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Abstract
The estimation in real time of the functional and mental
state level for the athlete during the loads is essential for
management of the training process. New multimodal
metric, obtained by means of the brain-computer interface
(BCI), is proposed. The paper discusses the results of the
joint usage of data from Emotiv EPOC+ mobile wireless
headset. It includes motion sensors (accelerometer) and
EEG channels. The features of the Emotiv EPOC+
interface allow to record the deviation of the head from
the body axis, which provides an additional channel of
information about the physical and mental
(psycho-emotional) state of the athlete. Based on this
data a new multimodal metric is calculated. Approbation
of the metric was performed for functional stress studies
on group of 10 volunteer subjects, including evaluations
of the TOVA-test and the hyperventilation load. The joint
application of different signals modalities allows to obtain
estimates level of attention for these functional studies.
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1 Introduction

Traditionally, the assessment of the functional state of an
athlete using EEG devices is carried out in the laboratory
conditions. The progress of mobile data transmission tech-
nologies, the emergence of mobile and energy saving com-
puting technologies allows to create a mobile functional
status monitoring systems for personal use (including
applications in sport tasks) [1]. The development of user
EEG systems brain-computer in the last decade has shown a
fundamental difference in approaches for laboratory studies
and functional state assessment in everyday life [2]. In this
work we use the 14-channel wireless EEG headset Emotiv
EPOC+ [3]. Studies have shown that this headset is a
worthy replacement for EEG laboratory instruments in
everyday life [4, 5].

Multimodal signals paradigm allows to increase the
accuracy of classification the functional state of a person in
real world conditions. So, the accelerometer signal indicates
the daily activity type and allows to increase accuracy of
classification in HRV feature space [6]. On the other hand,
human motion data depends of vestibular system in almost
all aspects of life [7]. In this way, the information on the
movements of the head can be used to assess the cognitive
status: self-perception of movement, spatial perception,
including moving objects.

In [8], EEG and accelerometer signals from Emotiv Epoc
+ are used for assessing the functional state in integrated
multimodal feature space. Integrated feature space was
constructed and verified for telemedicine and workout
applications with multimodal intelligence user interface [9,
10]. The averaged data for a stage (3–5 min duration) was
used for feature extraction and classification. It is more
useful to have a metric for continuous athlete functional state
assessment during each stage.
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The purpose of this work is the development of metrics,
the detection of physiological patterns with changes in the
functional state of the athlete in the training process. An
example of a metric is the calculated values of the level of
focus, stress, etc. at certain points in time.

2 Materials and Methods

2.1 Stages of the Experiment

To receive signals during the experiments, Emotiv Epoc+
headsets with Community SDK for data processing were
used. The Emotiv EPOC+ headset contains 14 EEG chan-
nels and a three-axis accelerometer. The location of the
electrodes of the EEG corresponds to the standard
scheme 10–20: AF3, F7, F3, FC5, T7, P7, Pz, O2, P8, T8,
FC6, F4, F8, AF4. The sample rate is 128 Hz. The number
of digits of the ADC are 14. As additional software, Pebl
was used to monitor the training program, Matlab was used
for analysis and data processing.

The program of the experiment was sharpened as follows
in order to simulate changes in the functional state during the
training:

• Rest state (RS) during 300 s;
• TOVA test (T1) during 180 s;
• Hyperventilation load (HL) during 180 s;
• TOVA test (T2) during 180 s;
• Aftereffect (AE) during 300 s.

At the stage of functional rest, the subject sits opposite the
monitor of the personal computer and looks at the black
screen. Stage of TOVA test is an intellectual test for the
variability of attention. It is a mental test to evaluate the
function of active attention and control reactions. During the
test, squares and circles appear alternately in the upper and
lower parts of the computer screen. The task of the subject is
to press a space on the keyboard when the square appears at
the top of the screen [11]. At the stage of hyperventilation,
the subject often breathes during the whole time, imitating
breathing during heavy loads.

For functional state control purpose, ECG signal during
all stages was registered. The spectral characteristics of HRV
are investigated in the frequency bands indexes. The changes
in VLF index were significant during the stages [3]. It is
known [12], that fluctuations of VLF index of HRV signal
with periods in range (0.04–0.003) Hz is complex and is due
to the influence on the heart rhythm of the suprasegmental
regulation level, since the amplitude of these waves is clo-
sely related to the mental stress and the functional state of
the cerebral cortex.

2.2 Formation of Feature Space

2.2.1 Primary Signal Processing
Signals of motion modalities. During the experiments, the
data was saved from the built-in three-axis accelerometer of
the Emotiv EPOC+ headset; it provides data: time; acceler-
ation values along the 3-axis.

The signal measured by the accelerometer is a linear sum
of three components:

• Body Acceleration Component is acceleration resulting
from body movement;

• Gravitation Acceleration Component is acceleration
resulting from gravity;

• Noise inherent to the measuring system.

