
Influence of Parameter Choice
on the Detection of High-Dimensional
Functional Networks

Britta Pester, Karl-Jürgen Bär, and Lutz Leistritz

Abstract
The detection of directed interactions within networks
derived from spatially highly resolved data, such as
functional magnetic resonance imaging (fMRI) has been a
challenging task for the last years. Commonly this is
solved by restricting the analysis to a small number of
representative network nodes (e.g. fMRI voxels), to
regions of interest (e.g. brain areas) or by using dimension
reduction methods like principal or independent compo-
nent analysis. Recently, these problems have successfully
been encountered by combining multivariate autoregres-
sive models and parallel factor analysis. This approach
involves a cascade of analysis steps, entailing a number of
parameters that have to be chosen carefully. Yet, the
question of an appropriate choice of analysis parameters
has not been clarified so far—in particular for temporally
varying models. In this work we fill this gap. Synthetic
data with known underlying ground truth structure are
generated to evaluate the correctness of results in
dependence on the parameter choice. Resting state fMRI
data are used to assess the influence of the involved
parameters in the clinical application. We found that
model residuals offer a good means for determining
appropriate filter algorithm parameters; the model order
should be chosen according to two aspects: the
well-established information criteria and the fit between
Fourier and estimated spectra.
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1 Introduction

The human brain is a complex network, exchanging an
immense mass of information between remote neuronal
areas. Therefore, a thorough investigation of brain processes
does not only require the analysis of brain activity but also
the consideration brain connectivity [1]. In other words, two
regions being active at the same time do not necessarily
transfer information between each other. For this reason
many approaches have successfully developed in order to
quantify the extent of connectivity between different brain
regions. Prominent examples are dynamic causal modelling,
transfer entropy, Granger causality, directed transfer func-
tion and partial directed coherence [1–3].

However, spatially high-resolved data lead to two prob-
lems: first, the number of spatial nodes (in this work: fMRI
voxels) by far exceed the number of temporal samples (in
this work: fMRI volumes). Second, from a practical point of
view, the computational capacities are exhausted due to the
high network dimensionality: in the fMRI case, the number
of network nodes reaches ten thousands up to a hundreds of
thousands; in addition, the number of possible connections
quadratically rises with the number of network nodes. This
makes any conventional connectivity analysis unfeasible. In
most cases, the analysis is limited to time series derived from
a smaller set of selected or aggregated voxels. Another
alternative is the application of dimension reduction
methodologies as for example independent or principal
component analysis (PCA) [4, 5].

A new approach has been proposed in [6]. Here, a PCA
dimensionality reduction from high-dimensional (HD) into
low-dimensional (LD) space is combined with a following
multivariate autoregressive (MVAR) estimation which is
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transferred back into HD space. This finally enables the
calculation of a highly resolved network, i.e. the quantifi-
cation of directed connectivity from voxel to voxel.

What has been missing so far is an in-depth consideration
of the necessary analysis parameters. The proposed
methodology requires many analysis configurations, such as
settings of the estimation algorithm or the proportion of
retained variance after the PCA dimension reduction. Here,
we successively vary the involved parameters and show the
influence and reciprocal effects of parameter choice on the
quality of network identification.

2 Material

In this work, we followed two complementary approaches:
first, simulated data with known ground truth structure were
generated in order to evaluate the correctness of results in
dependence on the parameter choice. Second, resting state
fMRI data of 154 healthy subjects were used to assess the
influence of the involved parameters in a clinical application.

2.1 Synthetic Data

Simulated time series were realized as time-variant MVAR
processes, where the model coefficients were chosen
according to pre-defined ground truth networks. These net-
works were designed in such a way that the network nodes
form four non-overlapping clusters, so-called modules [7].
This means that the expected value for an intra-module con-
nection is considerably higher than that for an extra-module
connection. The number of network nodes was set to D ¼ 50
and the number of temporal samples toN ¼ 1000, providing a
good balance between network size and temporal resolution
[8]. At sample n ¼ 500, ground truth changed from one net-
work into another, which enables the generation of time series
based on a temporally varying model.

2.2 Resting State fMRI Data

To evaluate the influence of analysis parameters in
practice, data from a resting state fMRI experiment
conducted by the Department of Psychiatry and Psy-
chotherapy, Jena University Hospital were used [9].
Pseudonymized data of 154 subjects were acquired using
the 12 channel head coil at the 3T MRI scanner
(MAGNETOM TIM Trio, Siemens). The experiment
included a resting state fMRI scan with a subsequent
high-resolution, anatomical T1-weighted MR scan. A to-

tal of N ¼ 240 volumes were acquired; each consisting of
45 transversal slices covering the whole brain, deliberately
including the lower brainstem [9].

3 Methods

3.1 Applied Analysis Steps

The herein applied methodologies are based on time-variant
multivariate autoregressive models (tvMVAR) [10]. This
tvMVAR approach has been further developed to the large
scale MVAR model (lsMVAR) that can be used to estimate
time-variant approximations of high-dimensional data [8].
Despite the benefit of time variance, this approach offers the
possibility to apply any tvMVAR-based connectivity mea-
sure in high dimensions, including frequency-selective
approaches.

