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Abstract
In this study, we present classification and regression
analysis to predict the UPDRS score and its enhancement
after the microelectrode STN signal recording
(MER) with DBS surgery (implantation of the micro-
electrode). We hypothesized that a data informed group-
ing of features extrapolated from MER signals of STN
can envisage restore (by decreasing the tremor) and
functioning the motor improvement in Parkinson’s
disease (PD) patients. A random—forest is used to
account for unbalanced datasets and multiple observa-
tions per PD subject, and showed that only five features of
STN-MER signals are sufficient and account for prog-
nosting UPDRS advancement. This finding suggests that
STN signal characteristics are maximum correlated to the
extent of improvement motor restoration and motor
behavior observed in STN DBS.
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1 Introduction

1.1 Parkinson’s Disease

Parkinson’s disease (PD) is a chronic complex progressive
neurodegenerative brain disorder that belongs to a larger
class of disorders called movement disorders. PD is one of
the most common neurologic disorders that elders’ experi-
ence with “severe health hazard” is a devastating diagnosis
affecting circa *2 of every 1000 (2/1000) older adults [1–
8]. The causes are unknown and so far no cure [1, 2] and the
search for optimal cure is on for the past 2 centuries since the
time it was first described by James Parkinson [18]. In PD,
one particular population of brain cells those that produce a
chemical messenger termed dopamine become impaired and
lost over time. The loss of these brain cells causes circuits
(basal ganglia circuits) in the brain to function bizarrely and
those uncharacteristic circuits effect in movement problems
[1]. Basal ganglion is an important organ of the brain mainly
mean for our movement and control. Present healings for PD
are meant for alleviating the symptoms rather than the dis-
ease’s progression (For instance, Levedopa—a chemical
building block that converts human body into dopamine. It
replaces the dopamine that is lost in Parkinson’s. However,
there are more side effects with this drug), hence fresh hope
lies in new research and findings, such a latest classification
and prediction of clinical enhancements with microelectrode
STN recording with DBS (MER with STN-DBS) [1]. The
early signs of the disease may help us understand the pro-
gress of the disease because it is more than just these
dopamine cells in the brain; it affect other cells as well that
we are learning more and more about every day [2].
Therefore, prediction is one of the most significant factors in
the detection of PD features at very early stage (say two
decades in advance). In this paper, we present the classifi-
cation and prediction of clinical and/or diagnostic setup in
deep brain stimulation (DBS) by using with the help of
electro-neuro-physiological MER recordings of STN signals.
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The PD is characterized by its four classes of cardinal motor
features (or symptoms), namely, tremor, postural instability,
bradykinesia and rigidity [1–4]. PD is caused by damage to
the central nervous system (CNS) [5]. Symptoms similar to
PD have been mentioned as “Kampavata” in ancient Indian
Hindi documents [6]. The search for optimal cure is on for
the last two hundred years ever since it was first discovered
by James Parkinson a way back in 1817 [7]. Since then, the
disease has become the pathfinder for other neurodegener-
ative disorders, starting with the discovery of dopamine (in
PD, one particular population of the brain cells that produce
a chemical messenger to communicate with other cells)
deficiency within the basal ganglia, which led to the devel-
opment of first effective treatment for a progressive neu-
rodegenerative condition [8]. However, it is possible that PD
was present long before this landmark description. A disease
known as Kampa Vata consisting of shaking (kampa) and
lack of muscular movement (vata), existed in ancient India
as long as 4500 years ago [9]. Deep brain stimulation
(DBS) of subthalamic-nuclei (STN) is a surgical technique
proving better results not only for the detection of PD fea-
tures—symptoms but also significantly reducing tremors and
restoring the motor function highly which was invented by
the two neuroscientists, namely Benabid and Delong [10,
11]. Its mechanisms are not fully elucidated quantitatively—
objectively, though the technique was clinically established.
However, the clinical outcome is determined by many
factors. Microelectrode-recordings (MER) of subthalamic-
nucleus (STN) intraoperatively for targeting during DBS
procedures are most useful for deducing inferences. This is
because anatomical structural organization provide some
clues as to what might be the function of basal ganglia cir-
cuits, the inference of function from anatomical structure is
exploratory [12, 13]. So far quantitative work was done
MER with STN-DBS but subject specific enhancement was
not performed. In this study we attempted to quantify also
predict the UPDRS subject specific enhancement. Objec-
tive PD scale can provide a more complete picture of the
neurophysiological basis for PD.

