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Abstract

Introduction: The deep brain stimulation (DBS) is a
treatment technique for late-stage Parkinson’s disease
(PD), based on chronic electrical stimulation of neural
tissue through implanted electrodes. To achieve high level
of symptom suppression with low side effects, precise
electrode placement is necessary, although difficult due to
small size of the target nucleus and various sources of
inaccuracy, especially brain shift and electrode bending.
To increase accuracy of electrode placement, electrophys-
iological recording using several parallel microelectrodes
(MER) is used intraoperatively in most centers. Location of
the target nucleus is identified from manual expert
evaluation of characteristic neuronal activity. Existing
studies have presented several models to classify individ-
ual recordings or trajectories automatically. In this study,
we extend this approach by fitting a 3D anatomical atlas to
the recorded electrophysiological activity, thus adding
topological information. Methods: We developed a prob-
abilistic model of neuronal activity in the vicinity the
subthalamic nucleus (STN), based on normalized signal
energy. The model is used to find a maximum-likelihood
transformation of an anatomical surface-based atlas to the
recorded activity. The resulting atlas fit is compared to atlas
position estimated from pre-operative MRI scans. Accu-
racy of STN classification is then evaluated in a
leave-one-subject-out scenario using expert MER annota-
tion. Results: In an evaluation on a set of 27 multi-electrode
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trajectories from 15 PD patients, the proposed method
showed higher accuracy in STN-nonSTN classification
(88.1%) compared to the reference methods (78.7%) with
an even more pronounced advantage in sensitivity (69.0%
vs 44.6%). Conclusion: The proposed method allows
electrophysiology-based refinement of atlas position of the
STN and represents a promising direction in refining
accuracy of MER localization in clinical DBS setting, as
well as in research of DBS mechanisms.
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1 Introduction

The deep brain stimulation (DBS), targeting the basal gan-
glia is a symptomatic treatment technique, applied routinely
to late-stage Parkinson’s disease (PD) and other movement
disorders, such as dystonia or essential tremor. In case of the
PD, chronic electrical stimulation is most commonly applied
to the subthalamic nucleus (STN), which is small (ca 10 mm
along its longest axis) and located in subcortical structures,
which makes it a challenging target to implant an electrode
into. Moreover, brain shift, electrode bending and other
influences during the surgery introduce additional inaccu-
racies into the process.

As highly accurate electrode placement within the nucleus
is crucial for achieving a good clinical outcome, most centers
use manually evaluated microelectrode recordings (MER) for
additional electrophysiological verification of optimal target
position. Over more than a decade, successful efforts have
been made to provide automatic MER classification to ease
the process using various signal-derived features and
machine-learning models(e.g. [1, 2]).

In this paper, we extend on the work of Lujan et al. [3],
who suggested fitting of a 3D atlas to manually-labeled
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MER locations. Using a probabilistic framework, which we
described previously in [4], we develop a model that allows
fully automatic fitting of a surface STN atlas directly to raw
MER data, without the need for manual annotation.

2 Methods

The proposed model is based on finding a maximum like-
lihood fit of a surface STN model to neuronal background
activity, assuming different probability distribution of neu-
ronal activity level inside and outside the STN. The aim is
then to find transformation of the STN atlas, which maxi-
mizes the likelihood of STN position with respect to the
measured MER data. We use the surface atlas by Krauth
et al. [5] but any STN atlas can be used in general. The
model is described in more detail below, further technical
details can be found in the thesis [6].

To extract an estimate of the neuronal background
activity level from raw MER signal, we used the normalized
root-mean-square (NRMS) measure proposed in [1], which
sets the mean RMS value of the first five recording positions
of each trajectory equal to one. This approach compensates
for variability in electrode impedance.

2.1 The 3D Atlas Transformation Procedure
We define the 3D transformation used in this study as a
matrix operation with 9 degrees of freedom (DOF), allowing
translations #.,t, and t,, scaling s,,s, and s. along the x,y
and z axis respectively and also rotation around the three
axes, given by the angles 7,,7, and y,.

The transformation is given by the vector r and can be
completely characterized as:

(1)

T = [te, by, by Sk Sy, 825 Vs Ty Vel

2.2 Model Structure

The model assumes two states with different NRMS
levels: (i) Inside the STN (IN) and (ii) outside the STN
(OUT). The probability distribution of the NRMS values
in each state is modeled by the log-normal distribution in
what we call the emission probabilities. Additionally, we
incorporate smooth transition between states around the
boundary, modeled by logistic (sigmoid) function, which
we call the sigmoid membership function. This provides
smooth gradient for more convenient optimization, as well
as a more realistic representation of  the
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electrophysiological boundary of the STN, which is fuzzy
especially at the lateral end (see Fig. 2). The emission
probabilities, as well as parameters of the sigmoid mem-
bership functions are estimated during model training
phase on data from the training set and form the parameter
vector 6.