The initial step of the lsMVAR approach is a reduction
from HD space comprising D (D large) network nodes to LD
space with C (C small) network nodes by means of PCA. Let
x 2 R

C�N be the LD matrix containing the C retained prin-
ciple components of N temporal samples derived from HD
data. Then, consider the LD tvMVAR model of order p for x:

xðnÞ ¼
Xp

r¼1

BrðnÞxðn� rÞþ eðnÞ; n ¼ pþ 1; . . .;N; ð1Þ

with LD model parameters Br 2 R
C�C and LD model

residuals eðnÞ 2 R
C. Then, the whole model can be pro-

jected back onto D-dimensional space by a left multiplica-
tion of the pseudoinverse of the (truncated) mixing matrix
W 2 R

C�D:

Wþ xðnÞ ¼ Wþ Xp

r¼1

Brxðn� rÞþ eðnÞ
 !

ð2Þ

which can be rearranged to

Wþ xðnÞ|fflfflfflfflffl{zfflfflfflfflffl}
:¼~yðnÞ

¼
Xp

r¼1

WþBrW|fflfflfflfflffl{zfflfflfflfflffl}
:¼Ar

Wþ xðn� rÞþ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
:¼~yðn�1Þ

Wþ eðnÞ|fflfflfflfflffl{zfflfflfflfflffl}
:¼~eðnÞ

2 R
D;

ð3Þ
with approximated HD data ~yðnÞ, HD model parameters Ar

and HD residuals ~eðnÞ. This offers the opportunity for the
estimation of time-variant MVAR models. In this work,
connectivity was assessed by means of time-variant partial
directed coherence (PDC) which has the benefit that directed
connectivity can be quantified under consideration of vari-
ous frequencies [1].
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3.2 Involved Parameters

The lsMVAR approach requires four parameters that are
involved in three different analysis steps:

• TvMVAR parameters were estimated by means of the
Kalman Filter [11]. This time-variant approach requires
two constants: c1 regulates the adaption of the covariance
matrix; c2 defines the step-width of the random walk that
is used to update the tvMVAR parameters.

• The tvMVAR model p has to be determined. This
parameter defines the number of temporal samples in the
past that are considered for the estimation of the current
value.

• PCA dimension reduction demands an a priori definition
of the number of retained PCA components C. This value
determines the proportion of variance explanation after
PCA, i.e. the higher C, the higher the explanation of
variance.

4 Results

4.1 Synthetic Data

Simulations offer the possibility to clearly decide whether
the results are correct or not. To assess the goodness of fit
between ground truth and computed networks, we used the
Cohen’s kappa [12]. It quantifies the agreement between two
raters; in this case between the derived networks and the
known ground truth networks. The results of our simulations
can be summarized as follows:

• A quite reasonable possibility for choosing the Kalman
filter parameters c1; c2 is to consider the tvMVAR model
residuals. In our simulations, this approach has proven to
be useful: synthetic data showed that a high Kappa
coefficient—and thus a high accordance between GTNs
and PDC networks—corresponds to low mean squared
model residuals. Therefore, surveying the model residu-
als offers a suitable possibility for an adequate choice of
c1; c2.

• The determination of the tvMVAR model order p has
proven to be not that clear. Conventional information
criteria like Akaike’s and Bayesian information criterion
[10] provide a first recommendation by establishing a
balance between goodness of fit and number of param-
eters that have to be estimated. However, for
frequency-selective approaches like PDC it is important
whether the model order is suitable to properly reproduce
the frequency spectrum of original data. We found that

the best way is to initially use the information criteria to
obtain a first impression of a reasonable region for the
choice of p; then, Fourier spectra of real time series
should be checked against those of estimated
MVAR-based data.

• The successive variation of the number of retained
components C did not show surprising results for simu-
lated data. Figure 1a shows the performance in depen-
dence on C by means of the area under the receiver
operating characteristic curve [13]; clearly, the accor-
dance of PDC networks with GTNs rises with increasing
C. Cohen’s kappa in dependence on the explained vari-
ance is represented in Fig. 1b; again, a higher explana-
tion of variance leads to a deteriorated agreement
between GTNs and lsMVAR-driven networks.

4.2 FMRI Data

Individual fMRI connectivity patterns heavily differed
between subjects. However, it turned out that in despite of
this variation, the influence of parameter choice was similar
for the whole group. Therefore, we show the results for one
exemplary subject.

First, all parameters were chosen according to the sug-
gestions described in Sect. 4.1, then they were kept fix and
successively one parameter has been systematically varied.

• The variation of Kalman filter parameters c1; c2 showed
that the model residuals slightly rise with increasing c1
while they intensively decrease with increasing c2. That
means: a faster adaption of the covariance matrix and a
lower the step width of the random walk lead to a better
model fit. As a consequence, it does not appear to be
useful to solely consider the model residuals but also
whether the adaption of the estimator is satisfying, which
of course requires a certain experience of the user in the
application of the method.

