
Chapter 6
The Construction of Arbitrary Order
ERKN Integrators via Group Theory

This chapter presents the construction of arbitrary order extended Runge–Kutta–
Nyström (ERKN) integrators. In general, ERKNmethods aremore effective than tra-
ditional Runge–Kutta–Nyström (RKN)methods in dealing with oscillatory Hamilto-
nian systems. However, the theoretical analysis for ERKNmethods, such as the order
conditions, the symplecticity conditions and the symmetric conditions, becomes
much more complicated than that for RKN methods. Therefore, it is a bottleneck
to construct high-order ERKN methods efficiently. This chapter first establishes the
ERKNgroupΩ for ERKNmethods and theRKNgroupG for RKNmethods, respec-
tively, and then shows that ERKNmethods are a natural extension of RKNmethods.
That is, there exists an epimorphism η of the ERKN group Ω onto the RKN group
G. This epimorphism gives a global insight into the structure of the ERKN group by
the analysis of its kernel and the corresponding RKN group G. We also establish a
particular mapping ϕ of G into Ω that each image element is an ideal representative
element of the congruence class in Ω . Furthermore, an elementary theoretical anal-
ysis shows that this mapping ϕ can preserve many structure-preserving properties,
such as the order, the symmetry and the symplecticity. From the epimorphism η

together with its section ϕ, we may gain knowledge about the structure of the ERKN
group Ω through the RKN group G.

6.1 Introduction

We are concerned in this chapter with initial value problems (IVP) of second-order
oscillatory differential equations

{
y′′(t) + My(t) = f (y(t)),

y(t0) = y0, y′(t0) = y′
0,

(6.1)
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with M a (symmetric) positive semi-definite matrix and ‖M‖ � 1, which fre-
quently arise in many aspects of scientific and engineering computing, such as celes-
tial mechanics, theoretical physics, chemistry and electronics. Effective numerical
methods for solving this type of problems are of great importance (see, e.g. [4, 7–10,
13, 14]). Using the oscillatory structure introduced by the linear term My in (6.1),
Yang et al. [34] proposed extended Runge–Kutta–Nyström (ERKN) methods. Much
research effort on ERKN methods has been made and ERKN methods show notable
efficiency and higher accuracy than the traditional Runge–Kutta–Nyström (RKN)
methods in dealing with (6.1) (see, e.g. [28, 29, 31, 32, 35, 36]). It is clear that (6.1)
becomes a Hamiltonian system once f (y) = −∇U (y), where U (y) is a smooth
potential function. The symmetric conditions and symplectic conditions for ERKN
methods have also been investigated [15, 16, 25, 27, 30]. However, it is very difficult
to obtain a high-order ERKNmethod with some important structure properties, even
though the order conditions, the symmetric conditions and the symplectic conditions
have been well established.

On the one hand, we have known an important property of ERKN methods, that
is, whenM → 0, each ERKNmethod reduces to a classical RKNmethod. This prop-
erty implies that there exists an intrinsic relation between ERKN and RKNmethods.
On the other hand, the structural properties such as symmetry and symplecticity of
RKN methods have been studied by many authors and very useful results have been
achieved [1–3, 19–21, 23, 24, 26]. Taking account of these two points, in this chapter
we attempt to clarify this intrinsic relation between ERKN and RKN methods by
introducing an epimorphism η from the ERKN group Ω to the RKN group G. In
particular, we establish a particular mapping η fromG toΩ . Consequently, the prop-
erties of ERKN methods including the order, the symmetry, and the symplecticity,
are inherited from the classical RKN methods via the mapping ϕ.

The plan of this chapter is as follows. In Sect. 6.2 we briefly review the classi-
cal RKN methods and then construct the RKN group G. In Sect. 6.3, the theories
associated with the ERKN group Ω are established. Especially, we show that there
exists an epimorphism η from Ω to G. In Sect. 6.4, we address the particular map-
ping ϕ from G to Ω in detail. It turns out that this mapping preserves the order, the
symplecticity, and almost the symmetry. In Sect. 6.5 we carry out some numerical
experiments for the high-order structure-preserving ERKN methods derived from
the theoretical analysis in Sect. 6.4. The last section is concerned with conclusions
and discussions.

6.2 Classical RKN Methods and the RKN Group

This section begins with an overview of the results on classical RKN methods for
second-order initial value problems

{
y′′(t) = f (y(t)),

y(t0) = y0, y′(t0) = y′
0,

(6.2)
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where the right-hand-side function f does not depend on the derivative y′ and time t .
As is well known, to approximate this autonomous systemmore efficiently than with
traditional Runge–Kutta (RK)methods, the so-called Runge–Kutta–Nyström (RKN)
methods were proposed [18]. An s-stage classical RKNmethod with a stepsize h for
the problem (6.2) is defined as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yi = yn + ci hy
′
n + h2

s∑
j=1

ai j f (Y j ), i = 1, . . . , s,

yn+1 = yn + hy′
n + h2

s∑
i=1

b̄i f (Yi ),

y′
n+1 = y′

n + h
s∑

i=1

bi f (Yi ),

(6.3)

where ai j , b̄i , bi for i, j = 1, . . . , s are real constants. Usually, the RKN method
(6.3) can be briefly expressed in a Butcher Tableau

c A

b̄ᵀ

bᵀ

.=

c1 a11 · · · a1s
...

