
Chapter 7
Trigonometric Collocation Methods for
Multi-frequency and Multidimensional
Oscillatory Systems

This chapter presents a class of trigonometric collocationmethods based onLagrange
basis polynomials for solving multi-frequency and multidimensional oscillatory
systems q ′′(t) + Mq(t) = f

(
q(t)

)
. The properties of the collocation methods are

investigated in detail. It is shown that the convergence condition of these methods is
independent of ‖M‖, which is crucial for solving multi-frequency oscillatory
systems.

7.1 Introduction

The numerical treatment of multi-frequency oscillatory systems is a computational
problem of overarching importance in a wide range of applications, such as quantum
physics, circuit simulations, flexible body dynamics and mechanics (see, e.g. [3, 5,
6, 8, 9, 32, 33] and the references therein). The main purpose of this chapter is
to construct and analyse a class of efficient collocation methods for solving multi-
frequency and multidimensional oscillatory second-order differential equations of
the form

q ′′(t) + Mq(t) = f
(
q(t)

)
, q(0) = q0, q ′(0) = q ′

0, t ∈ [0, tend], (7.1)

where M is a d × d positive semi-definite matrix implicitly containing the dominant
frequencies of the oscillatory problem and f : Rd → R

d is an analytic function.
The solution of this system is a multi-frequency nonlinear oscillator because of the
presence of the linear term Mq. The system (7.1) is a highly oscillatory problem
when ‖M‖ � 1. In recent years, various numerical methods for approximating
solutions of oscillatory systems have been developed by many researchers. Readers
are referred to [12–14, 21–25, 31] and the references therein. Once it is further
assumed that M is symmetric and f is the negative gradient of a real-valued function
U (q), the system (7.1) is identical to the following initial value Hamiltonian system
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{
q̇(t) = ∇p H(q(t), p(t)), q(0) = q0,

ṗ(t) = −∇q H(q(t), p(t)), p(0) = p0 ≡ q ′
0,

(7.2)

with the Hamiltonian

H(q, p) = 1

2
pᵀ p + 1

2
qᵀMq + U (q). (7.3)

This is an important Hamiltonian problem which has seen studied by many authors
(see, e.g. [3–5, 8, 9]).

In [26], the authors took advantage of shifted Legendre polynomials to obtain a
local Fourier expansion of the system (7.1) and derived the so-called trigonometric
Fourier collocation methods. Theoretical analysis and numerical experiments in [26]
showed that the trigonometric Fourier collocation methods are more efficient than
some earlier codes. Motivated by the work in [26], this chapter is devoted to the
formulation and analysis of another trigonometric collocation method for solving
multi-frequency oscillatory second-order systems (7.1). We will consider a classical
approach and use Lagrange polynomials to derive a class of trigonometric collo-
cation methods. Because of this different approach, compared with the methods in
[26], the collocation methods have a simpler scheme and can be implemented at a
lower cost in practical computations. These trigonometric collocation methods are
designed by interpolating the function f of (7.1) by Lagrange basis polynomials,
and incorporating the variation-of-constants formula and the idea of collocation. It
is noted that these integrators are a class of collocation methods and they share all of
the important features of collocation methods. We analyse the properties of trigono-
metric collocation methods and study the convergence of the fixed-point iteration
for these methods. It is important to emphasize that for the trigonometric colloca-
tion methods, the convergence condition is independent of ‖M‖, which is a crucial
property for solving highly oscillatory systems.

This chapter is organized as follows. In Sect. 7.2, we formulate the scheme of
trigonometric collocation methods based on Lagrange basis polynomials. The prop-
erties of the obtained methods are analysed in Sect. 7.3. In Sect. 7.4, a fourth-order
scheme of the collocation methods is presented and numerical results confirm that
the method proposed in this chapter yields a dramatic improvement. Conclusions are
included in the last section.

7.2 Formulation of the Methods

We first restrict the multi-frequency oscillatory system (7.1) to the interval [0, h]
with any h > 0:

q ′′(t) + Mq(t) = f
(
q(t)

)
, q(0) = q0, q ′(0) = q ′

0, t ∈ [0, h]. (7.4)
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With regard to the variation-of-constants formula for (7.1) given in [29], we have
the following result on the exact solution q(t) of the system (7.1) and its derivative
q ′(t) = p(t):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

q(t) = φ0(t
2M)q0 + tφ1(t

2M)p0 + t2
∫ 1

0
(1 − z)φ1

(
(1 − z)2t2M

)
f
(
q(t z)

)
dz,

p(t) = −t Mφ1(t
2M)q0 + φ0(t

2M)p0 + t
∫ 1

0
φ0

(
(1 − z)2t2M

)
f
(
q(t z)

)
dz,

(7.5)

where t ∈ [0, h] and

φi (M) :=
∞∑

l=0

(−1)l Ml

(2l + i)! , i = 0, 1. (7.6)

It follows from (7.5) that
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

q(h) = φ0(V )q0 + hφ1(V )p0 + h2
∫ 1

0
(1 − z)φ1

(
(1 − z)2V

)
f
(
q(hz)

)
dz,

p(h) = −hMφ1(V )q0 + φ0(V )p0 + h
∫ 1

0
φ0

(
(1 − z)2V

)
f
(
q(hz)

)
dz,

(7.7)

where V = h2M.

The main idea in designing practical schemes to solve (7.1) is to approximate
f (q) in (7.7) by a quadrature. In this chapter, we interpolate f (q) as

f
(
q(ξh)

) ∼
s∑

j=1

l j (ξ) f
(
q(c j h)

)
, ξ ∈ [0, 1], (7.8)

where

l j (x) =
s∏

k=1,k �= j

x − ck

c j − ck
, (7.9)

for j = 1, . . . , s, are the Lagrange basis polynomials, and c1, . . . , cs are distinct real
numbers (s ≥ 1, 0 ≤ ci ≤ 1). Then replacing f (q(ξh)) in (7.7) by the series (7.8)
yields an approximation of q(h), p(h) as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

q̃(h) = φ0(V )q0 + hφ1(V )p0 + h2
s∑

j=1

I1, j f
(
q̃(c j h)

)
,

p̃(h) = −hMφ1(V )q0 + φ0(V )p0 + h
s∑

j=1

I2, j f
(
q̃(c j h)

)
,

(7.10)

where

I1, j :=
∫ 1

0
l j (z)(1 − z)φ1

(
(1 − z)2V

)
dz, I2, j :=

∫ 1

0
l j (z)φ0

(
(1 − z)2V

)
dz. (7.11)
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From the variation-of-constants formula (7.5) for (7.4), the approximation (7.10)
satisfies the following system

⎧
⎪⎪⎨

⎪⎪⎩

q̃ ′(ξh) = p̃(ξh), q̃(0) = q0,

p̃′(ξh) = −Mq̃(ξh) +
s∑

j=1

l j (ξ) f
(
q̃(c j h)

)
, p̃(0) = p0.

