
Chapter 8
A Compact Tri-Colored Tree Theory
for General ERKN Methods

This chapter develops a compact tri-colored rooted-tree theory for the order condi-
tions for general ERKN methods. The bottleneck of the original tri-colored rooted-
tree theory is the existence of numerous redundant trees. This chapter first introduces
the extended elementary differential mappings. Then, the new compact tri-colored
rooted tree theory is established based on a subset of the original tri-colored rooted-
tree set. This new theory makes all redundant trees no longer appear, and hence the
order conditions of ERKN methods for general multi-frequency and multidimen-
sional second-order oscillatory systems are greatly simplified.

8.1 Introduction

Runge–Kutta–Nyström (RKN) methods (see [12]) are very popular for solving
second-order differential equations. This chapter develops the rooted-tree theory
and B-series for extended Runge–Kutta–Nyström (ERKN) methods solving general
multi-frequency and multi-dimensional oscillatory second-order initial value prob-
lems (IVPs) of the form

{
y′′(t) + M y(t) = f

(
y(t), y′(t)

)
, t ∈ [t0, T ],

y(t0) = y0, y′(t0) = y′
0,

(8.1)

where M is a d × d constant matrix implicitly containing the dominant frequencies
of the system, y ∈ R

d , and f : Rd × R
d → R

d , with position y and velocity y′ as
arguments. In the special case where the right-hand side function of (8.1) does not
depend on velocity y′, (8.1) reduces to the following special second-order oscillatory
system
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{
y′′(t) + M y(t) = f

(
y(t)
)
, t ∈ [t0, T ],

y(t0) = y0, y′(t0) = y′
0.

(8.2)

Furthermore, if M is symmetric and positive semi-definite and f (q) = −∇U(q),
then, with q = y, p = y′, (8.2) becomes identical to a multi-frequency and multidi-
mensional oscillatory Hamiltonian system

{
p′(t) = −∇q H( p(t), q(t)), p(t0) = p0,
q ′(t) = ∇ pH( p(t), q(t)), q(t0) = q0,

(8.3)

with the Hamiltonian

H( p, q) = 1

2
pᵀ p + 1

2
qᵀMq + U(q),

where U(q) is a smooth potential function. For solving the multi-frequency, multi-
dimensional, oscillatory system (8.3), a large number of studies have beenmade (see,
e.g. [6, 25, 28]). The methods for problems (8.1) and (8.2) are especially important
when M has large positive eigenvalues, as in the case where the wave equations is
semi-discretised in space (see, e.g. [11, 14, 26, 27, 29]). Such problems arise in a
wide range of fields such as astronomy, molecular dynamics, classical mechanics,
quantum mechanics, chemistry, biology and engineering.

ERKNmethodswere proposed originally in the papers [23, 32] to solve the special
oscillatory system (8.2). ERKNmethodsworkwell in practical numerical simulation,
since they are specially designed to be adapted to the structure of the underlying
oscillatory system and do not depend on the decomposition of the matrix M . ERKN
methods have been widely investigated and used in numerous applications in the
fields of science and engineering. For example, the idea of ERKN methods has been
extended to two-step hybrid methods (see, e.g. [8, 9]), to Falkner-type methods (see,
e.g. [7]), to Störmer–Verlet methods (see, e.g. [17]), to energy-preserving methods
(see, e.g. [11, 15, 24]), and to symplectic and multi-symplectic methods (see, e.g.
[14, 16, 19, 20]). Meanwhile, further research on ARKN methods, including the
symplectic conditions and symmetry, has been carried out in the following papers
[10, 13, 21, 22, 31].

In a recent paper [33], ERKN methods were extended to the general oscillatory
system (8.1), and a tri-colored tree theory called extended Nyström tree theory (EN-
T theory) was analysed for the order conditions. Unfortunately, however, the EN-T
theory is not completely satisfactory due to the existence of redundant trees. For
example, there are 7 redundant trees out of 16 trees for third order ERKN methods.
In practice, in order to gain the order conditions for a specific ERKNmethod of order
r , one needs to draw all the trees of order up to r first, and then from them select and
delete about half of the redundant trees. This will lead to inefficiency in the use of
the EN-T theory to achieve the order conditions for ERKN methods.

Hence, in this chapter, we will present an improved theory to eliminate all such
redundant trees. In a similar approach to the case of the special oscillatory system
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(8.2) in [30], extended elementary differentials are required, and we will discuss this
in detail in Sect. 8.4.

This chapter is organized as follows. We first summarise the ERKN method for
the general oscillatory system (8.1) in Sect. 8.2, and then in Sect. 8.3 we illustrate
drawbacks of the EN-T theory proposed in [33]. In Sect. 8.4, we introduce the set of
improved extended-Nyström trees and show how this relates to other tree sets in the
literature. Section 8.5 focuses on the B-series associated with the ERKNmethod for
the general oscillatory system (8.1), and Sect. 8.6 analyses the corresponding order
conditions for the ERKN methods, when applied to the general oscillatory system
(8.1). In Sect. 8.7 we derive some ERKN methods of order up to four, exploiting the
advantages of the new tree theory. The numerical experiments are made in Sect. 8.8.
Conclusive remarks are included in Sect. 8.9.

8.2 General ERKN Methods

To begin with, we summarise the following general ERKN method based on the
matrix-variation-of-constants formula (see [23]) and quadrature formulae.

Definition 8.1 (See [33]) An s-stage general extended Runge–Kutta–Nyström
(ERKN) method for the numerical integration of the IVP (8.1) is defined by the
following scheme

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yi = φ0(c
2
i V ) yn + ci φ1(c

2
i V )h y′n + h2

s∑
j=1

āi j (V ) f (Y j , Y ′
j ), i = 1, . . . , s,

hY ′
i = −ci V φ1(c

2
i V ) yn + φ0(c

2
i V )h y′n + h2

s∑
j=1

ai j (V ) f (Y j , Y ′
j ), i = 1, . . . , s,

yn+1 = φ0(V ) yn + φ1(V )h y′n + h2
s∑

i=1

b̄i (V ) f (Yi , Y ′
i ),

h y′n+1 = −V φ1(V ) yn + φ0(V )h y′n + h2
s∑

i=1

bi (V ) f (Yi , Y ′
i ),

(8.4)
where φ0(V ), φ1(V ), āi j (V ), ai j (V ), b̄i (V ) and bi (V ) for i, j = 1, . . . , s arematrix-
valued functions of V = h2M , and are assumed to have the following series
expansions

āi j (V ) =
+∞∑
k=0

ā(2k)
i j

(2k)! V k, ai j (V ) =
+∞∑
k=0

a(2k)
i j

(2k)! V k,

b̄i (V ) =
+∞∑
k=0

b̄(2k)
i

(2k)! V k, bi (V ) =
+∞∑
k=0

b(2k)
i

(2k)! V k, φi (V ) =
+∞∑
k=0

(−1)k

(2k + i)! V k



196 8 A Compact Tri-Colored Tree Theory for General ERKN Methods

with real coefficients ā(2k)
i j , a(2k)

i j , b̄(2k)
i , b(2k)

i for k = 0, 1, 2, . . ..

The ERKN method (8.4) in Definitions 8.1 can also be represented compactly in
a Butcher tableau of the coefficients [4]:

c1 ā11(V ) ā12(V ) · · · ā1s(V ) a11(V ) a12(V ) · · · a1s(V )

c2 ā21(V ) ā22(V ) · · · ā2s(V ) a21(V ) a22(V ) · · · a2s(V )
...