...
...

cs as1 · · · ass

b̄1 · · · b̄s
b1 · · · bs

. (6.4)

In order to establish an RKN group conveniently, we will specify an RKNmethodΦ

with a stepsize h by Φh . Then Φγ h and Φβh are regarded as two different elements
once γ �= β, even though they share the same coefficients. To construct a group
related to RKN methods, a binary composition is needed. Similarly to Hairer and
Wanner [11] in 1974,we consider the composition of twoRKNmethods butmatching
allowance for their corresponding stepsizes.

We then introduce the following definition.

Definition 6.1 Suppose that Φh is an s-stage RKN method defined by (6.3) for the
problem (6.2), Φ ′

h is called an essential 0-stepsi ze form of Φh if the formula for
Φ ′

h reads ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yi = yn + ci hy
′
n + h2

s∑
j=1

ai j f (Y j ), i = 1, . . . , s,

yn+1 = yn + h2
s∑

i=1

b̄i f (Yi ),

y′
n+1 = y′

n + h
s∑

i=1

bi f (Yi ).

(6.5)



138 6 The Construction of Arbitrary Order ERKN Integrators via Group Theory

Accordingly, Φh is called an h-stepsi ze form of Φ ′
h .

Remark 6.1 From Definition6.1, the only difference is in the second equation com-
pared with (6.3). This is essential. That is, the equation

yn+1 = yn + hy′
n + h2

s∑
i=1

b̄i f (Yi ) ,

for Φh has been changed into

yn+1 = yn + h2
s∑

i=1

b̄i f (Yi ) ,

in (6.5) for Φ ′
h . This means that the numerical solution (yn+1, y′

n+1) = Φh(yn, y′
n)

approximates the exact solution at tn + h, whereas (yn+1, y′
n+1) = Φ ′

h(yn, y
′
n) can

only approximate to (y(tn), y′(tn)) at tn . It is noted that if Ψh is a classical RKN
method, then Ψ0·h is just the identity I . This implies that an RKN method Ψ0·h with
the stepsize 0 is totally different from its essential 0-stepsi ze form Ψ ′

h under our
new definition.

Suppose thatΦ1
h andΦ2

h are twoRKNmethodswith s1 stages and s2 stages, respec-
tively.Their coefficients are respectively denotedby c = (c1, . . . , cs1)

ᵀ, b = (b1, . . . ,
bs1)

ᵀ, b̄ = (b̄1, . . . , b̄s1)
ᵀ, A = (

ai j
)
s1×s1

and c∗ = (c∗
1, . . . , c

∗
s2)

ᵀ, b∗ = (b∗
1, . . . ,

b∗
s2)

ᵀ, b̄∗ = (b̄∗
1, . . . , b̄

∗
s2)

ᵀ, A∗ = (
a∗
i j

)
s2×s2

. We next consider the composition of

Φ1
γ h and Φ2

βh . Taking (y0, y′
0) as the starting value at t0 and (y1, y′

1) as the updated
value after one step, we can express the composition law of (y1, y′

1) = (
Φ2

βh ◦
Φ1

γ h

)
(y0, y′

0) as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yi = y0 + γ ci hy
′
0 + γ 2h2

s1∑
j=1

ai j f (Y j ), i = 1, . . . , s1,

ỹ1 = y0 + γ hy′
0 + γ 2h2

s1∑
i=1

b̄i f (Yi ),

ỹ′
1 = y′

0 + γ h
s1∑
i=1

bi f (Yi ),

Ỹk = ỹ1 + βc∗
k h ỹ

′
1 + β2h2

s2∑
j=1

a∗
k j f (Ỹ j ), k = 1, . . . , s2,

y1 = ỹ1 + βh ỹ′
1 + β2h2

s2∑
i=1

b̄∗
i f (Ỹi ),

y′
1 = ỹ′

1 +
s2∑
i=1

βhb∗
i f (Ỹi ).

(6.6)



6.2 Classical RKN Methods and the RKN Group 139

Canceling ỹ1 and ỹ′
1 from (6.6), we obtain the following simplified form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yi = y0 + γ ci hy
′
0 + h2

s1∑
j=1

γ 2ai j f (Y j ), i = 1, . . . , s1

Ỹk = y0 + (γ + βc∗k )hy′
0 + h2

( s1∑
j=1

(γ 2b̄ j + γβc∗k b j ) f (Y j ) +
s2∑
j=1

β2a∗
k j f (Ỹ j )

)
, k = 1, . . . , s2

y1 = y0 + (γ + β)hy′
0 + h2

( s1∑
i=1

(γ 2b̄i + γβbi ) f (Yi ) +
s2∑
i=1

β2b̄∗
i f (Ỹi )

)
,

y′
1 = y′

0 + h
( s1∑
i=1

γ bi f (Yi ) +
s2∑
i=1

βb∗
i f (Ỹi )

)
.

