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Abstract
The identification, quantification and characterization of
coronary atherosclerotic plaque has a major influence on
diagnosis and treatment of coronary artery disease
(CAD). Recent studies have reported the ability of
Computed Tomography Coronary Angiography (CTCA)
to identify non-invasively coronary plaque features. In
this study, we present a novel methodology for the
identification of the plaque burden of the coronary artery
and the volumetric quantification of calcified plaques
(CP) and non-calcified plaques (NCP), utilizing CTCA
images in comparison with virtual histology intravascular
ultrasound (VH-IVUS). The proposed methodology
includes seven steps: CTCA images pre-processing,
blooming effect removal, vessel centerline extraction
using Multistencil Fast Marching Method (MSFM),
estimation of membership sigmoidal distribution func-
tions, implementation of an extension of active contour
models using prior shapes for the lumen, the outer wall
and CP segmentation, detection and quantification of
NCP and finally three-dimensional (3D) models

construction. Bland Altman and correlation plot analyses
were performed to assess the agreement between the
presented methodology and VH-IVUS. Assessment of
volume and length of lesion length in 18 lesions indicated
good correlation with VH-IVUS. More specifically, the
Pearson’s correlation (r) is (r = 0.93, p < 0.001) and
(r = 0.92, p < 0.001) for CP and NCP volume, respec-
tively, while the correlation for the length of lesion is
(r = 0.84, p < 0.001) and (r = 0.95, p < 0.001) for CP
and NCP, respectively.
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1 Introduction

Atherosclerotic disease, the underlying cause of coronary
artery disease (CAD), is one of the leading causes of mortality
and morbidity in western societies. Atherosclerosis is char-
acterized by molecular and cellular events, such as the
deposition of low-density lipoprotein (LDL) molecules,
smooth cell proliferation, calcification and fibrosis, causing
compositional and geometric changes in coronary vessels.
Several of these changes can be identified by Computed
Tomography Coronary Angiography (CTCA), a non-invasive
imaging modality, which accurately detects the inner and the
outer wall of coronary arteries and also permits the charac-
terization of atherosclerotic plaque composition [1].
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In the literature, different studies were presented to
examine the diagnostic accuracy of CTCA for the detection
of coronary plaques. Dey et al. [2] examined the accuracy of
CTCA to detect CP and NCP using an automated
scan-specific threshold level-based approach. Similarly, in
another study, proposed by Brodoefel et al. [3], an auto-
mated software was implemented to analyze the
atherosclerotic plaque composition based on CT attenuation
values. On the other hand, Graaf et al. [4] studied the cor-
relation between the plaque volume derived by CTA auto-
matic software (QAngio CT 1.1, Medis medical imaging
systems) and the plaque volume provided by VH IVUS,
which was defined as the gold standard. Jawaid et al. [5]
implemented a SVM classifier to identify the abnormal
coronary segments and further proposed a derivative-based
method to localize the position and length of the NCP inside
the segment.

The proposed study is dedicated to present a
semi-automatic methodology, which permits the 3D models
construction of the inner wall and the outer wall, as well as
the detection and volumetric quantification of CP and
NCP. The VH IVUS is used to validate the proposed study.
Except of its semi-automated nature, the innovative aspect of
this approach is that both the active contour models and the
dynamic thresholding techniques are totally adapted to each
CTCA image, and allow accurately 2D segmentation inde-
pendently of the acquisition dose protocol.

2 Materials and Methods

The proposed methodology consists of seven steps: the
preprocessing, the blooming effect removal, the vessel cen-
terline extraction, the estimation of membership functions,
the inner wall, outer wall and CP segmentation, the NCP
segmentation and finally 3D models construction.

2.1 Preprocessing

In this step, the Frangi Vesselness filter [6] is applied on the
acquired axial DICOM CTCA images to detect the potential
vessels regions.

2.2 Blooming Effect Removal

In this stage, we aim to improve the visualization of small
high-density objects and to limit the blooming effect. The
output CTCA image is considered as the convolution result
of the input image with the system’s point spread function
(PSF). Thus, we approximate the system’s PSF using a

Gaussian kernel and we apply the Richardson Lucy algo-
rithm on high intensity regions, to acquire the deblurred
CTCA image [7].

2.3 Centerline Extraction

The implemented vessel centerline extraction approach,
proposed by Metz et al. [8], is a minimum cost approach,
based on the combination of the vesselness measure wvesselð Þ
and the lumen intensity wlumenð Þ information. The consid-
ered cost function was defined as

V ¼ wvessel � wlumen; ð1Þ
where wvessel is calculated in the pre-processing step,
whereas the wlumenð Þ is a generalized bell-shaped function.

2.4 Estimation of Memberships Functions

In this step, three membership functions were estimated to
compensate three different intensity protocols for the dis-
crimination of the lumen, the outer wall and the CP. More
specifically, the selected intensity ranges depend both on the
literature and the extracted mean luminal intensity.