...
...

. . .
...

...
...

. . .
...

cs ās1(V ) ās2(V ) · · · āss(V ) as1(V ) as2(V ) · · · ass(V )

b̄1(V ) b̄2(V ) · · · b̄s(V ) b1(V ) b2(V ) · · · bs(V )

. (8.5)

In essence, ERKN methods incorporate the particular structure of the oscillatory
system (8.1) into both the internal stages and the updates. Throughout this chapter,
we call methods for the general oscillatory system (8.1) general ERKN methods, and
standard ERKN methods, for the special case (8.2).

8.3 The Failure and the Reduction of the EN-T Theory

The EN-T theory for general ERKN methods was presented in the recent paper [33]
in which some tri-colored trees are supplemented to the classical Nyström trees (N-
Ts). The idea of the EN-T theory comes from the fact that the numbers of the N-Ts
and of the elementary differentials are completely different. The paper [33] tried to
eliminate the difference and then to make one elementary differential correspond
to one tree uniquely. Unfortunately, however, the paper [33] did not succeed on
this point. For example, the two different trees shown in Table 8.1 have the same
elementary differentials F (τ )( y, y′).

Moreover, the great limitation of the EN-T theory is the existence of great numbers
of redundant trees that cause trouble in applications. For example, in Table 8.2 (left),
there are seven EN-Ts but five of them are redundant since their order ρ(τ), density
γ (τ), weight Φi (τ ), and the consequent order conditions can be implied by others
for the general ERKN methods (8.4).

Here, it should be pointed out that it is not necessary that one tree corresponds
to one elementary differential. In other words, one tree may correspond to a set

Table 8.1 Two EN-Ts which have the same elementary differentials F (τ )( y, y′)
EN-Ts ρ γ Φi α F

4 4 c2i
∑

j a(0)
i j 3 f (2)

y y′ (−M y, f )

4 8 ci
∑

j ā(0)
i j 3 f (2)

y y′ (−M y, f )
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Table 8.2 Some EN-Ts and the redundance

EN-Ts ρ γ Φi α F

2 2 ci 1 f (1)
y y′

2 2 ci 1 f (1)
y′ (−My)

3 3 c2i 1 f (2)
y y
(
y′, y′)

3 3 c2i 2 f (2)
y y′
(− M y, y′)

3 3 c2i 1 f (2)
y′ y′
(− M y,−M y

)
3 3 c2i 1 f (1)

y
(− M y

)

3 3 c2i 1 f (1)
y′
(− M y′)

EN-Ts ρ γ Φi α F

2 2 ci 1 f (1)
y y′

+ f (1)
y′ (−My)

3 3 c2i 1 f (2)
y y
(
y′, y′)

+2 f (2)
y y′
(− M y, y′)

+
f (2)
y′ y′
(− M y,−M y

)
+ f (1)

y
(− M y

)
+ f (1)

y′
(− M y′)

of elementary differentials. For example, just as shown in Table 8.2, the sum of
the products of the coefficient α(τ) and the elementary differentials F (τ )( y, y′) is
meaningful. In fact, we have

f (1)
y y′ + f (1)

y′ (−My) = D1
h f
(
φ0(h

2M) y + φ1(h
2M)h y′, φ0(h

2M) y′ − hMφ1(h
2M) y

)
,

namely, f (1)
y y′ + f (1)

y′ (−My) is the first-order derivative of function f with respect
to h, at h = 0, where the function f is evaluated at point ( ŷ, ŷ′

) with

ŷ = φ0(h
2M) y + φ1(h

2M)h y′, (8.6)

ŷ′ = φ0(h
2M) y′ − hMφ1(h

2M) y. (8.7)

Thus, in Table 8.2, we can choose these two bi-colored trees to respectively represent
the sums, and omit all trees with meagre vertices. In this way, we can get rid of the
redundance as shown in Table 8.2 (right).
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On the other hand, although almost all tri-colored trees are redundant, there indeed
exist tri-colored trees which are absolutely necessary in the research of order con-
ditions for the general ERKN methods (8.4). For example, the fifth tree which is
tri-colored in the fifth line in the Table2 in [33] undoubtedly works for the order
conditions. In a word, the theory for the general ERKNmethods (8.4) is a tri-colored
tree theory, but it is based on a subset of the EN-T set.

Hence, it is quite natural that this chapter starts from the N th derivative of the

function f (m+n)
ym y′n

∣∣∣
( ŷ, ŷ′

)
with respect to h, at h = 0. For details aboutmultivariate Taylor

series expansions and some related knowledge, readers are referred to [1, 30]. Inwhat
follows we will denote this derivative as DN

h f (m+n)
ym y′n .

Remark 8.1 The dimension of the matrix DN
h f (m+n)

ym y′n is d × dm+n . If z is a dm+n × 1

matrix, the dimension of DN
h f (m+n)

ym y′n z is d × 1.

Remark 8.2 If the matrix M is null,

DN
h f (m+n)

ym y′n z = f (m+n+N )

ym+N y′n

(
y′, · · · , y′︸ ︷︷ ︸

N fold

, z
)
,

where f (m+n+N )

ym+N y′n is evaluated at the point ( y, y′), and (·, · · · , ·) is the Kronecker
inner product (see [30]).

Remark 8.3 In the special case (8.2) where the function f is independent of y′,
DN

h f (m+n)
ym y′n z is exactly DN

h f (m)z in [30].

At the end of this section we give the following first three results of DN
h f (m+n)

ym y′n z,
which contribute significantly to our understanding of the extended elementary dif-
ferentials (see Definition 8.3 in Sect. 8.4).

D1
h f (m+n)

ym y′n z = f (m+n+1)
ym+1 y′n

(
y′, z

)
+ f (m+n+1)

ym y′n+1

(
− M y, z

)
,

D2
h f (m+n)

ym y′n z = f (m+n+2)
ym+2 y′n

(
y′, y′, z

)
+ f (m+n+1)

ym+1 y′n
(

− M y, z
)

+ 2 f (m+n+2)
ym+1 y′n+1

(
y′,−M y, z

)
+ f (m+n+2)

ym y′n+2

(
− M y,−M y, z

)
+ f (m+n+1)

ym y′n+1

(
− M y′, z

)
,

D3
h f (m+n)

ym y′n z = f (m+n+3)
ym+3 y′n

(
y′, y′, y′, z

)
+ 3 f (m+n+3)

ym+2 y′n+1

(
y′, y′,−M y, z

)
+ 3 f (m+n+3)

ym+1 y′n+2

(
y′,−M y,−M y, z

)
+ f (m+n+3)

ym y′n+3

(
− M y,−M y,−M y, z

)
+ 3 f (m+n+2)

ym+2 y′n
(
y′,−M y, z

)
+ 3 f (m+n+2)

ym+1 y′n+1

(
− M y,−M y, z

)
+ 3 f (m+n+2)

ym+1 y′n+1

(
y′,−M y′, z

)
+ 3 f (m+n+2)

ym y′n+2

(
− M y,−M y′, z

)
+ f (m+n+1)

ym+1 y′n
(

− M y′, z
)

+ f (m+n+1)
ym y′n+1

(
(−M)2 y, z

)
.
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Table 8.3 Four theory systems for second order differential equations

IVPs Methods Trees (graphs) Compact (T/F)

1 y′′ = f
(
y, y′) General RKN

methods
N-Ts T

2 y′′ = f
(
y
)

Standard RKN
methods

SN-Ts T

3 y′′ + M y =
f
(
y, y′) General ERKN

methods
EN-Ts F

4 y′′ + M y =
f
(
y
) Standard ERKN

methods
SSEN-Ts T

8.4 The Set of Improved Extended-Nyström Trees

In the study of order conditions for second-order differential equations, there are
four theory systems listed in Table 8.3, where the abbreviation “SSEN-T” is for
simplified special extended Nyström-tree [30], and here the word “compact” should
be interpreted as meaning that any order condition derived from a tree belonging the
underlining rooted tree set cannot be obtained by another from the same rooted tree
set.