(6.7)

Now let us have a further discussion on the formula (6.7). If γ +β �= 0,we observe
that (6.7) is just an RKN method Ψ(γ+β)h with the stepsize (γ + β)h. Meanwhile,
by a careful calculation the Butcher tableau of RKN method Ψh reads

γ c/δ γ 2A/δ2

(γ e + βc∗)/δ Ã/δ2 β2A∗/δ2

b̃ᵀ/δ2 β2b̄∗ᵀ/δ2

γ bᵀ/δ βb∗ᵀ/δ

, (6.8)

where δ = γ +β, Ãi j = γ 2b̄ j + γβc∗
i b j , b̃ j = γ 2b̄ j + γβb j for i = 1, . . . , s2, j =

1, . . . , s1, and e = (1, . . . , 1)ᵀ is the s2 ×1 vector of units. It is clear that the updated
value (y1, y′

1) just approximates the exact value at t0 + (γ + β)h.
However, for the case of γ + β = 0, the formula (6.7) is no longer of classical

RKN type. In this case,Φ1
βh ◦Φ1

γ h is just an essential 0-stepsizeRKNmethod, whose
corresponding h-stepsi ze form can be expressed in the following Butcher tableau

γ c γ 2A
γ e + βc∗ Ã β2A∗

b̃ᵀ β2b̄∗ᵀ

γ bᵀ βb∗ᵀ

, (6.9)

where Ãi j and b̃ j are the same as in formula (6.8). In this case, it should be noted
that

∑
i γ bi + ∑

i βb
∗
i = 0 when γ + β = 0 and

∑
i bi = ∑

i b
∗
i = 1. Although

this case is not significant in practice, it will be indispensable in the construction of
an RKN group in the remainder of this chapter.

Define
G1 := {Φαh | Φh is a classical RKN method for α ∈ R},
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G0 := {Φ ′
αh | Φ ′

αh is the essential 0-stepsize form of Φαh and Φαh ∈ G1 with∑
i bi = 0}, and G = G1

⋃
G0.

We then have the following result.

Theorem 6.1 (G, ◦, I ) is a group with respect to the composition ◦ and the
identity I .

Proof It is clear that the composition ◦ is associative, and for each elementΘ ∈ G we
certainly haveΘ ◦ I = I ◦Θ = Θ . Moreover, ifΦ andΨ are two arbitrary elements
in G, from the formula (6.7) and the above analysis we know that Φ ◦ Ψ ∈ G. This
shows the closure property ofG under the product ◦. We next show that each element
in G is invertible.

For an s-stage RKN method Λh defined by (6.3), the existing results [19] have
revealed the existence of its adjoint method Λ∗

h . If the coefficients of the adjoint
method are denoted by c∗ = (c∗

1, . . . , c
∗
s )

ᵀ, b∗ = (b∗
1, . . . , b

∗
s )

ᵀ, b̄∗ = (b̄∗
1, . . . , b̄

∗
s )

ᵀ,
and A∗ = (

a∗
i j

)
s×s , then they satisfy

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c∗
i = 1 − cs+1−i ,

a∗
i j = (1 − cs+1−i )bs+1− j − b̄s+1− j + as+1−i,s+1− j ,

b̄∗
j = bs+1− j − b̄s+1− j ,

b∗
j = bs+1− j ,

(6.10)

for 1 � i, j � s. Certainly Λ∗
h belongs to G, and hence Λ∗

−h ∈ G. Furthermore,
from the definition of adjoint methods, we have Λ−1

h = Λ∗
−h straightforwardly.

Consequently, we have Λ−1
h ∈ G, so does its essential 0-stepsi ze form Λ′

h , namely,
Λ

′−1
h ∈ G. This completes the proof. �

Remark 6.2 Here, the above way of defining an RKN group has some nonessential
differences from that of the RK group defined by Hairer and Wanner [11]. These
differences actually rely on the following fact. If Φh and Ψh are two different RKN
methods and they are not adjoint to each other, then the composition Φh ◦ Ψ ∗

−h does
not belong to G1 any more. Here Ψ ∗

h denotes the adjoint method of Ψh . That is why
we have additionally introduced Definition6.1 and the set G0. Likewise, it is also
needed to introduce another new definition (Definition6.2) when constructing the
ERKN group in the next section.

6.3 ERKN Group and Related Issues

6.3.1 Construction of ERKN Group

In this section, we are concerned with the group-structure analysis of the efficient
integrator for the oscillatory second-order initial problem (6.1). It seems that classical



6.3 ERKN Group and Related Issues 141

RKN methods could still be applied to these problems as numerical integrators,
since one may move the term My from the left-hand side to the right-hand side of
the differential equation and then the problem (6.1) can be also transformed to the
type of (6.2). However, when ||M || � 1, RKN methods may not be very effective
methods for solving (6.1) and show bad numerical behavior. This is mainly caused
by the highly oscillatory effect introduced by the linear term My. Taking account
of this point, the extended Runge–Kutta–Nyström (ERKN) methods were proposed
and designed especially for the oscillatory problem (6.1).

