
Chapter 9
An Integral Formula Adapted to
Different Boundary Conditions for
Arbitrarily High-Dimensional Nonlinear
Klein–Gordon Equations

This chapter is concerned with the initial-boundary value problem for arbitrarily
high-dimensional Klein–Gordon equations, posed on a bounded domain Ω ⊂ R

d

for d ≥ 1 and subject to suitable boundary conditions. We derive and analyse an
integral formula which proves to be adapted to different boundary conditions for
general Klein–Gordon equations in arbitrarily high-dimensional spaces. The formula
gives a closed-form solution to arbitrarily high-dimensional homogeneous linear
Klein–Gordon equations,which is totally different from thewell-knownD’Alembert,
Poisson and Kirchhoff formulas.

9.1 Introduction

Nonlinear phenomena appear in many areas of scientific and engineering applica-
tions such as solid state physics, plasma physics, fluid dynamics, gas dynamics, wave
mechanics, mathematical biology and chemical kinetics, which can be modelled by
partial differential equations (PDEs). For the past four decades, there has been broad
interest in a class of nonlinear evolution equations that admits extremely stable solu-
tions termed solitons (see, e.g. [1, 2, 5, 6, 8, 16, 21, 27]). An important and typical
example of such equations is the Klein–Gordon equation which can be expressed in
the form:

⎧
⎪⎨

⎪⎩

Utt (X, t) − a2ΔU (X, t) = g
(
U (X, t)

)
, X ∈ Ω, t0 < t ≤ T,

U (X, t0) = U0(X),

Ut (X, t0) = U1(X),

(9.1)

where g is a function of U , U : R
d × R → R with d ≥ 1, representing the wave

displacement at position X ∈ R
d and time t , and
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g
(
U (X, t)

) = −G ′(U ) = −dG(U ),

for some smooth function G(U ). The general Klein–Gordon equation can be written
as

⎧
⎪⎨

⎪⎩

Utt (X, t) − a2ΔU (X, t) = −G ′(U (X, t)
)
, X ∈ Ω, t0 < t ≤ T,

U (X, t0) = U0(X),

Ut (X, t0) = U1(X).

(9.2)

The Klein–Gordon equation was derived in 1928 as a relativistic version of the
Schrödinger equation describing free particles. However, theKlein–Gordon equation
was named after the physicists Oskar Klein and Walter Gordon, and proposed in
1926. The model describes relativistic electrons and correctly represents the spinless
pion, a composite particle [17]. Here, it is assumed that (9.1) is subject to the given
boundary conditions, such as Dirichlet boundary conditions, or Neumann boundary
conditions, or Robin boundary conditions. Equation (9.1) is a natural generalization
of the linear wave equation (see, e.g. [16]). A simple model of (9.1) with d = 1 and
g = 0 is the homogeneous one-dimensional undamped wave equation,

⎧
⎪⎨

⎪⎩

Utt − a2Uxx = 0, xl < x < xr , t0 < t ≤ T,

U (x, t0) = u0(x),

Ut (x, t0) = u1(x),

(9.3)

subject to the Dirichlet boundary conditions

U (xl, t) = α(t), U (xr , t) = β(t), t0 ≤ t ≤ T,

where a means the horizontal propagation speed of the wave motion.
In the numerical simulation it is well known that themethod of lines is an effective

approach to solving partial differential equations such as nonlinear wave equations.
Using the method of lines [20], the semidiscretisation of (9.1) in space in the one-
dimensional case suggests semi-discrete differential equations, namely, a system of
second-order ordinary differential equations in time. Using this approach, each one-
dimensional nonlinear wave equation can be converted into a system of second-order
ordinary differential equations in time:

{
q ′′(t) + Mq(t) = g̃

(
q(t), q ′(t)

)
, t ∈ [t0, tend],

q(t0) = q0, q ′(t0) = q ′
0,

(9.4)

where g̃ : Rm × R
m → R

m is assumed to be continuous and M is a m × m positive
semi-definite constant matrix. The solution of system (9.4) is a nonlinear multi-
frequency oscillator. Such an oscillatory system has received a great deal of attention
in the last few years (see, e.g. [3, 10, 12, 14, 24, 31]).
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With regard to the exact solution of the system (9.4) and its derivative, the authors
in [29, 32] established the following matrix-variation-of-constants formula which in
fact is a semi-analytical expression of the solution of (9.4), or an integral formula
for the oscillatory system (9.4).

Theorem 9.1 If g̃ : Rm × R
m → R

m is continuous in (9.4), then the solution of
(9.4) and its derivative satisfy

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(t) = φ0
(
(t − t0)

2M
)
q0 + (t − t0)φ1

(
(t − t0)

2M
)
q ′
0

+
∫ t

t0

(t − ζ )φ1((t − ζ )2M)g̃
(
q(ζ ), q ′(ζ )

)
dζ,

q ′(t) = −(t − t0)Mφ1
(
(t − t0)

2M
)
q0 + φ0

(
(t − t0)

2M
)
q ′
0

+
∫ t

t0

φ0
(
(t − ζ )2M

)
g̃
(
q(ζ ), q ′(ζ )

)
dζ,

(9.5)

for t0, t ∈ (−∞,+∞), where the unconditionally convergent matrix-valued func-
tions are defined by

φ j (M) :=
∞∑

k=0

(−1)kMk

(2k + j)! , j = 0, 1, . . . . (9.6)

Much attention has been paid to thematrix-variation-of-constants formula to develop
new integrators such as ARKN (Adapted Runge–Kutta Nyström) methods, ERKN
(Extended Runge–Kutta Nyström) methods, Gautschi-type methods, and trigono-
metric Fourier collocation methods for solving (9.4) (see, e.g. [9–13, 15, 22, 23, 25,
26, 29–32, 34]).

In practice, there exists a very small class of nonlinear PDEs that can be solved
exactly by analytical methods. One such method is the well-known inverse scatter-
ing method (see, e.g. [4]), also called the inverse spectral transform, which is, for
nonlinear PDEs, a direct generalization of the Fourier transform for linear PDEs.
Regrettably, the inverse scattering method can solve the initial value problems for a
very small class of nonlinear PDEs (see, e.g. [8]) with the requirement that U and
various of its derivatives tend to zero as ‖X‖ → ∞. For this reason, one therefore
might think that the set of solvable nonlinear PDEs has “measure zero”, and that lin-
ear PDEs and solvable nonlinear PDEs could be considered as belonging to a class in
which solutions can be added in some function spaces (see, e.g. [16]). On the other
hand, it is known that a formal solution to arbitrarily high-dimensionalKlein–Gordon
equations may be valuable in understanding new nonlinear physical phenomena and
investigating novel numerical integrators for the simulation of nonlinear phenomena.

As stated above, nonlinear PDEs in general cannot be solved explicitly. Fortu-
nately, however, we note that the mathematical structure of (9.1) is similar to (9.4),
observing the fact that −M in (9.4) can be regarded as a discrete operator of the
Laplacian Δ in the one-dimensional case of the nonlinear wave equation based on
the method of lines. This observation motivates us to derive and analyse an integral
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formula for the general Klein–Gordon equation (9.1) posed on a bounded domain
Ω ⊂ R

d for d ≥ 1 equipped with the requirement of suitable boundary conditions.
The outline of this chapter is as follows. In Sect. 9.2, we analyse and derive an

integral formula for (9.1). In Sect. 9.3, for the one-dimensional Klein–Gordon equa-
tions,we show in detail the consistency of the integral formulawith the corresponding
Dirichlet boundary conditions and Neumann boundary conditions, respectively. In
Sect. 9.4, for arbitrarily high-dimensional Klein–Gordon equations, we prove the
consistency of the formula with the underlying Dirichlet boundary conditions, and
Neumann boundary conditions, respectively. To show the applications of the for-
mula, illustrative examples are presented in Sect. 9.5. The last section is devoted to
conclusions.

9.2 An Integral Formula for Arbitrarily High-Dimensional
Klein–Gordon Equations

9.2.1 General Case

It is known that Δ is an unbounded operator which is not defined for all v ∈ L2(Ω).
In order to model boundary conditions, we restrict ourselves to the case where Δ is
defined on a domain D(Δ) ⊂ L2(Ω), such that the underlying boundary condition is
satisfied. For example, wewill consider the one-dimensional Klein–Gordon equation
of the form {

utt − a2Δu = f (u), x ∈ [0, Γ ], t ≥ t0,

u(x, t0) = ϕ1(x), ut (x, t0) = ϕ2(x), x ∈ [0, Γ ], (9.7)

subject to the periodic boundary condition

u(0, t) = u(Γ, t),

where Γ is a fundamental period with respect to x , where Δ = ∂2
x and f (u) =

−V ′(u) is the negative derivative of a potential function V (u). We then have

D(Δ) = {v(x) : ∀v ∈ L2([0, Γ ]) and v(0) = v(Γ )}.

The functions in D(Δ) are continuously differentiable and satisfy the underlying
boundary condition.