(7.12)

In what follows we first approximate f
(
q̃(c j h)

)
, I1, j , I2, j in (7.10), and then

formulate a class of trigonometric collocation methods.

7.2.1 The Computation of f (q̃(c j h))

It follows from (7.12) that q̃(ci h) for i = 1, 2, . . . , s, can be obtained by solving the
following discrete problems:

q̃ ′′(ci h) + Mq̃(ci h) =
s∑

j=1

l j (ci ) f
(
q̃(c j h)

)
, q̃(0) = q0, q̃ ′(0) = p0. (7.13)

Set q̃i = q̃(ci h) for i = 1, 2, . . . , s. Then (7.13) can be solved by the variation-of-
constants formula (7.5) in the form:

q̃i = φ0(c
2
i V )q0 + ci hφ1(c

2
i V )p0 + (ci h)2

s∑

j=1

Ĩci , j f (q̃ j ), i = 1, 2, . . . , s,

where

Ĩci , j :=
∫ 1

0
l j (ci z)(1 − z)φ1

(
(1 − z)2c2i V

)
dz, i, j = 1, . . . , s. (7.14)

7.2.2 The Computation of I1, j, I2, j, Ĩci , j

With the definition (7.9), the integrals I1, j , I2, j , Ĩci , j appearing in (7.11) and (7.14)
can be computed as follows:

I1, j =
∫ 1

0
l j (z)(1 − z)φ1

(
(1 − z)2V

)
dz

=
s∏

k=1,k �= j

∞∑

l=0

∫ 1

0

z − ck

c j − ck
(1 − z)2l+1dz

(−1)l V l

(2l + 1)!
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=
∞∑

l=0

( s∏

k=1,k �= j

1
2l+3 − ck

c j − ck

) (−1)l V l

(2l + 2)! =
∞∑

l=0

l j

( 1

2l + 3

) (−1)l V l

(2l + 2)! ,

I2, j =
∫ 1

0
l j (z)φ0

(
(1 − z)2V

)
dz =

s∏

k=1,k �= j

∞∑

l=0

∫ 1

0

z − ck

c j − ck
(1 − z)2ldz

(−1)l V l

(2l)!

=
∞∑

l=0

( s∏

k=1,k �= j

1
2l+2 − ck

c j − ck

) (−1)l V l

(2l + 1)! =
∞∑

l=0

l j

( 1

2l + 2

) (−1)l V l

(2l + 1)! ,

Ĩci , j =
∫ 1

0
l j (ci z)(1 − z)φ1

(
(1 − z)2c2i V

)
dz

=
s∏

k=1,k �= j

∞∑

l=0

∫ 1

0

ci z − ck

c j − ck
(1 − z)2l+1dz

(−1)l(c2i V )l

(2l + 1)!

=
∞∑

l=0

( s∏

k=1,k �= j

ci
2l+3 − ck

c j − ck

) (−1)l(c2i V )l

(2l + 2)! =
∞∑

l=0

l j

( ci

2l + 3

) (−1)l(c2i V )l

(2l + 2)! ,

i, j = 1, . . . , s.

If M is symmetric and positive semi-definite, we have the decomposition of M as
follows:

M = PᵀW 2P = Ω2
0 with Ω0 = PᵀW P,

where P is an orthogonal matrix and W = diag(λk) with nonnegative diagonal
entries which are the square roots of the eigenvalues of M . Hence the above integrals
become

I1, j = Pᵀ
∫ 1

0
l j (z)W −1 sin

(
(1 − z)W

)
dz P

= Pᵀdiag
( ∫ 1

0
l j (z)λ

−1
k sin

(
(1 − z)λk

)
dz

)
P,

I2, j = Pᵀ
∫ 1

0
l j (z) cos

(
(1 − z)W

)
dz P = Pᵀdiag

( ∫ 1

0
l j (z) cos

(
(1 − z)λk

)
dz

)
P,

Ĩci , j = Pᵀ
∫ 1

0
l j (ci z)(ci W )−1 sin

(
(1 − z)ci W

)
dz P

= Pᵀdiag
( ∫ 1

0
l j (ci z)(ciλk)

−1 sin
(
(1 − z)ciλk

)
dz

)
P,

i, j = 1, . . . , s.
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Here, it is noted that W −1 sin
(
(1−z)W

)
, (ci W )−1 sin

(
(1−z)ci W

)
are well defined

also for singular W . The case λk = 0 gives:

∫ 1

0
l j (z)λ

−1
k sin

(
(1 − z)λk

)
dz =

∫ 1

0
l j (z)(1 − z)dz,

∫ 1

0
l j (z) cos

(
(1 − z)λk

)
dz =

∫ 1

0
l j (z)dz,

∫ 1

0
l j (ci z)(ciλk)

−1 sin
(
(1 − z)ciλk

)
dz =

∫ 1

0
l j (ci z)(1 − z)dz,

which can be evaluated easily since l j (z) is a polynomial function. If λk �= 0, they
can be evaluated as follows:

∫ 1

0
l j (z)λ

−1
k sin

(
(1 − z)λk

)
dz

= 1/λk

∫ 1

0
l j (z) sin

(
(1 − z)λk

)
dz

= 1/λ2
k

∫ 1

0
l j (z)d cos

(
(1 − z)λk

)

= 1/λ2
kl j (1) − 1/λ2

kl j (0) cos(λk) − 1/λ2
k

∫ 1

0
l ′j (z) cos

(
(1 − z)λk

)
dz

= 1/λ2
kl j (1) − 1/λ2

kl j (0) cos(λk) + 1/λ3
k

∫ 1

0
l ′j (z)d sin

(
(1 − z)λk

)

