybdenum, manganese, and 
iron are constituents of oxidoreductases. The metal–enzyme complexes are 
involved in various functions such as photosynthesis, mineral metabolism, res-
piration, the biosynthetic pathway, and the abiotic stress defense mechanism 
(Slooten et al. 1995).

The activities of most hydrolyases are concerned with zinc and manganese; lyase 
activity is catalyzed by iron, zinc, and manganese (Sharma 2006). Micronutrients 
perform catalytic functions by their specificity to binding proteins (e.g., copper oxi-
dases and heme-enzymes), by causing the net charges on the protein, affecting 
enzyme–substrate complexes (for example, the ratio of magnesium and zinc alters 
the optima of phosphatase activity), by forming a bridge between enzyme and sub-
strate, and form as a complex and act as activators of enzymes (e.g., manganese- 
activated decarboxylases and hydrolyases). Micronutrients also cause allosteric 
effects on enzyme activity as they bind at sites other than the enzyme active site 
(Sharma 2006).

6.3.3  Charge Carriers

Micronutrients are cofactors of enzymes; they catalyze redox reactions. Metals 
binding with proteins behave as electron carriers. Therefore, they are important in 
electron transport chains in cellular metabolism, facilitating the transfer of electrons 
from one molecule to another. In photosystem II (PS II), manganese induces charge 
accumulation to produce the reducing power required for photolysis of water to 
initiate the reactions of photosynthesis.

The variable oxidation states of molybdenum catalyze the enzymatic reduc-
tion of the N=N bond in N2 to NH4 (Sharma 2006). At the inner mitochondrial 

S. N. Pandey



157

membrane, the electron transport protein contains copper and zinc as cofactors. 
The responsible enzyme catalyzes reduction of NAD+ to NADH in the mitochon-
drial matrix. Cu and Fe are two important electron carriers in the electron trans-
port system. At the start of photosynthesis in PS II, manganese is important in the 
oxidation of water as Fe and Cu participate in electron transport through PS II 
and PS I and in coordinating the flow of electrons from PS II to PS I (Ono and 
Onone 1991).

6.3.4  Osmoregulation

Soil–plant relationships usually exist depending only on the water status in both. 
Micronutrients influence these plant–water relationships. Chlorine has a very 
important role in osmoregulation, maintaining the osmotic potential of the cell and 
turgor-dependent extension growth of cells. Chlorine and potassium induce turgor 
changes to regulate the stomatal opening, which responds to the fluxes of Cl− and 
K+ ions across the leaf guard cell plasma membrane (Alaya and Palmgren 2001). 
Under salt stress conditions, chlorine functions in the osmoregulatory process 
(Henstein and Felle 2002).

6.3.5  Secondary Metabolism

Growth hormones and micronutrients are involved in many biosynthetic pathways. 
Many enzymes catalyze reactions in biosynthetic pathways, and secondary metab-
olism contains micronutrients as activators. The shikimate pathway produces pre-
cursors important in the synthesis of aromatic amino acids. In the shikimate 
pathway, the initial reaction involves the condensation of phosphoenolpyruvate 
and erythrose- 4- phosphate to the synthesis of 3-deoxy-d-arabinoheptulosonolate-
7-phosphate (DAHP); the enzyme DAHP synthase acts as catalyst in initiation of 
the shikimate pathway activated by Mn (Herrmann and Weaver 1999). The enzymes 
involved in synthesis of lignin contain Fe and Zn. Plant growth hormone gibberel-
lins are recognized as signaling molecules in plants (Sun and Gubler 2004). 
Synthesis of gibberellins involves several enzymes activated by a number of 
micronutrients. Kaurene synthase catalyzes the ent-kaurene precursor of synthesis 
of gibberellins activated by Mn2+, Co2+, or Mg2+ (Chapple 1998; Schomburg et al. 
2002). The enzymes that are involved contain Fe as cofactor. A non-heme enzyme, 
lipoxygenase, contains iron (Feussner and Wasternack 2002). The enzymes 
involved in the biosynthesis of ethylene and abscisic acid have micronutrient 
cofactors (Romao et al. 1995; Prescott and John 1996). The synthesis of anthocy-
anin and flavones involves catalysis by cytochrome P450 heme monooxygenase 
(Chapple 1998).
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6.3.6  Protective Role

Micronutrients detoxify the activity of ROS, the reactive oxygen species generated 
by abiotic stress or for other reasons in the cell (Romero et al. 2017), induce oxida-
tive stress, and have a role in signal transduction (Apel and Hirt 2004; Ma et al. 
2017). The enzyme proteins with micronutrient cofactors participate in the defense 
antioxidant system, with a significant role in protection against damage by the gen-
eration of ROS (Ma et al. 2017). The enzyme SOD, such as Fe-SOD, Cu-Zn-SOD, 
and Mn-SOD, have micronutrient cofactors that provide defense against highly 
reactive oxygen species (Alscher et  al. 2002). In the chloroplast, the activity of 
Fe-SOD and Cu-Zn SOD and in mitochondria the activity of Mn-SOD are more 
prominent. Therefore, the superoxide ions are rapidly converted to H2O2 in a high 
concentration in the cytosol. Elevated H2O2 concentrations in cell are highly toxic, 
prevented by conversion to water molecules. Such detoxification reactions are cata-
lyzed by APX and CAT. Ascorbate as a specific electron donor reduces H2O2 to 
water with the production of monodehydroascorbate (Asada 1997). The ascorbate–
glutathione cycle and APX activity function as potent scavengers of hydrogen per-
oxide, which is highly concentrated in peroxisomes, and carry out the breakdown of 
hydrogen peroxide. The formation of glyoxlate from glycolate also contributes 
H2O2. Antioxidant enzymes containing the micronutrients Fe, Cu, Mn, or Zn as 
cofactors include SOD, APX, and CAT. These enzymes are significant in the detoxi-
fication of ROS (Jaleel et al. 2009).

When abiotic stress conditions lead to micronutrient deficiency, the metal cofac-
tors are less available to antioxidant enzymes, which weakens the defense system in 
plants (Pandey 2014). The role of micronutrient Zn in the defense system of plants 
against oxidative stress has been proved (Cakmak 2000; Beak et  al. 2015). The 
micronutrient iron is a cofactor of chlorine monooxygenase in gylcine betaine- 
accumulating plants. Glycine betain acts as an osmoprotectant; the first step of its 
biosynthesis is catalyzed by chlorine monooxygenase (Sharma 2006). During abi-
otic stresses such as high temperature and high salinity, glycine betaine contains Fe 
as a cofactor stabilizing the quaternary structure of proteins and maintaining the 
structural integrity of cellular membranes (Gorham 1995). Micronutrients also pro-
vide protection to the plants from pathogens (Huber and Graham 1999). Some 
micronutrients such as Zn, B, and Mn are involved in the synthetic process of lig-
nins and suberins or produced antioxidants, which strengthen the cell walls for pro-
tection against pathogens (Mehdy 1994; Orozeo-Cardinas et  al. 2001; Cao et  al. 
2016). The homologue genes AtTZF1, AtTZF2, and AtTZF3 have been identified in 
evolutionarily distant plant species regulated by salt stress (D’Orso et al. 2015).

6.3.6.1  Iron

Iron exists in two oxidative states (Fe2+ and Fe3+), and participates in oxidation–
reduction reactions and in electron transport. Iron forms the prosthetic group of 
several enzymes such as catalase, peroxidases, and cytochrome c oxidase. Iron is 
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involved in detoxification of ROS generated during abiotic stress conditions. Iron 
homeostasis is significant to sustain metabolism during abiotic stresses. During oxi-
dative stress, iron enhances the tolerance of plants through formation of the antioxi-
dant system. Overexpression of choline monooxygenase and a cytochrome P450 
monooxygenase helps establish osmoprotection against high temperatures and salt 
stress. Reduction of Fe3+ and Fe2+ at the plasmalemma promotes various mecha-
nisms for the protection of cell metabolism during abiotic stresses (Rabotti and 
Zocchi 1994). A variety of non-heme iron enzymes contain Fe cofactor from an iron 
sulfur cluster (Johnson et al. 2005).

Several transporter genes for iron transport have been identified from IRT1 (iron 
regulator transporter 1) of the ZIP family in Arabidopsis (Eide et al. 1996). It has 
been reported that the IRTI mutant line needs a high Fe supply from the soil to the 
plants (Vert et al. 2002). The gene IRT2 in Arabidopsis responsible for Fe transport 
is activated during Fe deficiency (Grotz et  al. 1998). Two environmental DNAs 
(eDNAs), Le IRT1 and Le IRT2, are expressed in the Fe-deficient roots (Eckhardt 
et al. 2001). Nramp family transporters (Nramps 1, 3, 4) are involved in uptake and 
vascular transport of Fe and other co-substances (Cd and Mn) in plants (Curic et al. 
2000; Thomine et al. 2003). In the pea, the Fe3+ chelate reductase gene FRO1 exhib-
its expression in response to iron deficiency (Waters et al. 2002).

The peroxidase enzymes, encoded by a large multigene family, catalyze the dis-
mutation of H2O2 to water. In abiotic stress, iron is protective for plants against 
reactive oxygen species. Although iron is involved in the generation of ROS (Becana 
et al. 1998), as a constituent of enzymes it also aids in the detoxification of O2 by 
dismutation to H2O2. The heme enzymes CAT and APX act as scavengers of H2O2 
in the cell. Iron is a cofactor of Fdx-choline monooxygenase, which is involved in 
the synthesis of glycine betaine, an osmoprotectant of plants during high tempera-
ture and high salinity conditions (Gorham 1995).

6.3.6.2  Manganese

Manganese exists in several oxidation states in plants: Mn2+, Mn3+, Mn4+, and Mn5+. 
The most dominant form is manganous, Mn2+. The manganese–enzyme complex 
catalyzes cellular metabolism and is also involved in carbon dioxide fixation in 
crassulacean acid metabolism or CAM photosynthesis and C4 plants. It also detoxi-
fies oxygen free radicals. Manganese is a constituent of more than 30 enzymes 
(Burnell 1988). The specific role of Mn in some enzymes in plants is neutralizing 
the adverse effects of abiotic stress as Mn superoxide dismutase (Mn-SOD), phos-
phoenol pyruvate carboxy kinase (PEPCK), NAD+-malic enzyme, allantoate ami-
dohydrolase, isocitrate dehydrogenase (IDH), phosphoenol pyruvate carboxylase 
(PEP-case), enolase, etc.

Mn-SOD is a Mn3+-containing dimeric protein binding to substrate (O−
2), and 

manganese undergoes oxidation–reduction (Mn2+↔Mn3+). This metallic protein func-
tions in the antioxidant defense system of mitochondria in cells, forming a site for the 
generation of ROS. Manganese as a constituent of PEPCK, and NAD+-malic dehy-
drogenase assists the fast growth of plants when grown in drought stress conditions, 
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particularly C4 plants (Chen et al. 2002). The PEPase activated by Mn2+ has a key 
biosynthetic role in plants, involved in the biosynthesis of the amino acids aspartate 
and glutamate. It also functions as a CO2-concentrating mechanism in C4 plants under 
high drought stress conditions. The function of Mn in the oxidation of water in PS II 
is well established (Ono and Onone 1991; Hoganson and Bobcock 1997). Manganese 
is an activator of arginase, involved in the synthesis of polyamines in plant growth and 
development (Sharma 2006), and in detoxification of active oxygen species formed 
during various abiotic stress conditions.

Under salt stress conditions, Mn deficiency is expressed by plants because of its poor 
uptake (Sharma 2006). In plants, Mn deficiency causes changes in enzyme activity. 
Mitochondrial Mn-SOD is a constituent of the antioxidant system, in which Mn pro-
vides protection against oxidative damage (Slooten et al. 1995). The enzyme Mn-SOD 
is also suggested to contribute to drought tolerance in plants. An increase in Mn-SOD 
expression in plants on the induction of drought-like conditions and a decrease in its 
expression on rehydration of the plants have been described (Wu et al. 1999, 2002).

6.3.6.3  Zinc

Zinc has only one oxidation state (Zn2+), and therefore it is not involved in oxidore-
ductase activity. It has a functional and structural role in plants. Zinc ions bind to 
nitrogen- or sulfur-containing ligands through ionic bonds in tetrahedral geometry. 
It is a cofactor of more than 300 enzymes (Sharma 2006). In heavy metals stress 
conditions, at its excess level peptides form metalloproteins, phytochelatins and 
metallothioneins, which contribute tolerance against the excess accumulation of 
heavy metals in the plant tissues. Zinc is important in the prevention of water stress 
and also protects plant cells against damage by reactive oxygen species. Under salt 
stress conditions (saline, sodic, or calcareous soils), plants exhibit Mn deficiency 
(Pandey 2014; Pandey et al. 2009). Several transporters belonging to the ZIP (ZRT- 
IRT- like proteins) and CDF (cation diffusion facilitator) families are involved in 
transport of zinc (Guerinot 2000). Zinc transporter genes ZIP1, 2, 3, and 4 have 
been isolated (Guerinot 2000; Moreau et al. 2002) from Arabidopsis. Another gene 
responsible for zinc transport, ZNT1, has been cloned from the high Zn or Cd accu-
mulator plant Thlaspi caerulescens (Assuncao et  al. 2001). Under excess Zn in 
growth medium, a cation diffusion facilitator family transporter, ZAT, isolated in 
Arabidopsis transport of Zn (Van der Zaal et al. 1999), leads to increased accumula-
tion of Zn. ZAT transport of Zn causes vascular/vacuolar sequestration of Zn to 
provide tolerance against excess Zn stress and contributes homeostasis (Van der 
Zaal et al. 1999). Zinc inhibits the production of ROS through inhibition of NADPH 
oxidase activity on the plasma membrane (Cakmak and Marschner 1988). Under 
salt stress conditions (saline, alkali, or calcareous soils), Zn deficiency induces the 
activation of RNAase (Bisht et al. 2002). In areas of high temperature and low pre-
cipitation, soils with high pH (>7.5) are deficient in Zn (Pandey 2014). Plants grown 
in such conditions show a decreased rate of photosynthesis (Sharma et al. 1994) and 
changes in chloroplast structure and CO2 fixation (Shrotri et al. 1978).
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A decrease in photosynthesis under conditions of Zn deficiency caused by 
decreased activity of carbonic anhydrase and disorganization of chloroplast thyla-
koids has been demonstrated (Henriques 2001). Some important enzymes contain-
ing Zn as an constituent are carbonic anhydrase (CA), Zn-SOD, alcohol 
dehydrogenase (contains two Zn atoms per molecule), carboxypeptidases, and 
DNA-dependent polymerases. Carbonic anhydrase catalyzes the reversible conver-
sion of CO2 to bicarbonate, a substrate in the photosynthesis of C4 plants for carbox-
ylation reaction catalyzed by phosphoenolpyruvate carboxylase. In C3 plants, CA is 
localized in the chloroplast of mesophyll cells. Zn-superoxide dismutase is involved 
in the defense system against ROS formed by abiotic stress. Anaerobic stress condi-
tions such as flooding enable the plant root tissues to temporarily meet their energy 
need from ethanolic fermentation (Gibbs and Greenwary 2003; Ravichandran and 
Pathmanabhan 2004). Ethanol is formed during glycolysis with catalytic activity of 
alcohol dehydrogenase. A Zn-metallo-enzyme carboxypeptidase catalyzes the 
hydrolysis of the peptide bond at the C-terminal end by activating a water molecule. 
The activity of several enzymes is inhibited during abiotic stresses, such as excess 
basic salts that cause Zn deficiency.

A plasma membrane H+-ATPase of maize roots uses Zn as the substrate and 
functions as Zn-ATPase (Sharma 2006). Zinc is also a constituent of some regula-
tory proteins that control gene expression. The zinc finger forms a structural motif 
of the DNA-binding region of the transcriptional regulatory proteins (Berg and Shi 
1996). Abiotic stresses such as salt and high temperature in arid and semi-arid 
regions cause Zn deficiency, which causes damage to the structural integrity of bio-
molecules responsible for the leakage of K+, amino acids, sugars, and phenolics 
from the cell (Lindsay et al. 1989). Zinc protects the –SH groups of plasma mem-
brane proteins from oxidative damage (Beak et al. 2015). Production of ROS under 
abiotic stress conditions that damage the plant cells can be prevented by 
Zn-metalloprotein (Cakmak 2000). Zinc prevents the production of ROS either by 
their rapid detoxification, or by inhibition of the activity of membrane-bound 
NADPH oxidase, which catalyzes the production of superoxide ions. A high accu-
mulation of superoxide ions (O2

•−) leads to the formation of hydroxyl (•OH˙) radi-
cals (Haber–Weiss reaction), which are many times more reactive then O2

•− and may 
cause more severe damage to the cellular membrane.

6.3.6.4  Copper

Copper is present in organic complexes in soils. Its divalent form (Cu2+) is adsorbed 
to soil organic matter, carbonates, hydrous oxides of Fe, Al, and Mn, and forms 
organic complexes with sulfur, oxygen, and nitrogen atoms. The formation of Cu–
organic complexes causes copper deficiency in the soil. In the alkaline pH range, 
copper availability also decreases (Pandey 2006). Because of its reversible 
change in oxidation state, copper does not function in oxidation–reduction 
reactions. Copper as a constituent of many enzymes functions as an electron carrier 
catalyzing oxidation–reduction processes in cellular metabolism (Sharma 2006). 
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Protein plastocyanin and cytochrome c oxidase containing Cu function as electron 
carriers in the cell. Copper is also useful in detoxification of superoxide radicals, 
pollen fertility, and lignification of plant cell walls. Recently, the five putative copper 
transporters COPT1, COPT2, COPT3, COPT4, and COPT5 have been identified in 
Arabidopsis (Sancenon et al. 2003). Copper transport takes place as a complex with 
the amino acids histidine, asparagine, and glutamine acid observed in soybean and 
tomato (White et  al. 1981; Loneragen 1981). Metallochaperones are intracellular 
metal transport proteins that transport copper ions from the cytoplasm to the func-
tional sites (O’Halloran and Culotta 2000) or functional proteins such as Cu-Zn 
SOD (Huffman and O’Halloran 2001). A dimeric blue copper protein ascorbate oxi-
dase catalyzes the dehydrogenation of ascorbate to dehydroascorbate, coupled to the 
four-electron reduction of molecular oxygen to water. In this enzyme, eight copper 
ions (Cu2+) are bound per mole enzyme proteins of wide occurrence in the cytoplasm 
of plant cells and cell walls. Catechol oxidase contains four copper ions per mole; it 
catalyzes the oxidation of o- or p-diphenols to quinines coupled to the reduction of 
molecular oxygen to water. Such enzymes are involved in the biosynthesis of lignin 
and synthesis of plastoquinone involved in PS II electron transport (Ayala et  al. 
1992). The superoxide dismutase (Cu-Zn SOD) carries out the disproportionation of 
reactive oxygen species to H2O2 and O2. The reactive oxygen species forms mostly 
in response to abiotic stresses. Cu-Zn SOD detoxifies the damage of ROS.

Similar to Cu-Zn SOD, APX bound to the thylakoids in vicinity of the PS II 
(Miyake et  al. 1993) catalyzes the ascorbate base reduction of H2O2 to water. 
Cytochrome c oxidase contains three copper ions and two heme molecules as cofac-
tors. It catalyzes the reduction of molecular oxygen to water in the terminal step of 
mitochondrial electron transport. Copper is also present as a cofactor in nitrite and 
nitrous oxide reductases of denitrifying bacteria. As a constituent of plastocyanin, 
copper links PS II and PS I and their cooperative functioning in noncyclic transport 
of electrons from water to NADP. Copper bound in some polypeptides maintains the 
lipid environment favoring the movement of plastoquinone molecules during PS II 
electron transport (Baron et al. 1995; Maksymiec 1997).

During abiotic stresses such as those from saline, alkaline, or calcareous soil, 
coarse-textured soil in arid and semi-arid regions mostly shows copper deficiency in 
plants (Pandey 2006). Copper deficiency in the soil causes reduced chlorophyll con-
tent and photosynthetic rate in plants (Pandey et al. 2002) and failure in the plant 
defense system (Sancenon et  al. 2003), because the supply of copper affects the 
maturation of seeds (Nautiyal and Chatterjee 1999), increases the activity of inver-
tase and amylase, and decreases the seed reserves of starch and proteins (Nautiyal 
et al. 1999).

6.3.6.5  Molybdenum

Molybdenum occurs in soil predominantly as molybdate anion (MoO4
2−), which is 

stable at pH 4. Polymerization occurs above and below this pH. Molybdenum exists 
in several oxidation states: Mo(II), Mo(III), Mo(IV), Mo(V), Mo(VI). The most 

S. N. Pandey



163

stable oxidation state is the hexavalent form. Molybdenum has a high affinity for 
oxygen- and sulfur-containing groups. It is the cofactor of several enzymes either 
singly or in combination with other elements such as Fe, Cu, and S (Hille 1996; Sigel 
and Sigel 2002). Molybdenum is an essential metal for the process of nitrogen fixa-
tion by bacteria. The uptake of Mo involves the same transporter gene as is involved 
in the transport of phosphate (Heunwinkle et al. 1992; Marschner 1995). Llamas et 
al. (2000) suggested the involvement of more than one transporter in Mo uptake in 
mutant analysis of Chlamydomonas. Molybdenum is the cofactor of several enzymes 
such as oxidase-catalyzed redox reactions (Stiefel 1996). The molybdenum- 
containing enzymes nitrate reductase and xanthine oxidase catalyze the reactions of 
nitrogen and its compounds, and aldehyde oxidase catalyzes the reactions of the 
biosynthetic pathway of abscisic acid (Taylor 1991) and auxins (Koshiba et al. 1996). 
Several enzymes containing Mo as cofactor are also associated with additional 
cofactors such as Fe-S, iron, and flavin (Mendel and Hansch 2002). Nitrate reductase 
catalyzes electron transfer from NAD(P)H to molecular oxygen, producing superox-
ide ions and to nitrite, producing nitric oxide (Kaiser et al. 2002; Rockel et al. 2002).

6.3.6.6  Boron

In soil solution, boron is present in several forms: BO2
−, B4O7, BO3, H2BO3

−, and 
B(OH4). Boron exists in three valency states and has a strong affinity for oxygen. In 
plants, boric acid forms complexes with hydroxyl radicals of compounds (Loomis 
and Durst 1991). The role of B in cross-linking of cell wall polysaccharides has 
been observed by O’Neill et al. (2004). The uptake of B from soil is both active and 
passive (Pfeffer et al. 1999; Dordas and Brown 2000). If boron is adequately avail-
able in soil, its uptake is passive, but when boron is in short supply, it is taken up by 
an active metabolic process (Pfeffer et al. 1999; Dannel et al. 2000). Boron forms 
diester bonds with diol groups of polysaccharides for cell wall structures (Hu et al. 
1997). Borate provides tensile strength to cell walls (O’Neill et al. 2001). Boron 
deficiency affects the accumulation of cytoskeletal protein in maize (Yu et al. 2003). 
Boric acid prevents the oxidation of phenols by forming boron–phenol complexes 
(Cakmak et al. 1995). Cara et al. (2002) suggest that boron ATPase and ferric che-
late reductase function in the plasma membrane in severe boron deficiency (Brown 
et al. 1999). Boron deficiency decreases photosynthetic oxygen evolution (Kastori 
et al. 1995) and decreases the rate of PS II electron from oxidative damage caused 
to the thylakoid membranes (El-Shintinawy 1991). Boron is also involved in carbo-
hydrate metabolism (Sharma 2006). Inhibition of nitrate reductase activity and 
accumulation of nitrate caused by boron deficiency were reported by Camacho-
Christobal and Gonzalez-Fontes (1993). Boron deficiency occurs during abiotic 
stresses such as high salt, high temperature, and low water availability, which 
decrease nucleic acid concentration and the enzymes involved in nucleic acid 
metabolism (Agarwala et al. 1991).

Boron is involved in the synthesis of polyphenols, lignin, flavonoids, and alka-
loids (Dixit et al. 2002). Under oxidative stress, boron deprivation in tobacco cells 

6 Biomolecular Functions of Micronutrients Toward Abiotic Stress Tolerance in Plants



164

causes overexpression of early salicylate-inducible glucosyltransferase and 
glutathione- S-transferase genes (Kobayashi et al. 2004) for a defense system against 
oxidation stress from boron.

6.3.6.7  Chlorine

Chlorine has a single stable oxidation state (Cl−). It is involved in more than 130 
chlorine-containing organic compounds in plants. Chlorine is a component of the 
manganese cluster of PS II that catalyzes the oxidation of water. It is also involved 
in the activity of auxin (Sharma 2006). In living cells, it maintains turgor and osmo-
regulation; chlorine is also involved in the regulatory mechanism of enzyme action 
and the functioning of the stomata (Xu et al. 2000). In soil, chlorine is present as 
chlorine (Cl−) ions and occurs naturally as organochlorine. Compound salts of chlo-
rine are highly soluble and mobile in the rhizosphere (White and Broadley 2001). 
Environmental contaminants from various sources also contribute Cl− in soil and 
plants (Pandey 2014). The transport of Cl− across plasma membranes involves an 
active component (Felle 1994), proton pump (H+ATPase), and a passive component 
(facilitates diffusion) mediated through anion channels (Skerrett and Tyerman 
1994). Under high concentration of Cl− (high saline), passive transport dominates, 
and at its low concentration active transport proceeds (White and Broadley 2001). 
In a study on transgenic Arabidopsis by Lorenzen et al. (2004), under saline condi-
tions chloride ion influx is passive through symport (anion transport coupled with 
the transport of cation) protein channel. The transport of chloride from root to shoot 
takes place through the xylem, which is influenced by the rate of shoot growth and 
transpiration (Storey 1995; Moya et al. 1999). Under salt stress conditions, chloride 
is phloem mobile (Lohaus et  al. 2000). In the Mn-containing oxygen condition 
complex of PSII, chlorine is a constituent (Hoganson and Babcock 1997). Thus, 
deficiency of Cl decrease oxygen evolution of photosynthesis and also reduces cell 
division and plant growth as well as affecting stomatal functioning and carbon diox-
ide exchange (Sharma 2006).

During abiotic stress, Cl is important in the osmoregulatory process in plants. In 
plant roots, Cl functions as an osmotically active solute (Flowers 1988). Chloride 
accumulates in the extension zone of the growing root and the shoot apex at higher 
concentrations, promoting the turgor-induced extension growth of root and shoot 
apices. Chlorine does not act directly as a catalyst. It stimulates the enzyme aspara-
gine synthetase, which catalyzes the process of asparagine synthesis involving glu-
tamate. In the conversion of aspartate to asparagine, the process is also catalyzed by 
asparagine synthetase. Asparagine has a role in the storage of nitrogen and its trans-
port from source to sink; it is found in the phloem sap of several legumes. The 
deficiency of Cl− restricts the area of the young leaves by reduction in cell division 
rate and decrease in the osmoticum.

Under abiotic stress conditions such as hot sunny days, excess salt in growth 
medium, etc., the wilting of leaf margins is very prominent (Sharma 2006), possibly 
because of the impairment of osmoregulation.

S. N. Pandey



165

6.4  Conclusion

Plants are continuously facing changes in environmental constituents that cause abi-
otic and biotic stresses. Also, plants growing in the large arable areas of the world 
are affected by imbalances in micronutrients. The essential micronutrients such as 
zinc, copper, manganese, iron, boron, molybdenum, and chlorine, required in 
smaller quantities, have a vital role in plant growth and in protection against various 
stresses. During abiotic stresses such as drought, salinity, deficiencies and toxicities 
of nutrients, and extremes of temperature, the status of micronutrients in soil and 
plants is important to the functions of osmoprotection, enzyme activity, biosynthe-
sis of cellular structures, charge carriers, secondary metabolism, growth hormones, 
and signaling, etc. The ROS produced in plant cells under abiotic stress conditions 
damage biochemical constituents and affect physiological activities in the plants. 
Plants face abiotic stresses, and micronutrients protect them as being constituents of 
several enzymes [such as CAT, APX, SOD (Zn-SOD, Zn-Cu SOD, Fe-SOD, 
Mn-SOD] involved as antioxidants in the defense system. The study concluded that 
attention to the status of micronutrients in both soil and plants may assist in the 
management of abiotic stresses to achieve normal growth and yield of plant 
products.
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Chapter 7
Phosphorus Nutrition: Plant Growth 
in Response to Deficiency and Excess

Hina Malhotra, Vandana, Sandeep Sharma, and Renu Pandey

Abstract Phosphorus (P) is an essential element determining plants’ growth and 
productivity. Due to soil fixation of P, its availability in soil is rarely sufficient for 
optimum growth and development of plants. The uptake of P from soil followed by 
its long-distance transport and compartmentation in plants is outlined in this chap-
ter. In addition, we briefly discuss the importance of P as a structural component of 
nucleic acids, sugars and lipids. Furthermore, the role of P in plant’s developmental 
processes at both cellular and whole plant level, viz. seed germination, seedling 
establishment, root, shoot, flower and seed development, photosynthesis, respira-
tion and nitrogen fixation, has been discussed. Under P-deficient condition, plants 
undergo various morphological, physiological and biochemical adaptations, while P 
toxicity is rarely reported. We also summarize the antagonistic and synergistic inter-
action of P with other macro- and micronutrients.

Keywords Abiotic stress · Macronutrients · Nutrient deficiencies · Plant metabo-
lism · Soil fertility

7.1  Introduction

Next to nitrogen (N), phosphorus (P) is a vital nutrient for plant growth and produc-
tivity. Its concentration in plants ranges from 0.05% to 0.5% of total plant dry 
weight. Though concentration of P in soil is 2000-fold higher than the plant, its fixa-
tion in the form of aluminium/iron or calcium/magnesium phosphates renders it 
unavailable for uptake by plants. Hence, plants often face the problem of P defi-
ciency in agricultural fields. Diagnosing its deficiency is a tedious task, since crops 
generally display no visual symptoms at an early stage. Its deficiency is often con-
fused with N since the veins of young leaves appear red under both deficiencies. 
However, no general chlorosis is seen in P-deficient plants. P deficiency reduces 
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plant growth which is attributed to either decrease in photosynthesis or increase in 
energy investment. Its limitation negatively impacts crop yield and quality. It has 
been estimated that P deficiency reduces the crop yields on 30–40% of the world’s 
aerable land. This necessitates the use of a large amount of phosphatic fertilizers to 
correct its deficiency. The phosphorus use efficiency (PUE) is 15–20% in agricul-
tural fields indicating that most of the soil-applied P remains unavailable to plant 
and leaches into ground and surface water leading to eutrophication (Correll 1998; 
Smith 2003).

Phosphorus plays an important role in an array of cellular processes, including 
maintenance of membrane structures, synthesis of biomolecules and formation of 
high-energy molecules. It also helps in cell division, enzyme activation/inactivation 
and carbohydrate metabolism (Razaq et al. 2017). At whole plant level, it stimulates 
seed germination; development of roots, stalk and stem strength; flower and seed 
formation; crop yield; and quality. In addition, availability of P increases the 
N-fixing capacity of leguminous plants. Hence, P is essential at all developmental 
stages, right from germination till maturity.

Phosphorus is an important constituent of energy-rich compounds, including 
adenosine triphosphate (ATP), cytidine triphosphate (CTP), guanosine triphosphate 
(GTP), uridine triphosphate (UTP), phosphoenol pyruvate and other phosphory-
lated intermediate compounds. Hence, it supplies energy to drive various cellular 
endergonic processes. Being a constituent of nucleic acids (DNA, RNA), it is essen-
tial for reproduction and protein synthesis. In order to maintain its role under inor-
ganic phosphate (Pi-deprived conditions), plants undergo various morphological, 
physiological and biochemical adaptations. These include alterations in root archi-
tecture, formation of cluster roots, shoot development, organic acid exudation and 
alternative glycolytic and respiratory pathways (Vance et al. 2003). In this chapter, 
we present an overview of the uptake, translocation and the role played by P in vari-
ous processes both at cellular and whole plant level.

7.2  Uptake, Long-Distance Transport 
and Compartmentation of Phosphorus

Uptake is the first step of the pathway involved in the movement of any element 
from soil to roots and other plant parts. The availability of P in soil solution is 
largely decided by soil components, including soil pH, texture, concentration of P, 
metals and anions (Sanyal and De Datta 1991; Hinsinger 2001). The strong interac-
tion of P with soil components favours the flow of P from soil to roots via diffusion, 
rather than by mass flow. Two pools of P occur in soil, organic (Porg) and inorganic 
(Pi). About 20–80% of the soil P exists in organic form, of which inositol hexaphos-
phate (phytic acid) is a major component. Rest of the P is present in inorganic form. 
The activity of soil microbes releases the immobile forms of P to soil solution which 
is then made available to the plants. Uptake of P is largely favoured between pH 5.0 
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and 6.0 where it predominates in the monovalent form (H2PO4
−) (Furihata et  al. 

1992). Various inorganic forms of P, viz. H2PO4
−, HPO4

2− and H3PO4, occur in soil 
solution at a concentration of 0.1–10 μM, which is far lower than in plant tissue 
(5–20 mM) (Hinsinger 2001; Shen et  al. 2011). Due to concentration difference 
between soil and plant, P is actively taken up by transporters present in root plasma 
membrane against the concentration gradient. Moreover, to increase P uptake, plant 
roots and microbes excrete various organic acids and extracellular phosphatases, 
thereby acidifying the rhizosphere and causing easy movement of P inside the root 
system (Comerford 1998; Hinsinger 2001). After entering the root surface, P fol-
lows a symplastic route to reach xylem and then from xylem to aerial parts of the 
plant. The inter- and intracellular transport of P from xylem to the cytoplasm and 
further to vacuole is an energy-dependent process (Ullrich and Novacky 1990).

Phosphorus uptake and transport is mediated by the presence of high- and low-
affinity transport systems that vary in their Michaelis-Menten constant (Km) values 
and operate at low and high P concentrations, respectively (Furihata et al. 1992; 
Smith et al. 2000; Guo et al. 2002). To prevent membrane hyperpolarization, the 
transport of P is accompanied by one or two protons or singly (Na+) or doubly 
charged cation (Reid et al. 2000; Sakano 1990; Schachtman et al. 1998). Many P 
transporters have been identified in Arabidopsis (PHT1–4), barley (Hordeum vul-
gare PHT1), rice (Oryza sativa PHT1) and wheat (Triticum aestivum PHT1 and 2) 
which are involved in the uptake of P from soil and translocation from root to xylem, 
phloem, leaf, seed, chloroplast, mitochondria and Golgi body (Rausch and Bucher 
2002; Miao et al. 2009; Huang et al. 2011; Liu et al. 2013). These are primarily 
expressed in root and shoot vascular system (Hasan et  al. 2016). Many genes, 
including transcription factors and miRNA, are induced by phosphate starvation 
(IPS) and aid in the regulation of P homeostasis. These include phosphate respon-
sive (PHO), an E3 ligase (SIZ1), phosphate starvation response (PHR), phosphate 
transporter traffic facilitator (PHF), WRKY, ZAT6 and miR399 (Miura et al. 2005; 
Devaiah et al. 2007; Liu et al. 2010a; Bayle et al. 2011; Lin et al. 2014; Wang et al. 
2014; Su et al. 2015). However, the transporters involved in recycling of P from 
older to young leaves are not fully understood. Also, the genetic regulation, tempo-
ral dynamics and contribution of these transporters to crop tolerance are poorly 
known under low P conditions. Hence, further studies are needed to attain the com-
plete understanding of the mechanism underlying P uptake, utilization and transport 
under P-deficient conditions.

Pi is important in many enzyme-catalysed reactions inside the cell cytoplasm. 
Hence, maintenance of its concentration in stable form is extremely essential. It 
constitutes 0.05–0.5% of the plant dry weight, which is far lower than that of N and 
K (Vance et al. 2003). The Pi pool is determined by various factors, such as pH of 
cellular compartment and chemical form and functional behaviour of P. For exam-
ple, in slightly basic cytoplasm, Pi is equally partitioned between H2PO4

− and 
HPO4

2−, while more acidic vacuole and apoplast contain H2PO4
− as the dominant 

form. The chemical form of P, as P-esters or P-lipids, changes with tissue type, age 
and P availability. The existence of P species also varies with the functional prop-
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erty, viz. metabolic, storage or cycling form. The cellular compartmentation of P 
has been studied with various radioactive and NMR spectroscopy techniques 
(Bieleski 1973; Ratcliffe 1994). These studies have confirmed the presence of 1–5% 
of the total Pi in cytoplasm while vacuole being the major storage site of P.

7.3  Phosphorus Deficiency and Excess

Eroded, weathered and calcium carbonate-rich soils are the common sites of P defi-
ciency. About 80–90% of the soil P is unavailable to the plant due to its fixation as 
insoluble Ca-P, and hence plant P deficiency is a common problem. Young plants 
have a higher demand of P in comparison to mature plants which is why the defi-
ciency symptoms are more prominent in the former. Under low P conditions, the 
plant appears stunted with dark green foliage and reduced leaf surface area. 
Decreased leaf expansion and hence smaller leaves occur as a result of the reduced 
cell division and enlargement. The older leaves acquire purplish pigmentation due 
to more anthocyanins synthesis under limited P conditions. Other symptoms include 
upward tilting and curling of leaves and brown internal specks in tubers. Plant matu-
rity is also delayed under P limitation; however, these changes vary with the crop 
species involved (Peaslee 1977). The reduction in shoot growth is comparatively 
higher than the root growth, hence resulting in a lower shoot-to-root ratio.

Plants respond to P limitation by undergoing various physiological, biochemical 
and metabolic changes. P-deficient leaves allocate more carbon (C) from shoots to 
roots, thereby enhancing the overall root growth. Being the primary source of nutri-
ents for plant growth and development, roots respond largely to P availability. To 
cope up with P limitation, roots induce various chemical and biological changes, 
which intensify the availability of soil P (Hinsinger 2001). The major ones include 
alterations in root length, biomass, formation of cluster roots and release of organic 
substances for more P availability.

Higher concentration of P is often found in the topsoil and it decreases with soil 
depth. Many studies depicted changes in the root architecture, including morphol-
ogy, topology and distribution patterns, which helps to facilitate the uptake of P 
from topsoil (Charlton 1996; Ge et al. 2000; Liao et al. 2001; Lynch and Brown 
2001; Williamson et  al. 2001). These changes include reduction of primary root 
length while enhancement of lateral root density, root biomass, root hair density and 
length, formation of cluster roots, along with greater root penetration capacity 
(Jungk 2001; Williamson et al. 2001; Péret et al. 2011). These changes are induced 
by alteration in carbohydrate distribution between roots and shoots as well as by 
signalling of hormones, sugars and nitric oxide (Nacry et  al. 2005; Vance 2010; 
Wang et  al. 2010). In addition to alterations in root architecture, other changes 
include acidification of rhizosphere, exudation of low molecular weight organic 
acids, secretion of acid phosphatases and photosynthesis-related enzymes and sym-
biotic and free-living associations with mycorrhizal fungi and plant growth-promot-
ing bacteria (Neumann and Römheld 2002; Singh and Pandey 2003; Chen et  al. 
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2006; Smith and Read 2008; Zhang et  al. 2010; Vengavasi and Pandey 2016b). 
Exudation of carboxylates (citrate and malate) enhances the mobility of sparingly 
soluble P by chelation and ligand exchange (Vance et  al. 2003; Hinsinger et  al. 
2005; Wang et  al. 2007). The C required for increased organic acid synthesis is 
provided by both photosynthetic CO2 fixation as well as by CO2 fixation in root. 
Enhanced activities of phosphoenolpyruvate carboxylase (PEPC), malate dehydro-
genase (MDH) and citrate synthase (CS) and reduced activities of aconitase (AC) 
have been reported in various crops (Neumann et al. 1999; Uhde-Stone et al. 2003; 
Vengavasi et al. 2016). As a result of increased organic acids secretion under P defi-
ciency, root acidification might occur by the release of protons that decreases the 
rhizospheric pH by 2–3 units (Marschner 1995; Yan et  al. 2002; Vengavasi and 
Pandey 2016a). This increases the availability of sparingly soluble soil P. However, 
the release of exudates might reduce the efficiency of P mobilization (Shen et al. 
2005) which stresses on the need to reconsider such assumptions to systematically 
understand the interaction of soil P-rhizosphere-carboxylates.

Secretion of phosphatases under P deficiency catalyses the hydrolysis of organic 
P to increase its mobilization. This is accompanied by an enhanced catalytic activity 
of plasma membrane H+ATPase (Yan et  al. 2002). Also, their activity is greatly 
determined by the pH, microorganisms and substrate availability in soil (George 
et al. 2005). Soil P is successfully mobilized in the presence of phosphate-solubiliz-
ing bacteria and fungi which do so by any of the above-mentioned chemical changes 
(acidification, release of exudates and enzymes) (Jones and Oburger 2011).

Along with increased P mobilization and uptake, plants adapt to P deficiency by 
conserving internal Pi pools and adopting alternative glycolytic pathways to bypass 
the requirement of adenylate and Pi-dependent steps. The plant metabolism under P 
deficiency is switched from primary to secondary. This involves the enhanced syn-
thesis of various secondary metabolites including, flavonoids, indole alkaloids, 
polyamines, anthocyanins and phenolics. The enzymes, 3-deoxy-D-arabino-heptu-
losonate-7-phosphate synthase (DAHP), phenylalanine ammonia-lyase, chalcone 
synthase, chalcone isomerase, 4-coumarate-CoA, cinnamoyl-CoA and cinnamyl 
alcohol dehydrogenase, are shown to be upregulated under P-deficient conditions. 
Rather than consuming Pi, secondary metabolism functions in recycling large 
amounts of Pi from phosphate esters and producing excess of reducing equivalents. 
Thus, under P deficiency, the acidification of cytosol activates the alternative oxi-
dase (AOX) and secondary metabolite pathway, which together causes the accumu-
lation of reducing equivalents.

To prevent the inhibition of photosynthesis under P deficiency, plants undergo 
alterations in their thylakoid membrane composition. This reduces the need for 
membrane-bound Pi, thus making it available for photosynthesis. The phospholip-
ids in the membrane are replaced by sulpholipids by upregulation of sulpholipid-
synthesizing enzymes, SQD1 and SQD2 (Nakamura et al. 2009; Nakamura 2013; 
Lal 2015). This helps to conserve P along with maintaining the membrane 
integrity.

Phosphorus limitation induces the synthesis of acid phosphatase enzymes 
(APases) in plants (Duff et al. 1994; Baldwin et al. 2001). Root-exuded APases are 
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implicated in the acquisition of P from soil organic P-esters. In addition to root-
exuded APases, intracellular APases function in the remobilization of P from senes-
cent tissue. This is an efficient mechanism to provide additional P for plant growth 
under low P stress. Root-exuded or extracellular APases appear to be much more 
stable than intracellular forms (Goldstein et al. 1988; Duff et al. 1989, 1991; Miller 
et al. 2001). With increased root uptake and translocation of P to shoot, excess P 
tends to accumulate in the older leaves, thereby causing Pi toxicity (Dong et  al. 
1998; Aung et al. 2006). Increased concentration of P inside older leaves also leads 
to more uptake of N which delays the formation of reproductive organs.

7.4  Structural Role of Phosphorus

In the plant tissues, P exists in either of the two forms: free inorganic orthophos-
phate form (Pi) or as organic phosphate esters. P is compartmentalized within the 
plant cells depending on its total concentration. The metabolically active Pi form is 
located in the cytoplasm, while excess of P is stored in the vacuole from where it is 
supplied to cytoplasm on cellular demand. Hence, the vacuole has a buffering func-
tion and fulfils the P demand of the cytoplasm under P deprivation. The esterified P 
exists in various forms, nucleic acids, phospholipids, phosphorylated metabolites 
and proteins. For most of the crops, the optimum P concentration is <4  mg g−1 
DW. Of all the pools of P, RNA forms the largest, followed by lipids, esters, DNA 
and metabolically active Pi.

7.4.1  Nucleic Acids: Genetic Transfer

Phosphorus is a vital component of nucleic acids (DNA and RNA) that carry the 
genetic information from one generation to the next. They form the largest pool of 
total organic P in a plant and ranges from 0.3 to 2.0 mg P g−1 DW in various crops. Of 
the nucleic acid pool, 85% is contributed by RNA (majorly rRNA) and the rest by 
DNA. There are evidences of increased RNA concentration and hence protein synthe-
sis with the increased supply of P to the plant (Elser et al. 2010; Suzuki et al. 2010).

7.4.2  Sugar Phosphates

Sugar phosphates are the Pi esters formed by the phosphorylation of monosaccha-
ride sugars after their reaction with ATP. These phosphorylated compounds are the 
prime intermediates of photosynthesis and in the synthesis and breakdown of starch. 
These compounds include phytic acid, glucose-6-phosphate and dihydroxyacetone 
phosphate. In addition, they are important constituents of glycolysis and respiratory 
reactions.
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7.4.3  Phospholipids: Membrane Component

Phospholipids are an essential component of cell membranes. These consist of lipo-
philic and hydrophilic regions. The electric charge of the hydrophilic region helps 
to make interactions between membrane and the charged ions. In P-deficient cells, 
phospholipids are often replaced by sulpholipids and/or galactolipids (Gaude et al. 
2008; Byrne et al. 2011). This replacement has no major effect on proton permeabil-
ity but might increase the leakage of electrolytes responsible for chilling tolerance.

7.5  Growth and Developmental Role of Phosphorus

7.5.1  Seed Germination

Seed P content is an important factor for seed germination and improved seedling 
vigour. Seed P is the only P available to plants at the time of germination and helps 
in supporting the early seedling growth. Although this P pool is of minor impor-
tance for mature plant, it has a prime role for the nutrition and faster establishment 
of young seedlings. After seed germination, plant requirement of P is met from 
growing media through roots. Zhu and Smith (2001) found increased soil P uptake 
by high P wheat seeds as compared to low P seeds. This was mainly due to the better 
development of root system in seeds of high P reserves (Zhu and Smith 2001). 
During early days of seedling development, seed phytate P is hydrolysed, and non-
phytate P is then remobilized to support the growth of maize seedling (Nadeem 
et al. 2011, 2012). However, in some reports, lower seed P concentration showed no 
variation in seedling vigour, plant biomass and yield when compared to high seed P 
plants, though some genotypes were found to be sensitive (Rose et  al. 2012; 
Pariasca-Tanaka et al. 2015). This implies that an optimum seed P concentration is 
sufficient for seed germination, and hence, higher P concentration in seeds might be 
of no use.

7.5.2  Increasing Root and Shoot Strength

Phosphorus is an important element affecting the growth of plants right from the 
cellular to whole plant level. These growth parameters include plant height, leaf 
area, leaf number and shoot dry biomass. It plays an important role in cell division 
and cell enlargement (Assuero et al. 2004). For timely appearance and development 
of tillers in crop plants, P is essential (Rodriguez et al. 1998). The P-deprived leaf 
cells are found to be smaller than P-sufficed cells. Limited cell divisions and 
enlargement results in overall reduction in the shoot biomass. However, the reduc-
tion in leaf expansion is not accompanied by a reduction in leaf dry weight. The leaf 
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dry weight is found to be higher due to the increased starch or celluloses and hemi-
celluloses. In general, the plant growth parameters are found to be more sensitive to 
P availability than the photosynthesis (Halsted and Lynch 1996). This is due to the 
reduced demand of assimilates by sink. The transport of assimilates from leaves to 
roots and stems increases, while their utilization is decreased. This shows that C 
utilization rather than C availability is the prime reason of reduced photosynthesis. 
Also, no correlation has been reported between leaf photosynthetic rate and growth 
response under Pi-limiting conditions. Increase in root biomass is considered as an 
important adaptive strategy by plants under P-deficient conditions with an aim to 
explore for more P. But it is evident only at the beginning of P-limited environment. 
Under long-term Pi-deficient conditions, the relative growth rate decreases as a 
result of reduced ATP concentration in roots (Gniazdowska et al. 1998). However, 
genotypes with greater PUE tend to have higher root biomass and lower rates of 
respiration than genotypes with lower PUE under P deprivation. This is suggested 
as a way to maintain greater root biomass without any increase in overall root C 
costs.

7.5.3  Flower and Seed Formation

Phosphorus plays an essential role in improving the reproductive growth of plants, 
including flower and seed formation. P contributes to the production of anthocya-
nins in flower stalks, which was found to decrease under P-deficient conditions. 
This was attributed to decreased activities of phenylalanine ammonia-lyase (PAL) 
and chalcone isomerase (CHI) (Chen et al. 2013). Large quantities of P are found in 
seeds and fruit where it is believed to be essential for seed formation and develop-
ment. In cereal crops such as rice and wheat, majority of P taken up by plants is 
stored in seeds. Thus, an inadequate supply of P can reduce seed size, seed number 
and viability. Optimum P concentration in soil increases the seed number, seed dry 
matter, seed yield and harvest index. Coating of seeds with 7 g per kg of monoso-
dium phosphate enhanced the growth and yield of soybean plants (Soares et  al. 
2016). Also, Ma et al. (2002) compared the response of white lupin (Lupinus albus) 
to various P concentrations in soil. They found that low soil P (5, 10 or 15 mg per 
kg) had a negative impact on flowering time and flower number but no differences 
were recorded with P supply higher than 20 mg per kg. Higher P concentration 
(25–40 mg kg−1) succeeded in increasing the number of pods and hence yield in 
soybean (Ma et al. 2002). P is a component of phytin, a major storage form of P in 
seeds. Various crops differ in their concentration of phytate in seed. About 75% of 
the total P in rice, wheat and maize is stored as phytin or closely related compounds, 
while inorganic phosphate and cellular-P range from 4–9% to 15–25%, respectively 
(White and Veneklaas 2012).
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7.6  Energy Transfer Reactions by Phosphorus

7.6.1  Energy-Rich Phosphates

Phosphorus is a vital component of high-energy bonds, including phosphoanhy-
dride, acyl phosphate and enol phosphate and plays an important role in cellular 
metabolism. These high-energy phosphate-containing compounds transfer the 
energy to acceptor molecules, thereby serving as sources of crucial cellular pro-
cesses. It plays an important role in photosynthesis right from the seedling growth 
till grain formation and maturity.

Phosphoanhydride bond is the bond between two phosphoric acid molecules. 
ATP, energy currency of cell, contains three phosphoryl groups (−PO3

2−) which are 
linked by two high-energy phosphoanhydride bonds and one phosphoester bond 
(Fig. 7.1). The hydrolysis of ATP releases a large amount of free energy which is 
utilized in various cellular processes of the organisms. The hydrolysis of γ, β and 
α-phosphate releases an energy of 34.0, 27.2 and 13.8 kJmol−1, respectively. ATP is 
utilized in many cellular processes, including synthesis of macromolecules, mem-
brane phospholipids and nutrient transport against a concentration gradient. Other 
similar phosphoanhydride bonds are present in di- and triphosphate-containing 
molecules in guanine, cytosine, uracil and thymine nucleosides. GTP and UTP are 
important electron donors in gluconeogenesis and saccharide metabolism, 
respectively.

The bond formed between phosphate and hydroxyl group attached to double-
bonded C is the enol phosphate bond. During glycolysis, phosphoenol phosphate 
is formed from 2-phosphoglycerate. It is the highest energy liberating bond, 
releasing energy equivalent to 61 kJ mol−1. The reaction of phosphate with car-
boxylic acid forms the acyl phosphate bond, liberating an energy of 49 kJ mol−1 
on hydrolysis. A glycolysis intermediate, 1,3-bisphosphoglycerate, is an example 
of acyl phosphate bond which transfers its phosphate group to ADP to form ATP 
and 3-phosphoglycerate.

34.0 kJ mol-1

HIGH ENERGY BOND
13.8

kJ mol-1
27.2

kJ mol-1

α β γ
phosphate phosphate phosphate

ADENINE

RIBOSE

P P P

Fig. 7.1 Structure of adenosine triphosphate
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7.6.2  Nutrient Transport

Nutrient transport through membranes of root, leaf and other plant organs is an 
energy-dependent process which is carried out by adenosine triphosphate (ATP) or 
other high-energy phosphorylated compounds. This is due to the impermeable 
nature of the plasma membrane acting as a protective layer for cells. Hence, the 
transport of nutrients acts against a concentration gradient through specific transport 
proteins spanning the plasma membrane. Once inside the cell, nutrient easily moves 
to another cell via symplastic or apoplastic pathway. Symplastic to apoplastic move-
ment for long-distance transport of nutrients occurs through epidermal and endoder-
mal cells, respectively. H+-ATPase is a major plasma membrane-bound proton pump 
in plants that imports nutrient into the cell along with the export of H+ by utilizing a 
three-phosphate-containing molecule, ATP (Sondergaard et al. 2004).

The first transport barrier for any nutrient is the root. Plant roots contain special-
ized thin protrusions, called root hairs, which increase surface area for the uptake of 
nutrients. After entering into the root symplast, nutrients are then transported to 
xylem and phloem to ultimately reach leaves, fruits and seeds. High amounts of 
plasma membrane H+-ATPase are detected in the epidermal and endodermal root 
cells, xylem and phloem cells to facilitate the transport of nutrients by utilizing ATP 
and exporting H+ (Parets-Soler et al. 1990; Jahn et al. 1998; Zhang et al. 2004).

7.7  Physiological Role of Phosphorus

7.7.1  Photosynthesis and Carbon Utilization

The photosynthetic process relies highly on the availability of P. The primary sub-
strates for photosynthesis include Pi, CO2 and H2O that utilizes light energy in the 
presence of chlorophyll forming sugars and ATP. This ATP serves as a driving force 
to carry out various metabolic reactions within the plant and sugars help in the gen-
eration of other structural and storage components.

During photosynthesis, the initial step is photophosphorylation through which Pi 
combines with ADP forming ATP, along with the discharge of a proton gradient 
through an ATPase into the chloroplast stroma. The atmospheric CO2 is fixed in the 
chloroplast via photosynthetic carbon reduction (PCR) cycle, consuming ATP. For 
every three molecules of CO2, nine Pi are consumed forming three molecules of O2. 
Out of these nine Pi, eight are released into the chloroplast via PCR cycle, while one 
is exported from chloroplast to the cytosol in the form of triose phosphate (triose-P) 
where it is converted into sucrose, releasing and recycling Pi. This P is now available 
to move back into the chloroplast to further form triose-P in chloroplast.

In chloroplast, the inner envelope is impermeable to hydrophilic solutes includ-
ing Pi and other phosphorylated compounds. Hence, the counter-exchange of vari-
ous metabolites such as triose-P, 3-phosphoglyceric acid (3-PGA) and Pi across the 
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envelope is carried out via Pi translocators (Heber and Heldt 1981; Flugge and 
Heldt 1984). Through these Pi translocators, the photosynthetically fixed C is trans-
ported from chloroplast to cytosol in the form of triose-P and in exchange of Pi. Pi 
released in the cytosol during sucrose synthesis is shuttled back into the chloroplast 
via Pi translocator for the synthesis of ATP. External P levels regulate photosynthe-
sis by altering the function of the Pi translocator. Low P levels in cytosol reduce the 
flow of triose-P into the chloroplast, thereby decreasing the Pi release from sucrose 
synthesis in chloroplast and reducing ATP production required for PCR cycle. Also, 
Pi translocator participates in the transport of ATP and NADPH produced during 
photosynthesis to the extra-chloroplastic compartments.

Changes in Pi availability in cytoplasm alters the activation of enzyme (RuBisCO, 
sedoheptulose-1,7-bisphosphatase and fructose-1,6-bisphosphatase) and amounts 
of intermediates of the PCR cycle. The concentration of phosphorylated metabo-
lites, including RuBP, PGA, triose-P, FBP, F6P, G6P, adenylates, nicotinamide, 
nucleotides and Pi, is reduced under P deficiency. This happens due to the decreased 
C supply as most of the C is diverted for starch production. However, the cytosolic 
concentration of P remains stable due to the availability of P in vacuole, and hence 
the vacuolar pool is found to lower under P-deficient conditions. The requirement of 
Pi for activation of RuBisCO has been shown by many authors (Heldt et al. 1978; 
Bhagwat 1981). Sufficient concentrations of Pi in chloroplast inhibit the activities 
of enzymes fructose-1,6-bisphophatase, sedoheptulose-1,7-bisphosphatase and 
ribulose-5-phosphate kinase. Under low cytoplasmic P concentration, photosynthe-
sis is inhibited due to end product inhibition. The total organic and inorganic Pi 
concentration remains constant inside the chloroplast. Hence, low Pi concentration 
corresponds to high triose-P that limits photosynthesis. These together inactivate 
RuBisCO due to the build-up of various metabolites such as ribulose-5-P and 
PGA. Also, low Pi concentration limits photosynthesis by decreasing the ATP/ADP 
ratio by reducing photophosphorylation that further limits the rate of C fixation in 
PCR cycle. It has been observed that Pi deficiency leads to a decrease in Pi concen-
tration in stroma which limits photophosphorylation, thereby inhibiting the photo-
synthesis (Robinson and Giersch 1987).

Phosphorus is essential in maintaining the photosynthetic machinery that 
includes PSI, PSII, LHCP, cyt-f, cyt-b and antenna mobility (Rychter and Rao 
2005). As mentioned above, P is an important constituent of the thylakoid mem-
brane. Phosphorylation of apoproteins of antenna in thylakoid membrane is an 
important step in photosynthesis. Under P deficiency, the antenna becomes dephos-
phorylated due to activation of a phosphatase and a large proton gradient, thereby 
reducing the mobility of antenna (Horton 1989). The long-term deficiency of P 
causes the photoinhibition of PSII. The rate of electron transport increases across 
PSII under P-deficient conditions, and the unused electrons are diverted to photores-
piration, thereby reducing CO2 fixation. The increase in photorespiration plays an 
important role in increasing the availability of Pi for photosynthesis.

Pi plays an important role in starch biosynthesis inside the chloroplasts. The 
level of Pi controls the distribution of newly fixed C between starch synthesis in 
chloroplasts and sucrose synthesis in cytoplasm. Limited Pi supply in chloroplasts 
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shifts the flow of C towards starch. This is achieved through the stimulation of key 
enzyme in starch biosynthesis, ADP-glucose pyrophosphorylase under low Pi and 
high triose-P levels (Nielsen et al. 1998). Likewise, increased Pi concentration in 
stroma induces the breakdown of starch. Starch degrades to form glucose-1-phos-
phate which is further converted to triose-P or PGA through oxidative pentose phos-
phate pathway or phosphofructokinase, respectively. This has been confirmed by 
various kinetic studies (Pettersson and Ryde-Pettersson 1989; Preiss 1994).

The biosynthesis of sucrose is a Pi-regenerating step, which occurs in cytoplasm 
from triose-P that is exported from the chloroplast. The cytosolic triose-P is first 
converted to hexose-P and then to sucrose. FBPase, sucrose-phosphate synthase 
(SPS) and UDP-glucose pyrophosphorylase are the key enzymes regulating sucrose 
biosynthesis in cytoplasm (Huber and Huber 1992, 1996; Stitt et al. 1983). Pi is a 
negative regulator of these enzymes but a positive regulator of fructose-6-phos-
phate-2-kinase. Four molecules of triose-P are needed to form one molecule of 
sucrose, and four Pi are liberated in this process. The release of Pi in this process 
maintains the import of triose-P in cytoplasm through Pi translocator via the counter 
exchange of Pi. Under conditions of low sucrose synthesis, triose-P remains in the 
chloroplast to support starch synthesis. Low sink strength lowers sucrose synthesis 
and hence increases the accumulation of triose-P in chloroplast to synthesize starch, 
thereby restricting photosynthesis. For each molecule of sucrose formed, four Pi 
molecules move into the chloroplast. Defective sucrose synthesizing machinery will 
lead to decreased formation and hence transport of triose-P from chloroplast. The 
accumulated photosynthates in chloroplast induce the conversion of fructose-6-P 
(in PCR cycle) to starch. Hence, Pi levels regulate the distribution of C between 
starch and sucrose synthesis. Also, it regulates the partitioning of photosynthates 
between various plant tissues. Under P deficiency, the low sink demand limits the 
photosynthesis. Pi is released from sucrose synthesis with the help of phosphatase 
that makes Pi available for entry into the chloroplast to form triose-P, and little or 
none will be available for storage as starch. During low sink demand, excess triose-
P is stored as starch, thus reducing the rate of photosynthesis.

Phosphorus plays a vital role in the respiratory processes of the plant. Under 
P-deficient conditions, roots tend to respire via an alternative non-phosphorylating 
pathway. This cyanide-resistant respiratory pathway results in reduced production 
of ATP and ADP which affects the energy-dependent processes of the plant (Rychter 
and Mikulska 1990; Rychter et  al. 1992). This is achieved by skipping ATP-
dependent steps in glycolysis and activating PPi-dependent phosphofructokinase, 
non-phosphorylating NADP-dependent glyceraldehyde-3-P dehydrogenase, PEPC, 
NAD malic enzyme and MDH.  This successfully bypasses the requirement of 
enzymes, viz. ATP-dependent phosphofructokinase (PFK), Pi-dependent NAD-
dependent glyceraldehyde-3-P dehydrogenase, phosphoglycerate kinase and pyru-
vate kinase, to conserve ATP pools. The resulting increase in ATP/ADP ratio limits 
mitochondrial respiration under P limitation. Owing to this, alternative non-phos-
phorylative respiratory pathways become active that includes rotenone-insensitive 
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NADH dehydrogenase and cyanide-resistant alternative oxidase (AOX). This leads 
to an increase in the ratio of NADH/NAD. The levels of respiratory intermediates, 
viz. hexose phosphates and 3-phosphoglyceric acid (PGA), reduce during P defi-
ciency. The activities of several glycolytic enzymes PFK, NAD-G3P-DH, 3-PGA 
kinase and PK depend on the concentration of adenylate and Pi. The activities of 
PFP and non-phosphorylating NAD-G3P-DH, PEP carboxylase and PEP phospha-
tase have been found to increase under P-deprived conditions.

7.7.2  Nitrogen Fixation

Legumes are a vital source of protein in human diet. They also play an essential role 
in maintaining soil fertility. The fundamental phenomenon which makes legumes 
important is their ability to carry out “atmospheric nitrogen fixation”. The conver-
sion of non-useable form of nitrogen (N2) to useable form (NH3) is done by 
Rhizobium bacteria, which resides in the root nodules of leguminous plants. These 
bacteria need energy to grow and perform their basic functions. The energy is sup-
plied in the form of P rich molecule, ATP. This energy-rich molecule gets converted 
into ADP with simultaneous release of inorganic phosphate providing the energy. At 
least 16 molecules of ATP are hydrolysed for each molecule of N2 reduced.

 N e H ATP H O NH H ADP Pi2 2 3 28 8 16 16 2 16+ + + + ↔ + + +− +

 

In addition to acting as a source of energy, P helps in increasing the density of 
rhizobial bacteria in soil. For root nodule formation, root hairs must get infected by 
these bacteria. The site where these bacteria infect root hair becomes the site of 
nitrogen fixation. As discussed above, P is one of the essential nutrients for root 
growth promotion. P deficiency not only affects plant growth but also highly impacts 
the rate of nitrogen fixation by causing a reduction of root nodules (Bonetti et al. 
1984). In pea plants, it has been observed that an increase in P supply increases the 
biomass of root nodules (Jakobsen 1985).

7.8  Crosstalk of Phosphorus with Other Nutrients

The presence of P affects the availability of one or more of other nutrients in soil. 
Interaction of P with both macro- and micronutrients is well studied, and it can be 
either synergistic or antagonistic. Soil analysis before sowing helps in the detection 
of limiting factors in soil, and giving optimum P levels in early stage can help in 
enhanced availability of other nutrients, thereby increasing crop yield.
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7.8.1  Macronutrients

Nitrogen (N) plays a vital role in plant metabolism and growth. The interaction 
between P and N has been found to be synergistic. The ammonical-N fertilizer 
increases the P availability to plant. P is one of the essential nutrients that help in 
nitrogen fixation, along with efficient use of N by plants. The combined application 
of N and P increased the sorghum yield to 93 bu/ac, while N alone resulted in a yield 
of 71 bu/ac (71 bushel/acre = 71 × 67.25 = 4774.75 Kg/ha) (Schlegel and Bond 2017).

Phosphorus and K are required for proper growth of plant under control and 
stressed conditions. For better corn yield, presence of both P and K is found to be 
must. They together enhanced the grain yield by 64 bu/ac as compared to 38–41 bu/
ac when each was applied alone (Usherwood and Segars 2001). Proper ratio of both 
P and K is essential for obtaining high yield in corn.

An antagonistic interaction exits between sulphur (S) and P in moong seeds. It 
has been shown that combined application of S and P decreased the grain yield and 
quality. In a greenhouse experiment, application of 40 ppm S depressed the P con-
tent of vegetative portion by 18% and grains of moong by 12% (Aulakh and Pasricha 
1977). Magnesium (Mg) helps in root formation, chlorophyll and photosynthesis. 
One of the most important functions regulated by Mg is activation of kinase enzyme 
and transfer of phosphate group.

7.8.2  Micronutrients

The interaction of P with micronutrients has been reported in a wide variety of 
crops. Due to better understanding of functions of micronutrients in crop plants, 
significance of micronutrients in crop production has increased. One of the main 
reasons for this is the availability of better analytical techniques. Micronutrients 
play an important role in uptake and utilization of essential plant nutrients.

The interaction between P and boron (B) has been found to be synergistic in 
maize grown in refined sand (Chatterjee et al. 1990). In lettuce plants, increase in 
1000 seed weight (from 2.06 to 3.01 g) was observed due to interaction between B 
and P (Chowdhury et al. 2015). On the other hand, when different levels of copper 
(Cu) were sprayed on leaves, a positive interaction was found between P and Cu in 
lettuce (De Iorio et al. 1996). Iron (Fe) is found in abundance in the earth’s crust, but 
still it is often a limiting resource for growth. This is mainly due to its low avail-
ability. Fe deficiency can be diagnosed as interveinal chlorotic symptoms in young 
leaves. Fe and P show antagonistic interaction in plant nutrition. It has been noticed 
that P also affects the genes responsible for iron regulation (Zheng et  al. 2009). 
Optimal levels of molybdenum (Mo) improve utilization as well as increase P 
uptake. In Brassica napus positive interaction between Mo and P has been detected. 
It has been found that both Mo and P promote plant growth when applied together. 
This is because Mo and P have beneficial effects on each other’s’ absorption and 
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translocation (Liu et al. 2010b). P and zinc (Zn) show antagonistic interactions in 
soil or inside the plant. In corn seedlings grown in sandy soil, absence of a signifi-
cant Zn-P interaction has been seen, but high P supply reduces Zn shoot content 
(Drissi et al. 2015). At gene level, high levels of P downregulates high-affinity Zn 
transporter, thus adversely affecting Zn mobilization within the oat seedlings 
(Huang et al. 2000).

7.9  Conclusions

Yield losses due to global climatic change and mineral nutrient deficiency are the 
major concerns for researchers worldwide. The role of P in essential metabolic pro-
cesses including growth, photosynthesis, respiration and nitrogen fixation has been 
well documented in various studies. Limited availability of P in soil reduces the 
uptake by plant and causes plant P deficiency, thus affecting its overall growth and 
development. To tackle P deficiency, plants have developed numerous morphologi-
cal, anatomical, physiological and metabolic processes. However, to develop plants 
with better adaptability to P stress and enhanced P use efficiency, collaborations 
between physiologists, geneticists and breeders are urgently required. Future 
research trials should focus on improving the understanding of P uptake, utilization 
and transport mechanisms under low P environment. Further, extensive research is 
required in field of root biology, along with identifying and enhancing gene expres-
sion for improved P acquisition and use efficiencies.
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Chapter 8
Role of Potassium in Governing 
Photosynthetic Processes and Plant Yield

Ricardo Tighe-Neira, Miren Alberdi, Patricio Arce-Johnson, Jesús Romero, 
Marjorie Reyes-Díaz, Zed Rengel, and Claudio Inostroza-Blancheteau

Abstract The potassium (K) role is very important for plants; indeed it is an essen-
tial macronutrient and has a several metabolic functions, and one of them is impli-
cant on photosynthesis process, growth, and development and stress resistance 
under K deficiency. Although the K requirement changes during phenological plant 
stages and due to environmental factors, we, in an undifferentiated way, have put the 
focus specifically on the role of potassium in the Hill reaction and Calvin and 
Benson cycle of the photosynthesis. In the Hill reaction, the main role is associated 
with generation of NADPH and ATP, together with ionic equilibria, electron trans-
port, and proton-motive force. In the Calvin and Benson cycle, the main role is 
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associated with CO2 fixation and sugar production and transport and hence with 
partitioning of photoassimilates. Special attention, we have put in the regulation of 
photoassimilates and its distribution as future directions, because under K defi-
ciency, the biosynthesis of sugar, transport, and distribution in the plant are limited. 
More studies at the molecular level are required to elucidate mechanisms and regu-
latory point that underlie of the complex network of biochemical relationships.

Keywords Hill reaction · Calvin and Benson cycle · Photoassimilate distribution

8.1  Potassium Requirements in Plants

Potassium is involved in numerous metabolic and biochemical processes in plant 
cells (Rengel and Damon 2008; White 2013) including regulatory and transport 
mechanisms (Adams and Shin 2014). To describe some nutritional characteristic of 
this element, we considered two contrasting plant species: Triticum aestivum L. 
(monocotyledonous) and Solanum tuberosum L. (dicotyledonous). Depending on 
the spatial and temporal variability, crop species, and fertilizer input (Zörb et al. 
2014), tissue K concentration ranges from 8 to 43 g kg−1 dry matter (DM), but most 
common values in the literature are 25–35 g kg−1 (Chuan et al. 2013a, b). For many 
crops, the critical deficiency range is 5–20  g K kg−1 (Leigh and Jones 1984; 
Askegaard et al. 2004; Öborn et al. 2005). The K requirement increases in the repro-
ductive stages (Oosterhuis et al. 2014).

8.1.1  Wheat (Triticum aestivum L.)

Scanlan et al. (2015a) indicate that uptake of K depends on a dynamic interaction 
among K availability, soil properties, environmental conditions, and agronomic 
management. In several wheat organs, but not in mature grains, the K concentration 
is relatively easy to increase. Wheat is considered a species with a low internal 
requirement of K, about 29–39 g kg−1 for maximum yield (El-Dessougi et al. 2011); 
in contrast, mature grains contain about 3 g K kg−1 DM under a wide range of K 
supply (Zörb et al. 2014) and over a long term (Merbach et al. 2000; Zörb et al. 
2014). Potassium tends to accumulate post anthesis; nevertheless, tissue K concen-
tration decreases during grain development, being the lowest at maturity 
(El-Dessougi et al. 2011; Zhan et al. 2016).

White (2013) distinguished between uptake efficiency (root capacity to acquire 
K from soil) and utilization efficiency of K (using an amount of K taken up to pro-
duce yield), both influencing K use efficiency when applied to soil as fertilizer. The 
efficiency of converting K fertilizer into the useful agricultural output, or partial 
fertilizer productivity (amount of economic product produced per unit of K fertil-
izer applied), is variable (Naklang et al. 2006). The K fertilization efficiency depends 
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on several factors, including the depth of fertilization (Scanlan et al. 2015b). Studies 
in China reported values of 23–113 kg grain of wheat per kg of K taken up, repre-
senting almost a fivefold variation (Chuan et al. 2013b). Another parameter to con-
sider is the yield per unit of K fertilizer applied (e.g., 5.4  kg grain per kg of K 
fertilizer applied, Chuan et al. 2013a). Model simulations reported by Chuan et al. 
(2013b) for wheat in North Central China, under a wide range of rainfall (100–
1750 mm) and temperature (−20 to 33 °C) conditions, predicted that 1000 kg of 
grain requires about 19 kg of K, achieving about 70% of potential wheat yield. In 
this case, the efficiency is around 53 kg grain per kg of K. According to El-Dessougi 
et al. (2002), the wheat K efficiency could be attributed to a larger root system and 
a higher utilization efficiency or lower internal K requirement. Moreover, Rengel 
and Damon (2008) pointed out that a phenotype may be K-efficient for uptake and 
utilization based on exudation of organic compounds, large surface area of contact 
between root and soil, effective translocation of K to maintain adequate cytosolic K+ 
concentration, and increase capacity to replace K+ by Na+.

8.1.2  Potato (Solanum tuberosum L.)

In contrast to T. aestivum, S. tuberosum is a species requiring high K levels for 
growth and development, which is characteristic of tuber plants, due to the low 
efficiency of nutrient uptake, because of a relatively shallow root system (Kang 
et al. 2014; Tein et al. 2014; Zörb et al. 2014). Indeed, the K requirement is greater 
than that of N and P (Panagiotopoulos 1995; Westermann 2005). The efficiency of 
agronomic fertilization was about 25 kg DM tubers per kg K in different soil types 
and management systems, with about a quarter of the yield explained by exchange-
able K (Li et al. 2015). Potato may extract 68–184 kg K ha−1, with the highest values 
under irrigation (Li et al. 2015).

The K application to S. tuberosum influences quality characteristics of potatoes, 
especially potatoes destined for industrial processing (Gerendás et al. 2007; Zörb 
et al. 2014). An inverse relationship between sugar and K concentration in tubers is 
important for industrial processing and human nutrition (Westermann et al. 1994). 
It is interesting to note that K concentration is higher in the peel than in tuber pulp. 
Adequate K concentration is around 4 g K kg−1 tuber DM (Subramanian et al. 2011).

8.2  Potassium and Its Role in Stress Resistance

Potassium is associated with plant adaptation to biotic and abiotic factors. In this 
chapter, we discuss drought, salinity, and cold (frost). The action of K in resistance 
to stresses may be both direct and indirect and is dose-dependent (Dordas 2008; 
Anschütz et al. 2014; Benito et al. 2014; Zörb et al. 2014). The direct responses 
relate to processes such as photosynthesis and are addressed in the subsequent 
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sections. The indirect responses are related to secondary metabolism activation, 
including some characteristic metabolites such as oxylipins and glucosinolates 
detected in Arabidopsis thaliana (Troufflard et  al. 2010). In the same species, 
Armengaud et al. (2009) proposed that the first indicator of K deficiency is a direct 
inhibition of pyruvate kinase activity.

8.2.1  Potassium Effects Under Drought Stress

The primary drought effect is a hyperosmotic stress, whereas the secondary effects 
include oxidative stress, damage to cellular components, and metabolic dysfunction 
(Zhu 2016). Evidence that supply of mineral nutrients may alleviate drought stress 
exists, particularly in sugarcane (Saccharurn sp.), where tolerance was related to 
high concentrations of K and N in leaves and stems (Silva et al. 2017). Cakmak and 
Engels (1999) indicated that an internal K requirement increases under drought 
stress because of the high importance of K in photosynthesis, CO2 fixation, protec-
tion of chloroplasts from photooxidative damage, and osmoregulation. Hence, foliar 
K fertilization can contribute to relieving drought stress in Triticum aestivum and 
Gossypium hirsutum (Cakmak 1997; Raza et al. 2014; Saleem et al. 2016). Under 
drought, plants must reduce their osmotic potential, e.g., by (a) increasing concen-
tration of solutes such as sugars, alcohols, or amino acids or (b) increasing the 
internal K concentration (if sufficient K is available) as a low-cost alternative to 
increasing organic solute concentration, emphasizing the importance of K under 
drought stress (Mengel and Arneke 1982; Hu and Schmidhalter 2005; Chen et al. 
2005; White 2013).

8.2.2  Potassium Effects Under Salinity Stress

Salinity is an important constraint for many crops, causing a hyperosmotic and ion 
toxicity; the secondary effects of salinity include oxidative stress, damage to cellu-
lar components, and metabolic dysfunction (Zhu 2016). Understanding the mecha-
nisms that underlie salinity resistance is crucial for development and application of 
relevant agronomic practices. In Oryza sativa salinity caused a photosynthetic rate 
decrease and reduction in electron transport rate, CO2 concentration in the chloro-
plasts, and osmotic leaf potential (Wang et al. 2017).

Potassium deficiency may be one of the consequences of salt stress, exacerbating 
salt-dependent ROS generation. Hence, an application of K under salt stress might 
contribute to alleviation, mainly due the reduction in ROS generation and inactiva-
tion of superoxide radicals by enhancing the NADPH oxidase activity. This NADPH 
oxidation may be up to eightfold higher under low K compared with control 
(Cakmak 2005). Potassium supplementation under salinity stress improved N 
uptake and assimilation and decreased Na accumulation (decreased K/Na ratio), 
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resulting in a yield increase (Abass and Agarwal 2017). Jha and Subramanian 
(2016) proposed using bacteria with the ability to solubilize K from insoluble 
K-bearing rocks to promote plant growth under 2.3–3.5 dS m−1 salinity and low 
availability of P and K. Under these conditions, K supplementation decreased oxi-
dative stress caused by salinity, triggering the enzymatic and nonenzymatic antioxi-
dant systems. A decrease in lipid peroxidation increased the stability of cell 
membranes, thus enhancing cell performance under stress (Jha and Subramanian 
2016). Salinity tolerance in halophytes can be increased by retention of K in the leaf 
mesophyll cells (Percey et al. 2016). The study in halophytes like a model has been 
used more frequently, because these species (e.g., Thellungiella halophile) do not 
have multiple tolerance mechanisms like a transgenic species used as a model (Zhu 
2001). At the molecular level, the halophyte species group (e.g., Thellungiella sal-
suginea) is different from other species group (e.g., Arabidopsis thaliana) by the 
number of gene copy and appears to be that its strength transcription expression or 
its stability is related to its differential tolerance. The above has been observed on 
SOS1 gene that is considered important in salt tolerance by salt extrusion and inter-
nal plant distribution (Shi et al. 2003; Dassanayake et al. 2011).

8.2.3  Potassium Effects Under Cold and Frost Stress

Cold and frost cause inhibition of metabolic and biochemical plant processes, gen-
erating osmotic and oxidative stress. These direct and indirect effects influence 
plant yield (Wang et al. 2013), damaging photosynthetic structures and processes 
and reducing the effectiveness of antioxidant enzymes (Mittler 2002; Xiong et al. 
2002; Suzuki and Mittler 2006). In K-deficient plants, chilling is associated with 
inhibition of water uptake and freezing-induced cellular dehydration (Zhu 2001). In 
species with low tolerance to cold and frost, K fertilization contributes to frost toler-
ance, as shown by lowered electrolyte leakage from young and old leaves (Gómez- 
Ruiz et al. 2016). The main effect of K in plants under cold and frost stress is a 
decrease in ROS generation and an increase in expression of the genes associated 
with biosynthesis of secondary metabolites involved in cold and frost tolerance 
(Kant and Kafkafi 2002; Cakmak 2005; Devi et al. 2012).

8.3  Role of Potassium in Photosynthesis

8.3.1  The Function of Potassium in Photosynthesis

After N, K is the most abundant element in the photosynthetic tissues (Sardans and 
Peñuelas 2015). Potassium is relevant to photosynthetic processes because of its 
impact on chlorophyll fluorescence, RuBisCO activity, and net fixation of CO2 
(Oosterhuis et al. 2013). Potassium is involved in the structural and physiological 
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aspects of the photosynthetic process in Eucalyptus grandis (Battie-Laclau et al. 
2014). However, in general, the underlying mechanisms behind K effects in photo-
synthesis are poorly understood; nevertheless, it has been observed that K is related 
to stomatal aperture, intercellular air spaces, leaf thickness, parenchyma thickness, 
and specific leaf area, all directly related to the photosynthesis process (Battie- 
Laclau et al. 2014).

A decrease in K concentration in Vicia faba L (from 50 to 20 mM) was associ-
ated with a 20% decrease in maximum photochemical efficiency (Fv/Fm). This 
parameter was also reduced with increased efflux of K+ from the mesophyll cells of 
Spinacia oleracea L. and Vicia faba L (Demmig and Gimmler 1983; Percey et al. 
2014). It should be borne in mind that Kranz anatomy and metabolic mechanisms 
that work as CO2 concentrators allow a better productivity of C4 than C3 plants. In 
the last group the CO2 levels are especially relevant, because produce an immediate 
export and carbon partitioning differentiated in species like Panicum and Flaveria 
(Leonardos and Grodzinski 2000). Sun et al. (2014) in comparative studies of Zea 
mays and Miscanthus x giganteus pointed out the differences between species in the 
capacity to coordinate the activities of the C3 and C4 cycles in response to light 
quality, but it is poorly understood how increased productivity of C4 is affected by 
nutrients, including K.

8.3.2  Photosynthetic Performance Under Potassium Deficiency

Potassium is an element whose deficiency results in suboptimal functioning of the 
photosynthetic apparatus (Hart 1970). Potassium deficiency can affect the photo-
synthetic process in Glycine max in dependence on CO2 concentration (Singh and 
Reddy 2017). Nevertheless, K deficiency may not always limit photosynthetic rate. 
At a low K sink demand, Pan et al. (2017) observed in Brassica napus L. that the 
photosynthetic rate did not decrease consistently, where sink strength may be 
involved in signaling. The same authors observed a negative relationship between 
photosynthesis and carbohydrate concentration in the low K treatment but not in the 
optimal K treatment. In this sense, Singh and Reddy (2017) pointed out that K defi-
ciency limited Glycine max growth more than the photosynthetic processes. Similar 
results were observed by Li et al. (2013), where a 25% reduction in the N/K input 
to strawberry (Fragaria × ananassa Duch.) was associated with higher leaf intercel-
lular CO2 concentration than in control. Hence, under K deficiency, the causes of a 
decrease in the photosynthetic rate may be due to (1) a decrease in mesophyll con-
ductance caused by anatomical alterations in leaves resulting in a decrease in chlo-
roplast surface area per unit of leaf area (Battie-Laclau et al. 2014; Lu et al. 2016), 
(2) decreased stomatal conductance, and (3) decreased chlorophyll concentration 
(Weng et al. 2007; Martineau et al. 2017).

The photosynthetic rate is primarily limited by stomatal limitations (conduc-
tance) and secondarily by biochemical processes in Gossypium hirsutum L. under 
severe K deficiency (Oosterhuis et al. 2013). Conversely, Jin et al. (2011) pointed 
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out that the photosynthesis rate is primarily limited by biochemical process such as 
maximum carboxylation rate of RuBisCO and the maximum rate of electron trans-
port rather than mesophyll and stomata conductance in K-deficient Carya cathayen-
sis Sarg. In both cases, K deficiency exerts negative effects on the metabolic phases 
of photosynthesis, such as the Hill reaction and the Calvin and Benson cycle 
(Table 8.1).

8.3.2.1  Potassium Deficiency and Hill Reaction

The Hill reaction (the photochemical oxidation of water with evolution of oxygen in 
the presence of a suitable electron acceptor) influences the activity of both photo-
systems (PSI and PSII) in the chloroplasts (Dicks 1974). The nutrient deficiencies, 
such as those of Mn, Ca, or K, may cause a decrease in the Hill reaction activity per 
unit of chlorophyll as shown in isolated chloroplasts of Solanum lycopersicum 
(Spencer and Possingham 1960). Furthermore, K deficiency affects chlorophyll 
fluorescence by increasing thermal dissipation and reducing the efficiency of the 
electron transfer, efficiency of excitation transfer (Fv´/Fm´), and photochemical 
quenching (Spencer and Possingham 1960; Weng et al. 2007). A reduction in the 
efficiency of electron transfer decreases the reduction power (NADPH and ATP) 
and thereby affects the Calvin cycle. Studies in barley (Hordeum vulgare) under K 
deficiency pointed out a decrease in ATPAse activity, with the response varying for 
different genotypes (Ye et al. 2017).

Table 8.1 Effects of K deficiency on photosynthetic processes

Photosynthetic 
process Effect References

Thermal dissipation increased Spencer and Possingham 
(1960) and Weng et al. (2007)Electron transfer decreased

Photochemical quenching reduced
Diminished counterion fluxes to balance H+ 
influx across the thylakoid membrane

Brouquisse et al. (1989)

ATPase activity decreased Ye et al. (2017)
Efficiency of excitation transfer decreased Weng et al. (2007)
Imbalance of ionic equilibria among Cl−, 
Na+, and K+

Bose et al. (2017)

Decreased channel transport efficiency Szabò and Spetea (2017)
Diminished proton-motive force

Calvin and Benson 
cycle

Decreased CO2 assimilation Gerardeaux et al. (2009)
RuBisCO activity decreased Weng et al. (2007)
Decreased export of photoassimilates Hafsi et al. (2014) and Hu 

et al. (2017)
Impaired partitioning of assimilates Hafsi et al. (2017) and Zahoor 

et al. (2017)
Sucrose biosynthesis decreased Hu et al. (2017)
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The homeostatic role of K in photosynthetic apparatus is relevant, especially 
under abiotic stress, because the ionic equilibria among Cl−, Na+, and K+ to maintain 
the photosynthesis are dependent on K. Potassium importance is related to ion chan-
nel activity and ions transported across thylakoid stroma membranes, contributing 
strongly to proton-motive force and thus to photosynthetic efficiency (Bose et al. 
2017; Szabò and Spetea 2017) (Table 8.1).

8.3.2.2  Potassium Deficiency Effects on Carbon Fixation in the Calvin 
and Benson Cycle

Several environmental stresses generate an increase in K demand to maintain CO2 
fixation in photosynthesis, but such stresses also induce an increase in ROS produc-
tion. In this context, an increase in K supply may ameliorate these stresses, at least 
partly (Foyer et al. 1994; Cakmak 2005). Gerardeaux et al. (2009) pointed out that 
a deleterious effect of K deficiency on CO2 assimilation occurred 50  days after 
emergence of Gossypium hirsutum L., concomitant with an increase in light inten-
sity. Photosynthesis by K-starved plants at up to 2000 μmol CO2 m−2 s−1 showed a 
reduction in CO2 assimilation that could be attributed to lower response of stomata 
to the environmental conditions. Another possible explanation may also be a 
decrease in the RuBisCo activity under K deficiency (Weng et al. 2007). Although 
these effects varied in the several species studied, the principles are likely to be 
applicable across a wide range of conditions.

The adverse effects of K deficiency on photosynthetic parameters, especially 
CO2 fixation, are caused by decreased leaf K concentration (7–8 g kg−1) in Carya 
cathayensis, although an extent of that decrease may vary among plant species (Jin 
et al. 2011). In addition, Terry and Ulrich (1973) pointed out that under K starva-
tion, the CO2 assimilation in Beta vulgaris L. per unit area decreased linearly over 
time (i.e., with severity of K deficiency).

Potassium deficiency alters not only the photosynthetic process but also sugar 
metabolism and export because K is involved in the long-distance transport in 
plants; hence, photoassimilates, especially sugars, accumulate, and they are not con-
verted to starch (Hermans et al. 2006; Hafsi et al. 2014; Hu et al. 2017). Nevertheless, 
Nikinmaa et al. (2013) pointed out that this phenomenon is also related to stomatal 
activity that may restrict the Calvin and Benson cycle, limiting sucrose biosynthesis 
and nitrate assimilation (Hu et al. 2017).

Low K supply to Beta vulgaris L. did not have any effect on sugar (carbon) trans-
port in a short term (6–8 h) (Conti and Geiger 1982), suggesting that carbon mobi-
lization in phloem is a result of the magnitude of CO2 fixation rather than 
immobilization of sugar. A K deficiency effect on partitioning of assimilates is exac-
erbated under abiotic stresses, such as drought; moreover, K deficiency decreases 
net photosynthesis, transpiration and stomatal conductance, and finally biomass 
production (Hafsi et al. 2017; Zahoor et al. 2017) (Table 8.1).
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8.4  Conclusions and Future Perspectives

Under abiotic stresses such as salinity, cold, or drought, adequate levels of K supply 
may contribute to stress amelioration and resistance linked to maintaining meta-
bolic processes and plant yield. Nevertheless, more studies are required to elucidate 
the mechanisms involved in resistance to plant stress and how increased K supply 
can improve plant growth and yield.

In photosynthesis, K plays important roles in the Hill reaction as well as the 
Calvin and Benson cycle. In the Hill reaction, the main role is associated with gen-
eration of NADPH and ATP, where ionic equilibria, electron transport, and proton- 
motive force are the main processes in which K participates. In the Calvin and 
Benson cycle, a decrease in CO2 fixation and sugar production and transport is asso-
ciated with altered partitioning of photoassimilate, all influenced by K supply. The 
underlying mechanism associated with the role of K in the photosynthetic processes 
is poorly understood. In particular, limited sugar biosynthesis, transport, and distri-
bution under K deficiency are important causes of photosynthetic limitations and 
thus poor growth and development.

It remains unclear how different photosynthetic processes respond to resupply of 
K and in which time frame. For example, does CO2 fixation or carbon export and 
partitioning respond first? For a deep understanding of this phenomenon, more stud-
ies are necessary at the molecular level to elucidate mechanisms and regulatory 
point of the complex network of biochemical relationships that underlie on the pho-
tosynthetic effects under potassium deficiency.
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Chapter 9
Heavy Metal Tolerance in Two Algerian 
Saltbushes: A Review on Plant Responses 
to Cadmium and Role of Calcium in Its 
Mitigation

Bouzid Nedjimi

Abstract Heavy metal pollution is a common environmental constraint to human 
health. The physicochemical decontamination constitutes a high costly procedure 
and not practicable in extensive polluted soils. Therefore, selecting plants naturally 
tolerant to heavy metals is an alternative approach for a sustainable phytoremedia-
tion. The aptitude of species to tolerate heavy metals is determined by several bio-
chemical trails that protect photosynthetic apparatus and maintain growth and 
chemical elements homeostasis. Cadmium (Cd) is a high toxic environmental pol-
lutant and can interfere with various metabolic processes such as photosynthesis, 
respiration, and mineral uptake and some enzymatic activities that are crucial for 
plant growth. Atriplex halimus L. and A. nummularia L. (Amaranthaceae) are two 
widespread saltbushes used for desalination and rehabilitation of Algerian saline 
lands. These shrubs have a high biomass production, extensive root system, low 
nutrient requirements, and easy propagation, among other benefits. Calcium (Ca) 
supplementation was largely used to improve heavy metal tolerance of plant spe-
cies. Ca is an indispensable element for plant growth, membrane integrity, osmotic 
adjustment, and signaling transduction. Exogenous application of this element can 
play a significant role to enhance plant tolerance against Cd toxicity. This chapter 
reviews the tolerance of A. halimus and A. nummularia saltbushes to Cd stress and 
the impact of this heavy metal on physiological and biochemical traits. In addition 
the beneficial role of Ca supplementation to alleviating Cd toxicity in these species 
was discussed.
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9.1  Introduction

Halophytic species can propagate and uptake toxins and pollutants (salts and heavy 
metals) in nonconventional soils (saline and polluted sites) to the amount that many 
glycophyte species cannot (Hasanuzzaman et al. 2014). These plants have involved 
well-adapted morphological and physiological features that enable them to tolerate 
high heavy metal pollution. Exploitation of these plants for rehabilitation of con-
taminated soils can be a promising strategy for sustainable phytoremediation 
(Manousaki and Kalogeraki 2011). However, it is essential to identify the strategies 
that these species applied to protect themselves and complete their life cycle under 
high polluted conditions (Lutts and Lefèvre 2015).

Cadmium (Cd) is a nonessential heavy metal that disrupts many physiological 
activities and prevents plant growth and development (Nedjimi and Daoud 2009; 
Hasanuzzaman and Fujita 2012). It is known as an extremely pollutant metal due to 
its toxicity and high solubility in soil solution (Sanitá di Toppi and Gabbrielli 1999). 
The main causes of soil pollution by Cd are the industrial and mining activities, use 
of phosphate fertilizers, and utilization of slug water for agriculture irrigation 
(Kabata–Pendias 2004).

The contamination of soil by Cd is one of the gravest environmental problems 
and has substantial consequences for human health. The noticeable symptoms of Cd 
toxicity in plants comprise (i) leaf chlorosis (chlorophyll breakdown), (ii) growth 
retardation, (iii) inhibition of enzymatic reactions, (iv) mineral nutrition distur-
bance, (v) lipid peroxidation, and (vi) production of reactive oxygen species (ROS) 
(Das et al. 1997; Hasanuzzaman et al. 2017a, b).

The use of classical methods such as soil excavation, chemical precipitation, 
electroplating, and incineration for heavy metal decontamination was quite costly 
and may induce to soil degradation. However phytoremediation, based on the use of 
plant species to eliminate contaminants, has been applied as a promising, no impact 
in environment, and low-costly green technology (Wu et al. 2010).

Solís-Domínguez et al. (2007) proposed that the normal content of Cd in leaf 
tissue ranges 0.05–0.2 μg g−1 DW, and 5–10 up to 30 μg g−1 DW can be considered 
excessive or toxic. However, Cd hyperaccumulator species accumulate above 
100 mg μg g−1 DW.

The criteria to categorize plants as Cd-tolerant or hyperaccumulator species are 
(i) species which prevent the Cd assimilation in shoots by retaining Cd in their roots 
(type excluder), (ii) species which accumulate Cd in their shoots through production 
of chelators or sequestration of Cd in nonsensitive compartments of vacuoles (type 
includer), and (iii) species which concentrate Cd in their shoots to levels far above 
than in soil (hyperaccumulators) (Maestri et al. 2010).

Heavy metal phytostabilization is a method used to reduce the bioavailability 
and migration of metals and stabilize them in the rhizospheric system and/or 
accumulated in root tissue. Phytoextraction is a technique to extract metals by 
plant from soils and accumulated them in aboveground harvestable parts (Susarla 
et al. 2002).

B. Nedjimi
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Saltbushes are a robust xero-halophyte species that are capable to survive with 
extensive periods of drought with high salinity and heavy metal levels (Nedjimi and 
Daoud 2009; Nedjimi et al. 2013; Barakat et al. 2013).

Among the halophytic species, Atriplex spp. are important shrubs of the 
Amaranthaceae family. These saltbushes have a distinct biochemical and physiolog-
ical plasticity that permits them to survive under harsh circumstances including 
drought, salinity, and heavy metal pollution (Le Houérou 1992).

Dotted with high aboveground biomass accompanied by a profound root system, 
many species of the genus Atriplex were tested for their potential as suitable candi-
dates for phytoremediation and cleanup of heavy metals from contaminated soils 
(Sawalha et  al. 2006; Lomonte et  al. 2010; Vromman et  al. 2011; Saïdani and 
Nedjimi 2014).

Atriplex halimus L. (Mediterranean saltbush, Fig.  9.1a) is a perennial shrub 
widespread throughout the West Asia and North Africa areas (WANA) and is used 
widely to provide fodder to livestock, due to its drought and salinity tolerance and 
its high palatability (Le Houérou 1992); however, A. nummularia L. (old man salt-
bush, Fig. 9.1b) is a halophytic shrub that naturally occurs in the Australian dry 
lands and is frequently used to stabilize sandy soils (Silveira et al. 2009).

The results of hydroponic experiments performed with A. halimus grown with 
increasing concentrations of Cd revealed that the main Cd content was accumulated 
in root system, and the Cd contents in shoot part remained particularly at small 
levels indicating a significant restriction of the translocation of Cd from the roots to 
aboveground part. In addition, all plants remained alive until the end of the experi-
ment, and no visible toxicity symptoms were shown in plant treated with low doses 
of Cd (Nedjimi and Daoud 2009).

The main objective of the this chapter is to provide a comprehensive review of 
the major responses of two Atriplex species to Cd and the mechanism adaptation of 
these species against Cd stress by calcium supplementation.

Fig. 9.1 The Atriplex species (Amaranthaceae): A. halimus (a) and A. nummularia (b)

9 Heavy Metal Tolerance in Two Algerian Saltbushes: A Review
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9.2  Cadmium Effects on Seed Germination

Seed germinability and early seedling growth are the most important stages in the 
life cycle of plants that determine their propagation and establishment in field con-
ditions (Nedjimi et al. 2014).

Metal stress may decrease seed germinability by delaying germination, enhanc-
ing of seed mortality, decreasing activities of some enzyme involved in germination 
events, and prolonging the seed dormancy (Sethy and Ghosh 2013).

The main physiological syndromes shown during seed germination under metal 
stress are (i) a decreased of seed imbibition, (ii) perturbation of reserve hydrolysis, 
and (iii) alteration activities of enzymes (Wierzbicka and Obidzinska 1998; Ashraf 
et al. 2011).

The aptitude of plant to tolerate Cd toxicity depends upon its ability to germinate 
in Cd-polluted soils (Márquez-García et al. 2013). Atriplex halimus and A. nummu-
laria seeds showed the highest percentage of germination without Cd stress (control 
treatment). However germination was inhibited when CdCl2 concentrations 
increased in the medium. At high CdCl2 (200 μM) concentration, about 40% and 
70% of the seeds germinated, respectively, for A. nummularia and A. halimus 
(Fig. 9.2).This suggests that A. halimus was a more Cd-tolerant saltbush compared 
to A. nummularia.

In another halophyte shrub, Liu et al. (2012) showed that final germination per-
centage of Suaeda salsa was prevented with the increased of CdCl2 concentrations. 
Cd inhibited seed germination significantly from 88% to 18% at 6 mg L−1 CdCl2. 
Seed germination of Miscanthus floridulus and M. transmorrisonensis was reduced 
to 3% and 8%, respectively, at 200 μM Cd treatment (Hsu and Chou 1992). A high 
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concentration of Cd (400  μM) inhibits significantly seed germination and early 
growth of Brassica napus compared to control (Meng et al. 2009). Aydinalp and 
Marinova (2009) demonstrated that concentration of 40 ppm Cd(NO3)2 repressed 
significantly seed germination and seedling growth of Medicago sativa grown in 
solid media (agar substrate).

9.3  Cadmium Effects on Biomass Production

Growth inhibition and reduction of the biomass production are mainly remarkable 
symptoms of Cd toxicity (Das et al. 1997). The biomass decrease observed in plants 
exposed to Cd often consequences from direct effects (toxicity of Cd accumulated 
in tissues) and/or from indirect effects (mineral nutrition deficiencies).

Kramer (2010) defined metal tolerance as the capability of plant to complete 
their growth cycle under polluted conditions with rapid growth, high green bio-
mass, and extraction of high amount of metals in their tissues, without symptoms 
of toxicity.

The roots display rapid and sensitive modifications in their growth pattern due its 
direct contact with toxic elements by reduction of root elongation and hair density 
and enhancement of lignification (Clemens 2006).

Both shoot and root dry weights (DWs) of A. halimus and A. nummularia have 
shown a significant reduction with an increase in Cd treatment (Fig. 9.2). Analogous 
findings have been reported for other saltbush species such as Spartina alterniflora 
(Chai et al. 2013) and Suaeda fruticosa (Bankaji et al. 2015) subjected to Cd stress. 
Li et al. (2016) revealed that application of 50 μM Cd in nutrient solution signifi-
cantly repressed the dry weight accumulation and enhanced the content of hydrogen 
peroxide (H2O2) and lipid peroxidation in Arabidopsis seedling. After 1 month of 
treatment, addition of Cd (50–300 μM CdCl2) in the medium culture decreased the 
relative growth rate of halophytes Sesuvium portulacastrum and Mesembryanthemum 
crystallinum (Ghnaya et al. 2005). The same authors proposed nutrient amendments 
(especially Ca and K) to improve plant growth and Cd phytoextraction of both 
halophytes.

9.4  Cadmium Effects on Photosynthesis Apparatus

Cadmium decreases photosynthesis of plants by many factors such as chloroplast 
alteration (Ouzonidou et  al. 1997), enhancement of senescence (Prakash et  al. 
2003), perturbation of enzymatic activity, and reduction of stomatal conductance by 
limiting the CO2 rates for carboxylation (Bertrand and Poirier 2005). Küpper et al. 
(1998) suggested that Cd substituted Mg in chlorophyll and led to alteration of 
chlorophyll pigments.

