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Abstract
Cone Beam CT is a well-established diagnostic tool for
numerous applications. While providing better spatial
resolution and exposing the patient to lower radiation
doses than conventional CT, it is also subject to spatially
dependent bias due to the beam energy spectrum,
resulting in a very limited capacity for soft-tissue and
quantitative imaging. The goal of this work is to improve
image contrast resolution and density quantification, to
reinforce diagnosis efficiency and accuracy. An iterative
polyenergetic approach is adapted to CBCT in order to
reduce the artifacts caused by the beam hardening
phenomenon and monoenergetic approximations at
reconstruction level. It integrates the X-ray spectrum of
the source and the cone-beam geometry, and is based on
the Iterative Maximum-likelihood Algorithm for CT
(IMPACT), which defines the energy-dependent attenu-
ation coefficient as a linear combination of photoelectric
and Compton effects. Our preliminary results demonstrate
reduction of cupping and successful quantitative recon-
struction of simple phantoms using simulated and exper-
imental CBCT data.
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1 Introduction

Cone beam computed tomography (CBCT) has recently
become a leading technology in medical imaging and is
gaining new applications such as ear, nose and throat
imaging or osteoarticular exploration of extremities. It has
proven its value in comparison with multidetector CT
(MDCT) by offering radiologists high-resolution images of
bony structures, while using less ionizing radiation for the
patient. However, even with a better resolution than the
MDCT, CBCT of dental and bony structures is subject to
various artifacts arising from beam hardening, with many of
the structures being composed of compact bone, and also
due to routine presence of metallic dental restorations. In
addition to this, CBCT suffers from artifacts due to scattered
radiation, due to its large cone opening. The combination of
beam hardening and scattering limits the diagnostic use for
soft tissue. Therefore, improving contrast in soft tissue
would lead to a low-dose and high-resolution imaging sys-
tems for a broader range of diagnostic applications.

Computed tomography imaging estimates a 3D map of
radiodensity or radiation attenuation coefficients of the
subject. The methods currently used for clinical CBCT
reconstructions are usually based on filtered backprojection,
like the Feldkamp, Davis and Cress (FDK) approach [1].
They have the advantage of requiring low computational
resources, but rely on empirical corrections for sources of
artifacts. In order to allow for accurate CBCT imaging of
soft tissue, the most promising approaches are model-based
iterative reconstruction algorithms [2]. Such iterative meth-
ods have the advantage over analytical ones to allow for the
incorporation of prior information on the system and the
imaged object. The prior information we aim to use is the
emission spectrum of the source, while the attenuation
model is largely based on Alvarez-Macovski decomposition
[3], in order to reduce the spectral artifacts typically
encountered with analytical reconstruction methods. More-
over, a quantitative imaging algorithm is desirable, so that a
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low bias in radiodensity estimation is ensured in the whole
3D volume. Therefore, it may become possible to visualize
and eventually segment soft tissues based on their linear
attenuation coefficient, and to evaluate the feasibility of
accurate quantitative cone-beam imaging. The approach
adapted to CBCT in this paper is the Iterative Maximum-
likelihood Polychromatic Algorithm for CT (IMPACT) by
De Man et al. [4]. It is to note that the goal of this paper is
not to attain the high spatial resolution typically expected
from CBCT systems nor to propose a fast numerical
implementation, but mostly to propose a proof of concept of
enhanced soft tissue imaging in CBCT.

2 Materials and Methods

2.1 Attenuation Physics

In the IMPACT algorithm selected for image reconstruction,
the attenuation coefficient of each voxel is estimated itera-
tively by interpreting the intensity measured by the detector
and comparing it with the expected intensity given the tis-
sues and materials encountered by the photons. It therefore
needs a model of attenuation adapted to the radiation source,
the detector and the expected attenuating behaviour of dif-
ferent tissues. The selected direct model is the polychromatic
Beer-Lambert attenuation law discretized over space and
photon energy spectrum:

ŷi ¼
X

k

IkEkSk exp �
X

i

xijljðEkÞ
 !

