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Abstract
Feedback control of movements by functional electrical
stimulation (FES) can be useful for restoring motor
function of paralyzed subjects. However, it has not been
used practically. Some of possible reasons were consid-
ered to be in designing a feedback FES controller and its
parameter determination, and nonlinear characteristics
with large time delay in muscle response to electrical
stimulation, which are different between subjects. This
study focused on the hybrid controller that consists of
artificial neural network (ANN) and fuzzy feedback
controller. ANN was trained by feedback error learning
(FEL) to realize a feedforward controller. Although FEL
can realize feedforward FES controller, target movement
patterns are limited to those similar to patterns used in the
training. In this paper, FEL-FES controller was tested in
learning both random and cyclic movements through
computer simulation of knee joint angle control with 4
different training data sets: (1) sinusoidal patterns,
(2) patterns generated by low pass filtered random values,
(3) using both the sinusoidal and the LPF random patterns
alternatively and (4) patterns that consisted of 3 random
sinusoidal components. Trained ANNs were evaluated in
feedforward control of sinusoidal and random angle
patterns. Training with data set (1) caused delay in
controlling random patterns, and training with data set
(2) caused delay in controlling sinusoidal patterns.
Training with data set (3) showed intermediate perfor-
mance between those with data set (1) and (2). Training
with data set (4) could control adequately both random
and sinusoidal patterns. These results suggested that
generating movement patterns using sinusoidal compo-
nents would be effective for various movement control by
FEL-FES controller.
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1 Introduction

Functional electrical stimulation (FES) can be useful for
restoring or assisting paralyzed motor function due to a
spinal cord injury or a cerebrovascular disease [1, 2].
However, feedback FES control has not been used practi-
cally, although it can be effective for restoring paralyzed
movements, while a method of using pre-determined stim-
ulation data were practical [3]. Some of possible reasons are
considered to be in difficulties of designing a feedback FES
controller and its parameter determination because the
musculoskeletal system has nonlinear, time-variant charac-
teristics with large time delay in muscle response to elec-
trical stimulation, which are different between subjects, and
redundancy in stimulation intensity determination.

In our previous work, a multichannel proportional- inte-
gral- derivative (PID) controller was developed to control
the redundant musculoskeletal system that involves an
ill-posed problem in stimulus intensity determination [4, 5]
and the PID controller was applied to Feedback Error
Learning (FEL) controller [6–10]. In the FEL controller for
FES (FEL-FES controller), an artificial neural network
(ANN) was trained by the FEL to develop the inverse
dynamics model (IDM) of electrically stimulated muscu-
loskeletal system, which can be used as a feedforward
controller. Although FEL can realize feedforward FES
controller for each subject, target movement patterns are
limited to those similar to patterns used in the training such
as sinusoidal angle patterns or randomly generated angle
patterns of two-point reaching movement. In addition, there
are few studies on FES control of movements of nonlinear
musculoskeletal system [11–13]. Therefore, an FES control
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of various movements for paralyzed subjects has been
desired.

In this study, FEL-FES controller was developed using
fuzzy feedback controller. Fuzzy controller is considered to
be useful to realize a practical feedback FES controller. The
FEL-FES controller was tested in learning both random and
cyclic movements through computer simulation of knee joint
angle control with 4 different training data sets.

2 Methods

2.1 Outline of FEL-FES Controller

The block diagram of the FEL-FES controller used in this
study is shown in Fig. 1, which is composed of a fuzzy
feedback controller and ANN. The ANN was trained to
realize the inverse dynamics model (IDM) of electrically
stimulated musculoskeletal system, which can be used as a
feedforward controller. The fuzzy controller consisted of 2
sub-fuzzy controllers. One calculates change of stimulation
intensity from error and the other calculates stimulation
intensity proportional to the error. Stimulation intensity ufb is
the sum of the previous stimulation intensity and the cal-
culated intensities. The sum of stimulation outputs from the
ANN and the fuzzy controller is applied to a muscle.

2.2 Computer Simulation Method

The FEL-FES controller was tested in computer simulation
of knee joint angle control by stimulating the rectus femoris.
A three-layered ANN was used as a feedforward controller.
The inputs of the ANN were time series of angles, angular
velocities and angular accelerations of target movements at
continuous 6 times, from n to n + 5 (sampling frequency of
30 Hz). The numbers of neurons were 18, 18 and 1 for the
input, hidden and output layers, respectively.

The ANN was trained by the FEL under 4 different
training data sets. Learning of the ANN was performed after
a single control trial. In each control trial, movement was
controlled for 24 s, and the first 4 s was not used for the
learning. The 4 training data sets were as follows:

(1) sinusoidal patterns
(2) patterns generated by low pass filtered random values
(3) using both the sinusoidal and the LPF random patterns

alternatively
(4) patterns consisted of 3 random sinusoidal components.