The first two systems are very famous in the numerical analysis for ODEs, where
the second is a special case of the first one. The rooted tree sets in these two systems
are all bi-colored tree sets with the white vertex and the black vertex. The last two
systems are constructed on tri-colored rooted tree sets by adding the meagre vertex
to the graph of bi-colored trees. Similarly, the last system is the special case of the
third.

Moreover, when the matrix M is null, the third is identical to the first, and the
fourth to the second. In a word, the last two systems are the extensions of the first
two systems respectively. However, the extension of the first system is not satisfied
yet, since the last section in this chapter states that the third system is not compact. In
order to make the extension better, a compact theory will be built to replace the third
one, by introducing a completely new tri-colored rooted tree set and six mappings
onto it. In this section, we will define the new tree set and study the relationships to
the N-T set, the EN-T set, and the SSEN-T set.

8.4.1 The IEN-T Set and the Related Mappings

In what follows, we will recursively define a new set named the improved extended-
Nyström tree set, and define six mappings on it.

Definition 8.2 The improved extended-Nyström tree (IEN-T) set, is recursively
defined as follows:
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Table 8.4 Tree W+ B+(b+ B+)p(τ ) (left), and tree W+(b+ B+)p(τ ) (right) in Definition 8.2

τ...

···
p

1

τ...

···
p

1

...
1 N ��

��
τm+n

···qn1 2

...��

��
τm+1

···
q1

1
2��

��
τm

···pm
1

...
��

��

τ1

···
p1

1

τ

Fig. 8.1 The mode of the trees in the IEN-T set

(a) , belong to the IEN-T set.
(b) If τ belongs to the IEN-T set, then the graph obtained by grafting the root

of tree τ to a new black fat node and then to a new meagre node, · · · (p
times), and then to a new black fat node and then last to a new white node,
denoted by W+ B+(b+ B+)p(τ ) (see Table 8.4), belongs to the IEN-T set for
∀p = 0, 1, 2, . . ..

(c) If τ belongs to the IEN-T set, then the graph obtained by grafting the root of tree
τ to a new black fat node and then to a new meagre node, · · · (p times), then
last to a new white node, denoted by W+(b+ B+)p(τ ) (see Table 8.4), belongs to
the IEN-T set for ∀p = 0, 1, 2, . . ..

(d) If τ1, . . . , τμ belong to the IEN-T set, then τ1 × · · · × τμ belongs to the IEN-T
set, where ‘×’ is the merging product [4].

Each tree τ in the IEN-T set can be denoted by

τ := τ∗ × · · · × τ∗︸ ︷︷ ︸
N−fold

×
(

W+ B+(b+ B+)p1(τ1)
)

× · · · ×
(

W+ B+(b+ B+)pm (τm)
)

×
(

W+(b+ B+)q1(τm+1)
)

× · · · ×
(

W+(b+ B+)qn (τm+n)
)
,

(8.8)

where τ∗ = . Figure 8.1 gives the mode of the trees in the IEN-T set.
On the basis of Definition 8.2, the following rules for forming a tree τ in the

IEN-T set can be obtained straightforwardly:

(i) The root of a tree is always a fat white vertex.
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(ii) A white vertex has fat black children, or white children, or meagre children.
(iii) A fat black vertex has at most one child which can be white or meagre.
(iv) A meagre vertex must has one fat black vertex as its child, and must have a

white vertex as its descendant.

Definition 8.3 The order ρ(τ), the extended elementary differential F (τ )( y, y′),
the coefficient α(τ), the weight Φi (τ ), the density γ (τ) and the sign S(τ ) on the
IEN-T set are recursively defined as follows.

1. ρ( ) = 1, F ( ) = f , α( ) = 1, Φi ( ) = 1, γ ( ) = 1 and S( ) = 1.
2. For τ ∈ IEN-T denoted by (8.8),

• ρ(τ) = 1 + N +
m∑

i=1

(
1 + 2pi + ρ(τi )

)
+

n∑
i=1

(
2qi + ρ(τm+i )

)
,

• F (τ ) = DN
h f (m+n)

ym y′n

(
(−M)p1F (τ1), · · · , (−M)pm+nF (τm+n)

)
,

where pm+i = qi , i = 1, · · · , n, and (·, · · · , ·) is the Kronecker inner product
(see [30]),

• α(τ) = (ρ(τ ) − 1)! · 1
N ! ·

m∏
i=1

(
α(τi )

(1+2pi +ρ(τi ))!
)

·
n∏

i=1

(
α(τm+i )

(2qi +ρ(τm+i ))!
)

· 1
J1!...JI ! ,

where J1, · · · , JI count the same branches,

• Φi (τ ) = cN
i ·

m∏
k=1

( s∑
j=1

ā(2pk )

i j Φ j (τk)
)

·
n∏

k=1

( s∑
j=1

a(2qk )

i j Φ j (τm+k)
)
,

• γ (τ) = ρ(τ) ·
m∏

i=1

(
(1+2pi +ρ(τi ))!γ (τi )

(2pi )!ρ(τi )!
)

·
n∏

i=1

(
(2qi +ρ(τm+i ))!γ (τm+i )

(2qi )!ρ(τm+i )!
)
,

• S(τ ) =
m∏

i=1

(
(−1)pi S(τi )

)
·

n∏
i=1

(
(−1)qi S(τm+i )

)
,

where
0∑

k=1
= 0 and

0∏
k=1

= 1.

Definition 8.4 The set IEN-Tm is defined as

IEN-Tm = {τ : ρ(τ) = m, τ ∈ IEN-T
}
.

Remark 8.4 The order ρ(τ) is the number of the tree τ ’s vertices.

Remark 8.5 The extended elementary differential F (τ ) is a product of (−M)p (p
is the number of meagre vertices between a white vertex and the next coming white
vertex), and DN

h f (n+m)
ym y′n (N is the number of end vertices from the white vertex, m

is the number of the non-ending black vertices from the white vertex, and n is the
number of the meagre vertices from the white vertex). We will see that the extended
elementary differential is not only one function but a weighted sum of the traditional
elementary differential.

Remark 8.6 One IEN-T corresponds to one extended elementary differentialF (τ ).
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Remark 8.7 The coefficient α(τ) is the number of possible different monotonic
labelings of τ .

Remark 8.8 TheweightΦi (τ ) is a sumover the indices of all white vertices and of all
end vertices. The general term of the sum is a product of ā(2p)

i j for W+ B+(b+ B+)p(τ ),

of a(2p)

i j for W+(b+ B+)p(τ ) (p is the number of the meagre vertices between the
white vertices i and j), and of cm

i (m is the number of end vertices from the white
vertex i).

Remark 8.9 One IEN-T corresponds to one weight Φi (τ ) .

Remark 8.10 The density γ (τ) is the product of the density of a tree by overlooking
the differences between vertices, and 1

(2p)! , where p is the number of the meagre
vertices between two white vertices.