= 1/λ2
kl j (1) − 1/λ2

kl j (0) cos(λk) − 1/λ3
kl ′j (0) sin(λk)

− 1/λ3
k

∫ 1

0
l ′′j (z) sin

(
(1 − z)λk

)
dz

= 1/λ2
kl j (1) − 1/λ2

kl j (0) cos(λk) − 1/λ3
kl ′j (0) sin(λk)

− 1/λ4
kl ′′j (1) + 1/λ4

kl ′′j (0) cos(λk) + 1/λ5
kl(3)j (0) sin(λk)

+ 1/λ5
k

∫ 1

0
l(4)l, j (z) sin

(
(1 − z)λk

)
dz

= · · ·
·
·
·

=
�deg(l j )/2�∑

k=0

(−1)k/λ2k+2
k

(
l(2k)

j (1) − l(2k)
j (0) cos(λk) − 1/λkl(2k+1)

j (0) sin(λk)
)
,

for i = 1, 2, . . . , s, where deg(l j ) is the degree of l j and �deg(l j )/2� denotes the
integral part of deg(l j )/2.
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Likewise, we can obtain
∫ 1

0
l j (z) cos

(
(1 − z)λk

)
dz

=
�deg(l j )/2�∑

k=0

(−1)k/λ2k+1
k

(
l(2k)

j (0) sin(λk) + 1/λkl(2k+1)
j (1) − 1/λ2kl(2k+1)

j (0) cos(λk)
)
,

∫ 1

0
l j (ci z)(ci λk)

−1 sin
(
(1 − z)ci λk

)
dz

=
�deg(l j )/2�∑

k=0

(−1)k/(ci λk)
2k+2

(
l(2k)

j (ci ) − l(2k)
j (0) cos(ci λk) − 1/λkl(2k+1)

j (0) sin(ci λk)
)
,

(7.15)
for i, j = 1, 2, . . . , s.

7.2.3 The Scheme of Trigonometric Collocation Methods

We are now in a position to present a class of trigonometric collocation methods for
the multi-frequency oscillatory second-order oscillatory system (7.1).

Definition 7.1 A trigonometric collocation method for integrating the multi-
frequency oscillatory system (7.1) is defined as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q̃i = φ0(c
2
i V )q0 + ci hφ1(c

2
i V )p0 + (ci h)2

s∑

j=1

Ĩci , j f (q̃ j ), i = 1, 2, . . . , s,

q̃(h) = φ0(V )q0 + hφ1(V )p0 + h2
s∑

j=1

I1, j f (q̃ j ),

p̃(h) = −hMφ1(V )q0 + φ0(V )p0 + h
s∑

j=1

I2, j f (q̃ j ),

(7.16)

where h is the stepsize and I1, j , I2, j , Ĩci , j can be computed as stated in Sect. 7.2.2.

Remark 7.1 In [26], the authors took advantage of shifted Legendre polynomials
to obtain a local Fourier expansion of the system (7.1) and derived trigonometric
Fourier collocation methods (TFCMs). TFCMs are a subclass of s-stage ERKN
methods presented in [29] with the following Butcher tableau:
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c1
r−1∑

j=0
I I1, j,c1(V )b1 P̂j (c1) . . .

r−1∑

j=0
I I1, j,c1(V )bs P̂j (cs)

...
...

. . .
...

cs

r−1∑

j=0
I I1, j,cs (V )b1 P̂j (c1) · · ·

r−1∑

j=0
I I1, j,cs (V )bs P̂j (cs)

r−1∑

j=0
I I1, j (V )b1 P̂j (c1) · · ·

r−1∑

j=0
I I1, j (V )bs P̂j (cs)

r−1∑

j=0
I I2, j (V )b1 P̂j (c1) · · ·

r−1∑

j=0
I I2, j (V )bs P̂j (cs)

(7.17)

where

I I1, j (V ) :=
∫ 1

0
P̂j (z)(1 − z)φ1

(
(1 − z)2V

)
dz,

I I2, j (V ) :=
∫ 1

0
P̂j (z)φ0

(
(1 − z)2V

)
dz,

I I1, j,ci (V ) :=
∫ 1

0
P̂j (ci z)(1 − z)φ1

(
(1 − z)2c2i V

)
dz,

r is an integer with the requirement: 2 ≤ r ≤ s, all P̂j are shifted Legendre polyno-
mials over the interval [0, 1], and cl , bl for l = 1, 2, . . . , s are the node points and
the quadrature weights of a quadrature formula, respectively.

It is noted that the method (7.16) is also the subclass of s-stage ERKN methods
with the following Butcher tableau:

c1 Ĩc1,1 . . . Ĩc1,s
...

...
. . .

...

cs Ĩcs ,1 · · · Ĩcs ,s

I1,1 · · · I1,s

I2,1 · · · I2,s

, (7.18)

where

I1, j :=
∫ 1

0
l j (z)(1 − z)φ1

(
(1 − z)2V

)
dz,

I2, j :=
∫ 1

0
l j (z)φ0

(
(1 − z)2V

)
dz,

Ĩci , j =
∫ 1

0
l j (ci z)(1 − z)φ1

(
(1 − z)2c2i V

)
dz.

From (7.17) and (7.18), it follows clearly that the coefficients of (7.18) are simpler
than (7.17). Therefore, the scheme of the methods derived in this chapter is much
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simpler than that given in [26]. The obtained methods can be implemented at a lower
cost in practical computations, which will be shown by the numerical experiments in
Sect. 7.4. The reason for this better efficiency is that we use a classical approach and
choose Lagrange polynomials to give a local Fourier expansion of the system (7.1).

Remark 7.2 We also note that in the recent monograph [2], it has been shown that
the approach of constructing energy-preserving methods for Hamiltonian systems
which are based upon the use of shifted Legendre polynomials (such as in [1])
and Lagrange polynomials constructed on Gauss–Legendre nodes (such as in [10])
leads to precisely the same methods. Therefore, by choosing special real numbers
c1, . . . , cs for (7.18) and special quadrature formulae for (7.17), the methods given
in this chapter may have some connections with those in [26], which need to be
investigated.