2 Methods

The process for DBS was a one-stage bilateral stereotactic
approach using a combined electrode for both MER and
macrostimulation. Up to five micro/macro-electrodes were
used in an array with a central, lateral, medial, anterior, and
posterior position. Final target location was based on test
stimulation (intraoperatively). Bilateral STN-DBS per-
formed in our tertiary-care center NIMS hospital Hyderabad
(South India).

2.1 MR Image-Targeting

One of the major problem with the targeting subthalamic
nucleus is that it is a small biconvex lens diamond structure
almond shaped and not clearly detected on MRI due to lack
of contrast between the STN and the surrounding structures
[1–18]. The STN can be visualized on MRI but other
methods such as Lozano’s technique where a position 3 mm
lateral to the superolateral border of the red nucleus is tar-
geted have been studied and found to be effective areas for
stimulation. As the MRI techniques are not absolutely per-
fect, use of electrophysiological techniques such as micro-
electrode recording from the subthalamic nucleus as well as
intraoperative stimulation have assisted in clearly demar-
cating the STN. Microelectrode recording can identify sub-
thalamic neurons by their characteristic bursting pattern and
their signals clearly identify the nucleus form the sur-
rounding structures. On table stimulation is studied to ensure
that the there is optimal benefit with the least side effects and
this is the final test to ensure the correct targeting of the
STN. All these techniques are normally used in combination
during targeting, albeit, the individual role of each modality
is still not known.

2.2 MER Signal Acquisition—Recording

Five electrodes (Medtronic maker) were placed in an array
with a central, lateral, medial, posterior, and an anterior
position placed 2 mm apart, to delineate the borders of the
nucleus. The targeting was performed according to Lozano’s
technique—2 mm sections are taken parallel to the plane of
anterior comissure-posterior commissure line and at the level
with maximum volume of red nucleus, STN is targeted at
3 mm lateral to the anterolateral border of red nucleus. The
co-ordinates are entered into stereocalc software which gives
the co-ordinates of the STN. Another neuro navigation
frame-link-software is also used to plot the course of the
electrodes and to avoid vessels. The surgery is performed
with two burr holes on the two sides based on the
co-ordinates. Five channels that are introduced with the
central channel representing the MRI target while medial
and lateral are placed in the X-axis while anterior and pos-
terior are placed in the Y-axis to cover an area of 5 mm
diameter. Intra-operative recording was performed in all 5
channels. For performing microelectrode-signal-recording of
STN with DBS, five microelectrodes are slowly passed
through the STN and recording is performed from ±10 mm
(10 mm above to 10 mm below) the STN calculated on the
MRI. STN is identified. Extracellular MER was performed
with Medtronic-micro-electrodes having an input-impedance
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of 1.1 ± 0.4 mega-Ohms (MX’s) which was calculated at
220 Hz. Signals were recorded with biological-amplifiers
signal average`s (10,000 times-amplification) of the Med-
tronic Lead-point system, by employing bootstrapping
method. Signals were filtered using analog band pass filters
with lower and upper cut-off frequencies between 0.5 and
5 kHz (amplifier bandwidth). The signal was sampled at
10 kHz, by using 12-bit-resolution analogue-to-digital con-
verter (A/DC) card (2N, N = 12 dynamic-range giving 4096
sample values) and then later up-sampled to 20-kHz at off-
line. The channel with maximum recording and the earliest
recording were recorded on both sides. Intraoperative test
stimulation was performed in all channels from the level at
the onset of MER recording. Stimulation was done at 1mv,
3mv to assess the improvement in bradykinesia, rigidity and
tremor. Appearance of dyskinesias was considered to be
associated with accurate targeting. Side effects were assessed
at 5mv and 7mv to ensure that the final channel chosen had
maximum improvement with least side effects. Correlation
was assessed between the aspects of MER and the final
channel chosen in 20 PD-subjects (40 sides).

2.3 Microelectrode Signal Processing
and Feature—Selection

In MER signal processing, local field potentials(LFP) and
multi-unit-activity(MUA) signals were gathered by low pass
and high pass filtering techniques at cut-off frequency 200
and 500 Hz. Spike-detection was performed by MUA
voltage-thresholding. Spike-related-features were assessed
by common spike-train-metrics [14, 15]. To examine the
behavior of local neuronal populations, the BUA was
extracted from the MUA following the procedure [18]. In the
same studies, it was suggested that the rationality between
the MUA-BUA signal-envelopes and LFP may reveal
coherent-activity of small or large neuronal-populations.
From every signal, we extracted 89 features. A list of
investigative-features and their corresponding-metaphors is
given in Table 1.