Remark 8.11 The sign S(τ ) is 1 if the number of the meagre vertices is even, and
−1 if the number of the meagre vertices is odd.

Table 8.5 makes a list of the corresponding mappings: the order ρ, the sign S, the
density γ , the weight Φi , the symmetry α and the extended elementary differential
F for each τ in the IEN-T set of order up to 4.

8.4.2 The IEN-T Set and the N-T Set

In this subsection, we will see that with the disappearance of meagre vertices the
IEN-T set is exactly the N-T set. In fact, in this case, each tree τ in the IEN-T set has
the form shown in Fig 8.2, and the rules to form the tree set are straightforwardly
reduced to:

(i) The root of a tree is always a fat white vertex.
(ii) A white vertex has fat black children, or white children.
(iii) A fat black vertex has at most one child which must be white.

In this case, from Remarks8.4–8.10, the order ρ(τ), the coefficient α(τ) and the
density γ (τ) are exactly the same as the ones on the N-T set respectively. If M is
null, the weight Φi (τ ) and the extended elementary differential F (τ )( y, y′) on the
IEN-T set are exactly the same as the ones on the N-T set respectively, too. In fact,
from Definition 8.3, with the disappearance of meagre vertices, these two mappings
are recursively defined respectively, for τ denoted by Fig. 8.2, as follows:

Φi (τ ) = cN
i ·

m∏
k=1

( s∑
j=1

āi jΦ j (τk)
)

·
n∏

k=1

( s∑
j=1

ai jΦ j (τm+k)
)
,

F (τ ) = DN
h f (m+n)

ym y′n

(
F (τ1), · · · ,F (τm+n)

)
.
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Table 8.5 IEN-Ts and mappings of order up to 4 and the corresponding elementary differentials
on the N-T set

No. IEN-Ts ρ S γ Φi α F F
on the N-T set

1 1 1 1 1 1 f f

2 2 1 2 ci 1 D1
h f f ′

y y′

3 2 1 2
∑

j a(0)
i j 1 f (1)

y′ f f ′
y′ f

4 3 1 3 c2i 1 D2
h f f ′′

yy(y′, y′)

5 3 1 3 ci
∑

j a(0)
i j 1 D1

h f y′ f f ′′
yy′ (y′, f )

6 3 1 3
∑

j,k a(0)
i j a(0)

ik 1 f y′ y′ ( f , f ) f ′′
y′ y′ ( f, f )

7 3 1 6
∑

j ā(0)
i j 1 f (1)

y f f ′
y f

8 3 1 6
∑

j a(0)
i j c j 1 f (1)

y′ D1
h f f ′

y′ fy y′

9 3 1 6
∑

j,k a(0)
i j a(0)

jk 1 f (1)
y′ f (1)

y′ f f ′
y′ f ′

y′ f

10 4 1 4 c3i 1 D3
h f f (3)

yyy(y′, y′, y′)

11 4 1 4 c2i
∑

j a(0)
i j 3 D2

h f (1)
y′ f f (3)

y′ yy( f, y′, y′)

12 4 1 4 ci
∑

j,k a(0)
i j a(0)

ik 3 D1
h f (2)

y′ y′ ( f , f ) f (3)
yy′ y′ (y′, f, f )

13 4 1 4
∑

j,k,l a(0)
i j a(0)

ik a(0)
il 1 f (3)

y′ y′ y′ ( f , f , f ) f (3)
y′ y′ y′ ( f, f, f )

14 4 1 8 ci
∑

j ā(0)
i j 3 D1

h f (1)
y f f ′′

yy(y′, f )

15 4 1 8
∑

j,k ā(0)
i j a(0)

ik 3 f (2)
y y′ ( f , f ) f ′′

yy′ ( f, f )

16 4 1 8 ci
∑

j,k a(0)
i j a(0)

jk 3 D1
h f (1)

y′ f y′ f f ′′
yy′ (y′, fy′ f )

17 4 1 8
∑

j,k,l a(0)
i j a(0)

ik a(0)
kl 3 f (2)

y′ y′ ( f , f (1)
y′ f ) f ′′

y′ y′ ( fy′ f, f )

18 4 1 8 ci
∑

j a(0)
i j c j 3 D1

h f (1)
y′ D1

h f f ′′
yy′ ( fy y′, y′)

19 4 1 8
∑

j,k a(0)
i j a(0)

ik ck 3 f (2)
y′ y′ ( f , D1

h f ) f ′′
y′ y′ ( fy y′, f )

(continued)
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Table 8.5 (continued)

No. IEN-Ts ρ S γ Φi α F F
on the N-T set

20 4 1 24
∑

j ā(0)
i j c j 1 f (1)

y D1
h f f ′

y f ′
y y′

21 4 1 24
∑

j,k ā(0)
i j a(0)

jk 1 f (1)
y f (1)

y′ f f ′
y f ′

y′ f

22 4 1 24
∑

j,k a(0)
i j ā(0)

jk 1 f (1)
y′ f (1)

y f f ′
y′ f ′

y f

23 4 1 24
∑

j,k a(0)
i j a(0)

jk ck 1 f (1)
y′ f (1)

y′ D1
h f f ′

y′ f ′
y′ f ′

y y′

24 4 1 24
∑

j,k,l a(0)
i j a(0)

jk a(0)
kl 1 f (1)

y′ f (1)
y′ f (1)

y′ f f ′
y′ f ′

y′ f ′
y′ f

25 4 -1 12
∑

j a(2)
i j 1 f (1)

y′ (−M) f –

26 4 1 12
∑

j a(0)
i j c2j 1 f (1)

y′ D2
h f f ′

y′ f ′′
yy(y′, y′)

27 4 1 12 ci 2 f (1)
y′ D1

h f (1)
y′ f f ′

y′ f ′′
yy′ (y′, f )

28 4 1 12
∑

j,k,l a(0)
i j a(0)

jk a(0)
jl 1 f (1)

y′ f (2)
y′ y′ ( f , f ) f ′

y′ f ′′
y′ y′ ( f, f )

...1 N
��

��τm+n

...��

��τm+1��

��τm

...
��

��τ1

τ

Fig. 8.2 The form of the trees with meagre vertices disappearing
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Table 8.6 Tri-colored Trees which are appended to the set N-T5 to form the set IEN-T5

Clearly, the IEN-T set is really an extension of the N-T set (see, Table 14.3 on p.
292 in [4]). It can also be seen from Tables8.5 and 8.6 that one 4th order tree, six
5th order trees are appended to the N-T set to form the IEN-T set. All these special
and new appended trees have a meagre vertex (or some vertices) which correspond
to nothing in the N-T set. In fact, the weights Φi in Table 8.6 are all the functions
of ā(2k)

i j and a(2k)
i j , high-order derivatives of āi j (V ) and ai j (V ) with respect to h, at

h = 0.

8.4.3 The IEN-T Set and the EN-T Set

First of all, we note that there are just five mappings defined on the EN-T set in the
paper [33], while there are six mappings on the IEN-T set in this chapter. In the paper
[33], the authors introduced the signed density γ̃ (τ ), but in this chapter we replace
γ̃ (τ ) by the product of the two mappings, the density γ (τ) and the sign S(τ ).

The IEN-T set is a subset of the EN-T set, once one overlooks the (extended)
elementary differential F (τ ) on them.

