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Abstract
The purpose of this study is to investigate the feasibility
of nonlinear methods for differentiating between haemo-
dynamic steady states as a potential method of identifying
microvascular dysfunction. As conventional nonlinear
measures do not take into account the multiple time scales
of the processes modulating microvascular function, here
we evaluate the efficacy of multiscale analysis as a better
discriminator of changes in microvascular health. We
describe the basis and the implementation of the multi-
scale analysis of the microvascular blood flux (BF) and
tissue oxygenation (OXY: oxyHb) signals recorded from
the skin of 15 healthy male volunteers, age 29.2 ± 8.1y
(mean ± SD), in two haemodynamic steady states at 33 °
C and during warming at 43 °C to generate a local
thermal hyperaemia (LTH). To investigate the influence
of varying process time scales, multiscale analysis is
employed on Sample entropy (MSE), to quantify signal
regularity and Lempel and Ziv (MSLZ) and effort to
compress (METC) complexity, to measure the random-
ness of the time series. Our findings show that there was a
good discrimination in the multiscale indexes of both the
BF (p = 0.001) and oxyHb (MSE, p = 0.002; METC and
MSLZ, p < 0.001) signals between the two haemody-
namic steady states, having the highest classification
accuracy in oxyHb signals (MSE: 86.67%, MSLZ:
90.00% and METC: 93.33%). This study shows that
“multiscale-based” analysis of blood flow and tissue
oxygenation signals can identify different microvascular
functional states and thus has potential for the clinical

assessment and diagnosis of pathophysiological
conditions.
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1 Introduction

Blood flow in microvascular networks has been investigated
in a range of physiological and pathophysiological states [1].
Recent studies have shown that in many disease states, such
as metabolic disease and ageing, appears to be a reduction in
the adaptive capabilities of the microvascular network and a
consequent loss of physiological information content [2, 3].

Previously [4], we have investigated the time-dependent
behaviour of microvascular blood flux and tissue oxygena-
tion using time series analysis, power spectral density and
complexity. We found differences in the spectral composi-
tion of the signals that were influenced by local skin
warming such that differences in complexity were observ-
able in the two haemodynamic steady states.

Nonlinear methods such as entropy and complexity
techniques have been used widely to quantify the regularity
and the randomness, respectively, of physiological signals
and are well suited for the analysis of short length signals
[5–8]. We and others have applied these approaches to BF
signals derived from the skin in humans [4] and in animal
models [7, 9], demonstrating clear differences in Lempel and
Ziv (LZ) complexity between haemodynamic states. These
studies demonstrate a diagnostic potential for complexity
analysis of microvascular BF signals.

However, traditional algorithms for measuring entropy
and complexity have the drawback that they can only study
the behaviour at one scale. To address this, Costa et al. [2]
introduced an improved multiscale entropy algorithm to
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estimate the entropy over multiple scales. Such multiscale
analyses have been shown to be effective in quantifying the
complexity of physiological signals in multiple spatial and
temporal scales [2, 6, 10]. Similar studies [11], applied the
multiscale entropy in the cardiac inter-beat interval to mea-
sure the regularity of the cardiac signal of young, elderly and
subjects with heart failure in both waking and sleeping
periods. They found good discrimination between these
periods for all groups and reported that the multiscale
entropy analysis was a valid method for quantifying the
complexity of the cardiac signal across multiple scales.

In this study, we aim to investigate the feasibility of
nonlinear methods for differentiating between signals
derived from the microvasculature during two haemody-
namic steady states. We explore the changes in entropy and
complexity of the microcirculatory dynamics using multi-
scale analysis of sample entropy (SampEn), LZ and effort to
compress (ETC) complexity methods in order to understand
the effect of scale on these nonlinear metrics and their effi-
cacy in classifying these haemodynamic steady states.

2 Methodology

2.1 Subjects

Microvascular blood flux (BF) and oxygenation (OXY:
oxyHb) signals were recorded from the skin of 15 healthy
male volunteers, age 29.2 ± 8.1y (mean ± SD). BF and
OXY recordings were obtained at the skin of the forearm
using a combined laser Doppler flowmetry (LDF) and white
light reflectance (WLS) probe mounted in a heating block
(Moor Instruments Ltd, Axminster UK) in two haemody-
namic steady states, with the heating block clamped at 33 °C
and during warming to 43 °C to generate a local thermal
hyperaemia (LTH).

2.2 Study Procedure

All recordings were captured at a sampling rate of 40 Hz
using the manufacturer’s software. Figure 1 illustrates the
BF, oxyHb and the temperature outputs and the selection of
the 10 min artefact free segments marked as grey at 33 °C
and at 43 °C, respectively. The truncated data could then be
analysed and calculations made for the multiscale analysis.
We elected to focus on the oxyHb output as the prime OXY
signal for the nonlinear analysis as suggested by our previ-
ous studies [4].