In what follows, we will present an integral formula for the arbitrarily high-
dimensional Klein–Gordon equation (9.1). To this end, we first define the formal
operator-argument functions as follows:
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φ j (Δ) :=
∞∑

k=0

Δk

(2k + j)! , j = 0, 1, . . . , (9.8)

where Δ is an operator defined on a normed space, such as the Laplacian defined on
a subspace D(Δ) of L2(Ω), and in this case, the operator-argument functions φ j (Δ)

for j = 0, 1, . . . defined by (9.8) are bounded. Accordingly, φ j (Δ) in (9.8) can be
called Laplacian-argument functions defined on D(Δ). Besides, Δ can also be a
linear transformation such as a matrix and in the particular case of Δ = −M , where
M is a positive semi-definite constant matrix, (9.8) reduces to the matrix-valued
functions (9.6) which have been widely used in the study of ARKN methods and
ERKN methods for solving oscillatory or highly oscillatory differential equations
(see, e.g. [32]).

It can be observed that (9.8) is obtained from replacing −x by Δ in

φ j (x) =
∞∑

k=0

(−1)k xk

(2k + j)! , j = 0, 1, 2, . . . ,

and all φ j (x) are bounded for any x ≥ 0. Each of these operators has a complete
system of orthogonal eigenfunctions in the complex Hilbert space L2(Ω). Because
of the isomorphism between L2 and �2, the operator Δ on L2(Ω) induces a cor-
responding operator on �2. An elementary analysis which is similar to that for the
exponential differential operator presented by Hochbruck and Ostermann in [15]
can make sure that the Laplacian-argument functions defined on D(Δ) depending
on different boundary conditions are bounded operators with respect to the norm
‖ · ‖L2(Ω)←L2(Ω), where Ω is the space region under consideration. The details can
be found in [18]. It is noted that the exponential differential operator has the proper-
ties of a semigroup which are required for analysis. However, the operators defined
by (9.8) do not have the semigroup property, but this is not needed in our analysis
here.

Some useful properties of Laplacian-argument functions (9.8) are established in
the next two theorems.

Theorem 9.2 Suppose that Δ is the Laplacian defined on a subspace D(Δ) of
L2(Ω). The Laplacian-argument functions φ0 and φ1 defined by (9.8) satisfy:

⎧
⎪⎪⎨

⎪⎪⎩

d

dζ

[
φ0

(
(t − ζ )2a2Δ

)] = −(t − ζ )a2Δφ1
(
(t − ζ )2a2Δ

)
,

d

dζ

[
(t − ζ )φ1

(
(t − ζ )2a2Δ

)] = −φ0
(
(t − ζ )2a2Δ

)
, t, ζ ∈ R.

(9.9)
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Proof
d

dζ

[
φ0

(
(t − ζ )2a2Δ

)] = d

dζ

∞∑

k=0

(t − ζ )2ka2kΔk

(2k)!

= −
∞∑

k=1

(t − ζ )2k−1a2kΔk

(2k − 1)!

= −
∞∑

k=0

(t − ζ )2k+1a2k+2Δk+1

(2k + 1)!
= −(t − ζ )a2Δφ1

(
(t − ζ )2a2Δ

)
.

The second formula of (9.9) can be proved in a similar way. �

Theorem 9.3 For a symmetric negative (semi-) definite operatorΔ, the φ-functions
defined by (9.8) satisfy:

(i)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

φ0(a
2Δ) =

∞∑

k=0

a2kΔk

(2k)! =
∞∑

k=0

(a
√−Δ)2k(−1)k

(2k)! = cos(a
√−Δ),

φ1(a
2Δ) =

∞∑

k=0

a2kΔk

(2k + 1)! =
∞∑

k=0

(a
√−Δ)2k(−1)k

(2k + 1)! = 1

a
√−Δ

sin(a
√−Δ), a 
= 0.

(9.10)

(ii)

φ2
0(a

2Δ) − a2Δφ2
1(a

2Δ) = I, (9.11)

φ0(a
2Δ) − I = a2Δφ2(a

2Δ). (9.12)

(iii) ⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φ2
1(a

2Δ) − φ0(a
2Δ)φ2(a

2Δ) = φ2(a
2Δ),

φ0(a
2Δ)φ1(a

2Δ) − a2Δφ1(a
2Δ)φ2(a

2Δ) = φ1(a
2Δ),

1

2

(
φ2
1(a

2Δ) − a2Δφ2
2(a

2Δ)
) = φ2(a

2Δ).

(9.13)

(iv)
∫ 1

0

(1 − ξ)φ1
(
a2(1 − ξ)2Δ

)
ξ j

j ! dξ = φ j+2(a
2Δ),

∫ 1

0

φ0
(
a2(1 − ξ)2Δ

)
ξ j

j ! dξ = φ j+1(a
2Δ).

(9.14)

Proof These results can be derived straightforwardly and we omit the details of the
proof for the sake of brevity. �
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Weare now in a position to present an integral formula for the initial-value problem
of the general arbitrarily high-dimensional Klein–Gordon equation (9.1).

Theorem 9.4 If Δ is a Laplacian defined on a subspace D(Δ) of L2(Ω) and g(U )

in (9.1) is continuous, then the exact solution of (9.1) and its derivative satisfy

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

U (X, t) = φ0
(
(t − t0)

2a2Δ
)
U (X, t0) + (t − t0)φ1

(
(t − t0)

2a2Δ
)
Ut (X, t0)

+
∫ t

t0

(t − ξ)φ1
(
(t − ξ)2a2Δ

)
f̃ (ξ)dξ,

U ′(X, t) = (t − t0)a
2Δφ1

(
(t − t0)

2a2Δ
)
U (X, t0) + φ0

(
(t − t0)

2a2Δ
)
Ut (X, t0)

+
∫ t

t0

φ0
(
(t − ξ)2a2Δ

)
f̃ (ξ)dξ

(9.15)
for t0, t ∈ (−∞,+∞), where f̃ (ξ) = g

(
U (X, ξ)

)
, and the Laplacian-argument

functions φ0 and φ1 are defined by (9.8).

Proof We first let
Y (X, t) = (

U (X, t),Ut (X, t)
)ᵀ

,

Y0(X) = (
U0(X),U1(X)

)ᵀ
,

F
(
Y (X, t)

) = (
0, g(U (X, t))

)ᵀ
,

and

W =
(

0 I
a2Δ 0

)

.

Then the initial value problem (9.1) can be rewritten in a more compact form

{
Yt (X, t) = WY (X, t) + F

(
Y (X, t)

)
,

Y (X, t0) = Y0(X), t ≥ t0.
(9.16)

From the well-known result on inhomogeneous linear differential equations, the
solution at t ≥ t0 of the system (9.16) has the form

Y (X, t) = exp
(
(t − t0)W

)
Y0(X) +

∫ t

t0

exp
(
(t − ξ)W

)
F

(
Y (X, t − ξ)

)
dξ.

(9.17)
It follows from a careful calculation that

W 2 =
(
a2Δ 0
0 a2Δ

)

, W 3 =
(

0 a2Δ
a4Δ2 0

)

, W 4 =
(
a4Δ2 0
0 a4Δ2

)

,

W 5 =
(

0 a4Δ2

a6Δ3 0

)

, W 6 =
(
a6Δ3 0
0 a6Δ3

)

, W 7 =
(

0 a6Δ3

a8Δ4 0

)

,

. . . .
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An argument by induction leads to the result that, for each nonnegative integer k, we
have

Wk =
(

1+(−1)k

2 (a2Δ)�k/2� 1−(−1)k

2 (a2Δ)�k/2�
1−(−1)k

2 (a2Δ)�k/2�+1 1+(−1)k

2 (a2Δ)�k/2�

)

,

where �k/2� denotes the integer part of k/2, and then we have

exp
(
(t − t0)W

) =
∞∑

k=0

(t − t0)
k

k! Wk

=
(
I + (t−t0)2

2! a2Δ + (t−t0)4

4! (a2Δ)2 + . . . (t − t0)I + (t−t0)3

3! a2Δ + . . .

(t − t0)a
2Δ + (t−t0)3

3! (a2Δ)2 + . . . I + (t−t0)2

2! a2Δ + (t−t0)4

4! (a2Δ)2 + . . .

)

=
(

φ0
(
(t − t0)

2a2Δ
)

(t − t0)φ1
(
(t − t0)

2a2Δ
)

(t − t0)a
2Δφ1

(
(t − t0)

2a2Δ
)

φ0
(
(t − t0)

2a2Δ
)

)

.