2.4 Random—Forests

A professional way to alleviate above-fitting is by imparting
—training several uncorrelated trees in an ensemble-learner
referred to as random-forest (RF), which can be applied for
classification and regression. RF’s can handle highly non-
linear interactions and they can cope with small observations
and large-number of predictors. During training phase, each
tree in RF is trained using a different subset of data
“bootstrap-aggregation” and features “random-subspace

method” randomly-sampled with replacement. The data
that are left out during construction of each tree are used for
validation purposes (Fig. 1).

As building the forest advances, the system generates an
internal unbiased-estimate of the generalization error (OOB
error) which is then used to identify most important vari-
ables. The final OOB prediction for a given observation is
the average score attained over-all-trees(regression) or
choosing majority within forest(classification), without trees
that included this observation during their training-phase. In
this study, we used RFs both for classification and regres-
sion. In the former case, we extracted features that heuris-
tically classified “good” and “poor” STN-DBS responders,
defined as patients that exhibited an “off”-state
UPDRS-enhancement above or below 38% [17].

2.5 Model Training and Corroboration

RFs were trained using subject-wise bootstrapping, intrigu-
ing separately into account the left-hemisphere(LH) and
right-hemisphere(RH) STN-feature vectors of each subject
Fig. 1a. Each RF consisted of 300-trees. For classification,
each tree was created by choosing randomly with replace-
ment 7/9 “good” responders and 7/11 “poor” responders.
Therefore, the training pool envisaged 14 feature-vectors (7
PD-subjects � 2 hemi-spheres) labeled as one (1 meant for
“good”), and 14 feature-vectors labeled as zero (0, meant for
“poor”). The left-over feature-vectors (2 are “good”
responders and 4 are “poor” responders) were used as the
OOB set (Fig. 1). A PD-subject was classified as a “good”
responder if and only if the average predicted as with “good”
response and the probability attained for the LH-STN and
RH-STN feature-vectors was � 0.5. The predicted UPDRS
improvement (%) was computed as the average prediction
obtained from the L and R-STN.

2.6 The Performance of Model

In the case of classification, we used the Matthews
Cor-relation Coefficient (MCC) for the OOB data as a per-
formance metric, which is a class skew insensitive measure
given by

MCC ¼ TP:TN � FP:FN

TPþFPð Þ TPþFNð ÞðTN þFP TNþFNð Þ
where, TN (TP) and FN (FP) are the numbers of correctly
and incorrectly predicted “poor” (“good”) response obser-
vations, respectively. An MCC value of 1 corresponds to a
perfect prediction, while a value of −1 indicates a total
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Table 1 Name of features and their corresponding metaphors

Name Metaphor Name Metaphor

PowerXW Power-band ratio of signal-X in frequency
Band-W

RR Bursting-rate

PKXW Peak-to-average power-ratio of signal-X in
frequency band-W

PB Percentage-of-bursts

FmaxPKXW Frequency corresponding to maximum peak to
average power ratio of signal X in frequency
band W

FR Firing-rate

CVXW Coefficient of variation of signal X in
frequency band W

stimE coordinates of the stimulation contact on axis E, where E
corresponds to x (lateral–medial),y (posteri or–anterior), or z
(ventral–dorsal)

PAFCWZ LFP phase–amplitude cross frequency
coupling index betwese phase in band W and
voltage in band Z

stimd Euclidean-distance of stimulation contact from the STN
center

PPFCWZ LFP phase–phase cross frequency coupling
index between the phase in band W and
amplitude in band Z

dist Euclidean-distance of STNMER from the stimulation
contact

ZeroCrossX Percentage of electrical-baseline i.e., zero-line
crossings in signal X

distpeakB Distance between the maximum aggregate beta LFP peak
and the stimulation contact

SNRX 20log10 rX
rn ; rX ¼ SDðXÞ; rn ¼ medianðXÞ

0:7645
hemi Hemisphere (Left or Right)

maxCohXY Maximum coherence between signals X and Y prep Preponderance (L/R: most affected body side is the
right/left, controlled by the left/right hemisphere)

maxCohXYW Maximum coherence between signals X and Y
in frequency band W

HY Hoehn and Yahr PD scale

max_PLW Maximum phase locking index in band W for
the LFP signal

levpre Preoperative LED

MISI Mean interspike interval age Age

SISI Interspike interval standard deviation years Disease duration

CVISI Interspike-interval-coefficient-of-variation sex sez (female/male coded as 1/2)