8.4.4 The IEN-T Set and the SSEN-T Set

From the rules of the IEN-T set and of the SSEN-T set (see [30]), if the function
f in the system (8.1) does not containing y′ explicitly, the IEN-T set is exactly the
SSEN-T set.

8.5 B-Series for the General ERKN Method

In Sect. 8.4 we presented the IEN-T set, on which six mappings are defined. With
these preliminaries, motivated by the concept of B-series, we will describe a totally
different approach from the one described in [33] to deriving the theory of order
conditions for the general ERKN method.
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The main results of the theory of B-series have their origins in the profound paper
[2] of Butcher in 1972, and then are introduced in detail by Hairer and Wanner [5]
in 1974. In what follows, we present the following two elementary theorems.

Theorem 8.1 With Definition 8.3, f ( y(t + h), y′(t + h)) is a B-series

f ( y(t + h), y′(t + h)) =
∑

τ∈IEN-T

hρ(τ)−1

(ρ(τ ) − 1)!α(τ)F (τ )( y, y′).

Proof First, we expand f ( y(t + h), y′(t + h)) at point ( ŷ, ŷ′
), with the definitions

of (8.6) and (8.7).

f ( y(t + h), y′(t + h)) =
∑

m≥0,n≥0

1

(m + n)! f (m+n)

ym y′n
∣∣∣
( ŷ, ŷ′)

(
y(t + h) − ŷ

)⊗m ⊗
(
y′(t + h) − ŷ′)⊗n

,

(8.9)

where the second term f (m+n)
ym y′n

∣∣∣
( ŷ, ŷ′)

in this series is the matrix-valued function of h.

Definition 8.3 ensures that f ( y(t + h), y′(t + h)) is a B-series. In fact, if f ( y(t +
h), y′(t + h)) is a B-series, from thematrix-variation-of-constants formula withμ =
1, (see [33]), and from the properties of the φ-functions (see e.g. [25]), we have

y(t + h) − ŷ = h2
∫ 1
0 (1 − z)φ1((1 − z)2V ) f ( y(t + hz), y′(t + hz))dz

= ∑
τ∈IEN−T

∫ 1
0 (1 − z)φ1((1 − z)2V ) zρ(τ)−1

(ρ(τ )−1)!dz ·
(

hρ(τ)+1α(τ)F (τ )( y, y′)
)

= ∑
τ∈IEN−T

φρ(τ)+1(V ) · hρ(τ)+1α(τ)F (τ )( y, y′)

= ∑
τ∈IEN−T

∑
p≥0

(−1)p V p

(ρ(τ )+1+2p)! h
ρ(τ)+1α(τ)F (τ )( y, y′),

(8.10)
and

y′(t + h) − ŷ′ = ∑
τ∈IEN−T

∑
q≥0

(−1)q V q

(ρ(τ )+2q)! h
ρ(τ)α(τ )F (τ )( y, y′). (8.11)

Taking the Taylor series of f (m+n)
ym y′n

∣∣∣
( ŷ, ŷ′)

at h = 0, and from (8.10) and (8.11), the

Eq. (8.9) becomes

f ( y(t + h), y′(t + h)) = ∑
N ,n,m

∑
τ∈IEN−T

hs

N !(m+n)! DN
h f (n+m)

ym y′n

(
(−M)p1α(τ1)F (τ1)( y)

(ρ(τ1)+1+2p1)! , . . . ,

(−M)pm α(τm )F (τm )( y)
(ρ(τm )+1+2pm )! ,

(−M)q1α(τm+1)F (τm+1)( y)
(ρ(τm+1)+2q1)! , . . . ,

(−M)qn α(τm+n)F (τm+n)( y)
(ρ(τm+n)+2qn)!

)
,

(8.12)
where

s = N +
m∑

k=1

(2pk + ρ(τk) + 1) +
n∑

k=1

(2qk + ρ(τm+k)).

By Definition 8.3, the proof is complete.
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Theorem 8.2 Given a general ERKN method (8.4), by Definition 8.3, each f (Yi , Y ′
i )

is a series of the form

f (Yi , Y ′
i ) =

∑
τ∈IEN-T

hρ(τ)−1

ρ(τ)! ai (τ ),

where ai (τ ) = Φi (τ ) · γ (τ) · S(τ ) · α(τ) · F (τ )( yn, y
′
n).

Proof In a similarway to the proof of Theorem8.1,we expand f (Yi , Y ′
i ) at ( ỹ, ỹ

′
) for

the general ERKN method (8.4), where ỹ = φ0(c2i V ) yn + φ1(c2i V )ci h y′
n and ỹ′ =

φ0(c2i V ) y′
n − ci hMφ1(c2i V ) yn , and obtain the Taylor series expansion as follows:

f (Yi , Y ′
i ) =

∑
m,n≥0

1

(m + n)! f (m+n)

ym y′n
∣∣∣
ỹ, ỹ′

(
h2
∑

j

āi j (V ) f (Y j , Y ′
j )
)⊗m ⊗

(
h
∑

j

ai j (V ) f (Y j , Y ′
j )
)⊗n

,

(8.13)

where the second term f (m+n)
ym y′n

∣∣∣
ỹ, ỹ′ is a function of ci h. Then the Taylor series expan-

sion of f (m+n)
ym y′n

∣∣∣
( ŷ, ŷ′)

at h = 0 is given by

f (m+n)
ym y′n

∣∣∣
( ŷ, ŷ′)

=
∑
N≥0

cN
i

m! hN DN
h f (m+n)

ym y′n . (8.14)

Definition 8.3 ensures that each f (Yi , Y ′
i ) for i = 1, . . . , s is a B-series. In fact,

the third and fourth terms in the Eq. (8.13) are given by

h2∑
j āi j (V ) f (Y j , Y ′

j ) = ∑
τ∈IEN−T

∑
p≥0

∑
j ā(2p)

i j

ρ(τ)!
V p

(2p)! h
ρ(τ)+1a j (τ ), (8.15)

and

h
∑

j ai j (V ) f (Y j , Y ′
j ) = ∑

τ∈IEN−T

∑
q≥0

∑
j a(2q)

i j

ρ(τ)!
V q

(2q)! h
ρ(τ)a j (τ ). (8.16)

We then obtain

f (Yi , Y ′
i ) = ∑

N ,n,m

∑
τ∈IEN−T

cN
i hs

N !(n+m)! DN
h f (m+n)

ym y′n
(∑

j ā
(2p1)

i j
ρ(τ1)!

M p1

(2p1)! a j (τ1), . . . ,

∑
j ā(2pm )

i j
ρ(τm )!

M pm

(2pm )! a j (τm),

∑
j a

(2q1)

i j
ρ(τm+1)!

Mq1

(2q1)! a j (τm+1), . . . ,

∑
j a(2qn )

i j
ρ(τm+n )!

Mqn

(2qn )! a j (τm+n)
)
,

(8.17)

where s = N +
m∑

k=1
(2pk + ρ(τk) + 1) +

n∑
k=1

(2qk + ρ(τm+k)). Using Definition 8.3,

we complete the proof.
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8.6 The Order Conditions for the General ERKN Method

Theorem 8.3 The scheme (8.4) for the general multi-frequency and multidimen-
sional oscillatory second-order initial value problems (8.1) has order r if and only
if the following conditions

s∑
i=1

b̄i (V )S(τ )γ (τ )Φi (τ ) = ρ(τ)!φρ(τ)+1 + O(hr−ρ(τ)), ∀τ ∈ IEN-Tm , m ≤ r − 1,

(8.18)
s∑

i=1

bi (V )S(τ )γ (τ )Φi (τ ) = ρ(τ)!φρ(τ) + O(hr−ρ(τ)+1), ∀τ ∈ IEN-Tm , m ≤ r,

(8.19)

are satisfied.