2.3 Signal Analysis

Encoding
Nonlinear methods such as complexity measures are based
on the complex information content of a finite time series to
calculate the regularity of a binary time series representation.
From previous studies [12, 13], it was reported that
the binary conversion is sufficient to estimate the complexity
in biomedical signals. As suggested by Yang et al. [14]
a straightforward way to maintain the important character-
istics of the dynamics contained in the original physiological
signal is by using the increase and decrease encoding
method whereby a zero is recorded if a value is less than
the previous value in the time series or a one
otherwise. Here this method will be referred to as delta
encoding.

Nonlinear Analysis
The nonlinear methods employed here are estimated as
follows:

Sample entropy: Sample entropy (SampEn) [15] was
used to quantify signal regularity a time series. SampEn
provides an applicable finite sequence formulation that dis-
criminates the data sets by a measure of regularity, from
totally regular to completely random. This method measures
the logarithmic likelihood that runs of samples that are close
for m continuous observations that remain close (within the
same tolerance window r) on subsequent incremental
comparisons.

SampEn m; r;Nð Þ ¼ ln
Um rð Þ

Umþ 1 rð Þ
As suggested in the literature [15, 16], the parameter

values to calculate SampEn can be chosen as m ¼ 2 and
r ¼ 0:15 times the standard deviation of the binary time
series.

Lempel and Ziv complexity: Lempel and Ziv (LZ) [17]
complexity is a method for quantifying the randomness
present in a sequence by estimating the number of produc-
tion processes contained in a binary sequence, S. The pro-
duction process called production history, H Sð Þ, is denoted
as:

H Sð Þ ¼ S 1; h1ð ÞS h1 þ 1; h2ð Þ. . .S hm�1 þ 1; hmð Þ;
where m are the “words” of the history, h. The sequence is
parsed from left to right and the complexity increases by one
unit when a new sub-sequence of continuous symbols is
encountered.
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In order to define the complexity c Sð Þ of a sequence S; let
denote cH Sð Þ the least number of the components generated
form the history H Sð Þ so,

c Sð Þ ¼ min cH Sð Þf g
To obtain a complexity measure independent of the

length of the sequence, c Sð Þ should be normalized as:

C Sð Þ ¼ c Sð Þ
n

log2 nð Þ

Effort to compress complexity: Effort to compress
(ETC) complexity [18] is a similar complexity method based
on the lossless compression algorithm known as
Non-sequential Recrusive Pair Substitution (NSRPS) [19].
ETC complexity is defined by the pair of symbols with the
maximum occurrence and replaces all its non-overlapping
occurrences with a new symbol at each iteration.

N ! Number of iterations of NSPRS algorithm for entropy
! zero

Therefore, N is the number of iterations, of NSPRS
algorithm, required for the given sequence to be transformed
to a constant sequence with zero entropy. Here the ETC
complexity is normalized as: N

L�1 ; 0�N � 1� 1, with L =
length of the sequence.

Multiscale Analysis
These nonlinear measures are used to analyse signals on a
single scale, however, when applying these methods in
physiological complex systems, it is essential to take into
account the multiple time scales in that system. Costa et al.
[2], proposed the Multiscale Entropy (MSE) technique for
analysing biological signals using the coarse-graining
method that resamples the original signal by reducing the
scale factor, s, of the time series and then determining the
sample entropy for each scale. So, for a time series
x1; . . .; xNf g, the coarse-grained time series, ys, will be:

ysi ¼
1
s

Xis

i¼ i�1ð Þsþ 1

xj; 1� i�N=s: ð1Þ

Here, the coarse graining method was applied in entropy
and complexity methods and we call these procedure mul-
tiscale entropy (MSE), multiscale Lempel and Ziv com-
plexity (MSLZ) and multiscale effort to compress
complexity (METC).

Statistical Analysis
A Student t-test statistical test was performed to evaluate the
differences between of the multiscale analysis of the two
haemodynamic steady states for both BF and oxyHb signals.
p-values less than 0.05 were taken to indicate statistical
significance. Discriminant analysis with leave-one-out

Fig. 1 Selection of the 10 min segments (grey area) for the data analysis at 33 and 43 °C. Blood flow in arbitrary perfusion units (PU),
oxygenated haemoglobin (oxyHb) and temperature (°C) plots were obtained from one individual (Color figure online)
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cross-validation (LOO) was applied on multiscale methods
of both BF and oxyHb signals, to find the classification
accuracy in of all methods between the two haemodynamic
steady states.