Based on the matrix-variation-of-constants formula [33], an s-stage ERKN
method [34] for IVP (6.1) is defined by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yi = φ0(c
2
i V )yn + ci hφ1(c

2
i V )y′

n + h2
s∑

j=1

ai j (V ) f (Y j ), i = 1, . . . , s,

yn+1 = φ0(V )yn + hφ1(V )y′
n + h2

s∑
i=1

b̄i (V ) f (Yi ),

y′
n+1 = −hMφ1(V )yn + φ0(V )y′

n + h
s∑

i=1

bi (V ) f (Yi ).

(6.11)
Here, c1, . . . , cs are real constants, bi (V ), b̄i (V ) and ai j (V ) for i, j = 1, . . . , s are
matrix-valued functions of V ≡ h2M which are usually expressed in formal series
in terms of V

bi (V ) =
∞∑
k=0

b(2k)
i

(2k)!V
k, b̄i (V ) =

∞∑
k=0

b̄(2k)
i

(2k)!V
k, ai j (V ) =

∞∑
k=0

a(2k)
i j

(2k)!V
k, (6.12)

and

φ j (V ) :=
∞∑
k=0

(−1)kV k

(2k + j)! , j = 0, 1, . . . . (6.13)

The properties related to φ j (V ) for j = 0, 1, . . . can be found in [31] and the details
are omitted here. We can also express the ERKN method (6.11) in a Butcher tableau

c A(V )

b̄(V )
ᵀ

b(V )ᵀ

=

c1 a11(V ) · · · a1s(V )
...

...
...

cs as1(V ) · · · ass(V )

b̄1(V ) · · · b̄s(V )

b1(V ) · · · bs(V )

. (6.14)

Proceeding in the same spirit as for RKN methods, we also introduce a new
definition for ERKN methods as follows.
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Definition 6.2 Suppose that Ψh is an s-stage ERKN method defined by (6.11) for
the problem (6.1), Ψ ′

h is called essential 0-stepsi ze form of Ψh if the formula for
Ψ ′
h reads⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yi = φ0(c
2
i V )yn + ci hφ1(c

2
i V )y′

n + h2
s∑

j=1

ai j (V ) f (Y j ), i = 1, . . . , s,

yn+1 = yn + h2
s∑

i=1

b̄i (V ) f (Yi ),

y′
n+1 = y′

n + h
s∑

i=1

bi (V ) f (Yi ).

(6.15)
Then Ψh is called an h-stepsi ze form of Ψ ′

h .

Suppose that ϒ1
h and ϒ2

h are two ERKN methods with s1 stages and s2 stages,
respectively. The coefficients of ϒ1

h are denoted as (c, b, b̄, A), and those of ϒ2
h are

additionally denoted with a star (c∗, b∗, b̄∗, A∗). We now consider the composition
of ϒ1

γ h and ϒ2
βh . After a careful calculation, we derive the scheme ϒ2

βh ◦ ϒ1
γ h as

follows

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yi = φ0(γ
2c2i V )y0 + γ ci hφ1(γ

2c2i V )y′
0 + h2

s1∑
j=1

γ 2Ai j (γ
2V ) f (Y j ), i = 1, . . . , s1,

Ỹk = φ0((γ + βc∗
k )

2V )y0 + (γ + βc∗
k )hφ1((γ + βc∗

k )
2V )y′

0

+ h2
( s1∑

j=1

(
γ 2b̄ j (γ

2V )φ0(β
2c∗2

k V ) + γβc∗
k b j (γ

2V )φ1(β
2c∗2

k V )
)
f (Y j )

+
s2∑
j=1

β2A∗
k j (β

2V ) f (Ỹ j )
)
, k = 1, . . . , s2,

y1 = φ0((γ + β)2V )y0 + (γ + β)hφ1((γ + β)2V )y′
0

+ h2
( s1∑

j=1

(
γ 2b̄ j (γ

2V )φ0(β
2V ) + γβb j (γ

2V )φ1(β
2V )

)
f (Y j ) +

s2∑
i=1

β2b̄∗
i (β

2V ) f (Ỹi )
)
,

y′
1 = −(γ + β)hMφ1((γ + β)2V )y0 + φ0((γ + β)2V )y′

0

+ h
( s1∑

j=1

( − γ 2βV b̄ j (γ
2V )φ1(β

2V ) + γ b j (γ
2V )φ0(β

2V )
)
f (Y j ) +

s∑
i=1

βbi (β
2V ) f (Ỹi )

)
.