(9.18)
Inserting the result of (9.18) into Eq. (9.17) yields

(
U (X, t)
Ut (X, t)

)

=
(

φ0
(
(t − t0)

2a2Δ
)

(t − t0)φ1
(
(t − t0)

2a2Δ
)

(t − t0)a
2Δφ1

(
(t − t0)

2a2Δ
)

φ0
(
(t − t0)

2a2Δ
)

) (
U (X, t0)
Ut (X, t0)

)

+
∫ t

t0

(
φ0

(
(t − ξ)2a2Δ

)
(t − ξ)φ1

(
(t − ξ)2a2Δ

)

(t − ξ)a2Δφ1
(
(t − ξ)2a2Δ

)
φ0

(
(t − ξ)2a2Δ

)

) (
0

g
(
U (X, ξ)

)

)

dξ

=
(

φ0
(
(t − t0)

2a2Δ
)
u(x, t0) + (t − t0)φ1

(
(t − t0)

2a2Δ
)
Ut (X, t0)

(t − t0)a
2Δφ1

(
(t − t0)

2a2Δ
)
U (X, t0) + φ0

(
(t − t0)

2a2Δ
)
Ut (X, t0)

)

+
(∫ t

t0
(t − ξ)φ1

(
(t − ξ)2a2Δ

)
f̃ (ξ)dξ

∫ t
t0

φ0
(
(t − ξ)2a2Δ

)
f̃ (ξ)dξ

)

.

This gives the form of (9.15) exactly and completes the proof. �

Let Un(X) = U (X, tn) and Un
t (X) = Ut (X, tn) represent the exact solution of

(9.7) and its derivative with respect to t at t = tn . It follows immediately from (9.15)
with the change of variable ξ = tn + hz that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Un+1(X) = φ0
(
h2a2Δ

)
Un(X) + hφ1

(
h2a2Δ

)
Un

t (X)

+ h2
∫ 1

0
(1 − z)φ1

(
(1 − z)2h2a2Δ

)
f̃ (z)dz,

Un+1
t (X) = ha2Δφ1

(
h2a2Δ

)
Un(X) + φ0

(
h2a2Δ

)
Un

t (X)

+ h
∫ 1

0
φ0

(
(1 − z)2h2a2Δ

)
f̃ (z)dz,

(9.19)

where h is the temporal stepsize.

Remark 9.1 In comparison with the matrix-variation-of-constants formula (9.5) for
(9.4) based on the method of lines for solving one-dimensional nonlinear wave
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equations, the formula (9.15) is a formal solution to the Klein–Gordon equation
(9.1), whereas the matrix-variation-of-constants formula (9.5) is a formal solution
to (9.4) but not a formal solution to (9.1). Thus, significant progress has been made
on integral representations of solutions of the arbitrarily high-dimensional Klein–
Gordon equation (9.1).

9.2.2 Homogeneous Case

We now turn to the special and important homogeneous case.
If g(U ) = 0, then (9.1) reduces to the following homogeneous linear Klein–

Gordon equation: ⎧
⎪⎨

⎪⎩

Utt − a2ΔU = 0,

U (X, t0) = U0(X),

Ut (X, t0) = U1(X),

(9.20)

and then (9.15) becomes

{
U (X, t) = φ0

(
(t − t0)

2a2Δ
)
U0(X) + (t − t0)φ1

(
(t − t0)

2a2Δ
)
U1(X),

U ′(X, t) = (t − t0)a
2Δφ1

(
(t − t0)

2a2Δ
)
U0(X) + φ0

(
(t − t0)

2a2Δ
)
U1(X),

(9.21)
which integrates (9.20) exactly. This means that (9.21) expresses a closed-form solu-
tion to the arbitrarily high-dimensional homogeneous linear Klein–Gordon equation
(9.20). This fact shows that (9.21) possesses the additional advantage of energy
preservation and quadratic invariant preservation for the homogeneous linear Klein–
Gordon equation (9.20). Another key point is that, compared with the seminal
D’Alembert, Poisson and Kirchhoff formulas, the formula (9.21) doesn’t depend
on the evaluation of complicated integrals, whereas the evaluation of integrals is
required by the D’Alembert, Poisson and Kirchhoff formulas.

9.2.3 Towards Numerical Simulations

For the purpose of numerical simulations, we rewrite the Klein–Gordon equation
(9.1) as

{
Utt (X, t) = g

(
U (X, t)

) + a2ΔU (X, t), X ∈ Ω ⊆ R
d , t > t0

U (X, t0) = ϕ1(X), Ut (X, t0) = ϕ2(X), X ∈ Ω ∪ ∂Ω,
(9.22)
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where

Δ =
d∑

i=1

∂2

∂x2i
.

It follows from Theorem 9.4 that the solution to (9.22) is given by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

U (X, t) = U (X, t0) + (t − t0)Ut (X, t0) +
∫ t

t0

(t − ζ )ĝ
(
U (X, ζ )

)
dζ,

Ut (X, t) = Ut (X, t0) +
∫ t

t0

ĝ
(
U (X, ζ )

)
dζ,

X ∈ Ω ∪ ∂Ω,

(9.23)

i.e.,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

U (X, t) = ϕ1(X) + (t − t0)ϕ2(x) +
∫ t

t0

(t − ζ )ĝ
(
U (X, ζ )

)
dζ,

Ut (X, t) = ϕ2(X) +
∫ t

t0

ĝ
(
U (X, ζ )

)
dζ,

X ∈ Ω ∪ ∂Ω,

(9.24)

or

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Un+1(X) = Un(X) + hUn
t (x) + h2

∫ 1

0
(1 − z)ĝ

(
U (X, tn + zh)

)
dz,

Un+1
t (X) = Un

t (X) + h
∫ 1

0
ĝ
(
U (X, tn + zh)

)
dz,

X ∈ Ω ∪ ∂Ω,

(9.25)

where Un(X) = U (X, tn) and

ĝ
(
U (X, ζ )

) = g
(
U (X, ζ )

) + a2ΔU (X, ζ ).

Then, for each fixed X ∈ Ω ∪ ∂Ω , approximating the integrals in (9.25) by using a
quadrature formula yields a semi-analytical explicit RKN-type integrator.

Applying the modified midpoint rule (replacing ĝ
(
Un+ 1

2 (X)
)
by ĝ(Ũ n(X) +

h

2
Ũ n

t (X))) in the integrals in (9.25), we obtain

⎧
⎪⎪⎨

⎪⎪⎩

Ũ n+1(X) = Ũ n(X) + hŨn
t (X) + h2

2
ĝ(Ũ n(X) + h

2
Ũ n

t (X)),

Ũ n+1
t (X) = Ũ n

t (X) + hĝ(Ũ n(X) + h

2
Ũ n

t (X)),

(9.26)
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where Ũ n(X) ≈ Un(X) = U (X, tn). This is the well-known Störmer–Verlet for-
mula, and we call (9.26) the SV-scheme for (9.22). Hence, the SV-scheme is a sym-
plectic integrator of order two.

In applications, (9.1) is defined on bounded domains on the boundary of which
some physical conditions must be prescribed. These boundary conditions can be of
different sorts. We will consider the most classical ones: Dirichlet boundary con-
ditions, Neumann boundary conditions, and Robin boundary conditions. In what
follows, we pay attention to the consistency of the formula (9.15) with the corre-
sponding boundary conditions under suitable assumptions.

9.3 The Consistency of the Boundary Conditions for
One-dimensional Klein–Gordon Equations

We now consider the initial problem in the one-dimensional case with u : R × R →
R given by

{
utt − a2Δu = f (u), xl < x < xr , t > t0,

u(x, t0) = ϕ1(x), ut (x, t0) = ϕ2(x), xl ≤ x ≤ xr ,
(9.27)

where f
(
u(x, t)

) = −G ′(u) for some smooth function G(u). From Theorem 9.4,
the solution of (9.27) satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(x, t) = φ0
(
(t − t0)

2a2Δ
)
ϕ1(x) + (t − t0)φ1

(
(t − t0)

2a2Δ
)
ϕ2(x)

+
∫ t

t0

(t − ζ )φ1((t − ζ )2a2Δ) f̃
(
ζ
)
dζ,

u′(x, t) = (t − t0)a
2Δφ1

(
(t − t0)

2a2Δ
)
ϕ1(x) + φ0

(
(t − t0)

2a2Δ
)
ϕ2(x)

+
∫ t

t0

φ0
(
(t − ζ )2a2Δ

)
f̃
(
ζ
)
dζ,

(9.28)

where Δ = ∂2

∂x2
and f̃ (ζ ) = f

(
u(x, ζ )

)
.

9.3.1 Dirichlet Boundary Conditions

Firstly, we consider the nonlinear wave equation (9.27) with the Dirichlet boundary
conditions:

u(xl , t) = α(t), u(xr , t) = β(t), t ≥ t0. (9.29)
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The next theorem shows the consistency of the formula (9.28) with the Dirichlet
boundary conditions (9.29), i.e.,

α(t) =
[
φ0

(
(t − t0)

2a2Δ
)
ϕ1(x) + (t − t0)φ1

(
(t − t0)

2a2Δ
)
ϕ2(x)

+
∫ t

t0

(t − ζ )φ1
(
(t − ζ )2a2Δ

)
f̃
(
ζ
)
dζ

]∣
∣
∣
x=xl

,

β(t) =
[
φ0

(
(t − t0)

2a2Δ
)
ϕ1(x) + (t − t0)φ1

(
(t − t0)

2a2Δ
)
ϕ2(x)

+
∫ t

t0

(t − ζ )φ1
(
(t − ζ )2a2Δ

)
f̃
(
ζ
)
dζ

]∣
∣
∣
x=xr

.