9 Heavy Metal Tolerance in Two Algerian Saltbushes: A Review
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The effect of Cd on photosynthesis in higher plants is extensively studied. Thus, 
in our previous studies, Cd stress reduces significantly chlorophyll contents (Chl a 
and b) in both Atriplex species (Fig. 9.3). A significant decrease in contents of chlo-
rophyll and carotenoid was established in Myriophyllum spicatum and M.  triphyllum 
under the Cd application (Sivaci et al. 2004). Likewise, Deng et al. (2014) observed 
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photo-inhibition and low electron transport rate in the leaves of Ceratopteris pteri-
doides due to Cd toxicity. Dias et al. (2012) demonstrated that application of 10 and 
50 μM Cd in nutrient solution can decrease the net CO2 assimilation rate and the 
photosystem II efficiency of lettuce. In addition, Cd perturbed photosynthesis activ-
ity in halophyte green alga (Chlamydomonas reinhardtii) by inhibiting photo- 
activation of photosystem II and preventing CO2 fixation (Faller et al. 2005).

9.5  Cadmium Effects on Mineral Uptake

The progressive concentrations of CdCl2 contribute to increased Cd contents in A. 
halimus which was found to be higher in the roots (508.17 μg g−1DW after 15 days 
at 200 μM CdCl2) than in the shoots. However, the inverse findings were found in A. 
nummularia where the highest Cd contents occurred in the shoots (146.59 μg g−1 
DW after 15 days at 200 μM CdCl2) than in the roots (Fig. 9.4). At high CdCl2 
(200 μM) concentration, the accumulation of Cd in A. halimus was reported to be 
five times higher in the roots than in the shoots. However in A. nummularia Cd 
content was found to be two times higher in the shoots than in the roots. These find-
ings suggest that A. nummularia could be a suitable shrub for Cd phytoextraction; 
however, A. halimus could be appropriate for use in the phytostabilization of Cd in 
polluted soils.

Many strategies were suggested to elucidate the ability of roots to accumulate high 
amounts of Cd; among these are (i) Cd complexation by organic acids such malate 
and oxalate (Lutts et al. 2004), (ii) Cd sequestration by phytochelatins (PCs) (Stolt 
et al. 2003), and (iii) Cd compartmentation in vacuoles (Shevyakova et al. 2003).

Many plant species retained high contents of Cd in their roots, with reduced 
translocation of this metal to aboveground part, or retransferred Cd from shoots to 
roots through the phloem path (Schmidke and Stephan 1995). However, substantial 
hypothesis suggested for Cd translocation to shoots was founded principally by 
water flux due to transpiration and root pressure (Zhao et al. 2006).

The halophyte Avicennia marina possesses the ability to accumulate Cd via its 
root system and stock in shoots without any sign of toxicity and suggests as a phy-
toextraction halophytic species (Nirmal Kumar et al. 2011). Recently, Eissa (2015) 
found that Atriplex lentiformis and A. undulate were appropriate halophytic shrubs 
for Cd phytostabilization and can reduce Cd contents in their aerial parts when the 
soil was contaminated by high Cd concentration. The salt marsh halophyte Sesuvium 
portulacastrum easily accumulates Cd from tannery effluent making it a viable can-
didate for use in phytoextraction in salt marshes (Ayyappan et al. 2016).

Cd toxicity may consequence from disruption in plant metabolism activities as a 
result of disorder in the mineral uptake by root and translocation to aboveground 
part (Das et al. 1997).

Potassium (K) is a vital chemical element involved in protein genesis, photo-
synthetic activity, enzyme stimulation, and cell osmotic adjustment (Maathuis and 
Amtmann 1999). The capacity of plants to avoid Cd stress depends strongly on the 
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status of their K absorption. The increase of external CdCl2 concentration was 
accompanied by a simultaneous decrease in K contents. Cd can reduce the root 
uptake of K and product K deficiency and growth retardation (Ghnaya et al. 2007).

Little information exists about the direct effect on uptake and distribution of K in 
plant subject to Cd stress. Cd and K possess a different chemical similarity; thus Cd 
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plays an indirect influence on K uptake, probably by decreasing energy disposabil-
ity through ATP complexation (Asp et al. 1994) or by depressing the genes impli-
cated in the transport of K influx (Ahmad and Maathuis 2014). Under high Cd 
stress, K assimilation was altered by the uncontrolled influx of Cd through the K 
pathways. Accumulation of Cd and its sequestration into the vacuole subsequently 
limit the K uptake by roots and decrease their translocation to the shoots (Das et al. 
1997). K concentrations in shoots and roots of both Atriplex spp. decreased signifi-
cantly with an increase of Cd level (Fig. 9.4). Similarly, a dramatic inhibition of K 
absorption was observed in Mesembryanthemum crystallinum cultivated on nutrient 
solution supplemented with CdCl2 (Ghnaya et al. 2005).

Our results show that Cd in the medium culture decreases calcium (Ca) contents 
in different plant organs of both saltbushes (Fig. 9.4). Reduction of growth related 
to a disturbance of Ca assimilation induced by Cd has been shown in many halo-
phytic species such as Sesuvium portulacastrum and Mesembryanthemum crystal-
linum (Ghnaya et  al. 2007). Clemens (2006) indicated that Cd ions competed 
(antagonist) for the same channels or transporters with Ca cation in root cell mem-
brane. Wang and Song (2009) establish that application of 5 mM CaCl2 in the nutri-
ent solution can significantly contract the toxicity of Cd in Trifolium repens, by 
alleviating lipid peroxidation and promoting activity of antioxidative enzymes. In 
Arabidopsis seedlings, Suzuki (2005) found that Cd contents were decreased by 
supplementation of 30 mM Ca.

9.6  Cadmium Effects on Organic Solute Accumulation

Under metal stress, plants accumulate large amounts of compatible solutes such as 
proline, glycine betaine, and soluble sugars. These metabolites defend cells from oxi-
dative damage produced by free radicals (ROS) and maintain the normal enzymatic 
activities without inhibition of the cellular metabolism (Ashraf and Foolad 2007). 
Metals are habitually compartmentalized in the vacuoles, while organic solutes are 
sequestered in the cytosol to protect cell from metal toxicities (Zouaria et al. 2016).

Proline is the most commonly compatible osmolyte accumulated by plants under 
abiotic stresses. This metabolite is involved in osmoregulation, carbon storage, 
 radical scavenging, and stabilization of the structure of proteins such as RuBisCO 
(Nedjimi 2013). The ability of halophytic species to synthesize this organic 
 compatible solute may be involved in their aptitude to cope with heavy metal stress 
(Sharma and Dietz 2006).

Atriplex halimus and A. nummularia accumulate large quantities of proline that 
often contributes to maintain its growth potentialities when exposed to Cd stress 
(Fig. 9.3). In another study, proline content was enhanced at high concentrations 
of Cd (300 μM CdCl2.H2O) in the extreme halophyte Salicornia brachiata, which 
is capable of accumulating this heavy metal in their areal part (Sharma et  al. 
2010). Likewise, Shevyakova et  al. (2003) revealed that the exposition of 
Mesembryanthemum crystallinum plants which is a facultative halophyte, to 
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excess Cd doses (0.01–1 mM), produced a general increase in proline accumulation. 
A significant increase of proline contents was also established in Silene vulgaris 
under the Cd application (Schat et al. 1997). In halophyte Aeluropus littoralis, the 
concentration of proline increased with increased concentrations of heavy metals 
(Cd, Co, Pb, and Ag) in nutrient solution (Rastgoo and Alemzadeh 2011). 
Measurement of proline content showed the existence of positive and linear correla-
tion between proline contents and Cd concentrations in Triticosecale Wittmack 
seedling treated with cadmium nitrate (Talebi et al. 2014).

9.7  Calcium Application Mitigates Cadmium Toxicity

Calcium is an essential element in many cellular functions, including enzyme acti-
vation, membrane integrity, and signal transduction (White and Broadley 2003). 
Soil pH or soil acidity (related to Ca level in the soil) was considered as the chemi-
cal factor that affects directly the solubility and bioavailability of Cd in soil rhizo-
sphere. Many reports indicated that the reducing of pH of soil solution leads to 
reducing Cd solubility and uptake by plants (Kirkham 2006).

In field conditions, adequate supplementation of Ca in polluted soils is a suitable 
low-cost solution to monitoring heavy metal toxicities, particularly in plant species 
which are subjected to Cd contamination (El-Enany 1995). The exogenous addition 
of Ca during the earlier growth stage can help plants to escape toxicity upon expo-
sure to Cd and offer a promising strategy to improve crop tolerance against Cd with 
minor damages as possible (Huang et al. 2017).

It is well-known that addition of exogenous Ca in nutrient solution alleviates the 
deleterious effects of Cd stress by inhibiting the uptake of Cd and repairing of mem-
brane leakage and antioxidant system (Wang and Song 2009; Nedjimi 2009). The 
presence of Ca in soil solution can prevent Cd uptake by roots (Lux et al. 2011). 
This cation can affect Cd assimilation as a consequence of antagonism in specific 
channels of ion transport. This suggestion was largely sustained by the study of Li 
et al. (2012) who revealed that application of lanthanum chloride (LaCl3) (Ca chan-
nel blocker) can significantly reduce Cd penetration in roots of Suaeda salsa.

Exogenous application of Ca can prevent adverse impact of Cd in cell mem-
branes and decrease the leakage of cytosolic K. In this way it may restore the K 
status that is altered by Cd stress. For example, Nedjimi (2009) found that supple-
mentation of 20 and 40 mM CaCl2 alleviates adverse effects on the growth of A. 
halimus plants. This promoting effect of Ca on growth was associated with increase 
in K, Ca, and Fe deficiencies joined with decrease in Cd content (Table  9.1). 
Similarly, Zhenyan et al. (2005) demonstrated that the growth enhancement effect 
of supplemental Ca on Lactuca sativa was due to the improvement of phytochelatin 
synthase gene expression. Recently Hashem et al. (2017) found that application of 
Ca associated with the arbuscular mycorrhizal fungi inoculation produced a signifi-
cant decrease in lipid peroxidation and hydrogen peroxidation and strengthened the 
antioxidant system of Bassia indica seedlings.
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The protective character of Ca in the Cd stress shown in Trifolium repens seed-
lings was associated with growth improvement and enhancement of some antioxi-
dative enzymes such as glutathione peroxidase (GPOX) and catalase (CAT) (Wang 
and Song 2009). A hydroponic experiment with Sedum alfredii was conducted by 
Tian et al. (2011) to investigate the ameliorating effect of Ca on root growth and 
oxidative stress caused by Cd. Their results showed that addition of Ca to the nutri-
ent solution mitigates Cd toxicity by a significant increase in the plasma membrane 
integrity and glutathione (GSH) biosynthesis.

Wheat LCT1, a nonspecific transporter for Ca and Cd, was overexpressed in 
tobacco plants. LCT1-transformed plants treated with 0.05  mM Cd (NO3)2 and 
1  mM Ca (NO3)2 displayed a substantially higher level of tolerance to Cd 
(Antosiewicz and Hennig 2004). Likewise, Drążkiewicz and Baszyński (2008) 
revealed that supply of 10 mM Ca to nutrient solution can help Phaseolus coccineus 
L. cv. Piękny Jaśto maintain protein composition of PS II complex and chlorophyll 
a fluorescence caused by the presence of 250–1000 μM Cd.

El-Enany (1995) reported that Ca supply significantly counteracted the harmful 
effect of Cd in maize seedlings. This was related to reduction of Cd accumulation 
and stimulation of biosynthesis of pigments and respiration rate. Contrary, Huebert 
and Shay (1991) showed that additional Ca to Lemna trisulca seedlings had no sig-
nificant impact on Cd toxicity with regard to growth rate, final yield, and cadmium 
uptake. Shi et al. (2014) suggested that supplemental Ca had a mitigating effect on 
Cd-induced cytotoxicity by efficiently improving the mitotic index and reducing the 
rate of chromosomal aberration in root of Wedelia trilobata. Li et al. (2016) revealed 
that application of 3 mM Ca in the nutrient solution can alleviate the root growth 
inhibition and reduce oxidative damages caused by Cd through maintaining auxin 
homeostasis in Arabidopsis seedlings.

The protective effect of Ca(NO3)2 against Cd toxicity in Lens culinaris cultivated 
in Hoagland nutrient could be attributed to the decrease of the levels of H2O2 and 
protection of membrane integrity (Talukdar 2012). Sakouhi et al. (2016) showed 
that addition of exogenous Ca together with ethylene glycol tetraacetic acid (EGTA) 

Table 9.1 Effect of calcium supplementation (20 and 40 mM) on dry weights (DW), chlorophyll 
contents (a and b), and cadmium (Cd), calcium (Ca), and iron (Fe) concentrations in shoot and root 
of A. halimus grown in nutrient solution containing high concentration of CdCl2 (400 μM)

Treatments

DW (mg 
plant−1)

Chlorophyll 
(mg g−1 DW) Cd (μg g−1DW) Ca (% DW) Fe (μg g−1DW)

Shoot Root Chl a Chl b Shoot Root Shoot Root Shoot Root

Control 127.9 a 37.7 a 1.74 a 1.13 a 1.22 c 2.31 c 2.83 a 1.62 a 13.13 a 121.75 a
CdCl2 56.5 c 18.2 c 0.64 b 0.43 c 209.51 a 618.23 a 0.97 c 0.57 c 6.03 c 38.66 c
CdCl2  
+ 20 Ca

79.9 b 23.8 b 0.95 ab 0.76 b 175.42 b 572.12 b 1.11 b 0.95 b 8.67 ab 74.12 b

CdCl2  
+ 40 Ca

86.6 b 28.1 b 1.09 a 0.91 b 109.63 b 507.23 b 1.93 
ab

1.06 b 10.45 b 84.34 b

Different letters in the same column indicate significant difference at P < 0.05 according to Tukey’s 
multiple range test
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in the nutrient solution mitigated the growth inhibition and decreased lipid peroxi-
dation and protein carbonylation in both shoot and root of Cicer arietinum plants 
exposed to Cd stress. In hydroponic condition, Farzadfar et al. (2013) showed that 
addition of 0.1, 1, and 5 mM CaCl2 decreased the Cd content and reactive oxygen 
species accumulation in Matricaria chamomilla seedlings treated with 120 and 
180 μM CdCl2.

9.8  Conclusion and Perspectives

Cadmium is a highly toxic heavy metal that induces damages in plants at physiolog-
ical, metabolic, and biochemical processes. Many halophytic species can tolerate 
high amount of Cd and even accumulate Cd in their organs, therefore emphasizing 
their potential for phytoremediation of Cd-contaminated soils.

The present review analyzes research undertaken during the last decade to under-
stand the tolerance mechanism in two Atriplex saltbushes to Cd stress. In arid zones 
of Algeria, A. halimus and A. nummularia (Amaranthaceae) are the two dominant 
saltbushes used as a fodder for livestock, for revegetation to preserve soil against 
desertification, and for desalination and phytoremediation of the polluted soils. 
These shrubs tolerate abiotic stress such as salinity, drought, and heavy metals. A. 
halimus was found to be accumulating a higher content of Cd in the roots. However, 
in A. nummularia, most of the Cd taken up was retained in shoots. These findings 
suggest that A. nummularia could be a suitable shrub for phytoextraction; however, 
A. halimus could be more appropriate for use in the phytostabilization of Cd in pol-
luted soils. These saltbushes have the capacity to develop in the Cd-polluted soils 
and accumulate large amounts of Cd in their tissues. However exogenous Ca amend-
ments can be supplemented to enhance the phytoremediation efficiency and to help 
saltbushes to cope better with Cd toxicity. The appropriate dose and duration of 
treatment of the exogenous Ca application should be determined precisely. In addi-
tion, further investigations considering molecular approaches are needed to reveal 
the underlying mechanisms of Cd tolerance in these species.
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Chapter 10
The Role of Sulfur in Plant Abiotic Stress 
Tolerance: Molecular Interactions 
and Defense Mechanisms

Mirza Hasanuzzaman, Md. Shahadat Hossain, 
M. H. M. Borhannuddin Bhuyan, Jubayer Al Mahmud, Kamrun Nahar, 
and Masayuki Fujita

Abstract Sulfur (S) is an essential macronutrient in plants that serves numerous 
plant functions and is vital for the metabolic processes. Moreover, it is the constitu-
ent of some essential amino acids and metabolites. Recent studies have provided the 
notion that S not only improves the productivity of plants under normal condition 
but also protects them from abiotic stresses like salinity, drought, and toxic metals/
metalloids. Different S compounds directly act as antioxidants or modulate antioxi-
dant defense system. Among them, glutathione (GSH) is regarded as one of the 
powerful antioxidants and stress protectors. Interactions of S with other biological 
molecules afford stress signaling to provide defense against environmental stresses. 
However, the S uptake, translocation, and mechanisms of action in plants under 
stressful conditions are still under research. The recent progress on the roles of S in 
conferring abiotic stresses and related literature is presented in this chapter.
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Abbreviations

ABA Abscisic acid
ACS 1-Aminocyclopropane carboxylic acid (ACC) synthase (ACS)
APK APS kinase
APR Adenosine-5′-phosphosulfate reductase
APS Adenosine-5′-phosphosulfate
APX Ascorbate peroxidase
AsA Ascorbate
ATP Adenosine triphosphate
ATPS ATP sulfurylase
CAT Catalase
CBL Cystathionine β-lyase
CGS Cystathionine γ-synthase
CSC Cysteine synthase complex
Cys Cysteine
Cyst Cystathionine
DHA Dehydroascorbate
DHAR Dehydroascorbate reductase
EF-TU Elongation factor-thermo unstable
GAPDH Glyceraldehyde-3-P-dehydrogenase
GB Glycine betaine
GCL Glutamate-cysteine ligase
Gly I Glyoxalase I
Gly II Glyoxalase II
GPX Glutathione peroxidase
GR Glutathione reductase
GRX Glutaredoxins
GSH Glutathione
GSHS Glutathione synthetase
GSSG Oxidized glutathione
GST Glutathione S-transferase
h-GSH Homo-GSH
JA Jasmonates
LOX Lipoxygenase
MDA Malondialdehyde
MDHAR Monodehydroascorbate reductase
Met Methionine
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MG Methylglyoxal
MRNA Messenger ribonucleic acid
MS Methionine synthase
NaHS Sodium hydrosulfide
NPT Nonprotein thiol
OAS O-Acetylserine
OASS O-Acetylserine sulfhydrylase
OAS-TL OAS(thiol)lyase
OPH O-Phosphohomoserine
PAPS 3-Phosphoadenosine-5-phosphosulfate
PCs Phytochelatins
PEG Polyethylene glycol
POD Peroxidase
POX Peroxidases
ROS Reactive oxygen species
RT-PCR Reverse transcription polymerase chain reaction
RuBisCO Ribulose-1,5-bisphosphate carboxylase/oxygenase
SAT Serine acetyltransferase
Ser Serine
SiR Sulfite reductase
SLG S-d-Lactoylglutathione
SOD Superoxide dismutase
SULTR Proton/SO4

2−cotransporter in plants
SURE Sulfur-responsive element
TBARS Thiobarbituric acid reactive substances
TRX Thioredoxins
γ-ECS γ-Glutamylcysteine synthetase
γ-GluCys γ-Glutamylcysteine

10.1  Introduction

Water stress, temperature stress, salinity stress, metal stress, nutrient deficiency, UV 
radiation, and ozone stress are being the most common abiotic stresses throughout 
the world. Growth and phenological pattern and reproductive development are ham-
pered due to obstruction in water and nutrient uptake, photosynthetic activity, mito-
chondrial reaction, and plasma membrane transportation of cell organelles in plants 
grown under abiotic stress condition (Hasanuzzaman et al. 2012, 2017a). The inten-
sity of these stresses is increasing day by day at an alarming rate, and because of 
that, the abiotic stresses become a matter of immense anxiety to plant productivity. 
That is why research on abiotic stress effects and how to decrease abiotic stress 
effects on plants have been increased noticeably previously. Inherent struggling 
capacity for survival in the era of abiotic/biotic stresses determines the healthy 
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growth of any organisms including plants. Naturally, like any other organisms, 
plants’ genetic potential determines the ability to struggle and survive against abi-
otic stresses.

Keen observation of plant processes and biomolecules within plants has recog-
nized sulfur (S) as one of the most abundant elements in organic structures. Sulfur 
is the fourth most important plant nutrient after N, P, and K. Sulfur after taken up by 
the root in the form of sulfate (SO4

2−) integrated into cysteine (Cys). Cysteine acts 
as a precursor or donor of key S compounds such as methionine (Met), 
S-adenosylmethionine, glutathione (GSH), homo-GSH (h-GSH), phytochelatins 
(PCs), sulfolipids, iron-sulfur clusters, allyl Cys, and glucosinolates, which play 
role in plant developmental processes and/or stress adaptation processes (Rausch 
and Wachter 2005; Khan et al. 2014; Anjum et al. 2015). Glutathione and h-GSH are 
involved in stress signal transmission. Several key stress metabolites such as ethyl-
ene (C2H2) are controlled by S-adenosylmethionine. Sulfur compound-mediated 
function of ATP-S has been reported for stress tolerance response (Anjum et  al. 
2015). Cysteine improved growth and lessened oxidative stress by modulating cel-
lular redox status and antioxidant defense in barley (Genisel et al. 2014). Sulfur- 
induced GSH synthesis decreased reactive oxygen species (ROS) and improved 
photosynthetic efficiency and growth in salt-affected barley (Astolfi and Zuchi 
2013). Higher content of S uptake increased accumulation of proteinogenic and 
non-proteinogenic thiols which improved cadmium (Cd) tolerance (Sun et al. 2007; 
Lancilli et al. 2014). The S deficiency reduces chl (chl) content, photosystem (PS) 
II efficiency, and performance of ribulose-1,5-bisphosphate carboxylase/oxygenase 
(RuBisCo) (Lunde et al. 2008). Sulfur moiety of Cys can regulate disulfide bond of 
proteins, which affect the structure of the Fe-S cluster and function of photosyn-
thetic apparatus and electron transport chain (Rochaix 2011). Glyceraldehyde-3-P- 
dehydrogenase (GAPDH), malate dehydrogenase (MDH), and elongation 
factor-thermo unstable (EF-TU) are some Cys-bearing protein having oxidative 
thiol modification functions (Leichert et  al. 2008). Ethephon and N jointly aug-
mented S-mediated ethylene and diminished glucose sensitivity, thus improving 
photosynthesis and growth (Iqbal et al. 2011).

Sulfur has been reported to improve antioxidant defense and metal chelation 
under Cd stress. In the presence of S, the GSH content, ratio of GSH and glutathione 
disulfide, GSSG (GSH/GSSG), nonprotein thiols (NPTs) and PCs, ascorbate (AsA) 
content, ratio of AsA and dehydroascorbate, DHA (AsA/DHA), activities of ascor-
bate peroxidase (APX), glutathione reductase (GR), and catalase (CAT) improved 
in Cd-affected Indian mustard plant. Moreover, superoxide dismutase (SOD) 
expression was upregulated that decreased O2

•− (Bashir et al. 2015). Sulfur addition 
decreased the As uptake and content in the shoot and modulated thiol metabolism, 
glycolysis, and amino acid in rice (Dixit et al. 2015a). Thus, S is proved as a potent 
plant nutrient for plant developmental processes.

There are some sporadic researches on the effect of S on abiotic stress alleviation 
in plants. Few research findings said about signaling function of S and its deriva-
tives. Based on available research findings, it is obvious that S is a potent molecule 
that functions in plant developmental and abiotic stress adaptation processes. It is 
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necessary to extend research with S to exploit its function thoroughly. So, a compre-
hensive review presenting available information and research updates of S will be a 
base for filling up gaps of previous or existing researchers and exploring new 
research areas. Therefore, this review concentrates and gathers information on vari-
ous aspects of S in plants including S metabolism, biological roles and roles in 
abiotic stress condition of S and its derivatives in plants, and molecular approaches 
in regulating S status.

10.2  Biological Role of Sulfur in Plants

Plants require a right combination of nutrients to survive, grow up, and reproduce. 
Sulfur is considered as an indispensable plant macronutrient required by all crops 
for their normal growth and development (Fig. 10.1). Sulfur is uptaken from the soil 
solution by the plant principally in the form of SO4

2− (Davidian and Kopriva 2010; 
Capaldi et al. 2015). Moreover, different S-containing amino acids provide S to the 
plants. Very little amount of S is supplied from the atmospheric SO2 and hydrogen 
sulfide (H2S) where SO2 is absorbed by leaf and fruit of plant (Mazid et al. 2011), 
and H2S is absorbed through stomata of the leaf (Riemenschneider et  al. 2005). 
Sulfur has an immense function in fundamental processes of plants such as electron 
transport, cellular structure, and regulation of different metabolic pathways (Capaldi 
et  al. 2015). Sufficient S nourishment to the plants improves photosynthesis by 
increasing chl formation and contributes to growth and development of plants 
(Scherer 2008). Furthermore, it has insightful relation with N assimilation. Carciochi 
et al. (2017) reported that optimum S in the growing media of wheat (Z51) increased 
nitrogen uptake and improved the root growth, which played a central role in 
improving yield (Salvagiotti et  al. 2009). Sulfur is also a component of various 
amino acids (Cys, Met etc.), antioxidants, sulfolipids, proteins, and enzymes that 

Fig. 10.1 Different biological functions of S in plants
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regulate photosynthesis and biological nitrogen fixation and assimilation by the 
plant (Abdallah et al. 2010; Capaldi et al. 2015). Also, S is an important constituent 
of Fe-S clusters, lipids, polysaccharides, and a wide range of biomolecules, for 
instance, vitamins, cofactors, peptides, and different secondary products (allyl cys-
teine sulfoxides, glucosinolates, etc.) (Nocito et al. 2007; Iqbal et al. 2012). Sulfur 
is essential for the vegetative development and production of oil and proteins of the 
plant especially in oilseed crops (D’Hooghe et al. 2013; Mária et al. 2017). Many 
reports demonstrated the influential effect of S on the yield and total oil content of 
oilseed crops (Jankowski et al. 2008; Egesel et al. 2009). Sulfur is also responsible 
for the production of glucosinolates in both the vegetative parts and the seed of 
oilseed crops, which determine the pungency of plants (Walker and Booth 2003). 
Sulfur is known to interact with almost all essential macro- and micronutrients by 
influencing their uptake and utilization (Abdin et al. 2003).

Besides playing an imperative role in growth, development, and productivity of 
higher plants, S has an immense role to develop stress tolerance in plants (Nazar 
et al. 2011; Osman and Rady 2012). Elemental sulfur, H2S, GSH, PC, S-rich pro-
teins, and various secondary metabolites are important S-containing defense com-
pounds that are very important for plant survival during biotic and abiotic stresses. 
The development of these compounds in the plant is intimately linked to the supply, 
demand, uptake, and assimilation of S (Capaldi et al. 2015).

10.3  Sulfur Metabolism in Plants

Plants produce many S-containing metabolites of diverse groups: amino acids (Cys, 
Met), antioxidants (GSH), vitamins (biotin, thiamine), and secondary metabolites 
(glucosinolates, alliinase). Although these metabolites contain S, their roles in a bio-
logical system are functionally distinct. Thus, S metabolism in plants is a topic of 
interest to explain how S is assimilated into a living system from the environment 
(Fig. 10.2). Like other macronutrients, S is taken up by the plant through the root as 
sulfate (SO4

2−). To be incorporated in the metabolic pathways, sulfate is first activated 
by ATP sulfurylase to yield adenosine-5′-phosphosulfate (APS) which is then reduced 
to sulfite (SO3

2−) by APS reductase. Finally, sulfite reductase converts the sulfite into 
sulfide that reacts with O-acetylserine in the presence of O-acetylserine lyase 
(OAS-TL) to produce Cys (Fig. 10.2). From Cys, GSH is produced by two- step ATP-
dependent reactions, where Cys is converted to γ-glutamylcysteine by 
γ-glutamylcysteine synthetase (also known as glutamate-cysteine ligase, GCL), and 
the subsequent reaction is catalyzed by glutathione synthetase. Cysteine also serves 
as a precursor of Met. Homocysteine is produced from cysteine and 
O-phosphohomoserine by the action of cystathionine γ-synthase (CGS) and cysta-
thionine β-lyase (CBL) (Fig.  10.2). Homocysteine is then converted into Met by 
methionine synthase (MS). Methionine is considered as the main precursor of gluco-
sinolate synthesis pathway by initiating the side chain elongation reaction to Met 
(Hirani et  al. 2012). Cysteine conjugated with the tryptophan-derived complex is 
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involved in camalexin biosynthesis (Bottcher et  al. 2009; Romero et  al. 2014). 
Glutathione is a key regulator of redox signaling pathway and the antioxidant required 
for abiotic stress tolerance (Noctor et al. 2012). Glutathione is oxidized by reactive 
oxygen species (Noctor et al. 2012). The oxidized glutathione, GSSG, can be regener-
ated into GSH by GR. In addition, GSH is involved in two-step methylglyoxal (MG) 
detoxification: in the first step, MG is converted in S-d-lactoylglutathione (SLG) by 
glyoxalase I (Gly I) using GSH, and in the second step, d-lactate is produced from 
SLG by glyoxalase II (Gly II) releasing GSH (Hasanuzzaman et al. 2017b). The red 
circle marked in Fig. 10.2 is very responsive to different abiotic stresses.

Sulfur metabolism in the plant is greatly affected by environmental factors 
including biotic and abiotic factor. ATP sulfurylase activity or expression increases 
under sulfate starvation, salt stress, and light, Cd, and cold stress condition, and it 
contributes to abiotic stress tolerance (Khan et al. 2014; Anjum et al. 2015; Dixit 
et  al. 2015b). Drought-induced alteration in S metabolic pathway in the plant is 
organ dependent. For example, drought stress decreased the Cys and GSH genera-
tion due to the lower assimilation of S in maize leaf. However, Cys, total glutathi-
one, and SO4

2− content were higher in the root (Ahmad et al. 2016). Salinity induced 
threefold higher expression of APS reductase (APR) in Arabidopsis roots (Koprivova 
and Kopriva 2008). However, salt stress induced by Na2SO4 decreases the  expression 
of APR in roots of Brassica rapa but not affected by NaCl, indicating APR expres-

Fig. 10.2 Sulfate metabolism in plant. APS, adenosine-5′-phosphosulfate, Cys cysteine, Cyst cys-
tathionine, γ-GluCys γ-glutamylcysteine, GSH glutathione, GSSG oxidized glutathione, Hcy 
homocysteine, MG methylglyoxal, OAS O-acetylserine, OPH O-phosphohomoserine, PAPS 
3-phosphoadenosine-5-phosphosulfate, SLG S-d-lactoylglutathione, Ser serine, APK APS kinase, 
APR APS reductase, ATPS ATP sulfurylase, CBL cystathionine β-lyase, CGS cystathionine 
γ-synthase, γ -ECS γ-glutamylcysteine synthetase, Gly I glyoxalase I, Gly II glyoxalase II, GR 
glutathione reductase, GSHS glutathione synthetase, MS methionine synthase, OAS-TL OAS(thiol)
lyase, SAT serine acetyltransferase, SiR sulfite reductase
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sion depends on sulfate availability (Reich et  al. 2017). Cadmium stress (10 mg 
kg−1) enhanced the activity of enzymes (ATPS, OASTAL, γ-ECS) of S assimilatory 
pathway in both root and shoot of Brassica chinensis L. (Lou et al. 2017). Above 
mentioned reports suggest that environmental stresses can alter the metabolic path-
way of S. Therefore, this pathway could be the potential target for enhancing abiotic 
stress tolerance since there are few reports on this topic.

10.4  Sulfur Transporters in S Metabolism

As an inorganic molecule, S first needs to get into the cell. There are many 
membrane- bound transport proteins that facilitate the entry of nutrient inside the 
root from the outer environment. A motive force generated due to proton gradient 
mediates the sulfate influx using H+/SO4

2− cotransport system. To be metabolized 
into different metabolites, both inorganic forms of S and an organic molecule con-
taining S must pass the membrane of cellular compartments through transport pro-
teins. Smith et al. (1995) isolated three cDNAs from Stylosanthes hamata encoding 
sulfate transporters, which were highly conserved in other biological organisms: 
fungi, yeast, plants, and mammals. The two high-affinity H+/SO4

2− cotransporters, 
shst1 and shst2, facilitate sulfate uptake from sulfur-deficient media, whereas the 
low-affinity H+/SO4

2− cotransporter, shst3, transports sulfate to the cellular compart-
ments. All the above mentioned sulfate transporters (SULTRs) contain characteris-
tic 12 putative membrane-spanning domains and STAS (sulfate transporter and 
anti- sigma factor antagonist) domain playing a role in protein folding and regulat-
ing protein activity, respectively (Takahashi 2010; Takahashi et al. 2011). With time 
some sulfate transporter has been reported in Brassica oleracea, potato, and tomato 
(Buchner et al. 2004; Hopkins et al. 2005; Howarth et al. 2003). Also, 12 sulfate 
transporters gene were identified in Arabidopsis using modern genomic tools and 
techniques. These transporter proteins are classified into four groups, which have 
distinct functions; group 1 includes high-affinity SULTRs, while group 2 consists of 
low-affinity transporters. Both group 1 and group 2 SULTRs mediate SO4

2− uptake 
from nutrient media. Unlike groups 1 and 2, group 3 includes the transporter local-
ized in plastid and symbiosome membrane playing specific function, sometimes 
unknown function, whereas group 4 mediates the SO4

2− transport from the vacuole 
to other cell organelles (Takahashi 2010; Gigolashvili and Kopriva 2014). 
Localization and expression of sulfate transporters indicate their function in the 
sulfate metabolism (Table 10.1).

High-affinity sulfate transporters (SULTR1;1, SULTR1;2) categorized in group 
1 play a role in the initial uptake of sulfate from the growing media (Takahashi 
2010; Takahashi et al. 2011). Yeast mutant lacking Sultr1;1 showed lower sulfate 
uptake, while mutant containing overexpressed Sultr1;1 vector improved sulfate 
uptake confirming SULTR1;1 is a sulfate transporter (Takahashi et al. 2000). Based 
on phylogenetic tree relationship and sequence information, it was predicted that 
other sulfate transporters might be present in the root having similarity in functions 
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and affinity to sulfate (Takahashi et  al. 2000). Selenate-resistant mutant showed 
lower uptake of sulfate both in sulfur-sufficient and sulfur-deficient medium. By 
yeast complementation technique, it is proved that the mutant was lacking Sultr1;2 
gene, which is responsible for sulfate uptake in the root (Shibagaki et al. 2002). 
Interestingly, either SULTR1;1 or SULTR1;2 is not involved in root to shoot trans-

Table 10.1 Sulfate transporters in plants and their function and localization in cell

Group
Transporter 
gene

Expression organs and 
tissue localization Functions References

1 SULTR1;1 Localized in root hairs, 
epidermis and cortex, 
expressed in cell layers

Initial uptake of sulfate 
from nutrient media

Takahashi et al. 
(2000)

SULTR1;2 Localized in root hairs, 
epidermis and cortex, 
expressed in cell layers

Initial uptake of sulfate 
from nutrient media

Shibagaki et al. 
(2002)

SULTR1;3 Localized in companion 
cell of phloem, expressed 
in both shoot and root

Transport of sulfur from 
source to sink and uptake of 
sulfur in phloem companion 
cell when other transporters 
are repressed

Yoshimoto et al. 
(2003) and 
Takahashi et al. 
(2000)

2 SULTR2;1 Expressed in root 
pericycle and xylem 
parenchyma, as well as in 
xylem and phloem 
parenchyma of shoots

Facilitate distribution of 
sulfate to leaf tissue

Takahashi et al. 
(2000)

SULTR2;2 Expressed in companion 
cell of phloem

Transport of sulfate through 
root phloem and transfer it 
to the site of sulfur 
assimilation

Takahashi et al. 
(2000)

3 SULTR3;1 Localized in chloroplast, 
expressed in leaves

Facilitate sulfate uptake in 
the chloroplast

Cao et al. (2013)

SULTR3;2 Expressed in leaf Facilitate sulfate uptake in 
the chloroplast

Cao et al. (2013)

SULTR3;3 Expressed in leaf Facilitate sulfate uptake in 
the chloroplast

Cao et al. (2013)

SULTR3;4 – Facilitate sulfate uptake in 
the chloroplast

Cao et al. (2013)

SULTR3;5 Colocalized in root, 
expressed in root 
pericycle and xylem 
parenchyma

Play a role in root to shoot 
transport

Kataoka et al. 
(2004b)

4 SULTR4;1 Localized in tonoplast, 
expressed in root and 
shoot

Remobilize sulfate from 
vacuole and regulate 
transport of sulfate from 
root to shoot

Kataoka et al. 
(2004a)

SULTR4;2 Localized in tonoplast, 
expressed in root and 
shoot

Remobilize sulfate from 
vacuole and regulate 
transport of sulfate from 
root to shoot

Kataoka et al. 
(2004a)
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port which indicates the involvement of other sulfate transporters to facilitate sulfate 
transport from the root to shoot. Getting entry through root hairs, sulfate reaches the 
endodermis to epidermis and cortex followed by xylem parenchyma through the 
symplastic pathway. However, sulfate can get entry to xylem parenchyma from the 
apoplast by SULTR2;1 (Maruyama-Nakashita et  al. 2003). Mutant in Sultr3;5 
restricted the transport of sulfate root to shoot. However, Sultr2;1 coexpressed with 
Sultr3;5 increased the root to shoot transport compared to Sultr2;1 expressed alone 
(Kataoka et al. 2004b; Takahashi et al. 2011). Furthermore, Sultr2;1 is found to be 
expressed in the leaf phloem suggesting its role in the reduction of excess sulfate 
from above ground part (Takahashi et al. 2000). SULTR2;2 transports sulfate to the 
mesophyll and palisade cell of leaf unloading from the xylem vessel (Takahashi 
et  al. 2000). Under sulfate-deprived condition, overexpressed Sultr1;3 facilitates 
sulfate uptake in the phloem companion cell as Sultr2;1 repressed under sulfate- 
deficient condition (Yoshimoto et al. 2003; Takahashi 2010). When excess in sup-
ply, sulfate is reserved in the vacuole, but sulfate influx mechanism into the vacuole 
has not been well studied. However, the efflux of sulfate from the vacuole into the 
cytoplasm is mediated by SULTR4;1 and SULTR4;2 transporter protein, catego-
rized in group 4 (Kataoka et al. 2004a). With these transporters, sulfur is taken up 
by roots and subsequently transported to different organs. Finally, sulfate gets into 
chloroplast where sulfur assimilatory pathway takes place. Using green fluorescent 
protein (GFP), SULTR3;1 transporter localization in the chloroplast was confirmed. 
Furthermore, mutant that lack this transporter showed lower sulfate uptake in the 
chloroplast, indicating SULTR3;1 is associated with sulfate transport in the chloro-
plast (Cao et al. 2013). Like SULTR3;1, other sulfate transporters like SULTR3;2, 
SULTR3;3, and SULTR3;4 are also involved in sulfate transport in the chloroplast 
(Cao et al. 2013). Among the four groups of sulfate transporters, transporters cate-
gorized in group 3 are less investigated compared to the others. For example, 
SULTR3;2-, SULTR3;3-, and SULTR3;4-mediated sulfate uptake mechanisms are 
still not clear.

10.5  Sulfate Transporter and Abiotic Stress

Different environmental factors including soil salinity, drought, waterlogging, high 
temperature, chilling, and heavy metal (HM) stresses affect nutrient metabolism 
from transport to assimilation. Under such extreme conditions, transporter proteins 
fail to function properly. As a result, ion homeostasis or nutrient balance is dis-
rupted. Glutathione, a sulfur derivative compound, plays a diverse role under abiotic 
stress condition. In the presence of selenium (Se), reduction in endogenous GSH 
has a regulatory role in the expression of primary sulfate uptake transporter Sultr1;1 
(Takahashi et al. 2000; Fig. 10.3). Abscisic acid is a key factor to regulate abiotic 
stress tolerance. Surprisingly, a mutant lacking sulfate transporter Sultr3;1 showed 
lower abscisic acid (ABA) content both in control and salt stress (200 mM NaCl) 
condition compared to wild type (Cao et  al. 2014). This result indicates the 

M. Hasanuzzaman et al.



231

possibility of sulfate transporters to be involved in abiotic stress tolerance. In 
Medicago truncatula, almost all sulfate transporters are affected by either drought 
or salinity (Gallardo et al. 2014). Under HM stresses in particular Cd stress, sulfate 
uptake increases due to the expression of ZmST1;1, very similar to high-affinity 
sulfate transporter which belongs to group 1 (Table 10.1). Higher sulfate uptake is 
associated with higher production of PC to detoxify toxic Cd (Nocito et al. 2006). 
Another high-affinity sulfate transporter Sultr1;2 is proved to be associated with As 
stress tolerance as Arabidopsis mutant lacking Sultr1;2 showed sensitivity to As in 
response to growth parameters (Nishida et al. 2016). The expression of sulfate trans-
porters may vary from the shoot to root under unfavorable condition. For example, 
under prolonged drought for 10 and 12 days, Sultr1;2 expression reduced in the leaf 
and not affected in the root. However, Sultr4;1 overexpressed in leaf but repressed 
in roots. This result suggests that with the help of this transporter maize seedling 
maintained S homeostasis in the root. As a result root growth increased in search of 
water (Ahmad et  al. 2016). As SULTRs are distinguishable in function, their 

Fig. 10.3 Role of sulfate transporters in sulfate uptake and distribution (Adapted from Takahashi 
et al. (2011))
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responses also vary depending on the type of stresses, indicating a particular trans-
porter may play a role in tolerance of a particular type of stress. Though there are 
many indirect pieces of evidence that explain the involvement of sulfate transporter 
in abiotic stress tolerance, still this hypothesis needs further confirmation with rig-
orous experimental evidence.

10.6  Exogenous Use of Sulfur in Improving Plant 
Performances Under Abiotic Stress

Environmental stressors affect cell homeostasis inside plant tissue, and increasing 
ROS production leads to oxidative damage (Boaretto et al. 2014; Hasanuzzaman 
et  al. 2017). Sulfur is an indispensable macronutrient for plant growth, develop-
ment, and survival, and at the same time, many S-containing compounds play 
defensive roles in abiotic stress response, as well as cellular acclimation and adapta-
tion in adverse condition (Cao et  al. 2014). Plants respond to abiotic stresses in 
many ways, but the S assimilation pathway, the important source of reduced S for a 
variety of cellular mechanisms including Cys synthesis, which further used for Met 
biosynthesis or GSH production (Siddiqui et al. 2012). Thus the exogenous supply 
of S helps plants to survive in stress condition by maintaining their usual metabolic 
process (Table 10.2).

It seems that the HM/metalloid stress increases the demand of reduced S, hence 
activating the expression of SO4

2− transporters and enzymes in the S assimilatory 
pathway (Takahashi et  al. 2011; Hawkesford 2012). Therefore, many research 
reports have shown the effect of exogenous S in mitigating various abiotic stresses. 
Sulfur has a vital role in nutrient homeostasis; thus, it can decrease the uptake of the 
HMs/metalloids and at the same time increase the absorption of essential plant 
nutrients. On the other hand, exogenous S may increase the uptake of few HMs/
metalloids, thus may be further useful for phytoremediation. In As-stressed plants 
increased S supply increases thiol metabolism and antioxidant activity, As accumu-
lation, as well as tolerance of plants (Srivastava and D’Souza 2010). Sulfate nutri-
tion plays an important role in regulating As translocation from roots to shoots, 
possibly through the complexation of AsIII-PCs in rice (Zhang et  al. 2011). 
Conclusively S supplementation reduced the As accumulation in a shoot by increas-
ing thiol metabolism and glycolysis toward amino acid accumulation under AsIII 
stress in rice (Dixit et al. 2015a). Sheng et al. (2016) found a moderate level of S 
application, beneficial to wheat against Mn toxicity, via upregulating the antioxi-
dant defense, and the translocation and distribution of Mn from roots to shoots, 
excess Mn sequestering in vacuoles in the form of PCs, and increased production of 
GSH, where GSH played a very important role. Applying S in guinea grass may be 
a vital tool for phytoremediation of Cu under Cu toxicity in Cu-polluted areas, by 
increasing Cu uptake as well as increasing (30–40% higher) shoot and root dry mass 
and decreasing of lipid peroxidation (Gilabel et al. 2014).
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Table 10.2 Studies showing beneficial response of exogenous sulfur and its derivatives in plants 
conferring various abiotic stresses

Plant species S treatment Abiotic stressors Protective effects References

Brassica napus var. 
Xiangnongyou 
5710

Elemental S, 
60 kg ha−1

Se (Se 60 g ha−1 
applied as 
Na2SeO4.10H2O)

Reduced Se and erucic 
acid content in seed

Liu et al. 
(2017)

Increased seed yield and 
seed oil content

Hydrilla verticillata 2.0 mM as 
MgSO4

As (50 mM 
Na2HAsO4)

Increased total thiols 
and antioxidant content, 
except CAT

Srivastava 
and 
D’Souza 
(2010)Improved redox status

Oryza sativa cv. 
IR-36

5.0 mM S as SO4
2− As (NaAsO2 

25 μM and 
(Na2HAsO4 
50 μM)

Increased root As 
accumulation and 
restricted As 
translocation to the 
shoots

Dixit et al. 
(2015b)

Enhanced synthesis of 
NPTs and PCs
Counterbalanced redox 
state and reduce
H2O2 content
Improved activity of 
APR, CS, SAT, γ-ECS, 
GR and SOD, APX, 
GPX, CAT, AR, and AO 
except γ-glutamyl 
transpeptidase (γ-GT), 
GST

O. sativa cv  
Jiahua 1

0.7 mM
SO4

2−
As (10 μM 
arsenite/10 μM 
arsenate)

Reduced As in root and 
translocation to shoot

Zhang et al. 
(2011)

Increased NPT and PCs 
and GSH content

O. sativa  
cv IR-36

5.0 mM SO4
2− As (25 μM 

NaAsO2)
Reduced As 
accumulation in shoot

Dixit et al. 
(2015a)

Improved glycolysis, 
thiol metabolism, and 
antioxidant enzyme 
activity

B. juncea cv. Pusa 
Jai Kisan (ethylene- 
sensitive) and SS2 
(ethylene- 
insensitive)

1.0 mM 
SO4

−2 as 
MgSO4

Cd (0.50 mM Cd 
as CdCl2)

Reduced thiobarbituric 
acid reactive substances 
(TBARS) and H2O2 and 
ethylene content

Asgher 
et al. (2014)

Upregulated SOD, APX, 
GR, SAT, ATPS, ACS, 
and RuBisCO activity
Increased Cys and GSH 
content
Promoted 
photosynthesis and dry 
mass accumulation

(continued)
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Table 10.2 (continued)

Plant species S treatment Abiotic stressors Protective effects References

B. chinensis cv. 
Aikangqing and 
Qibaoqing

4 mM 
Na2SO4

Cd (0.1 mM 
CdCl2)

Decreased Cd content, 
MDA, and O2•− in both 
root and shoot; 
increased NPT, PCs, 
GSH, AsA, and redox 
state in both root and 
shoot

Liang et al. 
(2016)

B. chinensis cv. 
Aikangqing and 
Qibaoqing

50 mg 
Na2SO4 kg−1 
soil

Cd (1 mg and 
10 mg CdCl2.5H2O 
kg−1 soil)

Increased growth Lou et al. 
(2017)Stimulated antioxidant 

enzymes
Upregulated ASA-GSH 
cycle and S assimilation
Boosted PC and NPT
production

B. juncea cv. Pusa 
Jaikisan

300 mM SO4
2− Cd (100 mM 

CdCl2)
Reduced TBARS 
content while increased 
AsA and GSH, PCs, 
NPT, and chl contents 
and balanced redox 
state

Bashir et al. 
(2015)

Upregulated SOD, CAT, 
APX, and GR activity

Triticum aestivum 
cv. Yan Long 19

1.5 mM 
Na2SO3/
NaHSO3 
(3:1)

Cd (1.0 mM 
CdCl2)

Increased H2S content; 
amylase and esterase 
activity thus elevated 
reducing sugars and 
soluble protein levels in 
germinating seeds

Hu et al. 
(2014)

Reduced MDA, H2O2, 
and O2

•− generation and 
retained plasma 
membrane integrity of 
the radical tips
Boosted the activity of 
POX, APX, SOD, and 
CAT and reduced LOX 
activity

T. polonicum 10 mM S as SO4
2− Mn (3.0 mM Mn) Improved GSH 

production and 
sequestering surplus 
Mn in vacuoles

Sheng et al. 
(2016)

Inhibited translocation 
of Mn from roots to 
shoots
Stimulated antioxidant 
enzymes

(continued)
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Table 10.2 (continued)

Plant species S treatment Abiotic stressors Protective effects References

Panicum maximum 
cv. Tanzânia

2 mM S as SO4
2− Cu (1000 μM Cu) Increased Cu uptake 

and translocation
Gilabel 
et al. (2014)

Osmotic adjustment via 
Pro
Nonsignificant but 
reduced MDA and H2O2 
content

T. aestivum 1.2 mM SO2 
as NaHSO3/
Na2SO3

Al Reduced the 
accumulation of O2

•−,

H2O2, and MDA

Zhu et al. 
(2015)

Enhanced the activities 
of POX, CAT, and APX 
and decreased the LOX 
activity

Arabidopsis 
thaliana (ecotype 
Columbia, Col-0)

1500 μM S as 
SO4

2−
Salinity (200 mM 
NaCl)

Upregulated some 
antioxidant enzyme and 
kept steady-state ABA 
level

Cao et al. 
(2014)

B. juncea var. 
Varuna

Elemental S 
200 mg kg−1 
soil

Salinity (100 mM 
NaCl)

Reduced Na+ and 
Cl− content of leaf

Fatma et al. 
(2014)

Increased ATP-S 
activity, RuBisCo 
activity, Cys content, 
GSH content, and redox 
state
Amplified chl content, 
stomatal conductance, 
PSII activity, and net 
photosynthesis
Increased leaf area and 
dry mass

Fragaria × 
ananassa cv. 
Camarosa

100 μM 
NaHS

Salinity (100 mM 
NaCl) and drought 
(10% PEG 6000)

Increased leaf chl 
fluorescence, stomatal 
conductance and leaf 
relative water content, 
and NO levels

Christou 
et al. (2013)

Lowered MDA and 
H2O2 levels and 
balanced redox state

Capsicum annum S (5 and 10 g 
L−1 of 
nutrient 
solution)

Salinity (5 dS m−1 
EC using NaCl)

Enhanced growth, leaf 
number, fruit number 
and weight, 
photosynthesis rate, and 
stomatal conductance

Mukhtar 
et al. (2016)

Reduced Na+ content in 
leaf and increased Pro 
and glycine betaine 
(GB) production in both 
root and shoot

(continued)
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Table 10.2 (continued)

Plant species S treatment Abiotic stressors Protective effects References

A. thaliana 
(ecotype 
Columbia-0)

100 mM 
NaHS

Salinity (150 mM 
NaCl)

Increased seedling 
survival rate

Shi et al. 
(2015)

Decreased generation of 
O2

•− and
H2O2 and balanced GSH 
redox state
Upregulated SOD, CAT, 
POD, and GR activity

A. thaliana 
(ecotype 
Columbia-0)

S as 100 mM 
NaHS

Drought Increased seedling 
survival rate

Shi et al. 
(2015)

Decreased generation of 
O2

•− and
H2O2 and balanced GSH 
redox state
Upregulated SOD, CAT, 
POD, and GR activity

B. juncea cv. Red 
Giant

Elemental S 
as 3 mM 
CaSO4

Drought (50% of 
well-watered)

Increased levels of 
aliphatic glucosinolates 
in leaves and roots 
followed by decrease in 
ABA content

Tong et al. 
(2014)

T. aestivum cv. 
Luyuan 502 and 
Jimai 22

0.15 mM 
NaHS

Heat stress 
(38/28 °C day/
night temperature, 
respectively)

Increased activities of 
SOD, CAT (decreased 
in Jimai 22), and APX; 
higher H2S and soluble 
sugar contents but 
lower H2O2 and MDA 
contents

Min et al. 
(2016)

Nicotiana tabacum 50 μM NaHS Heat stress (43 °C) Increased sulfhydryl 
compounds (H2S, Cys, 
GSH), upregulated 
antioxidant enzymes 
SOD, CAT, POX, and 
GR

Li et al. 
(2015)

A. thaliana 
(ecotype 
Columbia-0)

100 mM 
NaHS

Freezing (4 °C) Increased seedling 
survival rate

Shi et al. 
(2015)

Decreased generation  
of O2

•− and H2O2 and 
balanced GSH redox 
state
Upregulated SOD, CAT, 
POD, and GR activity
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Application of S to Cd-stressed pak choi (Brassica chinensis L.) plants enhanced 
Cd tolerance by promoting the AsA-GSH cycle and PC biosynthesis. After applica-
tion of S exogenously, its assimilation increased by the activity of ATP sulfurylase 
(ATPS) and O-acetylserine (thiol) lyase (OAS-TL) and decreased Cd translocation 
from the roots to the shoots (Liang et al. 2016; Lou et al. 2017). Indian mustard 
(Brassica juncea) plant supplemented with S under Cd stress accumulated the 
higher amount of AsA and GSH content as well as improved AsA/DHA, and GSH/
GSSG ratio indicated the role of exogenous S in producing GSH, NPTs and PCs, 
and tolerance against Cd stress (Bashir et al. 2015). A similar result was also found 
by other researchers in B. juncea which suggested that Cd stress overproduced eth-
ylene, which can be alleviated with S by antioxidant (GSH) metabolism (Asgher 
et al. 2014). Under Cd stress, seed priming with the SO2 donor moderately increased 
the amylase and esterase activities and increased the levels of reducing sugars and 
soluble protein in germinating wheat seeds. Pretreatment with the SO2 donor also 
reduced the MDA and and O2

•– and restrain the plasma membrane integrity of the 
wheat seedlings radical tips as well as increase the activity of POD, APX, SOD, and 
CAT while reducing the activity of LOX (Hu et al. 2014). Zhu et al. (2015) reported 
a higher level of H2S in wheat seeds primed with the SO2 donor (NaHSO3/Na2SO3). 
Wheat seed pretreated with 1.2 mM NaHSO3/Na2SO3 reduced overaccumulation of 
O2

•–, H2O2, and MDA, with lower lipoxygenase (LOX) activity, while the activity of 
guaiacol peroxidase (POD), CAT, and APX increased to enhance tolerance against 
Al toxicity (Zhu et al. 2015).

Tobacco cell culture pretreated with the H2S donor, sodium hydrosulfide (NaHS), 
KHSO3, and precursor Cys significantly increased the survival percentage of 
tobacco cells under high heat (Li et al. 2015). They also found an elevated level of 
sulfhydryl compounds such as H2S, sulfhydryl proteins, Cys, and GSH as well as 
higher antioxidant enzyme activity, for instance, SOD, CAT, cell wall peroxidases 
(POX), and GR, by pretreating with NaHS.  Meanwhile, NaHS-pretreated wheat 
seedlings were found with higher antioxidant defense and H2S and soluble sugar 
contents, while lesser H2O2 and MDA contents are induced by heat stress. But the 
little effect was found regarding antioxidant enzyme activities and other soluble 
substance levels compared to control (Min et al. 2016). In cluster beans under heat 
stress, S supplementation helps to mitigate the oxidative stress with higher AsA-
GSH content and to lower the H2O2, MDA, and electrolyte leakage. Sulfur also 
increased dry weight and chl content under heat stress (Mobin et  al. 2016). The 
study explored that pretreatment of strawberry roots with NaHS (100 μM for 48 h) 
could induce long-lasting tolerance to salinity (100 mM NaCl) or drought (10% 
PEG-6000) for 7 days. Furthermore, NaHS pretreatment resulted in lower NO and 
H2O2 content in leaves along with high AsA and GSH content, following salt and 
drought stresses. Thus, H2S pretreatment managed the plants to overcome the salt 
and drought stress through upregulating antioxidant defense mechanisms and the 
coordination of the salt overly sensitive (SOS) pathway in strawberry (Christou 
et al. 2013). Salt stress drastically reduces the yield of crops by ionic toxicity and 
physiological drought. But exogenous S application from a foliar spray can mitigate the 
salinity stress by increasing photosynthetic rate, stomatal conductance, chl content, 
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Pro, and GB content. The result suggested that S at both 5 and 10 g L−1 of spray 
solution improved the morphophysiological and biochemical traits in chili plants 
subjected to salinity (Mukhter et  al. 2016). While working with mustard, Fatma 
et al. (2014) reported that excess S in the soil more rapidly alleviated the negative 
effects of salinity and improved photosynthesis and growth by increased GSH pro-
duction. To support their statement, they again applied 1 mM GSH exogenously and 
found similar results of that excess S supplementation and confirmed excess S/GSH 
as a potential protectant against salt stress. At the time of salt stress, Cys is required 
to produce ABA to combat stress, while S supplementation increased the Cys pro-
duction for ABA biosynthesis (Cao et al. 2014).

10.7  Sulfur Derivatives and Their Roles in Abiotic Stress 
Tolerance

Overproduction of ROS and MG is an inevitable process that occurs in different 
tissue types, under a diverse adverse environmental conditions including salinity, 
drought, toxic metal, high temperature, low temperature, waterlogging, etc., which 
might be regulated by a number of defensive molecules or systems in plants 
(Hasanuzzaman et  al. 2012, 2017a; Sharma et  al. 2012). Sulfur-containing com-
pounds, for example, GSH, H2S, Met, Cys, PC, ATP-S, protein thiols, etc., play an 
immense role in normal functioning of the plant cell (Fig. 10.4). Also, such S deriv-
atives primarily work in plant stress tolerance (Colville and Kranner 2010; 
Zagorchev et al. 2013). Under stress condition in most of the cases, the content of 
endogenous S-containing compounds increased up to a certain extent to protect 
plants from respective stress (Khan et al. 2013; Zagorchev et al. 2013; Hasanuzzaman 
et al. 2017b). Recently the exogenous application of different S derivatives (GSH, 
H2S, etc.) against a variety of abiotic stresses is receiving attention due to their 
effectiveness in enhancing stress tolerance.

Sulfur-rich Cys is very important for plants not only as an amino acid but also 
due to its role as a precursor for a huge number of vital biomolecules (Haag et al. 
2012). Cysteine possesses a vital position in plant metabolism because it plays an 
essential role in the biosynthesis of important S-containing cellular compounds, for 
example, GSH and different proteins (Romero et  al. 2014). These compounds 
directly or indirectly work in the redox signaling pathway and stress tolerance 
mechanisms. Moreover, Cys triggers metabolism of nitrogen at the biochemical and 
molecular level which plays an imperative role in enhancing plant stress tolerance 
(Zagorchev et al. 2013; Erdala and Turk 2016). On the other hand, Cys is a powerful 
metal chelator, but Cys-metal ion complexes are capable of activating the most dev-
astating Fenton reaction, which may create toxic OH• radical in a plant cell (Bashir 
et al. 2012). Though endogenous Cys played a great function in a plant cell, the 
exogenous application of Cys for alleviating abiotic stress from the plant is very 
rare. Erdala and Turk (2016) demonstrated that Cys application to maize seedlings 
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mitigates Cd-induced oxidative stress. Like Cys, Met can undergo ROS-mediated 
oxidation through a class of cytosolic and plastidic enzymes that are involved in 
mitigating the oxidative damage of plant (Dos Santos et al. 2005; Cabreiro et al. 
2006). Methionine is also a substrate for the synthesis of a range of polyamines 
(putrescine, spermidine, spermine, etc.), which has important roles in stress toler-
ance (Alcázar et al. 2010).

Sulfate is first activated by ATP-S to yield APS which is then reduced to SO3
2− by 

APS reductase and then further reduced to S2− and finally incorporated into Cys 
which helps to produce S-rich GSH. So, enhancement of ATP-S in a plant cell is 
very urgent for developing plant stress tolerance. Glutathione is one of the most 
important nonenzymatic antioxidants for living systems which plays a noteworthy 
role in cellular metabolism and works as a vital component in scavenging of toxic 
ROS in a plant cell (Gill and Tuteja 2010; Hasanuzzaman et al. 2012; Noctor et al. 
2012; Nahar et al. 2016). Also, it works in glyoxalase system to detoxify toxic MG 
(Hasanuzzaman et al. 2017a). By upholding the reduced status of α-tocopherol and 
zeaxanthin, GSH protects the membrane of the cell, which contributes to the reduc-
tion of protein denaturation under stress condition. Moreover, it functions as a sub-
strate of glutathione peroxidase (GPX) and glutathione S-transferase (GST). Both 
GPX and GST play a direct role in scavenging of toxic ROS and protecting plants 
from oxidative stress induced by different abiotic stresses (Hasanuzzaman et  al. 
2012; Asgher et al. 2017). Glutathione S-transferase is also involved in detoxifica-

Fig. 10.4 Roles of S derivatives in abiotic stress tolerance of plant
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tion of xenobiotics (Zagorchev et  al. 2013). Glutathione, as a precursor of PC, 
assists in metal chelation, which transfers the toxic metals or metalloids to the cell 
vacuole as an inactive form (Hasanuzzaman et  al. 2017a, b; Sharma and Dietz 
2006). Consequently, it acts an imperative function in detoxification of toxic metals/
metalloids (Hasanuzzaman et  al. 2017b; Srivalli and Khanna-Chopra 2008). In 
addition to a variety of functions of GSH reported before, there is a confirmation 
that GSH is highly associated with controlling different genes (Zagorchev et  al. 
2013). Such abovementioned biochemical characteristics of GSH make it indis-
pensable for plant growth and development under both usual and adverse growing 
conditions. Many previous reports confirmed that endogenous or exogenous GSH 
contributes to increase tolerance level of plants to diverse abiotic stresses, including 
salinity, drought, high temperature (HT), low temperature, and toxic metal stress 
(Kumar et al. 2010; Mahmood et al. 2010; Wang et al. 2011; Wu et al. 2011; Chen 
et al. 2012; Hasanuzzaman et al. 2012; Jozefczak et al. 2012). Here, we discussed 
few recent findings. Cheng et  al. (2015) reported that exogenous application of 
reduced GSH in Arabidopsis plant could improve abiotic stress tolerance. They also 
claimed that endogenously enhanced GSH bestowed tolerance on the same plant 
under salt and drought stress. Furthermore, senescence and flowering are delayed 
due to both exogenous and endogenous GSH.  Their translatome analysis also 
uncovered that GSH treatment triggered the biosynthesis process of ABA, auxin and 
jasmonic acid (JA), as well as signaling genes, which might be helpful for increas-
ing plant stress tolerance. Çevik and Ünyayar (2015) checked the function of exog-
enously applied AsA and GSH on antioxidant system of Cicer arietinum plant under 
drought stress and observed that both GSH and AsA contribute to enhancing toler-
ance level against drought stress in chickpea. Nahar et  al. (2015a) reported that 
exogenous GSH enhances the activity of most of the enzymes of antioxidant defense 
system (APX, MDHAR, DHAR, GR, GPX, GST, SOD and CAT) and glyoxalase 
system of drought- affected mung bean plant either considerably or slightly. 
Accordingly, GSH reduced the content of over-generated ROS and MG which 
finally successfully decreased the oxidative damage. But the performance of GSH 
was day dependent. With the increasing stress duration, GSH showed lower effec-
tivity to counter stress. A similar trend of positive findings was recorded due to 
exogenous GSH in the same plant under high temperature (HT) and salt stress 
(Nahar et  al. 2015b, c). Compared to only stress supplementation of GSH in 
HT-stressed cucumber plants, considerably increased soluble protein content, pro-
line level, activities of different antioxidants and their associated gene expression, 
as well as exogenous GSH reduced the ROS production and decreased the cell lipid 
peroxidation (Ding et al. 2016). Their results suggest that exogenously applied GSH 
improve tolerance level of HT-stressed cucumber plants due to its positive action in 
water status, photosynthetic process, and antioxidant defense system. Khan et al. 
(2016) demonstrated that exogenous GSH application decreased MDA and H2O2 
content of cotton leaves because of increased activity of POD, APX, GR, SOD, and 
CAT. These findings recommended that exogenous application of GSH decreased 
the undesirable effects of Pb and enhanced tolerance of cotton plants to oxidative 
stress. Glutathione enhanced the manufacture of NO and total S-nitrosothiol contents 
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and upheld a reduced cellular redox status and increased antioxidant capacity along 
with induction of transcripts of transcription factors and antioxidant genes under Cd 
stress in tomato plants (Hashem et al. 2016). Similarly, Daud et al. (2016) observed 
the GSH-mediated oxidative stress tolerance in the cotton plant under Cd stress. 
Therefore, it is very obvious that any source of GSH either endogenous or exogenous 
develop plant stress tolerance under the adverse growing condition, but success 
depends on the interaction of it to the stress regarding the proper amount of GSH.

Even though H2S is considered as a phytotoxin, it is documented that plants can 
themselves produce and liberate this gas, particularly when uncovered to external 
Cys, sulfate, sulfite, or SO2 (Li 2013; Li et al. 2016; Wei et al. 2017). Maybe for the 
indulgence of excess S, the plant goes through such mechanism. Nevertheless, under 
few biotic and abiotic stresses, plants release H2S more than basal, endogenously 
produced rates (Jin et al. 2011; Wei et al. 2017). Additionally, as a vital sulfur com-
pound, H2S works in various developmental processes of plant and contributes to 
enhance plant stress tolerance as it can upregulate the transcripts of multiple abiotic 
and biotic stress-related genes and hinder accumulation of ROS (Shi et al. 2014; Li 
and Hey 2015; Chen et al. 2017). Endogenous H2S accumulation is a widespread 
feedback of plants to environmental stress, including salt, drought, HM/metalloid, 
and heat and cold stress which might be intimately connected with the acquisition of 
plant stress tolerance (Li 2013; Calderwood and Kopriva 2014; Hancock and 
Whiteman 2014). Hydrogen sulfide is involved in a complex signaling network con-
sisting of many secondary messengers such as Ca2+, ABA, H2O2, and NO, which 
protect the plant from stress-induced damage (Li et al. 2016). In recent time, low 
concentration of exogenous H2S is emerging as a novel gaseous signal molecule 
which confirmed its positive effect in different plants under normal and adverse 
growing condition. It has numerous positive functions on plant growth and develop-
ment. The action of supplemented H2S is also found to enhance plant stress tolerance 
under environmental difficulties (Li 2013; Li et al. 2016). Interestingly, exogenous 
application of H2S confirms considerable positive effects on germination of seed (Li 
and He 2015; Wojtyla et al. 2016), plant growth and development (Fang et al. 2014), 
and regulation of senescence (Zhang et al. 2011), with the increasing of plant stress 
tolerance against salt (Christou et  al. 2013; Chen et  al. 2015; Deng et  al. 2016), 
drought (Christou et al. 2013; Shen et al. 2013; Chen et al. 2016; Ma et al. 2016), 
toxic metal (Chen et al. 2013, 2017; Cui et al. 2014), high temperature (Li et al. 
2013a,b; Li 2015), and cold stress (Fu et al. 2013; Du et al. 2017). The above func-
tions of H2S signify that it might be a promising candidate for signal transduction in 
plant’s cross-adaptation. Recently, Chen et al. (2017) observed that H2S acted as an 
antioxidant and scavenged ROS through regulating different antioxidant enzymes, 
thus preventing metal-induced (Hg) oxidative damages. In contrast to stressed plant, 
exogenous application of H2S in drought-affected wheat seedlings increased the 
activity of different antioxidant enzymes and reduced ROS production and lipid per-
oxidation in both leaves and roots. Moreover, H2S addition in plants enhanced ABA 
biosynthesis, which participated in developing drought stress tolerance (Ma et al. 
2016). In parallel, Chen et al. (2016) found that H2S regulates the polyamines and 
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sugar changes in Spinacia oleracea seedlings under drought stress condition, which 
provided stress tolerance for the plants. Exogenously applied H2S in salt-affected 
plants maintained the balance between Na+ and K+ in growing media and cell along 
with upregulation of different ROS scavenging enzymes, which maintained the cel-
lular balance and protected plant from the salt-induced damages (Christou et  al. 
2013; Chen et al. 2015; Deng et al. 2016). A similar type of actions of H2S in enhanc-
ing stress tolerance was observed under other abiotic stresses including heat and 
cold stress (Li et al. 2013a, b; Fu et al. 2013; Li 2015; Du et al. 2017).

Thioredoxins (TRX), glutaredoxins (GRX), and glutathionylation are considered 
as protein thiols, which contain sulphydryl groups and are considered as protective 
and regulatory compounds for plant cell (Zagorchev et al. 2013). Different abiotic 
stresses raise both TRX and GRX in protein or gene level. Proteomics study of rice 
seedlings demonstrated the upregulation of responsible genes of TRX and GRX 
under Cu toxicity (Song et al. 2012). However, their function varies from stress to 
stress. Fatehi et al. (2012) reported that TRX activity increased by manyfold under 
salt stress in barley plant. On the other hand, amusingly, cold stress seemed to 
downregulate most TRX genes, but drought stress upregulated them, as a minimum 
at the earlier stages of the stress treatment (Nuruzzaman et al. 2012). Like TRX and 
GPX, the function of glutathionylation in a plant cell regarding abiotic stress toler-
ance is not so clear to date. Colville and Kranner (2010) reported that protein gluta-
thionylation is a probable provider of defense mechanisms that confer desiccation 
stress tolerance.

10.8  Molecular Approaches in Regulating S Status in Plants

For growth and development, plants require a certain amount of sulfur. Due to the 
dynamic nature of the environment, plants may not get the exact amount of S as per 
requirement. Thus, plants have evolved with some strategies to control the S status 
in plants under diverse situations including S deficiency and unfavorable environ-
mental condition (Table  10.3). From S uptake to assimilation into a metabolite, 
different regulatory factors tightly control the pathway to ensure proper concentra-
tion of S-containing compounds or inorganic SO4

2− in cellular compartments essen-
tial for metabolic functions (Table 10.3). Understanding of molecular mechanism 
involved in S homeostasis allows us to engineer pathway in a way ensuring proper 
S level in plant even under environmental stress condition. Therefore, the study of 
transporter proteins, metabolites, and enzymes of the assimilatory pathway under 
S-deficient condition could be a pertinent approach to find out the regulatory factors 
of S metabolism. Under S deficiency, Sultr1;1 expression is greatly enhanced, and 
Sultr1;1 is more responsive to S status than Sultr1;2 (Yoshimoto et al. 2002). To 
understand how the transporter proteins are controlled, different enzymes inhibitors 
were used: phosphatase inhibitors, OKA and CalyA, and kinase inhibitors, K252a. 
Phosphatase inhibitors, OKA and CalyA, inhibited the expression Sultr1;1 under 
sulfur deficiency indicating the involvement of protein phosphatase in the 
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regulation of Sultr1;1 expression (Maruyama-Nakashita et  al. 2004a). Further 
investigation revealed that among different phytohormones, only cytokinin could 
repress the Sultr1;1 and Sultr1;2 expressions in Arabidopsis indicating a role of 
cytokinin in S homeostasis in the plant (Maruyama-Nakashita et al. 2004b). Again, 
a sulfur- responsive element (SURE) was identified in 5′ promoter region of Sultr1;1. 
Furthermore, microarray analysis suggested that SURE is associated with some 
genes responsive to S deficiency (Maruyama-Nakashita et al. 2005). Another tran-
scription factor, SLIM1, was reported to be involved in regulation of Sultr1;2 
expressions under S-limiting condition. Interestingly, SLIM1 itself was not affected 
by S concentration in the growing media. Also, there was no SLIM1 binding site in 
the sulfate transporters except Sultr4;2 suggesting the presence of another factor 
that may connect the signaling between transporter genes and SLIM1 (Maruyama- 
Nakashita et al. 2006). A binding site for EIL group transcription factors was identi-
fied in the promoter region of UP9C gene in tobacco, a gene responsive to the sulfur 
limitation (Wawryzynska et al. 2010). Kasajima et al. (2007) suggested that ASR1, 
also known as BIG gene, is involved in sulfate metabolism pathway as the mutant 
asr1-1 showed upregulation of SULTR2;2 and adenosine-5′-phosphosulfate reduc-
tase 1 (APR1) which was not affected by SLIM1. To investigate the transcriptional 
regulation of sulfate assimilatory genes, long hypocotyl 5 (HY5), a transcription 
factor, was reported to modulate APR expression. Unlike SURE and SLIM1, HY5 
can bind to the promoter region of APR1 and APR2 but not in APR3 (Lee et al. 
2011). However, APR expression is also regulated by MYB transcription factors 
(Yatusevich et al. 2010).

In some cases, gene expression is regulated posttranscriptionally by some RNA, 
microRNA (miRNA). These miRNAs bind with a protein to form RNA-induced 
silencing complex (RISC). The RISC then binds with mRNA complementary to 
miRNA. As a result target mRNA fails to be translated into protein. Sulfur defi-

Table 10.3 Regulatory components of S metabolism and their function

Regulatory 
component in S 
metabolism

Target in S 
metabolic pathway Mode of action References

Sulfur-responsive 
element (SURE)

Present in promoter 
region of Sultr;1

Provide binding sequence 
5 bp GAGAC for 
regulatory element

Maruyama-Nakashita 
et al. (2005)

SLIM1 Sultr1;2 and 
Glucosinolates

Activate sulfate uptake and 
degrade glucosinolates

Maruyama-Nakashita 
et al. (2006)

Long hypocotyl 5 
(HY5)

APS reductase 
(APR)

Control the APR gene 
expression

Lee et al. (2011)

MYB APS reductase 
(APR)

Control the APR gene 
expression and regulated 
by SLIM1

Takahashi et al. (2011), 
Koprivova and Kopriva 
(2014)

miRNA395 ATP sulfurylases 
(APS) and Sultr2;1

Regulate APS expression 
and induced by SLIM1

Kawashima et al. 
(2009)

Cysteine synthase 
complex (CSC)

Cys Modulate Cys biosynthesis Wirtz et al. (2010)
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ciency in growth medium induces miRNA395 which in turn regulates the expres-
sion of Sultr2;1 and APS1 genes in the sulfur metabolic pathway. Interestingly, 
transcription factor SLIM1 can induce miRNA under sulfur limitation (Kawashima 
et al. 2009). The multienzyme complex formed by SAT and OAS-TL, known as 
cysteine synthase complex (CSC), is involved in sulfur homeostasis (Takahashi 
et al. 2011; Koprivova and Kopriva 2014). The CSC regulates Cys biosynthesis in 
different cell organelles and maintains SAT activity. However, S limitation induces 
accumulation of OAS which dissociates the complex (Droux et al. 1998; Wirtz et al. 
2010). Still, there are not enough reports to elucidate the mechanism completely. 
Furthermore, regulatory networks of S metabolism could be investigated under abi-
otic stress condition which will allow us to answer the question how S is metabo-
lized under adverse environment.

10.9  Conclusion and Future Perspectives

Although there are several reports on the role of S in plants under abiotic stress, the 
exact mechanisms and interactions are not revealed yet. Sulfur-associated amino 
acids (Met, Cys), iron-S-clusters, lipids, vitamins (biotin and thiamine), cofactors 
(CoA and S-adenosylmethionine), and peptides (such as GSH and PCs) play a sig-
nificant role in abiotic stress tolerance. Molecular approaches to manipulate 
enzymes of S assimilation pathway such as ATP sulfurylase (ATP-S), APS kinase, 
PAPS reductase or APS reductase, sulfite reductase, serine acetyltransferase (SAT), 
and O-acetylserine/O-acetylhomoserine sulfhydrylase will widen the eyes view to 
exploit S as a more persuasive molecule in developing stress tolerance of plant 
(Anjum et al. 2015; Khan et al. 2016). Sulfur deficiency disrupts homeostasis of 
other essential nutrients, and thus the formation of basic structural components of 
the cell is hindered. A cross talk among GSH pools, miR395 levels, and ATP-S 
transcripts/activity regulates S pool and the pool of other essential nutrients within 
the plant which maintains the nutrient homeostasis for better plant development 
both under normal growth and abiotic stress condition (Anjum et al. 2015). This 
aspect should be considered for further studies.
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Chapter 11
The Role of Silicon in Plant Tolerance 
to Abiotic Stress

Tomasz Kleiber

Abstract Silicon (Si) belongs to the group of elements having a beneficial effect 
on plants. While it is not necessary for living processes, it may positively influence 
plant growth and yielding. The forms of Si which are easily available to plants and 
could be used in nutrition include potassium silicate, silica sol, slow-release Ca- and 
NH4-silicates and choline-stabilised orthosilicic acid. Si supplementation may also 
significantly change the nutrient uptake by plants. The positive role of Si in plant 
growth is especially observed under stress conditions such as salinity, temperature 
(freezing, chilling), heavy metal toxicities (e.g. aluminium, cadmium, manganese) 
and drought. This chapter presents examples of the role of Si in plant nutrition, its 
role in abiotic stress tolerance to plants as well as the mechanisms of Si alleviation 
to various abiotic stresses in plants.

Keywords Silicon · Plants · Beneficial element · Abiotic stress

11.1  Introduction

Silicon (Si) is classified as a beneficial element for some plants. It means that under 
some environmental conditions, especially under stress pressure, it may positively 
influence plant growth and yielding. Liang et al. (2007) cited Epstein and Bloom 
(2005), who modified the generally accepted definition of essentiality of elements 
established by Arnon and Stout (1939). In their opinion an element is essential when 
it meets at least one of that criteria: (i) it is part of a molecule being an intrinsic 
component of the structure or metabolism of the plant, and (ii) the plant can be so 
severely deficient in the element that it shows abnormalities at various development 
phases in comparison to plants with a less deficient status of that element. Based on 
this definition, Si may be classified as an essential element for higher plants, which 
may soon be a universally accepted definition.
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11.2  Silicon Influence on Plant Physiology

11.2.1  Physiological Processes

In the opinion of Liang et al. (2003), silicon may be involved in physiological and 
metabolic processes and enhance structural activity in higher plants. Si supplemen-
tation of in  vitro-cultured plants may promote beneficial physiological changes, 
such as better development of photosynthetic tissues and production of chlorophyll 
(Braga et al. 2009). Also in vivo an increased Si nutrition leads to positive changes 
such as chlorophyll quantity (a, b and total) in plants and changes in the transpira-
tion rate (Schmidt et al. 1999; Dragišic Maksimović et al. 2007; Silva Lobato et al. 
2013). Studies showed that Si reduces the transpiration rate (Agarie et al. 1998), 
increases photosynthetic capacity or stimulates antioxidant superoxide dismutase 
activity (Schmidt et al. 1999). Si may also influence processes taking place in plant 
tissues, e.g. condensation of their structure or lignin synthesis (Zhao et al. 2013). 
According to Dragišic Maksimović et al. (2007), at the level of plant parts (espe-
cially in the case of leaves), Si may also modulate the metabolism and utilisation of 
phenolic compounds, which is likely the consequence of the formation of 
Si-polyphenol complexes. Positive symptoms of Si application have also been 
reported by Gunes et al. (2007a) and Sacała (2009) in connection with such physi-
ological parameters as photosynthesis or stomatal conductance. Si treatment signifi-
cantly influences the plant water status (described as RWC – relative water content) 
(Kleiber et al. 2015a) and reduces transpiration rates compared with combinations 
without Si treatment. Liang et al. (1996) claimed that Si treatment by improving 
plant growth enhances root activity and photosynthesis. Another important aspect is 
connected with an alleviation effect of osmotic stress by reducing transpiration and/
or improving retention of water.

Generally Si content in plant tissues could be genotype varied, according to Ma 
and Takahashi (2002), reaching as much as 10.0% of dry weight. In plant tissues, 
about 99% of Si is found in the silic form and only <1% as a colloidal or ionic, 
soluble form (Ma et al. 2001). Until recently literature on the subject disregarded 
the role of Si, even though most plants take root in the environment rich in silicates 
but poor in its forms readily available to plants (Epstein 1999; Richmond and 
Sussman 2003). Graminaceous plants typically absorb higher amounts of Si com-
pared with others. In turn, most dicotyledonous plants passively absorb Si, although 
some dicots, such as legumes, exclude Si uptake (Ma et al. 2001; Liang et al. 2005; 
Sacała 2009). Si is available and readily absorbed as uncharged silicic acid [Si(OH)4] 
and is ultimately irreversibly precipitated throughout the plant as amorphous silica. 
Mitani and Ma (2005) claimed that in rice plants, a higher density of the transporter 
for radial transport and the presence of a transporter for xylem loading are respon-
sible for the high Si accumulation. Nevertheless, the effect of Si nutrition on some 
species (e.g. lettuce) could be weaker than in other plants (Voogt and Sonneveld 
2001). Ma and Yamaji (2006) divided plants into three groups depending on the Si 
transport and accumulation: high (e.g. rice), medium (e.g. cucumber) and low (e.g. 
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tomato). In rice the uptake and transport of Si are an active process (Epstein 1994; 
Ma et al. 2006), while some dicots (e.g. cucumber, melon, soybean or strawberry) 
take it up passively (Takahashi et al. 1990; Ma et al. 2001; Mitani and Ma 2005).

Different forms of Si are available for plants, e.g. Ca- and NH4-silicates (Górecki 
and Danielski-Busch 2009), orthosilicic acid (Dragišic Maksimović et  al. 2007), 
potassium silicate (Lee et al. 2000; Iwasaki et al. 2002a), silica sol (Jarosz 2013) 
and sodium silicate (Rogalla and Römheld 2002). Also ch-OSA (choline-stabilised 
orthosilicic acid) may be used in plant nutrition (Kleiber 2014b; Kleiber et  al. 
2015b). ch-OSA is a bioavailable Si form for humans (the decision of the European 
Food Safety Authority 2009) and may be used for therapeutic purposes. Studies 
have shown that a combined application of ch-OSA + Ca/Vit D3 had a potential 
beneficial effect on bone collagen compared to Ca/Vit D3 alone. This suggests that 
such therapy could be potentially applied/used in osteoporosis (Spector et al. 2008).

A particularly important role of Si nutrition is observed in the case of soilless 
cultures, since plants are not capable of orthosilicate uptake directly from the soil, in 
which they are naturally found (Datnoff et al. 2001). Among other things, Si may 
affect plant growth, habit and yielding. In the opinion of Liang et al. (2007), recent 
findings suggest that Si is not inert but plays a role in a physical or mechanical bar-
rier in plants. It is not only deposited in the cell walls but participates in metabolic 
and/or physiological activities, especially in plant response to varied stresses. The 
positive role of Si in the photosynthetic activity was, for example, studied in heavy 
metal stress (Kleiber et al. 2015b), UV radiation (Li et al. 2004; Shen et al. 2010), 
water deficit (Gong et  al. 2005) or pest infestation and pesticide application 
(Richmond and Sussman 2003). Si is also considered a desirable element, stimulat-
ing yielding and resistance to disease in certain plants (Epstein 1999; Datnoff and 
Rodrigues 2005; Fauteux et al. 2005). Liang et al. (2007) stated that further studies 
are needed to investigate the effect of Si in alleviation of various stresses. The direc-
tion adopted in present-day plant breeding should be to produce genetic modifica-
tions in plants to enhance their potential for Si uptake to such amounts that plants 
may overcome the stresses they are exposed to during culture (Ma and Yamaji 2006).

11.2.2  Influence on Nutrient Uptake

Because of its effect on uptake of other nutrients, Si may alleviate various stresses, 
as well as improve yielding of plants (Epstein 1999; Aziz et al. 2002; Jarosz 2013). 
The currently confirmed effect of Si on the uptake of other nutrients varies greatly 
and is multifaceted. Incorporation of Si in plant nutrition programmes may improve 
utilisation of nutrients (Epstein 1994). Moreover, Si promotes nitrogen (N) metabo-
lism (Watanabe et al. 2001) and promotes and enhances uptake of phosphorus (P) 
while at the same time reducing uptake of iron (Fe) and Mn (Kozik and Komosa 
2012). In cadmium (Cd) stress, the Si treatment may increase calcium (Ca) uptake 
by plants (Song et al. 2009). Meanwhile Ma and Takahashi (1993) claimed that Si 
nutrition may decrease Ca content in the shoots of plants, which could be a result of 
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a decreasing transpiration rate caused by Si. Many studies have shown a positive Si 
effect on a more effective utilisation of P and potassium (K) (Lee et al. 2000; Farshidi 
et al. 2012; Kleiber 2014b; Jarosz 2015; Kleiber et al. 2015a). In the case of micro-
elements, Jarosz (2013) stated that Si has no major influence on the content of Fe in 
cucumber leaves. In contrast, the effect of Si on the Mn and Zn status of plants may 
be varied (Horiguchi 1988; Lee et al. 2000; Jarosz 2013; Kleiber 2014a). In turn, Si 
application may influence the status of some metallic microelements (Fe, Mn and 
Zn) and accumulation of metal-mobilising compounds in micronutrient- deficient 
plants (Bityutskii et al. 2014). Research results have shown that Si treatment signifi-
cantly increases Fe status in leaves of plants deprived of Fe, whereas the status of 
other microelements is not affected by Si. The above-mentioned authors suggested 
that the major alleviating effect of Si could be connected with the enhancement of Fe 
distribution towards juvenile parts of shoots, along with the accumulation of 
Fe-mobilising compounds such as catechin (in roots) or citrate (in leaves/roots).

11.2.3  Response of Plants Under Heavy Metal Stress

One of the most extensively scientifically documented applications of Si is the alle-
viation of heavy metal stress. Excessive uptake of heavy metals, e.g. Mn, causes a 
strong oxidative stress in plants and as a consequence results in a deterioration of 
their yielding or the development of toxicity symptoms (Kleiber 2014a; Kleiber 
et al. 2014). Earliest studies stated a significant and important role of Si in the alle-
viation of the toxic effects of Mn (Horiguchi 1988; Iwasaki et al. 2002a, b; Dragišic 
Maksimović et al. 2007; Liang et al. 2007; Zanão Júnior et al. 2010), Al (Hiradate 
et al. 1998) or Cd (Shi et al. 2010; Zhang et al. 2008; Wu et al. 2016; Hasanuzzaman 
et al. 2017). Previous studies on the use of Si in relieving metal stress were con-
ducted on various species, e.g. barley, beans, cowpea, cucumber or rice.

The key mechanisms for Si alleviation of abiotic stresses in higher plants include 
(Liang et  al. 2007) (1) antioxidant system stimulation, (2) complexation or co- 
precipitation of toxic metal ions with Si, (3) immobilisation of those ions in the 
growing medium and (4) uptake and translocation within plants. In the case of envi-
ronmental stresses, Si prevents cell membrane damage, while in the form of the 
orthosilicic acid, it may induce defence response, activate signal proteins and con-
tribute to the production of stress hormones in fungal diseases (Agarie et al. 1998; 
Fauteux et  al. 2005; Hasanuzzaman et  al. 2017, 2018). Alleviation of chemical 
stress may be related to the induction of antioxidant response and the protection of 
membranes that increases plant tolerance to damage (Gunes et al. 2007b).

Spectacular and positive symptoms of Si treatment under heavy metal stress 
include an increase in the net photosynthesis rate (PN) (Kleiber et al. 2015b) or bio-
mass production (Dragišic Maksimović et al. 2007, 2012), for example, increasing 
ch-OSA concentrations (0.21–0.63 mg Si dm−3) in hydroponic culture of lettuce 
significantly improved yielding of plants grown under Mn stress (Kleiber 2014b). In 
leaves of hydroponically grown cucumber (Cucumis sativus L.) exposed to high Mn 
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nutrition, it induced both growth inhibition of the whole plant and caused visual Mn 
toxicity symptoms (Dragišic Maksimović et al. 2007). Although the Mn status of 
leaves did not differ between plants exposed to varied Si treatments, symptoms of 
this heavy metal toxicity were not observed in plants fed with Si. However, opinions 
on the Si effect on Mn content in plants vary considerably: some authors (Iwasaki 
et al. 2002a; Führs et al. 2009; Kleiber 2014b) suggested a lack of influence of Si on 
Mn content in plants, while others (Horiguchi 1988; Jarosz 2015) claimed that Si 
reduces the Mn content in plant leaves. In turn, Zanão Júnior et al. (2010) found that 
Si application in hydroponic caused a decrease of Mn concentration in leaves, which 
was related with an increasing content of that metal in roots, thanks to which the 
toxicity was reduced. The positive role of Si in the alleviation of Mn stress caused 
by an elevated production of hydroxyl radicals (·OH) in the leaf apoplasts of hydro-
ponically grown cucumber (Cucumis sativus L.) with optimal (0.5 μM) or toxic 
(100 μM) Mn levels in the nutrient solution and also with/without Si supplementa-
tion was studied by Dragišic Maksimović et al. (2012). Si addition decreased the 
apoplastic concentration of free manganese (2+) and hydrogen peroxide in toxic 
Mn-treated plants. In Mn stress Si treatment suppressed the Mn-induced increased 
abundance of peroxidase (POD) isoforms in the leaf apoplastic fluid and led to a 
rapid suppression of guaiacol-POD activity. While Si application reduced the OH 
accumulation in the leaf apoplasts with excessive Mn, adding Si to the Mn(2+)/H2O2 
reaction mixture did not directly affect the Fenton reaction (in vitro). The above- 
mentioned authors found that Si contributes indirectly to OH decrease in the leaf 
apoplasts by decreasing the free apoplastic Mn(2+), thus regulating the respective 
reaction. In vitro a direct Si inhibitory effect on guaiacol-POD activity may contrib-
ute to a reduction of the POD-mediated ·OH generation. Si may oxidise Mn medi-
ated by POD through an interaction of phenolic compounds in the solution phase of 
the apoplast, maintaining the apoplast in a reduced state, which is thought to be 
necessary for improved Mn leaf tolerance (Iwasaki et al. 2002a, b).

Iwasaki and Matsumura (1999) found that the alleviation effect of Si on pumpkin 
(Cucurbita moschata Duch cv. Shintosa) cultivated under excessive Mn nutrition 
was cultivar-dependent and positively correlated with Si nutrition. In their opinion 
Si alleviated the Mn toxicity through a localised Mn accumulation with Si in a meta-
bolically inactive form around the base of the trichomes on the leaf surface. In rice 
Si content in the top parts of Si+ plants (50 ppm SiO2) is higher compared with the 
control plants (Si-) regardless of Mn nutrition (within the range from 0.32 to 
100 ppm Mn) (Horiguchi 1988). Also transpiration rates in plants with no Si treat-
ment were higher independently on their Mn status. In the case of higher Mn nutri-
tion, the increase of Mn root concentration caused by Si was less evident than the 
decrease in Mn content in the tops of plants. Peroxidase activities in plants increased 
with Mn nutrition; nevertheless, the peroxidase activity in the case of Si+ plants was 
lower comparing with the control plants (Si-). Si enhances the internal tolerance to 
Mn toxicity with a simultaneous decrease of Mn concentration in plants (Horiguchi 
1988). Si reduces the Mn concentration in the symplasts (<10%) and leads to a 
greater concentration of Mn bound to the cell walls (>90%) when compared with 
the control plants (≈50% in each compartment), making Mn less available and less 
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toxic (Rogalla and Römheld 2002). In the case of cowpea, Horst et al. (1999) found 
that Si reduced the Mn apoplastic concentration and may modify the cation sorption 
capacity of the cell wall. It seems that the interaction of Si and metals reduces the 
activity of toxic metal ions in the medium (Hiradate et al. 1998).

Si can increase plant tolerance to Cd in the case of monocotyledonous and dicot-
yledonous species and reduce the toxicity symptoms of that heavy metal (Neumann 
and zur Nieden 2001; Shi et al. 2005b; Feng et al. 2009; Song et al. 2009). Shi et al. 
(2010) studied the effect of Si supplementation in two peanut (Arachis hypogaea L.) 
cvs. (‘Luhua 11’ and ‘Luzi 101’) differing in Cd tolerance. Cd decreased plant 
growth and caused oxidative stress in both cultivars, but the response was cultivar- 
dependent. The Si-promoted alleviation effect on that heavy metal was related, for 
example, with the reduction of Cd concentration in shoots (in the seedling phase). 
The response of plants to Si+ under Cd stress varied between the cultivars: in cv. 
Luhua 11, Si reduced transport of that heavy metal to aboveground parts of plants 
(shoots and leaves), and increased enzyme activities (CAT, POD and SOD) in roots 
could reduce Cd toxicity. In the other cultivar, Si stimulated antioxidant systems and 
decreased Cd concentration in shoots. In the opinion of Zhang et al. (2008), Si treat-
ment reduced Cd accumulation in shoots of rice by compartmentalisation of Cd in 
the root cell walls. The Si application in hydroponic cultivation of flowering Chinese 
cabbage (Brassica campestris L. ssp. chinensis var. utilis) reduced Cd stress (Wu 
et al. 2016) by decreasing Cd shoot concentrations as well as its translocation factor, 
though the concentrations of that heavy metal in roots and the total uptake showed 
an upwards trend. Song et al. (2009) also confirmed that Si nutrition alleviated the 
heavy metal stress (Cd) by reduction of its uptake.

Si significantly alleviated Al toxicity in barley (Hordeum vulgare L.) plants 
(Hammond et al. 1995) – Si improved root growth, which was related with reduct-
ing Al uptake by roots. The possible mechanism of the Si alleviation effect on that 
toxicity could be related with interactions between ions reducing the activity of 
heavy metal ions in the growing medium (Hiradate et al. 1998). Baylis et al. (1994) 
confirmed the positive effect of Si treatment but emphasised the importance of the 
pH level. It is possible that the precipitation of subcolloidal, inert hydroxyalumino-
silicate could be responsible for the diminished concentration (activity) of phyto-
toxic Al in the hydroponic culture. In corn (Zea mays L.), Ma et al. (1997) found 
that in plants grown under Al stress, the Si application provided protection against 
the inhibition of root elongation. It was also concluded that the formation of Al-Si 
complexes was responsible for alleviation of Al toxicity. In the opinion of Cocker 
et al. (1998), a possible mechanism of Al toxicity alleviation is connected with the 
formation of sparsely soluble aluminosilicates or hydroxyaluminosilicates (or both) 
within the root cell wall (apoplastic) space, thereby reducing the concentration of 
free, toxic Al3+ ions. Barcelo et  al. (1993) found that teosinte (Zea mays L. ssp. 
mexicana) plants exposed to Al (60 mM/120 mM) were less inhibited in their growth 
when Si was added to the solution (4 mM Si) – the mechanism was attributed mainly 
to the inhibitory effect of Al uptake. After Si treatment higher concentrations of 
organic acids (malic and formic) were determined in the plants. Possibly Si may 
have additional roles in Al toxicity by mediating the metabolism of phenolic com-
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pounds, as it has been reported that Si+-treated maize plants release 15 times more 
phenolics than control plants (Si-) (Kidd et  al. 2001). Catechin and quercetin or 
other flavonoid phenolics have a strong Al-chelating potential and may provide 
metal tolerance in plants.

Several hypotheses have been presented to explain the mechanisms of the Si 
effect in the inhibition of heavy metal ion uptake, e.g. by binding heavy metal ions 
in the substrate by compounds, which the plant is not capable of absorbing, by bind-
ing cations in cell walls, stimulating antioxidants and enzymes reducing the adverse 
effects and by binding ions in the cytoplasm and next transporting them to the vacu-
oles (Hiradate et  al. 1998; Pilon-Smits et  al. 2009). Si influences the metabolic/
physiological changes in plants (Liang 1999). Neumann and zur Nieden (2001) and 
Shi et al. (2005a) claimed that it stimulates the plant’s antioxidant defence. In the 
opinion of Liang et al. (2007), Si reduces lipid peroxidation and improves plasma 
membrane and tonoplast structure, integrity as well as vital functions. The follow-
ing factors take part in the mechanism of the Si-enhanced Mn tolerance: (1) decrease 
the Mn concentration in apoplasts through an improved adsorption of that microele-
ment on the cell walls and (2) an alleviation of Mn toxicity facilitated through 
increased solubility of Si concentrations in the apoplasts (Iwasaki et  al. 2002a). 
According to Wu et al. (2016), the potential mechanisms of reducing Cd transloca-
tion may include (1) decreasing Cd content and proportions in symplast/apoplast 
saps (Nwugo and Huerta 2008; Ye et al. 2012) and delaying metaxylem develop-
ment in roots under low heavy metal stress (Vaculík et al. 2012) as well as enhanced 
formation of complexes with acids (both organic or inorganic) and reducing trans-
location to aboveground parts of plants (Collin et al. 2014; Keller et al. 2015).

11.2.4  Response of Plants Under Water Stress

According to Sacała (2009), water availability in soil is one of the major environ-
mental factors limiting the growth and yielding of crops. Water stress may result 
from a real water deficit in the soil (drought) or excessive salinity of the root zone. 
Current studies on the use of Si in drought stress relief are particularly important for 
different cereal species. Drought is the source of abiotic stress, which reduces 
growth and development rates, causes flower aborting and decreases crop yields 
(Showemimo and Olarewaju 2007) while also deteriorating photosynthetic param-
eters, root development and water potential.

Under optimal water conditions, Si treatment had no effect on growth and physi-
ological parameters of rice cultivars (Oryza sativa L.) (Chen et al. 2011). However, 
under water stress, it affected negatively plant growth parameters, e.g. dry weight, 
root traits, water potential and selected photosynthetic parameters such as F(v)/F(0), 
basal quantum yield, and F(v)/F(m) maximum quantum efficiency of PSII photo-
chemistry. Under Si treatment positive symptoms were found in plant physiology, 
such as increased photosynthetic rate (Pn), transpiration rate (Tr) and the above- 
mentioned other physiological parameters. Those authors claimed that water stress 
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influences the nutrient status of plants, as it increases concentrations of K, Na, Ca, 
Mg and Fe, while Si significantly reduces the concentration of these nutrients. These 
results suggested that Si treatment of rice plants was useful in increasing drought 
resistance through an improvement of the nutrient status as well as enhancement of 
photochemical efficiency.

Kaya et  al. (2006) conducted experiments with another important cereal spe-
cies – maize (Zea mays cv. DK 647 F1). The effect of Si treatment on the response 
of plants was investigated under varied water conditions: optimal and with strong 
water deficit. Induced drought stress reduced the total dry matter, relative water 
content and chlorophyll content with a simultaneous increase in proline accumula-
tion and electrolyte leakage in plants. Si improved the physiological response, but 
generally the levels remained significantly lower than in the control (except for 
electrolyte leakage and root-shoot ratios). Kaya et  al. (2006), similarly as Chen 
et al. (2011), found an effect of Si on the chemical composition of water-stressed 
plants. The Si status of plants was correlated with Si content in the nutrient solution. 
Water deficit decreased the K and Ca contents, whereas Si treatment increased 
them. In conclusion, the Si nutrition may be one approach to improve growth of this 
crop and increase its production under dry conditions but may not be a full substi-
tute for an adequate water supply.

Differences have been reported in SOD and POD activity between different Si 
treatments of wheat (Triticum aestivum L.) grown under drought stress at different 
developmental stages (Gong et  al. 2008). The Si treatment did not influence the 
contents of total soluble protein and protein carbonyl or H2O2, while at the filling 
stage, it decreased the content of H2O2 and protein carbonyl and increased content 
of total soluble protein. Additionally, a downwards trend was also observed for the 
content of TBARS (thiobarbituric acid reactive substances) and the activities of acid 
phospholipase (AP) and lipoxygenase (LOX) under dry conditions.

Si limited the decrease in dry weight under water stress conditions but had no 
effect on DM production under wet conditions in plants of sorghum (Sorghum 
bicolor (L.) Moench) (Hattori et  al. 2005). Under drought conditions Si+ plants 
were characterised by a lower shoot-root ratio, indicating the facilitation of root 
growth and the maintenance of the photosynthetic rate and stomatal conductance at 
a higher level when compared with the control (Si-). Those authors stated that the 
diurnal determination of the transpiration rate indicated that the Si treatment plants 
could uptake more water from dry soil and maintain a higher stomatal conductance. 
In the opinion of those authors, Si application may be useful in improving drought 
tolerance of sorghum thanks, to improved water uptake.