For the case γ + β �= 0, gives that the composition ϒ2
βh ◦ ϒ1

γ h indicates a new
ϒδh , namely, an (s1 + s2)-stage ERKNmethod with the stepsize δh = (γ +β)h, and
Butcher tableau
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γ c/δ γ 2A(γ 2/δ2V )/δ2

(γ e + βc∗)/δ Ā(V/δ2)/δ2 β2A∗(β2/δ2V )/δ2

B̄ᵀ(V/δ2)/δ2 β2b̄∗ᵀ(β2/δ2V )/δ2

Bᵀ(V/δ2)/δ βb∗ᵀ(β2/δ2V )/δ

, (6.16)

where⎧⎪⎨
⎪⎩

Āi j (V ) = γ 2b̄ j (γ
2V )φ0(β

2c∗2
i V ) + γβc∗

i b j (γ
2V )φ1(β

2c∗2
i V ),

B̄ j (V ) = γ 2b̄ j (γ
2V )φ0(β

2V ) + γβb j (γ
2V )φ1(β

2V ),

Bj (V ) = −γ 2βV b̄ j (γ
2V )φ1(β

2V ) + γ b j (γ
2V )φ0(β

2V ),

(6.17)

for i = 1, . . . , s2, j = 1, . . . , s1.
If γ + β = 0, the composition ϒ ′ = ϒ2

βh ◦ ϒ1
γ h is also essential 0-stepsi ze,

whose corresponding h-stepsi ze form can be expressed in the following Butcher
tableau

γ c γ 2A(γ 2V )

γ e + βc∗ Ā(V ) β2A∗(β2V )

B̄ᵀ(V ) β2b̄∗ᵀ(β2V )

Bᵀ(V ) βb∗ᵀ(β2V )

, (6.18)

where Āi j (V ), B̄ j (V ), Bj (V ) have the same expression as (6.17) with
∑

i γ b
(0)
i +∑

i βb
∗(0)
i = 0.

Define
Ω1 := {Φαh | Φh is an ERK N method f or α ∈ R},
Ω0 := {Φ ′

αh | Φ ′
αh is the essential 0-stepsize form of Φαh, Φαh ∈ Ω1 with∑

i b
(0)
i = 0}, and Ω = Ω1

⋃
Ω0.

Then we have the following theorem.

Theorem 6.2 (Ω, ◦, I ) is a group with respect to the composition ◦ and the
identity I .

The proof is similar to that of Theorem6.1, except that the coefficients of the adjoint
method of (6.11) can be expressed as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c∗
i = 1 − cs+1−i ,

a∗
i j (V ) = φ0(c

2
s+1−i V )b̄ j (V ) − cs+1−iφ1(c

2
s+1−i V )b j (V ) + as+1−i,s+1− j (V ) ,

b̄∗
j (V ) = φ1(V )bs+1− j (V ) − φ0(V )b̄s+1− j (V ) ,

b∗
j (V ) = Vφ1(V )b̄s+1− j (V ) + φ0(V )bs+1− j (V ) ,

(6.19)

for 1 � i, j � s. Hence, we omit the details here.
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6.3.2 The Relation Between the RKN Group G
and the ERKN Group Ω

In the previous sections, we have established the RKNgroup (G, ◦, I ) and the ERKN
group (Ω, ◦, I ). A direct observation shows that when M → 0, the oscillatory
problem (6.1) becomes the traditional second-order initial value problem (6.2), and
theERKNmethod (6.11) hence reduces to theRKNmethod (6.3). This point indicates
that there exists an inherent relationship between RKNmethods and ERKNmethods.
Thus, ERKN methods are usually regarded as an extension of RKN methods. In the
following, we will rigorously demonstrate this extension relationship.

In what follows, we will denote the coefficients of an RKN method in lower-case
by (c, b, b̄, a) and those of an ERKN method in upper-case by (C, B, B̄, A). As
ERKN methods depend on the matrix M , for each element Ψ ∈ Ω we will denote it
as Ψ (M) to show this relevance if necessary. Then the word reduces can be defined
as a map

η : Ω −→ G, η(Ψ ) = lim
M→0

Ψ (M), ∀ Ψ ∈ Ω.

As a continuation, we arrive at the following useful theorem.

Theorem 6.3 The map η is an epimorphism of the group Ω onto the group G.

Proof Suppose thatΨ 1 andΨ 2 are two elements ofΩ respectively with the stepsizes
γ h and βh, Φ1 = η(Ψ 1), and Φ2 = η(Ψ 2). From the composition laws (6.8) and
(6.9) of RKNmethods and those of ERKNmethods (6.16) and (6.18), it can be easily
verified that η(Ψ 2 ◦ Ψ 1) = Φ2 ◦ Φ1 = η(Ψ 2) ◦ η(Ψ 1). In addition, from the fact
that η(I ) = I , we conclude that η is a homomorphism of Ω into G.

Wenext show thatη is surjective. For each elementΦ ∈ G, which is denoted by the
coefficients (c, b, b̄, a), there exists Ψ ∈ Ω , whose coefficients can be expressed as

C = c, B(V ) = b ⊗ En, B̄(V ) = b̄ ⊗ En, A(V ) = a ⊗ En, (6.20)

where ⊗ is the Kronecker product, En is an n × n identity matrix and n is the
dimension of square matrix M . Obviously the coefficients (C, B, B̄, A) define an
element in Ω , and thus η is surjective. This completes the proof. �

Corollary 6.1 Let K be the kernel of η, i.e. K = η−1(I ), then K is a normal
subgroup of Ω . Moreover, the induced map η̄ is an isomorphism of the quotient
group Ω = Ω/K onto the group G.