Remark 7.3 It is noted that the method (7.16) can be applied to the system (7.1)
with an arbitrary matrix M since trigonometric collocation methods do not need the
symmetry of M . Moreover, the method (7.16) exactly integrates the linear system
q ′′ + Mq = 0 and it has an additional advantage of energy preservation for linear
systems while respecting structural invariants and geometry of the underlying prob-
lem. The method approximates the solution in the interval [0, h]. We then repeat
this procedure with equal ease over the next interval. Namely, we can consider the
obtained result as the initial condition for a new initial value problem in the interval
[h, 2h]. In this way, the method (7.16) can approximate the solution in an arbitrary
interval [0, tend] with tend = Nh.

When M = 0, (7.1) reduces to a special and important class of systems of second-
order ODEs expressed in the traditional form

q ′′(t) = f
(
q(t)

)
, q(0) = q0, q ′(0) = q ′

0, t ∈ [0, tend]. (7.19)

For this case, with the definition (7.6) and the results of I1, j , I2, j , Ĩci , j in Sect. 7.2.2,
the trigonometric collocation method (7.16) reduces to the following RKN-type
method.

Definition 7.2 An RKN-type collocation method for integrating the traditional
second-order ODEs (7.19) is defined as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q̃i = q0 + ci hp0 + (ci h)2
s∑

j=1

1

2
l j

(ci

3

)
f (q̃ j ), i = 1, 2, . . . , s,

q̃(h) = q0 + hp0 + h2
s∑

j=1

1

2
l j

(1
3

)
f (q̃ j ),

p̃(h) = p0 + h
s∑

j=1

l j

(1
2

)
f (q̃ j ),

(7.20)

where h is the stepsize.
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Remark 7.4 The method (7.20) is the subclass of s-stage RKN methods with the
following Butcher tableau:

c Ā = (āi j )s×s

b̄T

bT

=

c1 l1
(

c1
3

)
/2 . . . ls

(
c1
3

)
/2

...
...

. . .
...

cs l1
(

cs
3

)
/2 · · · ls

(
cs
3

)
/2

l1
(
1
3

)
/2 · · · ls

(
1
3

)
/2

l1
(
1
2

)
· · · ls

(
1
2

)

(7.21)

Thus, by letting M = 0, the trigonometric collocation methods yield a subclass of
RKN methods for solving traditional second-order ODEs, which demonstrates wide
applications of the methods.

7.3 Properties of the Methods

For the exact solution of (7.2) at t = h, let y(h) =
(

qᵀ(h), pᵀ(h)
)ᵀ

. Then the

oscillatory Hamiltonian system (7.2) can be rewritten in the form

y′(ξh) = F(y(ξh)) :=
(

p(ξh)

−Mq(ξh) + f
(
q(ξh)

)
)

, y0 =
(

q0

p0

)
, (7.22)

for 0 ≤ ξ ≤ 1. The Hamiltonian is

H(y) = 1

2
pᵀ p + 1

2
qᵀMq + U (q). (7.23)

On the other hand, if we denote the updates of (7.16) by

ω(h) =
(

q̃ᵀ(h), p̃ᵀ(h)
)ᵀ

,

then we have

ω′(ξh) =
⎛

⎝
p̃(ξh)

−Mq̃(ξh) +
s∑

j=1
l j (ξ) f

(
q̃(c j h)

)

⎞

⎠ , ω0 =
(

q0

p0

)
. (7.24)

The next lemma is useful for the subsequent analysis.

Lemma 7.1 Let g : [0, h] → R
d have j continuous derivatives. Then
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∫ 1

0
Pj (τ )g(τh)dτ = O(h j ),

where Pj (τ ) is an orthogonal polynomial of degree j on the interval [0, 1].
Proof We assume that g(τh) can be expanded in Taylor series at the origin for sake
of simplicity. Then, for all j ≥ 0, by considering that Pj (τ ) is orthogonal to all
polynomials of degree n < j :

∫ 1

0
Pj (τ )g(τh)dτ =

∞∑

n=1

g(n)(0)

n! hn
∫ 1

0
Pj (τ )τ ndτ = O(h j ). �

7.3.1 The Order of Energy Preservation

In this subsection we analyse the order of preservation of the Hamiltonian energy.

Theorem 7.1 Assume that cl for l = 1, 2, . . . , s are chosen as the node points of an
s-point Gauss–Legendre’s quadrature over the integral [0, 1]. Then we have

H(ω(h)) − H(y0) = O(h2s+1),

where the constant symbolized by O is independent of h.

Proof It follows from Lemma7.1, (7.23) and (7.24) that

H(ω(h)) − H(y0) = h
∫ 1

0
∇ H(ω(ξh))ᵀω′(ξh)dξ

= h
∫ 1

0

((
Mq̃(ξh) − f (q̃(ξh)

)ᵀ
, p̃(ξh)ᵀ

)
·
⎛

⎝
p̃(ξh)

−Mq̃(ξh) +
s∑

j=1
l j (ξ) f

(
q̃(c j h)

)

⎞

⎠ dξ

= h
∫ 1

0
p̃(ξh)ᵀ

( s∑

j=1

l j (ξ) f (q̃(c j h)) − f
(
q̃(ξh)

))
dξ.

Moreover, we have

f
(
q̃(ξh)

) −
s∑

j=1

l j (ξ) f
(
q̃(c j h)

) = f (s+1)
(
q̃(ξh)

)|ξ=ζ

(n + 1)!
s∏

i=1

(ξh − ci h).

Here f (s+1)
(
q̃(ξh)

)
denotes the (s + 1)th derivative of f (q̃(t)) with respect to t . We

then obtain
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H(ω(h)) − H(y0) = − h
∫ 1

0
p̃(ξh)ᵀ

f (s+1)
(
q̃(ξh)

)|ξ=ζ

(n + 1)!
s∏

i=1

(ξh − ci h)dξ

= − hs+1
∫ 1

0
p̃(ξh)ᵀ

f (s+1)
(
q̃(ξh)

)|ξ=ζ

(n + 1)!
s∏

i=1

(ξ − ci )dξ.

Since cl for l = 1, 2, . . . , s are chosen as the node points of a s-point Gauss–

Legendre’s quadrature over the integral [0, 1],
s∏

i=1
(ξ−ci ) is an orthogonal polynomial

of degree s on the interval [0, 1]. Therefore, using Lemma7.1 we obtain

H(ω(h)) − H(y0) = −hs+1O(hs) = O(h2s+1).