The effect of Si on potato (Solanum tuberosum L.) response under drought stress 
was investigated in studies conducted by Crusciol et al. (2009). Si treatment and 
water deficit resulted in an increased Si concentration in leaves with a simultaneous 
increase of proline concentrations. In the opinion of those authors, Si may be associ-
ated with plant osmotic adjustment. That factor decreased total sugar/soluble pro-
tein concentrations in the leaves. Si nutrition reduced stalk lodging and increased 
mean tuber weight and, consequently, tuber yield, especially under water deficit. 
Similarly to agricultural crops, also horticultural species exhibit a positive response 
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to Si nutrition. Strawberry plants (Fragaria ananasa Duch. cv. Elvira) at the foliar 
application of potassium-silicate alkaline utilised water more efficiently in the pro-
cess of photosynthesis, as a result improving their water relations and significantly 
reducing water losses from transpiration (Mikiciuk and Mikiciuk 2009).

11.2.5  Response of Plants Under Salinity Stress

In today’s world increasingly frequent problems are connected with excessive salin-
ity of soil and water. One way to limit them is to use Si nutrition. Previous studies 
focusing on that issue were conducted on various species, e.g. barley (Liang et al. 
1996, 2003; Liang and Ding 2002), rice (Matoh et al. 1986; Yeo et al. 1999), wheat 
(Ahmad et  al. 1992), tomato (Al-Aghabary et  al. 2004) or cucumber (Zhu et  al. 
2004).

In a study by Liang (1999), plants of barley (Hordeum vulgare L.) treated with 
Si were characterised by increased SOD activity in leaves and HC-ATPase activity 
in roots, while malondialdehyde (MDA) concentration in leaves decreased signifi-
cantly when compared with the control plants (Si-). In turn, Yeo et al. (1999) and 
Romero-Aranda et al. (2006) found that Si treatment under salinity stress increased 
the stomatal conductance in tomato and rice, respectively.

Matoh et al. (1986) studied the effect of Si treatment in hydroponically grown 
rice under salinity stress with the presence of either NaCI, sea water or polyethylene 
glycol (PEG) at an osmotic potential of up to 186 mOsmol/kg, equivalent to 100 mM 
NaCI or 20% sea water. The most detrimental factor was NaCI, followed by sea 
water and PEG. The chemical composition of plants (N, P, K and Ca concentra-
tions) was comparable in the studied combinations. A lack of an Si source brought 
about a more severe growth reduction in rice plants subjected to 100 mM NaCI 
stress. In the Si+ plants, the Na contents in the shoots were nearly half of those in 
the shoots of Si- plants. Savvas et al. (2007) clearly indicated that Si is capable of 
suppressing the uptake and translocation of Na and Cl to the photosynthetically 
active leaves of roses under high external NaCl salinity. Also salt tolerance of wheat 
(Triticum aestivum) or barley could be improved by an addition of small amounts of 
the soluble Si form (Ahmad et al. 1992; Liang et al. 1996). Obviously, plant response 
is connected with the element uptake. Moderate salinity (50 mmol∙dm−3) leads to 
increased H2O2 levels in cucumber leaves, membrane peroxidation and increased 
electrolyte efflux. Si decreases salt-induced production of H2O2 and improves pho-
tosynthesis rates (Al-Aghabary et al. 2004). A similar phenomenon was found by 
Gunes et al. (2007a) in spinach grown under B toxicity, which was alleviated by Si 
nutrition. Si addition to the nutrient solution (1 mmol dm−3 K2SiO3) significantly 
alleviated the salinity stress (Zhu et al. 2004).

Studies have shown that Na concentration in the shoots decreased under Si treat-
ment (Matoh et al. 1986; Yeo et al. 1999; Liang et al. 1996; Liang 1999). Haghighi 
and Pessarakli (2013) conducted experiments investing the influence of Si and the 
Si nanoparticle (N-Si) on salinity tolerance (at 0, 25 and 50 mM NaCl) of cherry 
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tomatoes (S. lycopersicum) at an early growth stage. Varied Si and N-Si concentra-
tions were tested (0, 1 and 2 mM). Under the Si and N-Si treatment and addition of 
NaCl to the nutrient solutions, plants were grown up to 42 days. Salinity adversely 
affected plant development (fresh/dry weights, root volume and stem diameters), 
while it also decreased substomatal CO2, photosynthetic rate, mesophyll conduc-
tance and photosynthetic water use efficiency. Si improved the fresh and dry weights 
of plants, root volume and chlorophyll concentration. Both Si and N-Si treatments 
improved the photosynthetic rate, mesophyll conductance and plant water use effi-
ciency under NaCl stress.

Liang et al. (1996) stated that Si may decrease permeability of the plasma mem-
brane in leaf cells, while it simultaneously significantly improved the ultrastructure 
of chloroplasts damaged by NaCl with the double membranes disappearing and the 
grannae being disintegrated in the Si- plants. Generally the leaf membrane stability 
index decreased with an increase in salinity levels (Haghighi and Pessarakli 2013). 
High salinity increased membrane permeability in sensitive rice varieties, straw-
berry and wheat (Lutts et  al. 1996; Kaya et  al. 2003; Levent Tuna et  al. 2008). 
Levent Tuna et  al. (2008) claimed that at the Si treatment under salinity stress, 
membrane permeability is partially maintained the same as under nonsaline condi-
tions. Based on the current knowledge, Liang et al. (2007) suggested that possible 
mechanisms underlying Si-enhanced salinity tolerance are among others those con-
nected with increased ATPase and PPase activities and simultaneous decrease of Na 
and an increase of K uptake. It results in reduced osmotic stress of plants. Another 
positive effect is also connected with increasing root activities and enhanced nutri-
ent uptake, which leads to an improved nutrient balance. Si also influences enzy-
matic processes, e.g. SOD, POD, CAT and glutathione reductase (GR) activities 
(Liang et al. 1996, 2003; Liang 1999). Also other authors (Al-Aghabary et al. 2004; 
Zhu et al. 2004) confirmed the hypothesis concerning the Si role in lipid peroxida-
tion in salt-stressed plants by enhancing the activity of antioxidant enzymes and 
non-enzymatic antioxidants (Liang 1999; Liang et al. 2003).

11.3  Conclusion

Although silicon is one of the most commonly occurring elements on Earth, its 
availability to plants under natural conditions is relatively low. This chapter pre-
sented the influence of silicon treatment on various aspects of plant physiology and 
their nutritional status. The discussed papers presented the possibility of using sili-
con to alleviate various abiotic stresses: salinity, heavy metals and drought. Silicon 
also affects the reaction of plants under biotic stress. Certainly, further research 
needs to be conducted to find other forms of silicon available for plants, as well as 
confirm silicon applicability in integrated plant production programmes, aimed at 
reducing the consumption of plant protection products, which is important for the 
health of consumers.
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Chapter 12
Mechanisms of Selenium-Induced 
Enhancement of Abiotic Stress Tolerance 
in Plants

Barbara Hawrylak-Nowak, Mirza Hasanuzzaman, 
and Renata Matraszek-Gawron

Abstract Selenium (Se), an essential micronutrient for humans, animals, and some 
microorganisms, has been found to be a beneficial trace element for many plant spe-
cies, especially Se hyperaccumulators. Selenium accumulation in plants profoundly 
affects many biochemical reactions in cells. There is a growing interest in under-
standing the plant reaction to Se enrichment, both to ensure adequate dietary Se 
intakes for humans and animals, which often needs Se biofortification using edible 
crops, and to achieve increased tolerance of plants to some environmental stress. In 
recent years, many investigations have shown that Se-enriched plants exhibited 
enhanced tolerance to some abiotic stresses, e.g. cold, high temperature, drought, 
salinity, UV radiation, and excess of some trace metals/metalloids. In plants exposed 
to environmental stresses, the protective role of Se ions, used in relatively low con-
centrations, has often been attributed to stimulation of antioxidative protection sys-
tems, but the associated mechanisms are complicated and not fully elucidated. To 
obtain positive effects of Se phytofortification, the possibility of accumulation of 
this element in given plant species, the chemical form of Se applied, the way of the 
application thereof, as well as the probability of its interaction with other elements 
should be taken under consideration. In this chapter, we will focus on reviewing the 
effects of Se biofortification on plants growing under different abiotic stress condi-
tions. Changes in the physiological and biochemical characteristics of Se-supplied 
plants, with particular emphasis on the influence of Se on the changes in enzymatic 
and non-enzymatic antioxidant defence mechanisms under abiotic stress, will be 
summarised in this review.
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12.1  Introduction

Selenium (Se), a metalloid mineral nutrient, plays a fascinating and still not fully 
understood role in the metabolism and function of organisms. The perception of Se 
has undergone considerable changes over the last decades. While its toxic influence 
was identified during the 1930s causing loss of hair and hoof in animals, its essential 
function in the metabolism of animals, humans, and microorganisms was recog-
nised later, i.e. with the finding that Se deficiency caused ‘white muscle disease’ in 
feedstock in the 1950s. Its essentiality in animal and human organisms was accepted 
after the establishment of selenocysteine (SeCys) as the 21st essential amino acid 
(Lenz and Lens 2009). Afterwards, the studies on Se progressed rapidly using of 
tools from molecular biology, genetics, and immunology. Selenium is now known 
to be a very important micronutrient for proper functioning of humans, animals, 
archaea, and some other microorganisms as a structural component of so-called 
selenoproteins (El-Ramady et al. 2016). This element may play a number of bio-
logical roles, ranging from protection against cancer to influence on hormone 
metabolism. Many epidemiological studies have confirmed that Se deficiency in the 
diet increases the incidence of cardiovascular diseases, leads to thyroid gland dys-
function, and impairs the function of the immune and nervous systems (Rayman 
2000). According to Hamilton (2004), Se has three levels of biological activity: (1) 
trace concentrations are essential for proper growth and development; (2) moderate 
concentrations can be stored to preserve homeostatic functions; and (3) high con-
centrations can cause toxic effects. Since both insufficient or excessive Se intake 
may have serious consequences for human health, this micronutrient is often 
described as a ‘double-edged sword’ (Hawrylak-Nowak et al. 2015).

Food is the main source of Se for humans and animals. Several different strate-
gies may improve the suboptimal Se status, including a diversified diet, dietary 
supplements, fortification of food products, and biofortification (Malagoli et  al. 
2015). In recent years, there has been an increasing demand for foods with a tar-
geted, desired effect on the organism, i.e. the so-called functional foods. Inclusion 
of this type of food in the diet may limit the risk of development of some diseases. 
One of the methods for acquisition of functional food is the process of plant biofor-
tification (phytofortification) with easily absorbable minerals, e.g. Se (Nestel et al. 
2006: White and Broadley 2009). Unlike to many other organisms, Se has not been 
revealed to be an essential element for growth and development of flowering plants 
(angiosperms). Nevertheless, the results of research conducted in recent years 
allowed to include Se in the group of beneficial elements (Kopsell and Kopsell 
2007: White 2016). Selenium was classified as a quasi-essential micronutrient or 
beneficial element for many plant species, especially Se hyperaccumulators, which 
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can achieve twofold higher biomass in the presence of Se (El-Ramady et al. 2016), 
and found to play a positive role in the resistance of many plant species to both 
abiotic (Hasanuzzaman et al. 2010; Feng et al. 2013: Sieprawska et al. 2015 and 
references therein) and biotic (Mechora and Ugrinović 2015) stresses. On the other 
hand, excess of Se can be very toxic to all organisms (White 2016).

Selenium has properties that make it a unique element in relation to other metals 
or metalloids. It can occur in both inorganic and organic chemical forms, which are 
characterised by differentiated availability, bioaccumulation, and toxicity, and it is 
an essential element for most organisms (El-Ramady et  al. 2016). Selenium is a 
chemical analogue of sulphur (S), and therefore it is taken up and accumulated to 
some extent by all plant species. The plant Se levels occurring in nature or in crops 
strictly depend on Se content in the soil, soil properties, and the concentration of 
antagonistic S compounds (Malagoli et  al. 2015). Selenate (Se6+; SeO4

2−) is the 
main water-soluble chemical form of Se found in oxygenated soils, i.e. most culti-
vated soils, while selenite (Se4+; SeO3

2−) dominates in anaerobic soils with an acidic 
to neutral pH, such as paddy soils. In the soil solution, Se6+ ions are rather mobile, 
but Se4+ ions are strongly absorbed by aluminium and iron hydroxides/oxides and, 
to some extent, by organic matter and clays. Therefore, the application of selenates 
to soils enables immediate uptake of Se ions by roots, whereas selenite addition 
provides a longer-lasting Se fertiliser (White 2016). Plant roots can also take up 
organic Se compounds, such as SeCys and selenomethionine (SeMet), but are 
unable to absorb elemental Se or metal selenides (White and Broadley 2009). The 
current methods to apply Se-containing fertilisers as a foliar spray or soil fertiliser 
have been used to increase the Se content in the edible parts of plants and to obtain 
Se-biofortified crops. The biofortification of plants with Se often can simultane-
ously prevent the damage caused by various environmental stresses (Feng et  al. 
2013; Malagoli et al. 2015).

According to Lynch (2007), nowadays we need a ‘second’ green revolution to 
increase the yielding of crop plants grown in low-fertility soils (or under adverse 
environmental conditions). Similar as the previous green revolution was based on 
crops reacting positively to high soil fertility, the ‘second’ green revolution should 
be based on crops tolerant to low soil fertility or more resistant to other abiotic 
stresses. Thus, the increase in the tolerance of crop plants to adverse environmental 
factors resulting from biofortification of their biomass with Se can be a part of this 
trend and may bring significant economic benefits in the future that are associated 
with, for example, management of areas where crop production with traditional 
cultivation methods is highly difficult. Besides the benefits associated with the 
increase in plant resistance to stress factors, an additional positive effect will be 
reflected in production of Se-enriched plants. Their biomass can be used for con-
sumption, particularly in regions characterised by deficiency of dietary Se, e.g. in 
many European and Asian countries (Oldfield 2002). Moreover, some studies have 
shown that plants supplied with Se can modify their secondary metabolism and 
their biomass can be richer in some health promoting phytocompounds (Malagoli 
et al. 2015).
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In recent years, numerous papers have been published dealing with Se as an 
effective phytoprotectant counteracting negative effects of various stresses (see 
reviews by Hasanuzzaman et al. 2010; Feng et al. 2013; Sieprawska et al. 2015). 
Oxidative stress is a consequence of both biotic and abiotic stress factors. This stress 
is provoked by a serious cell imbalance between the generation of reactive oxygen 
species (ROS), including O2

•−, •OH, and H2O2, and enzymatic and non-enzymatic 
antioxidants, which leads to dramatic physiological disorders (Lin et  al. 2012). 
Either directly or indirectly, Se can influence the generation and quenching of ROS 
that are overproduced under stress conditions. This phenomenon may be a crucial 
mechanism for mitigation of negative consequences of abiotic stress in plants (Feng 
et  al. 2013). Besides, the recent proteomics analysis performed by Wang et  al. 
(2012) revealed that proteins involved in photosynthesis in leaves, as well as carbo-
hydrate and protein metabolism in roots, were upregulated at low Se doses under 
which the growth of plants was also promoted. Although the protective role of low 
Se concentrations in stressed plants has been attributed to regulation/activation of 
antioxidative defence systems, in fact, the ability of Se to ameliorate the adverse 
effects of various abiotic stresses can be related also to several alternative mecha-
nisms that are discussed in the next sections. Notwithstanding, in spite of its various 
positive effects in plants, Se has been denied the status of essentiality. The beneficial 
influence of Se on plants suggests a possibility of using this element as a factor that 
potentially enhances crop resistance to abiotic stresses, which are a major global 
problem affecting increasing areas of arable soils in the conditions of the dynamic 
climate changes occurring over the recent decades.

12.2  Selenium: A Key Regulator of Abiotic Stress Tolerance

Although Se is an essential trace element for human and animals, its essentiality is 
still unconfirmed in plants. It has been 60 years when the beneficial effect of Se was 
first reported by Schwarz and Foltz (1957). Previously Se was regarded as a toxic 
metalloid, but at low concentration, it showed beneficial effect in many plant spe-
cies. The physiological basis of Se-induced stress tolerance was first revealed when 
it was found to form part of the important antioxidant enzyme, GPX (Rotruck et al. 
1973). In the last couple of decades, a plenty of research works has been conducted 
to know the role of Se in plants. Numerous plant studies have revealed that Se not 
only improves the growth of plants but protects them from various abiotic stresses. 
In recent years, the physiological mechanisms of Se-induced abiotic stress tolerance 
have been studied. The major effects of Se towards abiotic stress tolerance are the 
improvement of photosynthesis, antioxidant defence, and higher uptake of water 
and nutrients. In Zea mays, low dose of Se (1 μM) provided increase in net photo-
synthetic rate and maintained chloroplast ultrastructure during salt stress (Jiang 
et al. 2017). Exogenous Se also regulated ion homeostasis in plants and protected 
them from salt stress. According to Feng et al. (2013), ‘Se may enhance the nutrient 
uptake and distribution to plant cells, maintain ion homeostasis and upregulate 
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antioxidant defense’. In fact the role of Se in regulating the antioxidant defence has 
been widely studied in the last couple of decades. In our study, we found that Se 
provided coordinated upregulation of both antioxidant and glyoxalase systems in 
conferring plants’ tolerance to drought, salt cadmium, and high temperature 
(Fig. 12.1; Hasanuzzaman and Fujita 2011; Hasanuzzaman et al. 2011, 2012, 2014).

12.3  The Role of Selenium in Salt Stress Tolerance

It is estimated that, on a global scale, no other toxic substance has such a consider-
able limiting effect on plant growth and yield as excessive salinity (Aslam et al. 
2011). The wish to obtain high yields quickly by application of intensive fertilisa-
tion, in particular in covered cultivation systems, results in soil over-fertilisation 
inducing salt stress in plants. Additionally, the recent progressive increase in global 
temperature accompanied by reduced precipitation rates leads to an increase in the 
area of excessively saline soils. A majority of crop plant species are sensitive even 
to relatively low salinity of the soil, which leads to lower water availability caused 
by reduced water potential in the soil solution. An excess of ions, in particular Na+ 
and Cl−, disrupts the cell ionic homeostasis and may induce oxidative stress (Zhu 
2003; Kong et  al. 2005). It is estimated that soil salinity affects approx. 20% of 
irrigated land reducing significantly yielding of plants; therefore, much research has 
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Fig. 12.1 Multiple functions of Se towards plant abiotic stress tolerance
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been conducted to develop crops with enhanced salt stress tolerance (Negrão et al. 
2017). In recent years, exogenous phytoprotectants such as osmoprotectants, phyto-
hormones, polyamines, antioxidants, and various trace elements have been found 
useful to mitigate salt-induced damage (Hasanuzzaman et al. 2011). One of these 
protectants, which displays the capability to improve the growth and stress toler-
ance of plants to excessive salinity, is Se.

A beneficial effect of Se on plants growing under excessive salinity conditions 
was noted for different plant species, e.g. sorrel (Kong et  al. 2005), cucumber 
(Hawrylak-Nowak 2009), rapeseed (Hasanuzzaman et  al. 2011), melon (KeLing 
et al. 2013), canola (Hashem et al. 2013), lettuce (Hawrylak-Nowak 2015), tomato 
(Diao et al. 2014; Mozafariyan et al. 2016), and maize (Jiang et al. 2017). However, 
the mechanism of Se-mediated salt tolerance has not been fully clarified. Induction 
of antioxidant machinery by Se in plants grown under salt stress has been reported 
in a majority of studies, but according to some other studies, this is not the entire 
effect of this element on the metabolism of salt-exposed plants.

The first studies on the effect of Se application on plant salt stress tolerance were 
performed by Kong et  al. (2005). They demonstrated that, at low concentrations 
(1–5 μM), Se (applied as selenite) stimulated the growth of NaCl-exposed sorrel. 
Exogenous Se caused an increase in the activities of superoxide dismutase (SOD) 
and peroxidase (POX), enhanced the accumulation of water-soluble sugars, and 
modified cellular ultrastructure. In this study, the biomass of sorrel growing at 
100 mM NaCl and treated with 5 μM Se was double that of the plants exposed to 
100 mM NaCl alone. Furthermore, Se positively influenced the integrity of cellular 
membranes and organelles, such as chloroplasts and mitochondria. In chloroplasts, 
grana dilation was decreased, the thylakoids were more regularly arranged, and the 
mitochondrial cristae in leaf mesophyll cells became more legible and more numer-
ous due to the Se addition. In addition, the interaction between organelles was more 
intimate after addition of 5 μM Se than at 100 mM NaCl alone (Kong et al. 2005). 
Further studies of Jiang et  al. (2017) also indicated that Se-selenite application 
(1 μM Se) alleviated structural damage to chloroplasts induced by NaCl exposition, 
resulting in a more integrated internal lamella, thicker grana lamellae, and a more 
regular shape of the thylakoids in the leaf cells than in the plants treated with NaCl 
alone.

The studies performed by Hawrylak-Nowak (2009) on cucumber grown under 
hydroponic conditions have confirmed the positive impact of Se on plants growing 
under salt stress. It was shown that the presence of Se (applied as selenate) under 
NaCl-induced osmotic stress had a growth-promoting effect mainly on the root sys-
tem, whose biomass was almost double than in plants exposed to 50 mM NaCl only. 
The beneficial effect of Se was associated with reduction of the harmful process of 
lipid peroxidation and an increase in accumulation of photosynthetic pigments. The 
enrichment of plants with Se inhibited the NaCl-induced increase in lipid peroxida-
tion more clearly in the root cells than in the leaf cells. The Se-induced increase in 
the stability of the cell membranes under excessive salinity was accompanied by an 
elevated level of photosynthetic pigments. This may indicate Se-stimulated mainte-
nance of chloroplast membrane integrity under adverse environmental conditions. A 
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detailed insight in the chloroplast antioxidant status in Se-biofortified plants grown 
under salt exposure was provided by Diao et al. (2014). They found that Se-selenite 
alleviated NaCl-induced oxidative stress in tomato through regulating the antioxi-
dant defence systems in the chloroplasts, which was associated with the enhance-
ment of the photochemical efficiency of PSII. They found that efficient scavenging 
of ROS in chloroplasts took place mainly through the ascorbate-glutathione cycle, 
thioredoxin (Trx), and glutaredoxin (Grx) systems, which might be important 
mechanisms for Se-mediated scavenging of H2O2 and maintenance of a higher 
reducing power to reduce oxidative damage under salt stress. Such a role of Se in 
chloroplast metabolism of salt-stressed plants might be associated with further 
improvement in the photochemical efficiency of PSII, thereby maintaining high 
photosynthetic rates under stress. Therefore, the restoration of the photosynthetic 
capacity in salt-treated plants caused by exogenous application of Se observed by 
Diao et al. (2014) and Jiang et al. (2017) may be related to the increases in chloro-
phyll content and the preservation of chloroplast ultrastructure by maintaining their 
proper antioxidant status.

The common antagonism between the Na+ and K+ ions is regarded as one of the 
causes of disturbances in ion homeostasis in plants growing under NaCl exposure. 
Under salt stress conditions, the maintenance of K+ and Na+ homeostasis in cells 
becomes crucial for plant survival. Plants try to preserve a high level of K+ and a low 
level of Na+ in the cytosol by regulating the expression and activity of Na+ and K+ 
transporters and H+ pumps that generate the driving force for ion transport (Zhu 
2003). In the experiments of Kong et al. (2005) and Hawrylak-Nowak (2009), the 
Se addition in general neither blocked the uptake of Na+ nor increased the uptake of 
K+. Application of Se to the salinity-affected substrate did not limit the decline in 
the content of K+ in the shoots, and the K+/Na+ ratio was at a similar level in plants 
treated with NaCl alone and those further enriched with Se (Hawrylak-Nowak 
2009). Although reduced Cl− content was found in NaCl-exposed cucumber plants 
supplemented with Se (Hawrylak-Nowak 2009), further studies with lettuce did not 
confirm this phenomenon (Hawrylak-Nowak 2015). In contrast, Jiang et al. (2017) 
reported that a low Se concentration (1 μM Se applied as selenite) increased the K+ 
content in the shoots but decreased the Na+ level in the roots of salt-exposed maize. 
They suggest that in the root cells, Se upregulates the ZmNHX1 gene expression 
level, which may be involved in Na+ compartmentalisation under excessive 
salinity.

Free proline accumulation is one of the frequent plant responses to osmotic stress 
caused by drought or excessive salinity. It is believed that proline molecules can act 
as low-molecular-weight chaperones (Kishor et al. 2005; Gupta et al. 2013). Some 
researchers did not find any considerable increase in the level of free proline, while 
others consider elevated proline accumulation merely as a stress effect, rather than 
a reason of stress tolerance (Kumar et al. 2003). In experiments of Hawrylak-Nowak 
(2009), cucumber plants exposed to 50 mM NaCl did not accumulate substantially 
greater amounts of free proline than the control plants. In turn, enrichment of the 
NaCl-containing substrate with Se increased the concentration of this amino acid in 
the leaves, compared to plants treated with NaCl only. In the work of Hashem et al. 
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(2013), foliar spray of salt-stressed canola plants with different concentrations of Se 
caused a significant increase in proline content compared to the Se-untreated con-
trol. However, in this species, also the single salt treatment induced accumulation of 
free proline. The phenomenon of the Se-induced increase in free proline content 
combined with the stimulation of plant growth, increased levels of photosynthetic 
pigments, and reduced lipid peroxidation may indirectly indicate a beneficial role of 
free proline in salinity tolerance. On the other hand, the reasons and mechanisms for 
increased proline accumulation in Se-supplied plants exposed to salt stress have not 
been studied. In turn, in the study of Hawrylak-Nowak (2015) on lettuce, an increase 
in the proline level after NaCl exposition was found, but the level of free proline in 
salt-stressed plants supplemented with Se (applied as both selenite and selenate) did 
not differ from that in plants treated with NaCl alone.

Under salt stress conditions, enrichment of tomato plants with Se increased their 
biomass, maintained tissue hydration, and contributed to improved cell membrane 
stability. There was also a significant impact of Se on enzymatic reactions catalysed 
by catalase (CAT), whose activity was significantly reduced by salinity, but after the 
application of Se, it retained values similar to those noted in the control plants. No 
similar correlations were noted in the case of POX (Mozafariyan et  al. 2016). 
However, KeLing et  al. (2013) noted an increase in SOD and POX activities in 
melon plants subjected to salt stress, while CAT activity was generally not enhanced. 
It also seems that the Se-induced increase in tomato tolerance to the elevated levels 
of NaCl in the substrate was not associated with changes in the endogenous content 
of phenolic compounds and proline (Mozafariyan et al. 2016).

Another aspect of the role of Se in plant salt tolerance was examined by 
Hasanuzzaman et al. (2011). They analysed the involvement of the methylglyoxal 
(MG) detoxification system in Se-induced resistance of rapeseed seedlings to salt 
exposition. Methylglyoxal is a highly reactive cytotoxic compound produced intra-
cellularly through different enzymatic and non-enzymatic reactions. In plants, MG 
can be detected under optimal growth conditions, but its accumulation increases 
under environmental stresses. In plant cells, it is neutralised largely by the glyoxa-
lase system, which includes two enzymes, glyoxalase I (Gly I) and glyoxalase II 
(Gly II). Overexpression of the glyoxalase enzymes has been found to limit oxida-
tive stress and MG accumulation under stress conditions by maintaining reduced 
glutathione (GSH) homeostasis and antioxidant enzyme activities (Yadav et  al. 
2008). Hasanuzzaman et al. (2011) revealed that exogenously applied Se-selenate in 
salt-exposed rapeseed caused an increase in the ascorbate (L-AA) and GSH con-
tents, elevated the GSH/GSSG ratio, and enhanced the activity of antioxidant 
enzymes as well as stimulated the glyoxalase system machinery. As a result, a 
decrease in H2O2 accumulation and reduced lipid peroxidation was found in 
Se-biofortified plants exposed to NaCl, compared to salt stress alone. They con-
cluded that the antioxidant machinery and glyoxalase cycle were upregulated in the 
presence of Se and the control of the levels of ROS and MG during stress was more 
efficient in maintenance of redox homeostasis in the cells.

The chemical form of Se used for biofortification may also have considerable 
importance for the expected increase in plant tolerance to stress. Hawrylak-Nowak 
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(2015) found that, from two investigated inorganic Se forms, selenite was more 
effective in alleviation of salt stress in lettuce than selenate. Selenium was applied 
at the concentrations of 2 or 6 μM to the nutrient solution containing 40 mM NaCl. 
It was demonstrated that the application of Se in the form of selenite into the 
salinity- affected medium stimulated the growth of the root system, whose biomass 
was by 37–69% higher than in plants growing in the presence of 40 mM NaCl alone. 
The biomass of the aboveground parts also increased as a result of the selenite addi-
tion but only after the application of 2 μM of this selenium form. On the other hand, 
enrichment of the salt-stressed plants with selenate did not cause such distinct posi-
tive effects as in the case of selenite. In the presence of 2 μM selenate, an increase 
in root system biomass only was noted. In turn, the increase in the selenate concen-
tration to 6 μM did not stimulate the growth of NaCl-exposed lettuce. These results 
suggest that the beneficial effect of Se on lettuce grown under salt stress conditions 
is dependent on the chemical form of Se and is primarily associated with stimula-
tion of the root system growth. Moreover, unlike in the case of cucumber (Hawrylak- 
Nowak 2009), lettuce (Hawrylak-Nowak 2015) exposed to NaCl did not exhibit 
reduced Cl− accumulation in the aboveground parts or significant fluctuations in the 
proline level as an effect of Se supplementation.

The results of Hashem et al. (2013) revealed that foliar application of Se improved 
canola oil quality under salt stress. An increase in oleic, linoleic, and linolenic acid 
contents in oil from seeds produced by Se-treated plants was noticed. Linoleic and 
linolenic acid are among the most important components of oil, because they are 
dietary essential fatty acids and cannot be produced by humans. Furthermore, Se 
application caused reduction in erucic acid content in canola oil, which makes it 
more appropriate for the market standards and safer for human consumption.

12.4  Selenium Improves Drought Tolerance of Crop Plants

Drought is considered the most destructive environmental stress, which decreases 
productivity of crops more than any other abiotic stress, and the most critical threat 
to world food security. The severity and duration of drought is unpredictable as it 
depends on numerous factors such as occurrence and distribution of precipitation, 
evaporative demands, and soil water storage capacity (Farooq et al. 2009).

One of the first studies on the role of Se in water deficit tolerance by plants was 
that carried out by Kuznetsov et al. (2003) on spring wheat. They found that Se 
increased the resistance of plants to drought by regulating their water status. Under 
drought conditions, the exogenous application of Se in the form of selenite to the 
soil caused an increase in the water uptake capacity by the root system, rather than 
by a more economical use of water in the transpiration. In this experiment, the Se 
supply did not inhibit transpiration but caused even a slight increase in the rate of 
this process. Moreover, the Se supplementation provoked inhibition of drought- 
induced accumulation of free proline and a decrease in POX activity, which the 
authors imply as indirect evidence for the antioxidant role of Se. Similar results 
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were obtained by Proietti et al. (2013), who found that foliar application of Se (but 
in the form of selenate) under drought stress increased the photosynthesis rate and 
fruit yield in olive through regulation of the tree water status by maintaining an 
adequately high level of water in the leaves. They also found that the correct water 
balance was not achieved by the inhibition of the transpiration rate, which instead 
was elevated than in the Se-untreated and drought-stressed trees, but probably by 
stimulation of water uptake by roots. In addition, the Se application induced an 
increase in the activity of some antioxidant enzymes (ascorbate peroxidase (APX), 
CAT, and GPX) and inhibited lipid peroxidation. Therefore, it was concluded that 
Se ions were able to improve plant drought tolerance through modulation of plant 
antioxidant machinery. Almost all studies with Se-enriched plants growing under 
drought stress reported induction of antioxidant enzyme activity and/or an increase 
in the non-enzymatic antioxidant level, which reduced the concentration of some 
prooxidative compounds (Kuznetsov et al. 2003; Sajedi et al. 2011; Ibrahim 2014; 
Proietti et al. 2013; Nawaz et al. 2013, 2015, 2016). For example, in Se-pretreated 
wheat plants subjected to drought, the accumulation of H2O2 and the level of lipid 
peroxidation were decreased, whereas the activities of the antioxidant enzymes 
(CAT, SOD) and the content of the non-enzymatic antioxidants (L-AA, GSH) were 
increased. In consequence, the membrane stability index and root viability of the 
Se-pretreated plants were elevated under stress conditions. On the other hand, the 
activities of POX as well as the content of proline and α-tocopherol were reduced in 
the Se-pretreated and drought-stressed plants, which may indicate mitigation of oxi-
dative stress by the Se pretreatment (Ibrahim 2014).

Nawaz et al. (2013) tested the efficiency of seed priming in Se-selenate solutions 
(25–110 μM) as a method for improving seed performance and increase tolerance 
of wheat to drought. They found that, although the plant biomass was not affected 
by seed priming with Se under optimal water conditions, it increased with the 
increase in the Se concentration under drought. The optimal condition for enhanc-
ing drought tolerance in wheat seedlings was seed priming in a 75 μM Se solution 
for 1 h. Similarly, Yao et al. (2009) searched the optimal concentration of Se supply 
that will be favourable for growth of wheat during water deficit. It was shown that 
the highest (3.0 mg Se kg−1) and lowest (0.5 mg Se kg−1) amount of Se-selenite in 
the soil did not affect the biomass of plants, whereas treatments with 1.0 and 2.0 mg 
Se kg−1 promoted growth of wheat under water stress. Moreover, in the presence of 
1.0, 2.0, and 3.0 mg Se kg−1, the root activity, content of free proline, POX and CAT 
activities, and photosynthetic pigment content were increased, while lipid peroxida-
tion was reduced.

In later studies, Nawaz et  al. (2015) compared three various methods of 
Se-selenate application to evaluate their efficiency in alleviation of drought stress 
consequences in spring wheat. They indicated that the foliar spray with Se was more 
effective than Se fertigation or Se seed priming. They found a Se-stimulated increase 
in the concentration of some osmoprotectants (such as total soluble sugars, free 
proline, and total free amino acids) and recorded enhanced activity of POX, CAT, 
and APX that ultimately improved the wheat grain yield and quality in conditions of 
drought. Under water deficit, the grain yield was enhanced by 64% and 52% after 
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Se fertigation and Se foliar spray, respectively, compared to the Se-untreated con-
trol. The Se supply also influenced the accumulation of several nutrients in grains 
obtained from drought-stressed wheat. The plants grown from Se-primed seeds 
were characterised with high grain P content; however, a decrease in the P concen-
tration was noted in the grains of plants receiving Se by fertigation and foliar spray-
ing with Se. On the other hand, the Zn, Fe, and Mg concentrations in grains increased 
after the exogenous Se supply. The authors suggest that the primary effect of Se on 
nutrient accumulation might be attributed to the Se ion interaction with the transport 
of other ions across plasma membranes by changing their permeability coefficient 
to some ions (Nawaz et al. 2015).

More recently, Nawaz et al. (2016) found an increase in the photosynthetic rate 
and stomatal conductance of Se-treated wheat grown under water deficit and sug-
gested that this effect was caused by the positive influence of Se ions on turgor 
maintenance and stimulation of antioxidant machinery. Consequently, foliar spray 
with a Se-selenate solution improved the yield and fodder quality attributes, e.g. 
crude protein, fibre, and Se contents. Similarly, Tadina et al. (2007) found that two 
cultivars of the common buckwheat treated with foliar spray of a Se-selenate solu-
tion that were exposed to water deficit had higher stomatal conductance. Additionally, 
a significantly higher actual photochemical efficiency of PSII was noted in one of 
the cultivars treated with Se under drought stress, while the potential photochemical 
efficiency of PSII was not enhanced. However, the yield was significantly highest in 
plants exposed to Se alone.

In a field experiment, Sajedi et al. (2011) found that the antioxidant activity in 
drought-stressed maize supplied with Se-selenite was enhanced and the corn grain 
yield increased, particularly at the highest level of drought. They indicated that Se 
fertilisation at the grain filling stage resulted in the highest grain yield under water 
deficit. On the other hand, the simultaneous use of Se and micronutrient fertilisation 
negatively affected the antioxidant status and grain yield suggesting the occurrence 
of antagonism between Se and micronutrients and their combined use is not recom-
mendable in conditions of drought (Sajedi et al. 2011). Studies conducted by Emam 
et al. (2014) under field conditions indicated that Se-selenate pretreatment allevi-
ated the adverse effects of drought and improved the yielding of rice at the full 
maturity stage. Selenium pre-soaking (0.03 mM Se) stimulated an increase in cel-
lulose, lignin, and pectin contents of rice straw compared with drought-exposed 
plants but not treated with Se. Additionally, it was demonstrated that pre-soaking of 
grains in a selenate solution not only resulted in amelioration of the threats caused 
by drought but also improved yield quality under water deficit by increasing the 
levels of total soluble carbohydrates, starch, amylose, phenolic compounds, flavo-
noids, oil, as well as inorganic Ca and P in rice grains.

According to the findings of Kostopoulou et al. (2015), irrigation of yellow sweet 
clover with a Se-selenate solution before the occurrence of water deficit induced 
improved accumulation of some inorganic ions in the shoots of this species under 
drought. An interaction between Se supplementation and water treatment was more 
considerable for Ca and Mg, whose contents decreased under water deficit at a low 
Se concentration, and for Zn and Cu, which increased under water stress at a high 
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Se dose. Similarly, Wang (2011) studied the effect of Se application (5 μM as sele-
nate) on drought tolerance in white clover. The Se-supplemented plants exposed to 
short-term water deficit (imposed by polyethylene glycol, PEG) had higher bio-
mass, relative water content (RWC), and chlorophyll concentration than the drought- 
stressed plants. Application of Se also reduced lipid peroxidation and H2O2 
accumulation. Moreover, the activity of SOD that increased during the water deficit 
was further promoted by Se supply. In turn, Se application under drought conditions 
had no effect on CAT activity but increased APX and glutathione reductase (GR) 
activities. However, under field conditions, Habibi (2013) did not note a significant 
increase in shoot dry mass and seed yield after foliar application of Se-selenate 
(30 g Se ha−1) in drought-stressed barley, although the shoot biomass increased in 
Se-treated and well-watered plants. Notwithstanding, Se-supplemented plants 
grown under water deficit exhibited better protection from oxidative damage, and 
this ability was related to higher CAT and GPX activities as well as a lower level of 
lipid peroxidation and H2O2 accumulation. On the other hand, the analysed indica-
tors of PSII photochemistry and gas exchange were not affected by Se supplementa-
tion under drought stress.

Germ (2008) observed a marked decrease in the respiratory potential and bio-
mass of Se-treated potato tubers exposed to water deficit, while the Se treatment had 
no effect on the number and size of leaf stomata. The effects of drought and 
Se-selenate treatment were however cultivar-specific; thus, the authors suggest that 
the results from certain cultivars cannot be extrapolated to the whole species. The 
speciation of Se in tubers obtained from foliar Se-sprayed potato plants grown 
under optimal or deficit water conditions was the subject of research performed by 
Cuderman et al. (2008). They found that, in plants treated with Se-selenate, selenate 
and SeMet were the main soluble Se species (representing 51–68% of total Se) in 
the potato tubers, regardless of the degree of water supply of plants.

Given the abovementioned information, the protective role of Se under water 
deficit could be attributed to several mechanisms: (i) regulation of plant water status 
by enhancement of root water uptake, (ii) protection of cells from oxidative dam-
age, (iii) stimulation to accumulation of compatible solutes, and (iv) regulation of 
the level of some inorganic ions in plant organs.

12.5  Enhanced Resistance of Se-Biofortified Plants 
to Thermal Stresses

In plants, temperature stress is classified into three types depending on the stressor, 
which may be high, chilling, or freezing temperature. Both too low and too high 
temperatures, in relation to the physiological requirements of the species, are harm-
ful and can damage crop plants and limit their distribution and yield. Haghighi et al. 
(2014) noted beneficial effects of Se (applied as selenite or nano-Se) on tomato 
grown under short-term suboptimal or high temperatures. At a low concentration, 
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the Se compounds applied promoted plant growth and increased the relative water 
content. Se-selenate and nano-Se had similar positive influence on some growth 
parameters, but not all of them. When applied at 2.5 μM, Se-selenate was more 
effective than nano-Se, improving shoot and root biomass, shoot diameter, and root 
volume. However, it should be taken into account that, in general, a higher ambient 
temperature induces greater uptake of Se by plants (El-Ramady et al. 2016).

The effect of Se applied as selenate (2.5–20 μM) on the resistance of cucumber, 
a plant species sensitive to low-temperature stress, was investigated by Hawrylak- 
Nowak et al. (2010). Plants growing initially at optimum temperature were treated 
with a short-term cold stress: 10/5 °C (day/night, 24 h) followed by 20/15 °C (day/
night, 24 h). After the low-temperature treatment, the plants grew for the next week 
at optimum temperature. It was shown in this experiment that plants growing in the 
presence of Se were characterised by a higher level of free proline relative to the 
control, both immediately after the cold stress and after the next 7 days of growth at 
optimum temperature. However, the level of this amino acid was substantially 
higher immediately after the stress. The positive correlation between the accumula-
tion of free endogenous proline and the higher cold resistance in plants was con-
firmed primarily in species that are resistant to low temperature (Kishor et al. 2005; 
Kaur et  al. 2011). In turn, in a majority of plants that are sensitive to cold, free 
proline accumulation does not induce an increase in their tolerance to this stress 
factor, unless proline is exogenously applied prior to stress. The most probable roles 
of proline are to (i) regulate cytosol acidity, (ii) stabilise the NAD+/NADH propor-
tion, (iii) maintain the photochemical activity of PSII, and (iv) protect against lipid 
peroxidation (Theocharis et al. 2012). Therefore, the Se-induced increase in the pro-
line level observed in the study of Hawrylak-Nowak et al. (2010) may potentially 
contribute to increased tolerance of cucumber to cold stress. This mechanism can be 
confirmed by the reduced lipid peroxidation in the roots of Se-biofortified plants, in 
comparison to plants that are not enriched with this element. On the other hand, 
although the application of Se modified the physiological response of cucumber to 
cold stress by increasing the level of proline in leaf tissues and inhibiting lipid per-
oxidation in root tissues, the resistance of this species to low temperature was not 
distinctly higher, since the biomass of the Se-biofortified plants and the level of 
photosynthetic pigments were not significantly different in comparison with plants 
that were not biofortified with Se. However, Chu et al. (2010) demonstrated in a pot 
experiment that Se-selenite supply could increase both the growth and antioxidant 
capacity of wheat seedlings. In their study, the optimal Se fertilisation (1.0 mg Se 
kg−1 of soil) reduced production of ROS and decreased lipid peroxidation. 
Additionally, the content of antioxidant compounds (anthocyanins, flavonoids, and 
phenolic compounds) as well as the activities of antioxidant enzymes (POX, CAT) 
increased after application of different Se concentrations under cold stress.

Oxidative stress is commonly induced when plants are grown under thermal 
stress. Decreased antioxidant defence under heat resulting in lower sorghum grain 
yield was noted by Djanaguiraman et al. (2010). Foliar application of Se (75 mg L−1 
as selenate) a few days before heat stress caused a decrease in membrane injury by 
enhancing antioxidant defence, thereby resulting in higher grain yield. The increase 
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in antioxidant enzyme activities (CAT, POX) and decrease in ROS accumulation 
induced by Se were greater in plants grown under high-temperature stress than in 
those grown under optimal temperature. Hasanuzzaman et  al. (2014) formulated 
similar conclusions in experiments with rapeseed, where Se-assisted upregulation 
of antioxidant defence was noted only under high-temperature stress. In this study, 
many antioxidant enzymes, such as monodehydroascorbate reductase (MDHAR), 
dehydroascorbate reductase (DHAR), GR, GPX, CAT, Gly I, and Gly II, showed 
enhanced activities in Se-supplemented and heat-treated rapeseed plants. In recent 
studies, Iqbal et  al. (2015) demonstrated that foliar application of Se-selenate 
reduced oxidative stress and enhanced grain yield of wheat under high-temperature 
stress. Both enzymatic (CAT and APX activities) and non-enzymatic (anthocyanins, 
carotenoids, and L-AA contents) antioxidants were elevated, while oxidants (H2O2, 
lipid peroxidation products) decreased after Se application under heat stress condi-
tions. Moreover, the authors suggest that Se-assisted upregulation of antioxidative 
defence helped the studied wheat cultivars (drought tolerant and drought sensitive) 
to increase fertility and thereby avoid decrease of grain yield under high tempera-
ture. Foliar application of a Se-selenate solution (8 μM) at the flower initiation stage 
also reversed heat-induced oxidative damage by strengthening antioxidative protec-
tion in cucumber (Balal et al. 2016). In this study, Se supplementation enhanced the 
antioxidative enzyme activities (SOD, POD, CAT, APX, GPX, and GR) and caused 
reduction in ROS and lipid peroxidation levels. A marked elevation in the activity of 
enzymatic antioxidants and a decrease in ROS accumulation were noted also in 
roots of Se-sprayed plants, indicating that Se from foliar application was translo-
cated to the root system and improved the antioxidative mechanism. Moreover, as 
in the experiments of Djanaguiraman et al. (2010) and Hasanuzzaman et al. (2014), 
the induction of antioxidative enzyme activities after Se application was greater in 
heat-exposed plants than in those grown under optimal temperature.

The reduced form of glutathione (GSH), ascorbate (L-AA), and free proline can 
serve as non-enzymatic antioxidants in prevention and limitation of cell damage 
under oxidative stress. The ascorbate-glutathione cycle is important in maintenance 
of cellular homeostasis and plays an important role in removal of excessive amounts 
of ROS (Dresler and Maksymiec 2013). In a study of Hasanuzzaman et al. (2014), 
the content of free proline, L-AA, and GSH as well as the GSH/GSSG ratio was 
enhanced in heat-treated rapeseed plants supplemented with Se-selenate. This mod-
ulation/activation of antioxidant machinery protected the seedlings from lipid per-
oxidation and over-accumulation of H2O2. Similarly, Chen and Sung (2001) reported 
that priming of bitter gourd seeds with a Se-selenite solution partially protected 
them against suboptimal temperature. The priming-enhanced seed germination was 
related to the free radical scavenging activities linked to the ascorbate-glutathione 
cycle. Nevertheless, GPX was the only enzyme that displayed positive response to 
increasing Se concentrations, suggesting indirectly that this enzyme is Se 
inducible.

Photosynthesis is one of those most temperature-stress-sensitive physiological 
processes in plants. In the photosynthetic machinery, the major targets of heat stress 
are photosynthetic pigments, thylakoid membranes, PS II, and carbon fixation 
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 reactions. It has been established that plant genotypes that are able to maintain pho-
tosynthesis under high-temperature conditions often demonstrate greater resistance 
to high temperature (Jajoo and Allakhverdiev 2017). Balal et  al. (2016) demon-
strated that foliar application of Se-selenate improved stress-impaired chlorophyll 
fluorescence attributes, photosynthetic activity, and total chlorophyll content in 
cucumber plants subjected to high temperature. On the other hand, Se supplementa-
tion did not influence the intercellular CO2 concentration under optimal temperature 
but caused reduction of this parameter under heat stress. The authors suggest that 
the Se-induced improvement in the photosynthesis rate, growth, and productivity of 
cucumber under heat stress was associated with enhanced antioxidant activities and 
increased accumulation of selected osmolytes (proline, glycinebetaine, and total 
soluble sugars). Moreover, they found that the application of Se caused an increase 
in stomatal conductance and the transpiration rate both under stress and normal 
temperature conditions.

12.6  Role of Selenium in Trace Metal Stress Tolerance

Trace metal toxicity is becoming one of the major abiotic stresses for plants as the 
amounts of toxic metals in the environment have been increasing considerably in 
many regions of the world due to both natural processes and urbanisation and indus-
trialisation. Metal contamination in cultivated soils can originate from atmospheric 
pollution, use of pesticides and chemical fertilisers, and irrigation with poor-quality 
wastewater. Although some metals are essential at physiological concentrations 
(macro- and micronutrients), they can be harmful for plants in excess (Hasanuzzaman 
and Fujita 2012; Masarovičová and Kráľová 2012). Many studies have reported a 
positive role of low Se concentrations in protecting plants from trace metal toxicity. 
It can be attributed mainly to the Se-mediated mitigation of metal-induced oxidative 
stress and, as a result of lower uptake of metals by plants, modification of their 
translocation, decreasing metal mobility in soils, as well as alteration of cell mem-
brane structure (Hu et al. 2014; Sieprawska et al. 2015; Gupta and Gupta 2017).

Photosynthesis disturbances that are often observed at trace metal excess were 
considered as the main cause of increased ROS accumulation and induction of oxi-
dative stress (Sieprawska et  al. 2015). Selenium used at low concentrations can 
reduce excess ROS generation and enhance the antioxidant system, thereby improv-
ing plant defence against subsequent oxidative damage. Such a Se-induced effect 
has been shown in many studies. Cartes et al. (2010) found Se-selenite mitigated 
Al-induced toxicity in roots of ryegrass mainly by increasing spontaneous dismuta-
tion of O2

•− to H2O2 and subsequent activation of the POX enzyme. In the study of 
Filek et al. (2008) on rape seedlings, the addition of Se-selenate to a Cd-containing 
medium overturned the Cd-induced increase in H2O2 accumulation and decreased 
the level of lipid peroxidation. However, Se applied separately or in combination 
with Cd did not affect the activity of antioxidative enzymes in the roots but dimin-
ished their activity in the leaves. Mroczek-Zdyrska et al. (2017) showed that a low 
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concentration of Se-selenite (1.5 or 6 μM) alleviated the toxicity of Pb in faba bean 
plants grown under phosphorus-deficient conditions (the addition of phosphate to a 
Pb-containing growth medium reduces the phytoavailability of Pb). The beneficial, 
mainly antioxidative, impact of Se was manifested by decreased H2O2 and O2

•− 
accumulation and modified activity of GPX, POX, and CAT. In similar studies on 
the effect of Se-selenite on As-arsenite toxicity in rice (Chauhan et al. 2017), an 
increase in the concentration of antioxidative phenolic compounds was found, par-
ticularly gallic acid, ferulic acid, protocatechuic acid, and rutin. Moreover, the 
application of Se increased thiol metabolism-related enzymes, e.g. serine acetyl 
transferase (SAT) and cysteine synthase (CS). Most likely, because of the antioxida-
tive functions of Se, an increase in photosynthetic efficiency in the presence of Se 
ions was detected in plants growing under excess of some trace metals (Łabanowska 
et al. 2010; Filek et al. 2010b). Based on measurements of some photosynthesis 
indicators, it was suggested that Se might stimulate of energy flux through the trans-
port systems in PS II (Sieprawska et al. 2015).

The relevant mechanism of trace metal detoxification induced by Se may be con-
nected with the inhibition of uptake and translocation thereof from roots to shoots. 
The presence of Se-selenite in the Cd-containing medium significantly limited the 
translocation of this metal to the generative organs of pepper and had a positive 
effect on selected generative parameters (number of flowers, number and diameter 
of fruits), consequently, increasing the yield of the Cd-exposed pepper (Mozafariyan 
et al. 2014). Similarly, Hu et al. (2014) demonstrated that Se-selenite application 
markedly decreased the concentrations of Cd in rice grains, but Se biofortification 
had no significant effect on grain Pb accumulation. Furthermore, they found that 
the Se application significantly decreased metal mobility and bioavailability in 
soils and inhibited the translocation of these metals from the soil to an iron plaque. 
A similar limiting effect of Se-selenite on Cd uptake by rice was found by Lin et al. 
(2012).

In a recent study of Wu et al. (2016), exogenously applied Se-selenite markedly 
reduced the concentration of Cd and Pb in both roots and aboveground organs of 
oilseed rape and inhibited the root-shoot translocation of these metals. Hawrylak- 
Nowak et al. (2014) found that application of Se-selenate to a Cd-containing nutri-
ent solution reduced the Cd concentration in the roots but only in plants exposed to 
the higher concentrations of Cd (50  μM). Nonetheless, such reduction was not 
observed either in the aboveground parts or in the 25  μM Cd-exposed plants. 
Therefore, the authors imply that the influence of Se on accumulation of Cd was 
organ- and dose-dependent. Meanwhile, in a pot experiment with cucumber, Sun 
et al. (2016b) found selenite-stimulated reduction of the Cd concentration in leaves, 
stems, and roots. Additionally, Se applied as SeO2 inhibited the accumulation of all 
metals tested (Cd, Cu, Pb, Zn) in mustard shoots, and the strongest inhibition was 
observed for phytoaccumulation of Pb (Fargašová et al. 2006). A similar pattern of 
Se action on Cd distribution was observed by Pedrero et  al. (2008) in broccoli. 
When Se-selenite was added simultaneously with Cd, the accumulation of this 
metal in the roots was higher than when Cd was applied alone. However, this 
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enhanced accumulation of Cd in roots coincided with reduced Cd content in leaves 
and fruits, suggesting that the translocation of Cd in the presence of Se was limited. 
This phenomenon may indicate that Se generates some barriers to metal transfer 
from the roots to the aboveground organs. In studies of Shanker et al. (1996), the 
application of Se (in the form of selenite or selenate) to the Cd-contaminated soil 
caused reduction in the content of this metal in maize, but the decline in the Cd 
accumulation was greater in the roots than in the shoots. On the other hand, no sig-
nificant differences in the uptake of this metal were observed for the two chemical 
forms of Se tested in this study. Conversely, the application of Se-selenite did not 
alter the Pb accumulation in the roots (Mroczek-Zdyrska and Wójcik 2012) and 
shoots (Mroczek-Zdyrska et al. 2017) of field bean grown in a Pb-containing nutri-
ent solution.

It is worth emphasising that, in some cases, Se supply can stimulate the phytoac-
cumulation of trace metals, such as Cd and Cu in mustard (Fargašová et al. 2006), 
As in Thunbergia alata (Bluemlein et al. 2009), or Cu and Cd in wheat and pea 
(Landberg and Greger 1994). For instance, Se-selenite application caused an 
increase in Cd concentrations of pea roots up to 300%, and Se-selenate elevated the 
Cd level in wheat shoots up to 50% (Landberg and Greger 1994).

Investigations of Hawrylak-Nowak et al. (2014) on the effect of Se-selenate on 
Cd toxicity in cucumber showed that the mutual proportion between the concentra-
tions of these elements in the rhizosphere was crucial for the response of this spe-
cies to Cd toxicity. Among the Se concentrations used, only the application of 
10 μM Se to the medium containing 50 μM Cd had a positive effect on the root 
system growth and some physiological parameters of the plants. A similar conclu-
sion was reached by Balakhnina and Nadezhkina (2017), who found that the effec-
tiveness of Se-selenate application on the adaptive potential of plants cultivated on 
soils contaminated with Pb strongly depended on the mutual concentrations of Se 
and Pb ions. Additionally, Hawrylak-Nowak et  al. (2014) demonstrated that the 
presence of Se in a Cd-containing medium decreased the accumulation of phyto-
chelatins (PCs) in cucumber roots. The Se-induced decrease in the PC level may 
have been caused by substitution of S with Se in the functional cysteine (Cys) 
groups and substitution of Cys with SeCys, e.g. in the catalytic centre of phyto-
chelatin synthase, which, in consequence, may have caused inhibition of the PCs 
synthesis. The advantageous effect of Se on the growth of Cd-treated cucumbers 
was limited exclusively to their root system and was probably associated with limi-
tation of Cd accumulation in root tissues, inhibition of the harmful lipid peroxida-
tion in these organs, and an increase in the stability of cell membranes in leaf cells 
(Hawrylak-Nowak et al. 2014). On the other hand, Bian et al. (2016) demonstrated 
a negative synergistic interaction between Se and Hg ions. In Hg-exposed Chinese 
cabbage, the supplementation of plants with Se-selenite caused inhibition of root 
growth, enhanced ROS accumulation, and increased lipid peroxidation. It also mod-
ified the activity of antioxidant enzymes and led to loss of plasma membrane integ-
rity in roots relative to individual treatments with these elements.

It has been suggested that the regulation of uptake and distribution of essential 
elements by Se ions can be a significant mechanism preventing unfavourable 
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changes in the mineral status of plants exposed to metal excess. Interactions between 
Se and S ions have been extensively studied due to the chemical similarity of these 
elements and the use of the same metabolic pathway (El-Ramady et  al. 2016). 
Zembala et al. (2010) found that Se-selenate in Cd-stressed rape and wheat plants 
tended to counterbalance Cd-induced changes in some essential nutrient concentra-
tions. Quantitatively, the preventing effect of Se was more evident for micronutri-
ents than for macronutrients. For example, in rape roots, the Cd-induced 70% drop 
in the B concentration levelled off in the additional presence of Se. Moreover, the 
Fe content in the roots of rape and wheat increased significantly when the Cd-treated 
plants were supplemented with Se. Referring to this, Feng et al. (2013) hypothe-
sised that the regulation of the Fe level in Se-biofortified plants may represent 
important mechanism of alleviation of adverse effects of abiotic stresses. The most 
recent study of Chauhan et al. (2017) on rice also showed that, besides amelioration 
of As-induced toxicity by reducing As accumulation, Se-selenite caused restoration 
of As-impaired micronutrient balance. The application of Se repaired the nutrient 
deficiency during As stress by increasing the level of Fe, Mn, Cu, Co, Mo, and Zn 
in both roots and shoots. Analogously to the experiments of Zembala et al. (2010), 
a considerable increase in the Fe level was noted in the roots of this species. In turn, 
the supplementation of Cd-treated rice plants with Se-selenite showed a tendency to 
counterbalance Cd-induced decreases in leaf Mn and Zn concentrations and 
increases in root Zn as well as leaf and root Cu contents (Lin et al. 2012). However, 
since there is limited research in this area, the information about the effect of Se ions 
on the uptake and translocation of macro- and micronutrients in metal-stressed 
plants is still insufficient.

Cell membranes are among the first targets of a number of abiotic stressors, and 
the maintenance of membrane stability and integrity is of crucial importance for 
stress tolerance. Moreover, the cell membrane plays a fundamental role in the 
homeostasis of toxic metals, preventing or reducing their entry into the cell. 
Interesting information in this respect was provided in research performed on iso-
lated wheat chloroplast/plastids (Filek et al. 2009, 2010a). The in vitro study on 
wheat (Filek et al. 2009) showed that the application of Se-selenate under Cd stress 
caused some decrease in the amount of accumulated Cd and induced partial remod-
elling of the membrane lipid composition disturbed by this metal by an increase in 
lipid fatty acid unsaturation. However, the Se supply did not prevent Cd-induced 
changes of other investigated membrane properties and did not reduce the blocking 
effect of Cd on embryogenesis. In further studies on rape plants (Filek et al. 2010a), 
it was found that Se-selenate partly counterbalanced the destructive effects of Cd 
leading to an increase in the chloroplast size and rebuilding the chloroplast ultra-
structure. The lipid and fatty acid composition of chloroplast envelopes altered by 
Cd ions exhibited a decrease in the digalactosyldiacylglycerol content and an 
increase in the content of monogalactosyldiacylglycerol and phospholipid fractions, 
as well as an enhancement of the fatty acid saturation of all lipids studied. The 
changes in the fatty acid saturation correlated well with the decrease in membrane 
fluidity. The presence of Se ions in the Cd-containing medium partially reversed the 
detected changes, especially fatty acid saturation and membrane fluidity.
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An additional possibility of Se action on the biomembrane structure and function 
has also been demonstrated. This element can exert a direct influence on the activity 
of membrane protein transporters. It is believed that inhibition of photosynthesis by 
excess of trace metals is related to chloroplast protein impairment by irreversible 
binding of metal ions to the SH groups of enzymes and membrane proteins. Hence, 
Se ions can avoid such binding through ‘inactivation’ of metals even before their 
binding to proteins (in the form of MeSeO3(4)) and/or by formation of SeH groups in 
proteins (because of the chemical similarity of Se and S). This gives other possibili-
ties for the formation of bonds in protein transporters (Sieprawska et al. 2015). The 
impact of Se-selenate on trace metal modification of ion channel activities was indi-
cated by Dziubinska et al. (2010). They noticed a negative impact both of Cd and Se 
ions on conductance of slow vacuolar channels in rape vacuoles. There was no addi-
tive effect of both ions acting together, which suggests that they influenced the same 
‘inhibitory’ mechanism.

In human and animal cells, Se is believed to exhibit strong ability to interact with 
some trace metals (Hg, Ag, Cd, Tl) to form nontoxic Se-metal complexes. However, 
such nontoxic Se-metal complexes have not yet been identified in plants (Feng et al. 
2013). Yathavakilla and Caruso (2007) studied the interactions between Se-selenite 
and Hg ions in greenhouse-cultivated soybean treated with these elements and then 
analysed their metabolised species in different plant organs. They found that most 
of the water-soluble Hg was localised in the root cells in association with Se in a 
high molecular weight entity. The Se distribution pattern in plants was unaffected 
by Hg ions, but the content of Se was found to be higher in plants treated with Hg. 
Similarly, Bluemlein et al. (2009) did not find As complexes containing Se peptides 
or mixed As-Se peptides in Thunbergia alata exposed to Se-selenite and As-arsenite.

Recent molecular studies have provided valuable information about the protein 
profile and the possible role of other molecular mechanisms associated with 
Se-induced resistance to trace metal excess (Pandey et al. 2015; Sun et al. 2016a). 
The investigations of Pandey et al. (2015) suggest that some role in the antagonistic 
effect of Se on As-stressed rice seedlings may be played by miRNAs, i.e. small non- 
coding RNAs. They suggest a possible role of miR395 and miR398 in the ameliora-
tive influence of Se on As phytotoxicity. In turn, through comparative proteomic 
analyses, Sun et  al. (2016a) revealed that there were several complex metabolic 
interactions leading to Se-improved tolerance to Cd toxicity in cucumber. They 
demonstrated that the differential relative abundance of metabolism-associated pro-
teins involved in the glycolysis and nitrate assimilation pathways increased Cd tol-
erance after Se-selenite addition. The higher abundance of photosynthesis-related 
proteins induced by Se may be involved in mediating electron transfer and/or affect 
the protein biosynthesis in the chloroplast, thus regulating the photosynthesis rate. 
Additionally, several proteins involved in amino acid biosynthesis and storage, 
which may play important role in Se-assisted tolerance to Cd, were detected. It was 
shown that 21 (10 in leaves and 11 in roots) of the 26 identified Cd-influenced pro-
teins exhibited higher amounts in Se-treated plants, including glutathione 
S-transferase F8, heat shock protein STI-like, peroxidase, ascorbate oxidase, 
fructose- bisphosphate aldolase 2, NiR, Rieske-type iron-sulphur subunit, and PsbP 
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domain-containing protein 6. Moreover, the presence of Se ions in a Cd-contaminated 
medium prevented changes in the DNA methylation pattern triggered by toxic Cd 
concentrations in rape seedlings (Filek et  al. 2008) and increased H+- and Ca2+-
ATPase activities in rice (Lin et al. 2012).

12.7  Impact of Selenium on Plants Exposed to UV Radiation

Enhanced UV-B radiation has a profound impact on agricultural production, as 
UV-B has the highest energy per photon of all the solar wavelengths in the bio-
sphere. In consequence, UV-B photons may directly lead to photomodification of 
DNA, proteins, and lipids. Therefore, exposure to high UV-B radiation can cause 
disruptions in metabolism in plants cells and, in turn, can alter the nutritional value, 
pest and disease tolerance, sexual reproduction, and hardiness of plants (Jansen 
2017). It is believed that UV-B hits several targets, particularly on the electron trans-
port side of the PSII reaction centre, resulting in inefficient use of energy (Breznik 
et al. 2005). However, Shanker (2006) claims that there is a lack of well-designed 
and replicated experiments in the field due to problems in simulating natural levels 
of UV-B irradiance under field conditions.

Hartikainen and Xue (1999) were the first to show the positive effect of Se fertili-
sation on UV-B-exposed plants. In pot experiments with ryegrass and lettuce, they 
found selenate-stimulated plant growth, but only under enhanced UV-B exposition, 
which indicates that UV-B irradiance acted as a trigger for the growth-promoting 
effect of Se. The positive influence of Se under high-energy light exposition was 
also manifested by increased concentrations of soluble proteins and nucleic acids, 
inhibited lipid peroxidation, and significant stimulation of GPX activity.

In the relatively well-designed open-field experiments of Heijari et al. (2006), 
the effects of enhanced UV-B radiation and Se-selenate addition were evidently dif-
ferent in different varieties of strawberry in successive seasons during two experi-
mental years. This may have been related to the practical inability to control 
differences in precipitation, temperature, and other biotic and abiotic factors under 
field conditions. In this study, the Se supplementation did not mitigate the harmful 
effects of UV-B. Although the lower Se dose provoked an increase in leaf growth, 
the proportion of Se counteracting the impact of UV-B stress was not sufficient to 
meet the criteria of Se as a mitigating agent.

In another field experiment performed by Yao et  al. (2013), the exposition of 
winter wheat to enhanced UV-B exerted a negative impact on plants, e.g. reduction 
of growth, lower grain yield and grain protein content, and increased oxidative 
stress, and influenced the concentration of nutritional elements in wheat grain. 
Foliar application of Se-selenite at the concentration of 30 mg Se kg−1 of the solu-
tion at the regreening stage induced a marked increase in total chlorophyll content, 
spike length, weight per spike, grain yield, grain protein content, and grain N, Fe, 
Cu, and Se concentration under both ambient and enhanced UV-B levels. These 
results indicate that Se supply may increase the yield to some extent and improve 
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the quality of grain of winter wheat exposed to enhanced UV-B. In another study, 
Yao et al. (2014) indicated that the UV-B-induced negative changes in wheat yield 
and quality were probably the most intense during the heading and flowering stages. 
Therefore, for better protection of wheat against UV-B damage, selected methods of 
tolerance enhancement (e.g. Se fertilisation) should be undertaken during the head-
ing and flowering stages. In turn, in their outdoor pot experiment with two buck-
wheat species, Breznik et al. (2005) demonstrated that the biomass and effective 
quantum yield of PSII that were reduced by UV-B radiation increased after foliar 
spray with a Se-selenate solution. The Se treatment under enhanced UV radiation 
resulted in lower yields of hybrid buckwheat plants although the level of 
UV-protective substances (e.g. anthocyanins, UV-absorbing compounds) was 
enhanced under these conditions (Golob et al. 2017b).

Germ et al. (2005) studied the influence of ambient and filtered solar UV-B radi-
ation on photochemical efficiency, respiratory potential, and yield in pumpkins 
treated with Se. They found that the Se application increased the yield only under 
ambient radiation conditions. Moreover, compared with plants grown under ambi-
ent solar radiation, those grown under UV-B-free radiation showed a 1.7-fold higher 
activity of the mitochondrial electron transport system (ETS) in Se-untreated plants 
and a 1.3-fold higher activity in Se-supplied plants. However, no significant effect 
of excluding UV-B radiation or Se presence on the photochemical efficiency of PSII 
was detected. More recently, Golob et al. (2017a) showed that foliar spray with a 
10 mg L−1 Se-selenate solution under ambient UV radiation provoked a trade-off 
between the plant investment in primary and secondary metabolism in wheat, as the 
production of UV-absorbing compounds was enhanced, while the photosynthetic 
pigment level was reduced. However, the Se treatment had little effect on biomass 
production, regardless of the presence or absence of UV radiation. On the other 
hand, although the low Se concentrations activated energy resources connected with 
photochemical quantum yield and mitochondrial respiration, this was insufficient to 
diminish the negative impact of UV-B radiation on green alga Zygnema; in contrast, 
the interaction of UV-B radiation and Se led to pronounced negative effects on the 
analysed energy resources (Germ et al. 2009).

12.8  Summary and Conclusions

Environmental stresses can cause over-accumulation of ROS and induction of oxi-
dative stress in plant cells. It seems that the basic mechanisms involved in the ben-
eficial effects of Se (applied both in the selenite and selenite form) on plants grown 
under abiotic stress conditions are associated with the ability of this element to 
modulate the antioxidative machinery and, in consequence, increase their tolerance 
to oxidative stress induced by these factors. However, it seems that this is not the 
only mechanism, as different additional effects can be observed after exogenous 
application of Se, which largely depend on the nature of the stress factor. We sug-
gest that the beneficial influence of exogenous Se application on plants exposed to 
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environmental stresses is a multifaceted network, covering several complex physi-
ological, biochemical, and molecular interactions. Moreover, it is worth emphasis-
ing that it is quite easy to assess the responses of individual species or a few plant 
species to Se in a greenhouse or laboratory, when most often one stress factor 
affects. However, this may not be the case of natural communities, where there may 
be a high degree of variation in the effects even within one species under field condi-
tions. Therefore, one of the future challenges to recognise Se-plant interactions 
under environmental stress will be to study the potential essentiality of Se to plants 
and to unravel the comprehensive picture of its beneficial role in abiotic stress toler-
ance under natural conditions.
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Chapter 13
Plant Nutrients and Their Roles Under 
Saline Soil Conditions
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Abstract It is well established that the nutrients of plant play a vital role in all plant 
processes starting from the emergence, development, productivity, and metabolism 
reaching to the promotion and protection of plants. These plant nutrients could be in 
general characterized as macronutrients (e.g., Ca, Mg S, N, K, and P) and micronu-
trients (i.e., Fe, B, Cu, Mn, Cl, Ni, Mo, Co, and Zn) as well as beneficial elements 
(e.g., Si, Se, Na, and V). These previous mineral nutrients also could protect crop 
plants against both abiotic and biotic stresses by enhancing the plant resistance 
power and regulating the mineral nutritional status. Therefore, any plant nutritional 
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problems (like poor soil fertility, imbalance, and deprived delivery of nutrients) 
definitely will lead to reduce the global production of foods. Thus, it should protect 
crop production from different stresses through the appropriate agricultural man-
agement. Soil salinity was and still one of these plant stresses. A distinguished role 
of plant nutrients (e.g., N, K, Se, and Si) in ameliorating soil salinity stress has been 
reported as well as nano-selenium and nano-silica. Several reports have confirmed 
the great role of these previous plant nutrients under saline soil conditions. Therefore, 
this review will focus on the role of selenium and silicon in conventional and nano- 
forms under saline soil conditions. The phytoremediation of these saline soils and 
the role of plant nutrients will be also highlighted.

Keywords Plant nutrients · Saline soils · Abiotic stresses · Salinity stress · 
Selenium · Silicon · Nano-selenium · Nano-silica

13.1  Introduction

It is well known that plants need many essential and beneficial nutrients like other 
living organisms (e.g., humans and animals). These nutrients include carbon, oxy-
gen, hydrogen, nitrogen, potassium, phosphorus, calcium, magnesium, sulfur, iron, 
copper, boron, molybdenum, manganese, chloride, zinc, cobalt, nickel, selenium, 
silicon, etc. These nutrients also have great roles in plant metabolism, biochemistry, 
growth, and development. Some of these previous nutrients (like potassium) play an 
important role in enzyme activity and cell expansion, stomatal behavior, and osmo-
regulation. Concerning calcium and magnesium, these nutrients are main cofactors 
in plants for more than 300 enzymatic reactions (e.g., energy reactions in metabo-
lism and synthesis of protein and nucleic acid). Regarding other nutrients, copper is 
a constituent of proteins involved in electron transfer and oxygen transport, whereas 
manganese is the main nutrient for many plant functions such as transporting of 
electrons during photosynthesis and forming of riboflavin, carotene, and ascorbic 
acid. The root development and auxin production can be achieved by zinc (Osman 
2013; El-Ramady 2014; El-Ramady et al. 2014a, b; Mitra 2015, 2017; Luo et al. 
2016; Secco et al. 2017; Zhang et al. 2017c).

In general, plants uptake their nutrients from soil solution and/or by foliar appli-
cation for the growth, development, and other processes in plants. The bioavailabil-
ity of these soil nutrients is totally controlled by many factors including soil 
characterization (e.g., soil pH, salinity, nutrient biogeochemical cycles, and bio- 
physicochemical processes) and environmental and climatic changes. Some ele-
ments (like potassium, calcium, iron, copper, and sodium) could enter the 
agroecosystems through different soil processes and various human activities such 
as the application of fertilizers. These soil processes include soil salinization and 
chemical weathering as geochemical processes and biological processes like the 
decomposition of soil organic matter. Therefore, the bioavailability of nutrients in 
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arid and semiarid soils is related to drought conditions. This drought could be 
accompanied by increases in soil salinity causing the immobilization and precipita-
tion of some elements such as iron, manganese, and zinc. This impact could be 
accelerated when soil salinity coincides with increases in soil pH (Maathuis and 
Diatloff 2013; Ramezanian 2013; Luo et  al. 2015a, b, 2016; Kumar et  al. 2016; 
Meier et al. 2017).

Soil salinity was and still one of the great threats facing the global food security. 
This soil salinity, caused by natural or anthropogenic factors, has been recognized 
as a serious challenge in land cultivation worldwide in arid and semiarid regions. 
Therefore, soil salinity could be considered an important abiotic stress causing a 
remarkable decrease in the crop production under saline soil conditions 
(Hasanuzzaman et al. 2013a, b). Concerning damage of salinization, soil saliniza-
tion could lead to the disruption or alteration of the natural biochemical (Decock 
et al. 2015), biological (Smith et al. 2015), hydrological (Keesstra et al. 2012), and 
erosional (Berendse et al. 2015) Earth cycles. It is well reported that salt-affected 
soils constituent nearly 10% of the total global land (about 1 billion ha) including 
saline soils (Shahid et al. 2013). Soil salinity is distributed in more than 100 coun-
tries and widespread in all continents on the globe. Furthermore, saline soils are 
very common in arid and semiarid or desert and semidesert regions as well as may 
occur in different fertile alluvial plains. Thus, salt-affected soils include saline, 
sodic, and alkaline soils with high concentration of salt, sodium cation, and CO3

2−as 
well as high pH in soil. Therefore, several studies have been published on the salin-
ity of soils such as monitoring and mapping (e.g., Daliakopoulos et  al. 2016; 
Guangming et al. 2017), management and reclamation of salt-affected soils (e.g., 
Arora et al. 2017), and use of marginal quality water in crop production (e.g., Shahid 
et al. 2013) and different mechanisms for plant salt tolerance (e.g., Almutairi 2016).

There are many commercial calcium products for amending sodic and saline- 
sodic soils. Generally, the function of these amendments is to provide soluble cal-
cium and replace exchangeable sodium adsorbed on clay surfaces. The biological 
reclamation of salt-affected soils can be applied using organic materials, crop resi-
dues, and biofertilizers (Borde et al. 2017; Choudhary 2017; Singh and Jha 2017; 
Singh et al. 2017; Yadav et al. 2017b). These biological reclaimants could help in 
improving and maintaining the structure of soil, preventing erosion and supplying 
essential plant nutrients, and enhancing the biological activity in soils besides 
reclaiming sodic soils. New approaches could be also used in remediation of these 
salt-affected soils such as nanoremediation (Belal and El-Ramady 2016; El-Ramady 
et al. 2017; Libralato et al. 2017; Lofrano et al. 2017; Martínez-Fernández et al. 
2017; Mitra et al. 2017; Saha et al. 2017).

Selenium (Se) and silicon (Si) are beneficial elements for higher plants (Swain 
and Rout 2017; Pilon-Smits et al. 2017). These elements have been recently used in 
alleviating the toxic effects of soil salinity (Habibi 2017; Sattar et al. 2017). Foliar 
selenium and silicon in combination or alone improved transpiration rate, water 
relations, photosynthetic attributes, chlorophyll contents, and the growth of wheat 
seedlings under stressed conditions. The reason of this increase is related to the 
accumulation of osmoprotectants (e.g., proline, soluble protein, and soluble sugar) 
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and the increase in antioxidant enzyme activity (Sattar et al. 2017). These previous 
elements (Se, Si) also have been used in alleviating the oxidative stress of heavy 
metals such as cadmium (Cao et al. 2017a; Tang et al. 2015) and lead (Balakhnina 
and Nadezhkina 2017; Mroczek-Zdyrska et al. 2017), as well as their nanoparticles 
(Alsaeedi et al. 2017a, b).

Salt-affected soils suffer from a lot of troubles around the world such as a limited 
crop production due to their abiotic stresses particularly in arid and semiarid regions 
(Nan et al. 2016; Zhang et al. 2017a). Therefore, this review will focus on different 
roles of plant nutrients under soil saline conditions or salt-affected soils. The phy-
toremediation and management of these soils will be also highlighted.

13.2  Abiotic Stresses and Plants: Problems and Challenges

Generally, plants need some essential and/or beneficial nutrients in their growth and 
development as well as the proper environmental conditions. These ideal growth 
conditions sometimes could not occur, but different plant stresses may be domi-
nated. These plant stresses include biotic and abiotic ones. The major plant abiotic 
stresses include high salinity; drought; cold and heat, which negatively impact on 
the survival; production of biomass; and yield of staple food crops up to 70% threat-
ening the global food security (Mantri et al. 2012; Alshaal et al. 2017). Concerning 
plant stress, Springer has published more than 80 books about this subject including 
6 books published during the last months of 2017 (e.g., Khan and Khan 2017; Mosa 
et al. 2017; Sarwat et al. 2017; Senthil-Kumar 2017; Sunkar 2017; Wu 2017). These 
books include some hotspots concerning plant stress such as using the integrated 
omics approaches in plant stress tolerance (Mosa et al. 2017), different new meth-
ods and protocols in plant stress tolerance (Sunkar 2017), the role of arbuscular 
mycorrhizas in plant stress tolerance (Wu 2017), the response of plant tolerance to 
individual and concurrent stresses (Senthil-Kumar 2017), and signaling of stress in 
plants using genomics and proteomics perspective (Sarwat et al. 2017).

The great challenge facing the scientific community is representing in the mul-
tiple or combined biotic and abiotic stresses on plants. That means not only one 
plant stress but also in general multiple stresses are facing plants. Plants face differ-
ent environmental constraints (e.g., drought, pathogens, etc.), which do not always 
occur independently under field conditions and extreme weather patterns (Gupta 
and Senthil-Kumar 2017). Furthermore, several factors are controlling plant 
responses to combinations of stresses like the age of plants, how severe are the 
stresses, and the susceptibility of plants to pathogens. The shared plant responses 
include the common physiological and molecular levels, whereas the physiological 
traits could be dominants in case of individual stresses (Gupta and Senthil-Kumar 
2017). The most common combined plant stress includes drought and salinity stress, 
which leads generally to a severe reduction in stomatal conductance, net photosyn-
thetic rate, and enhanced oxidative damage (Gupta and Senthil-Kumar 2017). Plant 
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responses to combined drought and pathogen infection (Gupta and Senthil-Kumar 
2017) and drought and heat (Yadav et al. 2017a) have been also reported. Recently, 
a great concern toward the role and actions of plant nutrients in plant abiotic stress 
tolerance also has been issued (e.g., Hasanuzzaman et al. 2017).

Therefore, plant abiotic stresses have many problems and serious challenges. It 
is found that many beneficial plant nutrients have a distinguished role in the mitiga-
tion and protection of several crop plants against abiotic and biotic stresses such as 
silicon (Tripathi et al. 2014; Cao et al. 2017a), selenium (Domokos-Szabolcsy et al. 
2017; Habibi 2017), and other essential elements like nitrogen (Khan et al. 2017), 
potassium (Ahanger et al. 2017; Kumar et al. 2017c), calcium (Huang et al. 2017; 
Nedjimi 2017; Sakhonwasee and Phingkasan 2017), zinc (ul Hassan et al. 2017; 
Upadhyaya et al. 2017), etc. Soil microbes (Mishra et al. 2017) or plant biostimu-
lants (Van Oosten et al. 2017) also have a great role in the mitigation and protection 
of plants against stresses such as bacteria (Etesami and Beattie 2017; Li and Jiang 
2017; Turan et al. 2017), mycorrhizal fungi (Borde et al. 2017; Huang and Wu 2017; 
Kumar et al. 2017a; Nath et al. 2017; Zhu et al. 2017), etc.

13.3  Soil Salinity: Problems and Challenges

According to many reports and due to salinity stress, about one-third of the global 
irrigated lands nearly is suffering from excess salinity causing a decrease in crop 
production every year worldwide (e.g., Tripathi et al. 2014; Naeem et al. 2017a). It 
is well known that salinity stress causes restricted plant growth and imbalance in 
cellular ions as a result from ion toxicity and osmotic stress. Crop production may 
be adversely impacted by salinity-induced nutrient deficiencies. Therefore, salinity 
stress is one of the major factors limiting the growth of plants and then the produc-
tivity of crops. Several studies have focused on the effects of soil and water salinity 
on a variety of crop plants including barley, cucumber, rice, tomato, wheat, etc. 
(e.g., Kim et al. 2017; Mohammadi et al. 2017; Shivakumar and Bhaktavatchalu 
2017). Other investigations also have included the role of plant nutrients like Si and 
Se against different adverse effects of salinity confirming that these nutrients play a 
protective role against the salinity stress (e.g., Tripathi et al. 2014; Balakhnina and 
Nadezhkina 2017; Cao et al. 2017a; Habibi 2017; Sattar et al. 2017; Swain and Rout 
2017; Tang et al. 2015).

Concerning the problems of soil salinity (Figs. 13.1, 13.2 and 13.3), these prob-
lems include (1) reduction in agricultural production, (2) low economic returns, (3) 
soil erosions, (4) limited water uptake from soils, (5) effects on soil physicochemi-
cal properties, (6) ion toxicity, (7) osmotic stress, (8) deficiency of some nutrients 
(e.g., N, Ca, K, P, Fe, and Zn), (9) oxidative stress on plants, (10) reduced plant 
phosphorus uptake due to precipitation of calcium phosphate ions, and (11) toxic 
effects of some elements like sodium, chlorine, and boron on plants (Shrivastava 
and Kumar 2015). Concerning the amelioration of soil salinity stress, a holistic 
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Fig. 13.1 Effect of soil alkalinity (pH: 8.9) and salinity of irrigation water (2500  ppm) on 
Asparagus officinalis plant in Wadi El Natrun, Beheira Governorate, where photo (a) represents 
salinity features on the leaves but photo (b) belongs salinity features on the shoot (Photos by 
Elmahrouk)

Fig. 13.2 Effect of soil alkalinity (pH: 8.7) and salinity of irrigation water (2500 ppm) on apricot 
plant in Wadi El Natrun, Beheira Governorate, where photos (a) and (b) represent early stage of 
salinity effect, (c) die of the terminal shoots, and (d) the end stage of salinity effect (Photos by 
Elmahrouk)
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approach should be applied toward the sustainability of the different soil ameliora-
tion methods. These approaches should have many benefits including the following 
points (Qadir et al. 2006; Choudhary 2017):

 1. Sustainable: it should have a long-lasting, positive impact.
 2. Simple: it should be easily manageable by farmers.
 3. Efficient: it should be effective in action.
 4. Low cost: it should need low capital input and should be inexpensive.

Fig. 13.3 Effect of soil salinity on plants includes many features such as decreased water uptake 
efficiency; poor root growth; decrease uptake of Ca, Zn, P, and NO3; browning of leaves and death; 
closing of stomata and reduced photosynthesis process; and accumulation of nontoxic compatible 
solutes
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 5. Enhancement of soil fertility: it should increase nutrient availability in soil.
 6. Improve rhizosphere: it should improve soil chemical and physical properties.
 7. Protect groundwater: it should avoid groundwater quality deterioration.
 8. Compatible: it should be suitable for the biophysical environment.
 9. Alleviate poverty: it should improve the well-being of the farming 

community.
 10. Promote yield: it should increase the productivity of crops.
 11. Conserve environment: it should improve the environment and sequester 

carbon.
 12. Replenish soil: it should restore soil and increase the land’s value.

Therefore, soil salinity is a serious global problem facing the arid and semiarid 
regions. This problem needs a holistic approach to ameliorate and mitigate it. The 
distinguished features resulting from the soil salinity in arid and semiarid zones are 
very common. Hence, the new approaches including biological and nanomaterials 
should be used in seeking sustainable development. The great challenge facing the 
universe is that more than 50% of the arable lands by the year 2050 will be salinized 
as reported by Naeem et al. (2017b). So, the researchers should search about uncon-
ventional solutions to overcome and mitigate different risks resulting from this 
challenge.

13.4  Role of Plant Nutrients in Ameliorating Soil Salinity 
Stress

Plant nutrients not only give the plants the full power during entire life but also help 
plants in ameliorating different stresses including abiotic and biotic. The salinity 
stress affects nearly all plant development aspects starting from the germination of 
seeds, enzyme activity, vegetative growth, the protein synthesis and mitosis of DNA 
and RNA, as well as reproductive development (Horie et  al. 2012; Naeem et  al. 
2017b). Concerning plant salinity tolerance, plants have several multifaceted physi-
ological aspects involving the adaptation to signaling and metabolic networks. 
Plants also can use many mineral nutrients (like N, Ca, Si, and Se) in their facing 
tolerance mechanisms against different environmental challenges (Khan and Basha 
2016; Naeem et al. 2017b).

Concerning effects of soil salinity on the nutrition of plants, nutrient plant distur-
bances reduce the growth of plant through affecting the transport and partitioning of 
different nutrients. Soil salinity also may cause deficiencies or imbalances in plant 
nutrients, due to the competition of Na+ and Cl− with many plant nutrients such as 
Ca2+, K+, and N-NO3

−. A distinguished reduction in plant growth may occur under 
saline conditions due to specific ion toxicities (e.g., Na+ and Cl−) and ionic imbal-
ances (Alshaal et al. 2017; Forni et al. 2017). Furthermore, increased NaCl concen-
tration has been reported to induce increase in Na and Cl as well as decrease in N, 
P, Ca, K, and Mg level in many studied plants like medicinal legumes (Naeem et al. 
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2017b) for sustainable crop production under salinity stress (Singh et  al. 2017; 
Sharma and Singh 2017). Because of these effects, it is vital that Zn, K, P, and N 
nutrition are monitored as they may limit plant growth in a saline soil. Therefore, 
application method of fertilizers must be chosen carefully to be an efficient way of 
combating sodium-induced stress (Negm and Eltarabily 2017; Tei et al. 2017).

Many fertilizers contain soluble salts in high concentrations. Therefore, the 
nutrient source, rate, timing, and placement are important considerations in the pro-
duction of all crops. Muriate of potash or KCl, as a common K-fertilizer, is unsuit-
able for saline soil, whereas nitrate can eliminate effects of high chloride 
concentrations in soil and water. Salt indices for most commercial fertilizer prod-
ucts have been reported. For example, KCl has a salt index 205 times more that of 
K2SO4. Band application of fertilizers with high salt indices generally should be 
avoided near seedlings. It could preclude sodium accumulation on the soil’s 
exchange complex by applying gypsum as well as maintain soil structure and 
improve water infiltration (Sharma and Singh 2017). The role of some plant nutri-
ents in ameliorating soil salinity stress such as silicon and selenium as well as their 
nanoparticles will be highlighted in the following subsections.

13.4.1  Soil Salinity and Silicon

Silicon is known to be the seocnd element after oxygen in its occurrence in the 
Earth ’s crust (28%). It is also a metalloid element, and in compound form it occurs 
as SiO2 or silicon dioxide (Swain and Rout 2017). Silicon did not confirm as essen-
tial nutrient for higher plants in spite of a lot of crucial roles in plants (Tables 13.1 
and 13.2). It has been demonstrated that the application of silicon is beneficial for 
plant growth, development, and yield of several plants as well as the alleviation of 
different plant stresses including nutrient imbalance (Swain and Rout 2017). 
Therefore, the application of silicon under either drought or salt stress has increased 
the quality of straw and grain yield as well as biomass, plant growth, and photosyn-
thetic pigments. Silicon also has a vital role in the stimulation of antioxidant 
enzymes and gene expression in plants, modification of gas exchange attributes, 
regulation of the synthesis of compatible solutes, and osmotic adjustment under 
both salt and drought stress. In addition, the application of silicon also decreases 
the uptake and translocation of Na+ as well as increases the uptake and transloca-
tion of K+ under salinity stress. However, these previous mechanisms vary with 
duration of stress imposed, growth conditions, plant species, genotype, and so on 
(Qados 2015; Swain and Rout 2017).

Concerning silicon and soil salinity, a clear role of Si has been documented in 
inducing the plant growth under abiotic stresses in particular soil salinity (e.g., 
Balakhnina et al. 2015; Garg and Bhandari 2016). It is indicated that most of the 
beneficial effects of Si under salinity stress may have resulted from reducing the 
uptake and translocation of Na+ and Cl− to shoots and maintaining plant-water rela-
tions, which in turn contributes to salt dilution and then improving yield compo-
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Table 13.1 A comparison between selenium and silicon according to some selected properties of 
some physical, chemical, and biological properties

Properties or items (unit) Silicon (Si) Selenium (Se)

Name origin From the Latin word silex 
(flint)

From Greek word Selênê 
(moon)

Discovery year and discoverer J. J. Berzelius (1824) J. Berzelius (1817)
World mine production in 
2016 according to USGS 
(2017)

7200,000 mt 2200 mt

Abundance in the Earth’s crust 28% 0.05 (mg kg−1)
Abundance or usual soil 
content

54% 0.33 (mg kg−1)

Abundance ranking order in 
earth crust

2 69

Most important minerals Kaolinite Al2(OH)4Si2O5 Klockmannite (CuSe), 
clausthalite (PbSe), tiemannite 
(HgSe)

Serpentine Mg3(OH)4Si2O5

Most important sources Quartz, clay, and all silicate 
minerals

Refining of lead, copper, nickel

Most important uses Transistors, computer chips, 
solar cells, electronics, alloys

Photoelectric cells, TV cameras

Common valence states +2,+4, −4 −2, 0, +2,+4, +6
Ionic radius (A°), where 1 Å = 
100 pm

0.21 0.50

Electronegativity (according to 
Pauling scale)

1.90 2.55

Atomic number 14 34
Atomic mass (atomic mass 
unit)

28.08 78.96

Atomic radius (picometres or 
pm)

117 122

Density at 20 °C (g cm−3) 2.33 4.79
Boiling point (°C) 3265 684.9
Melting point (°C) 1410 217
Crystal structure Cubic Hexagonal
Principal forms for plant 
uptake

H4SiO4 or Si(OH)4 SeO4
2− or SeO3

2−

Essentiality for animals and 
plants

Suggested and beneficial Essential for animals and 
beneficial for plants

Critical or sufficient level in 
plant leaf (DW)

<0.5% most species 0.1–2.0 (mg kg−1)

Toxic level in plant leaf (DW) More than 10% in rice 5.0–30 (mg kg−1)
Uptake by plants Passive in mono silicic acid 

(H4SiO4) or amorphous silica
Passive (SeO3

2−) and active for 
(SeO4

2−) and selenomethionine
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nents (Garg and Bhandari 2016). As reported, saline soils or presence of excessive 
amounts of salt could lead to osmotic, oxidative, and ionic stress on plants (Sattar 
et al. 2017). Therefore, many features could be occurring under oxidative stress, 
including peroxidation of lipids and excessive accumulation of reactive oxygen spe-
cies like hydrogen peroxide and superoxide anion that tends to damage proteins, 
lipids, and nucleic acids (Soundararajan et al. 2017). Several studies have been pub-
lished to focus on the relation between silicon and its role under soil  salinity (e.g., 
Farooq et al. 2015; Garg and Bhandari 2016; Sattar et al. 2017; Soundararajan et al. 
2017; Swain and Rout 2017; Zhang et al. 2017b).

Therefore, it could be concluded that many approaches have been used in allevi-
ating the negative effects of salt stress in several crops. Proper plant nutrition is one 
of the most important strategies to alleviate this salt stress in crop production. 
Mineral nutrient supply to plants also plays a critical role in improving tolerance 
potential of plants against various environmental stresses including salinity, drought, 
disease, temperature, etc. Reducing uptake of sodium and chloride by plants is the 
common mechanism of salt tolerance in plants as well as a distinguished role of 
potassium. The role of nitrogen also is very important under soil saline conditions 
due to the accumulating of organic N-compounds in plants. These organic 
N-compounds include all amino acids in protein and a number of nitrogen- 

Table 13.2 The common cited beneficial effects of both silicon (Si) and selenium (Se) on plants 
under stress

Role of Si and Se 
under plant stress

Example for cited references
Silicon (Si) Selenium (Se)

Enhancement of 
plant growth and 
yield

Swain and Rout (2017) Shahzadi et al. (2017) and 
Schiavon et al. (2017)

Resistance to 
herbivores and 
parasitism

Nikpay et al. (2017) Reynolds et al. (2017) and 
Schomburg and Arnér (2017)

Drought stress Rizwan et al. (2015), Ma et al. (2016), 
Ouzounidou et al. (2016), Cao et al. 
(2017b), and Zhang et al. (2017b)

Nawaz et al. (2015) and 
Schiavon et al. (2017)

Salinity and water 
stress

Rizwan et al. (2015), Ouzounidou et al. 
(2016), Sattar et al. (2017), Xu et al. 
(2017), and Zhang et al. (2017b)

Habibi (2017), Sattar et al. 
(2017), and Shahzadi et al. 
(2017)

Oxidative stress Hasanuzzaman et al. (2017) and Li et al. 
(2017)

Balakhnina and Nadezhkina 
(2017) and Mechora et al. 
(2017)

Plant diseases or 
biotic stress

Rodrigues and Datnoff (2015) and 
Klotzbucher et al. (2017)

El-Ramady et al. (2016)

Alleviation the 
toxicity of lead

Balakhnina and Nadezhkina (2017), 
Mroczek-Zdyrska et al. (2017), and Li 
et al. (2017)

Balakhnina and Nadezhkina 
(2017) and Mroczek-Zdyrska 
et al. (2017)

Cadmium Cao et al. (2017a) and Tang et al. (2015) Schiavon et al. (2017)
Improve plant- 
nutrient balance

Swain and Rout (2017) Hasanuzzaman et al. (2017)
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containing compounds such as amino acids (proline and glycine betaine), amides, 
and polyamines. Thus, exogenous application of N-fertilizers may reduce the effect 
of salinity and enhance the growth of plants. Silicon also has the same action in 
ameliorating the salt stress.

13.4.2  Soil Salinity and Selenium

No doubt that selenium is an essential micronutrient for many living organisms 
including bacteria, some algae, archaea, and animals. However, the essentiality of 
Se in the metabolism of plants and fungi still needs more proofs. Selenium in the 
form of selenocysteine (SeCys) or selenoproteins is the main essential form required 
for the survival of organisms like humans. These selenoproteins have main func-
tions including redox functions, immune function through thyroid metabolism, and 
spermatogenesis (El-Ramady et al. 2016; Pilon-Smits et al. 2017). Under high lev-
els of Se, it becomes toxic to living organisms due to the replacement of S-amino 
acids in proteins by their Se-analogs causing an oxidative stress. Therefore, the 
main problem of Se is represented in the very narrow window between adequacy 
and the large variations in dietary Se intake (˂40 μg/day) and toxicity (˃400 μg/day) 
for humans and animals (dos Reis et al. 2017; Dhillon and Bañuelos 2017). Thus, 
several symptoms of both Se toxicity and deficiency are prevalent worldwide. 
Concerning the essentiality of Se for higher plants, it is confirmed that selenium is 
a beneficial nutrient enhancing plant growth and antioxidant activity (Table 13.2). 
Higher plants have the ability to uptake selenium using sulfur transporters because 
organic Se-compounds are analogous to S. Some plant hyperaccumulators could 
accumulate Se in high levels (0.1–1.5% of their dry weight). This reflects the great 
concern for animal, human, and environmental health (Pilon-Smits et al. 2017).

Several methods are in progress to ameliorate salinity stress such as use of sele-
nium, which is considered as an essential trace element for some microbes, animals, 
and humans, but its essentiality for plants is yet to be proved as mentioned before 
(Table 13.1). At a low level of concentration, Se imparts diverse beneficial effects 
and stimulates growth as well (e.g., Domokos-Szabolcsy et al. 2017; Habibi 2017; 
Kiryushina and Voronina 2017; Schiavon et al. 2017). Previous studies indicate that 
the presence of Se in the growth medium can provide partial protection from the 
effects of some abiotic stresses such as drought (Hasanuzzaman and Fujita 2011; 
Nawaz et al. 2015; Schiavon et al. 2017), salinity (Habibi 2017; Sattar et al. 2017; 
Shahzadi et al. 2017), high temperature (Hasanuzzaman et al. 2014a), toxic metals 
(Balakhnina and Nadezhkina 2017; Mroczek-Zdyrska et al. 2017), and oxidative 
damage (Balakhnina and Nadezhkina 2017; Mechora et al. 2017). Therefore, most 
of the beneficial effects of Se have been attributed to reduction in oxidative stress by 
increasing the activity of antioxidants Balakhnina and Nadezhkina 2017; Mechora 
et al. 2017). Previous studies also reported about many protective effects of Se for 
plants grown under salt-stressed conditions (e.g., Hasanuzzaman et al. 2017).
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Therefore, it could be concluded that the distinguished role of Se in ameliorating 
the plant environmental stress still needs more elucidation about the specific mecha-
nisms of Se-mediated adaptation to salt stress. Regarding the positive effects of Se 
in improving plant tolerance to salt stress, these responses include (1) enhancing 
plant growth, (2) increasing the accumulation of photosynthetic pigments and com-
patible solutes, and (3) activating antioxidant machinery. These previous responses 
depend on various plant physiological and metabolic changes. These changes, in 
turn, start from seed germination to final crop harvest. Further studies are needed for 
more emphasis to confirm the essentiality of Se for higher plants as well as the mode 
of action of the ameliorative action of Se in plants under stress.

13.4.3  Nano Selenium and Nano-silica Under Soil Salinity

The universe definitely faces several global problems including climate change, 
environmental pollution, food security, soil security, energy and water crisis, etc. 
These previous challenges represent a serious stress on the global bio-resources. 
Environmental pollution, drought, salinity, temperature, and flooding are the most 
important abiotic stresses facing the global crop production (El-Ramady et  al. 
2017). New and modern approaches have been successfully used in the mitigation 
and adaptation of these previous stresses particularly the nanotechnology. Several 
nanoparticles and nanomaterials have been also applied in agricultural sectors 
(Belal and El-Ramady 2016; Shalaby et al. 2016; Saratale et al. 2017) including 
almost all fields such as plant nutrition (e.g., Dimkpa et al. 2015; Subramanian et al. 
2015; El-Ramady et  al. 2017; Jampílek and Kráľová 2017; Subramanian and 
Thirunavukkarasu 2017); plant protection and nanopesticides (e.g., Chhipa and 
Joshi 2016; Kumar et al. 2017b); nanosensors for food and agriculture (e.g., Singh 
2017; Srivastava et  al. 2017); soil and water nanoremediation (e.g., El-Ramady 
et al. 2017; Sangeetha et al. 2017), against environmental stress (e.g., Wang et al. 
2015; Emadi et al. 2016; Mahdy et al. 2017; Mansouri et al. 2017; Rameshraddy 
et al. 2017); etc.

There is no any agricultural sector untouched by nanotechnology nowadays. This 
penetration of nanotechnology includes the new tools for rapid detection of dis-
eases, molecular treatment of plant diseases, and enhancing the ability of plant to 
absorb nutrients. This nanoscience also aims to increase the fertility of soils and 
crop production in spite of the potential of nanotechnology is yet to be fully exploited 
in management and cultivating of salt-affected soils (Ibrahim et al. 2016; Patra et al. 
2016). Concerning the application of nanotechnology under saline soil conditions, 
it is in the infant stage and needs more researches and investigations. However, 
some studies have been published regarding the role of nanomaterials of silicon and 
selenium as well as other metals under salt-affected soils (e.g., Patra et al. 2016; 
Alsaeedi et al. 2017a, b; El-Ramady et al. 2015a, b, 2016; Lofrano et al. 2017). So, 
the nanotechnology could be used in developing reclaimants more efficiently and 
readily manufacturable. These nanoparticles including carbon and zeolite nanopar-
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ticles (a polymer carrier), calcium compounds in nanoscale, as well as biochar can 
act as exchange sites for binding Na+ and thus reduce the adverse effects like clay 
dispersion and swelling (Patra et al. 2016).