Theorem6.3 actually gives a global view of ERKN methods by connecting them
with classical RKN methods via the epimorphism map η. From Corollary6.1, the
map η defines a congruence relation ≡ by the normal subgroup K , where

Φ ≡ Ψ (mod K ) if Φ−1 ◦ Ψ ∈ K .
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Then by finding a representative element Ψ for each congruence class Ψ ∈ Ω , we
can theoretically give all the elements inΨ , since for eachΘ ∈ Ψ there exists� ∈ K
such that Θ = Ψ ◦ �. This fact indicates that Ψ is the coset of Ψ relative to K , i.e.
Ψ = Ψ ◦ K . Hence it only remains to describe the normal subgroup K in detail.
This can be easily obtained from the following definition of K

K = {
Ψ ∈ Ω0|b(0)

j = 0 and b̄(0)
j = 0, ∀ j

}
.

6.4 A Particular Mapping of G into Ω

In Sect. 6.3,we have investigated theERKNgroup as awhole.However, asmentioned
in the previous section, we can just have a theoretical description for each congruence
class Ψ ∈ Ω , and this is not associated with the important properties of the method,
such as the symplecticity, the symmetry and the order. Recalling Corollary6.1 again,
and taking account of the fact that Ψ = Ψ ◦ K , it is of great importance to select
a representative element Ψ with favourable properties for the congruence class Ψ ,
even though we cannot give a detailed analysis for each element in Ψ .

Meanwhile, because η(Ψ ) = Φ ∈ G, Φ inherits all the advantages of the ERKN
elements in Ψ . Hence all the ERKN elements in Ψ cannot have better structural
properties than the reduced RKN element Φ. Taking account of this point, we may
find this appropriate representative element Ψ with the help of the corresponding
reducedRKNelementΦ. In fact, whatwe are considering is to find a normalmapping
ϕ from G into Ω , so that ϕ(Φ) can preserve as many properties as the original RKN
method Φ does. A direct result about the potential mapping ϕ is that it should be the
section of η. That is, the composition η ◦ ϕ = I is the identity on G. In this sense,
the underlying mapping defined by (6.20) may be a straightforward candidate for ϕ.
Unfortunately, most properties cannot be preserved in this easy way, and we have to
reconsider a proper mapping ϕ.

From the variation-of-constants formula (see, e.g. [31, 32]) for the problem (6.2)
and the problem (6.1), as well as the corresponding RKNmethod for (6.2) and ERKN
integrator (6.11), we consider the following mapping:

ϕ : G −→ Ω,

c a

b̄ᵀ

bᵀ

�−→
C A(V )

B̄(V )
ᵀ

B(V )ᵀ

, (6.21)

where ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ci = ci ,

Ai j (V ) = ai jφ1((ci − c j )
2V ),

B̄i (V ) = b̄iφ1((1 − ci )
2V ),

Bi (V ) = biφ0((1 − ci )
2V ),
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for 1 � i, j � s and s is the stage of the RKN method. This mapping naturally
maps a classical RKN method Φ to an ERRK method ϕ(Φ). Meanwhile, being a
representative element for the congruence class ϕ(Φ), we will show by the following
several theorems that ϕ(Φ) almost preserves all the properties that the original RKN
method Φ has.

Theorem 6.4 If Φ ∈ G is symplectic, then ϕ(Φ) ∈ Ω is symplectic.

Proof From the definition of G, it is needed to verify that the result holds for all
RKNmethods. Hence we can suppose that Φ is an s-stage symplectic RKNmethod.
The results from Suris [26] and Okunbor and Skeel [19] show that the coefficients
of Φ should satisfy the following symplectic conditions:

{
b̄i = (1 − ci )bi , 1 ≤ i ≤ s,

b̄i b j + biai j = b̄ j bi + b ja ji , 1 ≤ i, j ≤ s.
(6.22)

We next show that the ERKN method ϕ(Φ), whose coefficients C, A(V ), B̄(V ),

B(V ) defined by (6.21), is symplectic. Although there is no sufficient and necessary
conditions for the symplecticity of ERKNmethods, we will prove that ϕ(Φ) satisfies
the following conditions:

⎧⎪⎨
⎪⎩

φ0(V )Bi (V ) + Vφ1(V )B̄i (V ) = diφ0(c
2
i V ), di ∈ R, i = 1, 2, ..., s,

φ1(V )Bi (V ) − φ0(V )B̄i (V ) = cidiφ1(c
2
i V ), i = 1, 2, ..., s,

B̄i B j + di Ai j = B̄ j Bi + d j A ji , i, j = 1, 2, ..., s,

(6.23)

which are sufficient conditions for symplectic ERKN methods originally proposed
by Wu et al. [30].