This gives the result of the theorem. �

7.3.2 The Order of Quadratic Invariant

We next turn to the quadratic invariant Q(y) = qᵀ Dp of (7.1). The quadratic form
Q is a first integral of (7.1) if and only if pᵀ Dp + qᵀ D( f (q) − Mq) = 0 for all
p, q ∈ R

d . This implies that D is a skew-symmetric matrix and that qᵀ D( f (q) −
Mq) = 0 for any q ∈ R

d . The following result states the degree of accuracy of the
method (7.16).

Theorem 7.2 Under the condition in Theorem7.1, we have

Q(ω(h)) − Q(y0) = O(h2s+1),

where the constant symbolized by O is independent of h.

Proof From Q(y) = qᵀ Dp and Dᵀ = −D, it follows that

Q(ω(h)) − Q(y0) = h
∫ 1

0
∇Q(ω(ξh))ᵀω′(ξh)dξ

= h
∫ 1

0

(
− p̃(ξh)ᵀ D, q̃(ξh)ᵀ D

)
⎛

⎝
p̃(ξh)

−Mq̃(ξh) +
s∑

j=1
l j (ξ) f

(
q̃(c j h)

)

⎞

⎠ dξ.

Since qᵀ D( f (q) − Mq) = 0 for any q ∈ R
d , we have
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Q(ω(h)) − Q(y0) = h
∫ 1

0
q̃(ξh)ᵀ D

(
− Mq̃(ξh) +

s∑

j=1

l j (ξ) f
(
q̃(c j h)

))
dξ

= h
∫ 1

0
q̃(ξh)ᵀ D

f (s+1)
(
q̃(ξh)

)|ξ=ζ

(n + 1)!
s∏

i=1

(ξh − ci h)dξ

= hs+1
∫ 1

0
q̃(ξh)ᵀ D

f (s+1)
(
q̃(ξh)

)|ξ=ζ

(n + 1)!
s∏

i=1

(ξ − ci )dξ

= O(hs+1)O(hs) = O(h2s+1).

This completes the proof. �

7.3.3 The Algebraic Order

To emphasize the dependence of the solutions of y′(t) = F(y(t)) on the initial
values, for any given t̃ ∈ [0, h], we denote by y(·, t̃, ỹ) the solution satisfying the
initial condition y(t̃, t̃, ỹ) = ỹ and set

Φ(s, t̃, ỹ) = ∂y(s, t̃, ỹ)
∂ ỹ

. (7.25)

Recalling the elementary theory of ODEs, we have the following standard result (see,
e.g. [11])

∂y(s, t̃, ỹ)
∂ t̃

= −Φ(s, t̃, ỹ)F(ỹ). (7.26)

The following theorem states the result on the order of the trigonometric colloca-
tion methods.

Theorem 7.3 Under the condition in Theorem7.1, the trigonometric collocation
method (7.16) satisfies

y(h) − ω(h) = O(h2s+1),

where the constant symbolized by O is independent of h.

Proof It follows from (7.25) and (7.26) that
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y(h) − ω(h) = y(h, 0, y0) − y
(
h, h, ω(h)

) = −
∫ h

0

dy
(
h, τ, ω(τ)

)

dτ
dτ

= −
∫ h

0

[∂y
(
h, τ, ω(τ)

)

∂ t̃
+ ∂y

(
h, τ, ω(τ)

)

∂ ỹ
ω′(τ )

]
dτ

= h
∫ 1

0
Φ

(
h, ξh, ω(ξh)

)[
F

(
ω(ξh)

) − ω′(ξh)
]
dξ

= h
∫ 1

0
Φ

(
h, ξh, ω(ξh)

)
⎛

⎝
0

f
(
q̃(ξh)

) −
s∑

j=1
l j (ξ) f

(
q̃(c j h)

)

⎞

⎠ dξ.

We rewrite Φ
(
h, ξh, ω(ξh)

)
as a block matrix:

Φ
(
h, ξh, ω(ξh)

) =
(

Φ11(ξh) Φ12(ξh)

Φ21(ξh) Φ22(ξh)

)
,

where Φi j (i, j = 1, 2) are d × d matrices.
We then obtain

y(h) − ω(h) = h

⎛

⎜⎜
⎝

∫ 1
0 Φ12(ξh)

f (s+1)
(

q̃(ξh)

)
|ξ=ζ

(n+1)!
s∏

i=1
(ξh − ci h)dξ

∫ 1
0 Φ22(ξh)

f (s+1)
(

q̃(ξh)

)
|ξ=ζ

(n+1)!
s∏

i=1
(ξh − ci h)dξ

⎞

⎟⎟
⎠

= hs+1

⎛

⎜⎜
⎝

∫ 1
0 Φ12(ξh)

f (s+1)
(

q̃(ξh)

)
|ξ=ζ

(n+1)!
s∏

i=1
(ξ − ci )dξ

∫ 1
0 Φ22(ξh)

f (s+1)
(

q̃(ξh)

)
|ξ=ζ

(n+1)!
s∏

i=1
(ξ − ci )dξ

⎞

⎟⎟
⎠ = hs+1O(hs) = O(h2s+1).

The proof is complete. �

7.3.4 Convergence Analysis of the Iteration

Theorem 7.4 Assume that M is symmetric and positive semi-definite and that f
satisfies a Lipschitz condition in the variable q, i.e., there exists a constant L such
that ‖ f (q1) − f (q2)‖ ≤ L ‖q1 − q2‖. If

0 < h <
1

√
L max

i, j=1,...,s

∫ 1
0 |l j (ci z)(1 − z)|dz

, (7.27)

then the fixed-point iteration for the method (7.16) is convergent.
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Proof Following Definition7.1, the first formula of (7.16) can be rewritten as

Q = φ0(c
2V )(e ⊗ q0) + hcφ1(c

2V )(e ⊗ p0) + h2 A(V ) f (Q), (7.28)

where c = (c1, . . . , cs)
ᵀ, e = (1, . . . , 1)ᵀ, Q = (q̃1, . . . , q̃s)

ᵀ, f (Q) =(
f (q̃1)

ᵀ, . . . , f (q̃s)
ᵀ)ᵀ

, A(V ) = (
ai j (V )

)
s×s and ai j (V ) are the block diagonal

matrices defined by

ai j (V ) :=
∫ 1

0
l j (ci z)(1 − z)φ1

(
(1 − z)2c2i V

)
dz,

φ0(c
2V ) := diag

(
φ0(c

2
1V ), . . . , φ0(c

2
s V )

)ᵀ
,

cφ1(c
2V ) := diag

(
c1φ1(c

2
1V ), . . . , csφ1(c

2
s V )

)ᵀ
.