Changes in acceleration along the axes caused by human
movements correspond to frequencies from 0 to 20 Hz in the
signal spectrum. The gravitational component can be iso-
lated in the range from 0 to 0.3 Hz. A component containing
instrument noise is usually in the range above 20 Hz. To
isolate the BA component, a second-order Butterworth
window filter with frequencies from 0.3 to 20 Hz is used
[13]. The study used the characteristics of the accelerometer
signal from [6].

Signals of bioelectrical activity modalities. In the first
step, all EEG data were transformed to the frequency
domain. To separate EEG—rhythms from the signal, a
second-order Butterworth bandpass filter were applied.
Rhythms borders were: Theta (4–7) Hz, Alpha (7–15) Hz,
Beta-Low (15–25) Hz, Beta-High (25–31) Hz. Discrete
Fourier transform method was used for frequencies mag-
nitudes extraction. As result, four coefficients are calculated
for each of 14-th channel. Each coefficient is sum of
magnitudes for one of the rhythms. Thus, EEG data in
frequency domain are described as 56-dimension feature
space [8].

2.2.2 The Model of the Integrated Feature Vector
Further, in order to build feature space and exclude artifacts
components, the methods of the principal components
(PCA) [14, 15], and linear discriminant analysis (LDA) [16]
are used. Pairs of main components with the maximum
explained variance and better classification accuracy are
used to identify the most informative characteristics, for this
purpose, the information on loads for EEG channels is used
[8]. Data sets for pairs of states (RS and HL; RS and T1; T1
and HL) are used for building cross all stages feature space.
The Fig. 1 contains data sets units, data processing unit
descriptions and example of classification as described
above.
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The result of feature selection is EEG feature vector,
which contains AF3, T7, O1, T8, AF4 channels with Theta
and Alpha rhythms components, correspondingly. There-
fore, the new EEG vector size is 10 versus 56 in initial EEG
data.

After that, new EEG feature space was expanded by
adding the 22 components of accelerometer features as it
depicted in Fig. 2.

2.3 Calculating a New Metric

The LDA method was used for creation the metric. Data sets
for analysis contained EEG and MD recordings in integrated
feature space for all subjects and the following pairs of
stages: RS and HL, RS and T1. Test data were obtained from

the experiment data using a cross-validation test
(leave-one-out-cross-validation).

In our case, the accuracy obtained was 100% for all test
samples. To determine the level of the athlete functional
state, the formula derived in [17] is used to estimate the
distance of each subject from the hyperplane PD separating
the two load tests:

PD ¼
P32

i¼1 kixi þC
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP32

i¼1 k
2
i

q ; ð1Þ

where

• ki are the coefficients of the hyperplane separating the
two functional states;

• C is constant;
• xi are the coordinates of the state of the subject in the

characteristic space.

3 Results

The metric values were calculated on the basis of the aver-
aged data for each stage and each subject. Boxplots were
obtained for the states of the RS-T1 metric (as shown in
Fig. 2)

This metric describes statistically significant state chan-
ges for the RS and T1 stages. For the stages HL, T2 and AE,
the changes are not significant. In Fig. 3 shows scatter
graphs for the RS-HL metric. From these graphs it is clear
that:

Fig. 1 The diagram of data
processing for feature selection
purpose

Fig. 2 The process of integrated feature vector creation
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• There are statistically significant differences in the metric
values for the following stages: RS, T1, HL, and AE
levels;

• There are no statistically significant changes for stages
T1 and T2;

• There is a dynamic reflecting changes in the metric in the
state AE towards recovering RS values after cognitive
and physical exertion (Fig. 4).

4 Conclusions

One of the problems in developing an intelligent, multi-
modal interface is to obtain a model for combining modal-
ities to calculate various metrics for assessing a person
functional state. In this work, metrics to determine the
physiological patterns of changes in the functional state of
athletes in the process of training were obtained.

To calculate each metric, the coefficients of the LDA
model were used. The coefficients of LDA models were

obtained on training samples in the integrated feature space
of EEG modalities and an accelerometer for pairs of func-
tional states:

• Rest state (RS) and TOVA test (T1) is the metric of
RS-T1;

• Rest state (RS) and Hyperventilation load (HL) is the
metric of RS-HL.

The value of the metrics was calculated for the following
functional states: Rest state (RS); TOVA test (T1); Hyper-
ventilation load (HL); TOVA test (T2); Aftereffect (AE).
The calculation was made for the averaged characteristics of
the modalities of each athlete. As a result, boxplots of metric
values were obtained for each stage of the experiment.

Based on the results of the boxplot diagram analysis, the
following conclusions can be drawn:

1. for the RS-HL metric, it is possible to obtain statistically
significant changes in the assessment of the athlete
functional state for the stages: Rest state (RS); TOVA
test, Hyperventilation load (HL); Aftereffect (AE);

2. for the RS-HL metric, there is a dynamic that reflects the
changes in the metric in the state AE towards the
recovery of RS values after cognitive and physical
exertion.

The revealed dynamics of the RS-HL metric in our
opinion is associated with a change in the controlling effect
of the cerebral cortex. What causes changes in the activity of
alpha rhythm and changes in patterns of head movements.
Changes in the patterns of movement of the head are asso-
ciated with the search for the most stable position of the head
relative to the gravitational vector.
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