The equations B̄i (V ) = b̄iφ1((1− ci )2V ) and Bi (V ) = biφ0((1− ci )2V ) exactly
give the first two equations of (6.23), with di = bi . Then, inserting the expression
of A(V ), B̄(V ), B(V ) into the the third equation of (6.23), we obtain

B̄i B j + di Ai j − (B̄ j Bi + d j A ji )

=(1 − ci )bib jφ1((1 − ci )
2V )φ0((1 − c j )

2V ) + biai jφ1((ci − c j )
2V )

− (
(1 − c j )bib jφ1((1 − c j )

2V )φ0((1 − ci )
2V ) + b ja jiφ1((ci − c j )

2V )
)

=(
bib j (c j − ci ) + biai j − b ja ji

)
φ1((ci − c j )

2V )

=0.

The last equation directly follows from (6.22). This completes the proof. �

Theorem 6.5 If Φ ∈ G is symmetric and the coefficients satisfy the simplifying
assumption b̄i = bi (1 − ci ), then ϕ(Φ) ∈ Ω is symmetric.
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Proof Similarly to Theorem6.4, we only need to verify the case that Φ is an s-stage
RKNmethod. Hence, we need to derive the symmetric conditions of ERKNmethods
[16, 27]

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ci = 1 − cs+1−i ,

Ai j (V ) = φ0(c
2
s+1−i V )B̄ j (V ) − cs+1−iφ1(c

2
s+1−i V )Bj (V ) + As+1−i,s+1− j (V ) ,

B̄ j (V ) = φ1(V )Bs+1− j (V ) − φ0(V )B̄s+1− j (V ) ,

Bj (V ) = Vφ1(V )B̄s+1− j (V ) + φ0(V )Bs+1− j (V ) ,

(6.24)
from the symmetric conditions of RKN methods [12],

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ci = 1 − cs+1−i ,

ai j = (1 − cs+1−i )bs+1− j − b̄s+1− j + as+1−i,s+1− j ,

b̄ j = bs+1− j − b̄s+1− j ,

b j = bs+1− j .

(6.25)

The first equation of (6.24) naturally holds. On noting that b j = bs+1− j and b̄ j =
b j (1 − c j ), we have

φ1(V )Bs+1− j − φ0(V )B̄s+1− j

=bs+1− jφ1(V )φ0((1 − cs+1− j )
2V ) − bs+1− j (1 − cs+1− j )φ0(V )φ1((1 − cs+1− j )

2V )

=b jφ1(V )φ0(c
2
j V ) − b j c jφ1(V )φ0(c

2
j V )

=b j (1 − c j )φ1((1 − c j )
2V )

=B̄ j (V ),

and

Vφ1(V )B̄s+1− j + φ0(V )Bs+1− j

=bs+1− j (1 − cs+1− j )Vφ1(V )φ1((1 − cs+1− j )
2V ) + bs+1− jφ0(V )φ0((1 − cs+1− j )

2V )

=b j
(
c j Vφ1(V )φ1(c

2
j V ) + φ0(V )φ0(c

2
j V )

)
=b jφ0((1 − c j )

2V )

=Bj (V ).

These give the third and fourth equations of (6.24). Furthermore, it follows from
(6.25) and the simplifying assumption ai j = b j (ci − c j ) + as+1−i,s+1− j . We thus
have

φ0(c
2
s+1−i V )B̄ j (V ) − cs+1−iφ1(c

2
s+1−i V )Bj (V ) + As+1−i,s+1− j (V )

=b j (1 − c j )φ0((1 − ci )
2V )φ1((1 − c j )

2V ) − b j (1 − ci )φ1((1 − ci )
2V )φ0((1 − c j )

2V )

+ as+1−i,s+1− jφ1((ci − c j )
2V )

=(
b j (ci − c j ) + as+1−i,s+1− j

)
φ1((ci − c j )

2V ),

=ai jφ1((ci − c j )
2V )

=Ai j (V ),
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...
τn

...τ1

...

��

��

τ̃k
...

···
pk1

...��

��

τ̃1 ...

···
p1

1

τ

Fig. 6.1 Figure of tree τ = τ1×τ2×· · ·×τn×
(
W+b+(b+B+)p1 (̃τ1)

)×· · ·×(
W+b+(b+B+)pk (̃τk)

)

τ ′
...

��

��τ1
...

τ

Fig. 6.2 Figure of tree τ = (W+b+(b+B+)0(τ1)) × τ ′

and consequently the second equation of (6.24) is satisfied. This completes the
proof. �

Remark 6.3 Although the condition b̄i = bi (1− ci ) required by Theorem6.5, looks
like an additional simplifying condition, in fact this assumption is already contained
in the symplectic conditions for RKN methods in Theorem6.4.

The following theorem is related to the order of a numerical method and the
corresponding order conditions. Hence it seems plausible to gain some knowledge of
special Nyström tree (SNT) and simplified special extended Nyström tree (SSENT),
which is respectively designed to deal with order conditions of RKN and ERKN
methods. Further details concerning SNT and SSENT can be found in [12, 35]. For
the convenience of the proof, we introduce the following two definitions and a basic
lemma, which will be used in the proof of the theorem later.