Theorem 9.5 Assume that α(t), β(t), and f
(
u(x, t)

)
are sufficiently differentiable

with respect to t . Then the formula (9.28) is consistent with the Dirichlet boundary
conditions (9.29).

Proof Using the initial conditions, we obtain

α(t0) = ϕ1(xl), α′(t0) = ϕ2(xl), β(t0) = ϕ1(xr ), β ′(t0) = ϕ2(xr ).

It follows from (9.27) that

utt = a2Δu + f (u)

⇒
{

α′′(t0) = a2Δϕ1(xl) + f
(
u(xl , t0)

)
,

β ′′(t0) = a2Δϕ1(xr ) + f
(
u(xr , t0)

)
,

u(3)
t = a2Δut + f ′

t (u)

⇒
{

α(3)(t0) = a2Δϕ2(xl) + f ′
t

(
u(xl , t0)

)
,

β(3)(t0) = a2Δϕ2(xr ) + f ′
t

(
u(xr , t0)

)
,

u(4)
t = a4Δ2u + a2Δ f (u) + f (2)

t (u)

⇒
{

α(4)(t0) = a4Δ2ϕ1(xl) + a2Δ f
(
u(xl , t0)

) + f (2)
t

(
u(xl , t0)

)
,

β(4)(t0) = a4Δ2ϕ1(xr ) + a2Δ f
(
u(xr , t0)

) + f (2)
t

(
u(xr , t0)

)
,

u(5)
t = a4Δ2ut + a2Δ f ′

t (u) + f (3)
t (u)

⇒
{

α(5)(t0) = a4Δ2ϕ2(xl) + a2Δ f ′
t

(
u(xl , t0)

) + f (3)
t

(
u(xl , t0)

)
,

β(5)(t0) = a4Δ2ϕ2(xr ) + a2Δ f ′
t

(
u(xr , t0)

) + f (3)
t

(
u(xr , t0)

)
,

u(6)
t = a6Δ3u + a4Δ2 f (u) + a2Δ f (2)

t (u) + f (4)
t (u)

⇒

⎧
⎪⎪⎨

⎪⎪⎩

α(6)(t0) = a6Δ3ϕ1(xl) + a4Δ2 f
(
u(xl , t0)

)

+a2Δ f (2)
t

(
u(xl , t0)

) + f (4)
t

(
u(xl , t0)

)
,

β(6)(t0) = a6Δ3ϕ1(xr ) + a4Δ2 f
(
u(xr , t0)

)

+a2Δ f (2)
t

(
u(xr , t0)

) + f (4)
t

(
u(xr , t0)

)
,
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u(7)
t = a6Δ3ut + a4Δ2 f ′

t (u) + a2Δ f (3)
t (u) + f (5)

t (u)

⇒

⎧
⎪⎪⎨

⎪⎪⎩

α(7)(t0) = a6Δ3ϕ2(xl) + a4Δ2 f ′
t

(
u(xl , t0)

)

+a2Δ f (3)
t

(
u(xl , t0)

) + f (5)
t

(
u(xl , t0)

)
,

β(7)(t0) = a6Δ3ϕ2(xr ) + a4Δ2 f ′
t

(
u(xr , t0)

)

+a2Δ f (3)
t

(
u(xr , t0)

) + f (5)
t

(
u(xr , t0)

)
.

. . . .

An argument by induction leads to the results

α(2k)(t0) = a2kΔkϕ1(xl) +
k∑

j=1

a2(k− j)Δk− j f (2 j−2)
t

(
u(xl , t0)

)
,

α(2k+1)(t0) = a2kΔkϕ2(xl) +
k∑

j=1

a2(k− j)Δk− j f (2 j−1)
t

(
u(xl , t0)

)
,

(9.30)

and

β(2k)(t0) = a2kΔkϕ1(xr ) +
k∑

j=1

a2(k− j)Δk− j f (2 j−2)
t

(
u(xr , t0)

)

β(2k+1)(t0) = a2kΔkϕ2(xr ) +
k∑

j=1

a2(k− j)Δk− j f (2 j−1)
t

(
u(xr , t0)

)
,

(9.31)

for k = 1, 2, . . . .
The Taylor expansion of α(t) and β(t) at the point t0 gives

α(t) =
∞∑

k=0

(t − t0)
k

k! α(k)(t0) =
∞∑

k=0

(t − t0)
2k

(2k)! α(2k)(t0) +
∞∑

k=0

(t − t0)
2k+1

(2k + 1)! α(2k+1)(t0),

β(t) =
∞∑

k=0

(t − t0)
k

k! β(k)(t0) =
∞∑

k=0

(t − t0)
2k

(2k)! β(2k)(t0) +
∞∑

k=0

(t − t0)
2k+1

(2k + 1)! β(2k+1)(t0).

(9.32)
Inserting the results of (9.30) and (9.31) into (9.32) yields

α(t) =
{
φ0

(
(t − t0)

2a2Δ
)
ϕ1(x) + (t − t0)φ1

(
(t − t0)

2a2Δ
)
ϕ2(x)

+
∞∑

k=1

[ (t − t0)2k

(2k)!
k∑

j=1

a2(k− j)Δk− j f (2 j−2)
t

(
u(x, t0)

)

+ (t − t0)2k+1

(2k + 1)!
k∑

j=1

a2(k− j)Δk− j f (2 j−1)
t

(
u(x, t0)

)]}∣
∣
∣
x=xl

,

(9.33)
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and

β(t) =
{
φ0

(
(t − t0)

2a2Δ
)
ϕ1(x) + (t − t0)φ1

(
(t − t0)

2a2Δ
)
ϕ2(x)

+
∞∑

k=1

[ (t − t0)2k

(2k)!
k∑

j=1

a2(k− j)Δk− j f (2 j−2)
t

(
u(x, t0)

)

+ (t − t0)2k+1

(2k + 1)!
k∑

j=1

a2(k− j)Δk− j f (2 j−1)
t

(
u(x, t0)

)]}∣
∣
∣
x=xr

.

(9.34)

Let

F(x, t) �
∫ t

t0

(t − ζ )φ1
(
(t − ζ )2a2Δ

)
f̃
(
ζ
)
dζ.

It is easy to see F(x, t0) = 0, and a careful calculation gives

F ′
t (x, t) =

∫ t

t0
φ0

(
(t − ζ )2a2Δ

)
f̃
(
ζ
)
dζ

⇒ F ′
t (x, t0) = 0,

F (2)
t (x, t) = f

(
u(x, t)

) +
∫ t

t0
(t − ζ )a2Δφ1

(
(t − ζ )2a2Δ

)
f̃
(
ζ
)
dζ

⇒ F (2)
t (x, t0) = f

(
u(x, t0)

)
,

F (3)
t (x, t) = f ′

t

(
u(x, t)

) +
∫ t

t0
a2Δφ0

(
(t − ζ )2a2Δ

)
f̃
(
ζ
)
dζ

⇒ F (3)
t (x, t0) = f ′

t

(
u(x, t0)

)
,

F (4)
t (x, t) = f (2)

t
(
u(x, t)

) + a2Δ f
(
u(x, t)

) +
∫ t

t0
(t − ζ )a4Δ2φ1

(
(t − ζ )2a2Δ

)
f̃
(
ζ
))
dζ

⇒ F (4)
t (x, t0) = f (2)

t
(
u(x, t0)

) + a2Δ f
(
u(x, t0)

)
,

F (5)
t (x, t) = f (3)

t
(
u(x, t)

) + a2Δ f ′
t

(
u(x, t)

) +
∫ t

t0
a4Δ2φ0

(
(t − ζ )2a2Δ

)
f̃
(
ζ
)
dζ

⇒ F (5)
t (x, t0) = f (3)

t
(
u(x, t0)

) + a2Δ f ′
t

(
u(x, t0)

)
,

F (6)
t (x, t) = f (4)

t
(
u(x, t)

) + a2Δ f (2)
t

(
u(x, t)

) + a4Δ2 f
(
u(x, t)

)

+
∫ t

t0
(t − ζ )a6Δ3φ1

(
(t − ζ )2a2Δ

)
f̃
(
ζ
)
dζ

⇒ F (6)
t (x, t0) = f (4)

t
(
u(x, t0)

) + a2Δ f (2)
t

(
u(x, t0)

) + a4Δ2 f
(
u(x, t0)

)
),

F (7)
t (x, t) = f (5)

t
(
u(x, t)

) + a2Δ f (3)
t

(
u(x, t)

) + a4Δ2 f ′
t

(
u(x, t)

)

+
∫ t

t0
a6Δ3φ0

(
(t − ζ )2a2Δ

)
f̃
(
ζ
)
dζ

⇒ F (7)
t (x, t0) = f (5)

t
(
u(x, t0)

) + a2Δ f (3)
t

(
u(x, t0)

) + a4Δ2 f ′
t

(
u(x, t0)

)
,

. . . .
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An argument by induction then gives

F (2k)
t (x, t0) =

k∑

j=1

a2(k− j)Δk− j f (2 j−2)
t

(
u(x, t0)

)

F (2k+1)
t (x, t0) =

k∑

j=1

a2(k− j)Δk− j f (2 j−1)
t

(
u(x, t0)

)
, k = 1, 2, . . . .