Proof It follows from the matrix-variation-of-constants formula, Theorems8.1 and
8.2 that

yn+1 = φ0(V ) yn + hφ1(V ) y′
n

+
∑

τ∈IEN−T

hρ(τ)+1

ρ(τ)!
s∑

i=1

b̄i (V )Φi (τ )S(τ )γ (τ )α(τ)F (τ )( yn, y
′
n),

(8.20)

y(t + h) = φ0(V ) y + hφ1(V ) y′

+
∑

τ∈IEN-T
hρ(τ)+1α(τ)F (τ )( y, y)

∫ 1

0
(1 − z)

zρ(τ)−1

(ρ(τ ) − 1)!φ1((1 − z)V ) dz.

(8.21)
Comparing the Eqs. (8.20) with (8.21) and using the properties of the φ-functions,
we obtain the first result of Theorem 8.3. Likewise, we deduce the second part of the
theorem.

Theorem8.3 in this chapter and Theorem4.1 in [33] share the same expression.
However, it should be noted that there exist redundant order conditions in [33], while
any order condition in this chapter cannot be replaced by others, provided the entries
āi j (V ), ai j (V ), bi (V ) and b̄i (V ) in the general ERKNmethod (8.4) are independent.
Obviously, the elimination of redundant order conditions makes the construction of
high-order general ERKN methods (8.4) much clearer and simpler.

It is easy to see that Theorem8.3 implies the order conditions for the standard
ERKN methods in [23, 30] when the right-hand side function f does not depend
on y′. It is noted that, if the matrix M is null, Theorem 8.3 reduces to the classical
general RKN method when applied to y′′ = f ( y, y′), since the IEN-T set is exactly
the N-T set in this special case.



8.7 The Construction of General ERKN Methods 209

8.7 The Construction of General ERKN Methods

In this section, using Theorem 8.3, we present some general ERKNmethods (8.4) of
order up to 4. The approach to constructing new methods in this section is different
from that described in [33].

8.7.1 Second-Order General ERKN Methods

From Theorem 8.3 and the three IEN-Ts with order no more than 2 which are listed
in Table 8.5, for an s-stage general ERKN method (8.4) expressed in the Butcher
tableau (8.5), we have the following second order conditions:

s∑
i=1

b̄i (V ) = φ2(V ) + O(h),
s∑

i=1
bi (V ) = φ1(V ) + O(h2),

s∑
i=1

bi (V )ci = φ2(V ) + O(h),
s∑

i=1
bi (V )a(0)

i j = φ2(V ) + O(h).

Comparing the coefficients of h0 and h, we obtain 4 equations:

s∑
i=1

b̄(0)
i = 1

2
,

s∑
i=1

b(0)
i = 1,

s∑
i=1

b(0)
i ci = 1

2
,

s∑
i=1

b(0)
i a(0)

i j = 1

2
.

It can be observed that these equations are exactly the second order conditions for
the following traditional RKN method

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yi = yn + ci h y′
n + h2

s∑
j=1

ā(0)
i j

(
f (Y j , Y ′

j ) − MY j

)
, i = 1, · · · , s,

Y ′
i = y′

n + h
s∑

j=1

a(0)
i j

(
f (Y j , Y ′

j ) − MY j

)
, i = 1, · · · , s,

yn+1 = yn + h y′
n + h2

s∑
i=1

b̄(0)
i

(
f (Yi , Y ′

i ) − MYi

)
,

y′
n+1 = y′

n + h
s∑

i=1

b(0)
i

(
f (Yi , Y ′

i ) − MYi

)
,

(8.22)

applied to the initial value problems (8.1), with the tableau
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c1 ā(0)
11 ā(0)

12 · · · ā(0)
1s a(0)

11 a(0)
12 · · · a(0)

1s

c2 ā(0)
21 ā(0)

22 · · · ā(0)
2s a(0)

21 a(0)
22 · · · a(0)

2s
...

...
...

. . .
...

...
...

. . .
...

cs ā(0)
s1 ā(0)

s2 · · · ā(0)
s,s a(0)

s1 a(0)
s2 · · · a(0)

s,s

b̄(0)
1 b̄(0)

2 · · · b̄(0)
s b(0)

1 b(0)
2 · · · b(0)

s

. (8.23)

This means that we can easily solve
(

ci , ā(0)
i j , a(0)

i j , b̄(0)
i , b(0)

i

)
in terms of a classical

general RKN method. For example, from the explicit 2 stage second-order general
RKN method with the Butcher tableau

0
2
3 0 2

3

1
4

3
4

1
4

1
4

, (8.24)

we can obtain 2 stage second-order explicit general ERKN methods. Two examples
are given below.

Example 1 The first 2 stage second-order explicit general ERKN method (8.4) has
Butcher tableau

0
2
3 0 2

3 I
1
4 I 3

4 I 1
4 I 1

4 I

. (8.25)

Example 2 The Butcher tableau of the second one is

0
2
3 0 2

3φ0(
4
9V )

1
4φ1(V ) 3

4φ1(
1
9V ) 1

4 φ0(V ) 1
4φ0(

1
9V )

. (8.26)

8.7.2 Third-Order General ERKN Methods

From Theorem 8.3 and 9 trees in the set of IEN-Tm, (m ≤ 3) in Table 8.5, for an
s-stage general ERKN method (8.4) expressed in the Butcher tableau (8.5), we have
the third order conditions as follows:

s∑
i=1

b̄i (V ) = φ2(V ) + O(h2),
s∑

i=1
b̄i (V )ci = φ3(V ) + O(h),

s∑
i=1

s∑
j=1

b̄i (V )a(0)
i j = φ3(V ) + O(h),

s∑
i=1

bi (V ) = φ1(V ) + O(h3),
s∑

i=1
bi (V )ci = φ2(V ) + O(h2),

s∑
i=1

s∑
j=1

bi (V )a(0)
i j = φ2(V ) + O(h2),

s∑
i=1

bi (V )c2i = 2φ3(V ) + O(h),
s∑

i=1

s∑
j=1

bi (V )ci a
(0)
i j = 2φ3(V ) + O(h),

s∑
i=1

s∑
j=1

s∑
k=1

bi (V )a(0)
i j a(0)

ik = 2φ3(V ) + O(h),

s∑
i=1

bi (V )ā(0)
i j = φ3(V ) + O(h),

s∑
i=1

s∑
j=1

bi (V )a(0)
i j c j = φ3(V ) + O(h),

s∑
i=1

s∑
j=1

s∑
k=1

bi (V )a(0)
i j a(0)

jk = φ3(V ) + O(h).
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Equating coefficients for each power of h, we obtain 13 equations,where 12 equations
are exactly the third order conditions for the classical general RKN method (8.22)
with the Butcher tableau (8.23)

s∑
i=1

b̄(0)
i γ (τ)Φi (τ ) = 1

ρ(τ) + 1
, ∀τ ∈ N-Tm, m ≤ 2, (8.27)

s∑
i=1

b(0)
i γ (τ)Φi (τ ) = 1, ∀τ ∈ N-Tm, m ≤ 3. (8.28)

The extra equation is
s∑

i=1
b̄(2)

i = − 1
3 . We can solve

(
ci , ā(0)

i j , a(0)
i j , b̄(0)

i , b(0)
i

)
from the

Eqs. (8.27) and (8.28) via a classical general RKN method. We can then find b(2)
i

from the extra equation. Using this approach, we can complete the construction of
the general ERKN methods of order three. For example, from the explicit 3 stage
third-order general RKN method with the Butcher tableau

0
1
2 0 1

2
1 1 0 −1 2

1
6

2
6 0 1

6
4
6

1
6

(8.29)

we can construct the 3 stage third-order explicit general ERKN methods straightfor-
wardly. The three examples are listed below.