; ð1Þ

where ŷi is the expected intensity at detector bin i, Ik is the
normalized intensity emitted at energy k, Ek is the energy in
keV, Sk is the detector’s sensitivity at energy k, xi is the
distance travelled by ray i inside voxel j in cm and ljðEÞ is
the attenuation coefficient of voxel j in cm−1. In this model,
the emitted spectrum and the detector sensitivity may be
estimated once and used as sets of constants. However,
ljðEÞ depends on the subject composition, which is
heterogeneous.

The definition for l arises from modelization of the
physical phenomena encountered by the x photons [2, 4, 5],
as we aim to represent the CBCT system and its associated
phenomena with enhanced accuracy. Three main interactions
take place in kV x-ray imaging: Rayleigh scattering,
Compton scattering and photoelectric absorption [6]. The
first one can be omitted, as photons are scattered at low
angles and do not lose energy in the process, and the
interaction cross-section strongly decreases with higher
energies. Compton scattering is an interaction where a
photon loses energy and changes direction via an inelastic

collision with an electron essentially considered free, and is
prevalent in soft tissues. The photoelectric effect is the
absorption of photons by ejection of bound electrons of
atoms, prevalent in bones and metallic restorations [6]. The
energy dependence of the photoelectric cross-section is
approximated by UðEÞ ¼ 1=E3, while Compton scattering
cross-section is modelled by the Klein-Nishina function
HðEÞ ¼ fKNðEÞ [3]. These relationships allow for estimation
of relative occurrence rates of both phenomena, where
photon energy is the independent variable. A second set of
weighting factors is determined by the equivalent atomic
number of the tissue or material. This leads to the following
definition of l:

l ¼ / � UðEÞþ h � HðEÞ; ð2Þ
where / and h are respectively the photoelectric effect and
the Compton effect coefficients of the tissue based on a
limited number of base materials. Equations (1) and (2)
define the attenuation model that will be used for the
reconstruction, while geometrical modelling follows Sid-
don’s ray-tracing method, which considers a space of square
voxels and infinitely thin linear x-ray attenuation paths [7].

As most iterative methods, an initial image is assumed
and then modified after each iteration. We used a uniform
image with l ¼ 0:1 as initialization. The attenuation coef-
ficient of each voxel in then associated with its Compton and
photoelectric components by interpolating on the /ðlÞ and
hðlÞ curves drawn with the values shown in Table 1, pro-
posed by De Man [4].

Projections of the estimated image are calculated based
on Eqs. (1) and (2), and are then used to determine the
correction Dlnj needed for voxel j at iteration n. The objec-
tive function to maximize is the log-likelihood L:

L ¼
XI

i¼1

ðyi � lnðŷni Þ � ŷni Þ; ð3Þ

where yi is the measured intensity at detector bin i. the
maximum-likelihood algorithm for transmission tomography
(ML-TR) [8] was employed to maximize Eq. (3). We
applied a 3� 3 median filter on the image every 10 itera-
tions to reduce aliasing artifacts.

Table 1 Attenuation coefficients at 70 keV and associated Compton
and photoelectric coefficient for common substances

Substances h (1/cm) / (1/cm) l (1/cm)

Air 0.0002 1.7e−05 0.0002

Soft tissue 0.1777 0.0148 0.1935

Water 0.1783 0.0144 0.1946

Aluminium 0.4274 0.2125 0.6523

Iron 1.3904 5.32734 7.0748
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2.2 Experiments

Our main hypothesis states that the reduction of beam
hardening artifacts will enhance the contrast in CBCT
imaging. We therefore tested our algorithm on numerical
and physical phantoms in order to observe the impact of
polychromatic iterative reconstruction on the cupping arti-
fact. Those images were compared with a monochromatic
iterative method, the ordered subsets convex algorithm with
total variation regularization (OSC-TV) proposed by Mate-
nine et al. [9], as well as with FDK. The latter was imple-
mented using the OpenRTK library [10] and OSC-TV was
implemented in-house using C++. IMPACT was imple-
mented using Matlab®. Two types of input sets of projec-
tions or sinograms were used: simulated and real.