The Taylor expansion of F(x, t) at t = t0 is

F(x, t) =
∞∑

k=0

(t − t0)k

k! F (k)
t (x, t0) =

∞∑

k=2

(t − t0)k

k! F (k)
t (x, t0)

=
∞∑

k=1

(t − t0)2k

(2k)! F (2k)
t (x, t0) +

∞∑

k=1

(t − t0)2k+1

(2k + 1)! F (2k+1)
t (x, t0)

=
∞∑

k=1

[ (t − t0)2k

(2k)!
k∑

j=1

a2(k− j)Δk− j f (2 j−2)
t

(
u(x, t0)

)

+ (t − t0)2k+1

(2k + 1)!
k∑

j=1

a2(k− j)Δk− j f (2 j−1)
t

(
u(x, t0)

)]
.

(9.35)

Inserting the result of (9.35) into (9.33) and (9.34) yields

α(t) =
[
φ0

(
(t − t0)

2a2Δ
)
ϕ1(x) + (t − t0)φ1

(
(t − t0)

2a2Δ
)
ϕ2(x)

+
∫ t

t0

(t − ζ )φ1
(
(t − ζ )2a2Δ

)
f̃
(
ζ
)
dζ

]∣
∣
∣
x=xl

β(t) =
[
φ0

(
(t − t0)

2a2Δ
)
ϕ1(x) + (t − t0)φ1

(
(t − t0)

2a2Δ
)
ϕ2(x)

+
∫ t

t0

(t − ζ )φ1
(
(t − ζ )2a2Δ

)
f̃
(
ζ
)
dζ

]∣
∣
∣
x=xr

.

The proof is complete. �

9.3.2 Neumann Boundary Conditions

We next consider the nonlinear wave equation (9.27) with the Neumann boundary
conditions

∂u

∂x

∣
∣
xl

= γ (t),
∂u

∂x

∣
∣
xr

= δ(t). (9.36)
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Theorem 9.6 Assume that γ (t), δ(t), and f
(
u(x, t)

)
are sufficiently differentiable

with respect to t . Then the formula (9.28) is consistent with the Neumann boundary
conditions (9.36).

Proof From the initial conditions,we have

γ (t0) = ϕ′
1(xl), γ ′(t0) = ϕ′

2(xl), δ(t0) = ϕ′
1(xr ), δ′(t0) = ϕ′

2(xr ).

Calculating the derivative of u with respect to x in (9.27) gives

⎧
⎪⎨

⎪⎩

(∂u

∂x

)

t t
= a2Δ

(∂u

∂x

)
+ ∂

∂x

(
f (u)

)
, xl < x < xr , t > t0,

∂u

∂x
(x, t0) = ϕ′

1(x),
∂ut
∂x

(x, t0) = ϕ′
2(x), xl ≤ x ≤ xr .

(9.37)

Let v = ∂u

∂x
. We then have the following initial-boundary problem

⎧
⎪⎨

⎪⎩

vtt = a2Δv + f̃ (u), xl < x < xr , t ≥ t0,

v(x, t0) = ϕ′
1(x), vt (x, t0) = ϕ′

2(x), xl ≤ x ≤ xr ,

v(xl , t) = γ (t), v(xr , t) = δ(t), t ≥ t0,

(9.38)

where

f̃ (u) = f ′
x

(
u(x, t)

) = ∂

∂x
f
(
u(x, t)

)
.

For the transformed initial-boundary value problem (9.38), after an analysis sim-
ilarly to that in Sect. 9.3.1, we conclude that

γ (t) =
[
φ0

(
(t − t0)

2a2Δ
)
ϕ′
1(x) + (t − t0)φ1

(
(t − t0)

2a2Δ
)
ϕ′
2(x)

+
∫ t

t0

(t − ζ )φ1
(
(t − ζ )2a2Δ

)
f̂
(
ζ
)
dζ

]∣
∣
∣
x=xl

,

δ(t) =
[
φ0

(
(t − t0)

2a2Δ
)
ϕ′
1(x) + (t − t0)φ1

(
(t − t0)

2a2Δ
)
ϕ′
2(x)

+
∫ t

t0

(t − ζ )φ1
(
(t − ζ )2a2Δ

)
f̂
(
ζ
)
dζ

]∣
∣
∣
x=xr

,

where f̂
(
ζ
) = f ′

x

(
u(x, ζ )

)
.

The proof is complete. �

Another direct proof can be found in Appendix1 of this chapter.



9.4 Towards Arbitrarily High-Dimensional Klein–Gordon Equations 237

9.4 Towards Arbitrarily High-Dimensional Klein–Gordon
Equations

Let Ω be a bounded Lipschitz domain in R
d . We next consider the initial valued

problem of the arbitrarily high-dimensional nonlinear Klein–Gordon equations

{
Utt − a2ΔU = f

(
U

)
, X ∈ Ω, t > t0,

U (X, t0) = ϕ1(X), Ut (X, t0) = ϕ2(X), X ∈ Ω ∪ ∂Ω.
(9.39)

The integral formula for (9.39) is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

U (X, t) = φ0
(
(t − t0)

2a2Δ
)
ϕ1(X) + (t − t0)φ1

(
(t − t0)

2a2Δ
)
ϕ2(X)

+
∫ t

t0

(t − ζ )φ1((t − ζ )2a2Δ) f̃ (ζ )dζ,

U ′(X, t) = (t − t0)a
2Δφ1

(
(t − t0)

2a2Δ
)
ϕ1(X) + φ0

(
(t − t0)

2a2Δ
)
ϕ2(X)

+
∫ t

t0

φ0
(
(t − ζ )2a2Δ

)
f̃ (ζ )dζ,

(9.40)
where f̃ (ζ ) = f

(
U (X, ζ )

)
.

9.4.1 Dirichlet Boundary Conditions

Firstly, we consider the arbitrarily high-dimensional nonlinear Klein–Gordon equa-
tion (9.39) with the Dirichlet boundary condition:

U (X, t) = α(X, t), X ∈ ∂Ω, t ≥ t0. (9.41)

Theorem 9.7 Assume that α(X, t) and f
(
U (X, t)

)
are sufficiently differentiable

with respect to t . Then, formula (9.40) is consistent with the Dirichlet boundary
condition (9.41).

Proof From the initial conditions, we obtain

α(X, t0) = ϕ1(X), α′
t (X, t0) = ϕ2(X), X ∈ ∂Ω.

It follows from (9.39) that
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Utt = a2ΔU + f (U )

⇒ α
′′
t (X, t0) = [

a2Δϕ1(X) + f
(
U (X, t0)

)]∣
∣
∂Ω

,

U (3)
t = a2ΔUt + f ′

t (U )

⇒ α
(3)
t (X, t0) = [

a2Δϕ2(X) + f ′
t

(
U (X, t0)

)]∣
∣
∂Ω

,

U (4)
t = a4Δ2U + a2Δ f (U ) + f (2)

t (U )

⇒ α
(4)
t (X, t0) = [

a4Δ2ϕ1(X) + a2Δ f
(
U (X, t0)

) + f (2)
t

(
U (X, t0)

)]∣
∣
∂Ω

,

U (5)
t = a4Δ2Ut + a2Δ f ′

t (U ) + f (3)
t (U )

⇒ α
(5)
t (X, t0) = [

a4Δ2ϕ2(X) + a2Δ f ′
t

(
U (X, t0)

) + f (3)
t

(
U (X, t0)

)]∣
∣
∂Ω

,

U (6)
t = a6Δ3U + a4Δ2 f (U ) + a2Δ f (2)

t (U ) + f (4)
t (U )

⇒ α
(6)
t (X, t0) = [

a6Δ3ϕ1(X) + a4Δ2 f
(
U (X, t0)

) + a2Δ f (2)
t

(
U (X, t0)

)

+ f (4)
t

(
U (X, t0)

)]∣
∣
∂Ω

,

U (7)
t = a6Δ3Ut + a4Δ2 f ′

t (U ) + a2Δ f (3)
t (U ) + f (5)

t (U )

⇒ α
(7)
t (X, t0) = [

a6Δ3ϕ2(X) + a4Δ2 f ′
t

(
U (X, t0)

) + a2Δ f (3)
t

(
U (X, t0)

)

+ f (5)
t

(
U (X, t0)

)]∣
∣
∂Ω

,

. . . .

An argument by induction leads to the results

α(2k)(X, t0) = a2kΔkϕ1(X) +
k∑

j=1

a2(k− j)Δk− j f (2 j−2)
t

(
U (X, t0)

)

α(2k+1)(X, t0) = a2kΔkϕ2(X) +
k∑

j=1

a2(k− j)Δk− j f (2 j−1)
t

(
U (X, t0)

)
,

(9.42)

for k = 1, 2, . . . , and ∀X ∈ ∂Ω.