Organic forms of selenium and some salts have been used in studying its biologi-
cal effects for years. Elemental selenium (Se0) nanoparticles or selenium nanopar-
ticles (SeNPs) have gained some attention recently as a possible source of this 
beneficial component (El-Ramady et al. 2015a, b, 2016). It is found that the range 
of 5–200 nm of selenium nanoparticles plays an important role as a vital size for 
nanoparticles. Also, the transmission electron micrograph (TEM) of the separated 
Se nanoparticles showed the spherical shape in the range of 80–220 nm in size and 
the antioxidant properties as reported by Prasad et al. (2013). It is confirmed that Se 
nanoparticles have a low toxicity and high biological activity as well as an excellent 
bioavailability (El-Ramady et al. 2016). Therefore, SeNPs are gaining importance 
in electronics and optics due to their enhanced photoconducting, semiconducting, 
catalytic, and photoelectrical properties (Srivastava and Mukhopadhyay 2013). Se 
nanoparticles exhibit low cytotoxicity compared with selenium compounds and 
possess many medicinal applications as excellent anticancer and therapeutic activi-
ties (Forootanfara et al. 2013; Bhattacharjee et al. 2017). Selenium is essential (as a 
cofactor) for many enzymes in animals such as glutathione peroxidases and thiore-
doxin reductase. Thus, these previous enzymes are supplied in meals of animals. 
However, some studies have shown that Se nanoparticles have the efficiency com-
pared with organic and inorganic selenium compounds (Benko et al. 2012; Hu et al. 
2012; El-Ramady et al. 2016).

The biological roles of Se nanoparticles and their biosynthesis in plants have 
been involved in several studies (e.g., Domokos-Szabolcsy 2011; Domokos- 
Szabolcsy et al. 2012; El-Ramady et al. 2014c, 2015a, b, c, 2016; Srivastava and 
Mukhopadhyay 2015; Mykhaylenko and Zolotareva 2017). Furthermore, several 
applications of Se nanoparticles have been listed in both biological and nanotechno-
logical fields including (1) new chemopreventives (Zhang et al. 2008), (2) the devel-
opment of safer selenium vitamins and food additives (Hnain et al. 2013), (3) novel 
antibiotic coatings (Wang and Webster 2012), (4) anticancer treatments (Kong et al. 
2011), and (5) in vivo fluorescent dyes for bioimaging applications (Gu et al. 2012).

It is worth to mention that there is a great chance for nano-Se and nano-silica use 
in fertilization and plant nutrition fields under stress. Many studies have proven that 
these nano-fertilizers (nano-Se and nano-silica) play an important role in increasing 
the yield of many crops and then food security (Liu et al. 2015; Mastronardi et al. 
2015; Wang et  al. 2015, 2016; Karimi and Mohsenzadeh 2016; Alsaeedi et  al. 
2017a, b). The biological and physiological effects of nano-Se on different crops 
have been presented such as tobacco (Domokos-Szabolcsy 2011; Domokos- 
Szabolcsy et al. 2012), rice (Premarathna et al. 2010), tomato (Haghighi et al. 2014), 
and giant reed (Domokos-Szabolcsy et al. 2014). Thus, selenium nanoparticles have 
the ability to stimulate the regeneration of roots under higher concentrations (more 
than 100 mg L−1 nano-Se) with significant increase in the fresh weight.

Concerning nano-silica, it has a distinguished role in the mitigation of salinity 
stress and counteraction of the negative effects of salt on plant growth. It is reported 
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that nano-silicon application can improve the germination of seeds and the growth 
of seedlings of some plants like tomato, maize (Suriyaprabha et al. 2012), and com-
mon bean or Phaseolus vulgaris L (Alsaeedi et al. 2017a). Also, the role of nano-
silica in alleviating salt and drought stress of some plants like Glycyrrhiza uralensis 
(Zhang et al. 2017b), tomato (Almutairi 2016), and common bean (Alsaeedi et al. 
2017b). As mentioned before, silicon depositions in the tissues help to alleviate 
water stress by reducing transpiration rate, improve light  interception characteris-
tics by keeping the leaf erect, increase resistances to diseases pests and lodging, and 
remediate nutrient imbalances, and there are other documented beneficial effects 
(Zhang et al. 2017b). Nano-silicon also was used to improve salinity tolerance of 
sweet pepper plant, where it was estimated that 1.0 g of silica nanoparticles having 
size of 7.0 nm diameter exhibit wide absorption surface equal to 400 m2. Furthermore, 
silica nanoparticles also exhibit its effect on xylem humidity and water translocation 
and enhance turgor pressure; thus, leaf relative water content and water use effi-
ciency will be increased in plants. Siddiqui and Al-Whaibi (2014) confirmed that 
the application of nano-SiO2 has many benefits under stress including reducing the 
rate of chlorophyll degradation and increasing stomatal conductance, the net photo-
synthetic rate, transpiration rate, and water use efficiency. Nano-SiO2 particles are 
absorbed better and faster than micro-SiO2, Na2SiO3, and H4SiO4 when applied on 
root of maize and seeds; because of fast absorption of nanoparticles, they can be 
immediately utilized by plants to fulfill their growth needs (Suriyaprabha et  al. 
2012). The effect of nano-silicon application on the expression of salt-tolerant genes 
in germinating tomato (Solanum lycopersicum L.) seedlings under salt stress is also 
studied, where four salt stress genes, AREB, TAS14, NCED3, and CRK1, were 
upregulated by nano-Si under salt stress and six genes, RBOH1, APX2, MAPK2, 
ERF5, MAPK3, and DDF2, were downregulated. These results suggest that nano-Si 
has the ability in moderating inhibition in the germination of seeds and the growth 
of plants under saline environments (Almutairi 2016).

Therefore, it could be concluded that both nano-selenium and nano-silicon have 
distinguished roles in alleviating the detrimental effects of Na+-derived salinity on 
germination and growth of many crops. These findings generally could be rein-
forced by low Na content which was measured in plant tissues after treating seed-
lings with 300  mg L−1 or 100  mg kg−1 of nano-silicon and nano-selenium for 
common bean and most crops, respectively.

13.5  Phytoremediation of Soil Pollution Under Saline 
Conditions

It is well known that several human activities have led to environmental humungous 
load of pollutants day by day. These pollutants already have created imbalance in 
the environmental equilibrium (El-Ramady et  al. 2015a, b; Bauddh et  al. 2017; 
Chakravarty et  al. 2017). Therefore, several approaches or mechanisms of 
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remediation have been used in remediation of soil and water. These approaches 
include physicochemical (excavation, landfilling, thermal treatment, leaching, and 
electro- reclamation) and biological remediation including bio- and phytoremedia-
tion (Anjum et al. 2017a, b; Purakayastha et al. 2017). Comparing with traditional 
techniques, phytoremediation (using plants in clean up polluted soil and water) 
could be considered more cost-effective and environmentally beneficial pathways in 
restoration of polluted sites (Bauddh et al. 2017). Many mechanisms have been suc-
cessfully adapted in phytoremediation including phytodegradation, phytoextrac-
tion, rhizofiltration, phytostabilization, and phytovolatilization of contaminants in 
the polluted sites (e.g., Anjum et al. 2017c; Dhillon and Bañuelos 2017; Purakayastha 
et al. 2017; Srivastava 2017; Sarkar 2018b). Several botanical species have been 
used in remediating the contaminated sites and this is confirmed by many research-
ers. Many crop plants including medicinal plants, bioenergy crops, trees, and weeds 
already have been found to be the best options for phytoremediation (Bauddh et al. 
2017; Chakravarty et al. 2017). Some important hyperaccumulator plants (1000 mg 
kg−1) used for phytoextraction of some heavy metals in soils as reported by 
Purakayastha et al. (2017) are listed in Table 13.3.

It is known that salt-affected soils could be defined as soils with high levels of 
dissolved salts (EC more than 4 dS m−1) and/or high concentrations of exchange-
able or adsorbed sodium ions (SAR and ESP less than 13 and 15, respectively) in 
the soil matrix. These soils suffer from soil salinity and sodicity, causing losses in 
crop yields in many regions worldwide especially in arid and semiarid zones 
(Hasanuzzaman et  al. 2014b; Purakayastha et  al. 2017). Amelioration of salt- 
affected soils could be performed using soil chemical amendments like gypsum 
and other applications of organic fertilizers (e.g., compost, manure, and green 
manure crops) and halophytes (Purakayastha et al. 2017). An increased concern 
about phytoremediation of saline soil conditions or salt-affected soils as a hotspot 
has been recorded nowadays. So, several investigations have been published 
regarding phytoremediation of salt-affected soils (e.g., Arora and Rao 2017; 
Arora et  al. 2017; Bharti et  al. 2017; Gerhardt et  al. 2017; Purakayastha et  al. 
2017; Yadav et al. 2017b).

The most important new approaches used in phytoremediation include nanoma-
terials and nonfood bioenergy crops. So, several books recently have been published 

Table 13.3 Some common 
plant species have the ability 
to phyto-remediate some 
pollutants

Contaminant Plant species

Arsenic Pteris vittata L.
Cadmium Oryza sativa L.
Chromium Brassica juncea L.
Copper Elsholtzia splendens

Lead Chenopodium album L.
Mercury Marrubium vulgare

Nickel Alyssum lesbiacum

Selenium Brassica rapa L.
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by Springer regarding the phyto- and bioremediation (e.g., Anjum et al. 2017a, b; 
Ansari et al. 2017; Arora et al. 2017; Bauddh et al. 2017; Kalia and Kumar 2017; 
Mehnaz 2017; Prashanthi et al. 2017; Sarkar 2018a). Therefore, phytoremediation 
is an economical and effective method of reducing or removing pollutants in salt- 
affected soils. So, halophytes could be used as a cost-effective and environmentally 
sound green technology in phytoremediation of salt-affected soils (i.e., saline and 
sodic soils). Furthermore, it could be used salt-tolerant plant (e.g., grass and biofuel 
species) in multipurposes under alkaline soil conditions such as in bio-amelioration 
of degraded agricultural and wastelands (Singh et al. 2016). Under gas and oil min-
ing conditions, a huge number of halophytic grasses have been proven to be effec-
tive in revegetating brine-contaminated soils (Arora and Rao 2017).

Concerning the halophytes (salt-loving, salt-tolerant, or saltwater plants), it 
could be defined as tolerant plants that grow in high salt concentrations, which kill 
99% of other species or adapted plants that grow well in high salinity conditions 
(Arora and Rao 2017; Purakayastha et al. 2017). In other words, halophytes could 
be defined generally as rooted seed-bearing plants (i.e., succulents, grasses, shrubs, 
herbs, and trees), which grow in a wide variety of salt marshes and mudflats to 
inland deserts, saline habitats from coastal sand dunes, salt flats, and steppes. 
Halophytes could be also divided based on their occurrence into hydro-halophytes 
(plants are growing in saline water medium) and xero-halophytes, which grow 
mainly in dry land saline conditions (Arora and Rao 2017). Some halophytes under 
environments are listed as follows as reported by Arora and Rao (2017):

 1. Halophytes of oil-yielding species: Salicornia bigelovii, Salvadora persica, S. 
oleiodes, Terminalia catappa, and Calophyllum inophyllum

 2. Coastal halophyte plants: Borassus flabellifer, Calophyllum inophyllum, 
Pongamia pinnata, and Nypa fruticans

 3. Petro-crops: Jatropha curcas and Euphorbia antisyphilitica
 4. Medicinal plants: Plantago ovata, Adhatoda vasica, Withania somnifera, and 

Cassia angustifolia
 5. Food-yielding halophytes: Sugar beet (Beta vulgaris L.), date palm (Phoenix 

dactylifera), guava (Psidium guajava), Java plum (Syzygium cumini), and pome-
granate (Punica granatum)

 6. Nitrogen-fixing halophytes: Albizia, Cassia, Cyamopsis, Leucaena, Pongamia, 
Sesbania, and Trifolium

Therefore, phytoremediation of soil pollution under saline conditions is an 
important green technology that could be used in reclamation of polluted and salt- 
affected soils. This phytoremediation process depends on phytoremediator plants, 
fertilization of soil, and kind of soil amendments (chelating agents) under saline soil 
conditions. It could be concluded that several economic and useful halophytes have 
the effective capacity in bio-amelioration of salt-affected soils. These plants also 
have a great capability in removing substantial quantities of salts and producing 
higher biomass, thereby improving these soils.
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13.6  Conclusion

Plant nutrients including essential and beneficial play several crucial roles in meta-
bolic, molecular, physiological, ecological, and evolutionary aspects as well as 
regulatory processes in plants. These plant nutrients have a pronounced impact on 
entire plant life including plant growth and its development as well as the regulatory 
role of mineral nutrients under stresses. These plant nutrients should be applied for 
plant nutrition in a proper or right amount, time, form, and dose (or known as 4R 
nutrient stewardship: right fertilizer source, right rate, right time, and right place). 
An ameliorative effect of plant nutrients has been recorded on the plant growth and 
productivity under different abiotic and biotic stresses. These plant stresses are the 
main limiting factors of crop yields causing losses of billions of dollars annually all 
over the world. Several plant nutrients have proven and confirmed their roles in 
ameliorating stress such as nitrogen, potassium, sulfur, selenium, and silicon. 
Different plant cellular, physiological, and molecular strategies already have been 
used under unfavorable or stress conditions. Under saline soil conditions, various 
plant responses have been recorded in plant adaptation to this stress such as osmotic 
regulation, hormone metabolism, controlling ion uptake, transport and balance, 
antioxidant metabolism, and stress signaling. Therefore, further studies are needed 
for more understanding and to emphasize about the plant response to stress condi-
tions and its adaptation to different changing environments at the molecular level. 
The study of intracellular and intercellular molecular interaction involving the 
response of these plants toward soil salinity stress is also an urgent issue.
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Chapter 14
Ionic Basis of Salt Tolerance in Plants: 
Nutrient Homeostasis and Oxidative Stress 
Tolerance

Koushik Chakraborty, Nabaneeta Basak, Debarati Bhaduri, Soham Ray, 
Joshitha Vijayan, Krishnendu Chattopadhyay, and Ramani K. Sarkar

Abstract Salinity, recognized as a major threat in agriculture, causes 4.0–6.3% 
yield loss annually across the world. The problem is aggravated due to increasing 
irrigation with suboptimal quality of irrigation water and more salinization of 
coastal area due to the rise in sea level because of climate change. In saline soil, 
excessive concentrations of Na+ and Cl− impair absorption of other beneficial ions 
such as K+ and Ca2+ that in turn inhibit plant growth and productivity. Maintenance 
of cellular K+ level and K+/Na+ ratio is still considered the most important factor for 
salt tolerance. Under high-Na+ environment, excess Na+ competes with K+ thereby 
hindering its uptake. Tolerant plants by employing a number of strategies restrict 
Na+ movement to young meristematic tissues and allow greater movement and/or 
tissue retention of K+ to physiologically more active tissues. Under salt stress differ-
ent K+- and Na+-specific transporters, viz. SOS, NHX, and HKT family transporters 
(regulate cellular Na+ movement) and HAK, AKT, KT, and KUP (regulate K+ move-
ment), either by upregulation or downregulation, control the cellular ion homeosta-
sis and salt tolerance in plants. SOS1, a plasma membrane-bound Na+/H+ antiporter, 
mostly active in root tissue, removes the excess salt from the plant body by pumping 
them back to the rhizosphere in an energy-dependent process. Tonoplast-bound 
vacuolar Na+/H+ antiporters (NHX family transporters) play crucial role in Na+ 
compartmentalization inside the vacuole in mature cell in both root and leaf tissues. 
Storing excess salts in vacuole imparts tolerance in multifaceted manner, viz. 
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imparting tissue and osmo-tolerance. Biosynthesis of organic osmolytes, a more 
energy-expensive process, is sometimes substituted by the accumulation of excess 
Na+ in non-active tissues under salt stress. Improved Ca2+ status inside the plant tis-
sue is another important factor associated with salt tolerance and acts as a key sig-
nalling molecule to initiate Na+ exclusion. Several QTLs and miRNAs were reported 
to impart salt tolerance in several crops. Managing salinity beyond crop improve-
ment strategies was also deliberated, e.g. lowering salt effect through K+ supple-
mentation and phytohormones, etc. In this compilation, emphasis has been given on 
how nutrient/ionic imbalance causes deleterious effects on plants under saline con-
ditions and what are the possible adaptive strategies plants employ to maintain the 
ionic homeostasis in saline environment.

Keywords Salinity · Na+-K+ transporter · Osmolytes · Tissue tolerance · ROS 
detoxification · Salt overly sensitive (SOS) pathway

14.1  Introduction

In the last few decades, we witnessed substantial increase in productivity of food 
grains, oilseeds, pulses and cash crops mostly through adoption of intensive agricul-
ture, viz. high-yielding varieties, precise fertilizer and nutrient management prac-
tices, more efficient crop protection measures, etc. But, with the continuous increase 
in global population by every passing year, there is an estimated need to produce 
87% more food crops such as rice, wheat and maize by 2050 over that we are pro-
ducing today (FAO 2017). As the horizontal area expansion in fertile agricultural 
land almost came to a saturation in most countries, there is a current shift in encom-
passing more and more nontraditional areas under cultivation to cater the global 
food demand. Despite the much advancement in agricultural science in all over the 
world, abiotic stresses still cause havoc on cultivation due to its widespread and 
unmanageable nature, including salinity, drought, heat and cold, critically threaten 
crop production and result in substantial yield loss in large arable land worldwide. 
Among these, soil salinity is one of the prime environmental constraints to crop 
production and is further expected to increase due to global climate changes 
(increase in coastal salinity mainly due to the rise in mean sea level) and as a conse-
quence of injudicious and/or faulty irrigation practices. As per the recent estimate, 
about 800 million hectares of land globally is affected by salinity (FAO 2017). On 
an average 2,000  ha of irrigated land across 75 countries has been degraded by 
excess salt annually owing an estimated economic loss in the tune of US$ 12 billion 
(Ghassemi et al. 1995).

Soil salinization is a worldwide problem for agriculture affecting 6% of total 
Earth’s land, as a result of natural accumulation over long periods of time 
(Rengasamy 2002). However, agricultural activity contributes to secondary salini-
zation: 2% of all dry land is becoming salinized, and more than 20% of irrigated 
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soils are affected, mostly because of irrigation water containing small amounts of 
sodium chloride (Tester and Davenport 2003). Saline soils in general affect plant 
growth negatively and may even have a lethal effect causing programmed cell death 
upon extended exposure to high salinity. Based on the ability to tolerate NaCl con-
centrations, plants can be classified into two groups: glycophytes or salt-sensitive 
species (which are unable to tolerate even mild levels of salinity for longer periods 
of time) and halophytes or salt-tolerant species (which are capable of growing and 
thriving under high salinity). Primarily, excess salt in the soil decreases the water 
potential in the rhizosphere region, rendering plants unable to absorb water even in 
the absence of actual limitation of water quantity, a soil condition termed as physi-
ological drought. As a result, many plant processes, viz. at the cellular level includ-
ing cell enlargement, cell division, cell wall properties, etc., as well as various leaf 
parameters such as colour, succulence, necrosis, etc., and at whole-plant level, 
shoot/root ratio, growth and yield get affected (Hasegawa et al. 2000).

For most of the glycophytes, highly saline growing environment adversely 
affects the germination process, plant growth and metabolism as well as the overall 
physiology by causing ionic and osmotic stresses (Iterbe-Ormaetxe et al. 1998). Salt 
stress is often noted as a causal factor for increased respiration rate and ion toxicity 
while subsequently altering the C and N metabolism in plant cell (Kim et al. 2004). 
Additionally, mineral distribution and membrane instability (Marschner 1986) 
along with permeability (Gupta et al. 2002) and decreased biosynthesis of chloro-
phyll pigments and photosynthetic inefficiency (Munns 2002), all of which are 
caused by salt stress, collectively lead to impaired economic crop  productivity. 
Stress-induced build-up of sugars and other compatible organic solutes is a common 
phenomenon for most of the abiotic stresses including soil salinity. They can serve 
as osmoprotectants, thus helping in stabilizing biomolecules under stress condi-
tions. Although accumulation of ions for osmotic adjustment is energetically more 
preferable, many plants accumulate organic osmolytes (proline, betaine, polyols, 
sugar alcohols and soluble sugars) to counteract osmotic stresses. Both glycine 
betaine and trehalose serve as major osmoprotectants which stabilize the quaternary 
structures of proteins and highly ordered cellular and intracellular membranes. 
Proline acts as a sink for carbon and nitrogen and scavenger of free radical, which 
stabilizes subcellular structures (membranes and proteins) and maintains cellular 
redox potential (Reviewed in Chakraborty et al. 2013).

Salt stress also induces accumulation of reactive oxygen species (ROS), causing 
oxidative damage to cellular macromolecules, viz. proteins, membrane lipids and 
nucleic acids. Detoxification of these ROS is absolutely essential for plants to sur-
vive under salinity stress. To counterbalance the  ROS production and oxidative 
stress, plants produce either molecular antioxidants for direct scavenging of these 
ROS or detoxify them via coordinated network of antioxidant enzymes, viz. super-
oxide dismutase, catalases, peroxidases and enzymes of ascorbate-glutathione 
cycle. Under various abiotic stresses, the activity and expression levels of genes 
encoding ROS-detoxifying enzymes were reported to be enhanced by oxidative 
stress (Abogadallah 2010; Chakraborty et al. 2016a).
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Ionic homeostasis or regulation of Na+/K+ balance inside metabolically active 
tissue is still considered to be the most important criteria for salt tolerance (Munns 
and Tester 2008). Exposure to higher levels of salt stress, particularly NaCl, affects 
uptake of water and dissolved nutrients resulting in impaired plant water status and 
creates ionic imbalance by means of the cellular accumulation of toxic Na+ and Cl− 
ions. Sodium ions if accumulated in the cytoplasm can become extremely toxic to 
living cells showing their adverse effects on K+ nutrition and other pivotal plant 
physiological mechanisms like activity of cytosolic enzymes, photosynthesis and 
metabolism (Shabala and Cuin 2008; Degl’Innocenti et  al. 2009). Besides, salt 
stress heavily tolls on the ionic homeostasis of other complementary ions such as 
Ca2+, Mg2+ and NO3

− , and therefore, further investigation requires altered transport 
and compartmentation mechanism of these nutrients under salinity stress. In plants, 
predominantly three distinct but complementary mechanisms operate cooperatively 
that selectively inhibit the accumulation of Na+ in the cytoplasm following one or 
other processes, i.e. checking of Na+ influx, promotion of active Na+ efflux and 
sequestration of Na+ in the vacuole, which will be discussed categorically in this 
compilation. But before that we need to understand various soil-related factors 
affecting availability of nutrients under salt stress.

14.2  Soil-Driven Factors Affecting Nutrient Availability 
Under Salt Stress

14.2.1  Salinity: Origin and Extent

Salinity is predominant in two major forms over the land surface, (1) dry land salin-
ity and (2) irrigation salinity, and arid and semiarid climatic regions throughout the 
world are suffering due to salinity in one form or another. The dry land salinity is 
often detected as primary or secondary salting, either occurring naturally (naturally 
occurring saline wet and dry lands including salt lakes, salt pans, salt marshes and 
salt flats) or via secondary salting that is induced by human activities such as agri-
culture (Fig. 14.1). Secondary salinity is majorly caused by anthropogenic activi-
ties, while practising land development and agriculture may play some role 
(Queensland Government 1995–2017), and the common forms are:

• Irrigation: prevalent in irrigated agricultural lands, due to excessive irrigation 
(results into rising groundwater tables) or the application of poor-quality water.

• Dry land: prevalent in rainfed or nonirrigated landscapes, generally as a result of 
deforestation and land-use changes. Irrigation salinity often resembles dry land 
salinity, except that inclined level of groundwater that also resulted in deposition 
of salt layers in the plant root zone or on the soil surface.

• Sea water intrusion: In coastal aquifer systems, it is commonly found that fresh 
groundwater is gradually replaced by sea water.
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• Point source: originated from the high concentration of diluted salt in effluent 
either released from intensive agriculture loaded with pesticide/chemical resi-
dues or from polluted wastewater stream from industries.

Over the years, several estimations have been published regarding the extent of 
salinity. Oldeman et al. (1991) reported that the total area affected by waterlogging 
was over 10 m ha and that affected by salinity was over 76 m ha. They counted both 
irrigated and rainfed areas. Dregne et al. (1991) published that about 43 m ha of 
irrigated land in dry lands was affected by several forms of degradation, including 
waterlogging, salinization and sodicity. Umali (1993) estimated that 1–1.5 m ha of 
lands were lost to salinization every year. Further it had been reported that nearly 
12 m ha of irrigated land may have phased out from production due to salinization 
(Nelson and Maredia 2001). An approximate area of 7 m ha of land is estimated to 
be under saline soil in India (Patel et  al. 2011). These lands are classified  in 
Table 14.1.

Fig. 14.1 Causes of different types of salinity resulting in ionic imbalance in soil
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14.2.2  Salinity Impacts on Crop Production

Agriculture is one of prime importance as far as salinity hazard is concerned. Crops 
may differ in their tolerance to salinity, and some of them are extremely sensitive, 
while few perform better even after crossing the threshold of marginal salinity and 
emerge as tolerant crops in terms of salinity stress. Even varietal differences are also 
prominent in major field crops. A report published from World Bank showed the 
degree of loss and major impacts due to salinity or other forms of soil degradation 
as a whole (Table 14.2; Fig. 14.2).

Table 14.1 Classification of salt-affected soil

Nature of soil

USDA classification SSSA classification

ECe (dSm−1) pH ESP ECe (dSm−1) SAR

Normal <4.0 <8.5 <15 <2 <13
Saline >4.0 <8.5 <15 >2 <13
Sodic Variable >8.5 >15 Variable >13
Saline-sodic >4.0 >8.5 Variable <2 >13

Source: Handbook of Agriculture (2011)

Table 14.2 Impact of soil 
degradation on Indian 
agriculture

Crop
Percent 
loss

Paddy 2.7–4.7%
Wheat 3.9–6.4%
Barley 4.5–7.0%
Groundnut 2.8–4.4%
Gram 5.6–7.8%
Rapeseed and mustard 5.8–8.5%
Jowar 5.7–7.6%
Bajra 6.8–8.4%
Cotton 5.3–6.9%
Maize 3.2–4.9%
Sugar cane 4.5–7.9%
All other crops 4.0–6.3%
Total 4.0–6.3%

Source: The Cost of Inaction: 
Valuing the Economy-Wide Cost of 
Environmental Degradation in India 
(Brandon and Homman 1995)
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14.2.3  Salinity Impacts on Nutrient Mobility in Soil and Plants

Besides the crop yield perspective, soil salinity has its own demerits creating prob-
lems like nutrient loss, nutrient imbalance, poor soil structure and health, and soil 
degradation. Dry land salinity is often considered as a major soil degradation issue, 
including soil erosion. Salinity is often associated with prolonged wetness, sparse 
vegetation and lack of surface cover and therefore increases the vulnerability of 
soils to erosion. Salt concentration in the soil solution (salinity) which governs the 
osmotic potential and the concentration of sodium on the exchange complex sites 
(sodicity) further determines soil structural stability. Thus, salinity slowly turns into 
sodicity. The major soluble salts in soils are the cations like Na+ (sodium), Ca2+ 
(calcium), Mg2+ (magnesium) and K+ (potassium) and the anions like Cl− (chloride), 
SO4

2− (sulphate), HCO3
− (bicarbonate), CO3

2− (carbonate) and NO3
− (nitrate) (Shi 

et al. 2005). These are the basic ions that dominate in the exchange sites under salin-
ity and thus compromise the places of other essential nutrients like PO4

3− (phos-
phate) and micronutrients (Zn, Fe, Mn, Cu). This imbalance of nutrients created in 
soil is often measured by nutrient concentration or uptake by plants comparing the 
plants grown under normal and saline conditions. Similar occurrence was reported 
by Bhaduri et al. (2016) where P uptake of eight groundnut cultivars were studied 
and observed that the P uptake of groundnut cultivars is affected at irrigation salinity 
level of 6.0 ECiw. Salinity stress lowered down the N content in Brassica leaves as 
well as seed protein content; moreover the reduced accumulation of micronutrients 
(Fe, Mn, Zn) was also noticed in the leaf, stem and root at flowering and post- 
flowering stages (Chakraborty et al. 2016b).

Agriculture
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Lower crop yields and
soil fertility

Higher use of inputs,
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Risk of wind and water
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Indirect impacts
on agriculture,
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Fig. 14.2 The most promising impacts of soil salinity (FAO 2017)
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Soil microorganisms, an integral component of soil ecosystem, are largely 
involved in an array of important soil nutrient cycling processes. Their roles in nitri-
fication, ammonification, nitrogen fixation, P mineralization, S oxidation, decom-
position of soil organic matter and transformation of all primary and secondary 
nutrients (Amato and Ladd 1994) are already established. Microbes also act in for-
mation of humic substances which makes stable forms of organic C and contribute 
in C sequestration in soils. The high concentration of soluble salts affects the 
microbes by increasing the osmotic potential (more negative) of the soil water, pro-
motes exosmosis and dehydrates the microbial cell. Thus, it makes difficult for 
microbes to survive and perform their basic functions in a saline soil. Even if they 
can survive under such stressful situation that needs more investment of energy for 
producing osmolytes. Till date, only few halophytic microbes and some endophytes 
are reported to tolerate such extreme saline conditions. Moreover, soil microbial 
community structure also differs significantly since fungi are more salt sensitive 
over bacteria, and thus bacteria/fungi ratio can be increased under saline soil envi-
ronment (Wichern et al. 2006; Yan et al. 2015). All these phenomena either singly 
or collectively influence the soil nutrient availability.

14.3  Uptake of Regulatory Ions in Plant Cells: An Interplay 
of Nutrient Balance/Imbalance

Salinity is a much complex phenomenon rather than a simple escalation in the con-
centrations of sodium and chloride ions inside the plant tissue (Nouri et al. 2017). 
Apart from Na+ and Cl−, number of other cations and anions, viz. calcium, carbon-
ates and sulphates, may be present in disproportionate amounts and play crucial role 
in negatively affecting plant growth (Gorham 1992). Simultaneously, certain nutri-
ents (particularly potassium, nitrogen and phosphorus) may be available or present 
in such low amounts under saline condition that they might hamper proper growth 
(Chakraborty et al. 2016c).

Saline conditions affect plant growth and metabolism in many different ways. 
These harmful effects are generally associated with (1) reduced osmotic potential of 
the soil solution in plants (water stress), (2) nutritional imbalance, (3) effect exerted 
by a specific salt (salt stress) or (4) a combination of all of these factors (Ashraf and 
Foolad 2007; HanumanthaRao et  al. 2016). These factors act in an adverse way 
affecting growth and development in plants at both physiological and biochemical 
levels (Munns 2002; Munns and Tester 2008) and also at the molecular level (Tester 
and Davenport 2003). Tolerance to saline conditions involves a myriad number of 
physiological processes manifested in numerous levels of organization, viz. altera-
tions in gross morphology, tissue partitioning and coordinated control of transport, 
biological change for maintenance of protein structure and regulated transcriptome 
level changes (Tester and Davenport 2003).
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14.3.1  Scenario of K+ vs Na+ and K+/Na+ Homeostasis 
Under Salt Stress

Sodium, an integral constituent of our Earth’s crust, is naturally present in all soil 
types. At lower concentration Na+ helps in supporting growth and development for 
some plants, but at higher concentration in soil or other growing medium, it eventu-
ally turns out to be toxic to even glycophytes (Flowers and Colmer 2008). Both Na+ 
and K+ share high similarity in ionic as well as its chemical and structural proper-
ties, but unlike Na+, K+ are integral part of plant’s life and play essential role in 
growth and development (Schachtman and Liu 1999). Many core physiological pro-
cesses, primarily dependent on K+, show impairment due to hindrances in specific 
transport and interactions of K+ with enzymes and membrane proteins (Britto and 
Kronzucker 2008). This may be manifested as transient maintenance of membrane 
potential for stomatal movement and development of pollen tube in plants (Dietrich 
et al. 2001). Under saline condition, due to prolonged exposure to salt stress, plants 
often exhibit K+ deficiency symptoms majorly because of reduced uptake by the 
root tissue and/or lesser K+ retention in different plant parts coupled with a con-
comitant accumulation of tissue Na+ concentration (Munns et al. 2002). Under salt 
stress, plants with hindered growth and metabolism are observed due to the skewed 
K+/Na+ ratio in metabolically active plant tissues (Shabala and Cuin 2007; 
Degl’Innocenti et al. 2009). Because of such ionic imbalances, hindrances in vari-
ous physiological and biochemical processes are observed in plants.

Under high external Na+ concentrations, Na+ enters through K+ pathway altering 
the ion ratios in plants. The similarity of the ionic radii of the hydrated molecule of 
Na+ and K+ renders the capability of discrimination between them much difficult 
and hence forms the basis of Na+ toxicity. Cellular K+ concentrations in the range of 
100–150 mM are essential for in vitro protein biosynthesis. Moreover, at higher 
concentrations, Na+ competes for K+ sites and inhibits the whole process when Na+ 
concentrations is >100 mM (Cheeseman 2013). The similar level of sensitivity of 
cytosolic enzymes of halophytes and glycophytes towards saline conditions hinders 
the adaption of halophytes to high salt concentration (Flowers et  al. 2014). 
Maintenance of low cytosolic Na+ concentrations and a high cytosolic K+/Na+ ratio 
is a key strategy adapted by plants to respond to elevated external Na+ concentra-
tions (Blumwald et  al. 2000). The approach towards such maintenance involves 
extrusion of Na+ or its compartmentalization mainly in the vacuoles for metabolism 
(Zhu 2003) and is critical for the detoxification of excess Na+ present in cytosol and 
the osmotic adjustment necessary to endure salt stress (Blumwald et  al. 2000; 
Chakraborty et al. 2016d).
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14.3.2  Regulation of Tissue Na+ Concentrations

14.3.2.1  Sodium Uptake

On exposure to salt stress, maintenance of low concentrations of Na+ and high con-
centrations of K+ in the cytosol becomes crucial and is achieved by controlled 
expression and activity of K+ and Na+ transporters (Shabala et al. 2015). Na+ enters 
the plant cells passively through the high-affinity K+ transporter HKT1 (Rus et al. 
2001; Maser et al. 2002) and non-selective cation channels (NSCCs). Due to non- 
selectivity of a few transporters and/or ion channels, under highly saline conditions, 
Na+ ions compete with K+ ions for uptake and enter inside the plant through normal 
rhizospheric nutrient uptake process. At transcriptional level, these K+/Na+ trans-
porter genes are either up- or downregulated as a response to salt stress (Chakraborty 
et al. 2016e). It has been reported that the transcript level of Arabidopsis root K+ 
transporter AtKC1 increases under salt stress (Pilot et al. 2003). As reported by Zhu 
(2003), upregulation in the expression level of KMT1 (a AKT/KAT family member) 
and various HAK/KUP (high-affinity K+ transporter/K+ uptake transporter)-type 
genes was observed, whereas for MKT1 (another AKT/KAT family member), the 
expression level was found to be downregulated for common ice plant.

14.3.2.2  Sodium Efflux

The primary mechanism of Na+ extrusion in case of plants is mediated by energy- 
driven active pumping out of Na+ by plasma membrane-bound Na+/H+ transporter and 
H+-ATPases (Zhu 2001). The H+-ATPase acts to pump H+ out of the cell using the 
energy of ATP hydrolysis, thus generating an electrochemical proton gradient. The 
proton-motive force thus generated is further required for the Na+/H+ antiporter oper-
ation as the inward movement of H+ along with the electrochemical gradient is cou-
pled to the outward exclusion of Na+ against the electrochemical gradient. 
Confirmation of the existence of such biochemical mechanism has been documented 
for various plant species (Blumwald et al. 2000). Identification of a putative Na+/H+ 
antiporter with substantial similarity in sequence with plasma membrane Na+/H+ anti-
porters from bacteria and fungi has further strengthened the views. The SOS1 (salt 
overly sensitive 1) locus encoding a putative Na+/H+ antiporter having considerable 
sequence similarity to plasma membrane Na+/H+ antiporters from bacterial and fun-
gal species has been identified in Arabidopsis (Shi et al. 2000), rice (Martinez-Atienza 
et al. 2007), wheat (Yang et al. 2009) and in Brassica (Chakraborty et al. 2012a).

14.3.2.3  Vacuolar Sodium Compartmentation

It has been observed that both halophytes and glycophytes regardless of the high 
influx of Na+ maintain the cytosolic concentration of the ion at non-toxic levels 
(Blumwald et al. 2000). The compartmentalization of Na+ into vacuoles has been 
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found to be the primary mechanism of evading the harmful effects Na+ exerts in the 
cytosol. Additionally, the vacuolar compartmentalization of Na+ (and Cl−) allows 
the usage of NaCl as an osmoticum thereby contributing in maintenance of an 
osmotic potential for the process of water uptake into cells (Blumwald et al. 2000). 
Tonoplast-bound vacuolar Na+/H+ antiporters (NHX family transporters) play cru-
cial role in Na+ compartmentalization inside the cell (Yokoi et al. 2002). Identification 
and characterization of several plant transporters have been made possible by detec-
tion of the higher degree of homology between several plant and yeast genes, and 
the detailed genetic information is available in the public domain (Halfter et  al. 
2000; Ji et  al. 2013). Evidences suggest that Na+ detoxification mechanisms 
employed in yeast cells may be found to be quite similar to that existing in plant 
cells. This similarity mostly holds true for the role played by the Ca2+-dependent 
signal transduction mechanism which becomes operational under salinity stress 
(Halfter et al. 2000). Putative Na+/H+ antiporters (both SOS1 and NHX family) from 
both organisms are also similar (Apse et al. 1999; Fukuda et al. 1999).

14.3.3  Interaction Between Na+ and Ca2+

An important inorganic nutrient, calcium, plays a vital role in salt detoxification, in 
addition to its well-known metabolic and structural functions (Jin et al. 2007). This 
response stems from the fact that increasing Na+ concentrations may not only reduce 
Ca2+ availability but may also displace Ca2+ from its extracellular binding sites 
within the plant organs and further disrupt Ca2+ acquisition (Hadi and Karimi 2012). 
The interaction between Na+ and Ca2+ in salt-stressed plants has been the focus of 
several research agendas over the years (Cramer 2002; Nedjimi and Daoud 2009). 
It has been advocated that Na+ tolerance of plants is determined to a larger extent by 
interactions of Ca2+ and Na+ ions (Buschmann et al. 2000). It is reported that high 
NaCl induces calcium deficiencies in different plants such as Vigna unguiculata 
(Murillo-Amador et  al. 2006) and tomato (Tuna et  al. 2007). Allen et  al. (1995) 
reported that Na+ influx on durum wheat cells can also be inhibited by calcium. 
According to Jin et al. (2007), saline conditions restricted Ca2+ uptake by the roots 
of Aloe vera plants and its subsequent transport to shoots resulting in a marked 
decrease in Ca2+ contents of all plant parts. It was further reported that in plants 
under salt stress, the Ca2+ contents of the leaves and stems show a noticeable 
decrease; salt-tolerant genotypes were found to exhibit three times higher Ca2+ con-
centrations as compared to salt-sensitive ones.

High Na+ concentration in the root zone was found to inhibit Ca2+ uptake and its 
transport resulting in lower Ca2+/Na+ ratios in salt-stressed plants (Hadi et al. 2008). 
Additionally, Jin et  al. (2007) showed that salt-tolerant genotypes of Aloe vera 
maintained a significantly low Na+/Ca2+ ratio and experienced least membrane dam-
age. The rapid Na+ uptake process across the plasma membrane in excess salt condi-
tion diminishes the binding capability of Ca2+ to the plasma membrane thus 
inhibiting its influx. High Na+ concentrations can displace Ca2+ in membrane thus 
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disrupting the integrity of it (Janicka-Russak and Kłobus 2007). Hasegawa et al. 
(2000) in their report indicated that the increase in intercellular Ca2+ content could 
cause a decline in Na+ influx and in turn increase the K+ selectivity for absorption 
thus alleviating the damaging effects of salinity stress. They also pointed out that 
under salinity stress, Na+ can compete with Ca2+ by entering the cell through the 
same channels. The excess intercellular sodium can then displace the Ca2+ in the 
membranes causing membrane damage. Membrane-bound catalase activity could 
also be inhibited by excess Na+ which can be reversed by excess Ca2+ (Arbona et al. 
2003). It has been proposed that Ca2+ plays a central role in plants exposed to NaCl 
salinity because of its active participation in reducing Na+ absorption and increasing 
potassium (K+) and Ca2+ uptake, resulting in an increase in plant growth (Caines and 
Shennan 1999). Additionally, Ca2+ may compete with Na+ for membrane-binding 
sites thereby shielding the cell membrane from the unfavourable saline conditions 
(Shabala et al. 2006).

The [Ca2+]ext augments salt tolerance by eliciting a transient increase in [Ca2+]ext 
either from a peripheral or an internal source (Knight et  al. 1997). Experiments 
conducted on yeast have generated preliminary views of Ca2+-mediated activation 
of signalling pathways for regulation of ionic homeostasis and tolerance mecha-
nisms in response to salt stress conditions. A suggestive model for salt-induced Ca2+ 
signalling and activated SOS pathway includes components of the SOS pathway; 
the SOS3 or other upstream elements might become connected with the osmotically 
responsive channel triggering Ca2+ influx which might possibly initiate signalling 
through the pathway (Chakraborty et al. 2016e). Reports suggests that salt-induced 
[Ca2+]ext transient as well as the new [Ca2+]ext steady state may be influenced by the 
ECA and ACA Ca2+-ATPases as well as the CAX1 and CAX2 transporters, the 
orthologs of VCX1P (Sze et al. 2000). Ca2+ plays two vital roles in conferring toler-
ance towards salinity, the fundamental signalling function leading to adaptation dur-
ing salt stress conditions and a direct inhibitory effect on the entry of Na+ ions.

14.3.4  Transport and Xylem Loading

Na+ transport across the root and into the xylem occurs both symplastically and 
apoplastically from the epidermis to the xylem (Maathuis et al. 2014). Na+ export to 
the xylem is supposed to be an active process, given that the electric membrane 
potential of xylem parenchyma has been found to be negative. In Arabidopsis, under 
the conditions of salinity, xylem loading of Na+ was found to be mediated by SOS1 
(salt overly sensitive1), while its unloading, on the other hand, was found to be a 
passive process, involving transportation through the Na+-permeable channels 
(Apse and Blumwald 2007). High-affinity K+ transporters or HKTs, classified in 
class I and class II types, were one of the most studied Na+-permeable transporters 
in plants (Horie et al. 2009). These HKT transporters, often located in the xylem 
parenchyma and root epidermal cells of many plants, exhibit a crucial role in adapt-
ing the plant to saline conditions for both mono- and dicotyledonous species (Møller 
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et al. 2009; Munns et al. 2012). The class I HKT transporters showing specificity for 
mostly Na+ ions are characterized as low-affinity transporters (Munns and Tester 
2008). Among the different subtypes of HKT1 transporter, a few are reported to be 
located in the plasma membrane of root stele cells, particularly in the xylem paren-
chyma cells (XPC), where their main function is to regain the Na+ ion from the 
xylem sap thereby avoiding transport and accumulation of toxic Na+ in the above 
ground plant parts and preventing damage to the more sensitive and photosyntheti-
cally active tissues (Ren et al. 2005).

14.4  Mechanisms of Nutrient Homeostasis: A Balancing 
Approach of Plants Facing Salt Stress

Physiological studies carried out in many crops during salt stress at vegetative stage 
indicated that stress tolerance trait inversely correlates with shoot Na+ concentration 
and Na+/K+ ratio (Ashraf 2004; Negrão et al. 2011). Different mechanisms associ-
ated with salt tolerance in crop plants include (1) maintenance of a more negative 
membrane potential, (2) intrinsically higher H+-ATPase activity, (3) extrusion of 
Na+ from the cytosol to the external medium, (4) maintenance of mineral nutrient 
homeostasis, particularly, higher selectivity to K+ and Ca2+ over Na+, (5) scavenging 
of ROS, (6) accumulation of compatible solutes for osmotic adjustment, etc. At the 
physiological level, salt tolerance and ion homeostasis are mostly governed by three 
major strategies in crop plants: (I) Na+ exclusion, (II) K+ retention and (III) tissue 
tolerance/Na+ sequestration (Munns and Tester 2008).

14.4.1  Electrophysiological Basis of Salt Tolerance: Role 
of Transporter/Pumps/Ion Channels

Plant salinity stress signalling is a complex phenomenon involving the interplay of 
many biomolecules ranging from receptor molecules, ion fluxes that serve as signals, 
transcription factors, hormones, reactive oxygen species (ROS) and numerous down-
stream proteins. In the cyanobacterium, Synechocystis sp., Marin et al. (2003) identi-
fied sensory histidine kinases, namely, HIK16, HIK33, HIK34 and HIK41, involved 
in the perception and transduction of salt stress. In plants, there is less clarity about 
the proteins that perceive salt stress. Salt overly sensitive (SOS) genes (SOS1-SOS4), 
first identified in Arabidopsis thaliana through positional cloning, are potential can-
didates for detecting elevated Na+ concentrations in intracellular and extracellular 
sites. The AtSOS1 protein is a putative plasma membrane Na+/H+ antiporter that 
regulates plant Na+ homeostasis by extrusion and is aided in its function by two other 
proteins SOS2 and SOS3 (Qiu et al. 2002; Zhu 2003). SOS- mediated salt stress sig-
nalling is represented in Fig.  14.3. The sos1, sos2 and sos3 mutants show salt 
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sensitive  phenotype, and their genetic analysis has helped  to improve our under-
standing of the mechanism of salt stress tolerance in plants (Zhu et al. 1998). Yeast 
mutants lacking endogenous Na+ transporters were used to investigate the role of the 
three SOS proteins in salt-stress response pathway (Quintero et al. 2002). Perception 
of salt stress is followed by subtle changes in Ca2+ concentration in cytosol of root 
cells that triggers the SOS pathway (Guo et al. 2004; Chinnusamy et al. 2005). SOS3 
is a myristoylated Ca2+-binding protein that recruits SOS2 serine-threonine protein 
kinase to the plasma membrane after binding of Ca2+ (Ishitani et al. 2000; Halfter 
et al. 2000). An alternative regulator of SOS2 activity, SOS3-like calcium-binding 
protein 8 (SCaBP8, a.k.a. calcineurin B-like CBL10), has been shown to function 
primarily in the shoots of Arabidopsis, while SOS3 expresses predominantly in roots 
(Quan et al. 2007). SOS2-mediated phosphorylation of SCaBP8 or SOS3-like pro-
teins increases their stability (Lin et al. 2009). The SOS3-SOS2 or SCaBP8-SOS2 
complex then recruits SOS2 to plasma membrane to activate downstream SOS1, 
which functions to extrude excess Na+ from the cytosol (Shi et al. 2000; Qiu et al. 
2002; Quintero et  al. 2002, 2011; Quan et  al. 2007). SOS4 and SOS5 also play 
important roles in salt stress tolerance. While SOS4 encodes a pyridoxal kinase that 
is involved in regulation of Na+ and K+ homeostasis (Shi et al. 2002), SOS5 aids in 
the maintenance of normal cell expansion during stress (Shi et al. 2003).

Fig. 14.3 A coordinated network of Na+ and K+ transport in different plant parts under salinity 
stress
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Other Na+ transporters functioning in salinity tolerance include those involved in 
intracellular compartmentalization of Na+ into vacuoles, older leaves or leaf sheath, 
extrusion outside the cell and recirculation of Na+ out of the shoots to be stored else-
where, for example, in roots or stem cell vacuoles. Vacuolar Na+ sequestration is one 
of the most energetically efficient mechanisms by which plants achieve turgor main-
tenance and cell expansion in saline conditions. The NHX-type intracellular Na+/H+ 
exchangers that mediate this process are driven by the differential proton (H+) gradi-
ent generated by vacuolar H+-translocating enzymes such as H+-ATPase and H+-
PPase. Plant NHX family can be divided into two groups, class I and class II, based 
on protein sequence and subcellular localization (Rodriguez-Rosales et  al. 2009; 
Pardo et al. 2006). The class I NHX proteins are located on the tonoplast, where they 
function as (Na+, K+)/H+ antiporters (Venema et al. 2002), while the class II NHX 
proteins are located in endosomal vesicles of plants (Bassil et al. 2011). These pro-
teins maintain K+ homeostasis and function in aiding normal plant growth and devel-
opment as well as tolerance to salt stress (Pardo et al. 2006). The AtNHX1 gene, the 
first plant member of the NHX subfamily of intracellular Na+/H+ antiporters from 
Arabidopsis thaliana, was identified based on its homology to animal plasma mem-
brane Na+/H+ antiporters of the NHE family and the yeast ScNHX1 gene (Gaxiola 
et al. 1999). Overexpression of AtNHX1 in other plant systems led to improved salt 
stress tolerance (Zhang and Blumwald 2001; Zhang et al. 2001). A different model 
for the role of NHX transporters has been proposed by Jiang et al. (2010), which 
states that the NHX proteins function mainly to prevent toxic Na+/K+ ratios in the 
cytosol and for maintaining osmotic balance which is achieved by the vacuolar com-
partmentalization of Na+ and, in some cases, of other cations as well. A wheat NHX 
antiporter, TaNHX2, having significant sequence homology to NHX sodium exchang-
ers as reported from Arabidopsis, was found to suppress the salt sensitivity of a yeast 
mutant strain by improving its K+ content when faced the salt stress (Xu et al. 2013). 
Here an attempt had been made to compile reported transporters/ion channels/ 
pumps associated with movement of Na+ and K+ in plants (Table 14.3).

14.4.2  Transcription Factor (TFs) Involved in Salinity Stress 
Tolerance and Ion Homeostasis

In order to impart enhanced salt tolerance, it is essential to develop a basic under-
standing of biochemical, physiological and gene regulatory networks of stress 
response pathways. Transcription factors (TFs) play a critical role in signal trans-
duction network starting from the perception of stress signal to the expression of 
stress-responsive genes. Unlike the structural genes, TFs tend to control several 
complex pathways (master regulator) making them one of the ideal candidates for 
pathway manipulation. Several TFs (OsRAB1, MYC/MYB, OsNAC/SNAC, etc.) 
have been identified which are differentially expressed during adaptation to salt 
stress; interestingly, many of these TFs are also differentially expressed during other 
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Table 14.3 A glimpse at the probable transporters playing a role in salinity tolerance with inputs 
from Almeida et al. (2013, 2017), Maathuis (2006), Kumar and Mosa (2015) and Shabala and 
Pottosin (2010)

Name of 
transporter In-planta expression Physiological role References

OsHKT1;1 Roots: Similar as OsHKT2;1. 
Leaves: bulliform cells and 
vascular tissues

Control of Na+ 
concentration in phloem 
sap

Garciadeblas et al. 
(2003), Jabnoune 
et al. (2009) and 
Wang et al. (2015)

OsHKT1;2 Leaves, though expression does 
not change under stress

Codes for a pseudogene Wu et al. (2009) and 
Phuc et al. (2016)

OsHKT1;3 Roots: cortex and vascular 
tissues in the stele. Leaves: 
bulliform cells and vascular 
tissues, mesophyll cells

Mediates both inward 
and outward Na+ 
current

Wu et al. (2009) and 
Almeida et al. (2013)

OsHKT1;4  Leaf sheaths Control sheath to blade 
Na+ transfer

Cotsaftis et al. 
(2012)

OsHKT1;5 Roots and shoots: xylem 
parenchyma

Control root to shoot 
Na+ transfer

Ren et al. (2005)

TaHKT1;4 Root, leaf sheath, leaf blade Unloading of Na+ from 
xylem into xylem 
parenchyma cell

Huang et al. (2006)

TaHKT1;5 Roots Unloading of Na+ from 
xylem into xylem 
parenchyma cell

Byrt et al. (2007)

AtHKT1;1 Roots: xylem parenchyma, 
phloem Shoots: phloem

Loading of excess Na+ 
from shoot into phloem

Møller et al. (2009) 
and Sunarpi et al. 
(2005)Unloading of Na+ from 

xylem into xylem 
parenchyma cells

OsHKT2;1 Roots: epidermis, exodermis, 
cortex differentiated into 
aerenchyma, stele (mainly 
pholem). Leaves: bulliform 
cells, xylem, phloem, 
mesophyll cells

Uptake of nutritional 
Na+ from external 
medium

Horie et al. (2007)

OsHKT2;2 Roots only Na+/K+ symporter; 
cotransports both Na+ 
and K+ under low K+ 
concentration

Yao et al. (2010)

OsHKT2;2/1 Roots Cotransport of both Na+ 
and K+ under salt stress

Oomen et al. (2012)

OsHKT2;3 Shoots, marginal expression in 
roots

Cotransport of both Na+ 
and K+ under salt stress

Horie et al. (2011)

OsHKT2;4 Roots, leaf sheaths, spikelets, 
base of stems

K+ transporter/channel Lan et al. (2010)

TaHKT2;1 Roots: cortical and stele. 
Leaves: vasculature tissue of 
mesophyll

Uptake of Na+ from the 
external media

Laurie et al. (2002)

(continued)
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Table 14.3 (continued)

Name of 
transporter In-planta expression Physiological role References

HvHKT2;1 Roots: cortex. Leaves: blade 
and sheath

K+ absorption in root at 
very low K+ 
concentrations

Haro et al. (2005) 
and Mian et al. 
(2011)

OsAKT1 Coleoptile and roots of rice 
seedlings

Inward-rectifying K+ 
channel regulated by 
extracellular Ca2+ and 
protons

Fuchs et al. (2005)

AtAKT1 Root cortex, endodermis, 
epidermis, hair, leaf mesophyll

Low-affinity K+ uptake Pilot et al. (2003)

AtAKT2/3 Xylem, phloem, guard cell, leaf 
mesophyll

Weakly inward 
rectifying K+ channel

Pilot et al. (2003)

OsMKT1 Roots Inward-rectifying 
channel

Su et al. (2001)

OsKAT1 Internodes Inward-rectifying 
channel

Obata et al. (2007)

AtKAT1 Guard cell Inward-rectifying 
channel

Szyroki et al. (2001)

AtSKOR Root pericycle, stellar 
parenchyma

Stelar K+ outward 
rectifier, virtually 
impermeable to Na+

Pilot et al. (2003) 
and Qi and Spadling 
(2004)

OsNHX1 Roots: stela, emerging parts of 
lateral roots Shoots: basel part 
of seedling shoot, vascular 
bundle, flag leaf sheaths, 
panicles, guard cells, trichome

Vacuolar Na+/H+ 
antiporter

Fukuda et al. (2004)

OsNHX2 Shoots: flag leaf sheaths, 
panicles

Vacuolar Na+/H+ 
antiporter

Fukuda et al. (2011)

OsNHX3 Shoots: flag leaf sheaths, 
panicles

Vacuolar Na+/H+ 
antiporter

Fukuda et al. (2011)

OsNHX4 N/A Vacuolar Na+/H+ 
antiporter

Fukuda et al. (2011)

OsNHX5 Roots: stela, emerging parts of 
lateral roots, root tip. Shoots: 
basel part of seedling shoot, 
vascular bundle, flag leaf 
sheaths, panicles, pollen grain

Endosomal K+/H+ 
antiporter

Bassil et al. (2012)

AtNHX1 Roots: vascular tissues. Shoots: 
floral and vascular tissues, 
guard cells, trichome

Vacuolar Na+/H+ 
antiporter

Rodríguez-Rosales 
et al. (2009)

AtNHX2 Root shoots: high in guard cells Vacuolar Na+/H+ 
antiporter

Yokoi et al. (2002)

AtNHX3 Mainly in roots Vacuolar Na+/H+ 
antiporter

Yokoi et al. (2002)

AtNHX4 Shoots: mainly in mature pollen 
and seeds

Vacuolar Na+/H+ 
antiporter

Yokoi et al. (2002)

(continued)
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stresses. In particular, there are many common TFs that control gene expression 
both during salt and drought stress. A comprehensive database of rice TFs involved 
in adaptation of salt and drought is available at Rice Stress-Responsive Transcription 
Factor Database (RiceSRTFDB; http://www.nipgr.res.in/RiceSRTFDB.html) (Priya 
and Jain 2013). A recent study on transcriptome analysis of common bean (Phaseolus 
vulgaris L.) under salt stress has reported differential expression of 59 different 
families of TFs among which 10 TF families, viz. AP2-EREBP, bHLH, PHD, HB, 
(R1)R2R3_Myb, WRKY_Zn, NAC, bZIP, C3H-TypeI and Myb_related, were most 
abundant (Hiz et al. 2014). A comparison of transcriptome of salt-sensitive (Hua 30) 
and salt-tolerant (Hua 11) barley varieties under salt stress has also shown differen-
tial expression of several transcription factors belonging to different families, such 
as TIFY (earlier known as ZIM), WRKY, zinc finger, MYB, bHLH, CBF, NAC, 
bZIP, AP2, whirly, HD-ZIP, etc. Two interesting observations of this study were that 
(i) the number of differentially expressed genes was more in shoots as compared to 
roots and (ii), compared to control, more number of genes were found to be upregu-
lated in response to salt stress than downregulated (Gao et al. 2013). Cloning and 
validation of such salt stress-responsive TFs is a step in the right direction for 
improvement of salinity tolerance in crops. For example, stress-specific NAC1 
(SNAC1) cloned from rice landrace Pokkali (Hu et al. 2006) was found to confer salt 
stress tolerance in rice by working downstream to ABA-induced salt and drought 
tolerance pathway (Khong et al. 2008). Similarly, OsMYB48-1 conferred tolerance 
to salt stress along with drought in rice (Xiong et al. 2014). On the other hand, cold- 
induced MYB 1 (CMYB1) which is involved in cold tolerance and circadian rhythm 
maintenance in rice is negatively correlated with salt stress tolerance. Many of these 
cloned TFs are trans-acting, i.e. they can impart salt tolerance in different (non-
native) backgrounds. For example, OsDREB2A, a transcription factor of AP2/ERF 
family in rice is capable of imparting salt tolerance in transgenic soybean by accu-
mulation of higher level of osmolytes (Zhang et al. 2013). Some of the other such 

Table 14.3 (continued)

Name of 
transporter In-planta expression Physiological role References

AtNHX5 Root shoots: high in guard cells Endosomal K+/H+ 
antiporter

Bassil et al. (2011)

AtNHX6 Root shoots: high in guard cells Endosomal K+/H+ 
antiporter

Bassil et al. (2011)

AtNHX7/
SOS1

Roots: epidermal cells 
(particularly root tip), 
parenchyma cells lining the 
vasculature shoots

Plasma membrane Na+/
H+ transporter

Kronzucker and 
Britto (2011)

TaNHX2 Root Endomembrane bound 
K+/H+ antiporter

Xu et al. (2013)

OsCAX4 Embryo, roots, leaf sheaths, 
shoots and nodes

Vacuolar cation 
exchanger

Kamiya et al. (2005)

AtCAX1 N/A Cation exchanger Cheng et al. (2003)
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transacting TFs are OsMYB3R-2 (Dai et  al. 2007), HvCBF4 (Oh et  al. 2007), 
DREB1A (Oh et al. 2005), NAC (Tran et al. 2004), etc. If regulated properly in the 
transgenic background, these trans-acting TFs can work to regulate pathways in any 
of the desired crops and thus be ideal candidates for engineering salt stress tolerance 
in crop plants.

14.4.3  Post-transcription Gene Regulation and Adaption 
to Salt Stress

Apart from the transcription factors, which play a role as master switches to control 
and coordinate transcription of several genes, a plethora of genes are also controlled 
post-transcriptionally under salinity stress. This post-transcriptional regulation is 
achieved through a group of salt-responsive microRNAs (miRNAs), a class of small 
non-coding RNAs of ~21 nucleotide length, which exerts an additional level of 
control over plant gene expression under stress. In fact, miRNAs are now consid-
ered as one of the major players in gene regulation which downregulate expression 
of their target genes by mRNA cleavage or translation-arrest mechanisms based on 
the perfect or near-perfect complementary pairing, respectively (Ambros 2004). A 
plethora of miRNAs have been demonstrated to play a role in several stress toler-
ance pathways; some of them are found to be involved in multiple stresses and 
across species (Dugas and Bartel 2004; Zhang and Wang 2015). Till date, about 40 
different families of miRNAs have been shown to play a role in abiotic stress 
response among which many are associated with salt stress (Covarrubias and Reyes 
2010; Sunkar 2010; Wang et  al. 2013). Arabidopsis and rice have come up as a 
model system in recent times to study molecular biology of dicotyledonous and 
monocotyledonous plant systems, respectively. Numerous studies on these two 
plants have revealed the importance miRNAs in salt responses. Apart from these, 
the role of miRNA under salt stress has also been elucidated in several other crop 
plants like cotton, soybean, Populus, tobacco, Medicago, etc. About 217 miRNAs 
have been reported till date in different plant species which are involved in salinity 
stress. A detailed list of the salt-responsive miRNA and their target genes is given in 
Mittal et al. (2016). The unifying themes which emerge from the studies investigat-
ing the role of miRNA in response to salinity are summarized here. Firstly, it has 
been observed that miRNAs, grossly, target master switches of gene regulation such 
as transcription factors (e.g. MYB, NAC1, homeodomain-leucine zipper, etc.) or 
phytohormones (auxin, GA, ethylene and ABA signalling) which in turn regulate 
expression of several downstream genes in the expression cascade ultimately gov-
erning the plant development and physiology (Jones-Rhoades and Bartel 2004). 
Besides, some of these miRNAs regulate enzymes such NADP-dependent malic 
enzyme, cytochrome oxidase, laccase, etc. which are of broad spectrum and are 
involved not only in salt stress but also in several other abiotic and even in biotic 
stresses (Yan et al. 2005). Hence, most of the miRNAs are not specific to salt but are 
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involved in multiple stresses; especially, several miRNA are commonly regulated in 
salt and drought stress (Kong et al. 2010; Xie et al. 2014). Secondly, it has been 
found that the stress-responsive miRNAs are more or less conserved in plant king-
dom. For example, miR393 was found to be upregulated in rice, cotton and 
Arabidopsis under salt stress (Sunkar and Zhu 2004) and subsequently regulates 
auxin signalling in those plants (Xia et al. 2012). Similarly, salt-induced upregula-
tion of miR156 is observed in seven different species, viz. Arabidopsis thaliana 
(Liu et al. 2008), Zea mays (Ding et al. 2009), Populus euphratica (Qin et al. 2011), 
Vigna unguiculata (Paul et al. 2011), Panicum virgatum (Sun et al. 2012), Populus 
trichocarpa (Li et  al. 2013) and Gossypium raimondii (Xie et  al. 2014). Several 
other miRNAs like miR159, miR160, miR162, miR164, miR166, miR167, miR168, 
miR169, miR395, miR397, etc. are also differentially expressed in multiple species 
under salt stress (Mittal et al. 2016). Combining these two facts, i.e. the evolution-
ary conserved nature and the overlapping expression pattern of miRNA in different 
stresses, it is intimidating to speculate that the miRNA-mediated gene regulation is 
an ancient phenomenon (relics of RNA world hypothesis?) which has probably 
originated as early as the plant kingdom made their existence in the world. And this 
regulation mechanism is not stress specific in most of the cases; rather it has been 
placed on top of the specific stress regulation mechanisms in order to combine and 
coordinate plants’ response under multiple stresses.

14.4.4  Important Genes and/or QTLs Associated with Salt 
Tolerance and Ion Homeostasis

Genetically, salinity tolerance is a complex quantitative trait (Foolad and Jones 
1993) which makes it difficult for plant breeders to select for improved genotypes 
due to low expressivity, heritability and large effects of environment on the trait. 
Still, genetic resources are vital for any trait, and intraspecific selection has contrib-
uted to improved tolerance in rice (Akbar and Yabuno 1977) and barley (Epstein 
et al. 1980). Over the past decade, research efforts have focused on the mapping and 
identification of QTLs contributing to salt stress tolerance through marker-assisted 
selection (Singh et al. 2007; Haq et al. 2010; Table 14.4). For example, the Saltol 
QTL in rice was identified by employing a RIL population between the tolerant 
landrace Pokkali and the highly sensitive IR 29 by AFLP genotyping (Gregorio 
1997). Further, it was shown that the Saltol QTL contributed to 43% of variation for 
seedling shoot Na+/K+ ratio (Bonilla et al. 2002). Lin et al. (2004) identified a total 
of 11 QTLs from an F2 population including major QTLs for shoot K+ concentration 
on chromosome 1 (qSKC-1) and shoot Na+ concentration on chromosome 7 (qSNC- 
7) as derived from a cross between tolerant indica rice (Nona Bokra) and sensitive 
japonica (Koshihikari). These QTLs were found to influence the root and shoot Na+ 
and K+ accumulation as well as survival under salt stress. Subsequently, a single 
QTL, qSKC1 or OsHKT1.5 was fine mapped and successfully cloned (Ren et al. 
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2005). A list of some of the identified QTLs governing salt stress tolerance in differ-
ent crop species is provided in Table 14.4, and a list of some experimentally vali-
dated gene involved in salt-induced response across plant species is given in 
Table 14.5. In rice alone, about 70 QTLs for salt stress have been mapped (Hu et al. 
2012); however, cloning of QTLs is still a rate-limiting step, mainly due to difficul-
ties in fine mapping and defining precise QTL limits. Hence, there is a need to direct 
research efforts towards identification of genes governing tolerance to salt stress 
which in turn would aid in development of perfect gene-based markers and pyra-
miding of multiple QTLs in a single genetic background so as to provide tolerance 
under diverse stress environments.

14.5  Cellular Defence Network and Plant’s Adaptive 
Strategy

14.5.1  Role of Reactive Oxygen Species (ROS) in Salinity 
Tolerance

Salt stress disrupts metabolic coordination between different biochemical path-
ways, leading to formation of high-energy electrons which, when donated to molec-
ular oxygen, result in the formation of different reactive oxygen species (ROS) such 
as 1O2, H2O2, O2

•− and HO•. The plant organelles, chloroplast, mitochondria and 
peroxisomes, are the sites of production of ROS in plants; however, detailed 

Table 14.4 QTLs governing tolerance to salinity stress in plants

QTL Crop Cross Population References

Kna 1 Bread 
wheat

– Disomics for 4D/4B in 
genetic background of 
Triticum turgidum

Dubcovsky et al. 
(1996)

Na+, 
Na+:K1+, 
Na+: K2+

Rice IR4630/IR15324 RIL Koyama et al. 
(2001)

Saltol Rice IR 29/Pokkali RIL Bonilla et al. (2002) 
and Thomson et al. 
(2007)

qSNC-7, 
qSKC-1

Rice Nona Bokra/
Koshihikari

F2:3, BC2F2 Lin et al. (2004) and 
Ren et al. (2005)

Nax1, Nax2 Durum 
wheat

Triticum 
monococcum/durum 
cultivar Marrocos

BC5F2 Byrt et al. (2007)

HvNax3 Barley CPI-71284-48/ 
Barque

F2 and F3 Shavrukov et al. 
(2010)

HvNax4 Barley Clipper/Sahara 3771 DH Rivandi et al. (2011)
QSl.
TxNn.2H

Barley TX9425/Naso Nijo F1-derived double 
haploid (DH) lines

Xu et al. (2012)
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Table 14.5 Key gene/gene families involved in governing response to salt stress

Gene/gene family Role under salinity References

Sensor proteins
Salt overly sensitive 
3 (SOS3)

Premier cytosolic Ca2+ sensor and activator of SOS 
pathway

Ishitani et al. 
(2000) and Gong 
et al. (2005)

OSCA1 Plasma membrane-bound calcium channel and 
putative osmosensor which directs osmotic 
stress-induced Ca2+ uptake in the cell

Yan et al. (2015)

AHK1/ATHK1 Osmosensor and positive regulator of osmotic 
stress response

Urao et al. (1999) 
and Tran et al. 
(2007)

Kinases
Salt overly sensitive 
2 (SOS2)

Belongs to sucrose non-fermenting-related kinase 
(SnRK1) group of proteins. Key component 
connects ABA-induced and Ca2+-induced cell 
signalling under salt stress

Halfter et al. (2000) 
and Coello et al. 
(2010)

Calcium-dependent 
protein kinases 
(CDPK)

Transduce Ca2+ gradient- induced signal through a 
series of protein phosphorylation

Schulz et al. (2013)

Mitogen-activated 
protein kinases 
(MAPK)

Transduce environmental stress signal by a series 
of phosphorylation events of mitogen protein 
which ultimately culminates in the activation of 
TFs

Teige et al. (2004)

Histidine kinase 
(HK)

It is a kinase as well as an osmosensor. It functions 
as the receptors of ethylene and cytokinin

Urao et al. (1999) 
and Tran et al. 
(2007)

Ion channels
Salt overly sensitive 
1 (SOS1)

Na+/H+ antiporter localized in plasma membrane 
which governs the efflux of Na+ from the cell 
through active transport

Qui et al. (2002) 
and Brini and 
Masmoudi (2012)

Na+(K+)/H+ 
exchanger (NHX)

Antiportes which maintains pH gradient and 
sequester Na+ in the vacuole through active 
transport

Bassil et al. (2011) 
and Reguera et al. 
(2014)

High-affinity 
potassium 
transporters-1 
(HKT1)

Governs the entry of Na+ from soil solution or 
xylem into the root cell under high salinity

Rubio et al. (1995) 
and Byrt et al. 
(2007)

Non-selective cation 
channels (NSCC)

Governs Na+ entry into the root under high salinity Brini and 
Masmoudi (2012)

Transcription factor
WRKY Play role in regulating ABA-dependent abiotic 

stress responses
Chen et al. (2012)

MYB/MYC Key element of the ABA-dependent signal 
transduction pathway under abiotic stress response

Abe et al. (1997)

bZIP Involved in ABA-dependent signalling in responses 
to drought and high salinity

Uno et al. (2000)

(continued)
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biochemical reactions leading to their production are beyond the scope of this chap-
ter. Both ROS formation and associated injury during salt stress in plants have been 
previously reported (Gomez et al. 2004; Rubio et al. 2009; Chen et al. 2012). ROS- 
induced damage in plants depends on the nature and severity of stress, the duration 
of exposure and even environmental conditions. However, it is well known that 
while ROS accumulation causes intracellular damage to lipids, proteins and DNA 
(Bi et al. 2009), it also functions as a signalling molecule in plant-pathogen interac-
tion and abiotic stresses (Mittler et al. 2004; Torres and Dangl 2005). The plasma 
membrane-located NADP oxidase (NOX) genes or the respiratory burst oxidases 
(RBOH) which catalyse the synthesis of the superoxide radical are important con-
stituents of ROS-mediated signalling system (Desikan et  al. 2001; Mittler et  al. 
2004; Torres and Dangl 2005). Ma et  al. (2012) reported that double mutants 
atrbohD1/F1 and atrbohD2/F2 of Arabidopsis disrupted Na+/K+ homeostasis there-
fore showing increased sensitivity to NaCl treatments than wild-type or single null 
mutants. AtrbohF, apart from increasing ROS levels in response to increased soil 
salinity, also reduced Na+ concentrations in xylem sap and prevented accumulation 
of excess Na+ in shoot cells through transpiration (Jiang et al. 2012).

Reactive oxygen species (ROS) scavenging is also extremely important for salt 
tolerance. The main defence against ROS includes enzymes such as ascorbate per-
oxidase (APX), superoxide dismutase (SOD), catalase (CAT), glutathione peroxi-
dase (GPX), polyphenol oxidase (PPO) and monodehydroascorbate reductase 
(MDAR) along with low-molecular weight antioxidants such as ascorbate, glutathi-
one, glycine betaine, trehalose, alpha-tocopherol and proline (Foyer and Noctor 
2005; Abogadallah 2010). Overexpression of a rice ascorbate peroxidase gene in 
alfalfa led to improved salt stress tolerance. In rice transgenic overexpressing pea 
DEAD-box helicase gene PDH45 which also showed improved salt stress toler-
ance, it was found that the protein PDH45 physically interacts with Cu/Zn SOD, 
adenosine-5′-phosphosulphate-kinase, cysteine proteinase and eIF(4G) thus impli-
cating the role of ROS-scavenging machinery in stress tolerance (Gill et al. 2013). 
Transgenic tobacco plants overexpressing cotton type 3 metallothionein gene 
GhMT3a also showed increased tolerance against different abiotic stresses includ-
ing salinity stress (Xue et al. 2009). Improved ROS scavenging may also be attained 
by manipulation of certain master regulator genes. For instance, Schmidt et  al. 
(2013) identified a rice transcription factor, salt-responsive ERF1 (SERF1), that 
showed increased expression upon salt and H2O2 treatment. SERF1 showed direct 
binding to promoters of genes like MAPK kinase kinase 6 (MAP3K6), MAPK5, 
dehydration-responsive element binding 2A (DREB2A) and zinc finger protein 179 

Table 14.5 (continued)

Gene/gene family Role under salinity References

NAC Play role in both in ABA-dependent and ABA- 
independent abiotic stress response pathways

Nakashima et al. 
(2012)

CBF/DREB Mediates ABA-independent gene expression 
regulation under osmotic stress

Agarwal et al. 
(2006)
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(ZFP179) thus suggesting that it may be the master regulator of ROS-activated 
MAPK cascade during the initial phase of salt stress making way for downstream 
gene expression changes resulting in salt stress tolerance.

14.5.2  Osmolytes or Compatible Solute-Mediated Adaptation 
to Salt Stress

Since osmotic imbalance is one of the most prominent effects of salt stress, adapta-
tion to this stress, to a great extent, depends on the ability to mediate quick osmotic 
adjustment by accumulation of organic osmolytes like proline, mannitol, fructans, 
trehalose, glycine betaine, ononitol, etc. In fact, due to the importance of osmotic 
adjustment in salinity stress adaptation and in many other abiotic stresses as well, it 
has been regarded as the central dogma of stress physiology (Hare et al. 1998). Not 
many direct evidences, however, confirm this hypothesis, and most of the evidences 
are largely correlative. Exposed to salt stress, plants start accumulating organic 
osmolytes, most of which belong to the class of polyhydroxylic compounds (carbo-
hydrates and sugar alcohols) and zwitterionic alkylamines (amino acids and quater-
nary amines), as an adaptive response. Unlike ROS, which can be potentially 
damaging to the cell itself, these organic osmolytes are non-toxic in nature and 
hence are also termed as ‘compatible solutes’. Cumulatively, these compatible sol-
utes decrease the water potential of cell making them osmotically more competent 
for water uptake. Several reviews are available which discuss about osmolyte accu-
mulation in plant (Bohnert and Jensen 1996; Serrano et al. 1998; Chakraborty et al. 
2012b). Given their immense importance, osmolytes have emerged as tempting can-
didates to engineer stress resistance in crop plants. Several efforts have been made 
to develop transgenic plants containing osmolyte-synthesizing genes with an ulti-
mate aim to engineer salt and/or drought stress tolerance. Few of such efforts have 
been successful (Hayashi et al. 1997), while many of them did not (Smart and Flores 
1997). Even where some success has been achieved, the improvement was mar-
ginal. The limited success of the osmolyte-overexpressing transgenics is not a rea-
son to dismiss their potential in engineering stress adaptation; rather it indicates the 
fact that the relative proportion of different osmolytes and the spatiotemporal 
expression of osmolyte-synthesizing genes are more important as compared to the 
absolute amount (Hare et al. 1998). Untimely, out of place and/or excessive expres-
sion of a particular osmolyte can be associated with yield penalty because of metab-
olite diversion from primary metabolism (which favours growth and yield) to 
secondary metabolism (which favours defence). Hence, it is imperative that future 
research needs to focus more on pathway engineering and devising controlled gene 
regulation machineries to achieve success in this area.
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14.6  Possible Management Options for Alleviation 
of Salinity Stress

Apart from our traditional effort to breed salt-tolerant crop varieties, sometimes 
improved crop management practices also play important role in counteracting ill 
effect of salt stress. Hence, we should consider different external management 
approaches, viz. maintenance of K+ homeostasis and the use of phytohormones for 
the growing plants in saline environment.

14.6.1  Exogenous Application of Potassium (K+)

Around the world, researchers have attempted to alleviate the salinity stress apply-
ing potassium by and large. However, the mode of application varied over the exper-
iments, either by soil or foliar application, while varying doses of sole potassium or 
in combination with some soil amendments (like FYM) or with external phytohor-
mones. But some of the results obtained during the course of study are indeed excit-
ing and hence addressing to solve the salt stress in crop plants by suitable crop 
management.

Salt stress is often noticed by the skewed K+/Na+ ratio in actively growing plant 
tissues along with stunted growth and metabolic activity of plant tissues (Shabala 
and Cuin 2008; Degl’Innocenti et al. 2009). Excess build-up of tissue Na+ along 
with reduced uptake and tissue retention of K+ in plant parts has been conspicuous 
under saline environment (Munns et  al. 2002). Several basic physiological pro-
cesses in plants, like stomatal closure, destruction of chlorophyll pigment system, 
etc., have been observed to be hampered under salinity (Gama et al. 2009; Parida 
et al. 2004). The role of K+ is established in regulation of stomatal movement of 
plant tissue; thus, better maintenance of water storage and cell turgidity can be 
assured under osmotic stress (Marschner 2012).

Both soil and foliar application of K+ supplemented the growth, yield and fruit 
quality of tolerant and sensitive cultivars of tomato grown under salinity. It ensured 
the role of external K+ application apart from genetic tolerance ability to manage the 
stress (Amjad et al. 2014). Basal application of potassium improved the overall per-
formance of contrasting peanut varieties at defined salinity levels, while TG 37A, 
the susceptible one, responded better over GG 2, the tolerant one (Chakraborty et al. 
2016c). Similarly, Arshadullah et al. (2014) conducted a hydroponic study on sun-
flower crop and confirmed that 2% K+ foliar application (as K2SO4 solution) revived 
the tissue K+ concentration after imposition of salt stress, thus resulting in more 
biomass production.

In other study, Khan et al. (2016) reported that K+ application along with FYM 
and other nutrients (N, P, Zn) enhanced the growth, yield and fibre quality of cotton 
plants by reducing the Na+ uptake and Na+/K+ ratio under the salinity. While in most 
of the cases potassium sources have been restricted to KCl (muriate of potash) or 
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K2SO4 (potassium sulphate) salts, a recent study tested the K2SO4 nanoparticles on 
growth and physiological responses of forage crop, alfalfa (Medicago sativa L.), 
under salt stress, and subsequently better performance of nano-fertilizer was 
revealed by lower electrolyte leakage, higher proline and relative water content, 
along with higher antioxidant enzyme activities (superoxide dismutase and cata-
lase), and other growth and yield parameters (El-Sharkawy et al. 2017).

14.6.2  Use of Phytohormones

Phytohormones, synonymously used as plant growth regulators, refer to the com-
pounds originated from plant biosynthetic processes that can act either locally (at 
the site of their synthesis) or transported to some other sites within the plant in order 
to promote growth and development responses both under normal and adverse/
stressful environment (Peleg and Blumwald 2011). A large array of phytohormones 
like abscisic acid (ABA), gibberellins (GA), ethylene, auxins (IAA), cytokinin 
(CKs), and brassinosteroids (BRs), has established their role in abiotic stress man-
agement (reviewed in Fahad et al. 2015). Moreover, salinity tolerance mechanism 
via proline biosynthesis as influenced by regulatory role of phytohormones under 
salinity stress has also been highlighted (reviewed in Iqbal et al. 2014). Kanmani 
et al. (2017) conducted a pot experiment with contrasting rice varieties (Pokkali and 
CO51) treated with foliar application of four different plant growth regulators for 
mitigating the stress. The response of brassinolide (1.0 ppm) was found interesting 
for photosynthetic rate and chlorophyll fluorescence, and gibberellic acid (50 ppm) 
increased the chlorophyll content, while enhanced transpiration rate was observed 
at kinetin application (20  ppm). In other instances, pretreatment with phytohor-
mones (NAA and BAP) in pineapple (cv. MD Gold) minimized the salt stress effects 
suffered by the plant by maintaining optimum biomass, increasing tissue K+ con-
centration, reducing the damage to cell membranes and increasing total soluble sug-
ars (Melo et al. 2017).

14.7  Conclusion and Future Research Strategies

Salinity stress is second most important abiotic stress for cultivated crop plants. 
Salinity-affected area is gradually increasing under the scenario of global climate 
change. The importance of properly understanding and combating this threat to 
world agriculture is, therefore, more apprehended by the researchers. Soil salinity 
adversely affects plant growth and development accompanied by an increase in 
uptake of Na+ and Cl− ions and a decrease in uptake of K+, Ca2+ and Mg2+ resulting 
in ionic imbalance, sodium ion injury and disturbed metabolic processes, changed 
concentration of biomolecules, photosynthetic activity and poor productivity. Other 
most detrimental effect faced by the plants is sudden outburst of reactive oxygen 
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species produced due to salinity stress, which disrupts the cellular structure and 
damages subcellular organelles, leading to cell death. At molecular level, efficient 
operation of different signal proteins and various symporters and antiporters lying 
either in the plasma membrane or tonoplast plays important role in salinity toler-
ance. Activity of different Na+/H+ antiporters, viz. SOS1 and NHX1, depends upon 
the activation of other signal proteins like SOS2, SOS3 and other calcium-binding 
proteins.

The genotypes having superior antioxidant defence capacity in terms of either 
accumulation of antioxidants like ascorbic acid, glutathione, malondialdehyde, etc. 
or higher activity of the enzymes are more capable of withstanding salinity stress. 
Salinity stress causes osmotic and oxidative stress; hence, genetic modifications in 
these areas could yield beneficial result in bringing salinity tolerance in crop plants. 
Incorporation of genes facilitating biosynthesis of compatible solutes whose accu-
mulation will help in osmotic adjustment in the plant cell and thereby maintaining 
better water balance inside the plant tissues when facing osmotic pressure from 
outside. Though there is ample opportunity for research in this area, it needs multi-
disciplinary approaches to address all the component of the problem of salinity.

Adaptation to salinity stress involves osmotic homeostasis, ionic homeostasis, 
ROS detoxification as well as tissue adaptation mechanisms. These adaptation strat-
egies are governed by a network of several interacting pathways which are con-
trolled by both genetic and epigenetic regulations. In this context, many cultivated 
accessions were identified with tolerance to salinity stress. QTLs for salt tolerance 
have been identified from those cultivated accessions. A few of these have been 
identified, mapped, cloned and introgressed into elite varieties using molecular 
breeding approaches. Satisfactory progress in transferring tolerance to high- yielding 
cultivars for better survivability is made. But yield penalty under salinity stress can’t 
be reduced significantly. In this context, some of the wild relatives with better toler-
ance are being utilized in breeding. The major setback faced by the breeders in this 
approach is that most of wild tolerant genotypes are often cross-incompatible with 
the cultivated species. There is a need to go for mining of the differentially expressed 
genes and subsequent transfer of those to cultivable species.

The search for novel salt-tolerant genes or protein is presently extended to some 
of the halophytic plants such as mangroves which can thrive well under extremely 
saline environment. The successful transfer of the important genes imparting toler-
ance to soil salinity from mangrove gene pool to some of important crop plants is 
being attempted. Besides this, mining of the genes is also possible from a wide 
range of microbial gene pool as well as from Archaea. Apart from the commonly 
known pathways that impart tolerance to eukaryotes including higher plants, there 
may be some other mechanisms operating in these organisms which help them to 
survive in the extreme environment of sea or saline hot spring. During the past few 
decades, ‘omics’ approaches have opened possibilities of understanding interaction 
dynamics between genes, proteins, metabolites and small RNA in salinity stress 
tolerance both under acute and chronic salinity stress. Recent advent of ‘phenomics’ 
or large-scale phenotyping is expected to further facilitate efficient identification of 
promising germplasms for enhancing salt stress tolerance. But the progress made so 
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far is still at the infant stage, and mechanisms of salinity tolerance at the morpho-
logical, physiological and molecular level are not very well deciphered in all the 
crops. It is understood that salinity tolerance like other complex abiotic stress toler-
ance is controlled by many environmentally responsive genes. Many of them are 
affected by the occasional post-transcriptional modifications due to extreme cli-
matic fluctuation. Under global climate change, ‘envirotyping’ is emerging as a new 
concept which will predict multiple genes more precisely along with genotyping 
and phenotyping and haplotypes interacting with environments across developmen-
tal stages. This will help in understanding and genetic manipulation for achieving 
better salinity tolerance. Besides the potential crosstalk of salinity stress regulatory 
circuit with other pathways governing the overall physiology of the plants is still 
mostly under cover. Hence, in-depth studies by means of real-time and cutting-edge 
technologies at cellular and at the whole-plant level is essentially required in the 
days to come to have a complete understanding for developing  salt-tolerant and 
environment-resilient varieties in the future.
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Abstract Salt stress is an important abiotic stress factor which decreases the crop 
yield and quality. About 23% of cultivated lands are saline all over the world. The 
direct effects of salt stress on plants are reduced photosynthesis, respiration, and 
nutrient assimilation as well as hormonal imbalance. Indirect adverse effect of 
salinity is oxidative stress, which is enhanced by the generation of reactive oxygen 
species (ROS) in stressed plants. The ROS production subsequently causes damage 
to macromolecules such as lipids, proteins, and nucleic acids and thus disturbs 
membrane permeability. Salt stress conditions adversely affected essential nutrient 
availability and consequently crop yield and quality. Nutritional disorders are very 
common under salinity due to non-availability of nutrients and their competitive 
uptake and transport in plants. Micronutrients can mediate adverse effects of salt 
stress. Micronutrients (Mn, Zn, Fe, B, Cu, Cl, Ni, Mo, etc.) play different roles in 
mediating salt stress due to their involvement in diverse mechanisms, i.e., reduced 
ion toxicity, maintenance of water balance, improved mineral uptake and assimila-
tion, biosynthesis of compatible solutes plus phytohormones, modification of differ-
ent gas exchange attributes, and decrease in oxidative stress plus modification of 
gene expressions.
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15.1  Introduction

Plants face numerous abiotic stresses, which decrease their growth and yield. 
Among different abiotic stresses, salt stress severely reduced crop yield 
(Hasanuzzaman and Fujita 2011, 2012; Hasanuzzaman et  al. 2012, 2013a, b, c, 
2017a, b). In the world, about 23% of total cultivated land is salt affected and 37% 
is sodic. About 20 million hectares of land is salt affected, and no crop is cultivated 
on that land. In Asia and Africa, this problem is more severe due to the shortage of 
water (Francois and Maas 1999). In Pakistan, about 6 million hectares is salt- 
affected land (coastal and inland areas) with no cultivation (Anonymous 1999).

The crop yield and quality are severely hampered under salinity (Hasanuzzaman 
et al. 2013a, b). Salinity affected the nutrient dynamics in soil solution, which dis-
turb the different nutrient uptake and assimilation. In plants, under salinity, micro-
nutrient uptake and assimilation are highly variable (Grattan and Grieve 1992). In 
citrus under salt stress conditions, the decrement is observed in the uptake and 
assimilation of different micronutrients. The growth and yield of citrus plants 
decrease due to reduction in net assimilation rate and photosynthesis (Romheld and 
Marschner 1986).

Different researchers studied the concentration of micronutrients, their uptake, 
and assimilation as affected by salinity, which ultimately hindered growth and yield 
of plants (Bañuls et al. 1990; El-Fouly et al. 2010). Among different methods to 
increase the salt tolerance in plants, foliar spray of micronutrients mediates the salt 
stress by easing Na+ plus Cl− injury to plants (El-Fouly et al. 2010). Under high 
salinity, nutrient uptake is limited in root medium. Generally, the uptake and assimi-
lation of nitrogen (N), phosphorus (P), potassium (K), magnesium (Mg), and cal-
cium (Ca) tend to decrease with increase in salinity levels.

15.2  Effect of Salinity on Uptake of Micronutrients

Salinity adversely affect crop performance by altering nutritional disorders like 
availability of micronutrients, competition in their uptake, assimilation, and move-
ment in plants (Table 15.1). Salinity increases level of sodium (Na) and chloride 
(Cl) ions in plant which have direct impact on concentration of other micronutri-
ents. Uptake and movement of Ca in plant are decreased by increase in the concen-
tration of Na, which affects yield and quality (Grattan and Grieve 1999). Under 
salinity, micronutrient concentration varies in different plant species. Mn and Zn 
concentration is increased in barley, tomato, and rice under salinity whereas 
decreased in corn shoot (Hassan et al. 1970; Mass et al. 1972). In shoots of pea, 
tomato, and rice, Fe concentration is increased (Dahiya and Singh 1976; Mass et al. 
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1972) while decreased in corn and barley (Hassan et  al. 1970) under salinity. 
El-Fouly et al. (2002) observed the increment of Zn concentration in the roots of 
tomato under salinity. He also reported that tomato grown under salinity showed 
decrement in Mn, Fe, and copper (Cu) contents in leaves and roots.

The leaves of two mango rootstocks (Gomera-1 and Gomera-2) under salt stress 
showed increment in Mn, Fe, Ca, Zn, P, K, and Cu while decrement in Mg concen-
tration. Similarly, Ca, Mg, N, and Cu contents are increased in stem, but Zn contents 
decrease in stem. Roots of these rootstocks showed increase in N, Fe, Cu, and Mn 
contents, while, P, K, and Mg were decreased. The concentration of micronutrients 
is more in fibrous roots as compared to main roots (Zuazo et al. 2004). The micro-
nutrient uptake was different in plant organs when grown under saline environment. 
Furthermore, in soybean, the concentration of Fe, Mn, Cu, and Zn was more in roots 
as compared to leaves plus shoots (Tuncturk et al. 2008).

Salt stress also imposes drought which can also affect nutrient uptake and assim-
ilation. Under severe salinity, the plant growth and yield are not increased by 
increasing nutrient concentration in soils, because under salt and drought conditions 
nutrient uptake is low. Hence, understanding the role of micronutrients in plant 
resistance to salinity will help to improve the fertilizer management in arid plus 
semiarid areas (Hu and Schmidhalter 2005).

Table 15.1 Micronutrient level as affected by salinity in different plant parts

Micronutrients Plant part Level Crop References

Manganese (Mn) and zinc (Zn) Shoots Increased Barley Hassan et al. (1970)
Tomato Mass et al. (1972)
Rice Verma and Neue (1984)

Decreased Corn Hassan et al. (1970)
Zinc (Zn) Roots Increased Tomato El-Fouly et al. (2002)
Manganese (Mn) Leaves Decreased Tomato El-Fouly et al. (2002)

Roots Decreased Tomato El-Fouly et al. (2002)
Iron (Fe) Shoots Increased Pea Dahiya and Singh (1976)

Tomato Mass et al. (1972)
Rice Verma and Neue (1984)

Decreased Barley Hassan et al. (1970)
Corn Hassan et al. (1970)

Leaves Decreased Tomato El-Fouly et al. (2002)
Roots Decreased Tomato El-Fouly et al. (2002)

Boron (B) Shoots Decreased Wheat Holloway and Alston (1992)
Copper (Cu) Leaves Decreased Tomato El-Fouly et al. (2002)

Roots Decreased Tomato El-Fouly et al. (2002)
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15.3  Mechanisms of Micronutrient-Mediated Salinity 
Tolerance

15.3.1  Reduction of Ion Toxicity and Maintenance of Water 
Balance

Growth and development of the plants are associated with the physiological 
responses that are associated with ion accumulation. Macro- and micronutrients 
essential to plants compete in their uptake and metabolism under salinity (Wang 
et  al. 2003). Increase in specific ion accumulation like sulfate (SO4

2−), chlorine 
(Cl−), and sodium (Na+) caused toxicity, which ultimately decreased the uptake of 
different nutrients like potassium (K+), calcium (Ca2+), P, and N. Plants are sensitive 
to high Na+ plus Cl− contents in soil, which ultimately decrease growth and yield. 
Tavakkoli et al. (2011) studied the toxicity effect of Na+ plus Cl− in four barley cul-
tivars and observed a decrease in growth plus yield. High contents of Na+ plus Cl− in 
soil decreases the uptake and assimilation of K+ plus Ca2+ which results in reduction 
of photosynthesis, stomatal conductance, and chlorophyll (Tavakkoli et al. 2011; 
Fig. 15.1).

In Atriplex griffithii high Na+ and Cl− concentration was observed in leaves and 
then shoots and roots under salinity. This increment in Na+ plus Cl− decreases Ca2+, 
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Fig. 15.1 Three sections of plant cell. (i) Extracellular and cell wall spaces, (ii) cytoplasm, and 
(iii) vacuoles. Na+ and Cl− movements across membranes and ion compartmentalization in 
vacuoles
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K+, and Mg2+ contents which shows the negative relation of these ions under salt stress 
and leads toward decrease of chlorophyll contents (Khan et  al. 2000). During the 
initial stage (seedling and primary vegetative stage), plant is particularly more sensi-
tive to salt stress. Hasanuzzaman et al. (2009) observed that plant height, leaf area, 
and tiller number significantly decrease in the rice under salinity. Similarly, Guan 
et al. (2011) observed that plant height, length and number of branches, and shoot 
diameter decreased by more accumulation of Na+ and Cl− contents in Suaeda salsa. 
Dolatabadian et al. (2011) and Semiz et al. (2012) also observed substantial decre-
ment of plant weight (root and shoot), number of leaves, plant biomass, and yield.

However, many different mechanisms like restrictions in uptake and movement 
of salts in plants, maintenance of essential element ratio during salinity, and extru-
sion of salt from plants are involved for tolerance in salt stress to overcome toxicity 
of ions and withstand homeostasis (Parida et al. 2004). Micronutrient foliar applica-
tion enhanced the root growth and decreased the nutritional disorder symptoms 
(El-Fouly et  al. 2010). It increases the uptake of micronutrients in roots and 
decreases the effect of salt.

Fe is an important micronutrient essential for chlorophyll synthesis. Furthermore, 
Fe is an important part of the plant enzymes that play an important role in photosyn-
thesis plus respiration (Curie and Briat 2003). Similarly, Mn also plays an important 
role as an activator of various enzymes and takes part in photosynthesis and also a 
constituent of photosystem II protein and activates decarboxylase, dehydrogenase, 
superoxidase, and phosphatase. Mn deficiency inhibits growth and induces chloro-
sis, necrosis, and leaf fall (Sajedi et al. 2009).

15.3.2  Improved Mineral Uptake and Assimilation

In plants, relation between uptakes of mineral nutrients under salt stress is multifari-
ous. Salinity affects the availability of nutrients, their uptake, and transport within 
plant. Salt stress decreases uptake of mineral nutrients, which strictly affects crop 
productivity (Rogers et al. 2003; Hu and Schmidhalter 2005; Table 15.2). The uptake 
and assimilation of micronutrients under salt stress depend upon genotype and salin-
ity level (Oertli 1991). There are many factors affecting the availability of micronu-
trients under salt stress. Under salt stress conditions, micronutrient availability 
depends upon micronutrient solubility, soil solution pH, redox potential, and nature 
of binding sites. In saline soils, micronutrient solubility is predominantly low, and 
plants frequently experience deficiencies, however not in all cases (Page et al. 1990).

Salinity severely affects the uptake and assimilation of Cu. In leaves and stem of 
salt-stressed maize, the concentration of Cu is decreased. In contrast, the Cu concen-
tration in leaves of tomato grown hydroponically increased under salinity (Izzo et al. 
1991). Similarly, the Mn showed decrement in the shoot of maize and tomato (Izzo 
et al. 1991; Rahman et al. 1993). On the other hand, in leaf and shoot of tomato plant, 
increase in Mn concentration is observed under salt stress (Niazi and Ahmad 1984).
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High pH is the major factor, which causes deficiency on micronutrient. The 
micronutrients are most available under the soils having less pH. In high-pH soils, 
there is less availability of ions like Fe, Mg, Zn, and Cu. Under salt stress, pH of soil 
is elevated, and availability of micronutrients becomes less because the ionic form 
of micronutrients is transformed to the oxides or hydroxides. Under salinity by 
maintaining soil pH, we will enhance the uptake and assimilation of micronutrients 
to plants. The uptake and assimilation of P also decreased with increasing salt stress. 
Under salt stress conditions, phosphorous availability is low due to reduction in 
PO4

3− activity, less solubility of Ca-P, and absorption process (Qadir and Schubert 
2002). The growth and yield of the crop are damaged by decrease in N uptake which 
is mainly affected under salinity by the interaction of Cl− and NO3

− or Na+ and NH4
+ 

(Rozeff 1995). Hussin et al. (2013) reported that, by increasing salinity, calcium and 
magnesium ion concentration is decreased. As increasing concentration of salts in 
soil, the sodium level is elevated, which ultimately reduced the assimilation of 
potassium and calcium by which the imbalance of K, Ca, and Mg ions occurs 
(Keutgen and Pawelzik 2009). Calcium, nitrogen, and potassium ion concentration 
is decreased by increasing the level of sodium in saline soils (Tuna et al. 2007).

Salinity increases the concentration of Zn in citrus (Ruiz et  al. 1997), maize 
(Rahman et al. 1993), and tomato (Knight et al. 1992), while decreases Zn in cucum-
ber leaves (Al-Harbi 1995). Iron concentration in plants under salinity is as incon-
sistent as Zn and Mn. It has been reported that under salinity, Fe, Mn, Cu, and Zn 
were higher in roots than leaves and stem in soybean (Tunçturk et al. 2008). The 
nutrient uptake in various organs of faba bean was decreased by increasing salinity. 

Table 15.2 Effect of micronutrient spraying on micronutrient uptake (Fe, Mn, Zn, and Cu) μg/pot 
of tomato plants under different levels of NaCl salinity (El-Fouly et al. 2002)

Treatment
Micronutrient uptake (μg/pot)
Fe Mn Zn Cu

Leaves
Control 939 846 161 26
3000 ppm NaCl 703 118 142 13
Control + Mn 1310 1035 247 33
3000 ppm NaCl + MN 773 590 178 25
Stems
Control 431 189 156 9
3000 ppm NaCl 393 87 113 6
Control + Mn 348 254 192 11
3000 ppm NaCl + MN 420 131 139 7
Roots
Control 565 258 161 90
3000 ppm NaCl 441 217 193 35
Control + Mn 1209 384 299 58
3000 ppm NaCl + MN 803 254 239 130

MN = Micronutrient (Fe2.8%, Mn 2.8%, and Zn 2.8%)
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El-Arquan et al. (2002) found that N, P, and K uptake were decreased under salt 
stress. Thus, excessive Na+ plus Cl− in soil solution reduce the uptake and transloca-
tion of nutrients (Thalooth et al. 2006). El-Fouly et al. (2002) described foliar appli-
cation of micronutrients increased the nutrient uptake under salinity.

Micronutrient foliar sprays showed positive effects with different degrees on 
micronutrient uptake when sprayed either before or after the salinization treatments. 
Exogenous application of micronutrients can mediate adverse effects of salinity by 
improving root growth, preventing nutritional disorders, and therefore increasing 
uptake of nutrients (El-Fouly et al. 2002).

Sodium concentration of different plant organs of faba bean seedlings was 
increased in the presence of NaCl in growth medium (El-Fouly et al. 2010). Spraying 
plants with a micronutrient compound after salinity treatment leads to a reduction 
of Na concentration on roots and leaves, while it was increased and accumulated in 
the stem. Micronutrient foliar applications lead to the decrease of Na+ ion concen-
trations. This may contribute to the reason that micronutrients have a regulatory 
mechanism and/or a control function on Na uptake and translocation rate. 
Micronutrients may be involved in integrity plus function of biomembrane in plants 
(Thalooth et al. 2006).