3 Results and Discussion

We set out to investigate whether the information content in
the BF and oxyHb signals could be used to discriminate
between two microvascular haemodynamic states in a cohort
of healthy volunteers. The results showed a decrease in MSE
during LTH in both BF (p = 0.001) and oxyHb signals
(p < 0.001). MSLZ and METC also showed a significant

reduction in the complexity in BF signals (p = 0.001, for
both) and oxyHb signals (p < 0.001, for both). The decline
in randomness of the skin BF signal that we observe in
healthy human skin during LTH is consistent with that
reported by Tigno et al. [8] in the skin of primates during
skin warming. Recent studies [1, 20] have suggested that the
greater variability of the blood flux signal may indicate a
more effective microvascular perfusion, whereas a lower
variability in microvascular activity may correspond to a loss
of the system’s ability to adapt to pathophysiological con-
ditions [21].

As shown in Fig. 2 the estimates for entropy and com-
plexity of both BF and oxyHb signals showed a lower
variability during LTH compared with the signals at 33 °C.

Fig. 2 The average multiscale analysis for BF (upper plots) and oxyHb (lower plots) signals at 33 °C (grey) and at 43 °C (black). a MSE,
b MSLZ, c METC. Values are presented as means ± mean standard errors, (n = 15) (Color figure online)
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We also observe that the separation between the haemody-
namic states is greater in the oxyHb signal than in the BF
signal. It is also worth noting that at the largest scales, the
oxyHb signals during local heating become more complex
than the ones at 33 °C when using the MSE method and
approaches the signals at 33 °C when using both MSLZ and
METC complexity measures. This increase of the com-
plexity on larger scales may be a useful new index of
increased adaptive capacity in larger time scales.

From Table 1 it is interesting to note that all three mul-
tiscale measures relating to the oxyHb signal indicate a good
classification accuracy of the two haemodynamic steady
states. The highest classification accuracy rates of 90.00%
and 93.33% were reached with the MSLZ and METC
complexity, respectively. By this test we showed that the
characteristics of the multiscale analysis can be used in
classification algorithms to separate two different data sets.
High accuracy was achieved using the multiscale complexity
analysis (MSLZ, METC), which indicates a classification
effectiveness of the two haemodynamic steady states using
the multiscale complexity measures and therefore, this may
be valuable in clinical applications. Kalev et al. [22], using
multiscale LZ complexity to examine the EEG signals for
objective measures of depression, were able to demonstrate
an 86% classification accuracy by accounting for the dif-
ferent frequencies of information content in the EEG. These
authors also showed more statistically significant results
using the multiscale LZ complexity than using the traditional
LZ complexity.

We found that all the multiscale analysis methods we
used were able to distinguish between the two haemody-
namic steady states. However, we noticed that MSLZ and
METC showed a more significant separation than MSE.
These findings were consistent with those of Costa et al.
[11], who found a good discrimination between wake and
sleep periods. We note that the microvascular oxyHb signals
showed better separation between the two haemodynamic
steady states than the BF signals. This suggests that these
measures may be valuable in clinical assessment of condi-
tions of tissue under-perfusion [23].

Recent studies in an animal model have shown that the loss
of adaptability throughout the microvascular network may be
a major indicator of cardio-metabolic disease risk [21]. They

further suggested that the spatial distribution and temporal
behaviour of flow in a microvascular network may be more
suitable measures with which to understand the impact of
disease risk on themicrocirculation.More experiments need to
be conducted in pathological groups to examine changes in
complexity arising from external perturbation for evaluating
the microvascular dysfunction.

4 Conclusions and Future Work

In this work, we estimated the regularity and the complexity
of microvascular blood flow signals in multiple scales, to
inform how a change in system flexibility may allow a
microvascular network to adapt to an imposed stressor. All
multiscale methods showed a good discrimination between
the two imposed haemodynamic steady states. They partic-
ularly showed a good discrimination between the oxyHb
signals at low and high flows which make these methods a
promising tool for further analysis of the microvascular
function. For a better understanding of the nonlinear indexes
of the microvascular function these methods need now to be
extended to disease state.

References

1. Clough GF, Kuliga KZ and Chipperfield AJ. (2017) Flow motion
dynamics of microvascular blood flow and oxygenation: Evidence
of adaptive changes in obesity and type 2 diabetes mellitus/insulin
resistance. Microcirculation 24.

2. Costa M, Goldberger AL and Peng CK. (2002) Multiscale entropy
analysis of complex physiologic time series. Physical Review
Letters 89.

3. Frisbee JC, Goodwill AG, Frisbee SJ, et al. (2016b) Microvascular
perfusion heterogeneity contributes to peripheral vascular disease
in metabolic syndrome. J Physiol 594: 2233–2243.

4. Kuliga KZ, Gush R, Clough GF, et al. (2017) Time-dependent
Behavior of Microvascular Blood Flow and Oxygenation: a
Predictor of Functional Outcomes. IEEE Transactions on Biomed-
ical Engineering PP: 1–1.