Inserting the results of (9.42) into the Taylor expansion of α(X, t) with respect
to t at the point t0 gives

α(X, t) =
{
φ0

(
(t − t0)

2a2Δ
)
ϕ1(X) + (t − t0)φ1

(
(t − t0)

2a2Δ
)
ϕ2(X)

+
∞∑

k=1

[ (t − t0)2k

(2k)!
k∑

j=1

a2(k− j)Δk− j f (2 j−2)
t

(
U (X, t0)

)

+ (t − t0)2k+1

(2k + 1)!
k∑

j=1

a2(k− j)Δk− j f (2 j−1)
t

(
U (X, t0)

)]}∣
∣
∣
∂Ω

.

(9.43)
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Let

F(X, t) �
∫ t

t0

(t − ζ )φ1
(
(t − ζ )2a2Δ

)
f̃ (ζ )dζ.

It is easy to see
F(X, t0) = 0,

and

F ′
t (X, t) =

∫ t

t0
φ0

(
(t − ζ )2a2Δ

)
f̃ (ζ )dζ

⇒ F ′
t (X, t0) = 0,

F(2)
t (X, t) = f

(
U (X, t)

) +
∫ t

t0
(t − ζ )a2Δφ1

(
(t − ζ )2a2Δ

)
f̃ (ζ )dζ

⇒ F(2)
t (X, t0) = f

(
U (X, t0)

)
,

F(3)
t (X, t) = f ′

t
(
U (X, t)

) +
∫ t

t0
a2Δφ0

(
(t − ζ )2a2Δ

)
f̃ (ζ )dζ

⇒ F(3)
t (X, t0) = f ′

t
(
U (X, t0)

)
,

F(4)
t (X, t) = f (2)

t
(
U (X, t)

) + a2Δ f
(
U (X, t)

) +
∫ t

t0
(t − ζ )a4Δ2φ1

(
(t − ζ )2a2Δ

)
f̃ (ζ )dζ

⇒ F(4)
t (X, t0) = f (2)

t
(
U (X, t0)

) + a2Δ f
(
U (X, t0)

)
,

F(5)
t (X, t) = f (3)

t
(
U (X, t)

) + a2Δ f ′
t
(
U (X, t)

) +
∫ t

t0
a4Δ2φ0

(
(t − ζ )2a2Δ

)
f̃ (ζ )dζ

⇒ F(5)
t (X, t0) = f (3)

t
(
U (X, t0)

) + a2Δ f ′
t
(
U (X, t0)

)
,

F(6)
t (X, t) = f (4)

t
(
U (X, t)

) + a2Δ f (2)
t

(
U (X, t)

) + a4Δ2 f
(
U (X, t)

)

+
∫ t

t0
(t − ζ )a6Δ3φ1

(
(t − ζ )2a2Δ

)
f̃ (ζ )dζ

⇒ F(6)
t (X, t0) = f (4)

t
(
U (X, t0)

) + a2Δ f (2)
t

(
U (X, t0)

) + a4Δ2 f
(
U (X, t0)

)
,

F(7)
t (X, t) = f (5)

t
(
U (X, t)

) + a2Δ f (3)
t

(
U (X, t)

) + a4Δ2 f ′
t
(
U (X, t)

)

+
∫ t

t0
a6Δ3φ0

(
(t − ζ )2a2Δ

)
f̃ (ζ )dζ

⇒ F(7)
t (X, t0) = f (5)

t
(
U (X, t0)

) + a2Δ f (3)
t

(
U (X, t0)

) + a4Δ2 f ′
t
(
U (X, t0)

)
,

….

Likewise, an argument by induction yields the following results
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F (2k)
t (X, t0) =

k∑

j=1

a2(k− j)Δk− j f (2 j−2)
t

(
U (X, t0)

)

F (2k+1)
t (X, t0) =

k∑

j=1

a2(k− j)Δk− j f (2 j−1)
t

(
U (X, t0)

)
, k = 1, 2, . . . .

The Taylor expansion of F(X, t) at t = t0 is

F(X, t) =
∞∑

k=1

(t − t0)2k

(2k)! F (2k)
t (X, t0) +

∞∑

k=1

(t − t0)2k+1

(2k + 1)! F (2k+1)
t (X, t0)

=
∞∑

k=1

[ (t − t0)2k

(2k)!
k∑

j=1

a2(k− j)Δk− j f (2 j−2)
t

(
U (X, t0)

)

+ (t − t0)2k+1

(2k + 1)!
k∑

j=1

a2(k− j)Δk− j f (2 j−1)
t

(
U (X, t0)

)]
.

(9.44)

Inserting the result of (9.44) into (9.43) gives

α(X, t) = φ0
(
(t − t0)

2a2Δ
)
ϕ1(X) + (t − t0)φ1

(
(t − t0)

2a2Δ
)
ϕ2(X)

+
∫ t

t0

(t − ζ )φ1
(
(t − ζ )2a2Δ

)
f̃ (ζ )dζ, X ∈ ∂Ω.

The proof is complete. �

9.4.2 Neumann Boundary Conditions

We next consider the arbitrarily high-dimensional nonlinear wave equation (9.39)
with the following Neumann boundary condition:

∇U · n = γ (X, t), X ∈ ∂Ω, (9.45)

where n is the unit outward normal vectors on the boundary ∂Ω.

Theorem 9.8 Assume that γ (X, t) and f
(
U (X, t)

)
are sufficiently differentiable

with respect to t . Then the formula (9.40) is consistent with the Neumann boundary
conditions (9.45).

Proof Using the initial condition, we have

γ (X, t0) = ∇ϕ1(X) · n � ϕ̃1(X), γ ′
t (X, t0) = ∇ϕ2(X) · n � ϕ̃2(X), ∀X ∈ ∂Ω.
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Calculating the directional derivative of U with respect to X in (9.39) yields

{ (∇U · n)

t t = a2Δ
(∇U · n) + f̃

(
U (X, t)

)
, X ∈ Ω, t > t0,

(∇U · n)
(X, t0) = ϕ̃1(X),

(∇Ut · n)
(X, t0) = ϕ̃2(X), X ∈ Ω ∪ ∂Ω,

(9.46)

where f̃
(
U (X, t)

) = ∇ f
(
U (X, t)

) · n.
It follows from (9.46) that

(∇U · n)

t t = a2Δ
(∇U · n) + f̃

(
U

)

⇒ γ ′′
t (X, t0) = [

a2Δϕ̃1(X) + f̃
(
U (X, t0)

)]∣
∣
∂Ω

,
(∇U · n)(3)

t = a2Δ
(∇U · n)′

t + f̃ ′
t

(
U

)

⇒ γ
(3)
t (X, t0) = [

a2Δϕ̃2(X) + f̃ ′
t

(
U (X, t0)

)]∣
∣
∂Ω

,
(∇U · n)(4)

t = a4Δ2
(∇U · n) + a2Δ f̃

(
U

) + f̃ (2)
t

(
U

)

⇒ γ
(4)
t (X, t0) = [

a4Δ2ϕ̃1(X) + a2Δ f̃
(
U (X, t0)

) + f̃ (2)
t

(
U (X, t0)

)]∣
∣
∂Ω

,
(∇U · n)(5)

t = a4Δ2
(∇U · n)′

t + a2Δ f̃ ′
t

(
U

) + f̃ (3)
t

(
U

)

⇒ γ
(5)
t (X, t0) = [

a4Δ2ϕ̃2(X) + a2Δ f̃ ′
t

(
U (X, t0)

) + f̃ (3)
t

(
U (X, t0)

)]∣
∣
∂Ω

,
(∇U · n)(6)

t = a6Δ3
(∇U · n) + a4Δ2 f̃

(
U

) + a2Δ f̃ (2)
t

(
U

) + f̃ (4)
t

(
U

)

⇒ γ
(6)
t (X, t0) = [

a6Δ3ϕ̃1(X) + a4Δ2 f̃
(
U (X, t0)

) + a2Δ f̃ (2)
t

(
U (X, t0)

)

+ f̃ (4)
t

(
U (X, t0)

)]∣
∣
∂Ω

,
(∇U · n)(7)

t
= a6Δ3

(∇U · n)′
t
+ a4Δ2 f̃ ′

t

(
U

) + a2Δ f̃ (3)
t

(
U

) + f̃ (5)
t

(
U

)

⇒ γ
(7)
t (X, t0) = [

a6Δ3ϕ̃2(X) + a4Δ2 f̃ ′
t

(
U (X, t0)

) + a2Δ f̃ (3)
t

(
U (X, t0)

)

+ f̃ (5)
t

(
U (X, t0)

)]∣
∣
∂Ω

,

. . . .

This leads to the results

γ
(2k)
t (X, t0) = a2kΔk ϕ̃1(X) +

k∑

j=1

a2(k− j)Δk− j f̃ (2 j−2)
t

(
U (X, t0)

)
,

γ
(2k+1)
t (X, t0) = a2kΔk ϕ̃2(X) +

k∑

j=1

a2(k− j)Δk− j f̃ (2 j−1)
t

(
U (X, t0)

)
,

(9.47)

for k = 1, 2, . . . , and ∀X ∈ ∂Ω.