It follows from Proposition 2.1 in [18] that
∥
∥φ1

(
(1 − z)2c2i V

)∥∥ ≤ 1. We then obtain

∥∥ai j (V )
∥∥ ≤

∫ 1

0
|l j (ci z)(1 − z)|dz.

Let
ϕ(x) = φ0(c

2V )(e ⊗ q0) + hcφ1(c
2V )(e ⊗ p0) + h2 A(V ) f (x).

Then,

‖ϕ(x) − ϕ(y)‖ = ∥∥h2 A(V ) f (x) − h2 A(V ) f (y)
∥∥ ≤ h2L ‖A(V )‖ ‖x − y‖

≤ h2L max
i, j=1,...,s

∫ 1

0
|l j (ci z)(1 − z)|dz ‖x − y‖ ,

which means that ϕ(x) is a contraction from the assumption (7.27). The well-known
Contraction Mapping Theorem then ensures the convergence of the fixed-point iter-
ation. This proof is complete. �

Remark 7.5 We note that the convergence of the methods is independent of ‖M‖.
This point is of prime importance especially for highly oscillatory systems where
‖M‖ � 1, which will be shown by the numerical results of Problem2 in Sect. 7.4.

7.3.5 Stability and Phase Properties

In this part we are concerned with the stability and phase properties. We consider
the test equation:

q ′′(t) + ω2q(t) = −εq(t) with ω2 + ε > 0, (7.29)
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where ω represents an estimation of the dominant frequency λ and ε = λ2 − ω2 is
the error of that estimation. Applying (7.16) to (7.29) produces

(
q̃

h p̃

)
= S(V, z)

(
q0

hp0

)
,

where the stability matrix S(V, z) is given by

S(V, z) =
(

φ0(V ) − zb̄ᵀ(V )N−1φ0(c2V ) φ1(V )−zb̄ᵀ(V )N−1(c · φ1(c2V ))

−V φ1(V )−zbᵀ(V )N−1φ0(c2V ) φ0(V )−zbᵀ(V )N−1(c · φ1(c2V ))

)

with N = I + z A(V ), b̄(V ) =
(

I1,1, . . . , I1,s
)ᵀ

, b(V ) =
(

I2,1, . . . , I2,s
)ᵀ

.

Accordingly, we have the following definitions of stability and dispersion order
and dissipation order for our method (7.16).

Definition 7.3 (See [30]) Let ρ(S) be the spectral radius of S,

Rs = {(V, z)| V > 0 and ρ(S) < 1}

and
Rp = {(V, z)| V > 0, ρ(S) = 1 and tr(S)2 < 4 det(S)}.

Then Rs and and Rp are called the stability region and the periodicity region of the
method (7.16) respectively. The quantities

φ(ζ ) = ζ − arccos
( tr(S)

2
√
det(S)

)
, d(ζ ) = 1 − √

det(S)

are called the dispersion error and the dissipation error of the method (7.16), respec-
tively, where ζ = √

V + z. Then, a method is said to be dispersive of order r and
dissipative of order s, if φ(ζ ) = O(ζ r+1) and d(ζ ) = O(ζ s+1), respectively. If
φ(ζ ) = 0 and d(ζ ) = 0, then the corresponding method is said to be zero dispersive
and zero dissipative, respectively.

7.4 Numerical Experiments

As an example of the trigonometric collocation methods (7.16), we choose the
node points of a two-point Gauss–Legendre’s quadrature over the integral [0, 1], as
follows:

c1 = 3 − √
3

6
, c2 = 3 + √

3

6
. (7.30)
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Fig. 7.1 Stability region (shaded area) of the method LTCM

Then we choose s = 2 in (7.16) and denote the corresponding fourth-order method
as LTCM.

The stability region of this method is shown in Fig. 7.1. Here we choose the subset
V ∈ [0, 100], z ∈ [−5, 5] and the region shown in Fig. 7.1 only gives an indication
of the stability of this method.

The dissipative error and dispersion error are given respectively by

d(ζ ) = ε2

24(ε + ω2)2
ζ 4 + O(ζ 5), φ(ζ ) = ε2

6(ε + ω2)2
ζ 3 + O(ζ 4).

Note that when M = 0, the method LTCM reduces to a fourth-order RKNmethod
given by the Butcher tableau (7.21) with nodes in (7.30).

In order to show the efficiency and robustness of the fourth-order method LTCM,
several other integrators in the literature we select for comparison are:

• TFCM: a fourth-order trigonometric Fourier collocation method in [26] with c1 =
3−√

3
6 , c2 = 3+√

3
6 , b1 = b2 = 1/2, r = 2;

• SRKM1: the symplectic Runge–Kutta method of order five in [20] based on Radau
quadrature;

• EPCM1: the “extended Lobatto IIIA method of order four” in [15], which is an
energy-preserving collocation method (the case s = 2 in [10]);

• EPRKM1: the energy-preserving Runge–Kuttamethod of order four (formula (19)
in [1]).

Since all of these methods are implicit, we use the classical waveform Picard
algorithm. For each experiment, first we show the convergence rate of iterations for
different error tolerances. Then, for different methods, we set the error tolerance as
10−16 and set the maximum number of iteration as 5. We display the global errors
and the energy errors once the problem is a Hamiltonian system.
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Table 7.1 Results for Problem1: The total CPU time (s) of iterations for different error tolerances
(tol)

Methods tol = 1.0e−006 tol = 1.0e−008 tol = 1.0e−010 tol = 1.0e−012

LTCM 6.8215 8.8964 8.8500 10.5551

TFCM 9.7892 9.7553 9.9806 13.0105

SRKM1 67.0230 64.1777 75.9390 86.8317

EPCM1 104.4341 112.9710 126.4438 145.6188

EPRKM1 56.2409 64.3123 75.2503 84.9962

Problem 1 Consider the Hamiltonian equation which governs the motion of an
artificial satellite (this problem has been considered in [19]) with the Hamiltonian

H(q, p) = 1

2
pᵀ p + 1

2

κ

2
qᵀq + λ

( (q1q3 + q2q4)
2

r4
− 1

12r2

)
,

where q = (q1, q2, q3, q4)
ᵀ and r = qᵀq. The initial conditions are given on an

elliptic equatorial orbit by

q0 =
√

r0
2

(
− 1,−

√
3

2
,−1

2
, 0

)ᵀ
, p0 = 1

2

√

K 2
1 + e

2

(
1,

√
3

2
,
1

2
, 0

)ᵀ
.