Two different phantoms were reconstructed using exper-
imental projection data. The water phantom was a
thin-walled plastic cylinder filled with tap water and a
diameter of 8 cm. It was used to observe the algorithm’s
effect on the cupping artifact. The polytetrafluoroethylene
(PTFE) wedge phantom was similar in construction to the
water phantom, with a water cylinder of 11 cm in diameter
and a quarter-disk PTFE insert held in place by a thin
polymethyl methacrylate (PMMA) plate. It was used to
analyse the capacity for quantitative imaging of highly
attenuating objects. The expected profiles were estimated
with data from the XCOM database [11].

A simulated sinogram of the wedge phantom was
acquired via Siddon’s ray-tracing in a voxelized numerical
phantom of equal dimensions, using attenuation coefficients
for photon energies from 1 to 110 keV with increments of
1 keV, retrieved from the XCOM database for the materials
of interest. Matlab was used for the numerical implementa-
tion. This allowed us to compare reconstructed images based
on simulated projections with the physical phantom recon-
structions and in turn compare quantification accuracy. It is
important to notice that simulated sinograms did not include
scatter readings, while real sinograms were affected by
scatter. Comparison of reconstructions of simulated and real
sinograms permitted to quantify bias due to scattered radi-
ation. Real projections were acquired with the NewTom 5G
(Verona, Italy) cone beam CT scanner, see Table 2 for
acquisition parameters.

The x-ray source spectrum used for simulated scans was
generated at 1 keV increments using the SRS-78 application
[12], which uses the scanner tube anode angle, filtration and
peak voltage (kVp) as inputs. The same estimated spectrum
was used in the IMPACT reconstruction algorithm, with a
more coarse discretization over 20 energy bins. The detector
sensitivity profile was considered uniform with respect to
photon energy for the simulated and real data studies.

The central slice was reconstructed using FDK, OSC-TV
and IMPACT. Still, the cone beam collimation was that of
clinical CBCT protocols and scattered radiation contributed
to the central slice sinogram. Line profiles of the recon-
structed slice were acquired on the central sagittal axis in
order to evaluate cupping. For the water phantom, cupping
was quantified by computing a polynomial fit on the part of
the profile which represents water only, using the model
below:

lðxÞ ¼ aðx� bÞ2 þ c; ð4Þ
where a is the coefficient which increases with increasing
cupping and b; c are translation parameters. The bias on l
was quantified on a circular region of interest (ROI), cen-
tered on a uniform region of the phantom and excluding
borders. Mean value and standard deviation of l over the
ROI were calculated. The l values were compared for a
reference energy of 70 keV, which, in a clinical setting,
ensures a good contrast between soft and bony tissues.

3 Results

3.1 Water Phantom

Figure 1 shows profiles and images for a real water cylinder
reconstruction with IMPACT, OSC-TV and FDK. The
polynomial fit led to a ¼ ð1:31 � 0:16Þ � 10�5 for
IMPACT, a ¼ ð2:28 � 0:10Þ � 10�5 for OSC-TV and a ¼
ð3:2 � 1:0Þ � 10�5 for FDK. This indicates that the
monochromatic approaches suffer from more severe cupping
than IMPACT.