For the data set (1), sinusoidal pattern was determined for
each control trial, in which cycle period and amplitude was
selected randomly from 2, 3, 4, 5, and 6 s of cycle period
and 2, 4, 6, 8, and 10° of amplitude with an offset of 5°. For
the data set (2), random value between 0 and 1 was gener-
ated for 24 s data and the data was low pass filtered with cut
off frequency of 0.2 Hz. Angle of the LPF random pattern
was adjusted to be between 5 and 25°. Pattern of data set
(4) was generated by the following for each control trial:

f ðnDtÞ ¼ sin
2p
T1

nDtþ sin
2p
T2

nDtþ sin
2p
T3

nDt ð1Þ

Here, Dt shows sampling interval and n is the sample
number. Cycle period T1, T2 and T3 were determined ran-
domly in order to satisfy the following relation:

1:8\T1\3:2\T2\4:6\T3\6:0 ð2Þ

Amplitude was adjusted to be between 5 and 25°.
ANN learning was performed more than 10000 control

trials, and stopped as mean error ME converged.

ME ¼ 1
N

XN

n¼1

eðnDtÞj j ð3Þ

where N is the total number of sampled data used for
learning in a single control trial. The 4 ANNs trained with all
data sets were tested in feedforward control of 3 sinusoidal
angle patterns (cycle period of 2 s with amplitude of 10°,
cycle period of 4 s with amplitude of 8° and cycle period of
6 s with amplitude of 6°). The 3 ANNs trained with data set
(1), (2) and (3) were tested in feedforward control of
LPF-random patterns and the ANN trained with data set
(4) was tested in controlling random sinusoidal component
patterns.

The model of electrically stimulated muscle was repre-
sented by a second order system with time delay. Gain of the
model was determined by a cubic polynomial approximation
of measured input-output characteristics of the rectus
femoris of a healthy subject.

3 Results and Discussions

Examples of feedforward control by trained ANNs are shown
in Figs. 2 and 3. ANN trained with sinusoidal patterns (data
set (1)) could control properly all 3 sinusoidal patterns.

Fig. 1 Block diagram of the FEL controller for FES. hd and ha
represent the desired and the measured joint angles. The ANN learns
with the outputs of the fuzzy controller while controlling limbs
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However, time delay was caused in controlling LPF-random
patterns. On the other hand, ANN trained with LPF-random
patterns (data set (2)) could control LPF-random patterns well,
while it caused larger time delay in controlling sinusoidal
patterns than ANNs trained with other data sets. ANN trained

with data set (3) showed intermediate results between those by
the ANN trained with data set (1) and those with data set (2).
The ANN trained with random sinusoidal component patterns
(data set (4)) could control adequately both sinusoidal and
random sinusoidal component patterns.

desired controlled
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Fig. 2 Examples of feedforward control of sinusoidal angle trajecto-
ries by trained ANNs (cycle period of 2 s with amplitude of 10°). From
the top, results of ANN trained with data set (a), (b), (c) and (d) are
shown
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Fig. 3 Examples of feedforward control of unlearned random angle
trajectories by trained ANNs. From the top, results of ANN trained with
data set (a), (b), (c) and (d) are shown
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Table 1 shows average mean error (ME) for 3 sinusoidal
patterns and 3 random patterns. Values of ME were calcu-
lated for 20 s of each control trial from 4 s after the begin-
ning of control. The error for tracking of sinusoidal angle
patterns was smallest by the ANN trained with data set (1),
although the ANN trained with data set (4) also showed
small error. Training with data set (3) sometimes caused
increase of error after decrease as the learning progresses.
The ANN trained with the data set (4) showed small error for
both patterns. Especially, 2 sinusoidal patterns with larger
cycling periods and smaller amplitudes were controlled with
better performance than the ANN trained with sinusoidal
patterns (data set (1)).

The computer simulation tests suggested that generating
movement patterns using sinusoidal components would be
effective for various movement control by FEL-FES con-
troller. As shown in our previous study [10], it is considered
that using various target positions and movement velocities
rather than repeated training with same target would be
effective, even if training data is used only one time.

The model of electrically stimulated musculoskeletal
system used in this study was a simple second order system
although it included time delay and nonlinear gain. There-
fore, data sets (1) and (2), which were basically effective for
angle patterns similar to those used in ANN training, are
considered not to be suitable for FES application. Using both
patterns alternatively could not improve significantly the
ANN learning. Although the computer simulation tests
suggested that random sinusoidal component patterns (data
set (4)) could be effective for learning various movement
patterns for FES, target angle trajectories used in this paper
did not include constant angle as used in moving between 2
points [10]. Random patterns for evaluation of data set
(4) were different from others. It is necessary to test the
trained ANN with various angle patterns including keeping
constant angles.

The ANN used in this study was a 3-layered network with
the fixed numbers of neurons. Learning coefficients were
determined by a trial and error manner. Therefore, further
examinations to determine parameters of ANN would be
required.

4 Conclusion

In this paper, FEL-FES controller was tested in learning both
random and cyclic movements through computer simulation of
knee joint angle control with 4 different training data sets.
Trained ANNs were evaluated in feedforward control of sinu-
soidal and random angle patterns. The ANN trained with ran-
dom sinusoidal component patterns could control both
sinusoidal and random patterns appropriately, while training
with sinusoidal patterns and using both patters alternatively
caused delay in controlling random angle patterns, and training
with the LPF-random patterns caused delay in controlling
sinusoidal patterns. These suggested that generatingmovement
patterns using sinusoidal components would be effective for
various movement control by FEL-FES controller.
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