Inserting the results of (9.47) into the Taylor expansion of γ (X, t) with respect
to t at the point t = t0 gives
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γ (X, t) =
∞∑

k=0

(t − t0)k

k! γ
(k)
t (X, t0) =

∞∑

k=0

(t − t0)(2k)

(2k)! γ
(2k)
t (X, t0)

+
∞∑

k=0

(t − t0)(2k+1)

(2k + 1)! γ
(2k+1)
t (X, t0)

=
{
φ0

(
(t − t0)

2a2Δ
)
ϕ̃1(x) + (t − t0)φ1

(
(t − t0)

2a2Δ
)
ϕ̃2(x)

+
∞∑

k=1

[ (t − t0)2k

(2k)!
k∑

j=1

a2(k− j)Δk− j f̃ (2 j−2)
t

(
U (x, t0)

)

+ (t − t0)2k+1

(2k + 1)!
k∑

j=1

a2(k− j)Δk− j f̃ (2 j−1)
t

(
U (x, t0)

)]}∣
∣
∣
∂Ω

.

(9.48)

Let

F̃(X, t) �
∫ t

t0

(t − ζ )φ1
(
(t − ζ )2a2Δ

)
f̃
(
U (X, ζ )

)
dζ.

Similarly to the case of Dirichlet boundary conditions, we can obtain

F̃(X, t0) = 0, F̃ ′
t (X, t0) = 0,

and

F̃ (2k)
t (X, t0) =

k∑

j=1

a2(k− j)Δk− j f̃ (2 j−2)
t

(
U (X, t0)

)
,

F̃ (2k+1)
t (X, t0) =

k∑

j=1

a2(k− j)Δk− j f̃ (2 j−1)
t

(
U (X, t0)

)
, k = 1, 2, . . . .

The Taylor expansion of F̃(X, t) at the point t0 with respect to t is

F̃(X, t) =
∞∑

k=1

(t − t0)2k

(2k)! F̃ (2k)
t (X, t0) +

∞∑

k=1

(t − t0)2k+1

(2k + 1)! F̃ (2k+1)
t (X, t0)

=
∞∑

k=1

[ (t − t0)2k

(2k)!
k∑

j=1

a2(k− j)Δk− j f̃ (2 j−2)
t

(
U (x, t0)

)

+ (t − t0)2k+1

(2k + 1)!
k∑

j=1

a2(k− j)Δk− j f̃ (2 j−1)
t

(
U (x, t0)

)]}
.

(9.49)

Comparing the result of (9.48) with (9.49), we obtain
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γ (X, t) = φ0
(
(t − t0)

2a2Δ
)
ϕ̃1(X) + (t − t0)φ1

(
(t − t0)

2a2Δ
)
ϕ̃2(X)

+
∫ t

t0

(t − ζ )φ1
(
(t − ζ )2a2Δ

)
f̃
(
U (X, ζ )

)
dζ

= φ0
(
(t − t0)

2a2Δ
)(∇ϕ1(X) · n) + (t − t0)φ1

(
(t − t0)

2a2Δ
)(∇ϕ2(X) · n)

+
∫ t

t0

(t − ζ )φ1
(
(t − ζ )2a2Δ

)(∇ f
(
U (X, ζ )

) · n)
dζ

= ∇U (X, t) · n, ∀X ∈ ∂Ω.

This proves the theorem. �

9.4.3 Robin Boundary Condition

Inwhat followswe consider the arbitrarily high-dimensional nonlinearwave equation
(9.39) with the following Robin boundary condition:

∇U · n + λU = β(X, t), X ∈ ∂Ω, (9.50)

where n is the unit outward normal vector on the boundary ∂Ω and λ is a constant.

Theorem 9.9 Assume that β(X, t) and f
(
U (X, t)

)
are sufficiently differentiable

with respect to t . Then, the formula (9.40) is consistent with the Robin boundary
condition given by (9.50).

The proof of Theorem 9.9 is similar to that in the recent paper [33] and we omit
the details here.

Remark 9.2 As stated in Sects. 9.3 and 9.4, one need not care about the boundary
conditions when the formula (9.15) is used directly since the formula is adapted to
Dirichlet boundary conditions, Neumann boundary conditions, and Robin bound-
ary conditions, respectively. In fact, (9.15) presents an exact analytical formal of
the true solution to the initial-value problem of arbitrarily high-dimensional Klein–
Gordon equations subject to the given boundary conditions, under the appropriate
assumptions.

9.5 Illustrative Examples

To show applications of the integral formula presented in this chapter, we next present
some illustrative examples.

Problem 9.1 We first consider the following two-dimensional equation
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{
utt − (uxx + uyy) = ω2 sin(ω(x − t)) sin(ωy),

u|t=0 = sin(ωx) sin(ωy), ut |t=0 = −ω cos(ωx) sin(ωy).
(9.51)

Applying (9.15) to Problem 9.1 yields

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(x, y, t) =φ0(t
2Δ) sin(ωx) sin(ωy) − ωtφ1(t

2Δ) cos(ωx) sin(ωy)

+ ω2
∫ t

0
(t − ζ )φ1((t − ζ )2Δ) sin(ω(x − ζ )) sin(ωy)dζ,

ut (x, y, t) =tΔφ1(t
2Δ) sin(ωx) sin(ωy) − ωφ0(t

2Δ) cos(ωx) sin(ωy)

+ ω2
∫ t

0
φ0((t − ζ )2Δ) sin(ω(x − ζ )) sin(ωy)dζ.

(9.52)

It follows from a careful calculation that

φ0(t
2Δ) sin(ωx) sin(ωy) = sin(ωx) sin(ωy) cos(

√
2ωt),

− ωtφ1(t
2Δ) cos(ωx) sin(ωy) = − 1√

2
cos(ωx) sin(ωy) sin(

√
2ωt),

ω2
∫ t

0
(t − ζ )φ1((t − ζ )2Δ) sin(ω(x − ζ )) sin(ωy)dζ

= ω√
2

∫ t

0
sin(

√
2ω(t − ζ )) sin(ω(x − ζ )) sin(ωy)dζ.

We then have

u(x, y, t) = sin(ωx) sin(ωy) cos(
√
2ωt) − 1√

2
cos(ωx) sin(ωy) sin(

√
2ωt)

+ ω√
2

∫ t

0
sin(

√
2ω(t − ζ )) sin(ω(x − ζ )) sin(ωy)dζ

= sin(ω(x − t)) sin(ωy).
(9.53)

Likewise, we can obtain

ut (x, y, t) = −ω cos(ω(x − t)) sin(ωy). (9.54)

Problem 9.2 Wenext consider the three-dimensional linear homogeneous equation:

{
utt = a2(uxx + uyy + uzz),

u|t=0 = x3 + yz, ut |t=0 = 0.
(9.55)

Applying (9.15) to Problem 9.2, we can obtain the analytical solution straightfor-
wardly:
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{
u(x, y, z, t) = φ0(t

2a2Δ)(x3 + yz) = x3 + yz + 3a2t2x,

ut (x, y, z, t) = ta2Δφ1(t
2a2Δ)(x3 + yz) = 6a2t x .

(9.56)

We note that from Poisson’s or Kirchhoff’s formula (see, e.g. [7]) the solution to
(9.55) can be expressed in the form

u(x, y, z, t) = 1

4πa2t

∂

∂t

∫∫

S

(x3 + yz)dS, (9.57)

where S is the sphere of radius a centered at (x0, y0, z0). The calculation of the
integral in (9.57) is quite complicated.

Problem 9.3 We next consider the following the initial valued problem of one
dimensional linear Klein–Gordon equation (see, e.g. [19])

⎧
⎪⎨

⎪⎩

utt − uxx = −9u, −5π

8
< x <

5π

8
, t > 0,

u(x, 0) = cos(4x), ut (x, 0) = 5 cos(4x), −5π

8
≤ x ≤ 5π

8
,

(9.58)

subject to the Dirichlet boundary conditions

u(−5π

8
, t) = 0, u(

5π

8
, t) = 0. (9.59)

The exact solution of the initial-boundary valued problem (9.58) and (9.59) is given
by

u(x, t) = cos(4x) (cos(5t) + sin(5t)) . (9.60)

Applying the SV-scheme (9.26) with the stepsize h = 0.001 to this initial-boundary
valued problem, we obtain the numerical results, together with the true solution and
the global error, which are shown in Fig. 9.1. It can be observed from Fig. 9.1 that

Fig. 9.1 The exact solution (left), the numerical solution (middle) and the global error (right)
obtained by SV-scheme (9.26) with the stepsize h = 0.001, for Problem9.3
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the results show second-order behaviour of the SV-scheme (9.26). This indicates that
the integral formula (9.15) is also helpful in gaining insight into developing efficient
numerical integrators for Klein–Gordon equations.