PS Percentage of spikes in the spike signal

MER-Signals X and Y correspond to LFP, EMUA, or EBUA. The frequency bands W and Z are defined as follows: delta (D; 1–4 Hz), theta (T; 4–
10 Hz), beta (B; 10–45 Hz), gamma (G; 45–100 Hz), and high gamma (HG; 100–200 Hz). For example, maxCohXYW refers to the maximum
coherence between LFP and EMUA, LFP and EBUA, or EMUA and EBUA in one of the aforementioned frequency bands

Fig. 1 a 300-trees of random forest, in the group, every tree uses a different-training (TR) and testing-set (TS). b Sequence of algorithmic steps
pursued to foresee for each-subject
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disagreement between prediction and observation. Random
—classification gives values closure to zero (0). In case of a
tie in terms of the MCC value, we chose the classifier that
given the minimum cross entropy loss function (J) defined
mathematically can be expressed in different ways as
follows:

J ¼ � 1
N

XN

k¼1

yk ln pkð Þþ
XN

k¼1

1� ykð Þln 1� pkð Þ
" #

ð1Þ

¼ � 1
N

XN

k¼1

yk ln pkð Þþ ln 1� pkð Þ � ykln 1� pkð Þ½ � ð2Þ

¼ � 1
N

XN

k¼1

ln 1� pkð Þþ yk½ln pkð Þ � ln 1� pkð Þ�gf ð3Þ

¼ � 1
N

XN

k¼1

ln 1� pkð Þþ yk: ln
p

1� pkð Þ
� �� �

ð4Þ

Here, N is total number of patients, yk is prognostically
and/or diagnostically assessed response of subject k, Pk—
predicted-response (i.e. average predicted-probability of
good response from right and left of subthalamic-nuclei. In
connection with the regression—model, the performance is
assessed by using the correlation co-efficient (the Pearson’s
correlation-coefficient, q) and the NMSE between the pre-
dicted and the clinically assessed UPDRS enhancement (%)
output vector for the OOB data. For the classification,
Matthews Correlation Coefficient (MCC) is used for the out
of bag data as performance-metric as a system of standard
measurement [16].

Feature—selections
Feature-significance (FS) is expressed as reduce in the pre-
dicted classification or augments in the predicted-regression
if the values of this feature is randomly shuffled during the
regression phase. This measure was computed for every-tree,
averaged and then divided by the following standard devi-
ation (SD) over the whole forest.

s2 ¼
ffiffiffiffi
s2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 x��xð Þ2
n� 1

s

ð5Þ

where, r ¼
ffiffiffiffiffi
r2

p
is the population (subjects N = 20) stan-

dard deviation (SD).
The SD of a sample is square-root-of-variance computed as

given in Eq. (5). The combined features given the maximum
classification or minimum normalized MSE-regression was
chosen.

3 Results

In this study, the STN DBS prediction was considered as a
classification—problem. A backward removal feature—se-
lection method and found that four-features attained a
maximal MCC-value is 0.9045. Important features found in
this study are PKLFPHG, power-BUAT, max-PLB, and
max-PLHG with FIs 0.1495, 0.9142, 0.3899, and 0.5982
correspondingly.

4 Conclusions

UPDR scale is not a rationale but to some extent hypothet-
ical means rationally or scientifically not accepted scale. It is
based on clinician's choice scale. Hence for objective—sci-
entific evidence computer simulation and statistical model-
ing for disease symptoms—or features prediction at early
stage be conducted. Then it can be compared with the UPDR
scale in terms of the performance improvement after the
DBS. Significancy of the work and its importance to the
medical physics and biomedical eng: The approach can
employ a small number of the signal features inside the STN
to predict, separately for each subject, the behavioral out-
come of STN DBS, justifying further investigation and,
clinical applications possibly. This work has broad impli-
cation and innovation of newer statistical and electrophysi-
ological techniques and improving currently available
MRI DBS machines for evaluating all types of neurological
disorders in particular Parkinson`s disease and other move-
ment disorders. It will be of great interest to the
Scientists/engineers involved in medical physics and
biomedical research in the fields of biomedical instrumen-
tation and signal processing applications to
neuroelectrophysiology.
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