Increasing NaCl concentration leads to the decrease of K/Na and Mg/Na ratios. 
The decrease may be attributed to increase of Na+, which diminished concentration 
of K+ plus Mg2+ due to antagonistic interaction. Spraying plants with a micronutri-
ent compound after salinity treatment leads to the reduction of Na concentration in 
roots and leaves, while it was increased and accumulated in the stems (El-Fouly 
et  al. 2010). Consequently, K+/Na+ plus Mg2+/Na+ ratios in the roots and leaves 
showed high values and were reduced in the stem. Foliar sprays of micronutrients 
under salinity increase the ability of roots for selectivity of potassium plus magne-
sium ions, which allows transportation maintenance of both ions and limitation of 
sodium ion uptake in the shoots (Tattini et al. 1993; Carvajal et al. 1999). In this 
respect, K/Na ratio might be considered as a tool of plant tolerance to salt stress.

15.3.3  Biosynthesis of Compatible Solutes and Phytohormones

During salt stress conditions, plant absorb more salts which decrease its osmotic 
potential. To cope with this problem, plants absorb inorganic salts like osmolytes 
and hydrophilic proteins that maintain osmotic relation. When plants are exposed to 
salinity, different osmolytes increased like proline and glycine betaine. To overcome 
these osmolytes, there is need of some enzymes, and under salinity, concentration 
of these enzymes also decreased (Pang et al. 2010). Askari et al. (2006) found that 
these enzymes are involved in glycine betaine synthesis under salt stress: 
S adenosylmethionine synthetase (SAMS) and betaine aldehyde dehydrogenase 
(BAD). Hydrophilic proteins including dehydrins have been observed to be elevated 
under salt stress (Kosová et al. 2010). Salt-inducible LEA proteins, dehydrinTAS14, 
was observed by different scientists in tolerant genotypes of rice and tomato (Godoy 
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et al. 1994). Wu et al. (2013) also found that under salt stress, different compatible 
solute concentrations are increased like proline, glycine betaine, sugars, etc.

Under salt stress conditions, plants also increased the production of several 
enzymes which are involved in phytohormone metabolism like jasmonic acid (JA) 
biosynthesis (allene oxide cyclase, AOC; lipoxygenase, LOX), gibberellin (GA) 
biosynthesis (DWARF3), ethylene biosynthesis (SAMS), and ABA biosynthesis 
(9 cis epoxycarotenoid dioxygenase, NCED). Activation of JA (increase in AOC and 
LOX levels) in salt-treated A. thaliana that indicates a better relative abundance of 
JA induced signaling under salinity has also been reported (Pang et  al. 2010). 
Increased abundance of abscisic acid (ABA) biosynthesis found in T. salsuginea 
(Taji et al. 2004) relates with enhanced ABA levels observed in salt-affected plants 
and with an increased expression of numerous ABA dependent transcription factors 
and ABA responsive genes. An improved induction of ethylene receptor ETR1 was 
found in wheat under salinity (Peng et al. 2009).

Micronutrients improve plant tolerance against salt stress through activating 
some osmoprotectants. Iron, zinc, and manganese increase the proline concentra-
tion which can tolerate the effect of salts (Babaeian et al. 2011). Iron also increases 
production of proteins under salinity (Jalilvand et al. 2014).

15.3.4  Modification of Gas Exchange Attributes

Salinity decreased the photosynthetic process and other gas exchange attributes 
which ultimately decrease yield and lead to death of plant. Decreased photosynthe-
sis performance of salt-stressed seedlings possibly offered an explanation that 
diminished exploits of energy toward sustaining photochemical reactions (Wang 
et al. 2014).

Plants have different pathways (photosynthesis) which help them to grow. In 
photosynthesis, conversion of solar energy to chemical energy is done. Under salin-
ity, plant losses its water potential, which ultimately gives a negative impact on 
photosynthetic process. As discussed earlier, by increasing the salinity, elevation in 
Na+ and Cl− ions occurs by which plant decreases its chlorophyll contents which is 
the main indication of plant at cellular level under stress (Chutipaijit et al. 2011). 
The decrement in chlorophyll contents is directly associated with the photosynthe-
sis (Zhang et al. 2005). Amirjani (2011) and Chutipaijit et al. (2011) in rice observed 
the decrease in chlorophyll contents under salinity. They also reported that by 
increasing salt stress, the chlorophyll “a” and “b” contents decrease. The decreases 
in chlorophyll pigment ultimately decrease the net photosynthetic rate, transpira-
tion, and stomatal conductance.

Many reasons are involved in degradation of chlorophyll among which deteriora-
tion of membrane is one of them (Mane et al. 2010), by which the photosynthesis, 
transpiration, and stomatal conductance are decreased. A key role is played by Fe in 
chlorophyll synthesis. Iron enters in numerous plant enzymes, which play leading roles 
in oxido-redox reactions of respiration and photosynthesis (Curie and Briat 2003).
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Under saline conditions, photosystem II (PS II) is comparatively more sensitive 
(Allakhverdiev et  al. 2000). Piotr and Grazyna (2005) noticed that efficiency of 
electron transport chain (ETC), PS II, and CO2 assimilation is decreased under 
salinity. Declined biomass is also observed by Demetriou et al. (2007). He reported 
that under salt stress, alteration in photosystem decreases the plant biomass. Kalaji 
et  al. (2011) in barley, Mittal et  al. (2012) in brassica, and Lòpez Climent et  al. 
(2008) in citrus observed that under salt stress condition photosynthesis, function of 
oxygen-evolving complex, stomatal conductance, efficiency of photosystem, and 
chlorophyll florescence are decreased which ultimately decreases the growth and 
yield of the crop.

Decline in photosynthetic rate is mainly done by salt toxicity; changes in cyto-
plasmic structure, decrease in source sink relation, and loss of turgor in cell mem-
brane which ultimately decrease the permeability to CO2 in cell are the factors 
which damaged the photosystem of plant under salinity (Iyengar and Reddy 1996).

Micronutrients ultimately decreased the effect of salinity (El-Fouly et al. 2002). 
Foliar application of micronutrients mediates metabolic disorders like low photo-
synthetic rate associated with high respiration which have a high impact on yield 
(Porath and Poljakoff-Maybee 1968). Iron and Mn play very important role in the 
activation of different enzymes that take part in photosynthesis plus respiration 
(Curie and Briat 2003). Iron is present in redox center of proteins that is essential 
for photosynthesis plus cellular respiration (Gross et al. 2003).

15.3.5  Reduction in Oxidative Stress

The plants under salinity face numerous problems, and accumulation of reactive 
oxygen species (ROS) is one of them. ROS mainly damage the DNA and other vital 
organs of plants. By accumulation of ROS, lipid peroxidation, accumulation of 
hydrogen peroxide, inactivation of enzymes, and denaturing of proteins are done in 
plant cells (Hasanuzzaman et al. 2012). ROS are mainly produced by less availabil-
ity of CO2 in plant cell. Under salinity the stomata are closed that decrease the level 
of CO2 which leads toward the less carbon fixation and production of ROS like 
superoxide (O2

•–), hydrogen peroxide (H2O2), hydroxyl radical (OH•), and singlet 
oxygen (Ahmad et al. 2011). ROS production in salt stress conditions is one of main 
factors which decrease the growth and yield of the crop (Asada 1994). Consequently, 
ROS regulation is a critical procedure to avoid cellular toxicity plus oxidative dam-
age (Halliwell and Gutteridge 1989).

Salinity also imposes the drought effect to plant which is also a major factor of 
ROS production and metabolic activities (Cheeseman 1988). In many plant species 
under salt stress conditions, the ROS productions are observed which act as a medi-
ator in membrane damage and cellular toxicity. When wheat plant is exposed to salt 
stress conditions, the MDA and H2O2 contents are significantly increased which 
damage the membrane of cell (Sairam et al. 2002). Hasanuzzaman et al. (2011) also 
observed the increment of lipid peroxidation (MDA) and hydrogen peroxide (H2O2) 
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under salinity stress in Brassica. Application of Se can decrease the production of 
ROS by activating the antioxidant defense mechanism under salt stress. Superoxidase 
dismutase (SOD), catalase (CAT), peroxidase (POD), ascorbate (APx), and gluta-
thione (GPx) are the enzymes that activate and decrease the production of ROS 
(Hasanuzzaman et al. 2011).

15.3.6  Modification of Gene Expressions

Tolerant plants have stress-responsive genes which express under different stress 
conditions and these genes are absent in sensitive plants. So there is clear difference 
at genomic level. To reveal the signaling networks that control stress tolerance at 
genome level must be done by profiling or systematic genetic analysis. Salt-tolerant 
genes have different mechanisms or process. Some genes control uptake and accu-
mulation of salts, some genes activate and make a plant grow under salt stress con-
ditions, and some genes have protective and osmotic function (Munns 2005). 
Different micronutrient uptake takes place by different genes as Fe uptake from soil 
to root takes place by IRT1 gene (Eide et al. 1996). The other gene IRT2 is respon-
sible for root iron transport (Vert et al. 2002). Under salt stress, these genes can 
tolerate salinity by uptake of iron.

15.4  Conclusions and Future Prospects

Salt stress conditions strictly affect the crop growth and its productivity. Salt stress 
directly influences on assimilation of nutrients, hormonal imbalance, stomatal con-
ductance, photosynthetic rate, respiration, etc. Reactive oxygen species (ROS) are 
also generating under salt stress conditions which ultimately damage the plant cell 
and especially lipids, proteins, and DNA. Salinity also causes nutrient imbalance 
which can alter plant growth. Micronutrients play an important role in tolerance of 
plant against salinity. Different micronutrients play different roles in activation of 
enzymes which take part in different metabolic processes. Further studies are 
required to explore the more specific role of micronutrients, their mechanism, and 
pathways as well as their uptake under abiotic stresses especially under salinity.
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Chapter 16
Role of Beneficial Trace Elements in Salt 
Stress Tolerance of Plants

Aditya Banerjee and Aryadeep Roychoudhury

Abstract A large proportion of the global cultivable land is inflicted with salt 
stress. Plants, especially crop species, are usually sensitive to high saline conditions. 
As a result, crops grown in saline areas succumb to premature wilting, leading to 
large-scale yield losses. Hence, there is an urgent requirement of an economic and 
easy technology to sustain crop development even in suboptimal conditions. Trace 
elements are micronutrients which are beneficial for plant growth and physiology at 
very low concentrations. Existing reports suggest that exogenous application of 
some of these trace elements ameliorates salt sensitivity in a species- and cultivar- 
dependent manner. Optimum concentrations of such micronutrients act as supple-
ments for the system. Trace elements promote plant growth, photosynthetic 
efficiency, and water usage during salinity. The accumulation of the compatible 
solutes and the nonenzymatic components of the antioxidant machinery are trig-
gered. The activities of the enzymes belonging to the antioxidant system are also 
enhanced in the presence of exogenous trace elements. Increased accumulation of 
toxic reactive oxygen species (ROS) is counteracted through their effective scav-
enging by means of several antioxidants. Some trace elements also stabilize the cell 
wall and promote systemic integrity under salt stress. This chapter exclusively dis-
cusses the beneficial effects of essential and quasi-essential trace elements like mag-
nesium, zinc, iron, selenium, silicon, boron, and iodine in conferring plant tolerance 
against salt stress.
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16.1  Introduction

Essential elements are extremely important for sustaining the proper development of 
an organism throughout its life cycle. Almost 17 essential elements are known to 
support the normal physiology of a plant, and these have been subsequently divided 
into macro- and micronutrients (trace elements) depending on their abundance in the 
system. Elements like C, H, O, Ca, K, Mg, N, S, and P present at >1000 mg kg−1 of 
dry weight and constituting >95% of dry matter are referred to as the macronutrients 
(Watanabe et al. 2007). On the contrary, the trace elements like Cl, B, Cu, Fe, Mn, 
Mo, Ni, Zn, Si, Se, etc. are typically detected at <100 mg kg−1 of dry weight. These 
micronutrients are required at extremely low levels for plant survival (Watanabe 
et al. 2007). The trace elements which act as growth promoters under variable abi-
otic stress conditions like salt stress are immensely beneficial for the plants.

Sessile organisms like plants remain affixed to a substratum and are exposed to 
high salt toxicity in the soil. It is a major edaphic adversity prevalent in specific 
parts of the globe. The UNESCO Water Portal (2007) has estimated that >6% of the 
total land and 30% of the irrigated land areas have salt content unsuitable for agri-
cultural pursuits. An increase in aridity in the Mediterranean region and the semi-
arid regions of the earth in the near future has been postulated by the Intergovernmental 
Panel on Climate Change (2007). These constraints limit the global agricultural 
expansion, leading to an overexploitation of natural resources to feed the ever- 
growing population (Banerjee and Roychoudhury 2017a).

The mechanisms that dictate the developmental effects of trace elements have 
been studied by observing the phenotypic differences between plants growing in the 
absence or presence of the micronutrient (Pilon-Smits et al. 2009). Trace elements 
which accumulate in leaves at high concentration under abiotic stresses confer 
osmotic protection and act as crucial cofactors for several enzymes. Exogenous 
treatment with the optimum concentration of the beneficial micronutrient in plants 
belonging to specific taxa might supplement a metabolic pathway and promote 
growth (Pilon-Smits et al. 2009). Studying these positive effects is important in the 
context of plant ecology, since beneficial trace elements aid the plants to tolerate 
suboptimal conditions like salinity. The present chapter deals with a concise discus-
sion on the salinity-induced damages during plant development and their ameliora-
tion by beneficial micronutrients like selenium, silicon, zinc, manganese, iron, 
boron, and iodine.

16.2  The Salt-Induced Physiology in Plants

High salt concentration negatively regulates plant growth by causing imbalance in 
the osmotic equilibrium within the cells. In response to salt stress, the plants medi-
ate osmotic adjustments via the reduction of cell division, expansion, and stomatal 
closure and by modulating physiological parameters like reducing leaf area to 
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minimize transpiration. Overall photosynthetic efficiency also decreases as a result 
of which the growth rate declines (Banerjee and Roychoudhury 2017a). Limited 
photosynthetic area is unable to support the normal growth of the salt-inflicted 
plants, leading to premature senescence of adult leaves (Nahar et  al. 2016). 
Prolonged exposure to salt leads to the accumulation of Na+ and Cl− at toxic levels, 
accompanied with uncontrolled efflux of K+, which induces ionic stress (Rahman 
et al. 2016a). It has been observed that high Na+/K+ ratio is toxic for the cell as the 
Na+ ions outcompete K+ ions for binding sites of essential enzymes and the Na+ ions 
cannot be a substitute for K+ (Rahman et al. 2016b). The osmotic stress is triggered 
by uncontrolled accumulation of reactive oxygen species (ROS) like superoxide 
radicals, hydrogen peroxide (H2O2), hydroxyl radicals (OH−), etc. which disrupt the 
membrane architecture and other essential physiological processes (Hasanuzzaman 
et al. 2013). Oxidative damages during salt stress can also be carried out by cyto-
solic compounds like methylglyoxal (MG) (Hasanuzzaman et al. 2014).

Plants have evolved strategies to counteract salt-induced damages. Production of 
compatible solutes like proline (Pro), polyamines (PAs), glycine betaine (GB), etc. 
regulates the osmotic homeostasis by chelating the ROS (Roychoudhury et al. 2015; 
Roychoudhury and Banerjee 2016). The compatible solutes maintain osmotic 
homeostasis by stabilizing the biomacromolecular protein complexes and the water 
relationship. Salt-tolerant plant varieties have active antioxidant machinery which 
efficiently scavenges the toxic ROS. Ascorbic acid (AsA), glutathione (GSH), phe-
nolics, alkaloids, tocopherols, and free amino acids constitute the nonenzymatic 
fraction of this machinery (Roychoudhury and Banerjee 2015). The enzymatic par-
ticipants are superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase 
(APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), 
dehydroascorbate reductase (DHAR), glutathione peroxidase (GPX), guaiacol per-
oxidase (GuPX), and glutathione-S-transferase (GST) (Hasanuzzaman et al. 2012). 
Several osmotic responsive (OR) genes which encode products like late embryogen-
esis abundant (LEA) proteins, etc. are also upregulated during salinity stress 
(Banerjee and Roychoudhury 2016).

Salt stress induces epigenomic alterations at multiple loci like cell wall- related 
ZmEXPB2 and ZmXET1; histone acetylases, ZmHATB and ZmGCN5 in Zea mays; 
histone deacetylases, HD2C, HDA6, and HDA19 in Arabidopsis; abscisic acid 
(ABA)-associated ABA1, ABA3, and Response to ABA 18 (RAB18); and pyrroline- 5 
carboxylate synthase (Banerjee and Roychoudhury 2017b, c; Banerjee et al. 2017). 
Rice cultivars grown under saline conditions exhibit differentially methylated 
regions (DMRs) which in association with transposons can be closely related to the 
transcript abundance of protein-encoding genes (Garg et al. 2015).

16.3  Trace Elements in Mitigating Salt Stress

The role of micronutrients in alleviating salinity stress in plants is less investigated. 
Some available reports show that trace elements exhibit positive effects in counter-
acting salt stress. In this chapter, we have exhaustively discussed on the mechanism 
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of action of such beneficial elements. Figure 16.1 shows the ameliorative effects of 
trace elements during salt stress in plants. Treatment of plants with micronutrients 
upregulates genes associated with the biosynthesis of compatible solutes like Pro, 
PAs, and multiple enzymatic and nonenzymatic antioxidants. As a result, toxic bio-
molecules like ROS and MG are efficiently scavenged. The treated plants exhibit 
reduced levels of malondialdehyde (MDA) and lipid peroxidation in cell mem-
branes. Excess accumulated Na+ ions are exported out of the cell due to upregula-
tion of transporter and stress-associated osmotic stress-responsive genes. Thus, the 
plants effectively exhibit salt-tolerant phenotype.

16.3.1  Selenium

Selenium in cultivated soils is available in two prevalent forms, selenate and sele-
nite, of which selenite exhibits higher toxicity in the system due to its faster incor-
poration and accumulation (Dhillon and Dhillon 2003). Though Se is a necessary 
micronutrient for the animal system, its essentiality in higher plants remains 
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Fig. 16.1 The multiple cellular mechanisms by which trace elements mediate salt tolerance in 
plants. Se, Si, Zn, Mn, Fe, B, and I are reportedly some of the essential micronutrients in plants 
which aid in combating against salt stress. These trace elements upregulate stress-responsive genes 
associated with biosynthesis of compatible solutes like proline, polyamines, and enzymatic or 
nonenzymatic antioxidants. The cellular antioxidant machinery is thus efficiently reprogrammed 
to scavenge toxic molecules like ROS and methylglyoxal, which in their abundance cause detri-
mental cytotoxicity. Expression of exporter genes facilitates effective efflux of Na+ ions from the 
cytoplasm. Trace elements thus reestablish the cellular homeostasis in plants during salt stress and 
promote survival even under suboptimal conditions
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ambiguous. However, it might be crucial for endemic plants like Se hyperaccumula-
tors, Astragalus and Stanleya, growing on seleniferous soils. Terry et  al. (2000) 
showed that the beneficial effects of Se on such hyperaccumulators are reduced 
when the soil phosphate level is low. This indicates at a correlation between Se and 
phosphate nutrition where Se antagonizes phosphate toxicity in the Se hyperaccu-
mulators. In Se non-accumulator plants like ryegrass, lettuce, potato, and buck-
wheat, Se exerts its beneficial effects at low concentrations (Hartikainen 2005). 
Trace concentration of Se promotes normal growth and development, whereas mod-
erate concentration is required to maintain homeostatic functions (Kaur et al. 2016). 
Se is also necessary for the growth of algae like Chlamydomonas reinhardtii, as it is 
a structural component of selenoproteins and seleno-tRNAs (Lobanov et al. 2007).

Se reportedly protects plants against multiple abiotic stresses like salinity, 
drought, cold, high temperature, heavy metal toxicity, and UV-B irradiation by 
maintaining the ion balance and the cellular structural integrity. The antioxidative 
machinery is recharged by the redistribution of essential elements induced in the 
presence of Se (Feng et al. 2013). Se also regulates the electron transport complex 
(ETC) and thus increases the photosynthetic efficiency (Kaur et al. 2014). A pot 
experiment with three rice cultivars, BRRI dhan45, BRRI dhan47, and Nipponbare, 
grown under a gradient (50–150 mM) of salt concentrations showed reduced height 
of plants, number of tillers, relative water content in the leaves, and chlorophyll 
content in a dose-dependent fashion (Naim 2014). Exogenous treatment of the seed-
lings with 0.5 mM Na2SeO3 significantly recovered the plants from the deteriorative 
effects of stress. The cultivar-specific salt tolerance conferred by 0.5 mM Se was 
most prominent in the plants exposed to 50 mM salt stress, and the beneficial effects 
could be observed up to 100 mM NaCl concentration (Naim 2014). Mozafariyan 
et al. (2016) showed that the deleterious impacts of 25 mM and 50 mM NaCl stress 
on tomato plants could be alleviated by exogenous application of Se at very low 
concentrations (5 or 10 μM). A concentration of 10 μM Se increased the concentra-
tion of the photosynthetic pigments and elevated the activities of antioxidant 
enzymes like CAT.  Application of 5  μM Se also reduced the ROS levels and 
increased plant performance under stress (Mozafariyan et al. 2016). Dual applica-
tion of Se and silicon (Si) ameliorated the adverse effects imposed by 10 ds m−1 
NaCl on the annual herb, Anethum graveolens (Shekari et al. 2015). Addition of 
1.5 mM Na2SiO4 and 5 μM of selenate in the root medium increased the K+/Na+ 
ratio and the activities of SOD and CAT in the stressed plants. The treated plants 
exhibited improved ion balance and osmotic adjustments which generated salt toler-
ance (Shekari et al. 2015).

Recently, Habibi (2017) reported that application of Se at 1 mg L−1 enhanced the 
salt tolerance in parsley (Petroselinum crispum) plants. The treated plants showed 
improved quantum yield of photosystem II along with higher accumulation of carot-
enoids and conventional scavengers of ROS. Se reduced Na+ levels in the shoot by 
limiting the root-to-shoot translocation and by promoting Na+ exclusion from the 
cell sap. Se was also found to bind to Na+ in the root cell wall (Habibi 2017). 
Exogenous application of 25 μM Na2SeO4 rejuvenated the entire antioxidant system 
in rapeseeds exposed to 100 and 200 mM of NaCl stress (Hasanuzzaman et al. 2011). 
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The treated plants exhibited higher scavenging of ROS, detoxification of MG, and 
lower accumulation of MDA. It was observed that the enhanced activities of antioxi-
dant enzymes like APX, MDHAR, DHAR, GR, GST, GPX, CAT, and glyoxalase I 
and II (Gly I and Gly II) led to the lower peroxidation of membranes and hence 
reduced the production of MDA (Hasanuzzaman et al. 2011). Similar salt tolerance 
was observed in cucumber seedlings treated with 5 and 10 μM Se under salt stress of 
50 mM (Hawrylak-Nowak 2009). The growth-promoting effects of Se were attrib-
uted to the antioxidative activity of the element itself, higher accumulation of Pro, 
and decrease in the content of Cl− in the shoots. Increased biosynthesis of the photo-
synthetic pigments strengthened the metabolic balance to support growth even under 
salinity (Hawrylak-Nowak 2009). Application of Se at 1 μM concentration increased 
the net photosynthetic rate and alleviated the NaCl-induced damages in the chloro-
plast ultrastructure in Zea mays. The treated plants exposed to salt stress exhibited 
higher activities of SOD and APX, along with upregulation of mitogen-activated 
protein kinase 5 (ZmMPK5), ZmMPK7, and calcium-dependent protein kinase 
(ZmCPK11). The Se-induced salt tolerance in maize was also due to efficient com-
partmentalization of Na+ brought about by the upregulation of the membrane Na+ 
exporter, ZmNHX1, in the roots (Jiang et al. 2017).

16.3.2  Silicon

Silicon has been correlated with generating salt tolerance in several agriculturally 
important crops like wheat, rice, maize, barley, sorghum, tomato, and soybean 
(Rizwan et al. 2015). Si is available to plants as monosilicic acid, Si(OH)4 in the soil, 
and water. Within plants, it gets deposited in the cell walls as amorphous silica (SiO2-
nH2O) and increases cell wall rigidity by interacting with pectins and polyphenols. 
Si4+ content has been found to be higher in monocotyledons compared to dicotyle-
dons, and hence Si is often classified as a “quasi-essential” element for plants (Kaur 
et al. 2016). Due to deposition in the leaf cuticle and epidermal cells in the cell wall, 
Si lowers the transpiration rate and prevents desiccation of the plant during salt stress. 
Si has also positive role on seed germination under saline conditions. About 1 mM of 
nano-Si increased tomato germination under 50  mM NaCl, whereas 1–5  mM Si 
enhanced the germination rate, germination index, and vitality index of Momordica 
charantia under 50–100 mM salinity (Haghighi et al. 2012; Wang et al. 2010).

Application of Si in the diatomite form increased the fresh weight, dry weight, and 
photosynthetic efficiency of Egyptian clover (Trifolium alexandrinum) exposed to 
salt stress. The treated plants exhibited increased accumulation of Mg, K, P, and Ca 
(Abdalla 2011). The pod yield, number of seeds per plant, and chlorophyll content 
were increased in salt -stressed Vicia faba plants treated with Si (Kardoni et al. 2013). 
The seed weight and yield in Si-treated Phaseolus vulgaris plants increased under 
salt stress (Parande et al. 2013). Li et al. (2015) reported improved root morphology, 
total root length, surface area, total volume, and average diameter of salt- stressed 
tomatoes treated with Si. Application of K2O3Si increased plant weight, ear length, 
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seed yield, and chlorophyll content in wheat plants exposed to salinity (Bybordi 
2014). In similar experiments, it was observed that 1 mM Si could ameliorate the 
toxic 120 mM NaCl stress in wheat seedlings (Chen et al. 2014). The overall amelio-
rative effects of Si in plants exposed to salinity were also observed in rice, canola, and 
the halophytic grass, Spartina densiflora (Gurmani et al. 2013a, b; Hashemi et al. 
2010; Mateos-Naranjo et al. 2013). Habibi et al. (2014) reported an increase in the 
water use efficiency (WUE) in Si-treated pistachio (Pistacia vera) plants grown on 
saline media. In another study, salt-stressed maize plants treated with Si exhibited 
increased photosynthetic rate, stomatal conductance, and intercellular CO2 concen-
tration (Xie et al. 2015). Zhu et al. (2015) showed that 0.3 mM Si can improve salt 
tolerance in cucumber seedlings by enhancing water uptake through roots and upreg-
ulation of genes encoding aquaporins to facilitate water influx. Similarly, Liu et al. 
(2015) showed that Si-treated sorghum plants exhibit upregulated expression of 
aquaporin channel encoding PIP genes.

Si application increased the Ca content in the shoots of cucumber, cowpea, and 
kidney bean plants growing on saline media (Khoshgoftarmanesh et al. 2014). The 
N, P, K, and Ca content in the shoots and seeds of salt-stressed faba beans also 
increased upon treatment with Si (Hellal et al. 2012). Si-treated canola plants main-
tained high P and Fe levels even under saline conditions (Farshidi et al. 2012). Si 
application triggered higher accumulation of P, K, Ca, and Mg in stressed Moringa 
oleifera compared to the non-treated stressed plants (Hussein and Abou-Baker 
2014). Xu et al. (2015) showed that Si treatment changed the entire mineral distribu-
tion in the root tips and leaf blades of Aloe plants exposed to salinity.

Si mitigates salt tolerance even by inducing the accumulation of compatible sol-
utes and adjusting the levels of stress-responsive phytohormones like ABA, salicylic 
acid (SA), jasmonic acid (JA), indole acetic acid (IAA), etc. (Fahad et al. 2015). 
Foliar treatment of Si in okra plants growing under saline conditions led to increased 
photosynthetic rate, stomatal conductance, transpiration rate, WUE, and number 
and size of stomata. High accumulation of Pro, GB, and total free amino acids in 
both shoots and roots along with decreased lipid peroxidation and enhanced activi-
ties of SOD, CAT, and GuPX was observed in the treated plants (Abbas et al. 2015). 
However, Si application reduced the Pro content in tobacco, soybean, maize, and 
turfgrass during salt stress (Rizwan et  al. 2015). Treated canola plants exhibited 
higher lignin content under salt stress (Hashemi et  al. 2010). Levels of sucrose, 
fructose, and PAs increased in salt-stressed sorghum, whereas the ethylene content 
decreased after exogenous spraying of Si (Yin et al. 2016). Si improved salt toler-
ance in sorghum by regulating essential metabolic processes rather than merely 
acting as a mechanical barrier. Exogenous spermidine treatment exhibited similar 
ameliorative effects as with Si, whereas exogenous application of PA inhibitor, 
dicyclohexylammonium sulfate (DCHA), eliminated Si-mediated salt tolerance in 
sorghum (Yin et al. 2016). Wang et al. (2015) showed that 0.83 mM Si enhanced salt 
tolerance in cucumber by increasing Na+ efflux in the leaves and by maintaining 
high levels of both free and conjugated types of PAs.

Kim et al. (2014) showed a correlation between temporal variations in the levels of 
JA and SA with the duration of Si exposure to salt-stressed rice seedlings. Short- term 
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(6 and 12 h) Si treatment in rice reduced the JA levels, while the SA levels fluctuated 
irregularly. The ABA-biosynthesis genes like zeaxanthin epoxidase (ZEP) and 9-cis-
epoxycarotenoid dioxygenase 1 and 4 (NCED1, 4) were upregulated after 6–12 h of 
Si exposure. The genes were downregulated after 24 h of Si treatment (Kim et al. 
2014). Lee et al. (2010) showed that Si treatment in soybean seedlings growing under 
saline conditions decreased the ABA levels and increased the content of the germina-
tion-promoting hormone, gibberellic acid (GA). Liang et al. (2015) reported higher 
ethylene emission in salt-stressed tobacco seedlings treated with Si due to increased 
transcription of the ethylene biosynthetic genes.

Si triggered the activities of APX, CAT, and GuPX in the alfalfa seedlings 
exposed to salinity (Wang et al. 2011). The antioxidant machinery was found to be 
recharged in Si-treated tomato plants grown both in sand culture and saline solution 
culture (Li et al. 2015; Muneer and Jeong 2015). Improved cytochrome b6f and ATP 
synthase activity was observed in the leaf chloroplasts after treating the salt-stressed 
tomato seedlings with Si (Muneer et  al. 2014). Several salinity-associated genes 
encoding dehydration-responsive element-binding protein 1, 2, 3 (DREB1, 2, 3), 
APX, SOD, and CAT and the genes involved in Si transport like leLsi-1, -2, and -3 
were found to be upregulated in the salt-stressed tomato seedlings (Muneer and 
Jeong 2015). Si dosage reduced lipid peroxidation, electrolyte leakage, and H2O2 
content in pea plants exposed to salinity (Shahid et al. 2015). Wheat plants treated 
with 150 mg L−1 Si showed increased SOD and CAT activities and decreased GuPX 
activity and electrolyte leakage (Ali et al. 2012). Ali et al. (2013) reported that appli-
cation of 2 mM Si increased the enzymatic activities of SOD, GuPX, and CAT along 
with the accumulation of AsA and GSH in the sunflower seedlings exposed to salt 
stress. Field experiments in salt-stressed sorghum showed that Si dosage triggered 
the activities of SOD, GuPX, CAT, APX, and GST (Kafi et al. 2011). Similar anti-
oxidant effects of Si during salinity have been reported in lettuce, spinach, barley, 
grapevine, and Ajuga multiflora (Rizwan et al. 2015). In spite of several positive 
correlations between Si and salt tolerance, the exact molecular mechanism is still 
unclear. Further investigations focusing on the transcriptomic and proteomic ave-
nues in this field are required.

16.3.3  Zinc

Zinc in trace quantities acts as a growth-promoting agent for plants growing under 
saline conditions. Studies indicate that a moderate Zn concentration of 1 mmol L−1 
and 1% NaCl acted synergistically to yield a high final biomass in Spartina densi-
flora seedlings (Redondo-Gomez et al. 2011). Iqbal and Aslam (1999) showed that 
Zn supplementation promoted salt tolerance in rice seedlings. The treated plants had 
higher tiller height, dry weight, and fresh weight under 70 mM NaCl stress. Recently, 
Jan et al. (2017) reported that Zn treatment significantly minimized oxidative stress 
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and promoted root, shoot, and spikelet growth in salt-stressed wheat plants. The 
levels of photosynthetic pigments, Pro, total phenolics, and total carbohydrates 
were higher in the treated plants compared to the untreated seedlings under stress. 
While Zn counteracted the adverse effects of salinity, it also triggered high activities 
of SOD, CAT, and APX. The study showed that K and Zn acted synergistically to 
counteract salt stress in the wheat seedlings (Jan et al. 2017).

16.3.4  Manganese

Manganese is an essential cofactor of the antioxidant system. It is required for the 
activation of Mn-SOD, Mn-CAT, etc. It is also assumed that Mn itself acts as a scav-
enger of ROS. Pandya et al. (2004) reported that exogenous Mn improved relative 
growth rate, net assimilation rate, and photosynthetic efficiency in the salt- stressed 
barley plants. Sebastian and Prasad (2015) showed reduced lipid peroxidation and 
improved biomass, chlorophyll, and carotenoid content in Mn-treated plants. In a 
recent study, it was observed that 0.5 mM Mn could ameliorate 150 mM NaCl stress 
in 12-day-old rice seedlings (Rahman et al. 2016c). The treated plants recovered 
from chlorosis and showed improved ionic and osmotic homeostasis even under 
high saline conditions. Salt tolerance was mainly due to effective scavenging of 
ROS, MG detoxification, and efficient accumulation of AsA, phenolics, and flavo-
noids. Activities of antioxidant enzymes like MDHAR, DHAR, SOD, and CAT 
were also high in the Mn-treated plants (Rahman et al. 2016c).

16.3.5  Iron

Iron is an essential micronutrient necessary for multiple physiological develop-
ments in plants. Recently, Yasmeen et al. (2016) designed Fe nanoparticles (Fe NPs) 
to study their effects on the salt-tolerant wheat variety, NARC-11. It was observed 
that the Fe nanoparticles (NPs) stimulated the production of proteins associated 
with the photosynthetic and metabolic machineries. The ribulose bisphosphate 
 carboxylase/oxygenase (RuBisCo) activity increased three times in the Fe 
NP-treated plants compared to the untreated ones (Yasmeen et al. 2016). In an inter-
esting study, Fe deficiency in the rice cultivar, Dongdao-4, was correlated with salt 
tolerance. The Dongdao-4 plants grown in saline-alkaline medium was found to 
develop better than the other cultivar, Jigeng-88, due to higher expression of Fe 
deficiency- responsive genes like IRO2, iron-regulated transporter 1 (IRT1), nicoti-
anamine synthase 1 (NAS1), NAS2, yellow strip-like 2 (YSL2), and YSL15. This 
resulted in high Fe content in the roots and shoots of Dongdao-4 which was respon-
sible for conferring saline-alkaline tolerance (Li et al. 2016).
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16.3.6  Boron

Though B is phytotoxic at high concentration, trace amounts of this micronutrient 
is beneficial for crops. Soil application with moderate amounts of B (1.5 Kg B ha−1) 
conferred salt tolerance in rice plants grown on saline and saline-sodic soils. The 
plants had higher yield and reduced Na+ and Cl− content in their shoots. However, a 
higher concentration of 6 Kg ha−1 severely hampered seedling growth and straw 
production under saline and saline-sodic conditions (Mehmood et al. 2009).

16.3.7  Iodine

Iodine is not an essential micronutrient for land plants. However, it can regulate 
critical antioxidant responses in some aquatic plants. The function of I in scaveng-
ing ROS and inducing SOD, APX, and CAT activities in plants has been established 
(Medrano-Macias et al. 2016). Such increased levels of antioxidants promote better 
adaptability in plants to tackle stress conditions. Leyva et al. (2011) reported that 
exogenous application of I conferred salt tolerance in the lettuce plants exposed to 
saline conditions.

16.4  Conclusion and Future Perspectives

In this chapter, we have discussed about a variety of micronutrients which are ben-
eficial for plant physiological development under saline conditions. Though plants 
have well-organized antioxidant machinery, the sensitive varieties lack the strong 
induction to trigger this protective system when they are exposed to abiotic stresses. 
Micronutrients applied in trace amounts act as supplements which recharge and 
reprogram the antioxidant system and lead to the osmotic balance. This aids in plant 
sustainability and viability even under suboptimal conditions like salt stress.

The intricate mechanisms by which the trace elements mediate salt tolerance are 
intriguing and interesting but are not completely known. This field lacks investiga-
tions at the molecular and epigenomic levels. Furthermore, though the technology 
is economic and easy, proper optimization is absolutely essential to avoid unneces-
sary crop losses. In this regard, exhaustive experimentations should be executed to 
identify the exact dose, duration, and application procedure in species – as well as 
cultivar-specific manner.
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Chapter 17
Nutrient Homeostasis and Salt Stress 
Tolerance

Shahid Farooq, Shakeel Ahmad, Sajjad Hussain, and Mubshar Hussain

Abstract Soil salinity is an unavoidable constraint in crop production globally. 
Soil salinization is often caused by improper soil management and/or crop produc-
tion practices, which has made highly productive lands barren/unusable. Plant spe-
cies have evolved several mechanisms to cope with salinity stress. Nutrient 
homeostasis is among the different mechanisms employed by plant species to with-
stand elevated salt levels in the root zone. Nutrients are the mediators of metabo-
lism, so their cytoplasmic levels need to be effusively controlled both under stressful 
and benign environments. Several studies report the homeostasis of a single ion, i.e., 
sodium, potassium, or chloride. However, limited studies are available reporting the 
role of nutrient homeostasis (all nutrients together) under salinity stress. This chap-
ter describes the role of nutrient homeostasis and ion channels and transporters in 
salt stress tolerance of plant species. The ion efflux at plasma membrane and vacu-
olar compartmentation in response to salinity stress has been described in detail. 
The impaired uptake of the nutrients is an obvious effect of salinity, mainly disturb-
ing the sodium and potassium uptake. Much of the research has been done to test the 
role of different nutrients on salinity alleviation, and silicon is found to alleviate the 
negative effects of salinity. The nutrient homeostasis starts from ion sensing, uptake, 
transport, and activation of defense mechanisms as well as regulation of genes or 
gene networks to alleviate/withstand the adverse effects of salinity. Thus, the ion 
sensing, uptake, transport, and gene defense activation in response to salinity stress 
have also been described comprehensively.

Keywords Nutrient homeostasis · Plants · Salinity stress · Ion channels · Ion 
efflux
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17.1  Introduction

Soil and water salinity stresses are unavoidable globally as around 830–950 million 
hectares of global soils are estimated to be affected by salinity (Rengasamy 2006, 
2010; Ruan et al. 2010; Teakle and Tyerman 2010). Nearly half of the salt-affected 
soils are sodic, where 15% of cation exchange capacity is contributed by Na+ (Brady 
and Weil 2008; Rozema and Flowers 2008). The chloride (Cl−), sulfate (SO4

2−), 
carbonates (CO3

2−), and bicarbonates (HCO3
−) salts of different metals such as 

sodium (Na+), potassium (K+), magnesium (Mg+), and calcium (Ca2+) may give rise 
to soil salinity; however, sodium chloride (NaCl) is the most prevalent cause of 
salinity globally (Rengasamy 2002; Yadav et al. 2011).

Soil salinization is caused by improper management practices, which has made 
highly productive lands barren/unusable. The Mesopotamia, different regions of 
Indian and Pakistani Punjab, and the Fubei region in China are some of the exam-
ples of the areas where salinity has rendered productive lands barren (Hillel 2000, 
2005; Swarajyalakshmi et  al. 2003; Wang et  al. 2008). The salts from deep in 
groundwater are moved upward by cultivation practices (Rengasamy 2006; Brady 
and Weil 2008; Yadav et al. 2011). The increased consumption of water by human 
has made salinity more acute today than before (Epstein and Bloom 2005; Brady 
and Weil 2008; Rozema and Flowers 2008). Out of the total available water for 
human consumption, 70% is consumed by agriculture, and this amount is rising 
with escalating population pressure (Hightower and Pierce 2008).

The noteworthy challenge for global agriculture is the production of an extra 
70% food crops for another 2.3 billion people worldwide by the year 2050 (FAO 
2009). However, the increased food demand is constrained by salinity. Over 20% of 
arable land around the world is influenced by salt stress, and the area is expanding 
steadily with each passing day. The crop plants could be divided into two major 
groups on the basis of their adaptive response to elevated salt levels in the soil. The 
first group comprises of the plants which can withstand salinity, known as halo-
phytes (Hasanuzzaman et al. 2014), whereas the second group consists of the crop 
plants which are unable to tolerate the elevated salt levels and die, termed as glyco-
phytes. Thus, salinity is regarded among the most ruthless abiotic stresses, which 
severely hamper the productivity of arable crops globally (Flowers 2004; Munns 
and Tester 2008).

Numerous physiological and metabolic processes are significantly altered by 
salinity stress. The extent of change in these processes depends on the nature of salts 
and the level and duration of stress, eventually hampering crop production (James 
et al. 2011; Rahnama et al. 2010; Munns 2005; Rozema and Flowers 2010). Salinity 
stress creates osmotic stress, which impair plant growths at the initial phases that is 
followed by ion toxicity at the later stages. Both osmotic stress and ion toxicity cre-
ate unfavorable conditions for the normal growth and development of crop plants 
(James et al. 2011; Rahnama et al. 2010). High accumulation of salts at the initial 
phases of plant growth decreases the water absorption capacity of roots. Similarly, 
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the osmotic stress caused by salinity stress increases water loss form the leaves. 
Thus salinity stress is also termed as hyperosmotic stress due to these reasons 
(Munns 2005).

Osmotic stress caused by elevated salt levels induces numerous physiological 
changes in crop plants. These physiological changes include membrane disruption, 
nutrient imbalance, lower detoxification of reactive oxygen species (ROS), dimin-
ished photosynthesis, opening of stomata, etc. (Munns and Tester 2005; Rahnama 
et al. 2010). Since NaCl is the most prevalent cause of salinity, accumulation of Na+ 
and Cl− ions in plant tissues is the most devastating effect on the crop plants exposed 
to elevated NaCl concentration in the soil. The K+ is a necessary element for normal 
plant growth; however, elevated levels of Na+ disrupt its uptake. The Na+-induced 
reduction in K+ uptake results in disturbed plant growth, low productivity, and even 
mortality based on the adaptive response of the crop plants to elevated salt levels in 
the soil (James et al. 2011). The ROS, such as singlet oxygen, superoxide, hydroxyl 
radical, and hydrogen peroxide, are produced in excess when plants are exposed to 
salinity stress (Apel and Hirt 2004; Mahajan and Tuteja 2005; Ahmad 2010; Ahmad 
et  al. 2012; Ahmad and Umar 2011). Salinity-induced overproduction of ROS 
affects various cellular components (i.e., lipids, proteins, and DNA) through oxida-
tive damage. Salinity induced oxidative damage eventually interrupts numerous 
functions at cell level in crop plants.

The physiology, development, and cellular metabolism in plants are driven by 
nutrient homeostasis (Clemens et al. 2002; Amtmann and Blatt 2009). The synthesis 
of organic macromolecules requires nutrient elements, which complete various 
functions in the key proteins. Moreover, they also act as cofactor of enzymes or as 
signaling molecules. The daily fluctuations posed by the environment on the plants 
have dramatic effects on the physiology and metabolism. The environmental fluc-
tuations cause recurring fluctuations in the demands of essential nutrients required 
for the photosynthesis in chloroplasts. Moreover, nutrient transport pathways in 
xylem are also altered by the rhythmic changes in transpiration rates. Hence, con-
tinuous nutrient mobilization is required among organelles and tissues, particularly 
under nutrient deficit environments.

The identification of Na+ transport was a key gap in understanding the ionic 
homeostasis in plants under salinity stress (Niu et al. 1995). Generally, living cell 
under low or high salinity tend to balance passive Na+ inclusion with Na+ exclusion 
at two different levels. The balance is required at the plasma membrane and back to 
the apoplast, or across the tonoplast into the vacuole. Time is an imperative aspect 
needing consideration for salinity tolerance in addition to the considerable energy 
required for Na+ flow, as the Na + uptake rate determines the rate at which Na+ 
reaches toxic levels within the cell. Although there are number of studies available 
dealing with salinity tolerance and nutrient homeostasis under salinity stress, only a 
few aspects of nutrient homeostasis has been addressed. In this chapter, we will 
discuss all aspects of nutrient homeostasis and salinity tolerance in plant species. In 
summary, the chapter provides detailed information about how nutrients are mobi-
lized under salinity stress to maintain normal growth.

17 Nutrient Homeostasis and Salt Stress Tolerance
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17.2  Role of Nutrient Homeostasis in Salt Tolerance

Nutrients are the mediators of metabolism, so their cytoplasmic levels need to be 
effusively controlled both under stressful and benign environments. The reestablish-
ment of nutrient homeostasis under stressful environments is the key strategy of 
plant species to improve their resistance against abiotic stresses, particularly salin-
ity. Both types of nutrient homeostasis, i.e., ionic and osmotic homeostasis, need to 
be restored for salinity tolerance. The ionic homeostasis is determined/mediated by 
various ion transporters. Two nutrients, i.e., Na+ and Cl−, are the most detrimental to 
plant health under salinity stress; therefore both need to be under control in order to 
withstand higher salt levels (particular of NaCl) in growth medium. Many enzyme 
activities are inhibited by elevated levels of Na+, therefore Na+ accumulation in the 
cytoplasm or in organelles other than the vacuole needs to be prevented to reach at 
higher levels. This can be accomplished by either preventing Na+ entry or reducing 
it to safe or lower levels. The Na+ entry into plant cells is known to be controlled by 
nonselective cation channels (NCC) (Amtmann and Sanders 1998). The NCC is a 
channel, independent of voltage and serves as Na+ entry gate into the plant cells. 
Furthermore, there is the K+ outward-rectifying channel, opened by depolarization 
of plasma membrane and enables K+ exclusion and Na+ entry, which leads to the 
accumulation of Na+ in cytosol. The excess Na+ is pushed into vacuole with the help 
of vacuolar Na+/H+ exchanger. Another pump, the H+/Ca2+ antiporter, also aids 
toward Ca2+ homeostasis (Zhu 2002; Mahajan et al. 2006).

Na+ homeostasis is imbalanced by high salinity, while collective action of numer-
ous pumps, ions, Ca2+ sensors, and their downstream interacting partners tends to 
normalize it. The organized action of these pumps, ions, and Ca2+ sensors ultimately 
causes efflux of excess Na+ ions. Certain channels tend to exhibit higher K+ sensitiv-
ity/selection over Na+, and K inward-rectifying channel is one of them. The exces-
sive NaCl hyperpolarizes the plasma membrane, thus K-rectifying channel mediates 
K+ influx in response to higher NaCl, thus results in selective accumulation of K+ 
over Na+. On the other hand, there are some channels restrict the Na+ influx into the 
cytosol rather than selective accumulation of K+ over Na+. The histidine kinase 
transporter (HKT) is such an ion transporter, which restricts Na+ entry into the cyto-
sol (Platten et al. 2006). There are numerous voltage-dependent anions, which are 
upregulated in response to elevated salinity, thus normalizing the Na+ homeostasis. 
The upregulation of a voltage-dependent anion has been observed in Pennisetum 
glaucum under salinity stress (Desai et al. 2006).

The Ca2+ has a significant role in salinity tolerance of crop plants by keeping the 
pivotal role in nutrient signaling under elevated salt levels. The cytosolic Ca2+ is 
increased under salinity stress, which initiates stress signal transduction pathways 
for tolerance to increased salinity levels. In addition, Ca2+ binding proteins may 
deliver an extra regulation level of Ca2+ signaling. The information provided by Ca2+ 
signaling is recognized and decoded by sensor proteins, which communicate this 
information to start a phosphorylation cascade regulating gene expressions.
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Any Na+ entering the cells can be stored in the vacuole or transferred outside the 
cell. Na+ compartmentation is an inexpensive way to prevent Na+ toxicity in the 
cytoplasm, as Na+ can be used as a vacuolar osmolyte to provide osmotic homeosta-
sis. Many salt-tolerant plants (halophytes) use this strategy to withstand the negative 
effects of salinity stress (Flowers et al. 1977).

The nutrient homeostasis prevents the Na+ entry into the cell, reduces it or pushes 
the excess Na+ into the vacuoles. There are a lot of channels and transporters 
involved in this process, which ultimately reduce the brutal effects of Na+ on plant 
growth. The most commonly observed homeostasis is for K+ and Ca2+ ions, which 
mitigate the adverse effects of Na+. The channels and transporters involved will be 
discussed in the coming sections. It can be briefly concluded that nutrient homeo-
stasis is inevitable to achieve salinity tolerance for plants, which is accomplished by 
several ways as described under.

17.3  Types of Homeostasis

The homeostasis in plant species under salinity stress is divided into two categories, 
i.e., osmotic and ionic homeostasis. The osmotic homeostasis comprises of accumu-
lation of compatible solutes, while ionic homeostasis consists of ionic influx and 
efflux and compartmentation at different levels in plant cells. Since the scope of the 
chapter is nutrient homeostasis, we will only discuss osmotic homeostasis in this 
chapter.

17.3.1  Ionic Homeostasis and Salt Tolerance

The maintenance of ionic homeostasis by partitioning and absorption of ions is not 
only required for the normal growth of plants under salinity-free conditions but also 
for highly saline environments (Niu et  al. 1995; Serrano et  al. 1999; Hasegawa 
2013). Both glycophytes and halophytes species are unable to tolerate elevated salt 
levels in the cytoplasm. Therefore, the extra salt is elated to vacuole or reserved in 
old tissues, which are then for protection against salinity stress (Reddy et al. 1992; 
Zhu 2003). The main salt in the soil is NaCl, so this chapter focused on the transport 
mechanism and Na+ and its compartmentation.

The Na+/H+ antiporter transport the excess Na+ entering to the vacuole. There 
are two different kinds of H+ pump in the vacuolar membrane, i.e., H+-ATPase 
(V-ATPase) type vacuole and vacuolar pyrophosphatase (V-PPase) (Dietz et al. 
2001; Otoch et al. 2001; Wang et al. 2001). Among these two pumps, V-ATPase 
dominates plant cells. These pumps have a vital role in the preservation of solute 
homeostasis, ensure secondary transfer energy, and facilitate vesicle fusion in 
stress-free conditions. The viability of the plant species under stress conditions 
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is dependent on V-ATPase activity (Dietz et al. 2001). It has been observed that 
the efficacy of the VATPaz pump was increased in hypocotyls of Vigna unguicu-
lata when exposed to elevated salt levels (Otoch et al. 2001). However, V-PPase 
activity was retarded under same conditions. The activity of V-ATPase was 
increased in halophytic species Suaeda salsa, while V-PPase had a negligible 
role (Wang et al. 2001).

The role of “Salt Overly Sensitive” (SOS) stress signaling pathway has increas-
ingly been suggested in ionic homeostasis as well as tolerance to elevated salinity 
(Hasegawa et al. 2000; Sanders 2000). The SOS signaling pathway includes three 
main proteins, which are SOS1, SOS2, and SOS3. The first protein, i.e., SOS1, 
encodes the Na+/H+ antiporter of plasma membrane and is vital for the regulation of 
Na+ flux at the cellular level. At the same time, the Na+ transport from roots to the 
shoot is eased by this protein; thus overexpression of the protein imparts tolerance 
to the crop plants against elevated salt levels (Shi et al. 2000, 2002). The second 
protein, i.e., SOS2, encrypts a serine/threonine kinase and is activated by the Ca2+ 
signals resulting from salinity stress. This protein comprises of well-developed 
N-terminal catalytic domain and a C-terminal regulatory domain (Liu et al. 2000). 
The third protein, i.e., SOS3, is a myristoylated protein that binds Ca2+ and contains 
a myristoylation site in its N-terminus. This site has an important role in imparting 
tolerance to crop plants against elevated salinity (Ishitani et al. 2000). Therefore, a 
strong increase in intracellular Ca2+ level is observed with increasing Na+ concentra-
tion, which eases the binding with SOS3 protein. Intracellular Na+ homeostasis is 
moderated by Ca2+ along with SOS proteins. The SOS2 protein is activated by SOS3 
protein thus releasing the spontaneous inhibition. The SOS3-SOS2 complex is then 
laden onto the plasma membrane, where SOS1 is phosphorylated.

Phosphorylated SOS1 increases Na+ flux, thus reducing the toxicity of Na+ 
(Martınez-Atienza et  al. 2007). Many plant species have established an effective 
method to maintain ion concentration at a low level in the cytoplasm. Membranes, 
together with their associated apparatuses, regulate the uptake and transport of ions 
under elevated salinity, thus play an essential role in maintaining the ions concentra-
tion of in the cytosol in response to increased salt levels (Sairam and Tyagi 2004). 
Different carrier and proteins, antiporters, and symporters carry out the transplanta-
tion phenomenon.

The maintenance of cellular Na+/K+ homeostasis is vital for plant survival under 
highly saline conditions. Ma et al. (2011) reported that Arabidopsis NADPH oxi-
dases function under salt stress in the ROS-dependent regulation of Na+/K+ homeo-
stasis in Arabidopsis by AtrbohD and AtrbohF genes. Plants maintain high K+ level 
in cytoplasm (approximately 100 mM) for cytoplasmic enzyme activities. The K+ 
concentration in the vacuole ranges from 10 to 200 mM. The vacuole is the largest 
K+ pool within the plant cell. K+ has a vital role in maintaining the turgor within the 
cell. The K+ transporter and membrane channels transport K+ to the plant cells 
against the concentration. The K+ intake mechanism is strongly mediated by its 
amount present in the soil. When extracellular concentration of K+ is low, high affin-
ity K+ carriers uptake K+ from the soil. However, the low affinity K+ channels get 
activated for restricted uptake when extracellular concentration of K+ is high. On the 
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other hand, a very low Na+ ion concentration is maintained in the cytosol. Since 
both K+ and Na+ share the same transport mechanism, Na+ competes K+ for the car-
rier, under salinity stress due to the increased Na+ concentration in the soil, thus 
reducing K+ absorption (Sairam and Tyagi 2004; Munns and Tester 2008).

Numerous genes and proteins encoding K+ carriers and channels such as Na+ 
influx transporter (HKT) and the tonoplast Na+/H+ antiporter (NHX) have been rec-
ognized and duplicated in several crop plants. The expression of low abundance 
transcripts increases the uptake of K+ under salinity stress. This expression of low 
abundance transcripts has been recorded in a halophyte species, i.e., 
Mesembryanthemum crystallinum (Yen et al. 2000).

The HKT family transporters found on the plasma membrane have a significant 
role in salinity tolerance through the regulating the transport of Na+ and K+. HKT 
Class 1 (HKT1) transporters, classified in Arabidopsis, prevent excessive buildup of 
Na+ in leaves, thus protecting plants form the adverse effects of salinity stress. The 
HKT1 rice transporter removed extra Na+ from xylem, thus protecting the photo-
synthetic tissue of the rice leaves from the Na+ toxicity (Schroeder et  al. 2013). 
Barragán et al. (2012) indicated that two localized tonoplast NHX proteins (NHX1 
and NHX2) are vital for active K+ uptake at the tonoplast. These proteins are 
required for regulation of turgor regulation and normal functioning of stomata. 
Several NHX isoforms have been proved to play an imperative role in ionic homeo-
stasis (Na+, K+, H+) in different crop species (Gálvez et al. 2012).

17.4  Cation Uptake, Mechanisms, Transporters Involved, 
and Role of Ion Channels

Crop plants grown under elevated salt levels are exposed to explicit ionic effects, 
which damage the enzymes structure as well as some macromolecules including 
Na+ and Clˉ. The ionic effects also exert damages to the cell organelles as well as 
resulted in impaired photosynthesis and respiration. Salinity stress also results in 
the physiological drought resulting in impaired uptake and transport of nutrients. 
The disturbed uptake and transport of nutrients leads to imbalanced nutrition in crop 
plants under elevated salt levels (Munns and Tester 2008; Ruiz-Lozano et al. 2012). 
Higher accumulation and degradation of Na+ and reduced K+ uptake are the obvious 
detrimental effects of elevated salt levels on plant growth, while these mechanisms 
are still unclear or understudied (Chen et al. 2007). Na+ is an important cation pre-
vailing in the soils affected by salinity. The K+ and Na+ activate and inhibit numer-
ous cytosolic enzymes, respectively (Shi et al. 2002). Under natural physiological 
circumstances, the plants hold 1–10 mM Na+ and 60–100 mM K+ in the cytosol 
(Bassil et al. 2012).

The Na+ is a cytotoxin which severely disrupts proteins and membranes. Moreover, 
several physiological processes including cell expansion and cell division, metabo-
lism (primary and secondary) and Na+ severely impacts nutrient homeostasis 
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(Hasegawa et al. 2000; White and Broadley 2001; Munns and Tester 2008; Teakle 
and Tyerman 2010). The presence of excessive Na+ in the soil restricts K+, which 
decreases intracellular K+ ultimately disturbing K+/Na+ imbalance (Hauser and Horie 
2010; Leidi et al. 2010; Alemán et al. 2011; Pardo and Rubio 2011). Excessive pres-
ence of Na+ offers strong competition to K+ for even in the presence of high-affinity 
K+ transport systems (Rus et al. 2004; Kronzucker et al. 2008; Alemán et al. 2009, 
2011; Pardo and Rubio 2011). The conductance of K+ is reduced by Na+ through 
AKT1 (Qi and Spalding 2004) which suppresses the expression of AtHAK5 (Nieves-
Cordones et al. 2008; Alemán et al. 2011; Pardo and Rubio 2011).

The synthesis of proteins and activities of cytosolic enzymes are inhibited under 
abnormally high cytosolic Na+/K+ ratio (Shabala and Cuin 2008). Thus, plants are 
equipped with numerous mechanisms (biochemical and molecular) to withstand the 
brutal impacts of salt stress. Regulating salinity uptake genes and Na+ and/or K+ 
transport or compartmentation are the mechanisms developed by plants for ade-
quate ionic homeostasis. The undue Na+ accrual in cytosol is prohibited through a 
number of mechanisms by glycophyte plant species. The first mechanism is the 
selective uptake of ions to restrict Na+ for the regulation of ionic homeostasis under 
salinity stress. The second mechanism is to maximize the Na+ efflux to growth 
medium or to apoplastic spaces. The plant species finally can impound Na+ into 
vacuoles for restricting the Na+ transfer to the shoot (Cuin et al. 2011). The two 
mechanisms described above are vital and usually used by crop plants to control 
undue Na+ buildup (Cuin et al. 2011; Cabot et al. 2014). The vacuolar Na+ and K+/
H+ antiporters NHXs catalyze the impounding of Na+ into vacuoles (Cuin et  al. 
2011). Four different genes (OsNHX1–4) relating to these antiporters have recently 
been identified in rice crop (Fukuda et al. 2011; Kumar et al. 2013).

Plasma membrane Na+/H+ antiporter (SOS1) catalyzes the Na+ efflux from cyto-
sol to the growth medium or to apoplastic spaces in numerous crop plants (Kumar 
et  al. 2013). The SOS1 is preferentially expressed in the cells which surround 
xylem, thus suggesting that this transporter plays a vital role in the redistribution of 
Na+ between roots and shoots. The transporter has also been suggested to have abil-
ity of preventing Na+ to reach the photosynthetic tissues (Shi et al. 2002; Olias et al. 
2009). The unloading of Na+ from photosynthetic organs and its recirculation to 
roots have also suggested as a mechanism imparting salinity tolerance to crop 
plants (Davenport et al. 2007). The high-affinity HKT transporters are reported to 
be involved in this mechanism from several crop plants (Garciadeblás et al. 2003; 
Ren et al. 2005).

Different studies relating to physiological and molecular mechanisms/processes 
have identified the channels and transporters involved in the tolerance mechanisms 
to elevated salt levels in various plant species. These channels and transporters are 
the passages for the ions required for cellular function related to ionic toxicity.

It is now known that HKT1 transporter-mediated salinity tolerance is too much 
complex than expected. To infer the role of these transporters, Chen et al. (2017) 
evaluated the correlation between the activity of two Mg2+ transporter, i.e., OsMGT1 
and OsHKT1. It was observed that OsMGT1 mutants accumulated excessive 
amount of Na+ with OsHKT1 mutants. The expression of OsMGT1 different plant 
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parts such as parenchyma cells in xylem and phloem and leaf sheath tissue spatially 
overlapped with the expressions OsHKT1 (Kobayashi et al. 2017). These findings 
regarding the co-expression of these transporters added valuable information toward 
understanding complex Na+ regulation mechanisms at the organismal level. The 
recent findings of Kobayashi et al. (2017) and Chen et al. (2017) cleared that nodes 
and sheaths have an imperative role in avoiding ion toxicity in the reproductive 
organs of plant species. The restricted transport of Na+ to older leaves is a typical 
mechanism of salinity tolerance in plants (Cotsaftis et  al. 2012); however, this 
mechanism vanished in OsMGT1 mutants (Chen et al. 2017). These findings sug-
gest that the fine-tuning of HKT1 activity is mediated by OsMGT1 mutants. Thus, 
it is noteworthy to determine the cell-specific expression and functions/roles of 
OsMGT1 mutant at later stages, particularly reproductive development of the crop 
plants. The OsHKT1 is overexpressed during reproductive developmental stage of 
crop plants, particularly in node I (Kobayashi et al. 2017). It is obvious from the 
abovementioned both studies (Chen et al. 2017; Kobayashi et al. 2017) that nodes 
function as fences where OsMGT1 regulates the gating of OsHKT1 in a spatiotem-
poral manner to limit the ion toxicity.

Different cation channels which are nonselective (NSCC) are indulged in the uni-
directional intracellular Na+ influx. The members of NSCC, including HAK/KUP/
KT and AKT1, are the channels having higher affinity for K+ acquisition, whereas 
the low-affinity acquisition is mediated by different cation transporters including 
cation-Cl– cotransporter and high-affinity K+ transporter (HKT1 and HKT2) (Plett 
and Møller 2010; Zhang et al. 2010; Kronzucker and Britto 2011). Although NSCCs 
and HKT1 transporters are main mediators of Na+ uptake, their comparative contri-
bution is ambiguous (Roberts and Tester 1997; Amtmann and Sanders 1998; 
Demidchik and Maathuis 2007). Among two classes of HKT proteins, HKT1 is more 
selective for Na+, while HKT2 proteins exhibit higher K+ selectivity than Na+ or 
remain nonselective (Hauser and Horie 2010; Lan et al. 2010; Mian et al. 2011). Ali 
et al. (2012) have recently identified a HKT1 family transporter having higher K+ 
selectivity than Na+ from Thellungiella sp. The SOS1 Na+/H+ antiporter controls the 
Na+ efflux across the plasma membrane. The antiporter has phylogenetic similarity 
with mammalian NHE and bacterial NhaP Na+/H+ antiporters (Zhu 2002, 2003; 
Pardo and Rubio 2011; Kronzucker and Britto 2011). The Na+ efflux to the apoplast 
is mediated by SOS1 against the electrochemical potential by secondary active trans-
port driven by the H+ gradient across the plasma membrane.

17.5  Anion Uptake, Mechanisms, Transporters Involved, 
and Role of Ion Channels

The anions are more prevalent than cations in the soil; however, the transport mech-
anisms of anions are less understood than cation transport mechanisms both under 
normal soil conditions and elevated salt levels. The Cl− transport mechanisms are 
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also less discussed than cations for plant mineral nutrition as well. The Cl− performs 
several mechanisms such as enzyme activities’ regulation in cytoplasm acting as an 
important cofactor in photosynthesis and counteranion stabilizing membrane poten-
tial and also regulates turgor and pH. Thus it is considered as an important micronu-
trient for plant growth (Tyerman 1992; Marschner 1995; Teodoro et al. 1998; Xu 
et al. 1999; White and Broadley 2001). The higher amounts of Cl− are toxic for crop 
plants. The critical toxicity level of Cl− is known to be 4–7 and 15–50 mg g−1 dry 
weight for Cl−-sensitive and Cl−-tolerant species, respectively (Xu et al. 2000). The 
most dominant ions in NaCl-affected soils are Na+ and Cl−, which at higher concen-
trations are toxic for plant species. However, some of the plant species are able to 
better tolerate Na+ transport than Cl−, while others have better control on Cl− trans-
port (Munns and Tester 2008). The differential salt tolerance level of plant species 
has strong correlation with Cl− transport and exclusion from shoots. Different 
legume species such as Trifolium pratense (Winter 1982; Rogers et  al. 1997), 
Medicago sativa (Sibole et  al. 2003), Glycine max (Luo et  al. 2005), and Lotus 
(Teakle et al. 2006, 2007) have higher tolerance level to salinity and thus can better 
exclude Cl− than nonleguminous species. Similarly, some woody species, such as 
Pinus banksiana (Franklin and Zwiazek 2004), Citrus reticulata, and Vitis vinifera 
(Sykes 1992; Romero-Aranda et al. 1998; Moya et al. 2003), also have better con-
trol over Cl− transport and exclusion.

The focus of research dealing with salinity tolerance has been to maintain favor-
able K+/Na+ ratio through establishing selectivity between Na+ and K+. Several spe-
cific transport systems, or combination of selective transporters at different 
membranes as well as different cells alongside the transport pathways through root 
to shoot, are related to Na+ and K+ selectivity (Hua et al. 2003; Horie et al. 2005; 
Volkov and Amtmann 2006; Apse and Blumwald 2007; Byrt et al. 2007). A resem-
bling mechanism might be present for the exclusion or selectivity of Cl− at least for 
major macronutrient anions (NO3

−, SO4
2−) and organic anions. However, the mech-

anisms and transporters mediating the Cl− exclusion and or the pathways involved 
are not well-studied until now. Several micronutrients impart salinity tolerance to 
crop plants, which might be attributed to the activities of transporters and selective 
channels (Grattan and Grieve 1998). The NO3

− is the most prevalent univalent anion 
in soils under salinity-free conditions; therefore it must be focused to understand 
Cl− and salinity tolerance (Fricke et  al. 1994; Frachisse et  al. 1999). There are 
numerous anion channels having higher affinity and more selective to NO3

− than 
Cl− (Roberts 2006). Thus the NO3

− in growth media could decrease the concentra-
tion of Cl−concentration in (Abdolzadeh et al. 2008; Gimeno et al. 2009; Song et al. 
2009). The NO3

−/Cl− balance is akin of K+/Na+ balance or interactions as well as 
selectivity for Cl− efflux mechanisms.

Charge balance is another subject which has not been sufficiently addressed and 
correlated with the comparative roles of Cl− and Na+ in salinity tolerance. For salin-
ity tolerance the movement and net charge must be in equiliburium by the opposite 
ions in each compartment to reach the similar charge in each section. If Cl− uptake 
is higher, then a cation (e.g., Na+) uptake or exclusion of anion must balance this 
charge from Cl− perspective. The potential anions which could balance this charge 
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are not readily moved out as these are related to nutrition (e.g., NO3
−) or carbon 

balance (e.g., malate). However, from Na+ viewpoint, addition to the opposite of 
abovementioned mechanisms, either Cl− or K+ might be excluded (Shabala et al. 
2006). This exclusion is true in a sense if Na+ substitutes K+ role in vacuole and 
concentration of K+ in the cytoplasm is retained below or equal to adequate limits 
(Carden et al. 2003). The voltage changes across the membrane eventually regulate 
charge balance, which then impacts the driving force on counterions, effectually as 
a self-regulating system. The type, nature, and selectivity of transporters present at 
the membrane barriers as well as their response to voltage changes in the membrane 
eventually determine the nature of the charge balance. These responses are also 
important for the energy needs of transport (Britto and Kronzucker 2009). Plett and 
Møller (2009) are referred for the further readings on Na+ transport mechanisms.

Various aspects of anion transport have been covered in detail by several reviews 
(Roberts 2006; De Angeli et al. 2009). However, there has been lacking information 
on the Cl− transport mechanisms and their role in salinity tolerance (White and 
Broadley 2001). Salinity tolerance of different plant species is imparted by a num-
ber of traits including osmotic stress tolerance, compatible solute accumulation, and 
tolerance to oxidative stress. Several reviews have described the traits imparting 
salinity tolerance in various crop species (Bartels and Sunkar 2005; Munns 2005; 
Flowers and Colmer 2008; Munns and Tester 2008). In summary, not only cation 
uptake and balance is essential for salinity tolerance, but anions also play an integral 
role. Thus studying the anion uptake mechanisms, regulation of anions, transport-
ers, and channels involved in transport of anions should be the focus of salinity 
tolerance studies to be conducted in the future.

17.6  Ion Efflux at the Plasma Membrane

Maintenance of high tissue K+/Na+ ratio through regulating Na+ uptake and trans-
port in plant species has been interpreted in various studies for salinity tolerance. 
Thus, a high K+/Na+ has been considered as an important trait imparting salinity 
tolerance to crop plants (Shabala and Pottosin 2014). Since K+ participates in vari-
ous physiological processes; thus, this interpretation is logical. Moreover, higher 
concentration of Na+ often competitively disrupts K+ uptake, and increased K+ defi-
ciency under elevated salt levels severely impedes plant growth and development. 
Thus, it could be concluded that sensitivity of crop plants to salinity stress is because 
of K+ deficiency, especially keeping in view that concentration of K+ in soil is typi-
cally in the micromolar range (Very and Sentenac 2003). Several recent studies have 
focused the plant adaptation mechanisms to low K+ under elevated salts or salinity- 
free conditions. Hence, these mechanisms must be explored to better understand 
salinity tolerance in crop plants. The studies focusing on these mechanisms have 
concluded that sufficient or higher K+ availability imparts salinity tolerance to crop 
plants, while low K+ availability in soils makes salinity stress highly devastating for 
crop plants.
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The Na+-induced K+ exclusion form root and leaf cells is the most obvious effect 
of salinity stress on K+ homeostasis (Wang et al. 2009; Demidchik et al. 2014). The 
K+ exclusion has been concluded to be the exclusive result of Na+ entering into the 
cytoplasm. The Na+ inclusion depolarizes membrane potential below the resting 
potential. This depolarization consequently activates K+ outward rectifier channels, 
such as GORK (guard cell outward rectifying K+ channel), through which K+ is 
excluded from the plant cells and tissues. Thus, maintenance of higher inside nega-
tive potential through prevention of membrane depolarization for enhancing intra-
cellular K+ retention (inhibition of K+ efflux) (Falhof et al. 2016) would be a salinity 
tolerance mechanism of crop plants. Recent studies have identified that retention 
capacity of intracellular K+ is a crucial mechanism for salinity stress tolerance 
(Janicka-Russak and Kabała 2015). The PM H+-ATPases and tonoplast H+-ATPases/
H+-PPases, K+ transporters, NHX antiporter, and SOS1 proteins have been consid-
ered as vital players in the process of subsiding salinity stress and negative effects 
of low K+ availability on crop plants (Pottosin and Dobrovinskaya 2014; Janicka- 
Russak and Kabała 2015; Falhof et  al. 2016). It is concluded that K+ efflux and 
influx mechanism are really crucial for salinity tolerance in crop plants. Thus, 
equipping crops with these mechanism will assure survival and sustained produc-
tion under elevated salt levels in the soil.

17.7  Vacuolar Compartmentation and Ion Homeostasis

The ability of different plant species to tolerate elevated salinity levels is determined 
by the Cl− partitioning between different types of roots and shoots cells. Some evi-
dence report that Cl− is accrued in the epidermis cells of leaves, which reduces the 
Cl− toxicity photosynthetically important mesophyll cells. The differential ability to 
exclude Cl− from mesophyll cells has been observed in two barley cultivars where 
salt-tolerant genotype was better able to exclude Cl− than salt-sensitive genotype 
(Huang and Van Steveninck 1989). A more sophisticated analyses conducted by 
using single-cell-sampling techniques revealed that Cl− accumulation increased in 
both epidermal and mesophyll cells with rising NaCl (Fricke et al. 1996). It was also 
concluded that photosynthesis in salt-stressed plants was mildly affected, which 
gives rise to the doubts that Cl− accumulation in epidermal cells is linked with salin-
ity tolerance. Fricke et al. (1996) also revealed that the Cl− accumulation in epider-
mal cells was three times higher than the Cl− accumulation in mesophyll cells. 
However, regardless of this fact, Na+ and K+ accumulation was similar in both types 
of cells. James et al. (2006) studied the accumulation of Cl− in two barley cultivars 
differing in a salinity tolerance. It was concluded that Cl− preferred epidermis cells 
over mesophyll cells for accumulation. Similar pattern of Cl− accumulation was 
observed in both sensitive and tolerant cultivar, which indicates that Cl− accumula-
tion in a specific type of cells could not be concluded a major trait conferring salin-
ity tolerance in crop plants.
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The Cl− accumulation in salt glands or bladders is one other form of intercellular 
compartmentation. Halophyte group of crop plants possesses these special struc-
tures, which can store Cl− (and even Na+), helping plants to withstand the negative 
effects of elevated salt levels. The secretion of Cl− through salt glands can be con-
cluded as an important salinity tolerance trait as >20% Cl− in the leaves of Leptochloa 
fusca under 100 mm NaCl level was secreted by salt glands (Jeschke et al. 1995). 
Different studies have focused the salt glands possessed by some halophytic spe-
cies, i.e., Bienertia sinuspersici and Limonium sinense (Ding et al. 2009; Park et al. 
2009). A cation-chloride cotransporter (CCC) was localized to leaf trichomes and 
hydathodes in Arabidopsis (Colmenero-Flores et  al. 2007). The ultimate role of 
CCC is still unclear, however, investigating whether CCC are also present in the slat 
glands of halophyte species to infer the possible Cl− efflux (and Na+) from leaves.

The salinity tolerance of the crop plants could not always be attributed to the low 
concentrations of Cl− and Na+ in the shoots. The Cl− tolerance largely varies among 
genotypes of a same species. Therefore, salinity tolerance could not be attributed to 
the shoot Cl− concentration. The Cl− and Na+ are excluded by most of the plant spe-
cies up to a certain level (90–98%; Munns 2005); however, effective Cl− and Na+ 
sequestration in the vacuole to prevent them to accumulate at toxic levels will impart 
ultimate salinity tolerances to crop plants. Even the halophyte plant species are 
unable to elevate levels of cytoplasmic Cl−; thus they have evolved strategies which 
effectively sequester Cl− into vacuoles to control the accumulation of Cl− and other 
ions through turgor-driven growth (Flowers et al. 1977; Glenn et al. 1999).

The direct measurements of Cl− fluxes and its concentration in the vacuoles of 
the plants intact from salinity through experimental studies are difficult; however, 
there exist some estimates conducted through X-ray microanalysis, intracellular 
ion-sensitive microelectrodes, tracer compartmental analysis, or Cl−-sensitive fluo-
rescent probes (Hajibagheri and Flowers 1989; Felle 1994; Britto et  al. 2004; 
Lorenzen et al. 2004). All these estimates have concluded that the vacuole of plant 
cells are able to accumulate Cl− up to 500 mm (Cram 1973).

There have been some indirect confirmation that efficient Cl− sequestration in the 
vacuole imparts salinity tolerance to some plant species. The salinity-tolerant geno-
types of citrus, grapevine, and Lotus had low Cl− in shoots, while accumulated more 
Cl− in the roots compared to their respective sensitive genotypes (Storey and Walker 
1998; Storey et al. 2003). These findings suggest that the tolerant genotypes effi-
ciently compartmentalized the Cl− in root vacuoles. Some avocado rootstocks have 
been found to possess high amount of Cl− in the leaves, which has been linked to 
their salinity tolerance (Xu et al. 2000). Similarly, some lupin cultivars also accu-
mulated more Cl− in the leaves for salinity tolerance (Van Steveninck et al. 1982).

Some direct comparison among different genotypes has concluded that effective 
compartmentation of intracellular Cl− imparts salinity tolerance to crop plants. 
Hajibagheri et al. (1989) compared two maize genotypes differing salinity tolerance 
for cytoplasmic Cl− concentrations. It was concluded that sensitive genotypes accu-
mulated more root cytoplasmic Cl− concentrations than tolerant genotype. The 
accumulated amount of Cl− was comparable to accumulated amount of Cl− (350 mm 
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for barley at 100 mm NaCl) in barley genotypes (Britto et al. 2004). Flowers and 
Hajibagheri (2001) compared two barley genotypes having differential ability of 
salt tolerance through X-ray microanalysis. It was concluded that cytoplasmic and 
vacuolar concentrations of Cl− (and Na+) were similar; however, the tolerant barley 
cultivar accumulated half of the Cl− concentration accumulated by the sensitive 
genotype. The higher concentration of ions in the cell wall of sensitive genotype 
reduced turgor, which ultimately resulted poor growth. To assess whether vacuolar 
Cl− sequestration is involved in salinity tolerance, further studies are needed focus-
ing on the comparison of genotypes having differential salt tolerance level, but hav-
ing similar leaf or root Cl− concentrations.

17.8  Ion Sensing and Gene Defense Activation

Several genes imparting salinity tolerance to crop plants have been identified 
through the use of genetic damage or gain of function methods (Zhu 2002, 2003; 
Apse and Blumwald 2007; Pardo and Rubio 2011; Peleg et al. 2011). The identified 
genes encode transport determinants mediating Na+ homeostasis (Plett and Møller 
2010; Pardo and Rubio 2011; Peleg et  al. 2011). These identified determinants 
mainly from glycophyte plant species enhance the salinity tolerance capabilities of 
halophytic species as well as crop plants (Oh et al. 2010, 2012; Dassanayake et al. 
2011a, b; Munns et al. 2012). There has been a lot of conversation on the underlying 
mechanisms and determinants imparting salinity tolerance to halophytes and glyco-
phytes. There are emerging evidence which provide a degree of systematic clarifica-
tion that why halophytes are better able to tolerate elevated salt levels (Amtmann 
2009; Dassanayake et al. 2011b; Oh et al. 2012).

The halophytic plant species possess “superior” alleles and novel loci involved in 
Na+ homeostasis and salinity tolerance (Edelist et  al. 2009; Dassanayake et  al. 
2011a, b; Oh et al. 2012). There have been several critical questions relating to Na+ 
homeostasis in halophytic plant species. These critical questions include the follow-
ing: Do halophytes have unique transport determinants? Do halophytes have orthol-
ogous determinants with diverse actions? And do halophytes differentially control 
transport protein action or expression of encoding genes to increase salinity toler-
ance (Oh et al. 2009, 2012; Plett and Møller 2010; Dassanayake et al. 2011b)? The 
rapidly advancing omics technologies such as massively parallel sequencing, whole 
genome sequencing, and sequencing by genotyping as well as phenotyping could 
facilitate to find the answers of all these critical questions providing valuable 
insights on the salinity tolerance mechanisms of halophytic plant species (Lin et al. 
2004; Takeda and Matsuoka 2008; Dassanayake et al. 2011b; Oh et al. 2012).

The well-known and suggested salinity tolerance signaling pathway includes 
facilitation of ionic and osmotic homeostasis, growth regulation, and regulation of 
development (Zhu 2002). The SOS proteins, phospholipid, ROS, ABA, cytokinin, 
Ca2+, hyperosmotic and osmotic solute, and kinase/phosphatase pathways are the 
probable pathways integrated to cope salinity tolerance/acclimation in plant species, 
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which are mainly concluded from the studies conducted on Arabidopsis (Gong et al. 
2001; Zhu 2002; Qin et al. 2011; Reddy et al. 2011; Suzuki et al. 2012). It has been 
described that several determinants are governed and regulated by abovementioned 
networks and various transcriptomic and proteomic analyses have identified that 
these determinants play a crucial role in salinity tolerance of crop plants (Zhu 2002; 
Golldack et al. 2011; Pérez-Alfocea et al. 2011; Singh et al. 2011; Zhang et al. 2012).

The Na+ homeostasis, as described above, is mediated by a highly defined SOS 
Ca2+ signaling pathway (Zhu 2002, 2003). The Na+ signal perception is unclear; 
however, Ca2+ is known to be a secondary messenger in signal transduction (Zhu 
2002, 2003; Conde et al. 2011). The activates of SOS1 Na+/H+ antiporter are regu-
lated by SOS pathway, which facilitates Na+ efflux across the plasma membrane 
(Zhu 2002, 2003; Pardo and Rubio 2011). Calcineurin B and neuronal Ca2+ sensor- 
like protein SOS3 decode the NaCl-induced cytosolic Ca2+ increase (CBL4). The 
CBL4 is a myristoylated protein with EF-hand Ca2+-binding places (Zhu 2002, 
2003; Gong et al. 2004; Sánchez-Barrena et al. 2005; Tracy et al. 2008; Pardo and 
Rubio 2011). Ca2+-activated SOS3 interacts with the auto-inhibitory domain of 
SOS2 (CIPK24), a member of the SnRK family (Zhu 2002, 2003; Gong et al. 2004; 
Cosello et al. 2011; Kulik et al. 2011; Pardo and Rubio 2011). SOS3 binding to the 
SOS2 auto-inhibitory domain triggers kinase action and enables localization of the 
SOS2-SOS3 complex (Zhu 2002, 2003; Sánchez-Barrena et  al. 2007; Pardo and 
Rubio 2011). SOS2 then acquaintances with SOS1 Na+/H+ in the plasma membrane, 
phosphorylating the transporter and triggering Na+ exclusion (Zhu 2002, 2003; 
Martínez-Atienza et al. 2007; Pardo and Rubio 2011; Quintero et al. 2011). Several 
genes and gene networks are being identified with each passing day with techno-
logical advancements. Thus a comprehensive understanding of nutrient homeostasis 
requires sound knowledge of different mechanisms involved. Although, several 
mechanisms are discussed in this chapter, still gaps exist which need to be filled 
through comprehensive studies on salt tolerance and nutrient homeostasis in plants. 
Moreover, the studies focusing on mediating nutrient homeostasis could provide 
valuable insights on inducing salinity tolerance in plant species through the manipu-
lation of nutrient homeostasis.
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Chapter 18
Ion Homeostasis and Antioxidant Defense 
Toward Salt Tolerance in Plants
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Abstract The increase of salinity in the soil represents a great threat at worldwide 
level since it reduces the plant growth and the productivity. The main problems of 
salinity are related to the osmotic effect and specific ions. The changes in cytosolic 
Ca2+ concentration are supplied from the apoplast or internal stores like mitochon-
dria or vacuoles, and they educe several purposes at cellular levels such as signal 
transduction in plant-defense responses against stresses. Even though the Cl− move-
ment response to salt stress is less investigated, it is well known that their entrance 
through plasma membrane is related with a raising external Cl− concentration and 
the relocation of Cl− from the cytoplasm into the vacuole of root cells ends with 
delimitated concentrations. Due to the chemical uniformity between Na+ and K+, 
there is a high competence between them for binding sites in different physiological 
processes such as enzymatic reactions, protein synthesis, and ribosome functions; 
therefore, the cellular maintenance of Na+/K+ homeostasis is essential to overcome 
the salinity in plants. All of these responses are triggered by plants to maintain the 
ion homeostasis because it is an essential process for growth during salt stress. Also, 
plant cells are responsible for the reduction of toxic ions and the accumulation of 
crucial ions to maintain the ion homeostasis. Antioxidant defense system of plants 
is regarded as one of the vital mechanisms of salt stress tolerance by which plants 
cope with oxidative stress. Several recent studies indicated that both ion homeosta-
sis and antioxidant defense systems are closely associated with salt tolerance. This 
review will be focused on current progress of nutrient homeostasis and antioxidant 
defense in plants under increasing saline conditions.
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18.1  Introduction

Salinity is an abiotic stress that originates fields unproductive reducing the plant 
growth and yield. It is estimated that 830–950 million hectares in the world is altered 
(Teakle and Tyerman 2010; García-Caparrós et al. 2017).

The effects of this abiotic stress in plants can be classified in two main ways: an 
osmotic effect related to the difficulties in the water uptake by roots due to the high 
concentrations of salts in the medium and an ionic effect related to the repression of 
many physiological and biochemical processes by the presence of toxic ions (Munns 
and Tester 2008). Excess creation of reactive oxygen species (ROS) and thus oxida-
tive stress is one of the early responses and signaling episodes in plants under salin-
ity conditions (Hasanuzzaman et al. 2013). Homeostasis is the trend of a cell or 
organism to avoid perturbations in their key biochemical and physiological pro-
cesses as a response to adverse environmental conditions; therefore nutrient homeo-
stasis in a plant is essential for its growth and is depending on the ion fluxes 
(Nieves-Cordones et al. 2012).

It is well known that under non-saline conditions, cells have to keep high concen-
trations of K+ and low concentrations of Na+, but under saline conditions this trend 
is the converse. Both ions are crucial in several physiological processes such as the 
activation of enzymes and the preservation of membrane potential and osmotic 
potential of the cell for cell volume adjustment and cell function (Hajiboland 2012).

To avoid these harmful effects, plants have triggered different biochemical and 
physiological mechanisms in order to reduce the concentration of toxic ions. These 
mechanisms include the ion homeostasis through the performance of different 
transporters and the accumulation of antioxidative enzymes (García-Caparrós et al. 
2016). Approaches in enhancing antioxidant defense in plants have been conceding 
as one of the vital tasks for plant biologists to produce salt-tolerant crop varieties. 
The main subject of this chapter will be the ion homeostasis and the antioxidant 
defense system in plants under saline conditions.

18.2  Calcium Homeostasis

Calcium is considered as a crucial plant nutrient since it is involved in the mainte-
nance of membrane integrity in cell walls and membranes and the control of plant 
development (Bose et  al. 2011). Nevertheless, this element can be destructive at 
high concentrations due to its capacity to ligand binding with proteins, membranes, 
and organic acids which generates combination of proteins and nucleic acids and 
precipitation of phosphates resulting in changes of lipid membrane composition 
(Case et al. 2007).

Calcium is incorporated from the soil medium through the roots and translocated 
via xylem to the stem. The movement of this ion in the xylem is high, but the uptake 
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of Ca2+ is restricted in apical roots where Casparian band is not present or disorga-
nized due to the unsuberization of endodermal cells (White and Broadley 2003).

18.2.1  Calcium Transporters

The transporters of Ca2+ (Table 18.1) in higher plants can be categorized as:

18.2.2  Ca2+-ATPases

Ca2+-ATPases are included on the superfamily of P-type ATPases and they require 
energy supplied by ATP. These transporters operate with submicromolar concentra-
tions of Ca2+ and can be classified in two groups: P2A-ATPase [or ER-type Ca2+-
ATPase (ECA)] and P2B-ATPase [or autoinhibited Ca2+-ATPase (ACA)]. The 
former can be located in the plasmatic membrane besides in endomembranes, while 
the latter is exclusively found in endomembranes (Møller et al. 2010). The process 
of ATP hydrolysis occurs if Ca2+ has been tied up in the membranous region of the 
Ca2+-ATPase. As a consequence, under salt stress, the presence of Na+ reduces the 

Table 18.1 Calcium transporters under saline conditions

Species Name
Salinity dose 
and duration Function References

Glycine soja GsACA1, P-type 
IIB Ca2+-ATPase

200 mM 
NaCl, 
3 weeks

Influx of Ca2+ into the 
cytosol

Sun et al. (2016)

Oryza sativa OsACA6, P-type 
IIB Ca2+-ATPase

200 mM 
NaCl, 
3 weeks

Influx of Ca2+ into the 
cytosol

Huda et al. (2013)

Arabidopsis 
thaliana

AtNCL, (CAXs) 150 mM 
NaCl, 1 week

Maintenance of Ca2+ 
homeostasis

Wang et al. (2012)

Oryza sativa OsCAX4 150 mM 
NaCl, 1 week

Vacuolar Ca2+ 
transporter

Yamada et al. 
(2014)

Glycine soja GsCBRLK, 
calcium/
calmodulin

200 mM 
NaCl, 
3 weeks

Protein 
phosphorylation

Yang et al. (2010)

Oryza sativa OsMSR2, calcium/
calmodulin

150 mM 
NaCl, 
3 weeks

Salt tolerance through 
ABA-mediated 
pathways

Xu et al. (2011)

Arabidopsis 
thaliana

Calcineurin B-like 
10

200 mM 
NaCl, 1 week

Regulate salt export 
across the plasma 
membrane

Kim et al. (2007)

Arabidopsis 
thaliana

Calcineurin B-like 
10

40 mM NaCl, 
3 weeks

Independence from 
SOS pathway

Monihan et al. 
(2016)
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binding of Ca2+ to the plasma membrane resulting in an efflux of Ca2+ reducing the 
inner supplies from endomembranes (Morth et al. 2011).

18.2.3  Ca2+-Exchangers (CAXs)

Cation proton/exchangers (CAXs) are another kind of energy ion transporters con-
trolled by a proton (H+) gradient with diverse physiological roles such as the inclu-
sion of Ca2+ in the vacuole from the cytosol of a cell (Pittman and Hirschi 2016). 
The homeostasis of Ca2+ in Arabidopsis is controlled by six genes (AtCAX1 to 
AtCAX6) (Manohar et al. 2011). CAX1 may be controlled via an N-terminal auto-
inhibitory domain, which is bound to an adjacent region within the N-terminus (Mei 
et  al. 2007). Also, there are other processes of adjustment like the generation of 
CAX complex through combination between CAX1 and CAX3 (Zhao et al. 2009), 
phosphorylation (Pittman et al. 2002), and the adjustment of pH (Zhao et al. 2008). 
This regulation of pH levels plays a crucial role in the activation of defense response 
mechanisms under salt stress conditions (Kader and Lindberg 2010).

18.2.4  Calmodulin

Calmodulin (CaM) is a prototypical Ca2+-sensor protein formed by a couple of 
Ca2+-binding sites named EF hands responsible for the control of different biologi-
cal processes. Calmodulin is located in different organelles like the apoplast, 
nucleus, and endoplasmic reticulum (Zheng et al. 2015). It is well documented that 
CaM can change its conformational form from globular structure to an open confor-
mation allowing the combination with proteins mainly due to the effect of Ca2+ 
binding (Yamniuk and Vogel 2005). CaM is considered as a main controller in the 
resistance to salt and osmotic effects since it simulates the activity of glyoxalase I, 
an enzyme well related to the capacity of resilience to salinity conditions in plants 
(Kaur et al. 2014).

18.2.5  Calcineurin B-Like Proteins

Calcineurin B-like sensors known as CBLs are proteins of small size formed by two 
globular domains joined by a short linker. Each domain is composed of two EF-hand 
motifs as Ca2+-binding domain, and they affect only a family of Ser/Thr protein 
kinases (Zhang et al. 2014). These proteins may function as positive regulators of 
salt responses as reported by Li et al. (2013) in Arabidopsis thaliana.

P. García-Caparrós et al.



419

18.2.6  Calcium Influx and Efflux

The cytosolic Ca2+ increases under increasing saline concentrations and the mainte-
nance of an adequate cytosolic Ca2+ concentration are essential to preserve the ion 
homeostasis in the plant. The Ca2+ influx is controlled by two permeable channels: 
depolarization-activated (DACCs) and hyperpolarization-activated (HACCs). 
Considering their qualities in the process of activation, Ca2+ channels can modify 
the variables of Ca2+ influx and the resulting Ca2+ signature (Demidchik and 
Maathuis 2007). As a result, plants are able to render variable signs into different 
Ca2+ signatures (Miedema et al. 2008).

The main aims of Ca2+ efflux mechanisms are the preservation of Ca2+ concentra-
tion in the cytosol and the replenishment of Ca2+ stores after Ca2+ concentration in 
the cytosol signaling is completed. The process of Ca2+ efflux is controlled by Ca2+-
ATPases and Ca2+-exchangers (CAXs). It is well known that CAXs are responsible 
for the decrease of Ca2+ concentration after signalization while Ca2+-ATPases are 
necessary to conserve the low concentration of Ca2+ (Bose et al. 2011).

18.3  Chloride Homeostasis

Chloride is an essential micronutrient responsible for different roles like synchroni-
zation of enzymatic activities in the cytoplasm, cofactor in photosynthesis, involve-
ment in pH regulation, and regulation of membrane potential and turgor through the 
counteraction of anions (Teakle and Tyerman 2010). Also, it is a plant micronutrient 
with regulatory roles in transpiration, nutrition, and growth (Li et al. 2017).

Plants uptake chloride from soil solution to the Cl− anion through an energetic 
process. Previous studies have reported that the movement of Cl− transport through 
the cell membrane can be performed in two ways: the former requires a 2H+/Cl− 
symporter and the latter takes place via antiport using hydroxyl ions activated by 
ATP. The activation of ATP depends on the pH gradient generation by Cl−; this is 
due to dissipation by the anions of the membrane potential produced by transmem-
brane transport of protons (White and Broadley 2001).

18.3.1  Chloride Transporters

The transport of chloride in higher plants can be performed through different trans-
porters (Table 18.2).

18 Ion Homeostasis and Antioxidant Defense Toward Salt Tolerance in Plants
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18.3.2  Chloride Channel (CLC) Proteins

CLCs are responsible for the regulation of vacuolar sequestration of Cl− and NO3
−, 

which makes them possible roles in the regulation of Cl− homeostasis. In Arabidopsis, 
researchers have reported six homologues known as AtClC-A to AtClC-F. AtClC-A 
is responsible for outwardly rectifying and strongly NO3

−-selective currents. In this 
homologue, there are two glutamate residues known as “gating” and “proton.” It is 
important to highlight that the proton residue confers to itself the possibility to work 
as a NO3

−/H+ antiporter. The high synchronicity between AtClC-A and AtClC-B 
(87% similarity) and the maintenance of critical residues result in homologues with 
the same capacities (Zifarelli and Pusch 2010).

AtClC-C is another homologue placed in the tonoplast and responsible for the 
movement of Cl− through the tonoplast as reported by Jossier et al. (2010).

AtClC-D together with H+-V-ATPase is responsible for the maintenance of a cor-
rect level of acidification in the trans-Golgi network (TGN) through the flux of 
counteranions like Cl− and NO3

− (Von der Fecht Bartenbach 2007).
AtClC-E and AtClC-F are more related to prokaryotic chloride channels than the 

other homologues in Arabidopsis. These homologues are placed in thylakoids and 
cis-Golgi vesicles (Marmagne et al. 2007).

18.3.3  Electroneutral Cation-Chloride Cotransporters (CCCs)

CCCs are uncharged transporters mediating responsible for the delivery of Cl− con-
nected with K+ and/or Na+ across the plasma membrane (Colmenero-Flores et al. 
2007). CCCs can be divided into three members: the first members named as KCC 
(K+:Cl− cotransporters), the second members named as NCC (Na+:Cl− cotransport-
ers), and the last member named as NKCC (Na+:K+:Cl− cotransporters). Different 

Table 18.2 Chloride transporters under saline conditions

Species Name
Salinity dose 
and duration Function References

Arabidopsis 
thaliana

AtCLCc 50 mM NaCl, 
3 weeks

Regulation of stomatal 
movements

Jossier et al. (2010)

Arabidopsis 
thaliana

AtCLCg 75 mM NaCl, 
3 weeks

Cl− homeostasis Nguyen et al. (2016)

Glycine max GmCLC1 150 mM NaCl, 
6 days

Regulation of Cl− transport Wei et al. (2016)

Glycine max GmCLC1 125 mM NaCl, 
1 week

Regulation of Cl− transport Li et al. (2006)

Vitis vinifera VviCCC 100 mM NaCl, 
6 weeks

Salt exclusion of Cl− from 
the root xylem

Henderson et al. (2015)
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studies in ion transport have reported that all the members have a high demand of 
both Cl− and at least one cation (Na+ and/or K+) (Colmenero-Flores et  al. 2007; 
Köhler and Raschke 2000) suggesting that CCCs could be a feasible aspirant gene 
for xylem retrieval of Cl− under saline conditions.

18.3.4  Chloride Influx and Efflux

Under saline conditions, it is essential to control the influx and efflux of chloride in 
plants. Chloride influx is an active process mediated by high-and low-affinity Cl−/
H+ symport transporters. The process of Cl− efflux is passive where the movement 
of anions from the cytoplasm to the external medium is through anion efflux chan-
nels (Brumos et al. 2010). As a consequence, the building up of Cl− will be related 
to the unidirectional active influx and passive efflux (Teakle and Tyerman 2010).

18.4  Potassium Homeostasis

Potassium is a mineral nutrient well demanded by plants and participates in essen-
tial biological processes such as enzyme activation, membrane transport, anion neu-
tralization, and osmoregulation (Wang and Wu 2013). The soil solution has a 
concentration of K+ ranging from 0.025 to 5 mM (Maathuis 2009), but the needs of 
the plants are higher representing between 2% and 10% of K per dry weight (50–
250 mM), and as a consequence plants are effective on the management of a con-
tinuous cytosolic K+ concentration that varies between 100 and 200 mM (Britto and 
Kronzucker 2008).

The process of K+ uptake in plants can be performed through two different trans-
porters: high-affinity that function with low external potassium concentration 
(below 0.2 mM) and low-affinity that function with high external potassium concen-
tration (above 0.3 mM) (Nieves-Cordones et al. 2014).

18.4.1  Potassium Transporters

Potassium transporters (Table 18.3) are discerned in two major groups. The former 
group is comprised of (1) KUP/HAK/KT transporters, (2) HKT transporters, and 
(3) K+/H+ antiporters. The latter group is composed of three members of permeable 
channels: (1) Shaker-type potassium channels, (2) “two-pore” potassium channels, 
and (3) nonselective cation channels (NSCCs) (Benito et al. 2014).
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18.4.1.1  KUP/HAK/KT Transporters

KUP/HAK/KT transporters are placed in different organelles like the plasma mem-
brane and the tonoplast, and they are responsible for high- and low-affinity K+ 
uptake processes. This group of transporters is analogous to other K+ transporters 
like the transporter KUP in bacteria and the transporter HAK1  in fungus. These 
transporters are essential in nutrient acquisition and the management of the develop-
ment (Wang and Wu 2013).

18.4.1.2  HKT Transporters

HKT proteins are considered essential in the process of Na+ uptake and recirculation 
in plants subjected to saline conditions; thus they are important components of 
salinity tolerance in plants. These transporters can be classified in two categories 
according to their transport selectivity. The former category is known as Na+ uni-
porters, whereas the latter category can be Na-K symporters and also Na+ uniporters 
at high Na+ levels (Waters et al. 2013).

Table 18.3 Potassium transporters under saline conditions

Species Name
Salinity dose 
and duration Function References

Thellungiella 
salsuginea

TsAKT1 300 mM 
NaCl, 
2 weeks

Higher K+ specificity Ali et al. (2012)

Kandelia 
obovata

AKT1 400 mM 
NaCl, 15 days

Increase of K+ uptake Chen et al. (2013)

Suaeda salsa SsAKT1 150 mM 
NaCl, 1 day

Maintenance of K+ 
nutrition through low- 
affinity system

Duan et al. (2015)

Populus 
euphratica

PeTPK1 150 mM 
NaCl, 
3 weeks

Maintenance of K+ 
homeostasis

Wang et al. (2013)

Arabidopsis 
thaliana

HAK5 30 mM NaCl, 
18 days

Improvement of K+ 
acquisition

Nieves-Cordones 
et al. (2010)

Hordeum 
vulgare

HvHKT2;1 100 mM 
NaCl, 
2 weeks

Higher Na+ uptake and 
translocation to leaves

Mian et al. (2011)

Oryza sativa OsHKT2;2/1 100 mM 
NaCl, 18 days

Improvement of root K+ 
uptake

Oomen et al. (2012)

Solanum 
lycopersicum

LeNHX2 120 mM 
NaCl, 40 days

Improvement of K+ 
homeostasis

Huertas et al. (2013)

Hordeum 
vulgare

HvNHX4 150 mM 
NaCl, 4 days

Improvement of K+ 
homeostasis

Ershov et al. (2007)

Arabidopsis 
thaliana

AtCHX21 100 mM 
NaCl, 
4 weeks

Regulation of xylem Na+ 
concentration

Hall et al. (2006)
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18.4.1.3  K+/H+ Antiporters

These transporters belong to the family of cation/proton exchanger (CHX) (CPA2 
family) composed of 28 members. In the Arabidopsis genome, there are six K+ 
efflux antiporters from KEA1 to KEA6. Besides these transporters, in Arabidopsis 
there are other families such as CPA1 (monovalent cation: proton antiporter with 
eight members) and NhaD with two members (Wang and Wu 2013).