5. Balasubramanian K and Nagaraj N. (2016) Aging and cardiovas-
cular complexity: effect of the length of RR tachograms. Peerj 4.

6. Humeau A, Buard B, Mahe G, et al. (2010) Multiscale entropy of
laser Doppler flowmetry signals in healthy human subjects.
Medical Physics 37: 6142–6146.

Table 1 Statistical analysis and classification accuracy for all multiscale methods of both BF and oxyHb signals between the two haemodynamic
steady states

Methods BF oxyHb

p-value Classification accuracy (%) p-value Classification accuracy (%)

MSE 0.001 70.00 0.002 86.67

MSLZ 0.001 73.33 <0.001 90.00

METC 0.001 73.33 <0.001 93.33

Multiscale Analysis of Microvascular Blood Flow and Oxygenation 199



7. Liao FY, Garrison DW and Jan YK. (2010) Relationship between
nonlinear properties of sacral skin blood flow oscillations and
vasodilatory function in people at risk for pressure ulcers.
Microvascular Research 80: 44–53.

8. Tigno XT, Hansen BC, Nawang S, et al. (2011) Vasomotion
becomes less random as diabetes progresses in monkeys. Micro-
circulation 18: 429–439.

9. Liao F, O’Brien WD, Jr. and Jan YK. (2013) Assessing complexity
of skin blood flow oscillations in response to locally applied
heating and pressure in rats: implications for pressure ulcer risk.
Physica A 392.

10. Humeau A, Mahe G, Chapeau-Blondeau F, et al. (2011) Multiscale
Analysis of Microvascular Blood Flow: A Multiscale Entropy
Study of Laser Doppler Flowmetry Time Series. IEEE Transac-
tions on Biomedical Engineering 58: 2970–2973.

11. Costa M, Goldberger AL and Peng CK. (2005) Multiscale entropy
analysis of biological signals. Physical Review E 71.

12. Aboy M, Hornero R, Abasolo D, et al. (2006) Interpretation of the
Lempel-Ziv complexity measure in the context of biomedical
signal analysis. IEEE Trans Biomed Eng 53: 2282–2288.

13. Zhang XS, Zhu YS, Thakor NV, et al. (1999) Detecting ventricular
tachycardia and fibrillation by complexity measure. IEEE Trans-
actions on Biomedical Engineering 46: 548–555.

14. Yang AC, Hseu SS, Yien HW, et al. (2003) Linguistic analysis of
the human heartbeat using frequency and rank order statistics.
Phys Rev Lett 90: 108103.

15. Richman JS and Moorman JR. (2000) Physiological time-series
analysis using approximate entropy and sample entropy. American
Journal of Physiology-Heart and Circulatory Physiology 278:
H2039–H2049.

16. Pincus SM. (2001) Assessing serial irregularity and its implica-
tions for health. In: Weinstein M, Hermalin AI and Stoto MA
(eds) Population Health and Aging: Strengthening the Dialogue
between Epidemiology and Demography. 245–267.

17. Lempel A and Ziv J. (1976) On the complexity of finite sequences.
IEEE Trans. Inf. Theory IT-22: 75–81.

18. Nagaraj N, Balasubramanian K and Dey S. (2013) A new
complexity measure for time series analysis and classification.
European Physical Journal-Special Topics 222: 847–860.

19. Ebeling W and Jiménez-Montaño MA. (1980) On grammars,
complexity, and information measures of biological macro-
molecules. Mathematical Biosciences 52: 53–71.

20. Gryglewska B, Necki M, Zelawski M, et al. (2011) Fractal
dimensions of skin microcirculation flow in subjects with familial
predisposition or newly diagnosed hypertension. Cardiology
Journal 18: 26–32.

21. Frisbee JC, Butcher JT, Frisbee SJ, et al. (2016a) Increased
peripheral vascular disease risk progressively constrains perfusion
adaptability in the skeletal muscle microcirculation. Am J Physiol
Heart Circ Physiol 310: H488–504.

22. Kalev K, Bachmann M, Orgo L, et al. (2015) Lempel-Ziv and
Multiscale Lempel-Ziv Complexity in Depression. 2015 37th
Annual International Conference of the Ieee Engineering in
Medicine and Biology Society. 4158–4161.

23. Papaioannou, V. E., Chouvarda, I. G., Maglaveras, N. K. and
Pneumatikos, I. A. (2012) ‘Temperature variability analysis using
wavelets and multiscale entropy in patients with systemic inflam-
matory response syndrome, sepsis, and septic shock’, Critical
Care, 16(2), pp. 15.

200 M. Thanaj et al.


	36 Multiscale Analysis of Microvascular Blood Flow and Oxygenation
	Abstract
	1 Introduction
	2 Methodology
	2.1 Subjects
	2.2 Study Procedure
	2.3 Signal Analysis

	3 Results and Discussion
	4 Conclusions and Future Work
	References