• According to Akaike’s and Bayesian information crite-
rion the model order was suggested to be set to p ¼ 8. As
described in Sect. 4.1, it is important to also consider the
spectral properties; we found that for our data, p� 11
should be preferred with the aim to adequately separate
connectivity patterns regarding the frequency domain.
The reason is that for p\11, time-frequency-maps of
PDC are quite smeared, getting clearer with increasing p,
while for p[ 11, there is hardly any further improve-
ment regarding this point. As an example, Fig. 2a shows
the connection from the locus coeruleus complex (LC) to
the nucleus raphes dorsalis (DRN), which have proven to
be connected during resting state situations [9]. In our
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time-variant, frequency-selective analysis approach, the
order p ¼ 8 suggested by the information criteria is not
enough to separate the connection in low frequencies
(around 0.06 Hz) emerging during the second half
(Fig. 2a, left panel) in a clear manner as compared to
p ¼ 11 (Fig. 2a, right panel).

• A similar situation is when the number of retained
components C has to be chosen. Whenever C is
increased, the model gets more accurate; on the other
hand it has to be considered that a high number of
components leads to high computational efforts. There-
fore, a good strategy is to inspect the results in depen-
dence on the explained variance and identify a proper
balance between explained variance and adequate com-
putational efforts. For our data, we found that an
explained variance of around 87% provides a good
compromise. Again, the rationale is that this choice
represents the point, where for higher values of C the
detected networks hardly vary, while for smaller C the
derived networks immensely differ when C is changed.
This property is by far more pronounced for the choice of
C as compared to the choice of p. Figure 2b demon-
strates this property: analogous to Fig. 2a, it illustrates
the PDC time-frequency maps of the connection from LC
to DRN. In the left panel, the map for 75% variance
explanation is shown and on the left for 87%. The most
striking difference occurs in the lower frequency domain:
for 75%, high connections are indicated around 0.03 Hz,

while for 87% it is around 0.06 Hz. Notably, this
0.06 Hz connection remains for higher variance expla-
nation than 87%, this is why that point provides a suit-
able indicator for a proper choice of C.

5 Discussion and Future Work

Any newly introduced method requires a substantial evalu-
ation to justify the application to real-world data. Nonethe-
less, in addition it is important to test and understand the
influence and mutual effects of analysis configurations in
order to avoid misinterpretations due to inappropriate
parameter settings. For conventional PDC there has been
in-depth work on that aspect based on simulations and EEG
data, providing recommendations for the application of this
method [14].

However, for the recently proposed lsMVAR approach
this point has not been investigated yet. The lsMVAR
methodology combines a PCA dimension reduction with
tvMVAR modelling and involves four important parame-
ters: two parameters that control the adaption of the esti-
mation algorithm; the tvMVAR model order, defining the
number steps in the past that are included for the estimation
of the current value; and the number of retained PCA
components which corresponds to the proportion of
explained variance.

Fig. 1 Performance of lsMVAR-based PDC analysis. Panel a shows the temporal mean of the AUC values in dependence on the number of
retained components C ¼ 1; . . .; 50. In panel b, the temporal dynamics of Cohen’s kappa for 70; 80; 90 and 100% explained variance are depicted

(a) p = 8; 87 % p = 11; 87 % (b) p = 11; 75 % p = 11; 87 %

Fig. 2 PDC results of the connection from LC to DRN. Subplot
a provides a comparison between two different model orders p ¼ 8
(suggested choice based on information criteria) and p ¼ 11

(data-driven optimum). Analogously, subplot b shows the PDC results
for two different proportions of explained variance, 75 and 87%
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Based on the analysis of synthetic data, we found that
model residuals yield a useful indication for a suitable set-
ting of the Kalman filter control parameters. A combination
between common information criteria and the consideration
of frequency spectra give support in choosing an appropriate
tvMVAR model order p. Not surprisingly, a higher number
of retained components C leads to a better agreement
between GTNs and PDC networks.

For the resting state fMRI data, we found that the choice
of Kalman filter parameters based on model residuals is not
advisable. Besides surveying the residuals, a sufficient
expertise is necessary to find an appropriate compromise
between fast adaption and smoothness of the estimated
model. The model order p should be chosen in two steps:
first, information criteria should be applied to get an
appropriate initial value. Second, the results in this range
should be inspected with regard to the fit between Fourier
and estimated spectra, in order to find out whether this value
is adequate. Finally we found that the most impact on the
results was made by the explained variance after PCA (i.e.
number of retained components C). Similar to p, C should
successively be varied to identify the setting when the results
of higher C only differ to a small extent.

So far, we inspected the results from a methodological
point of view. After finding an appropriate parameter choice,
the next step will be to investigate the results in addition to
methodological questions—can the lsMVAR approach pro-
vide new insights into the default mode network [15]?
Furthermore, what has not been done yet is to take advan-
tage of the possibility to explore temporally varying exper-
imental setups [16]. Finally, a comparison between groups is
of great interest [17], which however will be a big challenge
due to the high number of output data.
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