18.4.2  Potassium-Permeable Channels

18.4.2.1  Shaker-Type Potassium Channels

These channels are responsible for K+-selective voltage-gated currents under hyper-
polarized and depolarized potential conditions in the plasma membrane (Gambale 
and Uozumi 2010). They are classified in three groups according to their voltage 
reliance. The first group known as inward-rectifying channels (AKT1, KAT1, 
KAT2, and SPIK) is characterized by their activation through the hyperpolarization 
potential, and they participate in the process of K+ uptake. The second group known 
as outward-rectifying channels (SKOR and GORK) is identified by their activation 
through depolarization potential, and they are involved in the process of K+ efflux. 
The latter group known as weakly rectifying channels (AKT2/3) is denoted by their 
activation by hyperpolarization potential, and they play essential roles in the pro-
cesses of K+ uptake and K+ release based on the membrane potentials (Wang and 
Wu 2013).

18.4.2.2  “Two-Pore” Potassium Channels

These potassium channels show a high Ca2+ reliance and outward rectification and 
they are placed in the tonoplast. In the Arabidopsis genome, it is possible to find two 
groups of these channels like KCO-1P with one member and KCO2-P with five 
members (Shabala and Pottosin 2010). The understanding of how these channels 
participate in the salinity tolerance in plants is scarce. Nevertheless, Shabala and 
Pottosin (2014) reported the presence of one of these channels known as TPK5 
(KCO5) in the vacuole that participates in the maintenance of cytoplasmic K+ con-
centrations and/or the exchange of K+ for Na+.

18.4.2.3  Nonselective Cation Channels

The latter group of potassium-permeable channels is known as nonselective cation 
channels (NSCCs), and they are placed in different sites like the plasmatic mem-
brane and tonoplast. These channels have a higher preference for cations than anions 
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and they possess K+/Na+ selectivity ratios which range from 0.3 to 3. There are dif-
ferent reasons by which NSCCs can be blocked: depolarization and hyperpolariza-
tion initiation, weakly voltage, calcium initiation, and mechanosensitive, cyclic 
nucleotide-gated and glutamate-gated channels (Pottosin and Dobrovinskaya 2014).

18.4.3  Potassium Influx and Efflux

Under saline conditions, it is crucial to maintaining an adequate K+ flux in higher 
plants. The directional movement of K+ is controlled by the equilibrium potential 
(EK) and the membrane potential (Em) in cells. Considering the aforementioned, if 
the value of Em is more negative than EK, there is an influx of K+ through the chan-
nels, but if occurs the contrary (Em less negative than EK), then occurs an efflux 
from the inside of the cells. As a consequence, the process of K+ uptake requires that 
root cells present a value more negative of Em to ensure K+ influx and avoid K+ 
efflux under deficiencies of K+ (Sun et al. 2009).

18.5  Sodium Homeostasis

Sodium is a functional nutrient in plants involved in different metabolic functions 
due to the parallelism between sodium and potassium. These functions include 
being a cofactor in enzyme activation, the stabilization of the active conformation of 
enzymes and possible membranes, cytoplasmic volume regulation, energy conser-
vation across membranes, and the regulation of cytoplasmic pH (Pessarakli 2014). 
Nevertheless, an increase of sodium concentration can result in a destabilization of 
membranes and proteins affecting negatively fundamental processes like the divi-
sion and expansion in a cell, primary and secondary metabolism, and the homeosta-
sis of mineral nutrients (Hasegawa 2013).

It is well known that Na+ relocation from the root zone to the other organs of the 
plants takes place by flow mass controlled mainly by the pressure gradient (Taiz and 
Zeiger 2010). Thereupon, the movement of Na+ from the root zone to the xylem 
takes place via symplastic, apoplastic, or intercellular spaces until to the endoder-
mis with the Casparian strip which limits the apoplastic movement (Plett and Møller 
2010).
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18.5.1  Sodium Transporters

The main transporters of sodium (Table 18.4) in higher plants can be classified as:

18.5.1.1  HKT Transporters

The HKT (high-affinity potassium transporter) family is classified in two distinct 
groups in compliance with their delivery features. The principal distinctive charac-
teristic of these transporters is the conformational order of amino acids of the first 
pore domain (PD) (Platten et al. 2006). For instance, the conformational order (S-G- 
G-G) including a serine is representative of the members of the group I (HKT1), 
whereas in members of group II (HKT2), serine is replaced by guanine showing this 
order (G-G-G-G) (Maser et al. 2002). The presence of S or G in the pore domain 

Table 18.4 Sodium transporters under saline conditions

Species Name
Salinity dose 
and duration Function References

Oryza sativa OsHKT1;1 100 mM 
NaCl, 1 week

Reduction of Na+ 
accumulation in 
shoots

Wang et al. (2015)

Oryza sativa OsHKT1;4 100 mM 
NaCl, 
3 weeks

Na+ exclusion 
from leaf blades

Suzuki et al. (2016)

Sorghum bicolor SbHKT1;4 200 mM 
NaCl, 
2 weeks

Maintenance of 
Na+/K+ balance

Wang et al. (2014)

Hordeum vulgare HvHKT2;1 100 mM 
NaCl, 
4 weeks

Translocation of 
Na+ to the shoot

Mian et al. (2011)

Thellungiella 
salsuginea

TsHKT1;2 300 mM 
NaCl, 
2 weeks

Higher specificity 
by K+ instead of 
Na+

Ali et al. (2012)

Zygophyllum 
xanthoxylum

ZxNHX 50 mM NaCl, 
4 weeks

Maintenance of 
Na+/K+ 
homeostasis

Yuan et al. (2015)

Helianthus 
tuberosus

HtNHX1; 
HtNHX2

300 mM 
NaCl, 24 h

Mediation of 
Na+(K+)/H+ 
exchange

Zeng et al. (2017)

Mesembryanthemum 
crystallinum

McNHX2 500 mM 
NaCl, 1 week

Na+ homeostasis Villicaña et al. (2016)

Triticum aestivum TaSOS1, 2, 3 200 mM 
NaCl, 
8 weeks

Active efflux of 
toxic Na+ from the 
cytosol

Sathee et al. (2015)

Populus daviana × 
Populus bolleana

PtSOS2 300 mM 
NaCl, 
3 weeks

Na+ extrusion Yang et al. (2015)
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results in changes in the cation specificity of the transporter. As a consequence, the 
members of the group I show a Na+ uniport, whereas the members of the group II 
are characterized by Na+/K+ symport (Kronzucker and Britto 2011).

18.5.1.2  NHX Transporters

Plant NHX proteins are included in a superfamily of monovalent cation/proton anti-
porters (CPAs). This superfamily is comprised of two categories: CPA1 and CPA2, 
respectively. In the first category are included plant NHX proteins being present in 
unicellular and multicellular organisms. In the second category are included cation/
H+ exchangers (CHXs) and K+ efflux antiporters (KEA) (Bassil et al. 2012). The 
first of them is responsible for the Na movement into the vacuole according to the 
electrochemical gradient of protons promoted by the V-ATPase and V-PPase 
enzymes (Bassil and Blumwald 2014).

18.5.1.3  SOS Transporters

SOS transporters are crucial in the control of ion homeostasis in cells because they 
are involved in the process of Na+ exclusion. The modulation of the transcription of 
SOS1 under high saline conditions is achieved by SOS2 and SOS3. Moreover, this 
transporter together with a protein kinase (CIPK24/SOS2) and a calcium sensor 
(CBL4/SOS3) is the main responsible for the control of ion homeostasis at cellular 
level (Ji et al. 2013).

18.5.2  Sodium Influx and Efflux

It is well known that sodium uptake, transport, and compartmentation are essential 
for plants for them to remain alive under salinity. The influx of Na+ in only one 
direction is depending on different groups of transporters. One of them is transport-
ers of high-affinity K+ ((HKT) types 1 and 2 and HAK/KUP/KT and AKT1). Others 
are transporters of low-affinity K+ like cation-Cl− cotransporter, and besides nonse-
lective cation channel (NSCC) members are involved in the process of influx of Na+ 
(Kronzucker and Britto 2011).

In addition, it is necessary to point out that the process of Na+ influx is con-
trolled by Ca2+-sensitive and Ca2+-insensitive processes. Ca2+-sensitive Na+ influx 
is influenced by nonselective cation channels (NSCCs). Nevertheless, this sensitive 
process requires the involvement of Ca2+-insensitive influx of Na+ through HKT 
transporters in order to accomplish the process of Na+ influx (Plett and Moller 
2010).
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As far as efflux of Na+ is concerned, Maathuis et al. (2014) reported that is an 
active process with energy consumption. This efflux occurs across the plasma mem-
brane, and the transporter involved is SOS1, which operates with a secondary active 
transport activated by the H+ gradient across the plasma membrane (Hasegawa 
2013).

18.6  K+ and Na+ Homeostasis Under Saline Conditions

It is generally accepted that under saline conditions, the maintenance of an adequate 
ion concentration inside the cell is essential to the metabolism of plant cells. To 
achieve this homeostasis, plant cells are responsible for the reduction and accumu-
lation of ion concentrations in adequate levels to regulate the ion flux. It is well 
known that K+ and Na+ compete for the same binding sites so if there is a depolar-
ization in the membrane by an increase of Na+ concentration, the main consequence 
will be a decrease of K+ uptake and an increase of K+ efflux through outward- 
rectifying channels (Adams and Shin 2014).

The maintenance of high K+ levels and low Na+ in the cytosol of a cell is con-
trolled by H+-ATPase (active transport) and channels and cotransporters (secondary 
transport). One way to reduce the concentration of Na+ in a cell is the exclusion and 
its compartmentation in the vacuole; therefore this mechanism has a high signifi-
cance in the salt tolerance at cellular level (Deinlein et al. 2014).

18.7  ROS Metabolism and Antioxidant Defense System 
Under Salinity

Unlike other abiotic stresses, salt stress also incurs oxidative stress due to excess 
generation of ROS. Plants have well-developed antioxidant system composed of 
nonenzymatic and enzymatic antioxidants. But under stressful condition, ROS pro-
duction goes beyond the capacity of the antioxidant defense system and as a conse-
quence oxidative stress occurs. Different metabolic pathways are interlinked with 
ROS metabolism in plants under salt stress. Moreover, ROS sensory and signaling 
networks as well as the cross talk with other signaling pathways become an impor-
tant consideration in understanding for salt tolerance (Hossain and Dietz 2016). 
Interestingly, ROS, at low level, plays a positive role as signaling molecules and 
provides cross tolerance (Saxena et al. 2016).

Halophytes are important plant species which are effective materials to learn 
salt-induced oxidative stress tolerance. Moreover, these species show a higher pro-
ductivity than glycophyte species under saline conditions (Bose et  al. 2014). In 
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many glycophytes, oxidative stress markers like MDA significantly increased only 
upon exposure to 50 mM NaCl. In contrary, many halophytes start increasing MDA 
level in shoots only above 150 mM (Ozgur et al. 2013) which happens mainly due 
to the higher antioxidant capacity of halophytes compared with glycophytes. While 
studying comparative salt tolerance in two coexistent glycophytes and halophytes, 
Radyukina et al. (2007) observed that extreme halophyte Thellungiella halophila 
showed higher constitutive levels of all three peroxidases as compared with the 
glycophytic P. major plants. The constitutive SOD levels in both roots and leaves of 
P. major were two to three times higher than in T. halophila. While comparing with 
Pisum sativum, SOD activity was found to be 10- to 40-fold higher in Rhizophora 
stylosa and R. mangle which provided very efficient antioxidant defense (Cheeseman 
et al. 1997). Seckin et al. (2010) investigated the differences in antioxidant defense 
system in two Hordeum species (salt-sensitive H. vulgare and halophyte H. mari-
num). They reported no variations of CAT, POX, and APX activities in H. vulgare 
and a decrease in SOD and GR activities at 300 mM NaCl, whereas in the halophyte 
species (H. marinum), there was a significant increase in the activities of all antioxi-
dant enzymes compared to the control (Seckin et al. 2010). Apart from halophytes 
glycophytes also showed differences in their capacity in antioxidant defense system 
as reported in many plant studies. Different approaches in enhancing antioxidant 
defense system indicated plant’s higher ability to maintain ion homeostasis, growth, 
and yield of plants (Hasanuzzaman et al. 2013; Table 18.5).

18.8  Conclusion and Future Perspectives

Salinity is an important abiotic stress that limits growth and yield of many crop spe-
cies. The process of nutrient uptake by plants is disturbed under saline conditions 
since there is an antagonism between Na+ and K+ and/or Ca2+ and an antagonism 
between Cl− and other anions resulting all of this in changes in the homeostasis 
within the plant. Disruption of ion homeostasis under salinity also caused oxidative 
stress in plants. In recent times dual role of ROS has been widely studied. Therefore, 
understanding the real-time changes in ROS production and metabolism would help 
in understanding the possible mechanisms. Learning from halophytes’ salt toler-
ance mechanisms and using these traits in developing salt-tolerant glycophytes are 
the future tasks for plant biologists. The main process to achieve this knowledge is 
the improvement in several topics such as molecular genetics, functional genomics, 
proteomics, and metabolomic analyses as well as how these determinations affect in 
the salt tolerance of each species. Also, progressive studies have shown that combi-
nation of metabolic fluxes and physiological changes of plants provide accurate 
predictions about possible mechanism required for adaptation to stress.
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Table 18.5 Summary of the protective effects of different exogenous protectants under salt stress

Name of the crop
Salinity dose 
and duration

Dose of 
protectant Protective effects References

Nicotiana 
tabacum BY-2 
cells

200 mM, 
NaCl, 7 days

20 mM Pro Enhanced the 
activities of POD and 
CAT

Hoque et al. (2007)

N. tabacum BY-2 
cells

200 mM, 
NaCl, 7 days

20 mM GB Increased the activity 
of POD

Hoque et al. (2007)

Cucumis melo L. 
cv. Yuhuang and 
cv. Xuemei

100 mM 
NaCl, 5 days

0.2 mM Pro Reduced the O2
•– 

level and the H2O2 
content

Yan et al. (2011)

Enhanced activities of 
SOD, POD, APX, 
CAT, and DHAR

Oryza sativa L. 
cv. KDML105

100 mM 
NaCl, 6 days

10 mM Pro Decreased the activity 
of the antioxidant 
enzymes and 
upregulated the 
transcription of genes 
encoding several 
antioxidant enzymes

Nounjan et al. 
(2012)

Brassica juncea NaCl 
150 mM, 
3 days

10 μM SA spray Enhanced activities of 
CAT, POX, and SOD

Yusuf et al. (2012)

Zea mays L. cv. 
Partap-1

25, 50, and 
75 mM 
NaCl, 
30 days

10−8, 10−6, and 
10−4 mM HBR, 
12 h seed 
soaking

Enhanced antioxidant 
enzymes’ activities 
and increased protein 
content

Arora et al. (2008)

Decreased lipid 
peroxidation

Vigna sinensis 25, 50, 100, 
and 
150 mM, 
45 days

0.05 ppm 
brassinolide (2 
sprays)

Increased antioxidant 
enzymes’ activities

El-Mashad and 
Mohamed (2011)

Decreased lipid 
peroxidation

Z. mays L. cv. 
DK 647

100 mM 
NaCl, 
100 days

1 or 2 mM IAA 
(spray)

Reduced Na+ 
concentration

Kaya et al. (2009)

Increased those of 
Ca2+ and K+

Increase Chl a and Chl 
b content
Decreased electrolyte 
leakage and Pro 
content

(continued)
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Table 18.5 (continued)

Name of the crop
Salinity dose 
and duration

Dose of 
protectant Protective effects References

Saccharum sp. 
cv. HSF 240

100, 120, 
and 140 mM 
NaCl, 
30 days

0.5 mM AsA, 
24 h

Increased activities of 
antioxidant enzymes

Munir and Aftab 
(2011)

Increased soluble 
protein contents

Triticum 
aestivum L. cv. 
Giza 168

0.12%, 
0.35%, and 
0.70% NaCl, 
65 days

α-Tocopherol 
100 mg L−1 
(spray)

Increased antioxidant 
enzymes’ activities

Farouk (2011)

Decreased the levels 
of H2O2 and lipid 
peroxidation

T. aestivum L. cv. 
Pradip

150, and 
300 mM 
NaCl, 4 days

1 mM SNP, 
1 day

Increased the content 
of nonenzymatic 
antioxidant

Hasanuzzaman 
et al. (2011b)

Enhanced the 
activities of 
antioxidant enzymes
Decreased lipid 
peroxidation

Citrus karna Raf. 3.0 dS m−1, 
90 days

50 mg L−1 Put Improved the 
activities of SOD and 
POD

Sharma et al. 
(2011)

Increased Pro content
O. sativa L. cvs. 
M-1-48, 
Nonabokra and 
Gobindobhog

200 mM 
NaCl, 
15 days

1 mM Spd or 
1 mM Spm, 
15 days

Decreased MDA and 
H2O2 levels

Roychoudhury 
et al. (2011)

Increased antioxidant 
metabolism

C. sativus 2000 ppm 
NaCl, 7 days

1 ppm Se, 
14 days

Increased activities of 
POD, CAT, SOD, 
APX

Walaa et al. (2010)

Reduction in reduction 
in electrolyte leakage 
and MDA content

B. napus L. cv. 
BINA Sharisha 3

100 and 
200 mM 
NaCl

25 μM 
Na2SeO4, 48 h

Improved 
antioxidative capacity

Hasanuzzaman 
et al. (2011a)

Decreased MDA and 
H2O2 levels

B. napus L. cv. 
BINA Sharisha 3

100 and 
200 mM 
NaCl, 48 h

1 mM SiO2, 
48 h

Enhanced 
antioxidative defense

Hasanuzzaman and 
Fujita (2011)

Decreased MDA and 
H2O2 levels
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Chapter 19
Salinity Stress Alleviation by Organic 
and Inorganic Fertilization

Nusrat Jabeen

Abstract Salinity is one of the major environmental stresses that limit plant growth 
and decreases crop production of more than 20% of irrigated land worldwide. The 
salinity reduced growth, yield, biomass, and quality of crop plants. These adverse 
effects are due to nutritional disorder induced by salinity which effects on the 
uptake, transport, and partitioning of nutrients within the plant. It is a need and 
demand of a time to develop an effective nutrient management package through dif-
ferent resources for the crops to promote growth, quality, and productivity under 
salt stress. This chapter reviews how to improve the nutritional status of the crop to 
enhance plant performance grown under salinity stress through different approaches. 
These different approaches include the use of organic fertilizer as soil amendments 
and the provision of inorganic fertilizer through foliar spray. Their beneficial effects 
are emphasized for the alleviation of salt stress on plant growth and productivity. 
These approaches could help to extend the threshold value of the crop grown in the 
soil which is considered nonproductive for cultivation due to higher levels of 
salinity.

Keywords Abiotic stress · Nutrient use efficiency · Organic agriculture · Plant 
nutrients · Soil fertility

19.1  Introduction

Among all environmental stresses, salt stress in soil is one of the major stresses, is 
always found to be harmful for the plants, and severely limits plant growth and its 
productivity (Paul 2012). Soil salinization severely degrades land of arid and semi-
arid areas where due to insufficient rainfall leaching of soluble salt from the soil and 
surface or internal soil drainage becomes restricted. It is a threat to agriculture as it 
has affected and continues to affect the land on which crops are, or might be, grown 
(Munns 2002; Parvaiz and Satyawati 2008). The use of brackish or saline water for 
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irrigation on irrigated land can also cause salinity. According to the FAO (2005), 2% 
of agriculture land is salt affected, and about 20% of the world’s cultivated area and 
nearly half of the world’s irrigated lands are affected by salinity (Cheong and Yun 
2007). Increased salinization of arable land might result 30% land loss within the 
next 25 years and up to 50% by the middle of twenty-first century (Wang et al. 2003).

Due to the diversity in the salt tolerance of various cultivated and non-cultivated 
plant species, they have been classified as glycophytes that can grow at less than 
300 mM NaCl or halophytes which can survive on high concentrations of salt in the 
rhizosphere and grow well at more than 400 mM concentration of NaCl (Porcel 
et al. 2012; Shrivastava and Kumar 2015). Usually the yield of most crop plants 
under salt stress is reduced when the electrical conductivity (EC) of the saturation 
extract (ECe) in the root zone of saline soil exceeds 4 dS m−1 (approximately 40 mM 
NaCl) at 25 °C and has an exchangeable sodium of 15%, though many crops show 
yield reduction at lower ECe (Munns 2005; Jamil et al. 2011). Ions most commonly 
associated with soil salinity include the anions chloride (Cl−), sulfate (SO4

2−), 
carbonate(CO3

2−), bicarbonate (HCO3
−), and sometimes nitrate (NO3

−) and the cat-
ions sodium (Na+), calcium (Ca2+), magnesium (Mg2+), and sometimes potassium 
(K+) (Khaled and Fawy 2011).

Usually there is no single way to achieve a control on salinity in irrigated lands 
and associated water. An appropriate combination of different approaches and prac-
tices depending upon economic, climatic, social, as well as edaphic and hydrogeo-
logical situations is needed to manage salinity level within limits to commensurate 
with sustained crop productivity.

The use of salt-tolerant plant on saline soil has not been successful due to the 
differences in plant response to salinity stress in different ways and the variations in 
stresses. Selection of the plant species for providing economical yield under salinity 
depends upon the range of saline soil or saline irrigation water and edaphic and 
environmental factors. The method of transference of salt tolerance to the target 
species has also been reported unsuccessful by Sairam and Tyagi (2004). The addi-
tional yield of crops seems not possible even from water and soil management prac-
tices under salinity (Zahir et al. 2008).

The new technologies of combating salinity are under consideration, which must 
be more effective and less costly to maintain the flow of food, fiber, and industrial 
products. The rapid increase in population causes food and feed shortages around 
the world. Farmers and researchers are developing different cultural practices and 
techniques for sustained plant production to meet the requirements and effective 
tools to facilitate agricultural production in vast arid areas and lands. They are look-
ing into the provision of essential macro-/micronutrient through soil amendment 
with organic fertilizer and foliar spray for plant growth promotion under salt stress.

Organic fertilization has been reported as an effective stress alleviation tool in 
crops. Organic materials, such as farmyard manures, agro-industrial by-products, 
composts, biogas slurry, etc., can be converted into nutrient-rich bio-fertilizer for 
sustainable land restoration practices (Suthar 2009; Jabeen and Ahmad 2017; 
Diacono and Montemurro 2010). Due to the presence of high organic matter in 
these organic fertilizers, it can be used for the remediation of salt-affected soil and 
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as soil amendments to increase the soil fertility. Selected studies are there to focus 
on the effects of application of organic matter to salt-stressed soils, but the findings 
of researchers prove the potential of organic fertilizers in improving soil properties 
to increase biological productivity (Tejada et  al. 2006; Walker and Bernal 2008; 
Cha-um and Kirdmanee 2011; Oo et al. 2013; Wang et al. 2014).

Absorption of nutrients through the leaves has been observed in various plants 
when applied on shoots. Application of macro- or micronutrients through foliar 
spray could partially offset the negative effect of NaCl on nutrient uptake by improv-
ing root growth which results in the uptake of nutrient by roots and thus prevents the 
nutritional disorder (Alpaslan et al. 1999; Rahman et al. 2015). Several research 
reports have provided evidence for the notion that foliar spray of micro- or macro-
nutrients for increasing the plant tolerance is one of the best approaches to minimize 
the harmful effect of salinity by alleviating Na+ and Cl− injury to plants (El-Fouly 
et al. 2002; Akram et al. 2007; Tabatabaei and Fakhrzad 2008; Azeem and Ahmad 
2011; Jabeen and Ahmad 2012a, b, c; Babar et al. 2014).

The purpose of this chapter is to provide a comprehensive analysis of scientific 
research on the changes in nutritional status, growth, and yield of the plants when treated 
with inorganic and organic fertilizer through different techniques under saline stress.

19.2  Organic Fertilization

Around 20% of the world’s cultivated land is affected with salinity (Sumner 2000; 
Oo et al. 2013). Salt causes degradation of the soil structure which can affect water 
and air movement, plant-available water-holding capacity, penetration of root, seed-
ling emergence, overflow and erosion, tillage, and sowing processes. Salinity dis-
rupts soil pH, cation exchange capacity (CEC), exchangeable sodium percentage 
(ESP), and organic carbon and also brings change in the osmotic and matric poten-
tial of the soil solution (Wang et al. 2014) which causes deficiencies and imbalances 
in plant nutrients (Mengel and Kirkby 2001). It also adversely affects soil microbial 
communities and their activities (Rietz and Haynes 2003).

Organic matter has several beneficial effects on agricultural fields. When used as 
soil amendments, it releases nutrients slowly, maintains structural stability of soil, 
protects soils against erosion, and improves physical, chemical, and biological 
properties to increase the overall soil fertility (Diacono and Montemurro 2010, 
2015). To reclaim the salt-affected soil, the application of organic matter (farmyard 
manure, compost, vermicompost, green manure, organic amendments, municipal 
solid waste, etc.) has become a common practice worldwide in the cation exchange 
capacity last several decades and constitutes an important method of soil regenera-
tion and fertility enhancement under salinity (Mitchell et  al. 2000; Hanay et  al. 
2004; Sharma and Minhas 2005; Tejada et al. 2006; Melero et al. 2007; Wang et al. 
2014; Jabeen and Ahmad 2017). Some selected findings are summarized in 
Table 19.1 to show the effects of application of different organic materials on differ-
ent crop plants under different levels of salt-stressed soils.
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Table 19.1 Effects of various organic fertilizers on crop productivity under salinity (some 
selective data)

Organic materials Salinity levels Effects on crop plants References

Cotton gin crushed 
compost and poultry 
manure

ECe 9.1 dS/m The percentage of spontaneous 
vegetation (Artemisia herba-alba, 
Moricandia arvensis, Plantago 
albicans being the most abundant) 
cover >50% in all treated plots and 8% 
in the control soil. Affect positively the 
soils physical and chemical properties, 
soil microbial biomass, and six soil 
enzymatic activities

Tejada et al. 
(2006)pH 8.0

Compost (produced 
from by-products of the 
olive oil industry) and 
poultry manure

ECe1.85 dS/m Soil amendment with compost and 
manure increases markedly the shoot 
growth of Beta maritima L. (sea beet) 
and Beta vulgaris L. (sugar beet) plant. 
Increases soluble and exchangeable-K+ 
(thus limiting the entry of Na+ into the 
exchange complex)

Walker and 
Bernal 
(2008)

pH 7.7

Green manure mixed 
with farmyard manure

1–2% salt The remediation of salt-affected soil in 
paddy fields using organic manure is as 
an effective way of enhancing rice food 
crop productivity

Cha-um and 
Kirdmanee 
(2011)

ECe
8.4–20.4 dS/m
pH 4.58–4.79

Gypsum and farmyard 
manure

ECe Gypsum and farmyard manure 
treatment provide an effective remedy 
to ameliorate salinity, result in decrease 
of sodium ions in jasmine rice with the 
yield improvement

Cha-um 
et al. (2011)12.5 dS/m

pH 5.16

Compost (animal 
wastes and plant 
residues)

ECe 
4.03–
5.11 dS/m

Organic amendments co-applied with 
chemical amendments reduce soil pH, 
salinity, and sodicity. It shows highest 
sodium removal efficiency with highest 
biomass yield of alfalfa

Mahdy 
(2011)

pH 8.62–8.75

Cassava-industrial 
waste compost and 
vermicompost with/
without earthworms

ECe 
4.26 dS/m

Organic amendments decrease ECe, 
improve maize crop growth via 
improving availability of essential 
mineral nutrients

Oo et al. 
(2013)

pH 7.30

Green waste compost 
(GWC), sedge peat 
(SP), and furfural 
residue (FR) and its 
mixture

ECe 3.69 The combination of GWC, SP, and FR 
(the GSF treatment) provides better 
remediation results than each applied 
singly and has substantial potential for 
ameliorating saline soils and promotes 
Pagoda tree (Sophora japonica) 
growth. Increase total porosity and 
organic carbon of soil

Wang et al. 
(2014)pH 7.75

(continued)
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19.2.1  Effects of Organic Fertilizer on Soil Physical Properties

Organic matters improve soil aggregate stability by a reduction of soil sodicity. Ca2+ 
in composts could decrease the proportion of Na+ in the exchange complex and 
accelerate the leaching of exchanged Na+ (Qadir and Oster 2004). Organic amend-
ments control the erosion in saline soils and improve the flocculation of clay miner-
als and formation of soil aggregates. The aggregate stability improves the physical 
properties of soil such as porosity, water infiltration, and water-holding capacity, 
thus minimizing the effect of drought (Oo et al. 2013). According to Hussain et al. 
(2001), amendment of sulfuric acid, gypsum, farmyard manure, and their various 
combinations in soil could decrease sodium adsorption ratio of the soil significantly. 
A direct correlation was found between organic matter additions and decreased soil 
bulk density and increased total porosity which improve saline water leaching 
(Kahlown and Azam 2003; Tejada et al. 2006; Wang et al. 2014).

Table 19.1 (continued)

Organic materials Salinity levels Effects on crop plants References

Soil amendment with 
compost at two rates (5 
and 10 ton fed−1) in 
combination with three 
rates of N fertilization 
(35, 50, and 70 kg N 
fed−1)

ECe 
20.5 dS/m

Compost serves as soil conditioner and 
improves soil physical and chemical 
properties. Increase nutrient uptake and 
yield of rice crop under 70 kg N fed−1 
and 10 ton compost fed−1

Zaki (2016)

pH 8.5

Vermicompost and 
biogas slurry

ECe 9.9 dS/m Soil amendments show better result 
even at high salinity level (ECe 
9.9 ds/m) on the growth and N 
assimilation in sunflower. Increase the 
availability of nitrogen and other 
minerals to the crop

Jabeen and 
Ahmad 
(2017)

pH 8.8

Organo-mineral 
fertilizer (OMF) 
compost

ECe 
6.73 dS/m

Application of OMF compost at a rate 
of 20 ton h−1, as an alternative to 50% 
of the recommended dose of mineral- 
NPK fertilizers, improve the soil 
chemical and physical properties. This 
treatment also improves sustainable 
agronomic performance of common 
bean

Rady et al. 
(2016)

pH 7.79

Composted organic 
fertilizers (poultry and 
cow manures)

ECe 6.5 dS/m Composted organic fertilizers (poultry 
and cow manures) increase nodulation, 
productivity, and forage quality of 
Clitoria ternatea L. than inorganic 
fertilizer (NPK) under saline condition 
in arid lands

Abusuwar 
(2017)
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19.2.2  Effects of Organic Fertilizer on Soil Chemical 
Properties

The uptake of macronutrient, phosphorous (P), can be reduced in saline soils, and 
organic acid releases humic substances during mineralization process which convert 
soil phosphate into available forms (Hu and Schmidhalter 2005; Lakhdar et  al. 
2009). Under saline soils organic matter content can increase the available fraction 
of potassium (K+) through the increase of cation exchange capacity (CEC). K+ helps 
in maintaining the turgor pressure of plant under salinity stress. The soil amend-
ments with poultry manure and compost can increase both the CEC and the soluble 
and exchangeable-K+, thus, limiting the entry of Na+ into the exchange complex 
(Walker and Bernal 2008). Wang et al. (2014) showed that a mixture of green waste 
compost, sedge peat, and furfural residue (1:1:1 by volume) significantly reduced 
Na+/K+ content and improved CEC and available form of N, P, and K content. Some 
studies suggested that some livestock manure contains significant amount of salt 
and their continued application may result in an accumulation of salt in agricultural 
land soil (Hao and Chang 2003; Li-Xian et al. 2007). Therefore selection of organic 
fertilizers as nutrient sources, timing, and method of its application are very impor-
tant (Diacono and Montemurro 2010; Khaled and Fawy 2011).

19.2.3  Effects of Organic Fertilizer on Soil Biological 
Properties

The effects of salinity on soil chemical and physical properties and on plant growth 
are well documented (Keren 2000), whereas soil biological properties in saline 
environments have not been studied extensively (Rietz and Haynes 2003). Diacono 
and Montemurro (2015) reported that exogenous organic matter applications to 
cropland improve soil biological functions and positively affect salt-affected soils. 
Salinization adversely affects large variety of microbial mediated processes in soil. 
It has been demonstrated that incorporation of organic manure significantly stimu-
late urease, alkaline phosphatase activity and respiration rate in soil derived from 
alluvial and marine deposits with 3.3 g·kg−1 total salts (Liang et al. 2003). Some 
authors reported that the C/N ratio plays an important role in the decomposition of 
organic matter by microorganism. Both increases and decreases in C or N mineral-
ization depend upon increasing salinity as Chandra et al. (2002) found that applica-
tion of low concentration of salts stimulated carbon mineralization, but high 
concentration of salts had a toxic effect on microorganism activities. Carbon and 
nitrogen mineralization in saline soil respond according to the type of organic mate-
rial applied to the soil (Walpola and Arunakumara 2010). Liang et al. (2005) con-
firm that salinity-induced toxicity can be minimized by saline soil amendment with 
organic manure which can be an economical and cost-effective method. They found 
that rice straw in combination with pig manure had higher significant effects on 
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enzymatic and microbial activity in salt-affected soil than rice straw and manure 
alone. Furthermore, it has also been demonstrated by Tejada et al. (2006) that appli-
cation of non-composted and compost manure to a saline soil in dryland can reduce 
exchangeable sodium percentage by 50% than unamended soil and significantly 
increase different enzyme activities, i.e., urease, alkaline phosphatase, and dehydro-
genase. Moreover, Rao and Pathak (1996) found that green manure amendment 
increased urease activity of saline and alkali soils and enhanced microbial activity 
at EC ≤26 salinity level.

It can be concluded that an appropriate use of organic amendments could be an 
effective measure to reclaim salt-affected soils for a better crop yield.

19.3  Foliar Fertilization

Foliar fertilization is an effective method of supplying of nutrients, plant hormones, 
stimulants, and other beneficial substances, in combination with some traditional 
root fertilization to achieve a balance of nutrients in plants. The macro- and micro-
nutrients are the basic need of crop plants.

The crop plant can easily get macronutrients C, H, and O from air and water. The 
remaining nutrients, i.e., N, P, K, Ca, Mg, and S, and micronutrients, i.e., Zn, Cu, 
Fe, Mn, B, Mo, Cl, and Ni, must be present in adequate amount and proportion in 
the plant growth medium to fulfill the requirement of plants to complete its life 
cycle (Fageria et  al. 2008). Soil application is the traditional method to supply 
water-soluble essential nutrients with fertilizers to plants which are absorbed by 
plant roots. Sometime nutrients are not easily available by the plant roots as they are 
strongly fixed by soils. For example, iron in calcareous soil cannot be absorbed by 
plant roots and plants become deficient of iron. The deficiency of iron can be cor-
rected efficiently by the foliar application of ferrous sulfate or iron chelates solution 
(Fageria et al. 2008).

Though higher plants can also absorb mineral nutrients through foliar sprays, in 
high-yielding cultivars, nutritional requirements, in particular macronutrient, are 
rarely met with foliar applications. Plant response to foliar fertilization is dependent 
on species, fertilizer form, its concentration, frequency of application, and the plant 
growth stage. Foliar applications are scheduled in such a way to meet the demand of 
nutrients at vegetative or fruiting stages of growth, and fertilizer formula is adjusted 
according to need (Haytova 2013).

These applications may help plants recovering from any damaging environmen-
tal conditions, e.g., transplant shock, hail damage, drought, salinity, etc. Nutrient 
uptake through the root system in crops growing under saline environment is 
restricted due to salt stress, and foliar application has been proved to be an effective 
method to correct nutritional disorder. Provision of nutrients through foliar applica-
tion alleviates the negative effect of stress influencing root growth and absorption 
capacity (El-Fouly and Abou El-Nour 1998; Hussein et al. 2012; Jabeen and Ahmad 
2012a, b, c; Jabeen et al. 2013).
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With the advantages of foliar spray, there are some disadvantages as well. It has 
been experienced by some authors that in favorable climatic conditions, crop plant 
takes at least 5–6 days to respond toward soil-applied fertilizer. It has long influence 
on plant growth. However a crop plant responds in 3–4 days to foliar application of 
nutrients and it is often only temporary. This means several foliar applications are 
necessary to meet nutrients requirements. The repeated application of foliar spray 
may also due to constant loss of leaf blades to mowing. Leaf area of plants must be 
sufficient for the absorption, and due to leaf damage by high nutrient concentrations, 
very low dose can be applied. Nutrients, applied to the foliage, have to penetrate 
barriers, i.e., the waxy cuticle covering, cell wall, and plasma membrane of the epi-
dermal cells. So that the morphology and organization of leaf tissue must be like 
that, it absorbs the gaseous plant nutrients. Regardless of these drawbacks others 
proved foliar fertilization, a very economical and efficient way of fertilization to 
supplement the plants’ nutrients (Girma et al. 2007). Foliar sprays must be practiced 
at the “critical stages” of plant growth cycle and must be applied during or shortly 
before the critical period to be effective (Jabeen and Ahmad 2012a, b, c). Time 
schedule must be in one’s mind for foliar spray. Morning application is considered 
to be very suitable as there is less evaporation in morning thus giving a better chance 
for maximum absorption of nutrients by leaves (Jabeen and Ahmad 2012a, b, c). 
According to Fageria et al. (2008), the best time for foliar fertilization is after 2–3 
PM when stomata are opened and air temperature is low because high temperature 
can cause burning of plants. High relative humidity is directly related with high rates 
of foliar uptake. In low humidity rapid drying can cause crystallization of minerals 
on the leaf surface (Gamble and Emino 1987). Foliar fertilization must not be prac-
ticed in windy days as it can drift the spray solution. After application of nutrients, 
there must not be rain for at least 3–4 h as applied nutrients take 3–4 h to be absorbed 
by the plant leaves. Addition of surfactant, i.e., sticky material, in nutrient solution 
is necessary to stick the spray drops on plant leaves. Surfactant helps in penetration 
of the nutrient solution. Another important factor for foliar spray is pH of spray 
solution. It has been observed by Kanan (1980) that most suitable range of pH val-
ues are 3.0–5.5 for the maximum uptake of mineral nutrients. A moderate acidic 
medium of spray solution can help nutrients to penetrate leaf surfaces effectively.

19.3.1  Mechanisms of Uptake of Foliar-Applied Nutrients

There are sufficient evidences which prove the absorption of inorganic and organic 
material through leaves surface. It may be different from the roots absorption as root 
cell walls lack cuticle. Earlier research showed that foliar-applied nutrients first 
penetrate the cuticle and the cell wall through diffusion and then are adsorbed to 
plasma membrane and at last the absorbed nutrients are taken up into the cytoplasm 
(Franke 1967). Later it was proved that foliar absorption is easier when leaves’ sto-
mata are open (Eichert and Burkhardt 2001). The penetration of ions depends on the 
kind of charge, adsorbability, and ion radius. The light quality and intensity may 
help to increase ion absorption by leaves (Fageria et al. 2008).
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The mobility of the nutrient throughout the plant is important for the develop-
ment of plants. Foliar-applied nutrients move freely with water stream, but some 
nutrients show immobility and become restricted to phloem. This restriction of 
nutrients does not show positive effects of foliar application and plants show defi-
ciency symptoms (Papadakis et al. 2007).

Macronutrients show high mobility in plant tissues, except calcium and sulfur. 
Calcium when taken up by leaves cannot move with water stream freely and fail to 
reach younger tissues or fruits where it may be required (Fageria et  al. 2008). 
Potassium and nitrogen show high mobility when applied on leaves. They rapidly 
distribute throughout the plant tissues and produce promising results of plant growth 
even under saline conditions (Ahmad and Jabeen 2005; Jabeen and Ahmed 2011a, 
b, 2012a, b, c).

Micronutrient requirements can meet by foliar application which is more uni-
form than soil application. It is required in traces for plant growth. Most of the 
micronutrients mobility in plant tissues is reported to be poor. According to 
Marschner (1995), Fe may show low and Mn show intermediate mobility in the 
plant phloem. Garnett and Graham (2005) found much higher reproductive mobility 
of Fe in wheat than Mn. Therefore, it can be concluded that differences exist among 
nutrients and plant species in remobilization in plant tissues. Foliar spray of micro-
nutrients on plants grown under salinity stressed can offset adverse effect of salinity 
by improving growth and nutrient status of plants. Abou El-Nour (2002) reported a 
significant increase in root dry weight of maize crop sprayed with EDTA micronu-
trient compound under salinity. Jabeen and Ahmad (2011b) found improvement in 
growth and biochemical activities when applied B and Mn on foliage of sunflower 
under non-saline or saline conditions. Thus it can be manipulated that nutrient cor-
rection may be possible by foliar fertilization when crop plants face stress or when 
soil-applied nutrients are ineffective due to immobility (Fageria et al. 2008).

The source and concentrations of macro and micronutrients major salts generally 
used for foliar spray are presented in Table 19.2.

19.4  Salinity Effects on Plants

Salinity causes both ionic and osmotic stress in major crop plants and Na+ is the 
primary case of ion-specific damage. The presence of high concentration of Na+ in 
the soil can alter the basic soil texture resulting in decreased soil porosity and thus 
reduced soil aeration and water conductance. Due to the low water potential in root 
zone, plant cannot acquire water and nutrients which results in decreased plant pro-
ductivity (Munns and Tester 2008). Plant response under stress is species and geno-
type dependent and depends on the length and severity of the salinity, the age and 
stage of development, the organ and the cell type, and the subcellular compartment 
(Parvaiz and Satyawati 2008). The onset and development of salt stress within a 
plant result in the reduction in the growth, whole plant mechanism contributes to 
avoid the stress throughout the life cycle, but growth can resume as stress is relieved 
(Parida and Das 2005).
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Salinity effects are the results of complex interactions of plant metabolic activi-
ties such as seed germination, growth, and water and nutrient uptake (Singh and 
Chatrath 2001; Akbarimoghaddam et al. 2011). Plants growing in saline soil face 
three different physiological stresses. First, the toxic effects of sodium and chloride 
disrupt enzyme structure, and other macromolecules cause severe ion deficiencies 
which result in cell damage and reduction in leaf area, chlorophyll content, stomatal 
conductance, and respiration and inhibit protein synthesis (Netondo et  al. 2004). 
Second, plant when exposed to the low osmotic potentials of saline soil has to main-
tain lower internal osmotic potentials to stop exosmosis; failure of the osmotic bal-
ance can lead to cell dehydration. Finally salinity also upset the nutrient balance and 
produces nutrient (N, Ca, K, P, Fe, Zn) imbalance in the plant due to decreased 
nutrient uptake to the shoot (Evelin et al. 2009; Porcel et al. 2012). Ion toxicity is the 
result of replacement of potassium (K) by sodium (Na) in biochemical reactions, and 
sodium (Na) and chlorine (Cl) bring changes in synthesis of proteins. Potassium acts 
as a cofactor for several enzymes, and its high concentration is also required for the 
binding of tRNA to ribosomes for protein synthesis (Zhu 2002). Salinity also reduces 
uptake of phosphorus (P) in plants because in saline soil phosphate ions precipitate 

Table 19.2 Source and concentrations of macro- and micronutrients major salts generally used for 
foliar spray to correct deficiencies

Nutrient Common name Formula
Element 
(%)

Concentration (Kg/500 L 
of water)

N Urea CO (NH2)2 46 3–5
N Ammonium sulfate (NH4)2SO4 21 2–3

Ammonium nitrate NH4NO3 35
Diammonium 
phosphate

(NH4)2HPO4 18

Ammonium chloride NH4Cl 26
Monoammonium 
phosphate

NH4H2PO4 11

P Phosphoric acid H3PO4; others see N 
above

55 2–3

K Potassium chloride KCl 60 1.5–2.5
Potassium nitrate KNO3 44
Potassium sulfate K2SO4 50

Ca Calcium chloride CaCl2 36 1.5–2.5
Calcium nitrate Ca(NO3)2 16

Mg Magnesium sulfate MgSO4 20 3–10
Magnesium nitrate Mg(NO3)2 16

Fe Ferrous sulfate FeSO4.H2O 33 3–6
Mn Manganese sulfate MnSO4 23–28 1–2
Zn Zinc sulfate ZnSO4.H2O 36 1.5–2.5
Cu Copper sulfate CuSO4.H2O 35 0.5–1
B Sodium borate; boric 

acid
Na2B4O7; 
H3BO3[B(OH)3]

20;17 0.25–0.5

Mo Sodium molybdate Na2MoO24.2H2O 39 0.1–0.15

Source: Adapted from Fageria et al. (2009)
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with calcium (Ca) ions (Bano and Fatima 2009). Due to ion toxicity and osmotic 
stress, metabolic imbalances lead to oxidative stress in plants (Chinnusamy et al. 
2006). The saline growth media also adversely affect development of crop plants 
during the reproductive phase by inhibiting microsporogenesis and stamen filament 
elongation and lead to apoptosis in some tissues, ovule abortion, and senescence of 
fertilized embryos, hence reducing crop yield (Shrivastava and Kumar 2015).

It can be concluded that salt stress affects all the major metabolic processes and 
brings changes in nutritional status which leads to alter biochemistry and physiol-
ogy of the plants and ultimately reduce its growth and yield.

19.5  Salinity Stress Alleviation

There must be alternative approaches for alleviation of salinity to maximize the 
plant growth. Reclamation of salt-affected soils such as scraping, flushing, and 
leaching was found to be very expensive. The change in farming management prac-
tices can be a good approach, but its implementation is often limited because of cost 
and lack of good-quality water or water resources. Conventional plant breeding 
methods to improve salt tolerance are time-consuming and laborious and depended 
on existing genetic variability. Development of easily adaptable methods which 
must be efficient and low in cost for the stress management is a worldwide chal-
lenge. Researches are being carried out to develop strategies to cope with the salin-
ity stress. The amendment of soil with organic matter and foliar feeding of nutrients 
could be the better approach and effective tools for the alleviation of salinity stress 
during the growth cycle of plants (Jabeen and Ahmad 2017; Yildirim et al. 2009).

Now we will discuss the alleviating effect of organic amendment and foliar spray 
on major metabolic processes of crop plants under salinity stress.

19.5.1  Alleviating Effect of Organic Amendment and Foliar 
Spray on Major Metabolic Processes of Crop Plants 
Under Salinity Stress

19.5.1.1  Growth and Development

The soil salinity or irrigation with saline water depresses all growth parameters of 
the plants. The reduced crop growth under saline rooting medium may be due to 
failure of the osmotic balance which causes reduction in turgor pressure of expand-
ing tissues and reduction in photosystem activity and ability to produce and utilize 
assimilates to the growing regions (Jabeen and Ahmed 2012a, b, c).

A significant increase in growth of sunflower (plant height, leaf area, stem and 
disc diameter, fresh and dry biomass) was well demonstrated due to application of 
organic manure (vermicompost and biogas slurry) under salinity (Table 19.3). The 
application of organic fertilizer has not only overcome sodium-induced toxicity of 
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substrate but also helped in restoring growth up to certain extent. Recovery from 
sodium-induced toxicity by supplement of abovementioned organic fertilizer was 
comparatively more in plants irrigated with saline water having EC 4.8 dS/m, than 
those irrigated with saline water of EC 8.6 dS/m, due to higher salt content in the 
latter. This increase is due to the organic fertilizer amendment which improved the 
soil structure by increasing its water-holding capacity, aeration, and drainage. It also 
provides auxin, amino acids, and vitamins which are plant growth-influencing mate-
rial produced by their decay (Ahmad and Jabeen 2009).

Significant increases in vegetative growth were also reported by Abou El-Magd 
et al. (2008) on sweet fennel, irrigated with saline well water (5000 ppm), and fertil-
ized with poultry manure. Ahmad et al. (2009) also reported a promotion in growth 
vigor of ginger by the application of vermicompost and biogas slurry under non- saline 
condition which persisted even after encountering toxicity due to saline water irriga-
tion. Inhibitory effect of saline water irrigation on number of shoots and their height, 
fresh and dry biomass of shoot, and fresh and dry weight of rhizome appeared to be 
removed under amendment of vermicompost up to greater extent and with mixture of 
biogas slurry up to lesser extent, whereas amendment of only biogas slurry showed 
growth-promotive effects only on rhizome production. The findings of Oo et al. (2013) 
suggested that the use of compost and vermicompost as soil conditioners could con-
tribute to improve physical, chemical, and biological properties of the saline soil and 
increase its nutritive value for the growth of maize crop plants. Results obtained by 
Abdel-Ati and Eisa (2015) indicated that rice straw compost (RS-compost) and olive 
mill wastewater compost (OMW compost) had positive effects on soil properties and 
led to increase barley plant height and plant fresh and dry weight under salinity. Rady 
et al. (2016) observed growth improvement in common bean plants with increased 
application rate of organo-mineral fertilizer (OMF) compost which could be attrib-
uted to the enhanced decomposition of the OM and mineralization of nutrients.

The detrimental effects of salinity on growth could also be partially alleviated by 
the application of nutrient solution through decreasing the nutrient demand in salt- 
affected plants. El-Fouly et al. (2002) found improvement in growth and dry weight 
of tomato seedlings by the foliar application of a micronutrient compound containing 
2.8% Fe +2.8% Zn +2.8% Mn at 1.5 ml/l, in response to the increased NaCl level in 
the root growth medium. Akram et al. (2009) observed an improvement in growth of 
sunflower due to the foliar spray of K+ at 1.25% using different salt (KCl, KOH, 
K2CO3, KNO3, KH2PO4, and K2SO4) under saline concentration of 150 mM NaCl. 
Foliar application of 10 mM KNO3 and Ca(NO3)2 alleviated deleterious effects of 
salinity stress (40 mM) on strawberry growth and increased plant root and shoot dry 
weight by 50% (Yildirim et al. 2009). A significant increase in height and fresh and 
dry biomass was observed in sunflower and safflower plants when sprayed by indi-
vidual macro- (K) or micronutrient solutions (B and Fe) using different salt (KNO3 at 
250 ppm, H3BO3 and Fe-EDTA at 5 ppm), but combined effects of their mixture were 
more significant irrespective to their growth under non-saline (ECe 1.8  dS/m) or 
saline conditions (ECe 6.1 and 9.9 dS/m) (Fig. 19.1a, b). The results suggested that 
foliar application could be used to correct the nutrients deficiency in stressed plants 
and improve its tolerance to salinity. Stimulating effects of these nutrients on metabo-
lism, biological and enzyme activities encourage plant growth. Babar et al. (2014) 
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observed stimulatory effects on growth and biomass of fenugreek plants by the foliar 
application of salicylic acid (SA) under salt stress. Hussein and Alva (2014) reported 
a significant decrease in growth parameters of millet plants under high salinity level. 
Fifty-two percent decrease was recorded in total plant dry weight under 7.8 dS·m−1 
salinity as compared to control. Foliar application of ascorbic acid with zinc sulfate 
significantly increased total plant dry biomass. Foliar application of Zinc has also 
been reported to increase plant growth and yield of peanuts (Darwish et al. 2002; 
Gobarah et  al. 2006) and sunflower (Thalooth et  al. 2005). Applying ZnSO4 at 
30 ppm as a foliar application into barley plants increased the plant productivity as a 
result of enhancing the plant metabolism and growth (Abdel-Ati and Eisa 2015).

19.5.1.2  Ion Levels

Under salt stress conditions, elevated Na+ disrupt the nutrient uptake by interfering 
with various transporters such as K+-selective ion channels in the root plasma mem-
brane and inhibit root growth by the osmotic effects on soil structure. Under salinity 
soils are frequently characterized by the ratio of Na/K, Na/Ca, and Cl/NO3 that 
leads to plant nutrient deficiencies. Thus the uptake of water and all other essential 
mineral nutrients such as P, K, Fe, Cu, and Zn can be reduced in the roots and shoots 
with increasing salt concentration in the growth medium (Abou El-Nour and 
El-Fouly 2006; Porcel et al. 2012). Certain ion ratios, such as K/Na, are indicators 
for evaluation of salinity tolerance in plants, and high Na+/K+ ratio disrupts various 
metabolic processes in the cytoplasm (Tester and Davenport 2003).

Application of organic manure as fertilizer significantly decreased Na+ and 
increased K+ content in sunflower leaves, bract, and seed coat under saline water 
irrigation (Ahmad and Jabeen 2009). Abou El-Magd et al. (2008) also confirmed 
that application of organic manure increased the availability of K+ content, nitrogen, 
and phosphorus to the whole sweet fennel plant. Cha-um et al. (2011) reported in 
root and leaf tissues of jasmine rice, grown in saline soil treated with gypsum and 
farmyard manure, lower sodium and higher potassium ion accumulation as com-
pared to those grown in untreated saline soil.

The amendment of organo-mineral fertilizer (OMF) compost at 20 or 30 ton h−1 in 
saline soil reduced Na level significantly, but no significant effects were observed on 
the levels of N, P, K, and Ca in Phaseolus vulgaris. The highest significant values for 
the ratios of K:Na and Ca:Na were obtained with the application of 30  ton OMF 
compost h−1 (Rady et al. 2016). The OMF through slow release of nutrients into the 
soil or to plant improved soil properties and helped to overcome the nutrients loss by 
leaching processes. Zaki (2016) showed that the compost at a rate of 10 ton fed−1 with 
70 kg N fed−1 increased nutrient uptake (i.e., N, P, K, Fe, Zn, and Mn) of rice straw 
and grain. Increasing nutrient uptake of rice straw and grain when bio- fertilizers and 
chicken manure were added with N fertilization levels in saline soil could be due to 
improvement in soil chemical and bio-properties. Bio- and organic fertilizer applica-
tions have also been reported to reduce the harmful effects of salinity (0%, 20%, and 
40%) through reduction of Na ion accumulation in wheat. It increased the K/Na ratio 
in the tissues which is essential for survival in saline habitats (Al-Erwy et al. 2016).

19 Salinity Stress Alleviation by Organic and Inorganic Fertilization
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It has been reported that provision of essential nutrients through foliar spray 
might offset the negative effect of salt on nutrient uptake to some extent through 
improving root growth. El-Fouly et al. (2002) found in tomato a gradual decrease in 
the uptake of all micro- and macronutrients with the increase of NaCl concentration 
(i.e., 1000–3000 ppm) in growing medium. Akram et al. (2007) found a decrease in 
N, P, K, Ca2+, and Mg2+ in salt-stressed sunflower plants with the increasing concen-
trations of Na+ and Cl−. KOH at 0, 0.5, 1.0, 1.5, and 2.0% was applied as a foliar 
spray to salt-stressed and nonstressed sunflower. Application of K+ increased K+/
Na+ ratio of salt-stressed plants with the increase in growth and yield. The foliar 
application of 10 mM KNO3, Mg(NO3)2, and Ca(NO3)2 on strawberry plant grown 
under salinity (40 mM) increased the concentration of N, K, Mg, Ca, S, P, Fe, Mn, 
Zn, and Cu content of both root and shoot with their respective control. The highest 
root (Na)/shoot(Na) and root(Cl)/shoot(Cl) ratio obtained from Ca(NO3)2 at 10 mM 
concentration indicates that Ca, K, and Mg transport was impaired by Na under 
saline conditions and could disturb plant metabolism and reduce plant growth 
(Yildirim et al. 2009). Asik et al. (2009) observed soil application of humus at 1 and 
2 g/kg and foliar application of liquid humic acid at 0.1 and 0.2% under 15 and 
60 mM saline conditions positively affect the nutrient uptake in wheat plant. Soil 
application of humus increased the N uptake, and foliar application of humic acid 
increased the uptake of P, K, Mg, Na, Cu, and Zn. Jabeen and Ahmad (2012b) found 
a decrease in K, Fe, and B and an increase in Na+ content of sunflower and safflower 
plant leaves grown under salinity (4.8 dS/m and 8.6 dS/m). Foliar application of 
nutrient solution, i.e., KNO3+ H3BO3+Fe-EDTA, for K, B, and Fe increased element 
concentration by 20% compared to unsprayed leaves at 8.6 dS/m salinity.

Rashad and Hussien (2014) observed foliar application effects of 100 mg L−1 
solution of gibberellic acid (GA3), salicylic acid (SA), and silicon on the nutritional 
content of the maize plant leaves (Zea mays L.). GA3 was found to be the most 
effective in reducing Fe, Zn, and Si toxicity due to the salinity effects on the leaves. 
Copper and manganese deficiency may be controlled but to a limited extent by SA 
and then by GA3. Both materials enhanced nitrogen content of the leaves and potas-
sium to a lower extent. But sodium content as well as sodium/potassium ratio of the 
leaves was highly increased as affected by SA and GA3 and decreased by Si appli-
cation. This may be due to formation of Na salts of both acids in the plant leaves. 
Silicon ions compete with sodium ions to reduce their absorption by the maize 
plants. According to Sadak et al. (2015), mineral ion concentration including N, P, 
K+, Ca2+, and Mg in the leaves of faba bean plants gradually decreased by increasing 
salinity levels (i.e., 3.13 and 6.25 dS m−1). With the increase in Na+ and Cl− concen-
tration of faba bean leaves, the K+:Na+ ratio gradually decreased to attain the lowest 
value at the highest salinity level. Amino acid foliar application at 500, 1000, or 
1500 mg L−1 offset the adverse effect of salinity to some extent. It decreased uptake 
of Na+ and Cl− and in the same time increased the amount of Mg, N, P, K+, and Ca2+ 
in faba bean leaves compared with the respective salinity level.

Some other studies in Table 19.4 show the effect of organic fertilizer amendment 
and foliar spray on the nutrient uptake in crop plants under salinity.

N. Jabeen
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19.5.1.3  Water Relations

Leaf water potential, osmotic potential, and turgor potential are interrelated in plant 
cells and are markedly affected when plants are exposed to salt stress. Water relation 
parameters are negatively correlated with increasing salinity. Increasing salinity 
decrease water potential and osmotic potential and increase turgor pressure of plants 
(Khan 2001; Romero-Aranda et al. 2001). Leaf water and osmotic potential declines 
according to the osmotic potential of the rooting medium and the type of stress. If 
plant faces prolonged salt stress, it maintains its turgidity with the decline in osmotic 
potential (Parida and Das 2005). According to Tester and Davenport (2003), when 
plants are under stress, it changes internal water potential values to maintain turgor 
and water uptake for growth. Plants usually maintained their turgidity by osmotic 
adjustment under saline condition. The osmotica, i.e., essential elemental ions and 
organic solutes, build osmotic balance, control water influx, and enable turgor main-
tenance (Ahmad and Jabeen 2009).

Several research reports have provided evidence for a marked reduction in all 
water relation parameters under saline conditions (Khan et al. 2000; Gulzar et al. 
2003; Siddiqi and Ashraf 2008; Mezni et al. 2010; Singh et al. 2010; Vysotskaya 
et al. 2010; Eisa et al. 2012; Shaheen et al. 2013; Álvarez and Sánchez-Blanco 2014).

Selected studies are there to focus on the effects of application of organic matter 
to salt-stressed soils to find evidences on the potential of organic fertilizer in improv-
ing water relation attributes of plants.

It appeared from Table 19.5 that plant under salinity stresses, i.e., ECe 5.9 and 
9.8 dS/m, had lower water potential and osmotic potential as compared to that plant 
provided with vermicompost and biogas slurry as fertilizer under the same salinity 
treatment. Application of organic manures had shown improvement in leaf water 
potential and osmotic potential. They reduced the tendency of lowering these 
parameters and ameliorate the negative effects of salinity by enhancing the avail-
ability of some other essential cations and phytohormones (Ahmad and Jabeen 
2009). Phytohormone, K, and Ca have been reported to play an important signaling 
role on the regulation of stomata (Sage and Reid 1994). Increase in K+ and organic 

Table 19.5 Effect of organic fertilizer on water relations of sunflower under different salinity 
levels

Sea salt concentration 
(g/L)

Organic 
manure

Water potential 
(MPa)

Osmotic potential 
(MPa)

Turgor potential 
(MPa)

0 (ECiw 0.5 dS/m, 
ECe1.5 dS/m)

C −0.420 ± 0.049 −1.500 ± 0.017 1.080 ± 0.042
VC+BGS −0.120 ± 0.006 −0.900 ± 0.012 0.780 ± 0.006

3 (ECiw 4.8 dS/m, 
ECe 5.9 dS/m)

C −1.060 ± 0.006 −2.510 ± 0.017 1.450 ± 0.012
VC+BGS −0.690 ± 0.017 −1.710 ± 0.012 1.020 ± 0.006

6 (ECiw 8.6 dS/m, 
ECe:9.8 dS/m)

C −1.340 ± 0.006 −3.240 ± 0.012 1.900 ± 0.006
VC+BGS −0.970 ± 0.012 −2.200 ± 0.017 1.230 ± 0.006

Source: Adapted from Ahmad and Jabeen (2009)
The values are mean ± SE (n = 3)
BGS biogas slurry, VC vermicompost
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ions increases osmotic activity and reduces water potential which results in an 
inward diffusion of water from the nearby cells to maintain the turgidity of cell. 
Rady et al. (2016) found increased relative water content (RWC) in beans plants 
treated by either 20 or 30 ton organo-mineral fertilizer (OMF) compost h−1, as an 
alternative to 50% of the recommended NPK dose under salinity. The exogenous 
applications of gypsum and farmyard manure (FYM) in saline fields mitigate salin-
ity effects on plant and positively affected water use efficiency of rice leaf (Cha-um 
and Kirdmanee 2011).

Foliar application of nutrients was found to be effective in alleviating the harmful 
effects of salinity on growth by improving plant water status. A negative relation-
ship between plant water status and increasing salinity was observed in sunflower 
and safflower both. Foliar application of nutrient solution (i.e., H3BO3 at 5 ppm, 
Fe-EDTA at 5 ppm, and KNO3 at 250 ppm) significantly reduced the decreasing 
tendency of water relation parameters under different levels of salinities (i.e., ECe 
6.1 and 9.9 dS/m) (Table 19.6; Jabeen and Ahmed 2012a).

Foliar application of glycine betaine (GB) at 0, 50, and 100 mM enhanced leaf 
water potential of maize under salinity stress, whereas due to GB application, a 
slight decrease was observed in leaf osmotic potential in the salt-stressed plants 
which resulted in improved leaf turgor potential, thus contributing in osmoregula-
tory process. The significant improvement in plant water status might have contrib-
uted to better growth of maize under salt stress (Nawaz and Ashraf 2007). Foliar 
application of potassium sulfate (K2SO4) significantly improved growth of sun-
flower plants under salinity stress (150 mM) which was found to be linked with the 
improvement in stomatal conductance, water use efficiency, leaf turgor potential, 
and relative water content (Akram et  al. 2009). Different levels of foliar-applied 
KH2PO4 proved to be effective in improving growth of sunflower under salt stress 
with the increased water use efficiency and relative water contents (Akram and 
Ashraf 2011). A major role of potassium (K) in plant cells is osmoregulation, which 
is marked by the status of osmotic potential (Ψs). Kaya et al. (2007) observed that 
foliar application of KNO3 (5 mM) significantly improves relative water content 
(RWC) in melon (Cucumis melo) under salinity (150 mM NaCl). Improvement in 
all water relation parameters in plants pretreated with K under salt stress has also 
been reported by Kaddour et al. (2009) in Arabidopsis, Zheng et al. (2008) in winter 
wheat and Cha-um et al. (2010) in rice.

19.5.1.4  Photosynthetic Pigments and Proteins

The photosynthetic pigments of leaves generally decrease under salt stress. The old-
est leaves start to develop chlorosis and fall with prolonged period of salt stress 
(Parida and Das 2005). But there are some evidences which proved that chlorophyll 
content increases under salinity conditions (Wang and Nil 2000). Soluble protein 
contents of leaves usually decrease in response to salinity (Parida et al. 2002; Parida 
and Das 2005). But different views are there regarding increasing or decreasing 
proteins in plants under saline conditions. Amini and Ehsanpour (2005) reported 
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increased soluble proteins in leaves and stem of tomato growing under saline condi-
tions. It has been reported in some cases that soluble protein may increase at low 
salinity but decrease at high salinity (Agastian et al. 2000).

There are evidences which shows organic fertilizer offset the salinity effect and 
increase significantly the amount of photosynthetic pigments and total soluble pro-
teins. Application of Nile compost at 0, 100, and 200 g/pot under three levels of 
salinity of diluted seawater (i.e., 2000, 4000, and 6000 mgL−1) increased signifi-
cantly chlorophyll a and b and carotenoid content percentage of Jatropha curcas 
(Mazhar et al. 2011). Total chlorophyll and total carotenoid of Phaseolus vulgaris 
were observed to be reduced in saline soil, treated with 10 ton ha−1 organo-mineral 
fertilizer (OMF) compost as an alternative to 50% of the recommended dose of 
NPK (Rady et al. 2016). Abdel-Ati and Eisa (2015) indicated highest significant 
observations in total chlorophyll content of barley (Hordeum vulgare L.) obtained 
from applying the rice straw compost (RS-compost) followed by rice straw with 
olive mill wastewater compost (RS-OMW compost) and 30 m3 fed−1 of animal dung 
with no significant differences in between and the animal dung conventional dose, 
respectively, under salinity. The amount of chlorophyll a in rice leaf was decreased 
by 5.4%, 19.6%, and 26.4% at 0.3%, 1.0%, and 2.0% salinity levels, respectively.

Same trend was followed by chlorophyll b, total chlorophyll and total carot-
enoids. The chlorophyll a content was stabilized in the saline soil (1–2% salt levels) 
treated by organic manure at 12.5 kg m−2. Total chlorophyll was better maintained 
in rice plants grown with organic manure treatment in 2% salt levels than in the 
control. The reduction in photosynthetic pigments in rice plants was directly related 
with the induction of salt contamination (Cha-um and Kirdmanee 2011). Total 
 chlorophyll content in flag leaf of rice grown under salinity (ECe 12.5 dS m−1) was 
decreased with the increase in sodium ions. Chlorophyll b and total chlorophyll 
content were maintained better in soil treated with both gypsum (CaSO4.2H2O) and 
farmyard manure (FYM) at 62.5 g m−2 and/or 500 g m−2, respectively, than in the 
control. Similar results were observed in the treatment solely of gypsum or FYM, 
except for chlorophyll a and total carotenoids (Cha-um et  al. 2011). Ahmad and 
Jabeen (2009) observed that total chlorophyll of sunflower did not increase signifi-
cantly by the application of organic manure under non-saline condition, but these 
values considerably increased in salinity, whereas application of organic manure 
shows slight increase in protein under non-saline and insignificant difference under 
saline condition (Fig. 19.2). Ahmad et al. (2009) observed that the amount of chlo-
rophyll in ginger leaves was significantly increased only in plants under non-saline 
condition provided by vermicompost as fertilizer and its concentration was reduced 
under saline water irrigation and remained more or less equal even in those plants 
provided with organic fertilizers (i.e., vermicompost and biogas slurry), whereas 
soluble proteins of leaves show some increase only under vermicompost amend-
ment both under non-saline and saline conditions. The application of biogas slurry 
only and its mixture do not show any improvement in protein content. A significant 
decrease in total soluble protein content was recorded in sunflower with increased 
concentration of salts of rooting medium. Possibly the high salinity increases break-
down of protein due to proteolytic process.
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Hussein et al. (2012) observed increased concentration of potassium monophos-
phate (KMP), i.e., 100 or 200 ppm in the foliar spray increased chlorophyll a, chlo-
rophyll a + chlorophyll b, and chlorophyll a/chlorophyll b ratio in pepper (Capsicum 
annuum L.) plants irrigated with tap water (EC 0.47 dS/m) or increased saline irri-
gation water (4.69, 9.38 dS/m). The interactions between saline irrigation water and 
KMP levels in foliar spray were not significant on the concentrations of chlorophyll 
b and total carotenoids. Kaya et  al. (2007) reported salinity (150  mM NaCl) 
decreased chlorophyll a and chlorophyll b contents in melon (Cucumis melo) and 
application of KNO3 (5 mM) offset the negative effects of salt stress. Babar et al. 
(2014) reported salinity stress (100 mM NaCl) significantly reduced chlorophyll a 
and chlorophyll b of fenugreek. This decrease in chlorophyll might be due to the 
chlorophyll and other chloroplast pigments oxidation coupled with instability of the 
pigment protein complex under salt stress. Reduction in these chlorophyll contents 
was mitigated by the foliar application of salicylic acid at 100 mg L−1. Azeem and 
Ahmad (2011) found foliar application of K along with Fe and B was found to be 
the most effective to increase photosynthetic rate by enhancing chlorophyll content 
in tomato (Lycopersicon esculentum) under different levels of salinity (ECiw 2.9 
and 5.8 dS m−1). Beside this they also reported increased protein content of leaves 
in plants being sprayed by Fe and mixture of K+Fe+B over their respective control. 
Chlorophyll content of strawberry leaves was reduced by 34% at 40  mM NaCl 
stress. Foliar application of KNO3, Mg (NO3)2, and Ca(NO3)2 significantly improved 
leaf chlorophyll content. This might be attributed to the presence of magnesium ions 
in the center of chlorophyll molecules and the role of calcium to preserve the 
 structural and functional integrity of plant membranes (Yildirim et  al. 2009). 
Chlorophyll a and b, carotenoids, and total pigment contents of faba bean leaves 
reduced gradually at 3.13 and 6.25 dS m−1. Foliar spray with amino acid at 500, 
1000, or 1500 mg L−1 exerted stimulatory effects on photosynthetic pigments under 
both saline and non-saline (control) conditions. The increase in chlorophyll con-
tents of sprayed plants might be attributed to the availability of amino acids as it 
helps to increase the chlorophyll level. Similarly protein content elevated with the 
elevation of amino acid up to 1500 mg L−1 at different salinity levels (Sadak et al. 
2015). The highest observations were obtained in regard to the total chlorophyll 
(μmol m−2) of barley plant under salinity from zinc sulfate foliar application with 

Control (ECiw: 0.5dS/m, ECe: 1.5dS/m)

Salinity (ECiw: 8.6dS/m, ECe: 9.8dS/m)

(Source: Adapted from Ahmad and Jabeen 2009)
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Fig. 19.2 Effect of organic fertilizer on total chlorophyll and total soluble protein of sunflower 
plant under different salinity level
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30 ppm followed by 20 ppm and then 10 ppm and then the control treatment, respec-
tively (Abdel-Ati and Eisa 2015). Chlorophyll a, chlorophyll b, total chlorophyll, 
and total carotenoid concentrations in salt-stressed (200  mM NaCl) leaves of 
Pathumthani 1 (PT1) rice seedlings were at 167.02, 53.72, 220.74, and 82.20 μg g−1 
FW in 11.8 mM KNO3- treated seedlings which were greater than those without 
KNO3 by 2.49, 2.49, 2.49, and 2.54 times, respectively (Cha-um et al. 2010). Foliar 
application of gibberellic acid at 100 mg L1 solution was found to be the most effec-
tive for resisting the severe salinity effects on the chlorophyll contents of maize 
plant leaves followed by the applications at the same rates of silicon and then the 
salicylic acid (Rashad and Hussien 2014). Foliarly supplied KNO3 (50 and 100 mM) 
significantly showed better tolerance of coriander plants toward salinity (40 and 
80 mM NaCl), and positive significant effects were reported on plant protein and 
chlorophyll contents by Elhindi et al. (2016).

Zhang et  al. (2013) found inhibition in protein synthesis of tomato plants by 
saline-alkaline stress. Exogenous spermidine (Spd) treatment facilitated to produce 
new proteins and/or accelerate the process of some original protein synthesis to 
adjust osmotic potential of cells to maintain turgor potential and alleviate damages 
that result from salt stress. Total soluble proteins (TSP) in different mung bean vari-
eties decreased with increasing salinity, and maximum reduction in TSP was 
observed at 12 dS m−1. Foliar application of salicylic acid (SA) at 100 mg L−1 was 
effective in alleviating the adverse effect of salinity and significantly increased the 
TSP (Akhtar et al. 2013). Bybordi and Mamedov (2010) reported that protein con-
tent was increased in canola plants being sprayed by micronutrients, i.e., iron + Zn. 
Rizk and Abdo (2001) found increased crude protein contents in mung bean with 
the foliar application of boron. Jabeen and Ahmed (2011b) reported increased pro-
tein content in sunflower with the foliar application of boron and manganese irre-
spective to the plant growth under non-saline or saline conditions. Data in Table 19.7 
shows an increased total chlorophyll and total protein content in sunflower plant 
with the foliar spray of micronutrients (i.e., B and Mn) irrespective to their growth 
under saline or non-saline conditions (Jabeen 2010). Application of N as a liquid 
spray on wheat at late growth stage resulted in higher grain protein as compared to 
its broadcast as dry granular fertilizer (Bly and Woodard 2003; Fageria et al. 2009).

19.5.1.5  Nitrogen Metabolism

Nitrogen is an important element for the plant metabolism and to increase its resis-
tance to salinity. It is available to plants in the form of nitrates (NO3

−) which is 
absorbed by roots, transported to the shoot, and accumulated in vacuole for the N 
assimilation. Nitrate uptake and transport appear sensitive to salinity; the repression 
of NO3

− under salinity is found to be directly proportional to the increasing salt 
concentrations. The decrease in NO3

− concentration under salinity might be due to 
the root disruption, total nitrogen and nitrate uptake inhibition (Parida and Das 
2004), low loading of NO3

− into root xylem (Abd El-Baki et al. 2000), and decreased 
NRA (Debouba et al. 2006). Under salinity chloride (Cl−) may inhibit the uptake of 
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nitrate by nitrate transporters, or salt ions may inactivate nitrate transporters which 
results in higher chloride accumulation in leaves (Jabeen and Ahmed 2011a). 
Reductions in nitrate uptake under salinity reduce NRA in leaves which might be 
due to enzyme degradation/inactivation and the reduction in gene expression and 
NR protein synthesis (Debouba et al. 2007). Low levels of NO3

− and glutamine in 
leaves may results the reduction in NR mRNA levels (Ferrario et al. 1998). Reduction 
in NO3

− and NRA under salinity was also reported in leaves of olive trees by 
Tabatabaei (2006), in tomato by Debouba et al. (2007), in algarrobo by Meloni et al. 
(2004), and in soybean by Moussa (2004).

The nutrient supply methods can be modified to offset the harmful effect of salin-
ity. Application of NO3

− through foliage has been proved to improve the tolerance 
of plant to salinity by raising the nitrate content in plants (Ebert et al. 2002; Kaya 
and Higgs 2003). Albassam (2001) found in pearl millet under salt stress that 
 addition of 10 mM nitrate in irrigation solution decreased Cl− and activated NRA by 
increasing NO3 uptake.

The highest values of NO3, NRA, and NiR were recorded by Jabeen and Ahmad 
(2017) in sunflower plants grown in saline and non-saline soil amended with vermi-
compost as compared to those grown in soil amended with biogas slurry. At ECe 6.1 
and 9.9 dS/m, an increase of 19.1% and 17.98%, respectively, was recorded in NRA 
in plants treated with vermicompost. This might be attributed to the supply of nutri-
ents specially N through organic manure to the plant. An elevation of NRA resulted 
in an increase in nitrate reduction, which led to the total N assimilation (Ruiz et al. 
2000). The increase in glutamine synthetase (GS) and glutamate synthase (GOGAT) 
activity of sunflower leaves irrespective of non-saline and saline water irrigation has 
also been reported with the amendment of vermicompost and biogas slurry by 
Jabeen and Ahmad (2017) (Table 19.8).

Table 19.7 Effect of foliar application of H3BO3, MnCl2, and their mixture on chlorophyll 
contents and total soluble protein of sunflower plant under different salinity levels

Sea salt concentration 
(g/L)

Foliar 
application

Chlorophyll 
a

Chlorophyll 
b

Total 
chlorophyll

Total 
protein

mg/g F.W mg/g F.W mg/g F.W mg/g F.W

0 (ECiw:0.5 dS/m, 
ECe:1.8 dS/m)

Control 0.50 ± 0.01 0.80 ± 0.07 1.30 ± 0.06 25.8 ± 0.23
H3BO3 0.58 ± 0.01 0.86 ± 0.02 1.44 ± 0.02 27.8 ± 0.29
MnCl2 0.62 ± 0.02 0.89 ± 0.03 1.51 ± 0.05 26.7 ± 0.29
H3BO3+MnCl2 0.63 ± 0.02 0.91 ± 0.13 1.54 ± 0.14 28.0 ± 0.29

4 (ECiw:6.1 dS/m, 
ECe:7.4 dS/m)

Control 0.51 ± 0.01 0.83 ± 0.01 1.34 ± 0.02 22.0 ± 0.29
H3BO3 0.62 ± 0.02 0.88 ± 0.01 1.50 ± 0.02 24.7 ± 0.23
MnCl2 0.65 ± 0.02 0.93 ± 0.01 1.58 ± 0.04 23.6 ± 0.29
H3BO3+MnCl2 0.65 ± 0.02 0.96 ± 0.02 1.61 ± 0.02 24.8 ± 0.18

8 (ECiw:10.8 dS/m, 
ECe:12.2 dS/m)

Control 0.37 ± 0.06 0.48 ± 0.03 0.85 ± 0.09 15.8 ± 0.29
H3BO3 0.44 ± 0.05 0.54 ± 0.05 0.98 ± 0.10 18.2 ± 0.35
MnCl2 0.47 ± 0.02 0.57 ± 0.03 1.04 ± 0.04 17.4 ± 0.29
H3BO3+MnCl2 0.48 ± 0.01 0.58 ± 0.03 1.06 ± 0.04 18.3 ± 0.35

Source: Adapted from PhD Thesis, Jabeen (2010)
The values are mean ± SE (n = 3)
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Foliar supplied NO3 through KNO3 could decrease Cl− concentration and offset 
its toxic effects by increasing the nitrate concentration. K+ accumulation in leaves 
under salt stress maintain a high K/Na ratio which may help to regulate various 
enzymatic processes and protein synthesis.

In sunflower and safflower, Jabeen and Ahmad (2011a) found that application of 
foliar mineral KNO3 significantly increased nitrate content and NR activity irre-
spective to their growth under non-saline (ECe 1.8 dS/m) or saline conditions (ECe 
6.1  dS/m and 9.9  dS/m) (Table  19.9). Tabatabaei and Fakhrzad (2008) found in 
perennial ryegrass that 0–10 mM KNO3 in the solution applied through soil or foliar 
increased NO3

− concentration in leaves irrespective to plant growth under non- 
saline or saline conditions.

Application of 3–4% urea fertilizer through lettuce foliage under salinity signifi-
cantly promoted activities of urease (UR), nitrate reductase (NR), glutamine synthe-
tase (GS), and asparaginase (AS) (Hasaneen et al. 2008).

Foliar spray of 0.25 mM spermidine on tomato cultivars under saline-alkaline 
stress promotes NH4

+ assimilation by coordinating and strengthening the synergistic 
action of NADH-GDH, GS/NADH-GOGAT, and transamination pathways. Later, 
NH4

+, GDH, GS, GOGAT, GOT, and GPT are maintained in balanced state to miti-
gate harms caused by stress (Zhang et al. 2013). Foliar spray of salicylic acid at 
100 mgL−1 under saline condition is found to be effective in the improvement of 
growth and yield of mung bean through improving the nitrogen metabolism by rais-
ing nitrogen uptake, NRA, NiRA, protein, and total amino acids (Akhtar et  al. 
2013). Foliar spray of KNO3 with three microelement (Fe, Mn, Mo) mixture proved 
to be best spray medium to enhance the NRA in Gossypium hirsutum under differ-
ent levels of salinity (Jabeen and Ahmad 2015).

19.5.1.6  Reproductive Yield

The soil or water salinity causes nutritional disorder related to mineral deficiencies 
which affect quality and quantity of marketable yield of fruits, roots, tubers, and 
leaves (Machado and Serralheiro 2017), e.g., irrigation with saline water causes 
blossom-end rot due to Ca2+ deficiency in some fruits and vegetables. Yield and 
quality of crop plants can also be affected by the timing of application of salt stress 
which could be important for improved irrigation and fertilization management 
strategies. Botía et al. (2005) observed that salt stress application at the time of fruit-
ing till harvesting did not affect fruit quality and quantity of two melon cultivars.

A favorable pod and seed yield of common beans plant obtained with organo- 
mineral fertilizer (OMF) compost applied at 20 or 30 ton h−1 in the combination of 
50% of the recommended dose of the NPK fertilizers under salinity. Application of 
20 ton OMF compost ha−1 with 50% NPK has been found a better choice to achieve 
the greatest yields and to maintain soil fertility in the long run. It facilitates plants 
with potassium humate and sulfur to overcome the adverse effects of soil salinity as 
they work as additives for saline soils to improve crop productivity (Rady et  al. 
2016). Cha-um and Kirdmanee (2011) reported improvement in grain yield of rice 
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by the addition of organic matter, i.e., farmyard and green manure, in paddy fields 
which may act as salt ion-binding agents to detox the toxicity induced by salinity.

Similar findings have also been reported by others that remediation of saline 
paddy fields by OM improved rice productivity (Amanullah 2008; Ghafoor et al. 
2008; Murtaza et al. 2009). Abdel-Ati and Eisa (2015) have found increased pro-
ductivity (spike length, weight of 1000 grains, grain and straw yield) of barley with 
the application of organic fertilizer, i.e., rice straw compost (RS-compost) and olive 
mill wastewater compost (OMW compost), under saline conditions. Ahmad et al. 
(2009) observed that yield of ginger rhizome under saline water irrigation was 
reduced by 47.2% amendment of vermicompost increased it by 30.76% under non- 
saline condition and under saline water irrigation by 70.77% in comparison with its 
respective saline controls. The organic manures (i.e., vermicompost and biogas 
slurry) under salinity increased reproductive yield of sunflower. Amount of oil 
showed a marked increase from 4.71 to 11.33 g at ECe 5.9 dS/m and from 1.92 to 
5.35 g at ECe 9.8 dS/m (Ahmad and Jabeen 2009; Fig. 19.3).
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Fig. 19.3 Effect of organic fertilizer on reproductive yield of sunflower plant under different salin-

ity levels. (Source: Adapted from Ahmad and Jabeen 2009)
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Zaki (2016) concluded that 70 kg N fed−1 and 10 ton compost fed−1 could make 
highest rice reproductive yield possible under high saline conditions. Humic acid 
application to saline soil (12.86 dS m−1) significantly increased number of bolls by 
25.4, seed yield 15.7%, lint yield 13.6%, and total yield 14.2% compared to plants 
grown in saline soil without humic acid application (Rady et al. 2016). Brunetti et al. 
(2007) found that wheat grain yield and the components of humic substance, such as 
humic acid and fulvic acid, are positively correlated. The application of gypsum 
(CaSO4 2H2O) at 62.5 g m−2 and/or farmyard manure at 500 g m−2 to the saline soil 
in paddy field significantly improved reproductive yield as compared to the control, 
i.e., without gypsum and farmyard manure (Cha-um et al. 2011). Abusuwar and El 
Zilal (2010) reported four times increased forage sorghum yield compared to the 
control with the application of farmyard manure in a saline-sodic soil.

In order to observe the effects of foliar application on yield under salinity stress, 
extensive work has done in different crops. Sadak et al. (2015) revealed a significant 
increased reproductive yield of bean plant with the foliar application of amino acid 
at 1500 mg L−1 under tap water or different saline irrigation water. Fruit yield of 
salt-stressed Lagenaria siceraria was improved by foliar application of KNO3 at 
2.47 mM (Ahmad and Jabeen 2005). A significant increase was noticed by Azeem 
and Ahmad (2011) in yield (number, weight, and circumference of ripen fruits) of 
tomato crop plant by foliar spray of K, Fe, and their mixture (K+Fe+B) under saline 
conditions, i.e., ECe 4.31 dS/m and ECe 6.5 dS/m. Use of Mn foliar application had 
the highest positive effect on yield components and grain yield of sunflower crop 
plant under water stress condition (Babaeian et  al. 2011). Foliar application of 
potassium sulfate (K2SO4) at 1.5% K+0.62% S and 1% K+0.41% S, respectively, 
improved growth and achene yield of sunflower plant under salinity (i.e., 0 and 
150 mM). Improved growth and yield of sunflower plants due to K2SO4 application 
could be to the enhanced photosynthetic activity and other water relation parameters 
(Akram et al. 2009). Similarly Akram and Ashraf (2011) found varying levels of 
foliar-applied KH2PO4 (5 + 4, 10 + 8, 15 + 12, and 20 + 16 mg g−1 K + P, pH 6.5) 
effectively improved yield of sunflower at 150 mM NaCl stress. It has also been 
reported by Akram et al. (2007) that foliar spray of potassium hydroxide (KOH) at 
0, 0.5, 1.0, 1.5, and 2.0% increased yield of sunflower under nonstress and salt- 
stressed conditions by improving K+/Na+ ratio. Foliar application of 200 ppm potas-
sium monophosphate (KMP) increased the pepper plant fruit yield grown with 
different saline irrigation water, i.e., 3000 and 6000  ppm (Hussein et  al. 2012). 
Abdel-Ati and Eisa (2015) indicated that foliar application of zinc sulfate (ZnSO4) 
into barley plants led to increase the plant reproductive yield as a result of enhanc-
ing the plant metabolism and growth. The highest results were obtained from zinc 
sulfate foliar application with 30 ppm followed by 20 ppm and then 10 ppm and 
then the control treatment, respectively. Jabeen et  al. (2013) found a significant 
reduction in oil content of seeds and oil yield per sunflower plant with the increasing 
concentration of sea salt solutions. Spray with H3BO3 and MnCl2 exerted a signifi-
cant effect and increased seed oil content and oil yield per plant irrespective to their 
growth under different saline irrigation water (ECiw 6.1 and 10.8  dS/m). Mn is 
found to have more stimulatory effect on oil yield than boron (Table 19.10).
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19.6  Conclusion

The plant responses and tolerance mechanisms to different abiotic stresses need 
further critical physiological and molecular studies. It is a need of a time and a chal-
lenging task for plant scientists to explore the easiest and effective ways to over-
come the adverse effects of stresses. This chapter provides a brief overview of the 
recent knowledge regarding the provision of essential mineral to plant to maximize 
the crop yield under stress due to salinization conditions through different 
approaches, i.e., organic fertilization amendments in soils and foliar application of 
nutrients. The overview, focusing on recently published data, aimed to investigate 
the potential and effects of these approaches to restore soil and crop quality.

Selected studies have identified organic materials (e.g., farmyard manures, dif-
ferent types of composts, different agro-industrial by-products, slurry, etc.) as effec-
tive tools to improve different soil properties in salt-affected soils to make it fertile 
for increasing food production. In our recent agricultural system, we have to feed 
the soil with the plants. Feeding the soil only compensate for the elements that have 
been spoiled and are not available for the plant. It has been revealed that organic 
fertilization being a good source of nutrients is highly productive and sustainable, 

Table 19.10 Effect of foliar application of H3BO3 and MnCl2 on reproductive yield of sunflower 
plant under different salinity levels

Sea salt 
concentration 
(g/L)

Foliar 
application

No. of seeds/
plant

Weight of 
seeds/plant (g)

Amount of oil 
in seeds/plant 
(g)

Oil content in 
seeds (%)

0 (ECiw:0.5 dS/m, 
ECe:1.8 dS/m)

Control 384.0ab ± 6.55 19.97ab ± 0.80 8.90b ± 0.41 44.90ab ± 0.42
H3BO3 512.0a ± 9.81 

(+25%)
29.69a ± 0.76 
(+32.7%)

13.34a ± 0.34 
(+ 33.3%)

48.50a ± 0.28 
(+7.4%)

MnCl2 528.0a ± 10.50 
(+27.3%)

30.62a ± 0.75 
(+34.8%)

13.77a ± 0.47 
(+ 35.4%)

48.80a ± 0.46 
(+8.0%)

0.4 
(ECiw:6.1 dS/m, 
ECe:7.4 dS/m)

Control 332.0bc ± 6.93 
(−13.5%)

14.94ab ± 0.62 
(−25.2%)

7.70b ± 0.29 
(−13.5%)

38.90b ± 0.40 
(−13.4%)

H3BO3 458.0b ± 2.73 
(+27.5%)

23.91b ± 0.25 
(+37.5%)

12.00ab ± 0.14 
(+ 35.8%)

43.50ab ± 0.37 
(+10.6%)

MnCl2 474.0ab ± 8.66 
(+30.0%)

24.74b ± 0.77 
(+39.6%)

12.39ab ± 0.31 
(+ 37.9%)

43.90ab ± 0.25 
(+11.4%)

0.8 
(ECiw:10.8 dS/m, 
ECe:12.2 dS/m)

Control 242.0c ± 8.87 
(−37%)

7.86c ± 0.97 
(−60.6%)

5.58c ± 0.35 
(−37.3%)

28.00c ± 0.38 
(−37.6%)

H3BO3 338.0bc ± 6.87 
(+28.4%)

13.11abc ± 0.43 
(+40%)

9.00bc ± 0.18 
(+ 38.0%)

33.00bc ± 0.86 
(+15.2%)

MnCl2 348.0bc ± 4.07 
(+30.5%)

13.50abc ± 0.21 
(+41.8%)

9.25bc ± 0.06 
(+ 39.7%)

33.40bc ± 0.27 
(+16.2%)

Source: Adapted from Jabeen et al. (2013)
Figures in parenthesis indicate % promotion (+) and reduction (−) over control. (Reduction per-
centage due to different salinities of irrigation water in non-spray plants has been calculated in 
comparison with non-saline control, whereas promotion due to foliar spray has been calculated 
over their respective non-spray control undergoing various saline irrigation.) The values are mean 
± SE (n = 3)
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but there is a need to consider this option as a solution to resolve the highlighted 
issues raised due to salinization of land.

It has also been proved that foliar application of nutrients could maximize crop 
yields under stress. The potential of foliar application of nutrients has gained sig-
nificant attention in recent times, and many plant studies have revealed its protective 
roles in stress tolerance. However the rate of nutrient penetration through the barri-
ers, i.e., cuticle or the stomata of leaf, into the cells depends on the concentration 
and the physical and chemical properties of the sprayed ion. Plant age and timings 
of nutrient application should also be considered to enhance its efficiency. The pub-
lished literature indicates that foliar fertilization in crops increased yield, but the 
yield response of crops to foliar fertilization of macro- and micronutrients is highly 
variable. Foliar fertilization should be implemented at that time when soil-applied 
nutrients are ineffective due to their immobilization.

However, findings from experimental field research studies confirm that appro-
priate application of nutrients through organic fertilizer in soil or through foliar 
spray can be an effective protectant for crop plants for combating salinity stress.
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Chapter 20
Aspects of Co-tolerance Towards Salt 
and Heavy Metal Stresses in Halophytic 
Plant Species

Alina Wiszniewska, Iwona Kamińska, Aleksandra Koźmińska, 
and Ewa Hanus-Fajerska

Abstract In this chapter we were focused on physiological adaptations related to 
co-tolerance of plants towards salt and trace metal or metalloid stresses. Numerous 
halophytes, well adapted to grow in saline conditions, are concurrently able to accu-
mulate elevated quantity of some trace elements, such as zinc, nickel, cadmium, 
lead or arsenic. The mechanisms underlying the tolerance to both, heavy metal or 
metalloid and salt toxicity level, include mainly typical defence reactions to oxida-
tive stress and rearrangements in mineral status of particular organs which alleviate 
the negative consequences of stress in co-tolerant taxa. We discuss this unique fea-
ture on several examples of halophyte species tolerant to excessive amounts of trace 
elements, showing mechanisms which determine plant defence under intensive abi-
otic stress of that kind. We also discuss on the role of mineral status and ion homeo-
stasis in developing the tolerant response on the phenotype level and compare 
mineral homeostasis between metal-tolerant halophytic and glycophytic species, 
sensitive to increased salinity.
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20.1  Introduction

Soil salinity and toxic compounds accumulating in the top layer of the earth surface, 
along with drought and elevated temperature stress, are the major problems which 
occur in agricultural areas all around the globe. They give rise to enormous yield 
losses or totally discriminate some areas or/and plant species from cultivation 
(Wang et al. 2003; Salewski et al. 2010; Duarte and Fonesca 2014; Feng et al. 2015; 
Marasco et al. 2013; Sandoval et al. 2016; Wang et al. 2016). However, plants resis-
tant to particular stress often exhibit increased tolerance to other kinds of stresses. 
Recent studies revealed that halophytes, adapted to increased soil salinity, have at 
the same time higher level of ability than non-halophytic species to cope with 
drought and metallic stress (Bankaji et  al. 2014; Moray et  al. 2016; Shen et  al. 
2017). Heavy metal (HM) pollution became a serious threat to both natural and 
agricultural ecosystems, and now it is a real challenge to reduce the risk of human 
exposure to the most toxic HMs, such as mercury (Hg), cadmium (Cd) and lead (Pb) 
(Li et al. 2014, Lutts et al. 2016). Mechanisms determining plant tolerance to either 
salt stress or to HMs have been investigated intensively for last several years, but 
recently more and more attention is paid to co-tolerance of salt-resistant halophytes 
to trace elements. Halophytes became to be seen not only as the plants of elevated 
tolerance to salt stress but also as a potential solution for unwanted trace elements 
in agricultural soils (Nouri et al. 2017). Recent reports confirmed that halophytes 
developed co-tolerance to both heavy metal contamination and high salinity. Thus, 
halophytes are now being considered as model plants for understanding co- tolerance 
on salt and heavy metal stress in the plant kingdom because the same physiological 
processes are under impact of HMs or metalloids and salinity. Increased tolerance 
of halophytes to heavy metal ions allows them to grow in post-industrial areas 
(Toderich et al. 2010; Liu et al. 2017; Shen et al. 2017). Some hyperaccumulator 
plant species which are tolerant to salt stress developed adaptation to sustain high 
heavy metal concentration (Lutts and Lefevre 2015). This feature can be exploited 
for phytoremediation purposes of polluted sites, since numerous halophytes were 
found to either effectively accumulate heavy metals in the shoots or stabilize them 
in the rhizosphere (Lefevre et al. 2009; Clemente et al. 2012; Gonneau et al. 2014; 
Dixit et al. 2015, Nawaz et al. 2017). These properties give halophytes advantage 
over other species used to cope with problem of environmental pollution, such as 
numerous non-halophytic HM hyperaccumulators (Muszyńska and Hanus-Fajerska 
2015; Wiszniewska et al. 2016, 2017a, b; Muszyńska et al. 2018). Thus currently, 
we can witness on a daily basis ground starting of the emerging field in plant 
science.

In this chapter we present recent findings concerning synergic tolerance of halo-
phytes to high salinity and toxic metals and metalloids. We discuss the status of 
current research on halophytes grown in heavy metal-contaminated areas and spe-
cific features and adaptations of these plants that confer to their increased tolerance 
to environmental stressors. Besides, the mechanisms determining efficient stress 
response in halophytes subjected to heavy metals are reviewed here.
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20.2  Studies on Halophyte Species Accumulating 
Environmental Pollutants

Valuable scientific field is to understand how particular plant species are adapted to 
grow in salt marshes, which are located on sediments deposited in estuaries, espe-
cially as such areas with its specific vegetation are deservedly considered natural 
sink for contaminants (Löser and Zehnsdorf 2002; Aksoy et al. 2005; Duarte et al. 
2010; Cambrollé et al. 2011). It seems obvious that in connection with this impor-
tant ecological function of these areas, there are especially sediments which act as 
main sink for trace elements, including numerous heavy metals (Table  20.1 and 
literature cited herein). Special concern is being given to the ballast elements, such 
as Hg, Cd or Pb (Fitzgerald et al. 2003; Windham et al. 2003; Weis and Weis 2004; 
Sousa et al. 2008; Caçador et al. 2009; Duarte et al. 2010; Anjum et al. 2012). That 
is why the effectiveness of halophyte and the so-called miohalophyte species to 
immobilize not only metals but also metalloids, especially arsenic (As) (Caetano 
et al. 2008; Paul and Shakaya 2013; Fernández et al. 2016; Ellili et al. 2017), is 
extensively studied, alongside numerous metallophytes belonging to non- halophytes 
(Dixit et al. 2015; Hanus-Fajerska and Koźmińska 2016; Ciarkowska et al. 2017; 
Wiszniewska et al. 2017a, b; Koźmińska et al. 2018). In salt marshes plants adapted 
to coastal areas may be frequently exposed to highly saline seawater inputs 
(González-Alcaraz et  al. 2013). Rarely salt marshes occur inlands, where saline 
substrate is significantly diluted, especially during the long periods of rain. This 
results in higher seed germination rate of numerous species, also those less adopted 
to high salinity (Ingrouille and Eddie 2006; Ameixa et al. 2016). Consequently, in 
such areas environmental parameters and species composition are different from 
those formerly mentioned. Another kind of ecological niches is being created in arid 
areas and in highly evaporative climate, and as a result salt lakes or saline deserts 
represent extremely different habitats (Fernández et al. 2016). The next examples of 
halophytic maritime plant can grow on coastal cliffs, so in nature a broad gradient 
of tolerance both to concentration of chloride salt and other elements such as heavy 
metals can be encountered in particular species (Ingrouille and Eddie 2006). 
Similarly, it is vital that the existing knowledge should be advanced in the domain 
of the biogeochemistry at the rhizosphere of halophytes (Anjum et al. 2012; Ellili 
et al. 2017). Factors affecting the bioavailability of metallic or metalloid elements 
in the ionic form to the plant body include radiation influx, water or ground tem-
perature, the humidity of substrate or sediment, its salinity, redox potential (Eh), 
particle size and organic matter content. Changes in temperature and of salinity alter 
metal speciation, and their uptake is above all important in the case of aquatic and 
wetland plants. Plant species growing in salty substrates are considered appropriate 
materials to be applied in an innovative approach, the so-called phytomanagement, 
with emerging fields of desalinization (Nedjimi 2014; Nouri et al. 2017) and phy-
toremediation of inorganic or organic pollutants from saline environments (Nazaré 
et al. 2011; Parraga-Aguado et al. 2014; Fernández et al. 2016; Ellili et al. 2017; 
Pérez-Sirvent et  al. 2017). With the current pollution rate of multiple saline 
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environments, the situation in such different habitats has, unavoidably, become 
more and more complex. Thus, mechanisms responsible for parallel tolerance to 
these two different abiotic stressors are urgently needed to be elucidated in various 
plant materials. The efficacy criterions for applying plant material in the case of 
interconnected stresses are essential in restoration schemes. The extensive future 
studies in such an interdisciplinary domain are inevitable and should be rapidly 
undertaken.

Halophyte germinating, growing and completing life cycle under elevated salin-
ity due to numerous adaptive traits may contribute to their better resistance to other 
kinds of stressors. Lutts and Lefevre (2015) reported that properties of halophytes 
involved in saline tolerance ensure heavy metal tolerance, since high heavy metal 
level causes an ionic toxicity, a secondary water stress and an oxidative stress. 
Furthermore, many of the salt-tolerant plants are quite well adapted to toxic metal- 
affected environments, and they are capable of remediating different HMs, grow 
and give yield (Anjum et al. 2014). Ability of accumulating enormous salt quantities 
by euhalophyte plant species has a great significance, particularly in semiarid and 
arid habitats, where the reduction of salt content in the rhizosphere is inefficient 
(sometimes impossible) due to insufficient precipitations and inappropriate water-
ing systems (Shiyab et al. 2003). Numerous halophytes possess also features useful 
in desalination process, which are, apart from possibility to grow in highly salty 
stands, the effectiveness in biomass production, ability of sodium accumulation in 
above-ground organs and important opportunity of economic exploitation of bio-
mass, for instance, as fodder, fuel, fibre, essential oil or oil seeds (Rabhi et al. 2010; 
Souza et al. 2012).