9.6 Conclusions and Discussions

In this chapter, we considered the initial-boundary value problem of arbitrarily high-
dimensional Klein–Gordon equations (9.1), posed on a bounded domain Ω ⊂ R

d

for d ≥ 1 and equipped with various boundary conditions. We first defined the
bounded operator-argument functions (9.8) which are restricted in a subspace D(Δ)

of L2(Ω), and then established an integral formula (9.15) for theKlein–Gordon equa-
tion in arbitrarily high-dimensional spaces. Thus, this chapter has made progress in
research on integral representations of solutions of the arbitrarily high-dimensional
Klein–Gordon equation (9.1). Another key aspect is that we showed in detail the
consistency of the integral formula with Dirichlet boundary conditions, Neumann
boundary conditions, and Robin boundary conditions, respectively. In other words,
the integral formula (9.15) for (9.1) is completely adapted to the underlying bound-
ary conditions under appropriate assumptions. If g(U ) = 0, then (9.1) reduces to the
arbitrarily high-dimensional homogeneous Klein–Gordon equation (9.20). Then, the
integral formula (9.15) becomes (9.21), which integrates (9.20) exactly. In compar-
ison with the seminal D’Alembert, Poisson and Kirchhoff formulas, formula (9.21)
doesn’t depend on the evaluation of complicated integrals, whereas the evaluation of
integrals is required by theD’Alembert, Poisson andKirchhoff formulas. To show the
applications of the integral formula, some illustrative examples were also presented
in Sect. 9.5.

Before the end of this chapter, we make a comment on the operator-variation-
constants formula for PDEs. Once the operator-variation-constants formula is estab-
lished for the underling PDEs, some structure-preserving schemes can be derived and
analysed based on the formula. For example, Chaps. 10 and 11 will show the details
for nonlinear wave equations. It is also believed that this approach to dealing with
nonlinear wave PDEs can be extended to other PDEs, such as Maxwell’s equations
(see Yang et al. [35]). Further work on this research is in progress.

The material of this chapter is based on the work by Wu and Liu [28].

Appendix 1.A Direct Proof of Theorem9.6

Proof It follows from (9.37) that



9.6 Conclusions and Discussions 247

(∂u

∂x

)

t t
= a2Δ

(∂u

∂x

)
+ f̃ (u)

⇒
{

γ ′′(t0) = a2Δϕ′
1(xl) + f̃

(
u
)
,

δ′′(t0) = a2Δϕ′
1(xr ) + f̃

(
u
)
,

(∂u

∂x

)(3)

t
= a2Δ

(∂u

∂x

)

t
+ f̃ ′

t (u)

⇒
{

γ (3)(t0) = a2Δϕ′
2(xl) + f̃ ′

t

(
u
)
,

δ(3)(t0) = a2Δϕ′
2(xr ) + f̃ ′

t

(
u
)
,

(∂u

∂x

)(4)

t
= a4Δ2

(∂u

∂x

)
+ a2Δ f̃ (u) + f̃ (2)

t (u)

⇒
{

γ (4)(t0) = a4Δ2ϕ′
1(xl) + a2Δ f̃

(
u
) + f̃ (2)

t

(
u
)
,

δ(4)(t0) = a4Δ2ϕ′
1(xr ) + a2Δ f̃

(
u
) + f̃ (2)

t

(
u
)
,

(∂u

∂x

)(5)

t
= a4Δ2

(∂u

∂x

)

t
+ a2Δ f̃ ′

t (u) + f̃ (3)
t (u)

⇒
{

γ (5)(t0) = a4Δ2ϕ′
2(xl) + a2Δ f̃ ′

t

(
u
) + f̃ (3)

t

(
u
)
,

δ(5)(t0) = a4Δ2ϕ′
2(xr ) + a2Δ f̃ ′

t

(
u
) + f̃ (3)

t

(
u
)
,

(∂u

∂x

)(6)

t
= a6Δ3

(∂u

∂x

)
+ a4Δ2 f̃ (u) + a2Δ f̃ (2)

t (u) + f̃ (4)
t (u)

⇒

⎧
⎪⎪⎨

⎪⎪⎩

γ (6)(t0) = a6Δ3ϕ′
1(xl) + a4Δ2 f̃

(
u
)

+a2Δ f̃ (2)
t

(
u
) + f̃ (4)

t

(
u
)
,

δ(6)(t0) = a6Δ3ϕ′
1(xr ) + a4Δ2 f̃

(
u
)

+a2Δ f̃ (2)
t

(
u
) + f̃ (4)

t

(
u
)
,

(∂u

∂x

)(7)

t
= a6Δ3

(∂u

∂x

)

t
+ a4Δ2 f̃ ′

t (u) + a2Δ f̃ (3)
t (u) + f̃ (5)

t (u)

⇒

⎧
⎪⎪⎨

⎪⎪⎩

γ (7)(t0) = a6Δ3ϕ′
2(xl) + a4Δ2 f̃ ′

t

(
u
)

+a2Δ f̃ (3)
t

(
u
) + f̃ (5)

t

(
u
)
,

δ(7)(t0) = a6Δ3ϕ′
2(xr ) + a4Δ2 f̃ ′

t

(
u
)

+a2Δ f̃ (3)
t

(
u
) + f̃ (5)

t

(
u
)
,

· · · .

After an argument by induction we obtain the following results

γ (2k) = a2kΔkϕ′
1(xl) +

k∑

j=1

a2(k− j)Δk− j f̃ (2 j−2)
t

(
u
)

γ (2k+1) = a2kΔkϕ′
2(xl) +

k∑

j=1

a2(k− j)Δk− j f̃ (2 j−1)
t

(
u
)
, k = 1, 2, . . . .

(9.61)
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and

δ(2k)(t0) = a2kΔkϕ′
1(xr ) +

k∑

j=1

a2(k− j)Δk− j f̃ (2 j−2)
t

(
u
)

δ(2k+1)(t0) = a2kΔkϕ′
2(xr ) +

k∑

j=1

a2(k− j)Δk− j f̃ (2 j−1)
t

(
u
)
, k = 1, 2, . . . .

(9.62)

Inserting the results of (9.61) and (9.62) into the Taylor expansion of γ (t) and δ(t)
at point t0 yields

γ (t) =
{
φ0

(
(t − t0)

2a2Δ
)
ϕ′
1(x) + (t − t0)φ1

(
(t − t0)

2a2Δ
)
ϕ′
2(x)

+
∞∑

k=1

[ (t − t0)2k

(2k)!
k∑

j=1

a2(k− j)Δk− j f̃ (2 j−2)
t

(
u
)

+ (t − t0)2k+1

(2k + 1)!
k∑

j=1

a2(k− j)Δk− j f̃ (2 j−1)
t

(
u
)]}∣

∣
∣
x=xl

,

(9.63)

and

δ(t) =
{
φ0

(
(t − t0)

2a2Δ
)
ϕ′
1(x) + (t − t0)φ1

(
(t − t0)

2a2Δ
)
ϕ′
2(x)

+
∞∑

k=1

[ (t − t0)2k

(2k)!
k∑

j=1

a2(k− j)Δk− j f̃ (2 j−2)
t

(
u
)

+ (t − t0)2k+1

(2k + 1)!
k∑

j=1

a2(k− j)Δk− j f̃ (2 j−1)
t

(
u
)]}∣

∣
∣
x=xr

.

(9.64)

Let

F̃(x, t) �
∫ t

t0

(t − ζ )φ1
(
(t − t0)

2a2Δ
)
f̂
(
ζ
)
dζ.

As deduced for the Dirichlet boundary conditions in Sect. 9.4.1, it can be shown
that

F̃ (2k)
t =

k∑

j=1

a2(k− j)Δk− j f̃ (2 j−2)
t

(
u
)

F̃ (2k+1)
t =

k∑

j=1

a2(k− j)Δk− j f̃ (2 j−1)
t

(
u
)
, k = 1, 2, . . . .

(9.65)

Inserting (9.65) into the Taylor expansion of F̃(x, t) at the point t = t0 gives
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F̃(x, t) =
∞∑

k=0

(t − t0)k

k! F̃ (k)
t =

∞∑

k=2

(t − t0)k

k! F̃ (k)
t

=
∞∑

k=1

(t − t0)2k

(2k)! F̃ (2k)
t +

∞∑

k=1

(t − t0)2k+1

(2k + 1)! F̃ (2k+1)
t

=
∞∑

k=1

[ (t − t0)2k

(2k)!
k∑

j=1

a2(k− j)Δk− j f̃ (2 j−2)
t

(
u
)

+ (t − t0)2k+1

(2k + 1)!
k∑

j=1

a2(k− j)Δk− j f̃ (2 j−1)
t

(
u
)]

.

(9.66)

Comparing the results of (9.66) with (9.63) and (9.64) yields

γ (t) =
[
φ0

(
(t − t0)

2a2Δ
)
ϕ′
1(x) + (t − t0)φ1

(
(t − t0)

2a2Δ
)
ϕ′
2(x)

+
∫ t

t0

(t − ζ )φ1
(
(t − ζ )2a2Δ

)
f̂
(
ζ
)
dζ

]∣
∣
∣
x=xl

,

δ(t) =
[
φ0

(
(t − t0)

2a2Δ
)
ϕ′
1(x) + (t − t0)φ1

(
(t − t0)

2a2Δ
)
ϕ′
2(x)

+
∫ t

t0

(t − ζ )φ1
(
(t − ζ )2a2Δ

)
f̂
(
ζ
)
dζ

]∣
∣
∣
x=xr

.

This finishes the direct proof. �
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