The atlas fitting is then done during the evaluation phase,
typically on unseen test data. The aim is to find a transfor-
mation vector #* which maximizes the likelihood of pro-
ducing a set of observations (i.e. NRMS values)
x ={x,...,xy} recorded at locations L= {l,,..., Iy},
where [; are the 3D recording site coordinates corresponding
to observation x;. The transformation using the parameters r
is then applied to the STN atlas vertices v at the initial
position. All parameters from the vector @ are held fixed
during the whole evaluation phase.

Emission probabilities The emission probabilities rep-
resent how likely a background activity (NRMS) level x; is
to be observed in the respective state. The emission proba-
bilities are modeled using the log-normal distribution, whose
parameters {fioyr, Gour, iy, O} are estimated during the
training phase using standard maximum-likelihood estima-
tion. Example of trained emission probabilities can be found
in Fig. 1.

In the evaluation phase, the emission probability
p(xi|s, @) of observing NRMS value x; in a state s given
model parameters @ is calculated using formula for proba-
bility density function of the log-normal distribution.

Membership probabilities The transition between states
is modeled by the membership sigmoid function S, which
also represents the fuzzy electrophysiological boundary of
the STN, as observed on real data (see Fig. 2). As the slope
of the transition is steeper at the proximal boundary (where
the electrode enters the STN) the training NRMS data
aligned with respect to the STN entry, combined with mir-
rored data aligned with respect to the STN exit are used to fit
a single sigmoid function S, defined by two parameters: shift
B, and slope ;.

In the evaluation phase, the sigmoid transition function
depends only on the distance from the model surface, rotated
using vector r and is computed according to:

S@i|@) = (1+ exp—(F + '), ()

where d; is the euclidean distance between the MER mea-
surement location /; and the nearest point on the surface of
the STN model. Additionally, the distance d; is multiplied by
—1 if the location [; lies outside of the model and by +1 when
inside.

The membership probabilities for trained model param-
eters @ and anatomical model transformed by the vector r
are then computed according to:
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p(l; € IN|r,®) = S(l;|r, ©@) (3) Likelihood function and MLE estimation The aim of
optimization in the evaluation phase is to find transformation
for the state IN and: vector r*, which maximizes the likelihood given the
observed data:
p(l; € OUT|r,®) =1 —p(l; € IN|r, O) 4)

for the state OUT.

The trained model is fully characterized by the parameter
vector.

0 = {iwour; Gour, fun: 51N7/30751}’ comprising parame-
ters of the emission probability densities and those of the
sigmoid function.

r* = argmax L(r|{x,L}, ©®) = argmax p({x,L}|r,®) (5)

Where p is the joint probability of observation sequence x
at locations L, given trained model parameters @ and
transformation vector r. When decomposed, the probability
of being in state s (i.e. IN or OUT) and observing a NRMS
value x; at position I; is computed as a product of the
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emission and membership probability functions according to
the Bayes’ theorem:

p({x;,l; € s}|r,0) =p(xi|l; € s,r,0) -p(l; €slr,0) (6)

The joint probability for a single observation is then
computed as a marginalization over both states:

p({xivliHr’ @) :p({xi’li}|r7 @) =
= p({xi,l; € IN}|r, O) (7)
+ p({xi,l; € OUT}|r, ©)

To compute the joint probability of the whole observation
sequence x = {x1,...,xy},L={li,..., Iy}, we naively
assume conditional independence given model parameters
and compute the joint probability as:

p({x,L}|r,0) = [ [ p({x li}Ir, ©) (8)
i=1

For numerical stability, we use the equivalent task and
minimize the negative log-likelihood instead:

r'= argrmin Z —In(p({x;,li}|r, ©)), 9)

where r* is the MLE estimate of optimal transformation
parameters, given the model parameters and the observation
sequence. The minimization is performed using general
purpose constrained optimization (the active set algorithm as
implemented in MathWorks Matlab fmincon function). To
prevent the model from diverging from clinically reasonable
scaling and rotation, we set the maximum shift to 5 mm in
any direction, maximum scaling +25% in each direction and
rotation maximum =£15° around each axis, hence the model
abbreviation nrmsCon, used below.

2.3 Reference Methods

In order to evaluate performance of the proposed method, we
implemented three reference methods, based solely on
anatomical landmarks, identified manually by neurologists
in the pre-operative MRI images:

1. target—the method consists in finding a translation
[tx, ty, 1;], which shifts central point of the atlas model to
the planned target point without any scaling or rotation.
This method is also used as the initalization for
NRMS-based fitting, as it requires no additional infor-
mation apart from planned target coordinates, which is
the result of standard pre-surgical planning procedure.
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2. acpc—this method represents a simple atlas fitting
approach, based on two significant brain landmarks: the
anterior commisure (AC) and the posterior commisure
(PC). The method analytically finds a full 9-DOF trans-
formation which maps the vector given by AC and PC
points in the atlas to the vector given by AC-PC points,
identified in patient’s MRI scans.