Example 3 The first 3 stage third-order explicit general ERKN method (8.4) is
expressed in the Butcher tableau

0
1
2 0 1

2 I
1 I 0 −I 2I

1
6 I 2

6 I 0 1
6 (I − 9

20 V ) 4
6 (I − 3

20 V ) 1
6 (I + 1

20 V )

. (8.30)

Example 4 The Butcher tableau of the second 3 stage third-order explicit general
ERKN method (8.4) is given by

0
1
2 0 1

2 I
1 I 0 −I 2I

1
6 (I − 1

6V ) 2
6 (I − 1

24V ) 0 1
6 (I − 1

2 V ) 4
6 (I − 1

8V ) 1
6 I

. (8.31)

Example 5 The third 3 stage third-order explicit general ERKN method (8.4) is
denoted by the Butcher tableau
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0
1
2 0 1

2φ0(
1
4V )

1 φ1(V ) 0 −φ0(V ) 2φ0(
1
4V )

1
6φ1(V ) 2

6φ1(
1
4V ) 0 1

6φ0(V ) 4
6φ0(

1
4V ) 1

6 I

. (8.32)

8.7.3 Fourth-Order General ERKN Methods

From Theorem 8.3 and Table 8.5, comparing the coefficients of the power of h
of (8.18) and (8.19), for an s-stage general ERKN method (8.4) with the coefficient(

āi j (V ), ai j (V ), b̄i (V ), bi (V )
)
displayed in the Butcher tableau (8.5), we can obtain

41 fourth order conditions, in which 36 conditions are as follows:

s∑
i=1

b̄(0)
i γ (τ)Φi (τ ) = 1

ρ(τ) + 1
, ∀τ ∈ N-Tm, m ≤ 3, (8.33)

s∑
i=1

b(0)
i γ (τ)Φi (τ ) = 1, ∀τ ∈ N-Tm, m ≤ 4. (8.34)

The remaining 5 conditions are

s∑
i=1

s∑
j=1

b(0)
i a(2)

i j = − 1

12
,

s∑
i=1

b(2)
i = −1

3
,

s∑
i=1

b(2)
i ci = − 1

12
,

s∑
i=1

s∑
j=1

b(2)
i a(0)

i j = − 1

12
,

s∑
i=1

b̄(2)
i = − 1

12
.

(8.35)

For each specific classical general RKN method of order four, we can solve for(
ci , ā(0)

i j , a(0)
i j , b̄(0)

i , b(0)
i

)
from (8.33) and (8.34), since these 36 conditions are exactly

the order conditions for the classical general RKN method (8.22) with the Butcher

tableau (8.23). Then we can find
(

a(2)
i j , b̄(2)

i , b(2)
i

)
from conditions (8.35). In this way,

we construct the general ERKN methods (8.4) of order four.
In what follows, we will construct explicit 4 stage fourth order general ERKN

methods from the following explicit 4 stage fourth-order classical general RKN
method (8.22) with the Butcher tableau

0
1
2

1
8

1
2

1
2

1
8 0 0 1

2
1 0 0 1

2 0 0 1
1
6

1
6

1
6 0 1

6
2
6

2
6

1
6

. (8.36)
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Some general ERKN methods of order four constructed in this approach are shown
below.

Example 6 The Butcher tableau of the first explicit 4 stage fourth-order general
ERKN method (8.4) is given by

0
1
2

1
8 I 1

2 I
1
2

1
8 I 0 0 1

2 I
1 0 0 1

2 I 0 0 I − 1
4 V

1
6 (I − 1

12 V ) 1
6 (I − 1

12 V ) 1
6 (I − 1

12 V ) 0 1
6 (I − 1

2 V ) 2
6 (I − 1

8V ) 2
6 (I − 1

8V ) 1
6 I

.

(8.37)

Example 7 The second explicit 4 stage fourth-order general ERKN method is
expressed in the Butcher tableau

0
1
2

1
8 I 1

2 (I − 1
8V )

1
2

1
8 I 0 0 1

2 I
1 0 0 1

2 I 0 0 I − 1
8 V

1
6 (I − 1

6V ) 1
6 (I − 1

24V ) 1
6 (I − 1

24V ) 0 1
6 (I − 1

2 V ) 2
6 (I − 1

8V ) 2
6 (I − 1

8V ) 1
6 I

.

(8.38)

Example 8 The third explicit 4 stage fourth-order general ERKN method (8.4) has
the Butcher tableau as follows:

0
1
2

1
8φ1(

1
4V ) 1

2φ0(
1
4V )

1
2

1
8φ1(

1
4V ) 0 0 1

2 I
1 0 0 1

2φ1(
1
4V ) 0 0 φ0(

1
4V )

1
6φ1(V ) 1

6φ1(
1
4V ) 1

6φ1(
1
4V ) 0 1

6φ0(V ) 2
6φ0(

1
4V ) 2

6φ0(
1
4V ) 1

6 I

. (8.39)

8.7.4 An Effective Approach to Constructing the General
ERKN Methods

In the paper [33], in order to construct 4th order general ERKN methods for the
systems (8.1), the authors first considered all 62 graphs of the EN-Ts (see Tables
1 and 2 in [33]), and then selected and deleted 34 redundant trees. Finally, they
obtained 28 non-redundant EN-Ts (see Tables 3 and 4 in [33]). With these 28 EN-
Ts, the authors in [33] achieved special 4th-order conditions, and then the authors
derived a 4th-order ERKN method under two auxiliary simplifying assumptions.
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Obviously, as shown in the paper [33] more than half of the construction effort
was spent on drawing the redundant trees. In a word, the process described in the
paper [33] is difficult to follow since the number of the redundant trees in the EN-T
set is large.

However, in this chapter, these 28 trees can be directly obtained since 27 of them
are exactly the classical N-Ts as shown in Sect. 8.4.2. In this way, it becomes quite
easy to get the 4th-order conditions for the general ERKN method (8.4). Then using
expansions of these order conditions, and equating each power of h, we can see that
most are exactly the order conditions for the classical general RKN method (8.22).
This approach to constructing the general ERKN integrators is very effective and
efficient in practice, as shown in the previous sections where 2nd, 3rd and 4th order
general ERKN methods are constructed as examples.

8.8 Numerical Experiments

In this section, some numerical experiments are implemented to illustrate the poten-
tial of the general ERKN methods (8.4) in comparison with the others in the litera-
ture. The criterion used in the numerical comparisons is the base-10 logarithm of the
maximum global error (log10 ‖MGE‖) versus the base-2 logarithm of the stepsizes
(log2(h)). The following 11 methods are used to solve the general system (8.1) for
the comparison:

• RKN2: The 2 stage second-order general RKN method (8.24).
• ERKN2a: The first 2 stage second-order general ERKN method (8.25) given in
Sect. 8.7 of this chapter.

• ERKN2b: The second 2 stage second-order general ERKN method (8.26) given
in Sect. 8.7 of this chapter.