Here M = κ
2 and κ is the total energy of the elliptic motion which is defined by

κ = K 2−2|p0|2
r0

− V0 with V0 = − λ

12r30
. The parameters of this problem are chosen as

K 2 = 3.98601 × 105, r0 = 6.8 × 103, e = 0.1, λ = 3
2 K 2 J2R2, J2 = 1.08625 ×

10−3, R = 6.37122 × 103. First the problem is solved on the interval [0, 104] with
the stepsize h = 1

10 to show the convergence rate of iterations. Table7.1 displays the
CPU time of iterations for different error tolerances. Then this equation is integrated
on [0, 1000] with the stepsizes 1/2i for i = 2, 3, 4, 5. The global errors against CPU
time are shown in Fig. 7.2i. We finally integrate this problem with the fixed stepsize
h = 1/20 on the interval [0, tend], and tend = 10, 100, 103, 104. Themaximum global
errors of Hamiltonian energy against CPU time are presented in Fig. 7.2ii.

Problem 2 Consider the Fermi–Pasta–Ulam problem [9].
Fermi–Pasta–Ulam problem is a Hamiltonian system with the Hamiltonian

H(y, x) = 1
2

2m∑

i=1
y2i + ω2

2

m∑

i=1
x2

m+i + 1
4

[
(x1 − xm+1)

4

+
m−1∑

i=1
(xi+1 − xm+i−1 − xi − xm+i )

4 + (xm + x2m)4
]
,

where xi is a scaled displacement of the i th stiff spring, xm+i represents a scaled
expansion (or compression) of the i th stiff spring, and yi , ym+i are their velocities
(or momenta). This system can be rewritten as
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Fig. 7.2 Results for Problem1. iThe logarithmof the global error (G E) over the integration interval
against the logarithm of CPU time. ii The logarithm of the maximum global error of Hamiltonian
energy (G E H ) against the logarithm of CPU time

x ′′(t) + Mx(t) = −∇U (x), t ∈ [t0, tend],

where

M =
(

0m×m0m×m

0m×mω2 Im×m

)
,

U (x) = 1

4

[
(x1 − xm+1)

4 +
m−1∑

i=1
(xi+1 − xm+i−1 − xi − xm+i )

4 + (xm + x2m)4
]
.

Following [9], we choose

m = 3, x1(0) = 1, y1(0) = 1, x4(0) = 1

ω
, y4(0) = 1,

with zero for the remaining initial values.
First, the problem is solved on the interval [0, 1000] with the stepsize h = 1

100
and ω = 100, 200 to show the convergence rate of iterations. See Table7.2 for the
total CPU time of iterations for different error tolerances. It can be observed that
when ω increases, the convergence rates of LTCM and TFCM are almost unaffected.
However, the convergence rates of the other methods vary greatly as ω becomes
large.

We then integrate the system on the interval [0, 50] with ω = 50, 100, 150, 200
and the stepsizes h = 1/(20 × 2 j ) for j = 1, . . . , 4. The global errors are shown
in Fig. 7.4. Finally, we integrate this problem with a fixed stepsize h = 1/100 on
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Table 7.2 Results for Problem2: The total CPU time (s) of iterations for different error tolerances
(tol)

Methods tol = 1.0e−006 tol = 1.0e−008 tol = 1.0e−010 tol = 1.0e−012

LTCM (ω = 100) 7.1570 9.7010 9.6435 12.2449

LTCM (ω = 200) 7.5169 10.0160 9.2135 11.1672

TFCM (ω = 100) 7.6434 10.3224 10.3341 12.7998

TFCM (ω = 200) 7.8861 11.1322 10.0578 12.3621

SRKM1 (ω = 100) 32.0491 39.4922 48.5822 57.0720

SRKM1 (ω = 200) 58.2410 70.5585 86.1757 99.6403

EPCM1 (ω = 100) 50.8899 70.5920 87.9782 102.9839

EPCM1 (ω = 200) 121.2714 149.7104 189.4323 220.1096

EPRKM1 (ω = 100) 31.0881 39.0050 47.6389 56.4456

EPRKM1 (ω = 200) 55.2205 68.8459 82.5919 98.5277

the interval [0, tend] with tend = 1, 10, 100, 1000. The maximum global errors of
Hamiltonian energy are presented in Fig. 7.4. Here, it is noted that some results are
too large, and hence we do not plot the corresponding points in Figs. 7.3 and 7.4. A
similar situation occurs in the next two problems.

Problem 3 Consider the nonlinear Klein-Gordon equation [17]

{
∂2u
∂t2 − ∂2u

∂x2 = −u3 − u, 0 < x < L , t > 0,
u(x, 0) = A(1 + cos( 2πL x)), ut (x, 0) = 0, u(0, t) = u(L , t),

with L = 1.28, A = 0.9. Carrying out a semi-discretization on the spatial variable
by using second-order symmetric differences yields

d2U
dt2 + MU = F(U ), 0 < t ≤ tend,

where U (t) = (
u1(t), . . . , uN (t)

)ᵀ
with ui (t) ≈ u(xi , t) for i = 1, . . . , N ,

M = 1

Δx2

⎛

⎜⎜⎜⎜⎜
⎝

2 −1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 −1 2

⎞

⎟⎟⎟⎟⎟
⎠

N×N

with Δx = L/N , xi = iΔx, F(U ) = ( − u3
1 − u1, . . . ,−u3

N − uN
)ᵀ

and N = 32.
The corresponding Hamiltonian of this system is

H(U ′, U ) = 1

2
U ′ᵀU ′ + 1

2
UᵀMU + 1

2
u2
1 + 1

4
u4
1 + · · · + 1

2
u2

N + 1

4
u4

N .
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Fig. 7.3 Results for Problem2. The logarithm of the global error (G E) over the integration interval
against the logarithm of CPU time