3. allpoints—additionally to the AC-PC points, this method
uses 12 landmarks on the STN boundaries, defined pre-
viously in the supplement of [7]. The method than finds a
full 9-DOF transformation to minimize the least-square
distance between the characteristic points on the atlas and
in manually annotated patient MRI data.

2.4 Data Collection and Preprocessing

The MER signals were recorded intra-operatively from five
parallel electrode trajectories, spaced 2 mm apart in a
“ben-gun” configuration around the central electrode. The
sampling frequency was 24 kHz, signals were filtered by a
bandpass filter in the range 500-5000 Hz upon recording
and stored for offline processing. At each of the recording
positions, spaced apart by 0.5 mm, a typically ten seconds of
MER signal were recorded using each electrode. In order to
eliminate artifact-bearing segments of the signals, we used
our automatic artifact classifier, presented previously in [8].
Manual intra-operative expert annotation of the MER signals
has been stored, labeling each signal as coming either from
inside or outside the STN.

2.5 Performance Evaluation

In order to estimate the out of sample performance of the
proposed method and due to the relatively small sample size
(in terms of whole patient sets), we employed the leave one
subject out (LOSO) procedure. In each iteration we kept one
subject’s data (maximum two 5-electrode trajectories for
bi-laterally implanted patients) for model fitting and evalu-
ation, while all other data were used to obtain the
parameters ©.

To evaluate quality of the model fit, we used the
machine-learning based approach used also in [3]: the MER
recording sites, expert-labeled as STN, were expected to be
encapsulated inside the fitted atlas (true positives), while
other recordings were expected to lie outside. The accuracy,
sensitivity, specificity and Youden J-index
(J = sensitivity + specificity — 1) were computed.
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3D model fitting: crossvalidation results
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Table 1 Overall 3D STN model fitting crossvalidation results on the 27 validation trajectories for all methods

Method Accuracy Sensitivity
Mean (%) Std (%) Mean (%)

Target 74,3 7,6 40,7

acpc 75,7 8,9 44,7

All Points 78,7 8,7 44,6

nrmsCon 88,1 5,2 69,0

nrmsCon
Sensitivity Specificity
Specificity Youden J
Std Mean (%) Std Mean (%) Std (%)
12,3 87,3 5,7 28,0 17,0
17,2 87,6 8,2 32,3 21,1
19,8 92,3 4,9 36,8 21,3
14,2 95,5 5.4 64,5 13,6

3 Results and Discussion

3.1 Collected Data

The dataset contained data from 27 explorations in 15 PD
patients with complete 3D information and additional 8
explorations from 4 patients with measured and annotated
MER signals but without information on spatial recording
locations. The latter small set was included for estimation of
model parameters (@) but was excluded from validation.
Each exploration consisted of 5 electrode trajectories with
25.9 recording positions on average. In total, the data
included 35 explorations from 19 patients, leading to 175
electrode trajectories and 4538 recorded MER signals.

3.2 Performance Evaluation

Classification performance (i.e. the proportion of correctly
included/excluded recording sites) was evaluated for each of
the fitting methods on the 27 exploration trajectories, the

results are shown in the Fig. 3 and Table 1. As seen from the
results, it is apparent that the presented nrmsCon method
provided substantially better fit to the measured MER sites
than any of the other methods. The results further show, that
the main difference is driven especially by the higher sen-
sitivity, i.e. the proportion of correctly included STN points
inside the model. This is even more clearly seen from the
tabulated values of the Youden J statistic, where the pro-
posed method surpasses the reference methods by a factor of
two. It has to be considered that the dataset is highly
imbalanced dataset with only 27% of signals coming from
the STN.

To provide additional insight into the results, we evalu-
ated the fitted values of the transformation parameters indi-
vidually. Results of the proposed nrmsCon method showed
similar distribution to the landmark-based allPoints method,
except for a relatively large ca 2 mm shift in the y direction.
According to previous studies [9], this is the main direction
of the brain shift occuring during surgery and this prelimi-
nary evaluation thus provides promising results for
intra-operative brain-shift compensation. An example visu-
alization of atlas fit can be found in Fig. 4.
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Fig. 4 Examples of model fit using the a allPoints method based on
characteristic MRI points in patient pre-operative scans (red x) and on
the atlas (blue o) and b the proposed nrmsCon method based solely on
electrophysiology on a single five-electrode trajectory. The final model
position after fitting is shown in purple, the initial position (target

4 Conclusion

We proposed a probabilistic model for automatic direct fit-
ting of a STN atlas to multi-electrode explorative DBS MER
data. The presented results indicate that the proposed
MER-based system may potentially bring increased accu-
racy in intra-operative MER localization and thus contribute
to higher efficacy in DBS research and potentially also in
therapy.
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