20.3  Specific Features of Halophytes in Relation 
to Mechanisms of Their Increased Resistance to Abiotic 
Stresses

Halophytes are roughly defined as plants with capability to complete life cycle in 
high salinity conditions (Stuart et al. 2012). These species can exist in an environ-
ment with a salinity concentration exceeding 200  mM of NaCl (~20  dS m−1) 
(Flowers and Colmer 2008). According to Stuart et al. (2012), halophyte species 
constitute 1% of plants in the world. These specific taxa have developed a number 
of adaptations at the anatomical, morphological and physiological level that facili-
tate them to survive in salinity conditions (Table 20.1). The most specific mecha-
nisms activated under saline condition include control of ion homeostasis, 
compartmentalization of toxic ions, maintenance of osmotic balance via synthesis 
and accumulation of osmolytes, succulence and salt inclusion or excretion (Munns 
and Tester 2008; Lokhande and Suprasanna 2012; Gupta and Huang 2014; Flowers 
and Colmer 2015).
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20.3.1  Ion Homeostasis

Regarding the control of ion homeostasis, the pathways by which toxic ions enter an 
organism may involve ion channels, pinocytosis and ions transporters (Na+ and Cl−). 
Some halophytes have the ability to accumulate the Na+ ions into the vacuoles in 
order to minimize its toxicity in the cytosol. Efficient sodium uptake into vacuoles or 
elimination outside the cell requires Na+/H+ antiporters, H+-ATPases as well as H+-
PPIases to give the proton motive force. Another feature of halophytes is the pres-
ence of specific tonoplast antiporters which are absent from glycophytes. Moreover, 
in halophyte cells vacuoles are larger and have altered lipid composition to block 
leakage of sodium ions back to the cytoplasm (Glenn and Brown 1999; Gaxiola et al. 
2007). Halophytic organisms have the capacity to reduce the ionic stress by reducing 
the amount of Na+ that collects in the cytoplasm, particularly in cells of transpiring 
leaves (Carillo et al. 2011). These specific taxa have ability to lower uptake and con-
centration of toxic ions in the upper parts of the plant (Dajic 2006).

20.3.2  Salt Exclusion and Succulence

The possibility of salt exclusion depends on such factors as: uptake by root cells, 
preferential transport of K+ instead of Na+ into the xylem, the rate of salt discharging 
from the xylem in the upper parts of roots, stem and leaf veins correlated with 
phloem unloading (Hasanuzzaman et al. 2013). Moreover numerous halophytes, i.e. 
Cressa, Frankenia, Spartina, Limonium, Plumbago and Tamarix, developed multi-
cellular excretory salt trichomes (Hasanuzzaman et al. 2013).Regarding succulence, 
halophytes have massive leaves and stems that are related with an increment in the 
volume of their mesophyll cells along with narrow intracellular spaces. They have 
numerous large mitochondria to fulfil energy requirements for salt compartmental-
ization and excretion (Lokhande and Suprasanna 2012).

20.3.3  Osmotic Adjustment

Among mechanisms of osmotic regulation are accumulation of salt, primarly NaCl, 
in the vacuole and accumulation of solutes, like proline, polyols, soluble sugars, 
glycine betaine (GB), alanine betaine, proline betaine, hydroxyproline betaine and 
pipecolate betaine in the cytoplasm (Rhodes and Hanson 1993). Apart from regula-
tion of osmotic balance, these soluble compounds take part in detoxification of 
ROS, maintenance of membrane integrity and enzymatic balance and structural sta-
bilization of proteins (Ashraf and Foolad 2007; Szabados and Savoure 2009). 
Accumulation of proline is one of the mechanism of osmoregulation that is used by 
halophytes like Plantago crassifolia, Atriplex halimus and Phragmites australis 
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(Vicente et al. 2004; Nedjimi and Daoud 2009; Pagter et al. 2009). Nevertheless, 
halophytes accumulate proline also under other abiotic stress conditions, like 
drought and heavy metal exposure (Slama et  al. 2008). Glycine betaine (GB) is 
synthesized and accumulated in thylakoid membrane of chloroplasts (Robinson and 
Jones 1986). Enhanced synthesis and accumulation of GB protect cytoplasm from 
toxic ions, water loss and suboptimal temperatures, by stabilizing structures of mac-
romolecules and protecting chloroplast and photosynthesis system II (PSII) from 
irreversible damage (Subbarao et al. 2001). It was proven that in reaction to salinity 
halophytes store higher GB amounts than glycophytes, reaching even 1.5–400 μmol 
g−1 DW in such species as Halocnemum strobilaceum, Artemisia santonicum and 
Frankenia hirsuta (Tipirdamaz et  al. 2006; Lokhande and Suprasanna 2012). 
Accumulation of soluble sugars is another important feature of osmotic regulation 
in the halophytes (Yuanyuan et al. 2009). Briens and Larher (1982) reported that 
halophytic species such as Plantago maritima, Juncus maritimus and Phragmites 
communis accumulate sucrose, fructose and glucose at very high concentrations.

20.4  Mechanisms of Co-tolerance to Salt and Toxic Metal 
Stress

20.4.1  Physiological Effects of Salinity and Heavy Metals 
on Plant Cells

Physiology of plants tolerant to elevated salt level in soil was reviewed several times 
(Bartels and Sunkar 2005; Chinnusamy et  al. 2005; Flowers and Colmer 2008; 
Munns and Tester 2008; Mane et al. 2011). Damaging effects of salt (mainly chlo-
rides and sulphates of sodium, magnesium and calcium) on plant organs and cells 
are due to osmotic stress induced by low water potential of soil, ion toxicity by high 
accumulation of salt ions and ionic imbalance  – lack of homeostasis in nutrient 
absorption. These factors cause disturbances at both cellular and organ level, such 
as mineral deficiencies in the cytoplasm, dehydration, decreased stomatal conduc-
tance, imbalanced concentrations of phytohormones, oxidative damage and subop-
timal energetic requirements for ion transport and synthesis of ‘compatible solutes’ 
(Wang et al. 2003; Flowers and Colmer 2015).

Trace elements which occur in the soils, either essential or nonessential for the 
plant organism, may become toxic even in relatively small amounts above given 
threshold limit. Those substances trigger primary stress caused by ion toxicity and 
nutrient imbalance and secondary stress related with disturbances in water potential 
(water stress) and ROS generation (oxidative stress). Deficit or excess in level of 
important nutrients, enzymes inactivation, degradation of certain metabolites, mem-
brane disruption, inhibition of electron transport in photosynthetic reactions and final 
loss of chloroplast functions, as well as DNA and protein injuries, are caused majorly 
by heavy metals (da Silva et al. 2010; Nagarani et al. 2012; Dixit et al. 2015). It leads 
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to the disruption of important physiological processes. Decrease in transpiration is 
affected by limitations of water flow (Barcelo and Poschenrieder 1990) and water 
deficiency caused by disruption in leaf relative water content due to decrease of sto-
matal conductance (Ghelis et al. 2000; Vaillant et al. 2005). As a result, plant-water 
relationship is heavily disturbed mainly by inhibition in the root hairs emerging, 
decrease in membrane permeability and limited number of vascular bundles (Sghaier 
et al. 2015). Plants have developed different mechanisms to avoid HM toxicity: (a) 
inactivation of metals by chelation and sequestration; (b) osmotic and antioxidative 
protection of cell compartments and high-molecular-weight compounds (proteins, 
nucleic acids), osmoprotectants and antioxidative compounds synthesis via shikimate 
pathway and sulphur metabolism; and (c) morphological adaptations, excretion by 
trichomes and leaf succulence (Poschenrieder et al. 2006; Lutts and Lefevre 2015).

20.4.2  Co-tolerance of Halophytic Plants to Salinity and Toxic 
Trace Elements

The mechanisms responsible for co-tolerance can be found in the rhizosphere as 
well as in plant tissues. On a soil level, increased salinity affects mobility of the 
metal ions, especially Cu, Cd, Pb and Zn. To the metal mobility mechanisms are 
primarily classified competition with Ca and Mg ions for sorption sites on the solid 
phase (against Cd, Pb and Zn); complexation with chlorides and sulphates (and 
formation of CuSO4) (Acosta et al. 2011). Different ions through their chemical 
properties affect heavy metal mobility on distinct levels: double-charge ions like 
Ca2+ or Mg2+ cause higher ion mobility than single-charge Na+. On the other hand, 
heavier and larger ions hold mobilization. But the main effect of salinity is changing 
to higher pH the absorption edge of HMs, which decreases metal sorption to the soil 
particles and make them more available for the plants. According to Lutts and 
Lefevre (2015), halophytic plants have developed several types of adjustments to 
deal with heavy metals on a soil level:

 (i) Impact on rhizospheric microorganisms (mostly bacteria). It can be driven 
through changes in pH or redox potential, which affects metal mobility. 
Supplementation of rhizosphere with different organic substances excluded 
from the roots as well as produced by bacteria can modify metal mobility (sol-
ubility, bioavailability). Metal ions can be fixed in complexes with either sul-
phide, oxalate or malonate (complexation) or with low-molecular-weight 
organic acids (e.g. citric acid) and high-molecular-weight substances (polysac-
charides) as a chelating complexes.

 (ii) Modification of the extracellular enzymatic activity (EEA). Xerohalophytes are 
expected to deal the best with heavy metal toxicity due to their adaptations to 
environments exhibiting low water availability. These plants developed efficient 
mechanisms of osmotic adjustment, which allow them to reduce water potential.

 (iii) Formation of mycorrhiza, which helps to deal successfully with toxic ions.
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Within the plant, tolerance and co-tolerance mechanisms can be related to trans-
port and accumulation of salt and metal ions as well as osmotic and oxidative 
defence adjustments within the cells. Halophytes are dealing with high concentra-
tion of salt in the organs by osmotic adjustments and ion compartmentalization. 
According to Jones and Gorham (2002), monovalent ions become toxic at the con-
centrations needed for osmotic adjustments. It is fully accepted that compartmental-
ization is foremost mechanism involved in Na+ and Cl− detoxification. The cytoplasm 
is being secured against high concentration of those ions by locating them in the 
vacuoles. Experiments performed by Ratajczak et  al. (1994) showed increased 
activity of tonoplast ATPase in the plants exposed to salinity stress. On the other 
hand, to balance the osmotic potential in the cytoplasm, ‘compatible solutes’ can be 
accumulated within the cells (mostly in the vacuoles) (Jones and Gorham 2002). 
Osmolytes function as chemical chaperones and scavengers of ROS, but mostly a 
wide range of water soluble molecules such as sugars and their derivatives (sugar 
alcohols), amino acids and their derivatives (methylated proline), betaines, tertiary 
sulphonium compounds and quaternary ammonium compounds are being synthe-
sized to keep the osmotic balance (Flowers and Colmer 2008; Flowers and Colmer 
2015). The same osmo-protecting compounds are also engaged in protection of 
cell’s organelles in plants affected by heavy metals. Furthermore, amino acids, oxa-
lates and cell wall polysaccharides can be involved in chelation and sequestration, 
similarly to processes that are abundant in the rhizosphere. Phytochelatins, active in 
the cytosol and sequestrating metal- binding complexes in the vacuoles, may be 
mentioned as the main group of chelators which could be rapidly synthesized in 
plants (Bankaji et al. 2016).

Salinity may reduce heavy metal absorption and through a dilution effect increase 
the rate of growth, plant tolerance to accumulated HMs (Lefevre et al. 2009; Xu 
et  al. 2010; Han et  al. 2012) and competition of ion uptake (Lopez-Chuken and 
Young 2005; Bankaji et al. 2014). It is interesting that roots exposed to salt and 
heavy metal stress accumulated less potassium and magnesium than those exposed 
to only one of those stresses. This effect can be considered as unfavourable, while 
the key advantage of halophytic plants in maintaining salt stress is ability to regulate 
Na+ and Cl− uptake simultaneously with efficient K+ and Mg2+ cytosolic level for 
activation of essential enzyme activities (Flowers and Colmer 2015). Also, in con-
trast to single stress response, activity of antioxidant enzymes often decreases after 
combined treatment with heavy metal and salt (Bankaji et al. 2016). On the other 
hand, it has been ascertained that certain plants treated with arsenic were able to 
efficiently close their stomata in order to limit water loss, and as a major osmopro-
tectant they might accumulate betaines (Vromman et al. 2011; Lutts and Lefevre 
2015). Another example of synergic behaviour is increased cadmium flow in xylem 
by Cl ions. Chloride promotes Cd releasing from Cd  complexes and its fixation in 
Cd-Cl complexes, which are soluble and easily allocated within plant tissues or 
excreted by vesiculated hairs (Lefevre et  al. 2009). Experiments on Zn with salt 
synergic effect on plant physiology show that Zn toxicity can be neutralized and 
growth can be improved when salt was added. According to Weis and Weis (2004), 
the higher electric conductivity would lead to metal uptake increase.
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As mentioned above, plants possess anatomical adjustments to exclude Na+ and 
Cl− ions. Similar mechanism has been observed in the case of HMs. Sodium chlo-
ride treatment can increase the size and number of trichomes, which can excrete 
metal ions. Also, metal ions can be excluded by means of salt glands. Another ana-
tomical adjustment of halophytes is leaf succulence. This feature is also in favour 
against possible cell toxic concentrations of HMs, because of dilution effect. 
Salinity, through increasing the leaves succulence, increases tolerance on high con-
centration of trace elements (Choi et al. 2004; Wang et al. 2012).

Salt stress as well as heavy metal stress affects photosynthesis, either by disrup-
tions of photosynthetic apparatus or photosynthetic reactions. In glycophytes 
osmotic stress triggered by salinity causes dehydration and ABA elevation. As a 
consequence, stomatal conductance is affected, intracellular CO2 level lowers, chlo-
roplasts and chlorophyll level are reduced, D1 protein in PSII can be damaged, e- 
transport is altered, and RUBiSCO activity and ATP synthesis are declined. 
Moreover, ion toxicity causes thylakoid damage and grana stacking, and ionic 
imbalance leads to disorganization of PSII complex. Excess metals can cause simi-
lar disturbances, i.e. inhibition of chlorophyll synthesis, decreased levels of carot-
enoids in leaf tissues and low activity of PSII and Calvin cycle enzymes (Chaves 
et al. 2009). According to Redondo-Gomez et al. (2011) at midday there could be 
observed amplifying effect of Zn and elevated salt concentration on Fv/Fm values. 
Prasad and Strzałka (1999) reported that in high concentrations Zn interact with the 
donor side of PSII, inhibiting CO2 fixation and the Hill reaction. Resulting absorp-
tion of excess energy by oxygen caused damage to the photosynthetic apparatus by 
producing ROS. However, sometimes the excessive excitation energy could be dis-
sipated (Redondo-Gomez et al. 2011) mainly by electron flow from water in PSII to 
O2 reduction in PSI, without a net change of O2 concentration. On the other hand, 
Sghaier et al. (2015) did not observed any significant alterations in parameters 
related to PSII primary photochemistry under combined stress of salinity and arse-
nic contamination. Ability to dissipate excessive energy may be included to known 
mechanisms by which halophytes overcome the accumulation of excessive reducing 
power avoiding the destruction of the photosynthetic apparatus (Duarte and Fonesca 
2014; Duarte et al. 2014). Furthermore, selenium application significantly reversed 
the negative effects of salinity on the photochemical efficiency of photosystem II 
(PSII) in glycophytes like tomato (Diao et al. 2014). The positive result of selenium 
is believed to be related to the regulation of antioxidant defence systems and photo-
synthesis (Jiang et al. 2017).

20.5  Mineral Homeostasis in Halophytes Grown 
Under Exposure to Trace Metals

The exposure to heavy metals usually affects concentration of mineral nutrients in 
plant organs. Changes in mineral homeostasis may be either directly related to dis-
placement or substitution of nutrients with toxic ions, or indirectly, to disturbances 
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in metabolic pathways caused by inactivation of enzymatic peptides and destruction 
of cell membranes (Rascio and Navari-Izzo 2011). Specific, organ- and tissue- 
dependent interactions between heavy metal and nutrient metal ions result in differ-
ent responses to trace metals of the entire plant organism. Metal uptake and 
translocation within plants may also be manipulated externally by application of 
optimal doses of various nutrient elements (Siedlecka 1995). Such strategies have 
been recently developed, aiming at restriction of cadmium accumulation in crops 
(Sarwar et al. 2010; Su et al. 2014). Among numerous indicators of heavy metal 
resistance in plants is the ability to maintain adequate nutrient uptake, distribution 
and tissue concentration under exposure to metallic stress (Antosiewicz 1995; 
Sarwar et al. 2010; Gill and Tuteja 2011), and therefore heavy metal tolerance is 
often linked to plant ability to selectively absorb mineral elements from contami-
nated substrates (Kaldorf et al. 1999; Zaier et al. 2010).

Recently, due to their ability to cope with multiple stresses, halophytic species 
are considered valuable plant material suitable for phytoremediation of heavy 
metal-contaminated soils (Clemente et al. 2012; Lutts and Lefevre 2015). Numerous 
halophytic species have been reported to show increased tolerance to toxic metals, 
as well as capability to extract or stabilize metal ions, like Pb2+, Cd2+, Ni2+, Cu2+, 
As2+ and Zn2+ (Mateos-Naranjo et al. 2014; Rabier et al. 2014; Bankaji et al. 2015; 
Fourati et al. 2016; Vaněk et al. 2016; Guo et al. 2017; Nguyen et al. 2017; Santos 
et al. 2017; Shackira and Puthur 2017). Comparative studies examining heavy metal 
responses in halophytes and salt-sensitive glycophytes allowed distinguishing of 
stress tolerance mechanisms activated in halophytic species, i.e. increased antioxi-
dant capacity, synthesis of metal chelates and maintenance of an adequate mineral 
nutrition level (Ghnaya et al. 2007; Zaier et al. 2010; Amari et al. 2016). Although 
the information on mineral status in halophytes exposed to metallic stress is limited, 
some interesting features of the mineral nutrition are pointed out below.

Majority of available studies reported on the differences in the concentration of 
macronutrients between halophytic and glycophytic species treated with toxic trace 
metals. Generally, under exposure to increasing heavy metal concentrations, halo-
phytes are able to maintain higher level of macronutrients than glycophytic plants, 
even those metal-resistant. This reaction was observed in various halophyte species 
treated with Pb2+, Cd2+, as well as with multi-contaminated substrate (Ghnaya et al. 
2007; Zaier et al. 2010; Bankaji et al. 2015; Guo et al. 2017; Santos et al. 2017). The 
most pronounced differences occur in the content of calcium, magnesium and 
potassium.

20.5.1  Calcium

Halophytes exposed to heavy metals are able to counteract calcium deficiencies 
more efficiently than glycophytes. In halophytic Cakile maritima only high doses of 
cadmium resulted in decreased concentration of Ca2+, while in metal-tolerant glyco-
phyte Brassica juncea the decrease was noted also in lower Cd2+ concentrations 
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(Taamalli et al. 2014). Also in Pb-treated shoots and roots of Sesuvium portulacas-
trum the level of Ca2+ remained unaffected, in contrast to B. juncea, where it was 
significantly reduced (Zaier et al. 2010). In turn, in Iris lactea and Salicornia ramo-
sissima, greater accumulation of Ca2+ occurred with increasing concentrations of 
cadmium ions (Pérez-Romero et al. 2016; Guo et al. 2017). High level of calcium in 
plant tissues is related to tolerance response to heavy metal stress (Antosiewicz 
1995). As signal molecules, Ca2+ ions regulate activity of antioxidant machinery and 
ROS generation, which is also crucial in stress tolerance (Maksymiec 2007). Since, 
according to Ghnaya et al. (2007), Ca deficiency considerably limits plant growth in 
stress conditions, the ability of halophytes to maintain adequate calcium level is 
crucial to exhibit growth tolerance under heavy metal exposure.

20.5.2  Magnesium

An increase in the content of Mg2+ in the shoots was reported in numerous halo-
phytes exposed to heavy metals, for example, in Suaeda fruticosa (Bankaji et al. 
2015) and Iris lactea (Guo et al. 2017), but also in metal-tolerant halophytes like 
Zygophyllum fabago (Lefevre et al. 2014), Juncus acutus (Mateos-Naranjo et al. 
2014) and Arthrocnemum macrostachyum (Redondo-Gomez et  al. 2010). In the 
case of roots, the level of magnesium usually remains unaffected (Redondo-Gomez 
et al. 2010; Guo et al. 2017). However, limited root uptake of Mg and Ca may be 
related to reduction in accumulation of toxic metals under saline conditions, what 
makes plant more tolerant to metallic stress (Mei et  al. 2014). Magnesium is an 
important cofactor of enzymes and a component of photosynthetic apparatus. Its 
accumulation in the shoots can be therefore considered stress response directed at 
maintenance of high photosynthetic effectiveness under metallic stress (Guo et al. 
2017). In fact, unaffected functioning of photosynthetic apparatus is observed in 
heavy metal-treated halophytes (Mateos-Naranjo et al. 2014; Taamalli et al. 2014).

20.5.3  Potassium

Halophytes, in contrast to glycophytes, accumulate higher level of potassium ions 
in leaf mesophyll, what contributes to their salinity tolerance (Percey et al. 2016). 
Similarly, under heavy metal exposure, such halophytes as S. portulacastrum (Zaier 
et al. 2010) and C. maritima (Taamalli et al. 2014) contained more K+ than glyco-
phyte B. juncea. Potassium status in the root of halophytes is more stable than in the 
shoots, and K+ content in the roots remains unaffected even at very high concentra-
tions of heavy metals. For example, exposition to 1000 mM Pb(NO3)2 resulted in 
significant K+ deficiency in the roots of B. juncea, while in the roots of halophyte S. 
portulacastrum K+ level was unaffected (Zaier et al. 2010). Potassium is a crucial 
element for water status regulation in plants, and changes in its concentrations 
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determine opening and closure of stomata (Fageria 2015). Higher level of potas-
sium in halophyte plants allows them to control water status more efficiently than it 
is in glycophytes. Moreover, in a situation of reduced K+ uptake caused by high 
cadmium concentrations, halophytes are able to substitute K+ ions with Na+ in 
osmoregulation, what further increases their tolerance to water deficit (Ghnaya et al. 
2007). These features confer to the higher resistance of halophytes to water stress 
induced by heavy metal exposure.

20.5.4  Other Nutrient Elements

Under intensive metallic stress, halophytes suffer from reduced concentrations of 
several nutrient elements, including iron, manganese and zinc (Taamalli et al. 2014; 
Guo et al. 2017). Interestingly, mineral disturbances are not manifested in the roots, 
suggesting that nutrient absorption and uptake by roots remains adequate (Guo et al. 
2017). The level of several microelements, such as molybdenum, is considerably 
high in the roots of halophytes, most probably due to increased activity of enzymes 
(Pérez-Romero et al. 2016).

In halophytes exposed to toxic metals, status of sulphur nutrition was not widely 
investigated. However, when treated with heavy metals or salinity, halophytes use 
sulfur to produce sulpholipids, glutathione, phytochelatins and cysteine-rich amino 
acids (Hamed et al. 2005; Nguyen et al. 2017). As sulphur plays an important role 
in stress tolerance to both high salinity and heavy metal contamination (reviewed in 
Gill and Tuteja 2011; Nazar et al. 2011), research focusing on examination of sul-
phur status in the aspect of co-tolerance to these two stresses in halophytes would 
be of a great interest.

20.6  Conclusions

In conclusion, co-tolerance to salt and metallic stress is complex phenomenon and 
covers virtually every aspect of halophyte physiology. Salinity significantly modi-
fies heavy metal uptake and deposition within plant organs and improves plant abil-
ity to survive in toxic substrate, for example, by reducing injuries caused by 
oxidative stress (Bankaji et al. 2016). The synergic effect between salinity and trace 
elements can be ascertained on multiple levels, starting in the rhizosphere, through 
organism, plant organs to cellular level. It is related to mobility and phytoavailabil-
ity of ions, uptake processes, transportation, compartmentalization, photosynthesis 
and biosynthesis and antioxidant machinery. Heavy metal-tolerant halophytic plants 
could be valuable organisms for phytoremediation of polluted areas, and their prop-
erties give advantage over other species used to cope with environmental pollution 
problem. However, the information regarding the exact mechanisms and peculiarity 
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of co-tolerance of trace elements on salt-stressed plants is still limited, and thus it is 
an emerging field of science to be further explored.
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Chapter 21
Role of Mineral Nutrients in Plant Growth 
Under Extreme Temperatures

Usman Khalil, Shafaqat Ali, Muhammad Rizwan, Khalil Ur Rahman,  
Syed Tahir Ata-Ul-Karim, Ullah Najeeb, Mirza Nadeem Ahmad, 
Muhammad Adrees, M. Sarwar, and Syed Makhdoom Hussain

Abstract Food productivity is decreasing with the drastic increase in population, 
while it is expected that the global population will be nine to ten billion in 2050. 
Growth, production, and development on whole plant, cell, and subcellular levels 
are extremely affected by environmental factors particularly with the extreme tem-
perature events (high- or low-temperature stress). Increase in the fluidity of lipid 
membrane, protein accumulation, and denaturation are the direct effects of high 
temperature on a plant. Membrane integrity loss, protein deprivation, protein syn-
thesis inhabitation, and inactivation of mitochondrial and chloroplast enzymes are 
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the indirect effects of high temperature. Similarly, the oval abortion, alteration of 
the pollen tube, reduction in fruit set, pollen sterility, and flower abscission are the 
consequences of low temperature at the time of product development, which in turn 
lowers the yield. The judicious nutrient management is essential for improving the 
plant nutrition status to mitigate the drastic effects of temperature stress as well as 
for sustainable plant yield under extreme temperature events, because nutrient defi-
ciency results in growth and development problems in 60% cultivars worldwide. 
Additionally, effective nutrient management increases the temperature stress toler-
ance in plants. Therefore, the appropriate nutrient application rates and timings are 
imperative for alleviating the heat stress in plants and can serve as an effective and 
decent strategy. To minimize the contrasting effects of the environmental stresses, 
particularly heat stress, several examples of the supplemental applications of N, P, 
K, Ca, Mg, Se, and Zn are given in detail in this study, to observe how these nutri-
ents reduce the effects of temperature stress in plants. This study concluded that 
judicious nutrient management minimizes the heat stress and increases the growth 
and yield of plants.

Keywords Environmental stress · Heat stress · Macronutrients · Micronutrients · 
Mechanisms

21.1  Introduction

Global temperature is gradually  increasing due to industrialization, urbanization, 
and due to increasing greenhouse effect. The incidences of global climate change 
fortify the extra investment on ecosystem, life, and global economies than that of 
other sectors (Shakoor et al. 2011; Madzwamuze 2010; Hulme 2005), and affects 
the living standards of developing countries which already do not have access to 
modern technologies to overcome this problem (Madzwamuze 2010; OECD 2009).

The rise in temperature of an area results in climatic changes such as series of 
rainfall and rise in sea level, forced with a change in climate. The average rise of 
2.8 °C in temperature increased the global temperature by 1.8–4 °C due to the defor-
estation, the concentration of carbon di oxide (CO2) has raised from 280 to 380 ppm, 
and for this CO2-enriched world and humans are responsible (Stern et al. 2006).

Climatic variables like temperature, sowing and harvesting dates, land, water, 
and rainfall pattern affect the productivity of crops and the agricultural commodities 
(Kaiser and Drennen 1993). High-temperature spells have been detected across Asia 
including Pakistan which is the second largest country in South Asia. This country 
has cold and dry regions having 49.6% population, and 22.8% area is at the risk of 
high temperature, frequent droughts and floods, glacier hideout, and rise in sea 
level. The effect of an increase in temperature even up to 1 °C is extremely disas-
trous for crop production in Pakistan due to agro-based nature of its economy and 
results in 6–9% decline in wheat production in the country. Agricultural productiv-
ity and growth decrease due to climate change-related threats, and the farmers of 
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arid and hilly regions are harshly affected by these changes. Climate change poses 
serious threats to farmers of Asia living and growing crops in isolated and marginal 
areas such as mountains, dry lands and deserts areas which are deficient in natural 
resources. Temperature rise is expected in the arid areas of northern Pakistan and 
India as well as in western China (Shakoor et al. 2011).

The average temperature is rising, while rainfall is decreasing, and the agricul-
ture sector in Pakistan will be more affected due to the climate change. A rise by 
3 °C by 2040 and up to 5–6 °C is forecasted by the end of this century. These cli-
matic changes have made agriculture sector economically vulnerable. Pakistan is at 
the 28th place among the countries that are going to be hurt hugely by climate 
change (MoE 2009).

Environmental factors are of different types and they affect the environment and 
living things in various means such as by affecting the productivity of plants during 
the flowering and fruiting phases. Water, light, temperature, nutrients, and atmo-
sphere are most common environmental factors limiting crop production. Water is a 
crucial environmental factor which limits the endurance and growth of plants 
(Brown 1977). Less development and slow growth of roots and leaves were initially 
recorded if a plant was grown in a moist condition and then met moisture stress. 
Stomatal openings are less sensitive to water stress, while cell growth is more sensi-
tive to water stress (Hsiao 1973).

Plants acquire CO2 for photosynthesis and O2 for respiration from the atmo-
sphere. So if the atmosphere is polluted or affected by the pollutants, it may create 
a situation of an environmental factor for pants. Similarly, dry matter production is 
affected by the environmental factor due to their effects on carbon balance and 
exchange of CO2 gas in the atmosphere (Larcher 1980). Production of dry matter is 
reduced by their relevant and unnecessary supply of nutrients. Different activities 
performed by the hormones in plants, carbon uptake, and transport of integrates are 
also affected by the environmental factors. Pollutants in the atmosphere are pro-
vided by the agricultural waste, transportation, industry, and chemicals, and these 
pollutants are also absorbed by the plants by water, soil, and air from the atmo-
sphere (Larcher 1980). Hydrogen chloride, sulfur dioxide, peroxyacetyl nitrate, 
ozone, hydrocarbons, nitrogen, and dust are also pollutants in the atmosphere which 
are very hazardous to plants. Mixing of gases, physical damage to plant, and rise in 
evapotranspiration are the main influences of the wind which is also a component of 
the atmosphere affecting the plant productivity (Lauenroth et al. 1985).

Fire is one of the dangerous environmental factors which affect the plants directly 
by heat damage (Scifres 1980). Aerial stems of trees and shrubs have numerous 
growing points which are severely damaged by the heat of the fire (Young 1983). 
The plant growth generally depends upon the growth tips, so it’s difficult for plants 
to survive after the heat of fire. Grazing has similar effects on the growth and shape 
of the plants like fire because a specific portion of the plants (leaves and tissue) is 
removed by the livestock, insects, or wildlife (Hyder 1972). Leaf sheaths and culms 
play an important role for the uptake of carbon during the specific time span of 
growth season (Caldwell et al. 1981). Nematodes are soil inhabiting and feed on 
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plants (Smolik 1977). Reduced total forage of current-year crop is induced during 
the availability of sufficient moisture of soil, plant vigor reduction, and increase in 
leaf production which are the reasons of defoliation for regrowth in the flowering 
phase of current crop, and in the vegetative phase, defoliation has minimum effects 
on plant strength (Miller 1986; Eckert and Spencer 1987).

Reduced fodder production was reported by the nutrient insufficiencies in the 
soil (Vallentine 1980). In most of the places, major plant growth reduction was due 
to the nitrogen deficiency (Morrow et al. 1978; Fischer et al. 1987). Nitrogen fertil-
izer increases the fodder production of grasses through increasing the number and 
size of the roots, leaves, and stems as well as by increasing the seed production and 
forage quality by improving the water use efficiencies (Wight 1976; Power 1983; 
Rauzi and Fairbourn 1983). Like nitrogen, phosphorus either in high or low quanti-
ties in the soil can’t support the fodder production in grasses or herbs (Vallentine 
1980). Summer grasses do not respond favorably to nitrogen fertilizer, while the 
winter grasses respond favorably. Plant growth also depends upon the availability of 
nutrients for proper growth, height, shape, size, yield, and quality but if these nutri-
ents are in excess or below the optimum requirement, the plant becomes under 
stress (Ata-Ul-Karim et al. 2016, 2017a, b). Shortage of nutrients is due to several 
factors, but nutrient deficiency is one of the environmental factors which affects the 
plants in all means (Vallentine 1980; Trappe 1981).

Due to climate change, plant scientists are facing a big problem of temperature 
stress worldwide; such stresses are actually bulging a potential impact on agricul-
ture (Watanabe and Kume 2009; Shah et al. 2011). Every plant has specific opti-
mum limits for temperature for survival, and such temperature stresses have severe 
effects on the metabolism and growth processes. Crop production is now restricted 
by the major abiotic stress of high temperature which is due to the changes in global 
climate (Hasanuzzaman et al. 2012). Increase in 4 °C temperature by the end of the 
twenty-fifth century is predicted by the models of climate and indicates more fre-
quent heat waves in the future (Tebaldi et al. 2006; Hansen et al. 2015). The US 
Environmental Protection Agency (EPA) indicated that decades from 2000 to 2009 
were the warmest ever and also directed the rise in the temperature during last 
30 years (EPAA Student’s Guide 2011).

Higher latitudes will be facing high change in temperature, while the tempera-
ture is increasing overall in the world, yet its effects on crops and plant vary accord-
ing to seasons and regions. High-temperature stress is actually the increase in 
temperature for a period of time beyond a serious edge to cause a severe permanent 
damage to the development and growth of plants (Wahid 2007). Globally only 
80,000 species of plants are edible to human from approximately 200,000 species 
of plants; only 20–25 species are providing 95% protein and calories to livestock 
and humans (Fu¨leky 2009). Likely 75% grain is produced globally by maize, rice, 
and wheat (Bansal et al. 2014; Lobell and Gourdji 2012). These edible or nonedible 
species include numerous biochemical reactions for growth and development; 
nonetheless, all these reactions are heat sensitive according to the types of plants 

U. Khalil et al.



503

and duration (Zróbek-sokolnik 2012; Mittler 2006). The decrease in temperature is 
also another environmental factor which affects the progression and enlargement of 
plants (Xin and Browse 2000; Sanghera et al. 2011). We review several researches 
in this chapter that discovered different responses of plants under the heat stress 
especially the nutrient uptake in heat stress.

21.2  Effects of Heat Stress on Plants

21.2.1  Physiological Effects of High Temperature

Change in the environmental temperature severely affects the physiological proce-
dure of plant development, and high-temperature impact is determined by period, 
rate, and amount of temperature simultaneously (Wahid et  al. 2007; Zinn et  al. 
2010). It’s a very complex process for plants to manage with high temperature and 
is dogged by the environmental factors like the crop yield is affected by the soil and 
air temperature (Lobell and Gourdji 2012; Sharkey and Schrader 2006). Respiration 
increases with the increase in temperature up to a certain level and then starts to 
decline like photorespiration which is less delicate to temperature, but it also starts 
to decline when temperature rises beyond acritical level. Every 10 °C increase in 
temperature increases the enzymatic reactions by twofold, while the optimum tem-
perature for enzymatic activity is 30–40 °C, and it will be deactivated or denatured 
if temperature is higher than 45  °C (Wahid et  al. 2007; Bita and Gerats, 2013; 
Bokszczanin et  al. 2013; Mathur et  al. 2014). Plant development, crop duration, 
respiration, carbon assimilation, and all other growth processes were affected by the 
rise in temperature (Takeoka et al. 1991; Maestri et al. 2002; Stone 2001). Plant cell 
structure could be lastingly damaged by high temperature which leads to the plant 
death, and sexual reproduction is also negatively affected by the high temperature 
(Peet et al. 1997; Erickson and Markhart, 2002; Zinn et al. 2010; Zróbek-sokolnik 
2012.).

21.2.2  Effects of Heat on Seed Germination and Emergence

Seedling vigor and germination are the most important traits to ensure the potential 
crop yield and good plant stands. Temperature is the elementary factor for the ger-
mination process as germination depends upon temperature in all crop species (Bac- 
Mole- naar et  al. 2015; Giorno et  al. 2013; Jagadish et  al. 2014; Sakata and 
Higashitani 2008). The optimum temperature for wheat (Triticum aestivum), maize 
(Zea mays), watermelon (Cucumis melo), etc. is from 25 to 30 °C, while optimum 
temperature for lettuce (Lactuca sativa) and spinach (Spinacia oleracea) ranges 
from 15 to 20 °C. Similarly, the optimum temperatures for germination of seedlings 
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in different crops vary from one crop to another, but optimum temperature for seed 
germination generally ranges between 15 and 30  °C (Saitoh 2008; Johkan et  al. 
2011). Another environmental factor which affects the germination of seeds is the 
soil temperature (Prasad et al. 2006a, b).

Three physiological processes during germination, dormancy loss rate in dry 
seeds, determination of germination rate in nondormant seeds, and corrosion rate of 
seeds by moisture, are influenced by temperature (Roberts 1988). Generally, the 
increase in temperature beyond the optimum temperature results in lower germina-
tion rates and even can cause cell death and embryo damage in various crop species 
(Prasad et al. 2006a, b; Essemine et al. 2010; Kumar et al. 2011). Shoots and roots 
of some species grown in hydroponic culture could bear the day/night temperature 
35/25 °C (Piramila et al. 2012). High temperature also reduces the plant emergence 
and vigor index, but it is indispensable to relief the energy for germination, and 
summer- or warm-season crops require more temperature for growth and seed ger-
mination as compared to the winter crops (Piramila et  al. 2012; Borthwick and 
Robins 1928; Stotzky and Cox 1962; Hall 2001).

21.2.3  Effects of High Temperature on Crop Morphology 
and Growth

Plant growth retardation is a common result of heat stress, and simultaneous occur-
rence of heat and drought events causes severe harmful effects on productivity and 
growth of plants. Plant height is reduced with the high temperature due to declined 
stem growth, while the weight and the size of leaf are reduced because of changes 
in the rate of cell elongation and detachment in the plant associated with high tem-
perature (Prasad et al. 2006a, b). An experiment was performed to investigate the 
effect of heat on the growth of wheat, and results showed that the height of wheat 
plant was 66.4–97.3 cm under normal environment, while it ranged from 55.7 to 
82.3 cm under heat stress treatment (Rahman 2004).

Growth is also influenced by the loss of water as a consequence of tempera-
ture rise, and high temperature reduces the size, length, and number of roots, 
relative growth rate, dry weight of shoots, and net assimilation rate in millet and 
maize (Al-Busaidi et al. 2012; Porter and Gawith 1999; Ashraf and Hafeez 2004). 
The effects of heat stress, such as reduction of plant water, increase in stomata 
and trachomatous densities, stomata closing and cell size, etc., have similar 
effects on internal morphology of plants as those under drought stress. Wahid 
(2007) and Zhang et al. (2009) performed experiments to observe the effects of 
heat on rice crop, and results showed that plants were highly affected by high 
temperature due to the weak structure and organs against the survival under high 
temperature. High night temperature effect was also observed in an experiment 
on wheat crop and detected that high temperature lessened the number of tillers 
(Johkan et al. 2011).
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21.2.4  Effects of High Temperature on Photosynthesis

Photosynthesis and temperature have positive relationship up to an extent. 
Temperature plays a vital role for optimum photosynthesis, yet the rise in tempera-
ture above the optimum range results in destruction of enzymes associated with 
photosynthesis (Schuster and Monson 1990). The increase in photorespiration is 
higher than photosynthesis with increase in temperature. To investigate the effect of 
high temperature on photosynthesis in tobacco leaves, 38% active photosynthesis 
was left behind in 43 °C with the duration of 2 h which was back to 75% active after 
1-day recovery (Tan et al. 2011). As compared to the optimum night temperature, 
photosynthetic rate and chlorophyll content were decreased to 22% and 8%, respec-
tively, at high night temperature of 31.9 °C (Prasad et al. 2011).

Deactivation of rubisco by high temperature is the primary constraint of photo-
synthesis. Photosynthesis rates in Eucalyptus haemastoma and Vitis vinifera were 
controlled by stomatal conductance, and results showed that photosynthesis of these 
species was decreased due to the deterioration of stomatal conductance at high tem-
perature of 40–45 °C (Haldimann and Feller 2004; Eamus et al. 2008; Greer and 
Weedon 2012). Chloroplast ultrastructure change and biosynthesis inhabitation 
occurred due to the reduction of photosynthetic pigments in high temperature 
(Tewari and Tripathy 1998; Reda and Mandoura 2011). It was also reported that 
chlorophyll ratio and contents were diminished by high temperature in T. aestivum, 
Solanum spp., Festuca arundinacea, etc. (Reda 2011; Aien et  al. 2011). Several 
other climatic parameters were also involved in the effect of high temperature on 
crops. Photosynthetic rate of maize and pea leaves and photosynthetic response of 
potato were not affected by the high temperature (Wolf et al. 1990; Haldimann and 
Feller 2005; Suwa et al. 2010).

21.2.5  Effect of Heat Stress on Water Relation in Plant

Water position is considered as the most imperative variable in plants under the 
varying ambient temperature, and water relations in the plant were significantly 
influenced by drought and heat stress (Mazorra et al. 2002). Initially, the seedlings 
are affected by the rise in temperature due to tissue damage and raising the evapora-
tive demand associated with increasing transpiration and transportation of water 
under high temperature which are the basic utensils for the subsistence of plants in 
heat stress.

Pinus ponderosa species was observed to check the water relation under high 
temperature, but a large number of seedling died when the temperature reached 
63 °C. In high temperature, water plays an important role to cool down the plant 
through seedling stem water transport because sufficient energy is absorbed by 
quick water flow through the seedling stem and can reduce the temperature of the 
plant by 30  °C (Kolb and Robberecht 1996). Leaf turgor potential, leaf relative 
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water content, soil water content, leaf water potential, osmotic adjustment, and leaf 
osmotic potential were observed by growing the Hordeum vulgare and Triticum 
aestivum in soil and chambers with well-watered and control conditions (water 
stress treatment) at day/night temperatures of 15/10, 25/20, 35/30, and 40/35 °C, 
and all water stress treatment plants were severely damaged at high temperature 
(Machado and Paulsen 2001; Banon et al. 2004). Water is necessary for life, and 
heat stress severely affects the water status in plants, so the reduction of water in 
plants due to heat could kill all the plants (Wahid and Close 2007).

21.2.6  Effects of Heat Stress on Dry Matter Partitioning

Mineral uptake and assimilation process become slower during the grain-filling 
stage under heat and water stress as well as under different temperatures that results 
in variation of dry matter partitioning in different crops (Gebbing et al. 1999). Leaf 
senescence doesn’t occur under the high temperature because the sink activity lost 
when earlier panicle senescence happens and termination of grain filling occurs 
(Morita et al. 2004; Kim et al. 2011). Rice plants observed under the temperature 
command of 21.9 °C and 24.4 °C showed a cheap duration of leaf senescence and 
dry matter partitioning to panicle. Starch synthesis-related enzyme activity is dam-
aged by several factors at high temperature due to lost sink activity. In rice grains, 
starch accumulation and grain sink strength are strongly associated with sucrose 
synthase movement (Mohapatta et  al. 2009; Tang et  al. 2009). Heat stress also 
showed the reduction in seed harvest index, total dry weight, and seed dry weight in 
the pot experiment with four genotypes of Arachis hypogaea (Morita et al. 2005; 
Craufurd et al. 2002). Z. mays, Saccharum officinarum, and Pennisetum glaucum 
were also observed under high temperature and showed a reduction in dry matter 
and growth rate (Wahid et al. 2007).

21.2.7  Effects of Heat Stress on Reproductive  
Development of Plant

Plant reproductive development is very sensitive to environmental factors especially 
to high temperature exposure because high temperature and fertility are inversely 
proportional to each other and some plant species even fail to set fruit under high 
temperature (Sato et al. 2006; Abiko et al. 2005; Prasad et al. 2006a, b; Oshino et al. 
2007; Jagadish et al. 2009; Zinn et al. 2010; Peet et al. 1998; Mckee and Richards 
1998; Abdul-baki and Stommel 1995). Fruit set reduction was also observed in 
another experiment on peach and bean due to the low pollen viability in high tem-
perature (Peet et  al. 1997; Erickson and Markhart, 2002; Barnaba’s et  al. 2008; 
Gross and Kigel 1994, Kozai et al. 2004, Sato et al. 2000). Abnormalities in anther 
and pollen development also occurred in Phaseolus vulgaris in heat stress, while 
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low pod setting was observed in soybean because flower development and differen-
tiation occur under high temperature (Porch and Jahn 2001; Kitano et al. 2006). For 
proper growth and development of reproductive parts in plants, day and night tem-
perature is very important; however, some species like rice is sensitive to night 
temperature due to spikelet fertility because the rise in night temperature is inversely 
proportional to numbers of fertile spikelet (Zakaria et al. 2002; Peng et al. 2004). In 
another experiment shorter time of ripening and reduced number of flowers and 
fruits at 30/25  °C were also witnessed in two varieties of strawberries (Ledisma 
et al. 2008).

21.2.8  Effects of High Temperature on Crop Yield

Crop yield depends upon the crop vigor, crop growth, photosynthesis, and DM par-
titioning of the plant, but these all are negatively affected by the high temperature. 
Therefore, crop yield is ultimately affected by the high temperature through affect-
ing both sink and source for assimilates. High temperature reduced the endosperm 
cell area by which the length and width of cereal grains were decreased (Ulukan 
2008; Levy and Veilleux 2007; Luo 2011; Saha et al. 2010; Morita et al. 2005). In 
another study, high temperature effects were observed on the B-73 inbred line of 
maize, and data showed that the kernel growth rate was increased with high tem-
perature but dry matter accumulation duration was reduced. During the endosperm 
cell division, the development of endosperm stops due to the high temperature 
which reduces the leaf area, shoot biomass, grain yield, and sugar content of kernel 
(Zakaria et  al. 2002; Shah and Paulsen 2003; Monjardino et  al. 2005). Sorghum 
bicolor were grown under normal (32/22 °C) and high temperature (40/30 °C) to 
observe the heat effect. Sorghum yield was decreased to 99% due to high tempera-
ture, and leaf dry weight, plant height, total dry weight, and seed weight were also 
reduced by 14%, 22%, 36%, and 53%, respectively, in comparison with optimum 
temperature (Djanaguiraman et al. 2010).

Wheat crop is very sensitive to high temperature as compared to the other crops. 
In an experiment collected data showed that wheat crop is severely damaged by the 
high temperature and 50% reduction was observed in the numbers of grain per 
spike, 39% in grain yield and 24% in harvest index of wheat under high temperature 
(Mohammed and Tarpley 2010). High temperature effects on crop yields were 
observed in many other trials like the yields of Cicer arietinum, Sorghum bicolor, 
Triticum aestivum, Oryza sativa, and Capsicum annum which were reduced to 48%, 
10–99%, 46%, 90%, and 62%, respectively, due to high temperature (Mendham and 
Salsbury 1995; Gan et al. 2004; Lin et al. 2010; Saha et al. 2010; Mohammed and 
Tarpley 2010). Due to the increase in temperature, the reproductive stage of plants 
becomes defenseless in crops like rapeseed, sunflower, soybean, tomato, etc. 
because the flower abortion and lower fertility could occur under high temperature 
(Barnaba’s et al. 2008; Hedhly et al. 2009; Zinn et al. 2010; Luo 2011; Jagadish 
et al. 2014; Maduraimuthu and Prasad 2014).

21 Role of Mineral Nutrients in Plant Growth Under Extreme Temperatures



508

21.2.9  Effects of Heat Stress on Nutrient Movements 
and Uptakes

Cell membrane plays a major role in regulating inter- and intracellular movement of 
nutrients and water. The movement and transportation of nutrients and water inside 
or outside the cell become inhibited by high as well as by low temperature by dam-
aging cell. Ion leakage is caused by the permeability of unwanted nutrients in mem-
brane due to low-temperature stress. Low temperature can also rupture the cell wall 
and cell membrane which creates disturbing of cellular homeostasis. Low tempera-
ture creates the problem for the movement of water inside and outside the membrane 
of the cell by damaging the membrane (Salians 2002; Mahajan and Tuteja 2005). 
Fluid inside the cell has higher freezing point, so under the low temperature, ice 
formation starts in intercellular spaces when temperature drops below 0 °C. Therefore, 
severe dehydration could occur by freezing the water and solutes, while under higher 
temperature, the dehydration could occur due to overevaporation of water contents 
from plant (Thomashow 1999; Yadav 2010). In low temperature, difficulties occur in 
the closure of stomata and reduction of water and nutrient uptake which leads to the 
dehydration of cells, and low temperature also damages the endoplasmic reticulum 
and cortical cells like in the roots of cucumber. Thus it is very clear that the germina-
tion success or failure in the field depends upon the development of roots in cold 
temperature (Lee et  al. 2002; Enns et  al. 2006; Yadav 2010). Unprovoked water 
movement is also caused by the low temperature (Hurry et al. 1994).

Reliability of cell membrane and effect of silicon were observed in high tempera-
ture on stress tolerance of rice plants by measuring the electrolyte leakage from 
leaves. Si level has inverse relation with the polyethylene glycol solutions of 30% 
and 40% to cause the electrolyte leakage. In cell wall, levels of polysaccharides 
were 1.6-fold higher in plant leaves which were grown with 100 ppm SiO2 than in 
the plants which were grown without Si. Similarly, the leaves of the plants grown in 
Si have low electrolyte leakage developed by the 42.5 °C of high temperature than 
in the leaves of plants grown without the Si. Consequently, it was concluded by this 
experiment that in the heat stress the weakening of function and structure of cell 
membrane was prevented by the Si (Nelson 1944). Crop growth and productivity 
are commonly devastated by the high temperature. The effect of selenium (Se) was 
checked in the experiment in which (75 mg/L) Se was sprayed at flowering stage 
and heat stress 40/30  °C was persuaded after spraying the plants of cucumber 
(Cucumis sativus L.) to observe the yield, physiochemical, and growth of plant for 
75 days after sowing (Djanaguiraman et al. 2010; Abbas et al. 2015). Stomatal con-
ductance, antioxidant enzymes, transpiration rate, yield, lipid peroxidation, 
 chlorophyll content, and photosynthesis were affected by the heat stress, while the 
application of Se helps the plants by refining the development of plant components, 
antioxidants, enzymes, chlorophyll contents, Pn, etc. to moderate the heat stress 
(Balal et al. 2016).

Quality, growth, and yield of rice cultivars (IR-64 and Huanghuazhan) were 
observed in controlled growth chambers by adding phosphorus (P), different types 
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of biochar, and mixture of these at control temperature (28 °C ± 2), high night tem-
perature (32  °C ± 2), and high day temperature (35  °C ± 2) (Fahad et  al. 2015; 
Hasanuzzaman et al. 2013; Liang et al. 2006). Growth and development of rice vari-
ety Huanghuazhan were better than other varieties in high temperature. Seven per-
cent increase in growth and yield per plant was improved by the addition of the 
mixture of biochar and P. Intake of P and treated nutrient helps the plant to reduce 
the effects of heat stress by improving the water use efficiency and photosynthesis 
(Hasanuzzaman et al. 2013). External application of nitric oxide and sodium nitro-
prusside reduces the heat stress on chrysanthemum plant by slowing down the rate 
and pigment contents of photosynthesis in plant (Simontacchi et al. 2004). Moreover, 
it also facilitates the superoxide dismutase activities, catalase, peroxidase, and fluo-
rescence by increasing the non-photochemical slaking (Yang et al. 2011). Sensitive 
Roma and tolerant Robin are the two cultivars of tomato which were observed to 
check their response under high temperature 40 °C by adding the small amount of 
45Ca in fruits (Starck and Witek-Czuprytika 1993). The major difference of the 
transportation of 45Ca in fruit was observed at different temperatures with or without 
the application of plant growth regulators. Robin cuttings translocated higher part of 
45Ca in fruits under heat stress and then the cuttings of sensitive Roma while treated 
or not treated with the GA3 + NOA (Brown and Ho 1993; Minamide and Ho 1993).

Heat and other environmental stresses are actually due to the global warming. 
Many experiments were performed on the nutrient uptake by plants under the heat 
stress, yet very limited data on protein nutrient uptake by the plant under the heat 
stress is available (Huang et al. 2012; Wahid et al. 2007; Hao et al. 2012). Solanum 
lycopersicum plants were grown at normal temperature (25  °C/20  °C) and then 
transferred to the high temperature (35 °C/30 °C or 42 °C/37 °C), while in the sec-
ond experiment, day/night temperatures 28 °C/23 °C, 32 °C/27 °C, 36 °C/31 °C, 
and 40 °C/35oC were applied to the Solanum lycopersicum plants for 15 days. In the 
first experiment, it was observed by enzyme-linked immunosorbent assay (ELIZA) 
and by using the protein antibodies that root/shoot mass ratio and N and C percent-
age were reduced in heat stress, while in another experiment, only extremely high 
temperature (40–42 °C) affects the roots, reduced the protein accumulation in roots, 
and reduced the concentration of protein (Mishra et al. 2012). So it was concluded 
that by distressing the root nutrient relationship, the heat stress could affect the qual-
ity and production of the crop (SOD enzymes provide strength to plant to mitigate 
the heat stress, but its activity and membrane integrity were affected by the Zn defi-
ciency and heat stress (Foyer and Harbins 1994; Cakmak 2000; Rashid and Ryan 
2004; Alloway 2008)). Three-day heat stress (40/20 °C) in the experiment of 10 days 
and 6-day heat stress (40/20 °C) on the experiment of 30 days were applied to wheat 
grown with short and satisfactory levels of Zn to investigate the effect of heat stress 
and Zn on two growth phases. Reduced kernel weight, grain yield, and growth rate 
occurred in plants containing low Zn under the heat stress in both sensitive and 
tolerant varieties. Heat stress with the low supply of Zn could reduce the chloro-
phyll content and disturbed the ultrastructure of chlorophyll of plants indicating that 
the less availability of Zn and high temperature could slow down the function of 
chloroplast and kernel growth (Alison and Glenn 2010). Sometimes two environ-
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mental factors like heat stress and nutrient deficiencies affect the crop instanta-
neously. Under heat stress, Mg-deficient plants showed serious visual leaf symptoms 
in wheat and maize. Root growth, shoot growth, and carbohydrate concentrations 
were also affected by the heat stress with joint effect of Mg deficiency (Fischer and 
Bremer 1993; Hermans et al. 2004; Cakmak and Yazici 2010; Gransee and Führs 
2013). Nevertheless, antioxidative enzymes were increased when Mg-deficient 
stress combined with heat stress and up to 80% increase in the superoxide dismutase 
activities, 300% increase in ascorbate peroxidase, and 250% increase in glutathione 
reductase activities under the heat and Zn deficiency stress were observed by form-
ing the ROS (Yamashita et al. 2008; Marutani et al. 2012; Suzuki et al. 2012).

In environmental stress, growth and response of plants at molecular, cellular, and 
tissue level are regulated by calcium (Ca) (Waraich et al. 2011). Prevention against the 
transpirational water loss and maintenance of leaf water potential are higher in plants 
which can tolerate the cold stress. In chilling tolerant plants, Ca is a basic requirement 
for stomatal closure even the Ca2+ mediate the stomatal closure induced by ABA 
(Wilkinson et al. 2001). Reduction in cold injury stress effects and recovery from 
injury are facilitated by the role of Ca by activating the ATPase (plasma membrane 
enzyme) (Palta 1990). Ca helps to pump back the nutrients in cold injury by releasing 
the ATPase. In cell structure, Ca also has a vital role in maintaining and controlling the 
metabolic activities of plants by calmodulin formation (Waraich et al. 2011).

Wheat plants treated with 5 mM CaCl2 and those untreated faced the heat expo-
sure of 43.5 °C, showed several changes in MDA, SOD, guaiacol peroxidase, and 
catalase, and it was concluded that Ca2+-supplemented plants under the heat stress 
faced a short-term oxidative stress that is not associated with permanent damage 
(Bakardjieva et al. 2000; Jiang and Huang 2001; Kolupaev and Karpets 2003). Day/
night temperature (42/30 °C), chlorophyll a, b, and photochemical efficiency were 
minimized in N-deficient plant by 13, 20, and 27%, respectively  under the heat 
stress (Reynolds et  al. 2000; Hassan 2006; Berry and Björkman 1980; Xu and 
Huang 2000; Zhao et al. 2008; Pelligrini et al. 2011; Murchie and Lawson 2013), 
while a significant rise of 32%, 60%, and 69% and by 25%, 88%, and 100% was 
observed in 5, 10, and 15  mM N-supplemented plants in all these parameters, 
respectively. Antagonistic effects of heat stress are reduced by the N fertilization 
(Hassan et al. 2015). To tolerate the heat stress, Ca is a gesturing molecule which 
helps the plant (Hu et al. 2012). Different biochemical and molecular parameters 
were observed on wheat crop under the heat stress (42 °C) for the period of 2 h with 
the exogenous application of Ca2+ at 10  mM.  The negative relation was found 
between the exogenous application of Ca2+ and lipid peroxidation. In contrast, posi-
tive relationship with an antioxidant under the high temperature was observed 
(Sharma and Dubey 2005; Amirjani 2012; Benzie and Strain 1999). Ca2+ stimulates 
the heat tolerance and antioxidant capacity under high temperature.

The role of nitrogen is very dynamic in heat stress. Plant grows destructively, and 
nutrient uptake in plants is affected by the rising temperature and light intensity. For 
photosynthetic carbon breakdown and to consume the absorbed light energy, N 
plays a significant role (Kato et al. 2003; Huang et al. 2004). Photooxidative dam-
age is caused by the non-utilized light energy in leaves which lacks N (Huang et al. 
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2004). Thylakoid membrane helps to avoid the photooxidative damage by its defen-
sive machinery because photooxidative damage is tolerated by plants with a higher 
level of N than the plants with low N. Due to the fluctuations in xanthophyll cycle, 
pigments of spinach 64% and 36% absorbed light in N-deficient plant parts and 
N-sufficient plant parts, respectively (Verhoeven et al. 1997; Kato et al. 2003). With 
the combination of environmental stress, the N-deficient plants have a higher risk of 
photooxidative stress. Bean leaves with addition of nitrate have high conversion rate 
of violaxanthin into zeaxanthin in high light energy than plants with the application 
of ammonium. Consequently, antioxidant enzyme and lipid peroxidation level is 
higher in plants containing higher concentration of ammonium under the high light 
intensity (Bendixen et al. 2001; Zhu et al. 2000). Opposing effects of abiotic stresses 
like heat stress are alleviated by the N fertilizer, and N in many physiological pro-
cesses is very responsive in the form of nitric oxide (Waraich et al. 2011; Zhao et al. 
2007; Yang et al. 2006; Crawford and Guo 2005: Zhang et al. 2006).

Mineral nutrients play a fundamental role to enhance the plant resistance under 
high temperature and other environmental stresses (Marschner 1995). For many 
physiological processes like maintenance of turgidity, photosynthesis and enzyme 
activation, etc., potassium (K) is an essential nutrient. Its deficiency in plants could 
show a severe reduction in these processes (Marschner 1995; Mengel and Kirkby 
2001). The membrane structure of the lipid membrane could be altered with the 
temperature stress. Due to the conversion of O2 into ROS, the processes like stoma-
tal conductance, CO2 fixation, rubisco activity, and electron transport in photosyn-
thesis are affected by low temperature (Huner et  al. 1998; Foyer et  al. 2002; 
Marschner 1995). Protection against oxidative stress damages is more in plants with 
high K than in plants containing a low supply of K. In carnation plants under the low 
temperature, high amount of K protects the plant from stem damage, and in potato 
plant, the adverse effects of low temperature such as low yield could be reduced by 
the K application (Grewal and Singh 1980; Kafkafi 1990).

In various biochemical and physiological processes, magnesium (Mg) is involved 
in facilitating the plant growth and development (Waraich et al. 2011). A small vari-
ation in the Mg level could affect the chloroplast enzymes, and photosynthesis of 
plant could also be affected by the excess or deficiency of Mg (Shaul 2002; Shabala 
and Hariadi 2005; Fischer 1997; Sun and Payn 1999; Ridolfi and Garrec 2000; 
Hermans and Verbruggen 2005). In different organelles, different metabolic path-
ways produce a by-product ROS under the temperature stress, which is a basic rea-
son for the loss of production and could kill the plant cell by damaging the lipid, 
protein, DNA, and carbohydrates (Navrot et  al. 2007; Tuteja 2007; Tuteja 2010; 
Khan and Singh 2008). Oxidative damage is also caused by the mineral deficiency. 
In beans, maize, pepper, and mulberry, concentration and activities of oxidative 
molecules and oxidative enzymes were increased by the Mg to avoid the oxidative 
damage (Halliwell 1987; Yu et  al. 1999; Cakmak and Marschner 1992; Cakmak 
1994; Tewari et al. 2004, 2006; Anza et al. 2005). For higher uptake of water and 
nutrients by the root, Mg increases the growth and surface area of roots to enhance 
the photosynthetic rate by maintaining the chloroplast structure under the heat stress 
(Waraich et al. 2011).
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Micronutrients also play an imperative role for proper growth and development 
of plants under the heat stress. In cell division, cell elongation, membrane function, 
cell wall biosynthesis, uracil system, and N metabolism are the chemical and physi-
ological processes in which B is directly or indirectly involved in plant growth 
(Marschner 1995). ROS are encouraged by the high-/low-temperature stress which 
could also stop the progression of the plant (Xu et al. 2008). ROS could be mini-
mized by an increase in antioxidant activities with the application of B in plants, and 
seed formation and germination can also be enhanced by the improvement of sugar 
transportation plants with B. Cell damage reduction and increase in photosynthesis 
and crop yield were induced with the B application by minimizing the ROS produc-
tion (Waraich et al. 2011).

In N metabolism, in photosynthesis, and in other metabolic processes of plants, 
manganese (Mn) is a compulsory micronutrient. An increase in physiological and 
morphological damages and reduction in uptake of nutrients in plants are caused by 
the heat stress. Mn increases the photosynthesis and N metabolism to reduce the 
adverse effects of heat stress on the plant. Leaf drop of premature plants and brown 
necrotic spots are also reduced by the application of Mn. In decarboxylation and 
oxidation reduction, many enzymes are activated with the involvement of Mn in 
plants grown under heat stress (Marschner 1995; Aktas et al. 2005; Turhan et al. 
2006).

21.3  Effects of Nutrients on Heat Stress

In guaiacol peroxidase (GPXs), Se is present on an active site and executes as an 
antioxidant; therefore, it is one of the essential nutrients in animal and human nutri-
tion (Djanaguiraman et  al. 2010). Plant tolerance is increased by the Se under 
drought, heavy metal, and heat stress (Balal et al. 2016; Haghghi et al. 2014; Duran 
et al. 2016). It was observed in an experiment that heat resistance is enhanced in 
cucumber plants by the Se, which helps the plants for better growth and yield by 
maintaining the stomatal conductance; photosynthetic and transpiration rate was 
improved under high temperature with the foliar application of 8 μMSe (Balal et al. 
2016). Antioxidant activities, chlorophyll contents, and osmotic adjustment capac-
ity of wheat plants were increased and improved, while H2O2 contents, MDA, and 
electrolyte leakage were decreased with exogenous application of Se under heat 
stress (Iqbal et al. 2015). Similarly, in rice antioxidant activities were increased and 
oxidative stress was decreased by seed priming with (60 μM) Se, which in turn 
increased the heat stress tolerance in rice plant under high-temperature stress 
(Hussain et al. 2016). CAT, GR, MDHAR, SOD, and APX activities were increased 
in maize roots in hydroponic solution with Se application under heat stress. 
Oxidative stress was also reduced by the Se application under heat stress (Yildiztugay 
et al. 2017).

For metabolic processes in plants, different inorganic nutrients are required 
from which Ca is an important nutrient. Oxidative stress was reduced, and amino 

U. Khalil et al.



513

acid contents were increased in wheat crop grown under the heat stress with the 
application of Ca (Goswami et  al. 2015). The increase in SOD, CAT, and POD 
activities in wheat crop followed similar patterns as that in maize crop under the 
heat stress by applying Ca (Kolupaev et al. 2005). Photosynthetic rate can also be 
increased in plants with an application on Ca under heat stress. Different concentra-
tions of Mg (15, 20, and 540 μM) were applied to maize and wheat crops in hydro-
ponic medium under heat stress and observed that biomass, growth, and heat 
tolerance were increased in plants under high concentration (540  μM) of Mg 
(Mengutay et  al. 2013). S-deficient plants were reported with decreased chloro-
phyll contents under heat stress (Mobin 2010; Astolfi et al. 2003). A comparison 
between S-deficient and S-enriched plants showed that growth and plant biomass 
were increased with the satisfactory application of S under heat stress (Mobin et al. 
2017). ROS generation reduced by alleviating the oxidative stress with S applica-
tion in plants under heat stress.

The defense system of the plant is enhanced against the heat stress by maintain-
ing the turgidity of the membrane with the help of Zn (Graham 2004). Heat stress 
effects were minimized with a satisfactory amount of Zn, while the growth param-
eters were reduced with allowable amount of Zn (Peck and McDonald 2010). 
Higher sensitivity toward heat stress was observed in plants with low Zn. N applica-
tion controls the optimum nutrient accumulation in plant during the high tempera-
ture or heat stress (Demmig-Adams et  al. 2014; Zhao et  al. 2008). Chlorophyll 
contents, stomatal conductance, and photosynthetic rate in wheat seedling were also 
increased under heat-stressed plant with the appropriate amount of nitrogen (Hassan 
et al. 2015). However, effects of high night temperature on yield and growth of rice 
crop were not minimized by N application (Shi et al. 2016). Lipid thermal stability 
in cell membrane under the heat stress is associated with optimum application of Si. 
In addition, the negative effects of heat stress were also minimized by enhancing 
activities of enzymes of antioxidants and transpiration rate through Si application 
(Soundararajan et al. 2014; Rizwan et al. 2012; Agarie et al. 1998).

21.4  Conclusion

Biochemistry, phenology, anatomy, and morphology of plants are affected by the 
heat stress. Aggregation and denaturation of protein and rise in the fluidity of mem-
brane in plants are directly associated with high temperature. Protein synthesis 
inhabitation and degradation of protein and mitochondrial enzymes as well as chlo-
roplast are inactivated indirectly by high temperature. Crop yield reduction occurs 
under low temperature by affecting the pollen sterility, oval abortion, and fruit set 
reduction during  reproductive phase. Therefore, it is indispensable to reduce the 
effects of heat stress through effective and efficient nutrient management in crop 
production. The acceleration of energy in stressed plants results in increased chlo-
roplast memebrane damage and photooxidative effects, which in turns results in 
increased generation of reactive oxygen species  (ROS) under high temperature. 
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Catalase, superoxide dismutase (SOD), and peroxidase (POD) antioxidants are 
increased, and reduction occurs in ROS with the application of N, Ca, K, and Mg in 
plant cells. The rate of photosynthesis and stability of chloroplast membrane are 
also increased by the optimum application of nutrients in plants. The plant body 
temperature is also maintained by the Ca and K intake which in turn facilitates the 
regulation of stomata and osmotic adjustment. Additionally, the maintenance of 
high tissue water potential under heat stress is also facilitated by the application of 
nutrients. In plants, the activation of biochemical, metabolic, and physiological pro-
cesses reduces the heat stress with the application of micronutrients like Se and 
B. Due to less availability of literature on the importance of nutrients to reduce the 
heat stress, more research is required in the future for better understanding of plant 
system and heat stress with nutrient uptake.
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Chapter 22
Molecular Approaches to Nutrient Uptake 
and Cellular Homeostasis in Plants Under 
Abiotic Stress

Gyanendranath Mitra

Abstract Plants suffer from abiotic stress due to several soil- and environment- 
related factors. They need water and essential plant nutrients to carry out their 
metabolism and survive. Plant genome regulates expression of different sets of 
genes to ensure availability of nutrients and water under conditions of stress and 
maintain their cellular homeostasis. The plasma membranes of root hair cells have 
several channels, which contain transporter proteins, coded by their specific genes 
for uptake of water and each of the essential plant nutrients. The transporter proteins 
involved in water uptake are known as aquaporins (AQPs). Since plants encounter 
several water stress conditions during its growth period, plant genome has many 
AQP genes to maintain cellular water homeostasis. Two sets of genes regulate 
uptake of primary nutrients, nitrogen, phosphorus, and potassium. A set of high- 
affinity transporters are involved, when their concentration in the growth medium is 
low, and a set of low-affinity transporters at higher concentrations. There are spe-
cific transporters for uptake of secondary and micronutrients both under low- and 
high-nutrient stress conditions. Plant genome responds to various types of abiotic 
stresses such as cold, heat, salinity, drought, and oxidative stresses and regulates 
suitably uptake of nutrients to maintain their cellular homeostasis. Amino acids, 
plant growth regulators, intermediate metabolites, and the nutrients themselves are 
involved in induction or repression of transporter-encoding genes as well as post-
transcriptional modification of transporter proteins. Transcription factors regulate 
expression of nutrient stress response genes and control nutrient homeostasis in 
plants at molecular level. miRNAs are involved in posttranscriptional regulation of 
gene expression and also in nutrient stress signal transduction pathways. Some of 
the beneficial elements such as Na and Si play significant roles in abiotic stress 
tolerance of plants. Heavy metals, which are toxic and have no known function in 
plant metabolism, are sometimes taken up by ion transporters involved in uptake of 
essential nutrients from mineral-rich soils. Plants take up radioactive isotopes with-
out any apparent damage to them. Exposure to high nuclear radiations may kill 
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some of the plants but others survive. Abiotic stress caused by climate change has 
its effect on nutrient uptake by plants.

Keywords Aquaporins · Nutrient transporters · Transcription factors · miRNA · 
Beneficial elements · Radioisotopes · Climate change

22.1  Introduction

Plants suffer from abiotic stress both due to deficiency and excessive presence of 
plant nutrients. Other causes of abiotic stress include the presence of heavy metals; 
availability of micronutrients above or below their threshold concentrations; unsuit-
able soil conditions (mineral-rich soils, saline and alkaline soils, submerged or des-
ert soils) coupled with unfavorable weather conditions, such as drought, excessive 
rain, high temperature, and cold waves; and more recently high concentrations of 
greenhouse gases and pollutants in the atmosphere. There are plants with special 
mechanisms, which can grow under all such adverse situations. Cultivated plants 
including domesticated crops when grown under these conditions suffer from abi-
otic stress, since two of their important functions, uptake of water and nutrient ions, 
are impeded and sometimes replaced by toxic ions leading to disruption of their 
metabolism. Most of the plants have however inbuilt defense mechanism to with-
stand reasonable variation in their optimal growth conditions, which cause abiotic 
stress (Marschner 1995; Hall 2002; Hasanuzzaman et al. 2012, 2013).

To cope with wide variations in concentrations of nutrient ions in the soil, plants 
have developed special mechanisms for net intake of a nutrient according to their 
need for this element rather than its concentration in the rooting medium (Imsande 
and Touraine 1994). The plasma membrane of cells contains a large number of 
channels, which are specific for water, nutrient ions, or other molecules and restrict 
any other type to pass through them. Such selectivity is caused by intrinsic trans-
membrane transporter proteins with fixed topology, lodged inside the channels. 
Cellular ion channel proteins are large molecules with multiple transmembrane 
α-helices. Channels alternate between open and closed conformations (gating) and 
allow water, ions, and other molecules to pass through them (The Nobel Prize in 
Chemistry 2003; Dubyak 2004; Diwan 2007).

There are different groups of genes for every nutrient and for water and other 
neutral molecules. These genes encode mRNA transcripts for translation of trans-
porter proteins whose functions are to acquire the specific nutrient/water from the 
soil and transport it across the plasma membrane of the root hair cells and also 
within the symplasm. Different sets of genes specific for each nutrient at low and 
high concentrations are expressed for transport of every nutrient ion (Hammond 
et  al. 2004; Rodriguez-Navarro and Rubio 2006). When the ionic concentration 
becomes toxic, plants adopt different mechanisms at physical, genetic, and bio-
chemical level to maintain cellular homeostasis and survive (Marschner 1995; Hall 
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2002). There are also similar survival strategies at extremely low ionic concentra-
tions (Fang et al. 2009; Lynch 2011; Plaxton and Tran 2011). Extensive research has 
been carried out on different types of plants on their survival strategies under adverse 
ionic environments often superimposed by hostile environmental stress (Ho et al. 
2009; Fang et al. 2009).

22.2  Water and Ion Uptake and Homeostasis

22.2.1 Water Uptake

Water is fundamental to all life processes on earth. It is the universal solvent for liv-
ing cells. Plants take up all the mineral nutrients through their roots in ionic forms 
in aqueous medium.

22.2.1.1  Mechanism of Water Uptake

Water is taken up into cells through water channels. Aquaporins (AQPs), a large 
protein family found in both eukaryotes and prokaryotes, control movement of 
water through the narrow channels located on the plasma membrane. The peptide 
sequence of a number of aquaporins (AQPs), their three-dimensional structures, and 
the corresponding DNA sequence have been determined. Plant AQPs appear to have 
the same general structure as mammalian AQP1 (Daniels et al. 1999). AQPs gener-
ally exist as tetramers. Each of the four monomers independently operates as water 
channels, but tetramerization gives them a synergistic benefit along with forming a 
central channel, which allows passage of gas molecules. The central channel may 
conduct ions through cGMP-mediated activation. This is probably caused by 
arginine- rich cytoplasmic D loop (The Nobel Prize in Chemistry 2003).

In addition to water, uncharged molecules with proper orientation, such as urea, 
glycerol, NH3, CO2, metalloids, boron and silicon, and reactive oxygen species 
(ROS), are selectively allowed to pass through the water channels (Maurel et al. 
2015). Ions carrying charges such as (H+) and (H3O+) are prevented from passage. 
Glycerol molecules, which are larger than water molecules, appear to move in a 
single file through the amphipathic water channels, where NPA motifs of AQPs play 
a critical role (Chaumont et al. 2001).

22.2.1.2  Plant Aquaporins (AQP) and Cellular Homeostasis of Water

Plants maintain water balance under extreme water regimes during the growth 
period, such as drought and flooding, under variable weather conditions involving 
fluctuations of light, temperature, and nutrient stress. Plant genomes therefore con-
tain a large number of aquaporin genes to regulate water transport across the plasma 
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membranes. Arabidopsis has 38 aquaporin genes of 2–3 kb size (Johanson et al. 
2001; Quigley et al. 2002), maize 33 (Chaumont et al. 2001), barley 23 (Katsuhara 
et al. 2002), rice 34 (Nguyen et al. 2013), wheat 35 (Forest and Bhave 2008), and 
soybean 66 (Zhang et al. 2014).

The AQP proteins belong to a major intrinsic protein (MIP) family, which are 
further classified into five subfamilies such as PIP, plasma membrane intrinsic pro-
tein; TIP, tonoplast intrinsic protein; NIP, NOD26-like intrinsic protein; SIP, small 
basic intrinsic protein; and XIP, X intrinsic protein, a poorly understood protein 
probably involved in transport of hydrophobic molecules (Venkatesh et al. 2015). 
Mosses (Physcomitrella patens) have two additional subfamilies, the hybrid intrin-
sic proteins (HIPs) and GlpF-like intrinsic proteins (GIPs).

Apart from water, plant aquaporins can transport several other molecules. PIPs 
and TIPs are efficient water channels, but PIPs can also transport H2O2 and CO2 
(Bienert and Chaumont 2014), whereas TIPs transport NH3 and urea (Hooijmaijers 
et al. 2012). NIPs show less water transport activity but can transport metalloids 
such as B, Si, Se, As, and Sb. While the first three are considered as essential and 
beneficial elements, the last two are toxic to plants. SIPs show moderate water trans-
port activity. XIPs are multifunctional, permeable to water, metalloids, and ROS 
(Maurel et al. 2015).

Members of subfamilies are not necessarily found in the locations as their names 
signify. The subfamilies are further subdivided into groups. In Arabidopsis PIP2;2 
and PIP2;4 are exclusively expressed in roots and siliques (Quigley et al. 2002). At 
early tillering and panicle initiation stages in rice, 6 genes including OsPIP2;4 and 
OsPIP2;5 are predominantly expressed in roots, 14 genes including OsPIP2;7 and 
OsPIP1;2 are expressed in leaf blades, and 8 genes including OsPIP1;1 and 
OsTIP4;1 are evenly expressed in leaf blades, roots, and anthers. OsPIP2;1 and 
OsPIP3;1 have distinct role in developing rice grains (Hayashi et al. 2015). Wheat 
has 24 PIPs and 11 TIPs (Forest and Bhave 2008).

Plant aquaporins are localized throughout the cell secretory system including 
ER, Golgi, endosomes, autophagosomes, and vacuoles. Some isoforms are 
expressed in chloroplast. Aquaporins seem to be excluded from mitochondria and 
peroxisomes (Maurel et al. 2015).

22.2.1.3  Drought Stress and Aquaporins

It was observed from a study on response of salt and water stress and of phytohor-
mones on aquaporin isoforms in radish seedlings that RsPIP2 groups of proteins 
were suppressed, when exposed to stress, but RsTIPs remained unchanged (Suga 
et al. 2002). In Arabidopsis, under drought stress, most PIPs and some TIPs had a 
high level of expression, while NOD26-like proteins (NIPs) were present at a much 
lower level. PIP transcripts were generally downregulated upon gradual drought 
stress in leaves, with the exception of AtPIP1;4 and AtPIP2;5, which were 
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upregulated. AtPIP2;6 and AtSIP1;1 were constitutively expressed and not signifi-
cantly affected by the drought stress (Alexandersson et al. 2005).

In most of the plants, PIPs predominantly present in plasma membrane, and 
TIPs, in the tonoplast, regulate water uptake. High water channel activity was 
found in rice, when OsPIP2;4 or OsPIP2;5 of rice were expressed in yeast. This did 
not happen when OsPIP1;1 and OsPIP1;2 were similarly expressed in yeast 
(Sakurai et al. 2005). Several studies on Arabidopsis in response to drought stress 
have shown that PIPs, which are highly expressed in roots, are most responsive to 
drought stress and most of them undergo transcriptional downregulation (Afzal 
et al. 2016). Downregulation of PIPs probably prevents water loss and backflow of 
water from plants to the drying soil. TIPs play key role in maintaining cellular 
homeostasis of water by transporting water from vacuole to the cytoplasm. Under 
salt stress, similar expressions of transcripts of PIPs and TIPs have been observed 
in most of the plants to conserve water within the cell (Afzal et al. 2016). Transgenic 
plants overexpressing aquaporins have been found to have better drought toler-
ance. A PIP2 subgroup gene of AQP, designated asTaAQP7, conferred drought 
stress tolerance in transgenic tobacco by increasing its ability to retain water, 
reducing ROS accumulation and membrane damage, and enhancing the activities 
of antioxidants (Zhou et al. 2012). A number of studies have shown that overex-
pression of AQPs enhances the ability of plants to tolerate abiotic stress by improv-
ing water use efficiency and hydraulic conductivity and retaining better water 
status. VfPIP1 isolated from Vicia faba leaf epidermis and expressed in transgenic 
Arabidopsis (induced by abscisic acid (ABA)) has been found to improve drought 
resistance of the transgenic plants by promoting stomatal closure under drought 
stress (Cui et al. 2008). Closure of stomata is an important mechanism to reduce 
water loss. This however effects conductance of CO2 and reduction in photosynthe-
sis. Aquaporins play an important role in the transport of water as well as CO2 
through cell membranes. A tobacco aquaporin NtAPQ1 has been found to be 
involved in mesophyll CO2 conductance (Flexas et al. 2006). In tobacco and tomato 
plants, constitutive overexpression of NtAQP1 increased net photosynthesis, meso-
phyll CO2 conductance, stomatal conductance and, under water stress, increased 
root hydraulic conductivity (Lpr) as well.

22.2.1.4  Salt Stress and Aquaporins

One of the primary responses of plants to salt is inhibition of their root water uptake 
capacity (i.e. root hydraulic conductivity, Lpr). In a study on early effects of salt 
stress on aquaporins, it was observed that in Arabidopsis all PIP and TIP aquaporin 
transcripts with a strong expression signal showed a 60–75% decrease in their abun-
dance between 2 and 4 h following exposure to salt. Aquaporins contribute to >80% 
of Lpr, and therefore most of salt-induced inhibition of water uptake is probably 
caused by significant decrease of their expression (Bourssiac et al. 2005).
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22.2.1.5  Regulation of Water Uptake by Aquaporins

Plant aquaporins have developed special mechanisms to regulate water flow under 
adverse water regimes such as drought, flooding, and salt stress. Such conditions 
trigger certain cellular signals (dephosphorylation and change of pH), which close 
the channel and restrict water flow. A study on spinach plasma membrane aquaporin 
SoPIP2;1 on cellular mechanism of water flow through membrane under adverse 
water regime showed that channel closure resulted either from the dephosphoryla-
tion of two conserved serine residues under conditions of drought stress or from the 
protonation of a conserved histidine residue following a drop in cytoplasmic pH due 
to anoxia during flooding. A cytoplasmic loop occludes and physically blocks the 
channel entrance from cytoplasm, through a molecular gating mechanism. 
Phosphorylation removes the loop from the channel and allows reentry of water. 
This mechanism is probably conserved in all plasma membrane aquaporins 
(Tӧrnroth-Horsefield et al. 2006).

22.2.2  Nutrient Stress and Ionic Homeostasis

Both suboptimal and toxic concentrations of plant nutrients in the growth medium 
of plants cause nutrient stress. Plants maintain an optimal concentration of nutrient 
ions and pH in its cytoplasm for its metabolism irrespective of their concentrations 
in the growth medium. Excessive nutrients absorbed by the plants are deposited in 
the apoplast. Any nutrient getting through the plasma membrane is transported to 
the vacuole to maintain ionic homeostasis in the cytoplasm.

22.2.2.1  Mechanisms of Nutrient Uptake

There are many channels in the plasma membrane, each adapted to allow passage of 
one specific ion or molecule and not others. The transporter proteins located inside 
these channels are divided into two classes: (1) ion channel proteins and (2) ion 
transporter proteins.

Channel proteins are large molecules with multiple transmembrane α-helices. 
They alternate between open and closed conformations (gating). There is conforma-
tional change of the channel protein due to any one of the extrinsic factors, such as 
(i) changes in membrane potential, (ii) binding of a small regulatory molecule, or 
(iii) membrane stretch (e.g., via link to the cytoskeleton) (Dubyak 2004; Rainer 
2012). These factors determine if the channel is in a gated state (open for transport) 
or closed state (incapable of ion transport). Extrinsic factors control the accessibility 
of ions to the channel domain, which acts as a pathway for movement of ions from 
one side of the plasma membrane to the other side. Since there are no energetic 
interactions, between channel protein and the transported ion, the rate of transport 
of ion is fast. There is probably no binding site within the channels to restrict their 
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movement. Even if they exist, they are shallow and separated by small free energy 
barriers (Roux et al. 2011).

All channels mediate passive transport of ions down their chemical or electro-
chemical gradient across the membrane due to difference in concentrations of ions 
on each side of the membrane as well as any electrical potential across the 
membrane.

22.2.2.2  Ion Transporter Proteins (Carriers)

Transporter proteins are “vectoral” enzymes (Dubyak 2004). Their functioning 
involves (i) a selective recognition/binding of the ion to be transported, (ii) confor-
mational changes in carrier protein due to binding of the ion, and (iii) physical 
movement of the ion across the membrane caused by such conformational changes. 
Ion transporters can catalyze movement of ions against their electrochemical gradi-
ent (not ion channels) deriving energy from ATP hydrolysis. There are three types 
of ion transporters:

 (i) Uniporters: They transport one type of ion across the membrane, e.g., P-type 
ATPases, Ca2+-ATPase.

 (ii) Symporters (cotransporters): They transport more than one type of ion across 
the plasma membrane, e.g., NRTs (2H+/NO3

− cotransport), TaHKT1 (K/Na 
cotransporter).

 (iii) Antiporters (exchangers): There is exchange of one ion for the other, which 
moves in opposite directions, e.g., CHX (K+/H+ antiporter), CAX (Ca2+/H+ 
antiporter).

Furthermore, it is good to recall that ion channels are not really designed to keep 
ions in place, but to allow them to diffuse rapidly across the membrane. Therefore, 
it is likely that binding sites inside the channel, even when they exist, should be 
rather shallow and separated by small free energy barriers (Roux et al. 2011).

22.3  Primary Nutrients

Nitrogen (N), phosphorus (P), and potassium (K) are required in relatively larger 
quantities for growth and metabolism of plants. Most of the soils globally are defi-
cient in one or more of these elements and the available nutrients are not sufficient 
to meet the crop requirement. Hence nutrient stresses caused by them are mostly 
due to their suboptimal presence rather than toxicity.

There are generally two types of ion transporters involved in uptake of nutrient 
ions through the plasma membrane of cells. The “low-affinity” transporters are 
involved in ion uptake when the concentration of the ion in the growth medium is 
high, and high-affinity transporters operate when the concentration is low. Low- 
affinity transporters are generally constitutive in nature.
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22.3.1  Nitrogen

Plants contain about 1–6% of N of their dry weight. Nitrogen is primarily taken up 
by plants as NO3

−or NH4
+ ions. Unfertilized soils may contain NO3

− at a concentra-
tion of <1 mM, but application of fertilizers may raise it >70 mM. Concentration of 
N is more or less constant within cytoplasm. Nitrate concentration in cytoplasm is 
limited to about 2–5 mM and 5–75 mM inside vacuole (Miller and Smith 1996). 
NH4

+is toxic and is not allowed to accumulate within the plants.
The primary event of NO3

− uptake is its transport through plasma membrane of 
root epidermal and cortical cells. This is carried out by a favorable H+ (proton) 
electrochemical gradient maintained by the plasma membrane (PM) H+-ATPases 
(proton pumps) (Miller and Smith 1996; Quaggiotti et al. 2003; Sperandio et al. 
2014). (PM) H+-ATPase activity maintains membrane potential (∆Ψ) and proton-
motive force (∆p) necessary for ion transport. For both high- and low-affinity 
transport system, NO3

− uptake takes place by symport of 2H+/NO3
− (Crawford and 

Glass 1998).

22.3.1.1  Nitrate Transport Genes

The genes involved in transport of NO3
− across plasma membrane in Arabidopsis 

are (1) NRT1 (nitrate transporter1/peptide transporter family, 53 members), (2) 
NRT2 (7 members), (3) CLC (chloride channel, 7 members), and (4) SLAC1/SLAH 
(slow anion channel-associated 1 homologs, 5 members) (Krapp et al. 2014). The 
four families have a total of 73 genes out of which 60 are from NRT1/PTR and NRT2 
families. Out of 35 genes characterized, 24 are nitrate transporters.

22.3.1.2  Nitrate Transporters (NRTs) in Plants

When the external NO3
− concentration is high (1–50 mM), an essentially unregu-

lated and constitutively expressed low-affinity transport system (LATS) operates 
(Crawford and Glass 1998). A high-affinity transport system (HATS) operates, 
when external NO3

− concentration is low (<0.2 mM). Some of them are constitu-
tively expressed (cHATS) and others induced by NO3

− (iHATS) (Fig. 22.1).
The NRT1 genes encode low-affinity transporters (LATS), when the NO3

− con-
centration in the soil is high >1 mM (Orsel et al. 2002). The NRT2 genes encode 
high-affinity nitrate transporters at low NO3

− concentration (<0.2 mM). Some of the 
NRT2 genes are inductive (iHATS) and others constitutive (cHATs). AtNRT1; 1 
(CHL1) is a dual-affinity nitrate transporter, switched off and on by phosphoryla-
tion/dephosphorylation of threonine T101 in its polypeptide chain (Liu et al. 1999). 
The CBL (calcineurin B-like)-interacting protein kinase, CIPK23 (SnRK3;23), 
phosphorylates T101 under low nitrate conditions, allowing NRT1;1 to act as a 
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high-affinity nitrate transporter (Ho et  al. 2009). Dephosphorylated NRT1;1 is a 
low-affinity nitrate transporter.

Nitrate transport in Arabidopsis is carried out by two transporters from NRT1 
family, AtNRT1;1 and AtNRT1;2, and two from NRT2 family, AtNRT2;1 and 
AtNRT2;2. When external NO3

−concentration is low, NRT2;1 proteins localized on 
the plasma membrane constitute the major component of HATs (72%) activity (Li 
et  al. 2007). It requires a second protein NAR2 for its stability. AtNRT2;1 and 
AtNAR2;1 form a tetramer with two subunits each, which constitute the active 
NO3

− transporter (Yong et al. 2010).
In higher plants NRT2 genes isolated so far are preferentially expressed in the 

roots (Tsay et  al. 2007). OsNRT1 expressed in epidermal cells of rice roots is a 
homolog of Arabidopsis AtNRT1;1(CHL1) (Lin et al. 2000). Four HATs OsNRT2;1, 
OsNRT2;2, OsNRT2;3, and OsNRT2;4 and two NAR proteins OsNAR2;1 and 
OsNAR2;2 have been isolated from rice (Feng et al. 2011, Sperandio et al. 2014). In 
maize ZmNRT2;1 is involved in influx activity and ZmNRT2;2 in xylem loading 
process (Trevisan et al. 2008).

22.3.1.3  The AMT1 Family of Ammonium Transporters

High-affinity NH4
+ transporter in Arabidopsis contain five members, of which 

AtAMT1;1, AtAMT1;2, and AtAMT1;3 have been studied in detail. In rice four 
NH4

+ transporter genes have been identified (Suenega et al. 2003). OsAMT1;1 is 
expressed in roots and shoots. OsAMT1;2 is root-specific and induced by NH4

+. 
OsAMT1;3 is root-specific and depressed by nitrogen application (Sonoda et  al. 
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2003). Two rhizodermis-localized transporters ZmAMT1;1 and ZmAMT1;3 have 
been identified from maize.

22.3.1.4  N Regulatory Network

An intricate N regulatory network at the root tip is responsible for orchestrating 
changes in root growth rate and root architecture. Nitrate stimulates primary root 
growth, both directly and by antagonizing inhibitory effect of glutamine, which 
stimulates root branching (Walch-Liu and Forde 2008). Some of the genes encoding 
nitrate transporters are subjected to transcriptional regulation through inductive 
effects of NO3

−, while both encoding NO3
− and NH4

+ transporters are subject to 
downregulation by glutamine (Anthony et al. 2002).

Ammonium transporters are oligomeric proteins. They undergo conformational 
coupling among monomers for ammonium uptake. This provides a mechanism for 
tight regulation of ammonium transporters. Rapid shut-off mechanism is required to 
prevent toxic accumulation of NH4

+. Application of higher levels of NH4
+ blocks 

NO3
− uptake by roots (Mitra 2017).

22.3.1.5  NH4
+ and Al Tolerance

Ammonium is preferred by aluminum-tolerant rice varieties, whereas Al-sensitive 
ones prefer nitrate. According to Zhao and Shen (2013), N signaling molecules 
produced during N uptake and assimilation may be involved in the Al tolerance of 
rice, and the regulation of N metabolism by Al may be one of the factors in the 
beneficial role of Al in some plants. The interactive regulation of N and Al seems to 
facilitate the growth of plants in acid soils.

Functional disruption of nitrate transporter, NRT1;8, has been found to decrease 
Cd tolerance (Li et al. 2010), whereas that of NRT1;5 increase Cd tolerance (Chen 
et al. 2012) in Arabidopsis thaliana, indicating an important role of nitrate in regu-
lating metal tolerance.

22.3.1.6  Nitrogen Uptake, Aquaporins, and Water Stress

Aquaporins have a significant role in N absorption, N mobilisation, N detoxifica-
tion, and N metabolism in higher plants. The PIP, TIP, and NIP subfamilies are 
involved in transport of NH3 and urea.

High N application to rice has been reported to result in increased transcription 
level of aquaporins, increased rate of water uptake and the root hydraulic conduc-
tance and decreased aerenchyma formation (Ren et al. 2015).

Nitrate (NO3
−), the major form in which N is taken up by plants, exerts beneficial 

effects on root water uptake in numerous plant species. Limited NO3
− availability 

has been reported to result in a dramatic (20–50%) reduction in root hydraulic 
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 conductivity (Lpr) in a number of plants such as Arabidopsis (Li et al. 2016), sun-
flower (Gloser et  al. 2007), maize, wheat (Carvajal et  al. 1996), lotus (Clarkson 
et al. 2000, Prosser et al. 2006), and rice (Ishikawa-Sakurai et al. 2014). According 
to Li et al. (2007), the nitrate transporter AtNRT2; 1 is responsible for 72% of HATs 
activity in Arabidopsis at low NO3

− concentration. NO3
− also acts as a signaling 

molecule and as a sensor (Krapp et al. 2014). NRT2.1, a high-affinity nitrate trans-
porter, has been suggested as a nitrate sensor involved in the regulation of lateral 
root formation (Little et al. 2005). Recent studies by Li et al. (2016) suggest a strong 
relationship between Lpr and plant NO3

− accumulation, together with a specific role 
for the high- affinity NO3 transporter NRT2.1 in determining Lpr. Four PIP genes, 
PIP1;1, PIP1;2, PIP2;1, and PIP2;3, show a strong positive correlation between 
their transcript abundance and Lpr (Li et al. 2016).

Nitrate has been shown to alter aquaporin expression in tomato (Wang et  al. 
2001). Studies on rice indicate that N deprivation decreases the expression of root- 
specific aquaporin genes, whereas N resupply increases their expression. Changes 
in aquaporin gene expression have been correlated with changes in hydraulic con-
ductivity. N deprivation has been found to increase dry matter allocation to the 
roots. In a split-root experiment, the expression of root-specific aquaporin genes 
was downregulated in the N-deprived half, whereas it was upregulated in the 
N-supplied half (Ishikawa-Sakurai et al. 2014).

22.3.1.7  Nitrogen Stress and microRNA

Gene expression can be regulated at the posttranscriptional level through small 
RNAs such as microRNAs (miRNAs) and small interfering RNAs (siRNAs) 
(Bakhshi et al. 2016). Plant microRNAs play critical roles in most of the biological 
processes such as development, differentiation, and plant responses to biotic and 
abiotic stress (Lelandais-Brière et al. 2010).

Recent studies indicate that miRNAs regulate plant adaptive responses to nutri-
ent deprivation (Zhao et  al. 2011). miR169 is a conserved plant miRNA that is 
found in diverse plant species. The expression of miR169 is downregulated in 
Arabidopsis due to N starvation. The precursor of miR169, MIR169a, is substan-

microRNAs (miRNAs) containing 19–25 nucleotides are found in all animals 
and plants but not in fungi. They are posttranscriptional regulators encoded by 
specific genes, several at a time or by some portions of the introns of genes, 
whose mRNA they regulate. They either completely destroy the mRNA if 
their sequences exactly match (usually in plants) or repress the translation of 
mRNA if there is a partial match. In the latter, several of them simultaneously 
bind to the UTR (untranslated) region of mRNA. In plants, they may target 
the coding region itself (He and Hannon 2004).
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tially downregulated in both roots and shoots by N starvation. miR169 has been 
reported to regulate symbiotic nodule formation in Medicago truncatula, and over-
expression of MIR169a leads to a developmental block of nodule formation 
(Combier et al. 2006).

Liang et  al. (2012) studied the small RNA population in Arabidopsis grown 
under N-sufficient and N-deficient conditions. They observed that due to N starva-
tion, the expressions of miR169, miR171, miR395, miR397, miR398, miR399, 
miR408, miR827, and miR857 were repressed, whereas those of miR160, miR780, 
miR826, miR842, and miR846 were induced. Several of these miRNAs were prob-
ably involved in cross talk in response to deficiencies of other nutrients such as N, 
P, Cu, and S (Liang et al. 2012). Wang et al. (2013a, b) reported that a total of 150 
known miRNA variants as well as 2 novel miRNAs were identified to be responsive 
to low N stress in two soybean genotypes. Xu et al. (2011) performed a genome- 
wide search to detect miRNAs responding to the chronic and transient nitrate- 
limiting conditions in maize. Nine miRNA families (miR164, miR169, miR172, 
miR397, miR398, miR399, miR408, miR528, and miR827) were identified in 
leaves, and nine miRNA families (miR160, miR167, miR168, miR169, miR319, 
miR395, miR399, miR408, and miR528) were identified in roots. The majority of 
miRNAs gave different responses to chronic and transient nitrate-limiting condi-
tions. Once the concentration of nitrate was normalized, they returned to their base 
values. In rice N starvation represses expression of miR3979. It is plausible that 
under nitrogen starvation conditions, downregulation of miR3979 induces trypto-
phan biosynthesis, followed by increased auxin production, resulting in lateral root 
initiation to absorb more nitrogen from the soil (Jeong et al. 2011). miRNAs appear 
to play a key role in low-N tolerance by crop plants (Shriram et al. 2016).

22.3.2  Phosphate (Pi)

Plants contain 0.05–0.5% of phosphate. While soil availability of Pi rarely exceeds 
2 μM, the concentration of Pi in root cells is 2–20  mM (more than 10,000-fold 
higher than Pi in the soil solution). Plants have both high- and low-affinity phos-
phate transporters, which are H2PO4

−/H+ symporters. The low-affinity transport sys-
tems are constitutive and operate at higher Pi concentration. High-affinity phosphate 
transporters are located primarily in plasma membrane of root hair cells and operate 
at low Pi concentration. The high-affinity transporters are induced when Pi is defi-
cient. Transport against the steep concentration gradient takes place through active 
transport with energy derived from ATP. The movement from root surface to xylem 
is symplastic and is at a rate of about 2 mM h−1 (Bieleski 1973). Transport of Pi to 
above ground parts is through xylem flow and to cells in tissues through symplastic 
transport. Movements of Pi through plasma membrane into cells and into vacuole 
within cells are carried out by H2PO4

−/H+ symporters with energy derived from ATP 
(Ullrich and Novacky 1990; Mitra 2015).

Phosphate deficiency results in coordinated induction of hundreds of genes 
encoding enzymes, which maximize capacity of plants to acquire phosphate more 
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efficiently from external sources and reprioritize internal use of phosphorus (Plaxton 
and Tran 2011).

22.3.2.1  Genes Involved in Pi Uptake by P-Stressed Plants

Micro- and macro-array analysis of P-stressed plants has shown transcript abun-
dance of a number of genes with homology to Pi transporters, organic acid synthe-
sis, purple acid phosphatase, multidrug and toxin efflux (MATE), transcription 
factors, signaling, and defense (Tesfaye et al. 2007). Based on the sequence identity 
and their varied subcellular localization, plant Pi transporters are grouped into five 
phylogenetically distinct classes of families: PHT1, PHT2, PHT3, PHT4, and 
PHT5. Members of PHT1 gene family are expressed in root epidermal cell, and the 
encoded transporters are located on the plasma membrane (Lin et al. 2009). They 
are high-affinity H2PO4

−/H+ symporters and function to acquire Pi from the rhizo-
sphere. Members of PHT2 gene family are found in chloroplasts (Versaw and 
Harrison 2002); members of PHT3 family are located in mitochondria (Poirier and 
Bucher 2002) and of PHT4 family located in non-photosynthetic plastids or the 
Golgi apparatus (Guo et al. 2008). PHT5 is located in the vacuole. The members of 
PHT1 family in Arabidopsis with 12 transmembrane domains have different func-
tions: the Pht1;4 involved in Pi acquisition and Pht1;1 in Pi accumulation in shoots 
during Pi sufficiency due to its role in xylem loading process (Fang et al. 2009; Lin 
et al. 2009). Orthologous genes of Pht1;1 have been found in barley, rice, maize, 
potato, and Medicago truncatula sharing the same expression pattern and their basic 
role in Pi uptake. Pht2;1 is the only member of PHT2 family in Arabidopsis, which 
is highly expressed in leaves but scarcely found in roots. It is located in chloroplast 
and encodes low-affinity Pi transporters.