• RKN3: The 3 stage third-order general RKN method (8.29).
• ERKN3a: The first 3 stage third-order general ERKN method (8.30) given in
Sect. 8.7 of this chapter.

• ERKN3b: The second 3 stage third-order general ERKN method (8.31) given in
Sect. 8.7 of this chapter.

• ERKN3c: The third 3 stage third-order general ERKN method (8.32) given in
Sect. 8.7 of this chapter.

• RKN4: The 4 stage fourth-order general RKN method (8.36).
• ERKN4a: The first 4 stage fourth-order general ERKN method (8.37) given in
Sect. 8.7 of this chapter.

• ERKN4b: The second 4 stage fourth-order general ERKN method (8.38) given in
Sect. 8.7 of this chapter.

• ERKN4c: The third 4 stage fourth-order general ERKN method (8.39) given in
Sect. 8.7 of this chapter.



8.8 Numerical Experiments 215

log2 h
-8 -7.5 -7 -6.5 -6 -5.5 -5 -4.5 -4 -3.5 -3

lo
g 1

0
M

G
E

-14

-12

-10

-8

-6

-4

-2

0
Problem 1: Efficiency curves with small stepsizes

RKN2
ERKN2a
ERKN2b
RKN3
ERKN3a
ERKN3b
ERKN3c
RKN4
ERKN4a
ERKN4b
ERKN4c

log2 h
-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4

lo
g 1

0
M

G
E

-7

-6

-5

-4

-3

-2

-1

0
Problem 1: Efficiency curves with big stepsizes

RKN2
ERKN2a
ERKN2b
RKN3
ERKN3a
ERKN3b
ERKN3c
RKN4
ERKN4a
ERKN4b
ERKN4c

Fig. 8.3 Problem1 integrated on [0, 300]

Problem 1 We consider the damped equation

my′′ + by′ + ky = 0,

as one of the test problems. When the damping constant b is small we would expect
the system to still oscillate, but with decreasing amplitude as its energy is converted
to heat. In this numerical test, the problem is integrated on the interval [0, 300]
with m = 1, b = 0.01, k = 3 and the initial conditions

(
y(0), y′(0)

) = (1, 0). The
analytic solution to the problem is given by

y(t) = e− 0.01
2 t
(
cos(

√
12 − 0.012

2
t) + 0.01√

12 − 0.012
sin(

√
12 − 0.012

2
t)
)
.

The numerical results are displayed in Fig. 8.3,where the small stepsizes for themeth-
ods are h = 1

2 j for j = 3, . . . , 8 and the big stepsizes are h = j
8 for j = 2, . . . , 6.

Problem 2 We consider the initial value problem

y′′(t) +
(

13 −12
−12 13

)
y(t) = 12ε

5

(
3 2

−2 −3

)
y′(t) + ε2

( 36
5 sin(t) + 24 sin(5t)

− 24
5 sin(t) − 36 sin(5t)

)
,

with the initial values y(0) = (ε, ε)ᵀ and y′(0) = (−4, 6)ᵀ. The analytic solution is
given by

y(t) =
(

sin(t) − sin(5t) + ε cos(t)
sin(t) + sin(5t) + ε cos(5t)

)
.
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Fig. 8.4 Problem2 integrated on [0, 300]

In the numerical experiment, we choose the parameter value ε = 10−3 and integrate
this problem on the interval [0, 300]. The numerical results are displayed in Fig. 8.4.
The small stepsizes are h = 1

2 j for j = 3, . . . , 8 and the big stepsizes are h = j
8 for

j = 2, . . . , 6. In this numerical test with the big stepsizes, the classical general RKN
methods (RKN2, RKN3 and RKN4) give disappointing numerical results. Thus we
do not depict the corresponding points in Fig. 8.4.

Problem 3 Consider the damped wave equation with periodic conditions (wave
propagation in a medium, see e.g. Weinberger [18])

{
∂2u
∂t2 + δ ∂u

∂t = ∂2u
∂x2 − f (u), −1 < x < 1, t > 0,

u(−1, t) = u(1, t),

where f (u) = − sin u, (i.e., the damped sine Gordon equation) and δ = 1. A semi-
discretization in the spatial variable by second-order symmetric differences leads to
the following system of second-order ODEs in time

Ü + MU = F(U, U̇ ), 0 < t ≤ tend ,

where U (t) = (u1(t), · · · , uN (t)
)ᵀ

with ui (t) ≈ u(xi , t) for i = 1, . . . , N ,

M = 1

�x2

⎛
⎜⎜⎜⎜⎜⎝

2 −1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 −1 2

⎞
⎟⎟⎟⎟⎟⎠ ,
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�x = 2/N , xi = −1 + i�x and F(U, U̇ ) = ( f (u1) − δu̇1, · · · , f (uN ) − δu̇N
)ᵀ
.

Following the paper [3], we take the initial conditions as

U (0) =
(
π, · · · , π

)ᵀ
, Ut (0) = √

N
(
0.01 + sin

(2π
N

)
, · · · , 0.01 + sin

(2π N

N

))ᵀ
,

with N = 64 and integrate the problem on the interval [0, 300] with small stepsizes
h = 1

2 j for j = 5, . . . , 8 and with big stepsizes h = j
128 for j = 5, 6, 8, 10. The

numerical results are displayed in Fig. 8.5. In this numerical test for the big stepsizes,
the classical general RKN methods (RKN2, RKN3 and RKN4) all behave badly,
yielding large errors.

It can be observed from Figs. 8.3, 8.4 and 8.5 that

• The general ERKN methods perform more efficiently than the classical general
RKN methods.

• The higher order general ERKN methods are more efficient than the lower ones.
• As the stepsize decreases, the difference among the general ERKNmethods of the
same order becomes negligible.

• The general ERKN methods behave perfectly for the large stepsizes.
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8.9 Conclusions and Discussions

In this chapter,wehave established an improved theory for the order conditions for the
general ERKN methods designed specially for solving multi-frequency oscillatory
system (8.1). The original tri-colored tree theory and the order conditions for the
general ERKN methods presented in the paper [33] are not satisfied yet due to the
existence of large numbers of redundant trees. This chapter has succeeded inmaking a
simplification, by defining the IEN-T set onwhich some specialmappings (especially
the extended elementary differential mapping) are introduced.

This simplification of the order conditions for the general ERKN methods when
applied to the oscillatory system (8.1) is of great importance. The new tri-colored
tree theory and the B-series theory for the general ERKN methods when solving
the general system (8.1) reduce to those for standard ERKN methods when solving
special system (8.2), where the right-hand side vector-valued function f does not
depend on y′ (see [23, 30]).

This successful simplification makes the construction of the general ERKNmeth-
ods much simpler and more efficient for the system (8.1). In light of the reduced tree
theory analysed in this chapter, almost one half of algebraic conditions in the paper
[33] can be eliminated. Furthermore, in this chapter, from the relation between the
theories of order conditions for the general RKN method and for general ERKN
method, we propose a simple approach to constructing new integrators. The numer-
ical results show that the general ERKN methods are more suitable for long-term
integration with a large stepsize, in comparison with the RKN methods in the litera-
ture.

The previous eight chapters concentrated on numerical integrators of oscilla-
tory ordinary differential equations, although their applications to partial differential
equations were implemented as well. However, in the next four chapters we will turn
to structure-preserving schemes for partial differential equations.

The material of this chapter is based on the work by Zeng et al. [34].
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