We choose N = 32. The problem is solved on the interval [0, 500] with the stepsize
h = 1

100 to show the convergence rate of iterations. See Table7.3 for the total CPU
time of iterations for different error tolerances. We then solve this problem on [0, 20]
with stepsizes h = 1/(3× 2 j ) for j = 1, . . . , 4. Figure7.5i shows the global errors.
Finally this problem is integrated with a fixed stepsize h = 0.002 on the interval
[0, tend]with tend = 10i for i = 0, 1, 2, 3. Themaximumglobal errors ofHamiltonian
energy are presented in Fig. 7.5ii.
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Fig. 7.4 Results for Problem2. The logarithm of the maximum global error of Hamiltonian energy
(GEH) against the logarithm of CPU timelabelfig

Table 7.3 Results for Problem3: The total CPU time (s) of iterations for different error tolerances
(tol)

Methods tol = 1.0e−006 tol = 1.0e−008 tol = 1.0e−010 tol = 1.0e−012

LTCM 5.9325 7.9263 8.1816 10.0602

TFCM 6.5318 8.7008 8.8934 10.7489

SRKM1 24.1600 29.4173 34.5310 39.5161

EPCM1 37.2757 46.4011 53.1403 66.2339

EPRKM1 22.6571 27.8341 33.5435 39.4533
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Fig. 7.5 Results for Problem3. iThe logarithmof the global error (G E) over the integration interval
against the logarithm of CPU time. ii The logarithm of the maximum global error of Hamiltonian
energy (G E H ) against the logarithm of CPU time

Problem 4 Consider the wave equation

∂2u
∂t2 − a(x) ∂2u

∂x2 + 92u = f (t, x, u), 0 < x < 1, t > 0,

u(0, t) = 0, u(1, t) = 0, u(x, 0) = a(x), ut (x, 0) = 0

with a(x) = 4x(1 − x), f (t, x, u) = u5 − a2(x)u3 + a5(x)

4 sin2(20t) cos(10t). The
exact solution of this problem is u(x, t) = a(x) cos(10t). Using semi-discretization
on the spatial variable with second-order symmetric differences, we obtain

d2U
dt2 + MU = F(t, U ), U (0) = (

a(x1), . . . , a(xN−1)
)ᵀ

, U ′(0) = 0, 0 < t ≤ tend,

where U (t) = (
u1(t), . . . , uN−1(t)

)ᵀ
with ui (t) ≈ u(xi , t), xi = iΔx , Δx = 1/N

for i = 1, . . . , N − 1,

M = 92IN−1 + 1

Δx2

⎛

⎜⎜
⎜⎜⎜
⎝

2a(x1) −a(x1)
−a(x2) 2a(x2) −a(x2)

. . .
. . .

. . .

−a(xN−2) 2a(xN−2) −a(xN−2)

−a(xN−1) 2a(xN−1)

⎞

⎟⎟
⎟⎟⎟
⎠

,

and

F(t, U ) = (
f (t, x1, u1), . . . , f (t, xN−1, uN−1)

)ᵀ
.
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Table 7.4 Results for Problem4: The total CPU time (s) of iterations for different error tolerances
(tol)

Methods tol = 1.0e−006 tol = 1.0e−008 tol = 1.0e−010 tol = 1.0e−012

LTCM 1.8980 1.8737 2.1212 2.3196

TFCM 1.9213 1.9345 2.2227 2.3736

SRKM1 13.8634 16.6963 19.0854 22.6142

EPCM1 23.5110 28.1288 32.2263 36.8443

EPRKM1 13.5526 17.2289 18.8744 23.0066
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Fig. 7.6 Results for Problem4: The logarithm of the global error (G E) over the integration interval
against the logarithm of CPU time

The problem is solved on the interval [0, 100] with the stepsize h = 1
40 to show the

convergence rate of iterations. See Table7.4 for the total CPU time of iterations for
different error tolerances. Then, the system is integrated on the interval [0, 100]with
N = 40 and h = 1/2 j for j = 5, . . . , 8. The global errors are shown in Fig. 7.6.

Remark 7.6 It follows from the numerical results that our method LTCM is very
promising in comparisonwith the classicalmethods SRKM1,EPCM1andEPRKM1.
Although LTCM has a similar performance to TFCM in preserving the solution and
the energy, it can be observed from Figs. 7.2i, 7.3 and 7.5i that LTCM performs a bit
better than TFCM in presenting the solution. Moreover, it follows from Tables7.1,
7.2, 7.3 and 7.4 that LTCM has a better convergence performance of iterations than
TFCM. This means that LTCM can have a lower computational cost when the same
error tolerance is required in the iteration procedure.

Remark 7.7 From Figs. 7.2ii, 7.4 and 7.5ii, it can be observed that the energy-
preserving Runge–Kutta method EPRKM1 cannot preserve the Hamiltonian energy,
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and the errors seem to grow with the CPU time when the stepsize is reduced. The
reason for this phenomenon may be that EPRKM1 does not take advantage of the
special structure introduced by the linear term Mq of the oscillatory system (7.1)
and its convergence depends on ‖M‖. The method LTCM developed in this chapter
makes good use of the matrix M appearing in the oscillatory systems (7.1) and its
convergence condition is independent of ‖M‖. This property enables LTCM to per-
form well in preserving Hamiltonian energy, although it is not an energy-preserving
method.

7.5 Conclusions and Discussions

It is known that the trigonometric Fourier collocation method is a kind of collocation
method for ODEs (see, e.g. [7, 9, 10, 16, 28]). In this chapter we have investigated a
class of trigonometric collocationmethods based on Lagrange basis polynomials, the
variation-of-constants formula and the idea of collocationmethods for solvingmulti-
frequency oscillatory second-order differential equations (7.1) efficiently. It has been
shown that the convergence condition of these trigonometric collocation methods is
independent of ‖M‖, which is crucial for solving highly oscillatory systems. This
presents an approach to treating multi-frequency oscillatory systems. The numerical
experiments were carried out, and the numerical results show that the trigonometric
collocation methods based on Lagrange basis polynomials derived in this chapter
have remarkable efficiency compared with standard methods in the literature. How-
ever, it is believed that other collocation methods based on suitable bases different
from the Lagrange basis are also possible for the numerical simulation of ODEs.

The material of this chapter is based on the work by Wang et al. [27].
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