The mean and standard deviation in the circular ROI
inform us on the bias in the image. Higher values of standard
deviation indicate that the attenuation coefficients are held
within a larger range of values, which includes noise and
spatially-dependent bias. Figure 2 shows the analysis of all
the water voxels of the water cylinder phantom, excluding
borders, for each method. On a relative scale, we observe a
(2:5 � 0:9)% l bias for IMPACT, (12 � 2)% for OSC-TV

Table 2 Real sinogram CBCT acquisition protocols and correspond-
ing image pixel sizes for reconstructed slices. The slice thickness is
equal to the pixel side

Experiment FOV: diameter (cm) �
axial coverage (cm)

Reconstructed
pixel size
(mm � mm)

Water phantom 8 � 8 1:5 � 1:5

Wedge
phantom

15 � 5 0:6 � 0:6
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and (12 � 2)% for FDK, when compared to the ground
truth. In general, we observe that monochromatic approaches
yield a systematically higher l estimate and suffer from
severe cupping, while IMPACT yields a more uniform
profile closer to the expected value. The remaining cupping
for IMPACT is likely due to scattered radiation, which also
causes cupping.

3.2 Wedge Phantom

Figure 3 shows the reconstructions of the wedge phantom.
While OSC-TV and FDK seem to lead to very similar
images, IMPACT reconstructions show lower contrast
between the water and the PTFE. This is explained by the
lower l calculated with IMPACT for PTFE, as shown by the
profiles in Fig. 4a, b. The bias values were also calculated in
circular regions of interest excluding borders for PTFE.

For the simulated phantom, a (0:6 � 1:0)% l bias was
observed for IMPACT, (32 � 3)% for OSC-TV and

(32 � 3)% for FDK in the wedge region. The lower stan-
dard deviation for IMPACT still indicates a reduction in
cupping, in addition to the visual aspect of the profiles.
Moreover, we observe an important reduction of streak
artifacts with IMPACT, compared to FDK.

For the real wedge phantom, the l bias in the wedge
region was of (11 � 1)% for IMPACT, (3 � 3)% for
OSC-TV and (3� 4)% for FDK. The reconstructed l are
closer to the phantom’s values with OSC-TV and FDK for
the central region, but cupping is prominent on the edge of
the phantom. IMPACT yields a systematic under-estimation
of the profile, but a successful cupping correction.

4 Discussion and Conclusions

IMPACT shows definitive potential for both quantitative
reconstruction and cupping reduction. The latter was
reduced in all cases, simulated and real. Discrepancies
between reconstruction of simulated and real projections
give us indications as to how well the system is modelled.
The main difference is that scattered radiation was not
considered, but only beam hardening artifacts were. In
consequence, IMPACT seems to interpret scatter signal as
beam hardening, so the reconstructed profiles are relatively
flat, but are somewhat biased. Another source of bias is
the detector sensitivity profile. It is currently approximated
as a constant for lack of an experimentally obtained
sensitivity profile. An additional source of bias is the
emission spectrum, which was estimated instead of being
measured for the individual x ray tube. Having the indi-
vidual emission spectrum could lead to a better estimation
of polychromatic phenomena, and therefore more accurate
values of linear attenuation coefficients. It should be noted
that even though the simulations were performed in 2D,
experimental projection data were affected by substantial

IMPACT OSC-TV FDK

Fig. 1 Reconstruction of the
central slice of the real water
phantom and l for each voxel
along the central line of the
image. Some cupping is present
in the IMPACT reconstruction,
likely due to scattered radiation,
but more accurate attenuation
coefficients are obtained

Fig. 2 Analysis of reconstructed water phantom attenuation coefficient
for each method. IMPACT leads to more accurate and more precise
values. The dashed line represents the ground truth
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scatter and the final results are representative of accuracy
attainable by IMPACT in CBCT.

The next step will be to evaluate the behaviour of
IMPACT with respect to more complex objects, including
anatomical phantoms, and implement a practical scatter
correction. In order to handle larger amounts of data, a
parallel implementation of IMPACT is envisioned.
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Fig. 4 Profiles of the reconstructed wedge phantoms. An important difference regarding cupping between the monochromatic and polychromatic
methods was observed with both a simulated and b experimental sinograms

Fig. 3 Comparison of both simulated and real wedge phantoms, reconstructed using IMPACT, OSC-TV and FDK. Reduced streaking was
observed for IMPACT
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