2.5 Segmentation of the Lumen, the Outer Wall
and CP

In this step, an active contour model [9], which incorporates
a prior shape [10] is implemented to segment the inner wall,
the outer wall and the CP. The 2D segmentation approach
includes four different stages: the update of lumen intensi-
ties, the approximation of an initial binary image, the cal-
culation of the curve speed function and finally the sparse
field algorithm implementation. More specifically, we
modify the estimated lumen membership function. Based on
the extracted vessel centerline, we consider only the pixels
of the CTCA image, whose distance from the centerline is
lower than the value obtained by dividing an estimation of
lumen radius by the pixel spacing of the CTCA image.
Consequently, an initial image-shape u is estimated to
implement the active contour models. This image u is a
binary image, whose pixels are 1’s, when the updated lumen
membership function multiplied with a threshold value is
larger than 500 HU. Except of the initial binary image u, a
shape function w and a labelling function L are introduced
[10, 11]. In this approach, the defined speed function to
evolve the curve is defined by:

E u;w;Lð Þ ¼ Ecv þEshape þEw; ð2Þ
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where Ecv is the Chan-Vese energy, Eshape is the shape
comparison term and Ew is the labelling term. The sparse
field algorithm algorithm implementation follows, aiming to
extract the minimal representation of u. The sparse field
algorithm is implemented twice, in order to achieve a
smooth segmented shape for the inner and the outer wall.

A similar procedure is implemented for both the outer
wall and the CP segmentation.

2.6 NCP Segmentation

The detection of NCP based on CTCA images remains a
challenging problem, since their intensity range values
depend on the luminal intensity and the acquisition dose
protocol [12]. Furthermore, the segmentation of NCP could
not be successfully achieved by implementing a level set
based approach, since NCP intensity values are close to the
ranges of the outer wall. Thus, in this study a dynamic
threshold technique is applied in the region simultaneously
outside the inner wall and inside the outer wall, which is
considered as the region of interest (ROI). The main idea of
the detection of NCP is the extraction of a critical intensity
value, the mean lumen intensity (ml). This value corresponds
to the mean intensity values of the pixels of the 50% of the
image intensities. After the definition of ml value, the
intensity value for the NCP segmentation ranges between
100 HU lower than ml and 100 higher than ml.

2.7 3D Models Construction

The 3D models for the lumen, the outer wall, the CP and the
NCP are constructed based on the Marching Cubes approach
[13], by applying a triangulation approach.

3 CTCA-IVUS Comparison

The presented methodology was compared using the corre-
sponding frames of VH IVUS modality. The accurate reg-
istration was achieved based on anatomical landmarks, such
as side-branches, ostia and CP. Furthermore, the VH IVUS
images were analyzed based on a previously published
study, introduced by Bourantas et al. [14], whereas the NCP
volume is calculated based on the Simpson-rule method
[15].

The accuracy of the presented methodology to detect
plaque burden and to quantify the CP and NCP is evaluated
using two different metrics for each plaque type, the plaque
volume and the length of lesion. The plaque volume corre-
sponds to the volume of plaque between the proximal and

distal ends of the coronary lesion, whereas the length of
lesion is the distance between the proximal and distal ends of
the coronary lesion.

4 Results

In the validation procedure, we used totally 18 coronary
arteries, 9 left anterior descending (LAD), 3 left circumflex
(LCX) and 6 right coronary (RCA). The Bland Altman
analysis and the correlation plots between the proposed
CTCA based methodology and VH IVUS images analysis is
illustrated in Fig. 1 and Fig. 2 for CP and NCP, respectively.

The evaluation procedure indicates that the CP and NCP
extracted volumes and lengths of lesion derived from the
proposed methodology correlate well with those derived by
VH IVUS images analysis. More specifically, the Pearson’s
correlation (r) is 0.93 and 0.92 for the CP and NCP volume,
respectively, whereas the Pearson’s correlation (r) is 0.84,
0.95 for the CP and NCP length of lesion, respectively.

5 Discussion

In this work, a semi-automated methodology for the recon-
struction of the lumen, the outer wall and the CP and NCP of
coronary arteries is presented. The approach relies primarily
on the active contour models, while the NCP detection is
achieved by a dynamic threshold based approach. Although,
level set based threshold techniques are promising approa-
ches in the field of 2D segmentation, in case of NCP seg-
mentation they are not applicable, due to the lower intensity
values of NCP, which are close to the outer wall intensities.

Furthermore, the methodology of the inner and outer wall
detection, proposed in this study has already been validated
[16] using both manual annotations and IVUS modality.
Thus, in this manner an accurate plaque burden region is
assumed to be accurately identified and as a result the
quantification of CP and NCP is successfully achieved.

Moreover, the basic innovative aspect of the presented
methodology is its adaption to each CTCA image. It has been
demonstrated that the mean luminal attenuation value differs
using different acquisition protocols, as well as it varies
between different patients. Contrary to others studies [2, 3], in
our approach the selected threshold values are not fixed, but
fully dynamic and adapted to different CTCA images.

Another basic innovative aspect of our approach is the
incorporation of blooming effect removal. This deconvolu-
tion procedure implementation prevents the vessel stenosis
overestimation and reduces the volumetric quantification
of CP. Additionally, our algorithm allows the 3D recon-
struction of the full arterial coronary tree and as result the CP
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and NCP can be visualized in critical regions, such as the
bifurcations.

6 Conclusions

The presented methodology provides an accurate segmen-
tation of the lumen, the outer wall, the CP and the NCP of
2D CTCA images, the plaque burden characterization,

reliable coronary reconstruction and 3D representation of
coronary anatomy and pathology. The validation procedure
indicates that the proposed methodology correlates well with
VH IVUS. Thus, its integration into a quantitative software
may contribute to the diagnostic and prognostic value of
CTCA and may provide a wide clinical and research
applicability.

Fig. 1 Bland Altman and correlation plots for CTCA and VH IVUS for the volume (a) and the length of lesion (b) for CP

Fig. 2 Bland Altman and correlation plots for CTCA and VH IVUS for the volume (a) and the length of lesion (b) for NCP
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