Genes that respond to P deficiency can be grouped into “early genes” that respond 
rapidly and often nonspecifically to Pi deficiency or “late genes” that impact on the 
morphology, physiology, or metabolism of plants upon prolonged Pi deficiency 
(Vance et al. 2003; Hammond et al. 2004). There is a Pi starvation-inducible rescue 
system in plants with their promoter region, the PHO regulon genes, under a com-
mon regulatory system (Goldstein et al. 1988). The Pi-responsive genes, TPSI1 from 
tomato and Mt4 from Medicago truncatula, have cis-regulatory elements “GCACG 
(G/T)” in their binding sites. The AtPHR1 (phosphate starvation response 1) gene 
from Arabidopsis has a motif, a cis-element “GNATATNC” (P1BS, PHR1- specific 
binding sequence, cis-element “GNATATNC”), which is shared by several 
Pi-responsive genes. The motif “P1BS” (GNATATNC) is recognized by the tran-
scription factor PHR1, which binds as a dimer to the motif (Rubio et  al. 2001). 
Overexpression of PHR1 results in increased concentration of Pi in the shoots along 
with an elevated expression of a large number of Pi-deficient genes encoding Pi 
transporters, phosphatases, and RNase (Nilsson et al. 2007). PHR1 appears to be a 
key transcriptional activator, which controls Pi uptake and distribution within the 
plant, anthocyanin accumulation, and carbon metabolism. The two homologs PHR1, 
identified in rice, OsPHR1 (Oryza sativa phosphate limitation-inducible gene 1) and 

22 Molecular Approaches to Nutrient Uptake and Cellular Homeostasis in Plants…



538

OsPHR2, control expression of several Pi starvation-induced genes (Zhou et  al. 
2008).Overexpression of OsPHR2 results in increased Pi accumulation in shoot, root 
elongation, and root hair proliferation in transgenic rice. PHR1 is involved in coordi-
nated regulation of many “late” Pi starvation genes, such as of RNases, phosphatases, 
TPSI/Mt4 family (Franco-Zorrilla et al. 2004, Hammond et al. 2004), and OPSI1 
(Wasaki et al. 2006), which have PHR1 binding sites. PHR1 binds as a dimer to the 
promoter of “late” Pi starvation genes. Most of the Pi taken up by roots is subse-
quently transported through xylem to shoots. Phosphate transporters, OsPht1;2 and 
OsPht1;6 in rice, are involved in Pi translocation from roots to shoots (Ai et al. 2009).

22.3.2.2  Effects of Pi Deficiency on Plant Metabolism

Under conditions of Pi deficiency, plants recycle P from older tissues to new tissues. 
Plants also remobilize from nonessential uses to essential uses. Intracellular (vacu-
olar) acid phosphatases (with acidic pH optima) are upregulated by Pi deficiency, 
which remobilize Pi from internal phosphomonoesters and anhydrides. Some of the 
P-rich organic constituents of cells are replaced and utilized to conserve Pi. 
Membrane phospholipids in Pi-starved plants are replaced by amphipathic sulfolip-
ids and galactolipids (Plaxton and Tran 2011).

Starch Accumulation Phosphate causes allosteric inhibition of the enzyme ADP-Glc 
pyrophosphorylase, involved in starch biosynthesis in cells. Phosphate deficiency 
removes such allosteric inhibition. This results in starch accumulation in the cell 
(Vance et al. 2003).

Synthesis of Anthocyanins A common symptom of Pi deficiency in plants is dark 
green or purple shoots. This is due to anthocyanin accumulation. Phosphate 
starvation causes induction of enzymes involved in synthesis of anthocyanins 
(Vance et al. 2003, Fang et al. 2009), which protect nucleic acids.

ATP Synthesis Under severe Pi-deficient conditions, a large decline (up to 80%) of 
ATP, ADP, and other nucleoside phosphates occurs. Plants respond by adopting 
alternative metabolic pathways for cytoplasmic glycolysis, mitochondrial electron 
transport, tonoplast H+ pumping to facilitate respiration and vacuolar pH 
maintenance. Critical roles are played by pyrophosphate-dependent glycolytic 
bypass enzymes and metabolic Pi-recycling systems (Plaxton and Tran 2011).

Glycolysis Pi deficiency has been reported to significantly upregulate some of  
the glycolytic bypass enzymes such as pyrophosphate (PPi)-dependent 
phosphofructokinase, PPi- phosphoenol pyruvic kinase, pyruvate phosphodikinase, 
and tonoplast H+ pyrophosphatase (Plaxton and Podesta 2006).

22.3.2.3  miRNA and Phosphate Deficiency

Phosphate deficiency causes upregulation of miR399, which decreases rapidly on Pi 
addition (Fujii et  al. 2005; Bari et  al. 2006). Overexpression of Arabidopsis 
miR399 in tomato results in increased accumulation of Pi. There is also augmented 
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excretion of acid phosphatases and protons by roots, which facilitates Pi acquisition 
from soil (Gao et al. 2010). Homologs of miR399 have been found in rice, tomato, 
common bean (Phaseolus vulgaris), and Medicago truncatula (Kuo and Chiou 
2011). Apart from miR399, a number of microRNAs such as miR156, miR159, 
miR166, miR319, miR395, miR398, miR399, miR447, and miR827 have been 
identified from plants of different species, which are involved in Pi deficiency syn-
drome (Kuo and Chiou 2011). Most of these miRNAs are involved in signaling 
pathway for Pi deficiency. Some of the miRNAs involved in Pi deficiency have also 
been found to be affected by other plant nutrients. For example, miR169, miR395, 
and miR398, which are downregulated by Pi deficiency, are also similarly affected 
due to deficiency of N, K, Cu, Fe, or S. miRNAs involved in stress signal transduc-
tion pathways have considerable cross talk with different nutrient homeostasis (Kuo 
and Chiou 2011; Liang et al. 2012).

22.3.2.4  Pi Stress Response Genes and Transcription Factors (TF)

Several families of TFs, such as MYB, SCARECROW, APETALA2 domain, homeo-
box, zinc fingers, and WRKY, are involved in expression of Pi stress response genes. 
Bioinformatic analysis of Pi-stressed tissues of legumes (Medicago, Lupinus, 
Phaseolus, and Glycine) indicates the presence of transcription factors, WRKY, 
MYB, and zinc finger families of genes (Graham et al. 2006). Database search has 
resulted in identification of 26 potential phosphate transporter gene families in rice. 
At 2 kb upstream region of these genes, 237 putative cis-elements have been found, 
most of which are phosphate-responsive or other stress-related regulatory cis- 
elements, such as PHO-like, TATA box-like, PHR1, or helix-loop-helix elements, 
and WRKY1 and ABRE elements (Liu et al. 2011).

Under Pi-deficient conditions, maize root shows altered expression of transcrip-
tion factors, “SHORTROOT” and “SCARECROW-LIKE” TFs, which are involved 
in determining meristem identity and root morphology.

AtWRKY75, AtWRKY6, and AtWRKY42 transcription factors modulate phos-
phate (Pi) acquisition in Arabidopsis. AtWRKY75 is a modulator of Pi starvation 
response as well as root development (Devaiah et al. 2007; Jiang et al. 2017). As a 
plant-specific TF, WRKY has a conservative WRKYGQK domain at N terminal and 
a zinc finger motif. WRKY specifically combines with W box [TTTGAC(C/T)] in 
PHT1 promoters and regulates the expression of PHT1.

A rice OsWRKY74 TF belonging to group III of WRKY TF family, localized in 
the nucleus and mainly expressed in roots and leaves, is involved in phosphate star-
vation response. Overexpression of OsWRKY74 results in increase of P, N, and Fe 
concentration and upregulation of cold stress-responsive genes (Dai et al. 2016).

A bHLH transcription factor involved in Pi stress in rice, OsPTF1 (Oryza sativa 
phosphate starvation-induced transport factor1), has been cloned and characterized 
(Yi et  al. 2005). Normally OsPTF1 is constitutively expressed in shoots of rice 
plant. Under Pi stress conditions, transcript accumulation of OsPTF1 is induced in 
roots.
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HD-ZIP TF is involved in signaling expression of Pi-responsive genes in soy-
bean (Tang et al. 2001).

The Arabidopsis MYB TF has sequence homology with PHR1 (phosphate star-
vation response gene) of Chlamydomonas reinhardtii and binds to an imperfect 
palindromic consensus sequence “5-GNATATNC-3” (Rubio et al. 2001). Many Pi 
deficiency-induced genes such as LaPT1 and LaSAP1 of white lupine have 
“GNATATNC” in their 5′ upstream region (Tesfaye et al. 2007).

Tesfaye et al. (2007) using semi-quantitative reverse transcription PCR analysis 
of 13 ESTs (partially sequenced cDNA inserts) encoding zinc finger transcription 
factors have reported that there is increased transcript abundance of two of the ESTs 
in Pi-starved roots of common bean. ZAT6 (zinc finger of Arabidopsis 6), a cyste-
ine- 2/histidine-2 zinc finger transcription factor, has been found to be responsive to 
Pi stress (Devaiah et al. 2007).

22.3.3  Potassium (K+)

Plants contain 2–10% of K of their dry weight. Cytoplasmic concentration of K+ is 
maintained at approximately 100 mM, although vacuole may contain 20–200 mM 
of K+ (Gierth and Maser 2007). Apoplastic concentration of K+ may vary between 
10 and 200 mM and may increase up to 500 mM (White and Karley 2010; Wang 
et al. 2013a, b).

The pathways of potassium uptake by plants fall into several distinct categories. 
K+ channels consist of three families:

 (a) Shaker-type channels, KCO channels (a total of 15 genes in Arabidopsis) and 
cyclic nucleotide-gated channels (CNGC, 20 genes in Arabidopsis) (Very and 
Sentenac 2002)

 (b) Trk/HKT transporters: [Na+/K+ symporter] (Schachtman 2000), one gene in 
Arabidopsis

 (c) KUP/HAK/KT transporters: [H+/K+ symporter] (Kim et al. 1998), 13 genes in 
Arabidopsis

 (d) K+/H+ antiporter homolog: six genes in Arabidopsis
 (e) Glutamate receptors (GLRs): 20 genes in Arabidopsis (Very and Sentenac 

2002)

22.3.3.1  KUP/HAK/KT Transporters

All plant genomes contain genes encoding KUP (potassium uptake permeases)/
HAK (high-affinity potassium transporters)/KT (potassium transporters) (given dif-
ferent acronyms by different research groups) transporters (not found in Protista 
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and Animalia). All KT/KUP/HAK transporters can be grouped into four distinct 
clusters. All plants have Cluster I or Cluster II transporters. Cluster III genes are 
found only in Arabidopsis and rice. Cluster IV is the smallest in number, which 
comprises only of four rice genes. Cluster I transporters have high affinity for K+ 
and play a key role in potassium acquisition, when K+ availability is low, e.g., 
HvHAK1 in barley roots, LeHAK5 in tomato, and AtHAK5 in Arabidopsis. Cluster 
II transporters facilitate low-affinity K+ transport complementing potassium chan-
nels. These transporters are localized in the tonoplast and facilitate K+ efflux from 
the vacuole. Under conditions of K+ deprivation, export of K+ from the vacuole is 
mediated by a K+/H+ symporter with a 1:1 stoichiometry for the maintenance of K+ 
homeostasis.

22.3.3.2  K+/H+ Antiporter Homologs

Also known as CHX (Cation/H+ eXchanger), a member of the family, AtCHX17, 
expressed in the cortex and epidermis of the mature root is involved in K+ acquisi-
tion and homeostasis rather than Na+ transport.

22.3.3.3  Abiotic Stress and Intracellular K+ Homeostasis

All abiotic and biotic stresses result in a significant disturbance to intracellular 
potassium homeostasis. K+ response to plants under conditions of stress consists of 
controlling the activity of superoxide dismutase and mitigating injuries caused by 
free radicals of active oxygen species.

22.3.3.4  K+ Channel Proteins and Aquaporins

Aquaporins and potassium channel proteins are critical for a plant to maintain 
proper cytosolic osmolarity in response to drought or other stresses. A study on rice 
(Liu et al. 2006) indicates that water channels and K+ channels/transporters have 
potential functional correlations. The mRNA expression levels of plasma membrane 
intrinsic proteins (PIPs) and K+ channel/transporters responded similarly to K+ star-
vation or water deprivation. Transcription of the PIP and K+ channel-encoding 
genes are induced by K+ starvation and can be downregulated by polyethylene gly-
col (PEG)-mediated water deficit. Root hydraulic conductivity (Lpr) also increases 
during K+ starvation.

Aquaporin phosphorylation seems to be a significant target in plants under stress 
(see Regulation of Water Uptake by Aquaporins). AtPIP2;1 phosphorylation is 
decreased and increased, respectively, on exposure of Arabidopsis roots to salt 
(NaCl) or hydrogen peroxide (H2O2) (Prak et al. 2008).
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22.3.3.5  Effect of K+ on Drought Stress

Adequate availability of water for crop growth is one of the major constraints in arid 
and semiarid regions. The lack of supporting irrigation facilities in rain-fed agricul-
ture causes crop failure around the world. However, plants have innate capacity to 
withstand reasonable drought conditions. There is a close relationship between 
drought tolerance and K+ status of plants. Adequate amounts of K+ can enhance the 
total dry mass accumulation of crop plants under drought stress in comparison to 
lower K+ concentrations. This finding might be attributable to stomatal regulation 
by K+ and corresponding higher rates of photosynthesis. It has been recently 
reported that (Carraretto et al. 2013) a thylakoid-located two pore K+ channel TPK3 
modulates the composition of proton-motive force (PMF) through ion counterbal-
ancing to convert photochemical energy into physiological functions. In Arabidopsis, 
the channel is found in the thylakoid stromal lamellae. K+ is also essential for the 
translocation of photo-assimilates and in root growth (Romheld and Kirkby 2010). 
Increased and appropriate K+ supply promotes root growth in K-deficient soils. This 
increases the root surface that is exposed to soil and results in increased root water 
uptake (Romheld and Kirkby 2010). Lindhauer (1985) reported that K nutrition not 
only increased plant total dry mass and leaf area but also improved the water reten-
tion in plant tissues under drought stress.

Increased evidence shows that the maintenance of membrane integrity and sta-
bility under drought stress is also essential for plant drought tolerance. Cell mem-
brane stability significantly declines under drought stress. In a study by Premachandra 
et al. (1991), maize plants with higher K applications showed greater adaptation to 
water stress. This improvement was mainly attributed to the role of K in improving 
cell membrane stability and osmotic adjustment ability. An adequate K supply is 
essential to enhancing drought resistance by increasing root elongation and main-
taining cell membrane stability. K+ uptake also improves drought resistance of crops 
by reducing leaf osmotic potential, increasing turgor, bound water content, and 
water use efficiency.

K+ controls activity of superoxide dismutase (SOD) and mitigates possible injury 
from active oxygen derived from drought stress to plasma membrane. K+ increases 
proline content of leaves and suppresses malondialdehyde (MDA) content (induced 
by drought) to strengthen drought resistance of crops. K+ maintains the balance of 
internal hormone level of CTK, ABA, and ethylene.

22.3.3.6  K+ Transporters and Salt Tolerance

Although plants have an absolute requirement for K+, and Na+ is toxic for many 
biological reactions in the cytoplasm, this does not apply to vacuolar processes 
(Flowers and Läuchli 1983; Subbarao et al. 2003). Na+ can undertake osmotic func-
tions, reducing the total K+ requirements and improving growth when the lack of K+ 
is a limiting factor.
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HKT transporters (High-affinity K+ transporter), which mediate Na+-specific 
transport or Na+-K+ transport, play a key role in regulation of Na+ homeostasis 
(Rodriguez-Navarro and Rubio 2006; Munns and Tester 2008). There is only one 
HKT gene in Arabidopsis thaliana (Uozumi et  al. 2000) and eight genes in rice 
(Horie et al. 2001; Garciadeblas et al. 2003). HKT transporters are divided into two 
main subfamilies (Platten et al. 2006). Members of subfamily 1 have a serine resi-
due in the first pore loop of the protein, which is replaced by glycine in most mem-
bers of subfamily 2. The division is also associated with differences in Na+ and K+ 
selectivity (Horie et al. 2001; Maser et al. 2002; Garciadeblas et al. 2003). Gene 
members of subfamily 1 are all Na+-specific transporters. Some of them are 
expressed in cells in the stele rather than the root cortex and regulate root-to-shoot 
transport of Na+ by removing Na+ from the xylem sap as it flows to the shoot. 
Members of subfamily 2 are Na+-K+ cotransporters or Na+ and K+ uniporters, except 
OsHKT2;2 (OsHKT2). Some of them are specifically expressed in the root cortex 
and may serve to scavenge Na+ under conditions of K+ deficiency and so provide 
ionic homeostasis. Under saline conditions the expression of those genes may be 
downregulated. OsHKT2;1mediates the transport of Na+ into roots of K+-starved 
plants and enhances their growth, but is downregulated when plants are exposed to 
30 mM NaCl (Horie et al. 2007). TaHKT2;1 (TaHKT1) and HvHKT2;1 (HvHKT1) 
in wheat and barley roots mediate Na+ uptake into roots of K+-starved plants (Laurie 
et al. 2002; Haro et al. 2005).

22.4  Secondary Nutrients

Calcium (Ca2+), magnesium (Mg2+), and sulfur (SO4
2−) are considered as secondary 

nutrients. Though essential, these are needed by plants in quantities less than the 
primary nutrients.

22.4.1  Calcium (Ca2+)

The Ca content of plants is 0.1–0.5%. A steady supply of 1–10 mM Ca2+ is required 
for normal plant growth (Gilroy et al. 1993).

Calcium (Ca2+) is involved in regulating various fundamental processes such as 
cytoplasmic streaming, thigmotropism, gravitropism, cell division, cell elongation, 
cell differentiation, cell polarity, photomorphogenesis, plant defense, and stress 
responses. Cytoplasmic concentration of Ca2+ needs to be strictly regulated at nano-
molar (nM) range (100–200 nM), though Ca2+ concentrations in μM to mM ranges 
are found in cell wall and plasma membrane externally and vacuole, endoplasmic 
reticulum, plastids, and mitochondria internally. It has been reported that both in 
flowering and nonflowering plants, cytoplasmic streaming is permitted at a low Ca2+ 
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concentration of 0.1 μM, but an elevated concentration of 1 μM inhibits the process 
(Hepler 2005).

22.4.1.1  Mechanism of Calcium Uptake and Homeostasis

Calcium homeostasis in cytoplasm is achieved through regulation of influx and 
efflux of Ca2+ ions by calcium channels.

Influx is carried out by (i) depolarization-activated cation channels (DACC), (ii) 
hyperpolarization-activated cation channels (HACC), and (iii) voltage-independent 
cation channels (VICC). There are also outward-rectifying cation (KORC or NORC) 
channels, mechanosensitive (stretch-activated) channels, and second messenger- 
activated Ca2+ channels.

Efflux of Ca2+ from cytosol is carried out by (i) Ca/H+ antiporters, which mediate 
a high-affinity low turnover efflux, and (ii) P-type Ca-ATPases, which mediate a 
low-affinity high-capacity efflux of Ca2+. Antiporters reduce signal-mediated influx 
of Ca2+ concentration by a few micromolar, whereas ATPases maintain the low rest-
ing concentration of Ca2+ (Hirschi et al. 1996). Ca2+ is present in mM concentration 
in vacuole, whereas its concentration in cytosol is in nanomolar range.

22.4.1.2  Calcium and Abiotic Stress

The abiotic stresses such as cold, heat, salinity, drought, osmotic and oxidative 
stresses, physical stimuli (touch and swaying of the plants by wind), etc. cause tran-
sient perturbations of cytosolic Ca2+ concentration, which are restored to basal lev-
els within minutes. Mechanical stimuli, such as touch and bending, stimulate 
distinct pattern of Ca2+ response in the roots of Arabidopsis. There is monophasic 
elevation of cytosolic Ca2+ at the touch site, whereas bending involves biphasic ele-
vation of cytosolic Ca2+ in the cells on the convex side of the roots. Transient pertur-
bations of cytosolic Ca2+concentrations also occur in response to hormones. All 
such changes are triggered by cellular second messengers such as NAADP, IP3, IP6, 
sphingosine- 1- phosphate, and cADPR (Lemtiri-Chlieh et  al. 2003; Kudla et  al. 
2010). The term “Ca2+ signature” is used to define the pattern of perturbation in 
cytosolic Ca2+ concentration in its intensity, amplitude, and duration caused by 
physiological, developmental, or environmental changes.

22.4.1.3  EF Hands and Ca2+ Sensing and Signaling

A large set of calcium-binding proteins in plants known as cellular Ca2+ sensors act 
as first information translation point (Kim et al. 2007; Kudla et al. 2010). These 
proteins have one or more highly conserved Ca2+ binding helix-turn-helix structures 
known as EF hands, which bind Ca2+ with high affinity (White 2003). Pairs of EF 
hands may interact through antiparallel β-sheets, which cooperatively bind Ca2+. EF 
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hand sensors are of two types. These include sensor relays such as calmodulins 
(CaMs), CaM-like proteins (CMLs), and calcineurin B-like proteins (CBLs) and 
sensor responders such as Ca2+-dependent protein kinases (CDPKs), Ca2+and Ca2+ 
CaM-dependent protein kinases (CCaMKs), some DNA, lipid-binding proteins, and 
a few enzymes (Harper and Harmon 2005; Reddy et al. 2011).

It is evident from several global studies that reprogramming of transcriptome is 
an important part of stress signaling and adaptation (Reddy et al. 2011). Perturbation 
in cellular or nuclear Ca2+ levels modulates gene expression (Kaplan et al. 2006; 
Reddy et  al. 2011). Increase in levels of extracellular Ca2+ results in increase in 
expression of several genes including those involved in encoding Ca2+ sensors. 
Expression of some of the genes in response to heat or cold shock also depends on 
external Ca2+ concentration (Braam 1992; Polisensky and Braam 1996). 
Bioinformatic analysis of Arabidopsis genome indicates the presence of 230 Ca2+-
responsive genes, of which 162 are upregulated and 68 downregulated. A significant 
occurrence of two consensus ABRE (abscisic acid-responsive element) cis-elements 
(CACGTG[T/C/G]) and its coupling element ([C/A] ACGCG[T/C/G]) has been 
found (Kaplan et  al. 2006). It has been observed from kinetic studies that Ca2+-
responsive genes reach their maximum expression within 30 min in response to a 
stimulus (Kaplan et al. 2006).

22.4.1.4  Abiotic Stress, miRNA, and Ca2+ Sensors

CDPK (calcium-dependent protein kinases), CIPK (CBL-interacting protein 
kinases), and EF-hand family of Ca2+ sensors could be regulated by NR030, 
miR399j, and miR1318/1432, respectively. Overexpression of CDPK probably 
occurs under drought stress. NR030, which is involved in regulating CDPK, is 
downregulated under conditions of drought stress. Overexpression of CDPK gene 
in rice, OsCDPK7, enhanced induction of some stress-responsive genes in response 
to salinity/drought, but not cold. CDPKs, which contain both calmodulin-like cal-
cium binding and serine/threonine protein kinase domains, are only present in plants 
and some protozoans. Upon activation by a stimulus, they transduce the signal 
through phosphorylation cascades to induce downstream responses, including tran-
scriptional regulation. miR1318/1432, which are downregulated under drought 
stress condition, can also regulate the EF-hand family proteins (Boudsocq and 
Sheen 2010; Bakhshi et al. 2016).

22.4.1.5  Ca2+-Regulated Gene Expression in Response to Some Specific 
Abiotic Stress

Plants encounter various types of stress as they grow under different climatic condi-
tions, soil types, and management practices and have to respond to each individu-
ally, sometimes superimposed on each other.
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Drought It is reported that more than 95% of water translocated through plants 
exit through the stomatal pores, which are also involved in uptake of CO2 for use in 
photosynthesis. Cytosolic Ca2+ regulates closure of stomata by two mechanisms:

 (i) Short-term Ca2+-reactive closure, rapid reactions induced by cytosolic Ca2+, 
when it exceeds a threshold limit

 (ii) Long-term Ca2+-programmed closure, which involves prevention of stomatal 
reopening, controlled by specific Ca2+ signature, Ca2+oscillation within a 
defined range of amplitude, frequency, duration, and overall transient number 
(Allen et al. 2001; Sanders et al. 2002; Kudla et al. 2010)

Exogenous Ca2+ has been reported to enhance drought resistance, inhibit synthe-
sis of activating oxides, protect the structure of plasma membrane, maintain normal 
photosynthesis, and regulate the metabolism of plant hormones. Cellular Ca2+ as a 
second messenger transmits drought signal and induces physiological response to 
water stress (Zhang et al. 2001; Tuberosa et al. 2007; Song et al. 2008). Ca2+/CaM 
messenger system is reported to be involved in controlling stress resistance of rice 
seedlings; blocking messenger transduction, drought resistance, and salt tolerance; 
and decreasing cold resistance (Zong et al. 2000). Treatment of rice seedlings with 
Ca2+ increases protection against membrane lipid peroxidation, stabilizes mem-
branes, and increases their drought resistance (Lu et al. 1993).

Microarray analysis of Arabidopsis genome shows that several hundred genes 
are expressed in a specific pattern due to water deficiency in plants (Seki et al. 2002; 
Yamaguchi-Shinozaki and Shinozaki 2006, Reddy et al. 2011). Such expressions 
are induced by many Ca2+-binding proteins (protein kinases/phosphatases) and TFs 
(AREBs and DREBs), chaperones, and molecules involved in osmoprotectant 
metabolism (Reddy et al. 2011).

The synthesis of phytohormone ABA is induced under water stress conditions. 
The increased levels of ABA signal closure of guard cells and induce expression of 
drought stress-related genes. These genes encode proteins, which provide dehydra-
tion tolerance to plants (Reddy et  al. 2011). ABA may regulate ABA-responsive 
genes through cellular Ca2+ changes (Kaplan et al. 2006). It is reported that in the 
presence of Ca2+, the overexpression of TaTPC1 (which functions for Ca2+ import in 
wheat cytosol) accelerates stomatal closing (Wang et al. 2005).

Cold Ca2+-permeable channel proteins have been reported to be primary tempera-
ture sensors in plants and are involved in plant response to cold stress (Pleith et al. 
1999). It has been observed in alfalfa, barley, and Arabidopsis that Ca2+ influx acts 
as signal transduction element for gene expression at low temperature (Plieth et al. 
1999; Busconi et al. 2001). Cold acclimation by temperate plants involves changes 
in gene expression (Fowler and Thomashow 2002; Kreps et al. 2002, Reddy et al. 
2011). A large number of genes of CBF regulon are induced during the process of 
cold acclimation. These genes are activated by transcription factors, C-repeat bind-
ing factors, and CBF1, 2, and 3 also called DREB1B, 1C, and 1A, respectively 
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(Reichmann et al. 2000; Maruyama et al. 2004; Sakamoto et al. 2004; Vogel et al. 
2005, Reddy et al. 2011). The induction of KIN1 a member of CBF regulon due to 
cold requires a rapid increase of cytosolic Ca2+ (Monroy et al. 1997). A number of 
cold-responsive genes contain CAMTA (calmodulin-binding transcription factor) 
binding sequence CGCG and may be regulated transcriptionally by CAMTA pro-
teins on exposure to cold (Doherty et al. 2009).

Heat Heat-shock proteins (HSPs) are synthesized by plants in response to higher 
temperature. Their transcription is tightly regulated by TFs. Among the five con-
served families of HSPs (HSP100, HSP90, HSP70, HSP60, and sHSP), only small 
HSPs (sHSPs) are prevalent in plants. sHSPs vary in size from 12 to 40 kDa (Vierling 
1991; Lewis et al. 1999). Overexpression of a CaM-binding phosphatase (PP7) in 
Arabidopsis has been found to increase expression of heat-shock proteins and pro-
vide thermotolerance. A CaM-binding protein kinase (CBK) in Arabidopsis phos-
phorylates heat-shock TF (AtHSFA1a) and regulates transcription of HSPs, which 
provide thermotolerance (Liu et al. 2007). CAMTA1 is also involved in heat-shock 
response (Galon et al. 2010).

Salt A large number of genes are activated on exposure to salinity, including ion 
channels, receptors, signaling molecules, and genes involved in producing compat-
ible molecules such as osmoprotectants, glycine betaine, and proline (Tuteja 2007; 
Reddy et al. 2011). The salt stress-mediated Ca2+ signatures are decoded by “salt 
overly sensitive” (SOS) pathway. Under saline conditions SOS1, a plasma 
membrane- localized Na+/H+ antiporter, exports Na+ to the apoplast. The SOS3 
(CBL4)/SOS2(CIPK24) complex modulates the expression of SOS1 and regulates 
ion homeostasis (Chinnusamy et al. 2004; Mahajan et al. 2008; Reddy et al. 2011; 
Jia et al. 2013).

Saline stress and other abiotic and biotic stress upregulate a number of CAMTA 
family TFs (Galon et al. 2010). Salt-induced Ca2+ signaling has also been found to 
activate MYB2 TF, which is an upstream regulator of a number of salt- and 
dehydration- responsive genes (Yoo et al. 2005). A soybean CaM isoform induced 
by salt stress is Gm-CaM4. Overexpression of Gm-CaM4 induces constitutive 
expression of salt- and dehydration-responsive genes, including proline- synthesizing 
enzyme P5CS1 (∆-1-pyrroline-5-carboxylate synthetase-1), which facilitates pro-
line accumulation and provides protection against salt stress (Yoo et al. 2005).

Mechanical Stimuli Different types of mechanical stimuli induce distinct type of 
Ca2+ response in Arabidopsis roots. Touch stimuli induce monophasic elevation of 
cytosolic Ca2+ concentration at the touch site. Bending induces biphasic transient 
elevation of cytosolic Ca2+ concentration on the convex (stretching) side. Such 
responses are essential for the apoplastic alkalization and RBOH C-dependent apo-
plastic ROS production that may contribute to plant resistance to stress (Monshausen 
et al. 2009).
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Mechanical stimuli induce expression of several CaM and CaM-related genes 
(Braam 2005; van Der Luit et al. 1999; Walley and Dehesh 2010; Reddy et al. 2011). 
Mechanical stress-induced transcriptomic study and bioinformatic analysis of data 
identified an overrepresented cis-element “CGCGTT” termed as rapid stress 
response element (RSRE) in the promoter region of rapid wound-responsive genes 
(Walley et  al. 2007). This cis-element contains the CAMT core cis-element 
“CGCG.” This indicates that CAMTAs are probably involved in stress response to 
wounding (Walley et al. 2007; Walley and Dehesh 2010; Reddy et al. 2011).

22.4.2  Magnesium (Mg2+)

Mg2+ concentration in crops varies from 0.1% to 0.4%. The critical limit of Mg2+ in 
dry banana leaves has been reported to be 0.3% and of coconut 0.2% (14th fond) 
(Mitra 2006). The free Mg2+ level in the cytosol is strictly regulated due to its role 
in photosynthesis and on membrane ionic currents (Shaul 2002). The concentration 
of Mg2+ in the metabolic pool of leaf cells (cytoplasm and chloroplast) is reported to 
be 2–10 mM (Leigh and Wyn Jones 1986). Free Mg2+ concentration is considerably 
less. About 90% of Mg2+ is complexed with cytoplasmic ATP. Vacuole is the main 
organelle, which is involved in Mg2+ homeostasis in the cytosol and chloroplast 
(Marschner 1995).

Mg2+ deficiency affects root growth of the plants and hence nutrient and water 
uptake (Marschner 1995). Mg2+ is also involved in Ca2+-based signal transduction 
processes (Baumann et  al. 1991). Mg2+ deprivation elicits rapid Ca2+ uptake and 
activates Ca2+/calcineurin signaling (Wiesenberger et  al. 2007). Low magnesium 
concentrations may become a limiting factor for functional intracellular communi-
cation (Geberta et al. 2009). Mg2+ acts as cofactor of many enzymes, such as RNA 
polymerase, ATPases, protein kinases, phosphatases, carboxylases, and glutathione 
synthetase. It is required for aggregation of ribosomes and is the central atom of 
chlorophyll molecule. Small variation in Mg2+ level in the cytosol and chloroplast 
strongly affects key photosynthetic enzymes (Shaul 2002). During the process of 
chlorophyll formation, insertion of Mg2+ into the porphyrin structure is catalyzed by 
Mg2+ chelatase (Walker and Weinstein 1991; Papenbrock et al. 2000). Chlorophyll 
breakdown is caused by Mg2-dechelatase with the formation of pheophytin 
(Langmeier et al. 1993).

22.4.2.1  Mechanisms of Mg2+ Uptake and Homeostasis in Plants

Mg2+ is unique among the biologically active divalent cations with the smallest 
ionic radius, highest charge density, and largest hydrated radius. Mg2+ often inter-
acts with other molecules maintaining its hydration sphere. There is a 400-fold dif-
ference between volumes of hydrated and non-hydrated states (Li et  al. 2001; 
Geberta et al. 2009).
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The proteins involved in transport of Mg2+ across biological membranes have 
unique structures (Moomaw and Maguire 2008; Geberta et al. 2009). The mecha-
nism of Mg2+ transport involves the binding of the fully hydrated cation to an extra-
cellular binding loop, which connects the TM domains. No electrostatic interactions 
are involved in passage of the cation through the membrane. The gene of bacterial 
membrane transport proteins for Mg2+, CorA, appears to be a constitutive gene since 
it is not transcriptionally regulated. CorA homolog proteins have been found in all 
living organisms including plants. Arabidopsis has ten members of this gene family. 
Initially named as AtMRS2 and subsequently AtMGT, they constitute Mg2+ trans-
porter of higher plants as well (Li et  al. 2001). There are nine Mg2+ transporter 
proteins encoded by rice genome, which are homologs of AtMRS2/MGT gene 
family.

ZmPIP1;5 aquaporin genes present in maize leaf exhibit the same expression pat-
tern as magnesium transporter CorA-like family proteins and may be involved in 
metal ion transmembrane transporter activity in the developing leaf (Yue et al. 2012).

22.4.2.2  Mg2+ and Heavy Metal Stress

Mg2+ substitution in vivo in the chlorophyll by heavy metals (Hg2+, Cu2+, Cd2+, Ni2+, 
Zn2+, Pb2+) under conditions of heavy metal stress impairs photosynthesis (Kupper 
et al. 1996, 1998). Mg2+ is involved in both light and dark reactions of photosynthe-
sis. Mg2+-deficient leaves are therefore highly photosensitive (Shaul 2002).

22.4.2.3  miRNA, Mg Deficiency, and Stress-Related Genes

Limited data are available on Mg deficiency and expression of miRNA. Ma et al. 
(2016) isolated 73 known and 2 new miRNAs which were upregulated and 64 
known and 7 new miRNAs which were downregulated due to Mg deficiency in the 
leaves of Citrus sinensis. According to them:

 (i) Downregulation of miRNAs, “miR164, miR7812, miR5742, miR3946, and 
miR5158,” upregulated stress-related genes.

 (ii) Decreased expression of miR3946 and miR5158 and increased expression of 
miR395, miR1077, miR1160, and miR8019 enhanced cell transport.

 (iii) Repression of miR158, miR5256, and miR3946 activated lipid metabolism- 
related genes.

 (iv) Repressing miR779 induced cell wall-related gene expansin 8A.
 (v) Upregulating miR395 and miR6426 and upregulated expression of genes 

involved in homeostasis of S, K, and Cu.

They also identified some candidate miRNAs that might contribute to Mg defi-
ciency tolerance of C. sinensis plants.
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22.4.2.4  Role of Mg2+ in Alleviation of Al3+ Toxicity

It has been observed that grasses and cereals treated with Al3+ show Mg2+ deficiency 
(Tan et al. 1991) and application of higher levels of Mg2+ can alleviate Al3+ toxicity 
(Tan et al. 1991; Matsumoto 2000). It has also been shown that Al3+ inhibits Mg2+ 
uptake by roots (Rengel and Robinson 1989). The hydrated radius of Mg2+ and Al3+ 
is similar (Bose et al. 2011). At millimolar concentration Mg2+ can effectively com-
pete with Al3+ for the same binding sites of the roots. Enhanced excretion of organic 
acids is also a likely mechanism in Mg2+-mediated alleviation of Al3+ toxicity.

Rice is the most Al3+-tolerant crop among the cereals. This is due to the presence 
of multiple Al tolerance genes involved in detoxification of Al3+ at different cellular 
levels regulated by a transcription factor ART1 (Al3+ resistance transcription factor 
1) (Tsutsui et al. 2011). ART1 is a Cys2-His2 type Zn-finger TF and is constitutively 
expressed in roots (Yamaji et  al. 2009). ART1 regulates expression of 31 genes 
downstream through a cis-acting element, GGN (T/g/a/C)V(C/A/g)S(C/G). This 
element was found in the promoter region of 29 genes out of 31 ART1-regulated 
genes (Tsutsui et al. 2011).

22.4.3  Sulfur

Sulfur (S) is an essential plant nutrient and is considered as the fourth major nutrient 
after N, P, and K (TSI 2008). It is also of importance in human and animal nutrition. 
The total S content of plant tissues has been reported to be 0.5–1.5% of the dry 
weight of the plants (Zhao et al. 1993; Marschner 1995; Burandt et al. 2001). Sulfur 
is a constituent of various organic plant constituents. Sulfur is a constituent of amino 
acids cysteine and methionine, which are involved in maintaining protein structure 
and conformation. It is a constituent of coenzymes and prosthetic groups such as 
lipoic acid, coenzyme A, thiamine, etc. Sulfur compounds are involved in response 
to abiotic and biotic stress, such as glutathione in the detoxification of active oxygen 
species. Sulfur plays an important ecological role in defense against herbivores and 
pathogens.

22.4.3.1  Effects of S Deficiency on Yield and Quality of Crops

Field experiments at Rothamsted show that yield loss due to S deficiency in oilseed 
rape can be up to 70% and in cereals up to 50% (Zhao et al. 2001). Oilseed crops 
generally have a higher requirement of S as compared to other crops. S deficiency 
also affects quality of crops. Under limiting S availability, wheat grains accumulate 
low sulfate storage proteins such as ω-gliadin and high molecular weight subunits 
of glutenin at the expense of S-rich proteins. Such changes in protein composition 
affect dough rheology. Bread-making quality of wheat is closely correlated with S 
content of grain rather than N content (Zhao et al. 1999). Adequate S supply has 
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been reported to increase both yield and malting quality of barley. S application 
significantly increases concentration of S-methyl methionine (the precursor of 
dimethyl sulfide) in kilned malt, which affects beer flavor (Zhao et al. 2006). The oil 
content of oilseeds is reported to increase due to S application as follows: sunflower, 
3.8%; linseed, 6%; soybean, 9.2%; mustard, 9.2%; and groundnut, 11.3%. Quality 
of tea has been reported to improve due to S application (TSI 2008). There are posi-
tive effects of sulfur application on morphine, codeine, and thebaine content of 
opium (Subrahmanyam et al. 1992). Plant glucosinolate content of Brassicales has 
been reported to increase from 25% to more than 50-fold depending upon the plant 
species, amount of S fertilizer used, and type of treatment (Falk et al. 2007).

22.4.3.2  Sulfur Uptake and Homeostasis in Plants

Sulfate (SO4
2−) is the major form of inorganic S taken up directly from soil and 

transported in xylem (Falk et al. 2007). The cytoplasmic concentration of sulfate 
remains more or less constant. The excess sulfate is stored in the vacuole. In general 
shoot growth is more significantly affected than root growth in response to S avail-
ability (Marschner 1995). Under prolonged S deprivation, the partitioning of S 
between shoot and root is in favor of root growth (Buchner et al. 2004).

22.4.3.3  Pathway for Assimilation of Sulfur in Plants

Sulfate is first acted upon by ATP sulfurylase (ATPS) to form adenosine-5′-phospho- 
sulfate (APS). APS is reduced by APS-reductase to sulfite in plastids of plants. It is 
further reduced to sulfide by sulfite reductase (SiR). Sulfide is then catalyzed by 
OAS (thiol) lyase (OALS) and incorporated into amino acid skeleton of O-acetyl 
serine (OAS) to form cysteine (see Fig. 22.2).

22.4.3.4  Mechanism of Sulfate Transport in Plants

Plasma membrane sulfate transport is probably a pH-dependent proton-coupled 
cotransport involving 3H+/SO4

2− stoichiometry. The sulfate transporter protein 
expressed in the plasma membrane of root cells consists of a single polypeptide 
chain of around 70–74 kD. A large number of sulfate transporter genes have been 
identified from Arabidopsis, rice, and other plants. In Arabidopsis, the gene family 
consists of 14 isoforms, which can be subdivided into 5 groups. Wheat, Brassica 
oleracea, and rice have similar gene groups and are close homologs with similar 
functions. Group I high-affinity transporters are located in the plasma membrane. 
Group II low-affinity transporters are also located in the plasma membrane. Group 
III, of unknown function, may be associated with hetero-dimer association (Kataoka 
et al. 2004a). Group IV are involved in efflux of sulfate across tonoplast of vacuole 
into cytoplasm (Kataoka et al. 2004b). A member of group V, Sultr 5;2, is probably 
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an intracellular transporter involved in Mo metabolism in Arabidopsis and named as 
MOT1 (Baxter et al. 2008). Mo and Se are probably taken up through sulfate uptake 
pathway (Shinmachi et al. 2010).

22.4.3.5  N Deficiency and Regulation of SO4
2− Uptake

S uptake is closely coordinated with N and C metabolism. There is an induction of 
the genes of high-affinity sulfate transporters due to addition of sucrose. Nitrogen 
deficiency strongly reduces sulfur uptake, consequently a significant reduction in 
accumulation of transcripts of high-affinity sulfate transporters AtSultr1;1 and 
AtSultr1;2 (Maruyama-Nakashita et  al. 2004). However, S deficiency does not 
decrease total N content, although there is an increase in O-acetyl serine (OAS), 
which is the precursor for synthesis of cysteine and has a role in regulation of sulfate 
uptake and reduction (Hawkesford 2000).

The promoter region of AtSultr1;1 has been found to contain a 16 bp sulfur- 
responsive element (SURE), which includes an auxin-responsive factor (ARF) 
binding sequence (GAGACA). ARF-binding site has a 5 bp core element (GAGAC), 
which regulates expression of a set of genes required for adaptation of plants to 
sulfur-deprived conditions. A transcriptional regulator sulfur limitation1 (SLIM1) 
has been reported to upregulate AtSultr1;1, AtSultr1;2, and AtSultr4;1 gene expres-
sion in response to S deprivation in Arabidopsis.

22.4.3.6  Regulation of Sulfate Uptake Genes Under Abiotic Stress

Generally, there is reduced uptake of nutrients under salt- and water-stressed condi-
tions. Several Sultr genes re-equilibrate sulfate flux in the aerial parts of the plants 
under abiotic stress. Drought causes significant reduction in expression Sultr2;1 in 
leaves of A. thaliana and M. truncatula and causes decreased flux of sulfate to 
younger leaves, a mechanism probably to save sulfate (Gallardo et al. 2014).
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Fig. 22.2 Assimilation of 
sulfate into organic 
compounds
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22.4.3.7  Role of Sulfur-Rich Compounds on Alleviation of Heavy Metal 
Stress

Phytochelatins (PCs) and metallothioneins (MTs) are two cysteine-rich metal- 
binding polypeptides found across most of the taxonomic groups (Hall 2002; 
Grennan 2011).

Phytochelatins (PCs) have general structure (γ Glu-Cys)n - Gly, where n = 2–11. 
The genes of PCs occur in a large number of plants, and the enzyme, phytochelatin 
synthase (PCS), is constitutively expressed. PCs are synthesized non-translationally 
from glutathione (GSH) as a substrate by phytochelatin synthase (PCS), an enzyme 
that is activated in the presence of metal ions. PCs are involved in major detoxifica-
tion mechanisms. PC-metal complexes have been detected in plant cells with Cd, 
Ag, Cu, and As.

Metallothioneins (MTs), similar to phytochelatins (PCs), are cysteine-rich but 
are gene-encoded polypeptides. Plant MTs (including Arabidopsis) show large 
sequence diversity and have been classified into four subfamilies (MT1, MT2, MT3, 
and MT4) based on the arrangements of Cys residues. Wheat E proteins isolated 
from wheat germ bind Zn2+ at a stoichiometry (Zn2+/protein) of approximately 5:1 
and are classified as class II metallothioneins. Apart from metal binding (Zn, Cd, 
and Cu), MTs have been reported to play a role in other cellular processes such as 
regulation of cell growth and proliferation, DNA damage repair, scavenging of 
ROS, and a Zn donating role.

22.4.3.8  miRNA and S Homeostasis

Expression of miR395 is significantly upregulated during S deficiency. Genes of 
two families involved in sulfate metabolism are targeted by miR395: (i) the APS 
genes coding ATP sulfurylase isoforms, ATPS1, ATPS3, and ATPS4, and (ii) the 
genes of low-affinity sulfate transporters, Sultr2;1, which are located in the xylem 
parenchyma cells of roots and shoots. Sultr2;1 is cleaved by miR395 (Liang et al. 
2010). Distribution of S is impaired from older to younger leaves in miR395 over-
expressing plants (Liang et  al. 2010). According to Kawashima et  al. (2009), 
miR395 loci are expressed in the vascular system of leaves, roots, and root tips 
under S-deficient conditions. Translocation of miR395 from leaves to roots through 
phloem is not necessary under S-deficient conditions. Induction of miR395 is con-
trolled by the transcription factor SLIM1 involved in S-assimilation pathway 
(Kawashima et al. 2009).
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22.4.4  Micronutrients

Micronutrients are required in smaller quantities as compared to primary and sec-
ondary nutrients but are essential for plant nutrition. When their concentration in the 
growth medium is below a critical limit, plants show characteristic deficiency symp-
toms. Heavy metals, which do not have micronutrient functions, do not show such 
deficiency symptoms. Micronutrients some of which are considered also as heavy 
metals do show toxicity symptoms beyond a critical concentration. Currently micro-
nutrients include Zn, Fe, Mn, Cu, B, Mo, Co, and Ni.

22.4.5  Zinc (Zn2+)

Zinc (Zn2+) is a micronutrient essential for plant growth. Zn concentration in plants 
is within a range of 25–150 μg g−1. Zinc concentration less than 15–20 μg in leaves 
per gram of dry leaf tissues leads to Zn deficiency.

22.4.5.1  Zn Stress due to Deficiency and Toxicity

In plants, Zn deficiency syndromes include chlorotic leaves, early senescence, and 
stunted growth. Toxic symptoms of Zn generally appear in younger leaves as chlo-
rotic spots, which progress to reddening of leaves due to increased anthocyanin 
synthesis.

Plants take up Zn as a divalent cation (Zn2+). Inside the plant cell, it is neither 
oxidized nor reduced, but has a strong tendency to form tetrahedral complexes 
(Berg and Shi 1996; Schützendübel and Polle 2002). Zn becomes toxic at higher 
concentrations, which vary for different plants and the parts of plant such as leaves, 
shoots, and roots. Toxic symptoms generally appear in younger leaves as chlorotic 
spots, which progress to reddening of leaves due to increased anthocyanin synthe-
sis. Zn toxicity also results in smaller leaves and reduced root growth (Fontes and 
Cox 1995; Reichman 2002).

22.4.5.2  Mechanisms of Zn2+ Uptake and Homeostasis and Interaction 
with Cd

It is essential to maintain Zn2+ homeostasis within various organs of plants at an 
acceptable physiological limit. This is carried out by a coordinated expression of 
Zn2+ transporters, which are involved in Zn2+ uptake from the soil, translocation of 
Zn2+ to various organs and tissues, in intracellular sequestration and transport to 
vacuole.
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The Heavy Metal Transporters (HMAs) belong to P1B subfamily of P-type 
ATPase superfamily. The Zn cluster transporters transport divalent cations including 
Zn2+. AtHMA2 of Arabidopsis drives efflux of Zn2+ from the plant cell and controls 
concentration of nonphysiological heavy metals such as Cd2+. HMA2 and HMA4 
play a key role in transport of Zn2+ from cell to cell and in transport of Zn2+ from 
root to shoot. HMA4 is the main Zn2+ transporter in A. thaliana and A. halleri. In 
barley HvHMA2, with a conserved aspartate phosphorylating site, functions as a 
Zn2+/Cd2+ pump (Mills et al. 2012).

Plant Cadmium Resistance (PCRs) Transporters Arabidopsis PCRs, which 
provide Cd2+ resistance to plants, constitute a small gene family with 12 members 
and code proteins that differ in their N-terminal domains. They are subdivided into 
three clades: the first clade includes only PCR10, the second clade consists of seven 
members (not characterized), and the third clade consists of PCR1, PCR2, PCR3, 
and PCR11. PCR1 is strongly expressed in leaves and PCR2 in roots and leaves. 
PCR2 performs two independent functions: (i) it is involved in loading Zn2+ into the 
xylem and (ii) detoxification of excess Zn2+ at the root epidermal cells.

The MTPs (Metal Transporter Proteins) The MTPs are highly specific for Zn2+. 
In Arabidopsis AtMTP3, which is localized in the vacuole of the epidermal cells of 
roots, controls Zn2+ partitioning and provides basic cellular Zn tolerance under con-
ditions of high rates of influx of Zn2+ into the root symplasm (Arrivault et al. 2006).

The ZIP (ZRT- and IRT-Like Proteins) Family There are 15 ZIP genes in 
Arabidopsis (Maser et al. 2001). Recent report from yeast complementation studies 
(Milner et al. 2013) suggest that, possibly, ZIP7 can transport Zn, Mn, and Fe; ZIP1 
and ZIP2 transport Zn and Mn; ZIP3, ZIP11 and ZIP12 transport Zn alone; ZIP5, 
ZIP6, and ZIP9 transport Mn alone; and none can transport Cu. According to them 
(Milner et al. 2013), AtZIP1 does not have a major role in Zn uptake. OsZIP4 in rice 
is localized in apical cells and is involved in Zn uptake.

Mugineic Acid Zn deficiency in barley plants is reported to induce synthesis and 
secretion of mugineic acids, which are effective in Zn uptake from the soil (Suzuki 
et al. 2006). Deoxymugineic acids translocate and distribute Zn2+ within the rice 
shoot under Zn-deficient conditions but not involved in Zn2+ uptake (Suzuki et al. 
2008).

22.4.5.2.1 Transcription Factors (TFs)

TFs have been reported to be involved in molecular control of Zn2+ homeostasis in 
plants under Zn2+ deficiency. Two members of bZIPs TF gene families, bZIP19 and 
bZIP23, isolated from Arabidopsis are possibly involved in transcriptional regula-
tion for adaptation to Zn deficiency. The bZIP19 and bZIP23 proteins bind to a 
palindromic 10  bp ZDRE (zinc deficiency response element, RTG TCG ACA Y), 
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which is unique to plant, in the upstream region of 8 out of a group of 15 ZIP family 
of cation transporters. The functions of bZIP19 and bZIP23 are essential for a 
proper Zn2+ deficiency response and allow Arabidopsis to grow under Zn deficiency. 
Such Zn homeostasis mechanism possibly operates in all plants under Zn2+-limiting 
conditions (Assunção et al. 2010).

22.4.5.3  Abiotic Stress, miRNA, and Zn2+ Homeostasis

Most biotic and abiotic stresses including those due to heavy metals cause produc-
tion of reactive oxygen species (ROS). Expressions of two closely related Cu/Zn 
superoxide dismutase (cytosolic CSD1 and chloroplastic CSD2) transcripts (which 
can detoxify oxidative stress) are induced in response to oxidative stress. Oxidative 
stress also downregulates transcription of miR398, which otherwise would have 
cleaved mRNA of CSD1 and CSD2. This results in posttranscriptional accumula-
tion of mRNA of CSD1 and CSD2 (Sunkar et al. 2006).

Oxidative stress caused by Fe and Zn toxicity also causes downregulation of 
expression of miR398 and upregulation of CSDs. The genes of miR398a, miR398b, 
and miR398c are differently expressed in leaves and roots of Arabidopsis due to Zn 
toxicity. Transcription of miR398a decreases in leaves and roots, but transcription of 
miR398b and miR398c is induced in leaves with no response in roots due to Zn 
abundance (Remans et al. 2012). Dong-qing et al. (2013) observed that out of 15 
differentially expressed miRNAs, 13 were upregulated due to Zn deficiency stress 
in B. juncea roots and only 2 miR399b and miR845a were downregulated.

22.4.6  Iron (Fe3+)

Iron in soil is present in the form of an amorphous Fe (OH)3 precipitate, which is the 
immediate source of iron uptake by plants. Availability of Fe to plant roots depends 
on redox potential and pH of the soil.

 
Fe OH H Fe H O( ) + ++ +

3

3
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Plant tissue concentration of 1–5 μM Fe is considered sufficient and a concentra-
tion below 1 μM is likely to cause deficiency. A concentration above 10 μM may 
cause toxicity with reduction of growth parameters (Mitra et al. 2009). However, 
these limits may vary considerably among different plant species and their 
genotypes.
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22.4.6.1  Mechanism of Iron Uptake and Homeostasis in Plants

There are two distinct iron uptake systems based on the response of plants to Fe 
deficiency, strategy I and strategy II.

Strategy I Plants These include all dicots and non-graminaceous monocots. Fe 
deficiency causes a decrease in rhizosphere pH of these plants to facilitate release of 
Fe3+ ion from insoluble sources. The sparingly soluble ferric iron is then reduced at 
the root surface by membrane-resident NADPH-dependent ferric chelate reductase. 
Reduced ferrous iron is absorbed into root cells by the high-affinity Fe2+ transporter, 
IRT1 (iron-regulated transporter 1), a member of the ZIP metal transporter family. 
IRT1-likeFe2+ transporters have been isolated from several dicotyledonous species. 
All the three components of Fe uptake by strategy I plants, such as (i) release of 
protons to lower pH, (ii) expression of ferric chelate reductase gene to augment 
enzyme activity, and (iii) expression of IRT1 transporter for absorption of Fe by root 
cells, increase substantially when plants are grown under Fe-deficient conditions. 
Reduced ferrous iron is absorbed into root cells by the high-affinity Fe2+ transporter, 
IRT1, a member of the ZIP metal transporter family. IRT1-like Fe2+ transporters 
have been isolated from several dicotyledonous species.

Strategy II Plants These are limited to graminaceous monocots. These plants 
release mugineic acid family phytosiderophores (MAs) to the rhizosphere, where 
they solubilize sparingly soluble iron by chelation. The chelated complex is then 
absorbed into the roots. Rice plants use MAs to acquire Fe from the rhizosphere. 
The synthesis of MAs proceeds throughout the day and is stored in the roots (as 
much as 1–2% of root dry weight) and secreted to the rhizosphere next morning 
(Ma et al. 1995). Synthesis of MAs and uptake of MA-chelated iron are strongly 
induced under iron-deficient conditions. It has been reported that all the Fe 
deficiency- induced genes involved in Fe uptake have a higher incidence of homolo-
gous sequences of IDE1 and IDE2 (iron deficiency-responsive cis-acting elements) 
in their promoter regions (Kobayashi et al. 2005).

Iron Transporters The transporters involved in Fe uptake are:

 (i) ZIP (ZRT IRT-like proteins) family (AtIRT1, AtIRT2; OsIRT1, OsIRT2, etc.) 
involved in high-affinity iron transport (Connolly et al. 2002).

 (ii) ABC (ATP-binding cassette) transporter: AtABCB25 (AtATM3) is a mito-
chondrial ABC transporter involved in biogenesis Fe-S clusters in plants 
(Kushnir et al. 2001; Bernard et al. 2009).

 (iii) Nramps (natural resistance-associated macrophage proteins) (AtNramp1, 
AtNramp3, AtNramp4, OsNramp5, LeNramp1, AhNramp1, etc., found in vari-
ous plants) involved in Fe transport (Lanquar et al. 2005; Ishimaru et al. 2012; 
Mitra 2015).

 (iv) H+-ATPase (expressed in the root epidermis) releases protons to the rhizo-
sphere, which lowers pH and makes iron more soluble. Fe deficiency upregu-
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lates the H+-ATPases, AHA1, AHA2, and AHA7, in the root epidermis 
(Morrissey and Guerinot 2009).

 (v) The YSL (yellow stripe-like) transporter. YS1 found in Poaceae roots is a 
proton- coupled symporter of Fe(III)-PS complexes (Schaaf et al. 2004).

22.4.6.2  Iron Homeostasis in Subcellular Organelles

Chloroplasts and Mitochondria Up to 90% of Fe in leaves is associated with 
lipoproteins of membranes of chloroplast and mitochondria. About 50% of Fe in 
chloroplast is located in the stroma and 50% in the thylakoid membranes. Iron is 
required as a cofactor in photosynthetic electron transport chain, biosynthesis of 
heme, and Fe-S cluster formation in the chloroplast. Chloroplasts store iron as fer-
ritin and contain specific iron, chloroplasts store iron as ferritin and contain specific 
iron transporter proteins such as YSL4 andYSL6 transporters (Divol et al. 2013) and 
PIC1 (permease chloroplast1), which remove Fe and do not allow Fe to accumulate 
in toxic concentrations (Duy et al. 2007).

Fe Homeostasis in Vacuole Vacuole is an initial source of Fe for germinating 
seeds. VIT1 (vacuolar iron transporter1) is an Fe-Mn transporter located in the vac-
uole and transports these metals into the vacuole. Loading of Fe through VIT1 and 
its proper distribution in the embryo is essential for seedling viability under low Fe 
conditions (Kim et al. 2006; Morrissey et al. 2009).

22.4.6.3  Fe Homeostasis and miRNA

Fe deficiency downregulates expression of miR397, miR398a, miR398b, miR398c, 
miR399, miR408, and miR2111, in contrast to upregulation of expression of these 
miRNAs due to Cu deficiency (see discussion under Cu homeostasis). Kong and 
Yang (2010) reported that 24 miRNA genes, which were upregulated due to Fe 
deficiency, had IED-1 and IED-2 (iron deficiency-responsive cis-acting elements) 
motifs in their promoter regions in Arabidopsis. Transcriptional analysis using 
RT-PCR showed that 70.8% (17/24) of the IED-containing miRNA genes were 
expressed in response to Fe deficiency.

22.4.7  Copper (Cu2+)

Copper deficiency is rarely observed in plants though it is an essential plant nutrient. 
Copper concentration in plant tissues is about 1–5 μg g−1 of dry weight (Marschner 
1995) and in leaves 5–20 μg g−1 of dry weight (Baker and Senef 1995). However, 
there is considerable variation among plant species and their varieties.
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Toxicity of Cu is observed beyond a threshold value, which differs among differ-
ent species of plants and their genotypes. Threshold values have been reported for 
groundnut (shoot), 230 mg kg−1 (Borkert et al. 1998); soybean (shoot), 140 mg kg−1 
(Borkert et  al. 1998); rice (whole plant), 35  mg kg−1 (Borkert et  al. 1998); rice 
(shoot), <20 mg kg−1; wheat (shoot), 75 mg kg−1 (Wheeler and Power 1995); and 
black gram (leaves), 67 mg kg−1 (Kalyanaraman and Sivagurunathan 1993).

22.4.7.1  Mechanism of Cu Uptake and Homeostasis in Plants

Copper exists as Cu+ and Cu2+ forms under physiological conditions. The Cu+ form 
is preferably bound to the S in cysteine or methionine and Cu2+ form to N in histi-
dine. Both deficiency and toxicity of Cu adversely affects crucial physiological pro-
cesses in plants. Redox reactions between Cu2+and Cu+ can catalyze production of 
highly toxic hydroxyl radicals (HO´), which fragment Cu/Zn SOD (Casano et al. 
1997) and cause damage to cell membranes, nucleic acids, proteins, and other bio-
molecules (Halliwell and Gutteridge 1984). Deficiency of Cu reduces plastocyanin 
biosynthesis, which affects PSI electron transport (Shikanai et al. 2003). Cu-deficient 
chloroplasts have decreased PSII activity due to disintegration of thylakoid mem-
branes and modification of PSII acceptor site (Heneriques 1989; Droppa et  al. 
1987). Several enzymes need Cu ion as a cofactor such as polyphenol oxidases, 
ascorbate oxidase, diamine oxidases, and laccase.

It is essential that Cu concentrations in tissues and cells need to be controlled 
within a narrow physiological range. This involves uptake of Cu from soil, transport 
to different parts of the plants, and regulation of its concentration in tissues, cells, 
and intracellular organelles. A wide range of gene families and proteins have been 
identified, which are involved in Cu homeostasis. Cu deficiency upregulates several 
Arabidopsis genes such as genes of COPT1 and COPT2, ZIP2 transporters, FRO3- 
metal reductases, CCH chaperones, and chloroplastic Fe-SODs (Himelblau et al. 
1998; Sancenon et al. 2003; Abdel-Ghany et al. 2005; Mukherjee et al. 2006).

The Arabidopsis genome contains six genes encoding COPT transporters from 
COPT1 to COPT6. The well-characterized COPT1 is a high-affinity transporter 
specific for Cu+ ion. COPT1 transporters, possibly located in the plasma membrane, 
allow transport of Cu from exterior into cytoplasm. Their transport ability is stimu-
lated by extracellular K+ ion. The COPT1 gene is highly expressed in the root tips, 
stomata, embryos, trichomes, and pollen, and its expression is negatively regulated 
by Cu (Sancenon et al. 2003; Yruela. 2009).

AtHMA6/PAA1 (P1B type ATPase of Arabidopsis1) transports Cu2+ in chloro-
plast and delivers cofactor to stomatal Cu/Zn superoxide dismutase. AtHMA8/
PAA2 transports Cu into the thylakoid lumen to supply plastocyanin. AtHMA5 is 
involved in transmembrane transport of Cu and also interacts with Cu metallochap-
erones (CCH) (Andres-Colas et al. 2006). AtHMA7/RAN1 is associated with the 
delivery of Cu ions to ethylene receptors. HMA1 and PAA1 also form a distinct 
pathway for Cu import into chloroplast. There appears to be another alternate 
unidentified route for Cu import into chloroplast (Boutigny et al. 2014).
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A family of nine proteins belonging to P1B-type ATPases has been identified in 
rice and ten in barley (Williams and Mills 2005). In rice OsHMA1 to OsHMA3 
belong to Zn cluster and OsHMA4 to OsHMA9 belong to Cu cluster.

CCH (Copper Chaperones) Copper chaperones belong to a family of metal 
receptors, which are cytosolic, soluble, and low molecular weight proteins involved 
in inserting Cu into the active sites of Cu-dependent enzymes (O’Halloran and 
Culotta 2000; Huffman and O’Halloran 2001). CCH protects highly active Cu+ 
inside the cell from improper interactions with other cellular constituents (Hall and 
Williams 2003; Yruela 2009). It is involved in symplastic Cu transport through plas-
modesmata associated with nutrient mobilization in senescing leaves (Yruela 2009).

CCS (Copper Chaperone for Cu/Zn Superoxide Dismutase) CCS (copper 
chaperone for Cu/Zn superoxide dismutase) genes (homologous to yeast Ccs1p/
Lys7p) encode proteins, which deliver Cu to Cu/Zn SOD by a protein-protein 
interaction.

22.4.7.2  miRNA and Regulation of Abiotic Stress due to Cu

Cu sufficiency upregulates expressions of two closely related Cu/Zn superoxide 
dismutase (cytosolic CSD1 and chloroplastic CSD2) transcripts, which can detoxify 
Cu-induced oxidative stress. This also causes downregulation of transcription of 
miR398, which otherwise would have cleaved mRNA of CSD1 and CSD2. This 
results in posttranscriptional accumulation of mRNA of CSD1 and CSD2 (Sunkar 
et al. 2006). Expression of all the three miR398s (miR398a, miR398b, miR398c) is 
downregulated in Arabidopsis, when exposed to excess of Cu. Expression of 
miR398s is induced due to Cu deficiency with concurrent downregulation of CSD1 
and CSD2. Simultaneously Fe-SOD (FSD) is upregulated, which takes over dis-
mutase function (Sunkar et al. 2006; Gielen et al. 2012). Such regulation is carried 
out by SPL7 (squamosa promoter-binding protein-like 7), which directly binds 
GTAC motifs of both FSD and miR398b/c promoters and upregulates their expres-
sion. This results in positive regulation of FSDs and negative regulation of CSDs 
(Abdel-Ghany and Pilon 2008, Yamasaki et al. 2009). A conserved KIN17, curved 
DNA-binding domain protein, assembles with SPL7 to adapt Arabidopsis growth 
and development to limiting copper availability (Garcia-Molina et al. 2014).

The Arabidopsis genome contains 17 members of laccase genes. A total of seven 
members of genes of laccase family are targeted by miRNAs, miRNA397, miR408, 
and miR857, due to Cu deficiency. Higher plants probably prioritize the delivery of 
copper to essential copper proteins by downregulation of nonessential or replace-
able copper-containing proteins by miRNA. This could be an essential part of the 
copper homeostasis mechanism that allows plants to cope with variable copper sup-
ply and that, therefore, broadens the range in which plants can thrive (Abdel-Ghany 
and Pilon 2008).
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22.4.8  Manganese (Mn2+)

Mn can exist in various oxidation states (0, II, III, IV, VI, and VII). In biological 
systems Mn occurs preferably in the oxidation states of II, III, and IV (Guest et al. 
2002). Mn deficiency is rarely observed in plants, since its cellular requirement is 
low. Typical concentration of Mn in plants is in the range of 20–500 μg g−1. In plants 
Mn toxicity causes chlorosis and brown speckles on mature leaves and necrosis, 
which results in reduced yield (Marschner 1995). All the symptoms of Mn toxicity 
are caused due to its effects on photosynthesis of plants (Millaleo et al. 2010).

Experiments with use of 54Mn (Page and Feller 2005; Page et al. 2006) on wheat 
and white lupine plants (Lupinus albus) show that 7  days after labelling phase, 
almost all 54Mn moves to the youngest fully expanded leaves and only a small frac-
tion to the other leaves. Mn accumulation is found in the periphery of old leaves. 
Roots release Mn rapidly into the xylem to reach the photo synthetically active 
leaves through the transpiration stream. Mn tends to accumulate primarily in shoots 
rather than in roots of plants.

22.4.8.1  Cellular Mn2+ Uptake and Homeostasis

The gene families involved in Mn transport include (i) cation/H+ antiporters, (ii) 
Nramps, (iii) the ZIP family, (iv) the CDF family, and (v) P-type ATPases.

Cation/H+ Antiporters The Arabidopsis AtCAX1 is a vacuolar high-affinity Ca2+/
H+ antiporter. AtCAX2 has low affinity for Ca2+ and possibly transports Mn2+ and 
Cd2+ across the tonoplast (Hirschi et al. 1996; Hirschi et al. 2000).

Nramps In Arabidopsis out of six Nramp genes, five (AtNramp1-4 and AtNramp6) 
have been characterized at the molecular level. The transporters AtNramp1, 
AtNramp3, and AtNramp4 can transport Fe, Mn, and Cd. AtNramp1 acts as a high- 
affinity Mn transporter for Mn uptake by the roots when soil Mn concentration is 
less than 1 μM. AtNramp1 is expressed in root plasma membrane and upregulated 
by Mn deficiency. Overexpression of Nramp1 in plants enhances growth and 
increases Mn content of the plants under Mn-deficient conditions (Cailliatte et al. 
2010). OsNramps5 is involved in transport and uptake of Mn, Fe, and Cd by rice 
(Ishimaru et al. 2012).

The ZIP Family Milner et  al. (2013) studied 11 members of ZIP family of 
Arabidopsis. They report from yeast complementation studies that, possibly, ZIP7 
can transport Zn, Mn, and Fe; ZIP1 and ZIP2 transport Zn and Mn; ZIP3, ZIP11, 
and ZIP12 transport Zn alone; ZIP5, ZIP6, and ZIP9 transport Mn alone; and none 
can transport Cu. IRT1, a member of ZIP family, is a high-affinity Fe2+ transporter 
under Fe-deficient conditions but also transports a number of other cations includ-
ing Mn (Eide et al. 1996; Vert et al. 2002). In a Mn-efficient genotype of barley, 
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expression of IRT1 is found to be about 40% greater suggesting existence of an 
efficient Mn uptake system (Pedas et al. 2008).

The CDF Family The proteins of this family are involved in efflux of transitional 
metal cations, Zn2+, Cd2+, Co2+, Ni2+, or Mn2+, from cytoplasm to outside of the cell 
or into subcellular compartments to maintain metal homeostasis and tolerance to 
their toxic effects (Hall and Williams 2003; Hanikenne et al. 2005).

22.4.8.2  miRNA and Abiotic Stress due to Mn

In a study to identify Mn-responsive miRNAs in common bean (Phaseolus vul-
garis), Valdes-Lopez et al. (2010) report that out of a total of 37 miRNAs with dif-
ferential expression due to abiotic stress including Mn stress, 11 miRNAs are 
induced and another 11 miRNAs are inhibited under Mn stress. miR1508, miR1515, 
miR1510/miR2110, and miR1532 are characterized as Mn-responsive, and their 
targets are predicted as calcium-dependent protein kinase, heat-shock proteins, 
nucleoside-binding site leucine-rich repeat resistance-like proteins, and receptor 
kinase protein, respectively (Valdes-Lopez et al. 2010).

22.4.9  Boron (B)

Boron concentration in monocots varies between 6 and 18 μg g−1 and in dicots from 
20 to 60 μg g−1. Boron deficiency occurs at <20 μg g−1 B in mature leaf tissues. B is 
not readily translocated from older to younger leaves. The first visual symptom is 
cessation of terminal bud growth and death of young leaves. Young leaves become 
pale green in color and have twisted appearance. There is rotting of fruits, tubers, or 
roots leading to formation of darkened areas called black hearts. Plants are more 
sensitive to boron deficiency in the reproductive stage than in vegetative stage. 
Boron is essential for cell wall structure and functions. Primary cell wall of higher 
plants consists of cellulose, hemicelluloses (xyloglucan and arabinoxylan), and pec-
tic polysaccharides, which consist of galacturonic acid-rich polysaccharides that 
form a hydrated matrix in which cellulose-hemicellulose network is embedded. The 
major components of pectic matrix are homogalacturonan (HG), rhamnogalacturo-
nan- I (RG-I), and rhamnogalacturonan-II (RG-II). Boron forms cross links in pectic 
polysaccharides through borate-diol bonding of two rhamnogalacturonan-II (RG-II) 
molecules in the cell wall. RG-II is present in primary cell wall.

B toxicity causes chlorotic leaves with necrotic patches often in the margins and 
tips of older leaves. B toxicity in fruits manifests itself in the form of gummy nuts, 
internal necrosis and stem die back. Boron concentration in root tissues generally 
remains low and roots appear not to be affected by B toxicity.
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22.4.9.1  Boron Stress and Cellular B Homeostasis

Boron exists primarily as boric acid, B(OH)3, in soil solution. Boric acid is a weak 
Lewis acid with a pKa of 9.24. At a soil pH >9.0, boric acid forms B(OH)4

− ion 
(Woods 1996).

 
B OH H O B OH H( ) + = ( ) +

− +
3 2 4  

H3BO3 is the preferred form in which roots absorb B. Boric acid is permeable 
through lipid bilayer. It was thought prior to 1990 that B uptake by plants is 
through passive transport without any support of protein transporters. Casparian 
strips are not fully developed in root tips and solutes can get into the xylem by 
apoplastic flow, an important pathway for Ca2+ transport to shoots (White 2001). 
Casparian strips are hydrophobic lipid layers (suberin) present in the cell wall 
between the endodermal cells, which block apoplastic flow of solutes into the 
stele. Nutrient uptake by plants through most of its root length involves transport 
through plasma membrane and Casparian strips twice, once getting into the cell 
and then exporting out of the cell into the xylem. Two types of protein transporters 
are required for such symplastic flux, one for influx and another for efflux of sol-
utes (Miwa and Fujiwara 2010).

The transporters, involved in symplastic influx of B, are aquaporins such as 
NIP5;1 (nodulin-26-like intrinsic proteins), localized in the plasma membrane and 
upregulated under B-limiting conditions, which facilitates B influx into the root 
cells (Takano et al. 2006), and NIP6;1, involved in transfer of boric acid from xylem 
to phloem in the nodal regions (Tanaka et al. 2008). BOR1 and BOR4 are efflux 
transporters.

Boron transporters such as, HvBor2/Bot1 in barley, TaBOR2  in wheat, and 
AtBOR4 of Arabidopsis efflux excess B from plant cells and make them tolerant 
to B toxicity (Reid 2007). It has been reported that tolerant cultivars of barley and 
wheat show necrosis of leaves at higher leaf B concentrations. However, leaf pro-
toplasts contain lower B concentration. Boron transporters probably efflux toxic 
boron out of the cell to the apoplast and protect the cytoplasm of the leaf cells 
from B toxicity (Reid and Fitxpstrick 2009).

22.4.10  Molybdenum (Mo)

Plants containing <0.2 μg g−1 are likely to show Mo deficiency. However, this con-
centration may vary in different plant species. Mo toxicity is rare under field condi-
tions. Forage crops with high molybdenum may occur in wet, high pH, and high 
organic matter soils. Cattle consuming such forage may suffer from a disease called 
molybdenosis. This disease is caused by an imbalance in Mo and Cu in their diet if 
Mo content is more than 5 μg g−1. Mo toxicity causes stunted growth and bone 
deformation in animals, which may be cured by oral feeding of Cu.
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Mo is taken up by plants as MoO4
−2, which is then used for synthesis of pterin- 

based Mo cofactor (Moco). Mo in Moco is covalently bound to two S atoms of a 
unique tricyclic pterin moiety known as molybdopterin. All forms of life contain 
Mo enzymes, which are involved in global cycling of C, S, and N. All of these 
enzymes are activated by Moco except nitrogenase. Moco becomes unstable when 
it is dissociated from the protein part of the enzymes (Basu and Burgmayer 2011). 
The Moco-containing enzymes found so far in plants consist of (1) nitrate reduc-
tase, NR; (2) sulfite oxidase, SO; (3) xanthine dehydrogenase, XDH; and (4) alde-
hyde oxidase, AO.

 

22.4.10.1  Molybdenum Stress and Homeostasis

A member of group V sulfate transporter, Sultr 5;2, is probably an intracellular 
transporter involved in Mo (molybdenum) metabolism in Arabidopsis and is named 
as MOT1. MOT1 is a high-affinity molybdate transporter specific for Mo and allows 
plant to take up Mo from the scarce resource of Mo in soil. It is expressed in all tis-
sues of wheat (Shinmachi et al. 2010). Mo deficiency affects N and S metabolism in 
a manner different from N and S deficiency. Studies with rice seedlings indicated 
that Mn2+, Zn2+, Cu2+, Cl−, or SO4

2− reduced MoO4
2− uptake, but Fe2+ had a positive 

effect (Kannan and Ramani 1978). There is a significant accumulation of phosphate 
in plants due to Mo deficiency. This is caused by induction of PHO;H1 (a member 
of PHO1 family) and its expression in roots of Mo-deficient plants. PHO1;H1 is 
involved in phosphate acquisition and induced by phosphate deficiency (Stefanovic 
et al. 2007). Phosphate deficiency has been reported to enhance Mo uptake in tomato 
plants (Heuwinkel et al. 1992).

Structure of Moco. (Adapted from Mitra 2015)
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22.4.11  Nickel (Ni2+)

Nickel (Ni) becomes available to plants in the form of Ni2+ ions. Ni is readily oxi-
dized in soil and becomes unavailable to plants above pH 6.7. Soils rich in Zn and 
Cu may also show Ni deficiency. Ni concentration of plant leaves is in the range of 
0.05–5 mg kg−1. Ni deficiency results in delayed nodulation and reduced efficiency 
in nitrogen fixation in leguminous plants (Brown 2006). Ni concentration >10 μg 
g−1 is generally considered toxic to sensitive plants.

22.4.11.1  Nickel Stress

Nickel is a constituent of enzyme urease (Dixon et al. 1975), which is present in a 
large number of plants. It has been observed in several plants that Ni deficiency 
results in accumulation of toxic concentration of urea in the leaves due to depres-
sion of urease activity. Nickel acts as a cofactor of enzyme urease and is essential 
for conversion of urea into NH4

+ for use by plant tissues.

 
NH CO NH H O NH CO OH

Ni

2 2 2 4 23 2 2. . + = + ++ −

Urease  

It has been suggested that AtIRT1, of ZIP family, which is a high-affinity Fe 
transporter by roots of Arabidopsis, also transports Ni (Nishida et al. 2011). There 
is a negative interaction between Ni and other nutrients such as Zn, Cu, Mn, Fe, Ca, 
or Mg, and higher concentration of any of these or along with others may cause Ni 
deficiency in soil (Liu et al. 2012).

22.4.12  Chloride (Cl−)

Concentration of chloride in higher plants is usually 0.2–2.0% but may go up to 
10% in saline soils (Fixen 1993). Chloride-deficient leaves show wilting, chlorosis, 
necrosis, and an unusual bronze discoloration. Cl− can be toxic to plants if its con-
centration exceeds 4–7  mg g−1 of dry weight for chloride-sensitive species and 
15–50 mg g−1 for chloride-tolerant plants (Xu et al. 2000).

22.4.12.1  Chloride Stress

While both Na+ and Cl− are toxic at higher concentration, some plants can regulate 
Na+ uptake better than Cl− (Munns and Tester 2008). High Cl− concentration causes 
chlorophyll degradation and reduces actual quantum yield of PSII electron transport 
(Pokhrel et  al. 2011). Capacity to control Cl− exclusion from shoots has been 
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correlated with salt tolerance in many species of plants (Teakle et al. 2007; Teakle 
and Tyerman 2009).

Minimum concentration of chloride in plant tissue essential for biochemical 
reactions is about 100 mg kg−1 of dry wt. Chloride is a major osmotically active ion 
in the vacuole and is involved in turgor and osmoregulation.

22.4.12.2  Chloride Uptake and Homeostasis

Influx of Cl− into the symplasm appears to be active, whereas efflux is passive since 
there is a gradient for passive efflux of anions from cytoplasm to the external 
medium (Teakle and Tyerman 2009). Both active and passive Cl− transport occurs 
through tonoplast. Electrophysiological studies indicate the presence of Cl−/2H+ 
symporter in the plasma membrane of root hair cells and Cl−/nH+ antiporter medi-
ates chloride influx across tonoplast. Genes of chloride channels (CLCs) from plants 
have been cloned from tobacco, Arabidopsis, rice, and soybean. All of them belong 
to the family of voltage-gated chloride channel and are generally expressed in endo- 
membranes of all tissues. There are seven members of this family in Arabidopsis 
(AtCLC(a), (b), (c), (d), (e), (f), and (g)) and rice (OsCLC 1–7). In Arabidopsis 
AtCLC(a), protein is expressed in the tonoplast; AtCLC(d), trans-Golgi; AtCLC(f), 
cis-Golgi; and AtCLC(e), thylakoid of chloroplast.

22.5  Beneficial Plant Nutrients and Abiotic Stress

These include Na, Co, Si, Se, and V. Some of them are essential for some of the 
plants, but others are beneficial to a few plants and animals who consume these 
plants.

22.5.1  Sodium (Na+)

Na+ is not an essential nutrient for all plants. It is essential for halophytes, which 
accumulate salt in vacuoles to maintain turgor and growth. A few of the C4 plants 
(except corn and sorghum) need Na+ essentially for specific functions, such as in the 
concentration of CO2. Na+ can be beneficial to plants under conditions of K+ defi-
ciency. Na+ can undertake osmotic functions, reduce the total K+ requirements and 
improve growth when the lack of K+ is a limiting factor. A near complete replace-
ment of K+ by Na+ in its osmotic function is possible. Improvements of some of the 
quality parameters due to addition of Na+ have been reported, such as greener 
leaves, glossy leaves caused by increase in cuticular wax formation (Brownell and 
Crossland 1972), and improvement of taste and texture of crops (Zhang and 
Blumwald 2001).
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In sugar beet Na+ concentration in leaf tip may increase up to 10%. Na+ has effect 
on water relations and increases drought resistance of sugar beet. In Na+-deficient 
soils, beet leaves are dark green, thin, and dull in hue.

22.5.1.1  Sodium and Drought Stress

High Na+ concentration is toxic to plants especially under drought and causes dehy-
dration of roots. Na+ can replace Ca2+ in the plasma membrane under sodic condi-
tions resulting in increase of membrane permeability and transport of ions (Bresler 
et al. 1982). Na+ toxicity is primarily exhibited in the shoots, where Na+ accumula-
tion disrupts metabolic processes and increases osmotic stress on cells (Munns 
2002). Sudden increase in Na+ concentration has osmotic consequences disrupting 
membrane integrity of roots in crops (Britto et  al. 2010) and of shoots in rice 
(Flowers et al. 1991). Na+ disrupts K+ influx and homeostasis both at high- and low- 
affinity ranges especially at mM concentrations (Kronzucker et al. 2006). Vacuole 
tolerates replacement of K+ by Na+ due to sequestration of Na+ by transporters such 
as NHX, which does not harm cytosolic functions (Munns and Tester 2008).

22.5.1.2  Cellular Na+ and K + Homeostasis

High-affinity Na+ uptake is mediated by HKT transporters in rice, species of 
Triticeae and Aveneae tribes of Poaceae family (Haro et al. 2010). OsHKT2;1 is 
involved in high-affinity Na+ transport under K+-starved conditions and can partially 
replace K+. OsHKT2;2 catalyzes Na+-dependent K+ uptake. In rice, barley, and 
wheat, expressions of transcripts that encode HKT transporters significantly increase 
under K+-starved conditions, and Na+ uptake is inhibited by addition of K+. In sun-
flower plants Na+ uptake is not K+-sensitive. No other transporter has been conclu-
sively proved to be involved in high-affinity Na+ uptake by plants.

22.5.2  Silicon (Si)

Silicon occurs in soil solution primarily as H4SiO4 (orthosilicic acid) at a concentra-
tion of 0.1–0.6 mM and is taken up by plants in this form (Epstein 1994). Silicon 
(Si) is a constituent of all plants and its concentration in shoot may vary from 0.1% 
to 10% of dry weight. Si is the only element, which does not have any adverse effect 
when it accumulates in excess (Epstein 1999).

Si deficiency symptom in rice includes soft droopy leaves, reduced photosyn-
thetic efficiency due to mutual shading of leaves, and reduced starch formation lead-
ing to incomplete grain filling.

Beneficial effects of Si application include increasing canopy photosynthetic 
efficiency by keeping leaves erect and compact; increasing resistance to fungi, bac-
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teria, and insects; reducing toxicity to heavy metals; improving water use efficiency 
by reducing cuticular transpiration; and increasing resistance to lodging.

22.5.2.1  Si and Abiotic Stress

Mn Toxicity High concentrations of Mn in plants increase superoxide dismutase, 
catalase, and ascorbate peroxidase activities but decrease concentrations of nonpro-
tein thiols and glutathione, which results in accumulation of OH∙ and malondialde-
hyde. Addition of Si has been observed to significantly neutralize Mn-induced 
increase in OH∙ and malondialdehyde and enhance plant growth in rice (Li et al. 
2012).

Al Toxicity Silicon has been reported to alleviate Al toxicity in conifers, barley, 
soybean, maize, and sorghum. Formation of non-phytotoxic hydroxyl aluminum 
silicates (HAS) in the apoplast of root apex detoxifies Al (Wang et al. 2004).

Silicon and Water Stress Under drought conditions there is closure of stomata 
and decrease in rate of photosynthesis. Si is deposited under the cuticle forming a 
Si-cuticle double layer. This reduces transpiration from cuticle of rice leaves. Si can 
reduce transpiration rate by 30% in rice, which has a thin cuticle (Ma et al. 2001, 
2004). Treatment with Si increases percentage of ripened grains in rice (7% Si) and 
barley (1.5% Si) under water-stressed conditions (Ma 2004).

22.5.2.2  Si Uptake and Homeostasis

The Si uptake process involves two different types of transport, Si-permeable chan-
nel and efflux transporter (Yamaji et al. 2012). LSi1 (low silicon 1) is a member of 
NIP2 (nod 26-like major intrinsic protein2) subgroup of NIP subfamily of aquaporin- 
like proteins and functions as a Si-permeable channel (Yamaji et al. 2012). LSi2 
functions as an efflux Si transporter and belongs to the anion transporter family 
without any similarity with LSi1. LSi6 is a homolog of LSi1 and is involved in 
xylem unloading of Si in rice (Yamaji et al. 2008).

22.6  Nonessential Ions and Abiotic Stress

Ions of elements such as Cr, W, As, Ag, Hg, Sb, Cd, Pb, and U with no known func-
tion in plant metabolism have been found to be taken up by plants. If the soil or 
growth medium is rich in one or more of the nonessential elements, these elements 
are likely to be taken up by plants to tolerable or sometimes toxic concentrations. 
These elements may be of geological origin or accumulated in the soil due to anthro-
pogenic causes. Soils around mining sites or nearer to solid waste dumps from 

G. Mitra



569

mineral- based industries may contain elements toxic to plants. Use of untreated 
effluents from industries and use of sewage and sludge from urban centers in agri-
culture as sources of irrigation and atmospheric deposits of radioactive isotopes 
from any overground nuclear activities on soils and plants are other sources of non-
essential elements. When food crops are grown on these soils, the nonessential ele-
ments are likely to be taken up by the plants and may enter into the food chain of 
man and animals.

22.6.1  Heavy Metal Transporters

Some of the ion transporters, which are involved in uptake of essential nutrients, can 
transport ions of heavy metals with identical ionic geometry (Mitra 2015).

Heavy Metals ATPases (HMAs) HMAs belong to the P1B subgroup of P-type 
ATPase superfamily, where ATP hydrolysis supports transport of ions across plasma 
membrane. HMAs are divided into two clusters, Cu cluster and Zn cluster. The 
transporters of Cu cluster transport Ag+ ions along with Cu+. The transporter of Zn 
cluster transports Co2+, Cd2+, and Pb2+ along with Zn2+, when these ions are available 
in the growth medium (Axelsen and Palmgren 2001).

ABC Transporters (ATP-Binding Cassette) The ABC transporters consist of a 
large family found in all the three kingdoms. Some of them are involved in heavy 
metal detoxification. The ABC transporter YCF1 (yeast cadmium factor1) in 
Saccharomyces cerevisiae transports bis(glutathione), cadmium, and arsenic com-
plexes GS2Cd and GS2As from cytoplasm to vacuole (Ghosh et al. 1999; Gueldry 
et al. 2003). In Arabidopsis AtABCC1 and AtABCC2 contribute to Cd2+ and Hg2+ 
tolerance (Park et al. 2012).

The Nramps (Natural Resistance-Associated Macrophage Proteins) These 
transporters are proton/metal symporters and have broad divalent metal substrate 
such as Fe2+, Mn2+, Cd2+, Co2+, Ni2+, and Pb2+(Gunshin et  al. 1997; Nevo and 
Nelson 2006).

The Cation Diffusion Facilitator (CDF) Family These transporter proteins are 
involved in transport of transitional metals cations such as Zn2+, Cd2+, Co2+, Ni2+, or 
Mn2+, from cytoplasm to outside of the cell or into subcellular compartments to 
maintain metal homeostasis and tolerance to their toxic effects (van Der Zaal et al. 
1999; Hall and Williams 2003; Hanikenne et al. 2005).

The ZIP (ZRT IRT-Like Proteins) Family The ZIP transporters have been iden-
tified from a number of plants mainly dicots (Grotz and Guerinot 2006) and are 
involved in transport of metal ions such as Mn2+, Fe2+/Fe3+, Cd2+, Co2+, Cu2+, Ni2+, 
and specifically Zn2+.
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The CAX Family (Cation/H+ Antiporters) These are cation/H+ antiporters 
involved in cation influx into the vacuole. They transport heavy metals such as Cd, 
Ni, and Mn into the vacuole and facilitate root growth under heavy metal stress 
conditions (Mei et al. 2009).

Higher plants have also built-in cellular mechanisms for metal detoxification and 
tolerance to protect them from uptake of toxic ions, such as (i) restriction of metal 
movement to roots by mycorrhizal association, (ii) binding the metals to cell wall and 
to root exudates, (iii) reduce influx across plasma membrane, (iv) active efflux into 
apoplast, (v) scavenging by root border cells, (vi) chelation in cytosols by various 
ligands, and (vii) transport of accumulated metals to the vacuole (Mitra 2015). Further 
there are interactions among nonessential and essential nutrients, which sometimes 
may be beneficial or harmful to the plants as discussed in earlier chapters.

22.6.2  Radioactive Isotopes and Abiotic Stress

Radioactive nuclides are a part of the terrestrial environment emanating from radio-
active substances present in the earth’s crust and from cosmic rays. Recently there 
has been enrichment of specific nuclides in the environment due to manufacture and 
testing of nuclear weapons, extensive construction of nuclear power plants, com-
mercial fuel reprocessing, nuclear waste disposal, uranium mining and enrichment, 
and nuclear accidents. The radioactive nuclides released by nuclear weapon tests 
include the following:

 
140 14 141 144 137 55 3 131 54 239 241Ba C Ce Ce Cs Fe H I Mn Pu Pu, , , , , , , , , , , 1103 106 125 89 96Ru Ru Sb Sr Zr, , , ,  

Some of these and/or their daughter nuclides are released.

22.6.2.1  Major Accidents in Nuclear Power Plants

 (a) Chernobyl in USSR, April 26, 1986, caused by explosion in nuclear power plant 
due to operational error

 (b) Daiichi Fukushima, Japan, on March 11, 2011, due to meltdown of nuclear 
power plant damaged by tsunami

The four most harmful radionuclides released due to Chernobyl disaster were 
131I, (t1/2 = 8.02 days, may cause thyroid cancer), 137Cs (t1/2 = 2.07 years, may accu-
mulate in heart and cause circulatory disease), 134Cs (t1/2  =  30.2  years), and 90Sr 
(t1/2 = 28.8 years, may accumulate in bones). The radioactive nuclides monitored 
from Fukushima Daiichi explosions were 131I and 137Cs. The regulatory levels fixed 
by Japan were 2 Bq/g for 131I and 0.5 Bq/g for 137Cs. There were soil contaminations 
with these two nuclides. Soils of a large area of eastern and northeastern Japan were 
contaminated with 137Cs. About 18 months after the Fukushima explosion, Health 
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Ministry data showed that radiation from Cs was not detectible in most of the veg-
etables. The trend was the same for beef. Rice harvested from Fukushima Prefecture 
was found to be safe (Aoki 2012). The distribution of absorbed radioactive 137Cs in 
rice plants is 65% in straw, 10% in polished rice, 10% in bran, and 10% in husk 
(Tsukada et al. 2002). Studies on Cs uptake by plants indicate that the inwardly 
rectifying KIR and outwardly rectifying KOR and voltage-sensitive VIC channels 
are all permeable to Cs, also the high-affinity K+/H+, KUP/HAK/KT, symporters. 
VIC channels mediate most (30–90%) of Cs influx under physiological conditions, 
and the KUP/HAK/KT transporters mediate the bulk of the remainder, when the 
external concentration of Cs is below 200 μM (White and Broadly 2000).

Chernobyl accident data have shown that 137Cs (t1/2 = 30.2 years) adsorbed on the 
top soil layer can remain there for long years making the soil unfit for crop produc-
tion (Yasunari et  al. 2011). High exposure to radiation from 137Cs at Chernobyl 
caused radiation-induced thyroid cancer.

Soon after the Chernobyl disaster, four square Km of pine forest directly down-
wind of the reactor turned red and died. However subsequent to atom bomb blast in 
Nagasaki and Hiroshima, many trees such as gingko, black locust, and camphor 
survived and were still growing (Eckholm 1985). The radiation level caused by 
Chernobyl disaster is still very high, and 30 Km around the factory has been declared 
as “zone of alienation.” It may take 20,000 years to become fit for human habitation. 
The plants growing in the zone of alienation contain higher levels of 137Cs.

The area however has reverted to become a natural forest and overrun by wildlife 
due to the lack of competition from humans for space and resources. This indicates 
that plants and animals can survive in a relatively high-radiation zone.

A study was conducted on progeny of Arabidopsis plant collected from zone of 
alienation with different levels of contamination. The study indicated a significantly 
higher resistance of progeny Arabidopsis plants to mutagens. There was increased 
expression of radical scavenging genes CAT1 and FSD3 and DNA repair genes 
RAD1 and RAD51-like in these plants (Kavalchuk et al. 2004).

According to World Nuclear Association (2015), the human environment has 
always been radioactive and accounts for 85% of annual radiation dose, 2.4 mSv/
year. The radiation dose received from all nuclear activities accounts for less than 1%.

22.7  Climate Change and Nutrient Uptake

Plants regulate expression levels of different sets of genes to coordinate physiologi-
cal and developmental responses to environmental changes (Nagano et  al. 2012; 
Plessis et al. 2015). Plants rely on gene regulatory network to survive on growth- 
limiting conditions. Plant genomes encode a large number of TFs to survive abiotic 
stress since they are sessile. Many TF proteins exist in an inactive form in the cyto-
sol or nucleus until they are activated by developmental or environmental signals 
(Fu et al. 2011; Ohama et al. 2016). Wilkins et al. (2016) used environmental gene 
regulatory influence networks (EGRINs), which included regulatory interactions 
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between 4052 target genes regulated by 113 TFs. They observed distinct regulatory 
role for members of the heat-shock factor family and regulatory connection between 
abiotic stress and circadian clock. For domesticated crops like Asian rice (Oryza 
sativa), understanding EGRINs can ensure high yields under a range of climatic 
conditions (Mickelbart et al. 2015; Olsen and Wendel 2013).

A study on effects of elevated CO2 on plant carbon, nitrogen, and water relations 
showed that:

 (i) Carbon uptake is enhanced by elevated [CO2] despite acclimation of photosyn-
thetic capacity.

 (ii) Photosynthetic nitrogen use efficiency increases at elevated [CO2].
 (iii) Water use at both leaf and canopy scales declines at elevated [CO2].
 (iv) Dark respiration is significantly stimulated in soybean leaves grown under 

elevated [CO2].
 (v) Stimulation of carbon uptake by elevated [CO2] in C4 plants is indirect and 

occurs only in situations of drought.
 (vi) The [CO2] “fertilization” effect in FACE studies on crop plants is less than 

expected (Leaky et al. 2009).

At an elevated CO2 concentration (550  μM/M), protein content of wheat 
decreased by 12.7%, and there were decreases in S, Ca, Fe, and Zn content as well 
(Fernando et al. 2012). A 2-year study using the FACE (free-air CO2 enrichment) 
and warming facility showed that total crop N content increased with increase in 
temperature, but N allocation to the leaves and to Rubisco was reduced by elevated 
temperature and higher CO2 concentration at mid-grain filling stage. This resulted 
in a strong downregulation of leaf photosynthetic rate. The changes in N allocation 
resulted from changes in phenology and/or senescence accelerated by warmer soil 
and water. There is a need for integrated and quantitative understanding of the 
ecosystem- based response to elevated CO2 concentration and increase in tempera-
ture (Adachi et al. 2014).

There are very limited studies on effect of global warming on nutrient transport-
ers. Giri et al. (2017) studied effect of moderate and severe short-term heat stress on 
nutrient uptake by roots of tomato (Solanum lycopersicum L, Cv: Big boy). They 
examined effects on high- and low-affinity nitrate transporters NRT2 and NRT1, the 
primary ammonium transporter AMT1, primary root phosphate transporter PHT1, 
potassium transporter KT1, iron uptake protein in dicots, iron reductase FRO1, and 
two boron transporters, BOR1 and NIP5;1. Further they also studied the effects of 
heat on N assimilation enzymes, nitrate reductase (NR), glutamate dehydrogenase 
(GDH), glutamine synthetase (GS), and glutamine oxoglutarate aminotransferase 
(GOGAT). As compared to control plants, heat stress (35°C and 42°C) initially 
decreased concentration (per gram of dry root) of all the nutrient uptake proteins 
(NRT1, NRT2, PHT1, KT1, FRO1, BOR1, NiP5;1). After 6 days of heat stress, the 
moderately stressed plants had similar level of nutrient uptake proteins as untreated 
control. In severely heat-stressed plants, these proteins were at a lower level than 
control except NIP5;1 and AMT1. After 7 days of post heat recovery, all the plants 
had similar levels of transporter proteins as control except FRO1. Similarly, all the 
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nutrient assimilation proteins decreased due to initial heat stress but recovered grad-
ually as the heat stress was withdrawn. These results indicate that nutrient uptake by 
plants can withstand temporary heat stress and nutrient assimilation recovers once 
weather becomes normal.

Climate change variables primarily include (i) increase in atmospheric CO2 con-
centration, (ii) increase in global temperature, and (iii) uncertain precipitation. 
While increase in CO2 concentration has positive effect on crop yield and hence 
uptake of plant nutrients, temperature increase has a negative effect on crop yield 
and nutrient uptake. Thermotolerant varieties of crop plants could be evolved, which 
can take up nutrients at a moderately higher temperature. However, the third vari-
able, precipitation, will have the controlling effect on nutrient uptake. Plant nutri-
ents are taken up in an aqueous medium. The AQP genes are involved in water 
uptake. High N application to rice has been reported to result in increased transcrip-
tion level of aquaporins, increased rate of water uptake and the root hydraulic con-
ductance and decreased aerenchyma formation (Ren et al. 2015). A study on rice 
(Liu et al. 2006) indicates that water channels and K+ channels/transporters have 
potential functional correlations. The mRNA expression levels of plasma membrane 
intrinsic proteins (PIPs) and K+ channel/transporters responded similarly to K+ star-
vation or water deprivation. Such inbuilt interactions in plants are valid for moder-
ate drought conditions but cannot sustain nutrient uptake under localized climate 
change extremes.

Adaptation to moderate changes in climate that influence temperature, season 
length, and planting dates, as well as the occurrence of abiotic stress, can be achieved 
by selecting varieties with appropriate flowering times and crop durations. Plants 
rely on gene regulatory network to survive on growth-limiting conditions. As dis-
cussed earlier understanding EGRINs can ensure high yields under a range of cli-
matic conditions (Mickelbart et al. 2015; Olsen and Wendel 2013).

22.8  Conclusion

An elaborate gene regulatory mechanism exists in plants to ensure uptake of water 
and essential plant nutrients and maintain cellular homeostasis under conditions of 
abiotic stress. There are groups of genes for every nutrient, which encode trans-
porter proteins whose functions are to acquire specific nutrient from the soil and 
transport them across the plasma membrane of the root hair cells for use in plant 
metabolism. Deficiency or sufficiency of a plant nutrient induces different sets of 
genes to produce mRNA transcripts for translation of transporter proteins. There are 
early and late genes, which are expressed, when nutrient deficiency is for a short or 
for a prolonged period. Several genes, which encode transporter proteins for each of 
the essential plant nutrients, have been identified and their transporter proteins char-
acterized. There are groups of transporters, which transport more than one nutrient. 
Some of them also transport nonessential heavy metals. Under nutrient-deficient 
conditions, plants reprioritize their internal use and recycle them from older to new 
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tissues. Cellular homeostasis of the micronutrients, which become toxic beyond a 
threshold concentration, is achieved by regulatory mechanisms, such as intracellu-
lar binding by metal chelators (mugineic acid, phytochelatins, metallothioneins), 
efflux from the cell, and sequestration into vacuoles. There are also protective 
mechanisms for highly active nutrients (Cu chaperons) from improper interaction 
with other cellular constituents.

Globally the soils are deficient in one or more of the primary nutrients, N, P, and 
K, which are required in larger quantities for crop production. Their nutrient use 
efficiency by crops for these nutrients is low, which results wastage of a larger por-
tion of applied nutrients. The unutilized nutrients also cause environmental pollu-
tion. Efforts to develop transgenic crops with improved nutrient use efficiency have 
so far been partially successful but far from their use under field conditions. There 
have been attempts to enrich food crops with some of the micronutrients. Iron defi-
ciency is a major health problem for humans around the world. About 25% of world 
population suffer iron deficiency. About one third of world’s population suffer from 
zinc deficiency, which causes impaired brain development, dysfunction of repro-
ductive system, immune disorders, hair loss, skin lesions, and loss of taste and 
smell. Genetic information available on mechanism of nutrient uptake can be fruit-
fully utilized to develop food crops with superior nutritive values.

The climate change scenario will have its effect on nutrient uptake by plants. 
New crop varieties, which can take up nutrients under altered climate change condi-
tions and produce enough to meet the requirements of human and animal, have to 
be developed.
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