Definition 6.3 The degree of merge node d(τ ) on SSENT are recursively defined
as follows.
1. d(τ ) = 0, if τ ∈ SNT ;
2. d(τ ) = k + ∑n

j=1 d(τ j ) + ∑k
i=1 d (̃τi ), if τ = τ1 × τ2 × · · · × τn ×(

W+b+(b+B+)p1 (̃τ1)
)×· · ·×(

W+b+(b+B+)pk (̃τk)
)
and τi , τ̃ j ∈ SSENT , pi ∈ N+

(see Fig. 6.1).

Definition 6.4 If τ = (
W+b+(b+B+)0(τ1)

) × τ ′ (see Fig. 6.2), then we define τ1 to
be the first generation of τ . We recursively define that τn is the nth (n ≥ 2) generation
of τ , if there exists τ0 ∈ SSENT that τn is the first generation of τ0 and τ0 is the
(n − 1)th generation of τ .
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Lemma 6.1 If τ = τ1 × τ2, τ1, τ2 ∈ SSENT , then the order ρ(τ), the sign s(τ ),
the density γ (τ), and the weight Φi (τ ) satisfy

ρ(τ) =ρ(τ1) + ρ(τ2) − 1, s(τ ) = s(τ1) · s(τ2),
γ (τ ) =ρ(τ) · γ (τ1)

ρ(τ1)
· γ (τ2)

ρ(τ2)
, Φi (τ ) = Φi (τ1) · Φi (τ2).

(6.26)

This lemma can be directly obtained from the definition of order, density and sign
of an SSENT tree. Hence, we omit the remaining details of the proof here.

Theorem 6.6 If Ψ ∈ G is of order p (p ≥ 1), then ϕ(Ψ ) ∈ Ω is also of order p.

Proof Suppose that Ψ is an s-stage RKN method. The theorem can be stated as
follows.

If the order conditions [12]

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

s∑
i=1

b̄iΦi (τ ) = 1

(ρ(τ ) + 1)γ (τ )
, ∀τ ∈ SNTm, m ≤ p − 1,

s∑
i=1

biΦi (τ ) = 1

γ (τ)
, ∀τ ∈ SNTm, m ≤ p,

(6.27)

hold for Ψ , then the order conditions [35]

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

s∑
i=1

B̄iΦi (τ ) = ρ(τ)!
γ (τ)s(τ )

φρ(τ)+1 + O(h p−ρ(τ)), ∀τ ∈ SSENTm , m ≤ p − 1,

s∑
i=1

BiΦi (τ ) = ρ(τ)!
γ (τ)s(τ )

φρ(τ) + O(h p−ρ(τ)+1), ∀τ ∈ SSENTm , m ≤ p,

(6.28)
also hold for ϕ(Ψ ) under the mapping (6.21).

We will prove this theorem by induction. To this end, the degree of merge node
d(τ ) is used as an indicator. To show this in detail, we split the proof in two parts
with d(τ ) = 0 and d(τ ) > 0 for all τ ∈ SSENT . As stated in [35], we should first
note that SNT is in fact a subset of SSENT. In the first part of the proof we will show
that for each τ ∈ SNT , i.e. d(τ ) = 0, the statement of (6.28) holds.

Noting that s(τ ) = 1 holds for all τ ∈ SNT , we can rewrite (6.28) as an equivalent
form

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

s∑
i=1

B̄(2l)
i Φi (τ ) = ρ(τ)!

γ (τ)

(−1)l(2l)!
(ρ(τ ) + 1 + 2l)! , ∀τ ∈ SNTm, 2l ≤ p − m − 2,

s∑
i=1

B(2l)
i Φi (τ ) = ρ(τ)!

γ (τ)

(−1)l(2l)!
(ρ(τ ) + 2l)! , ∀τ ∈ SNTm, 2l ≤ p − m − 1,

(6.29)
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with the definitions of matrix-valued functions (6.12–6.13). Furthermore, taking
account of the mapping (6.21) and (6.12–6.13), we obtain the following equations

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

A(2k)
i j = ai j (ci − c j )

k (−1)k

2k + 1
,

B̄(2k)
j = b̄ j (1 − c j )

k (−1)k

2k + 1
,

B(2k)
j = b j (1 − c j )

k(−1)k,

(6.30)

for the constants A(2k)
i j , B(2k)

j , B̄(2k)
j by comparing the corresponding coefficients of

each term V k . Inserting the new expressions of (6.30) into (6.29) gives

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

s∑
i=1

b̄i (1 − ci )
2lΦi (τ ) = 1

γ (τ)

ρ(τ)!(2l + 1)!
(ρ(τ) + 1 + 2l)! , ∀τ ∈ SNTm , m + 2l + 1 ≤ p − 1,

s∑
i=1

bi (1 − ci )
2lΦi (τ ) = 1

γ (τ)

ρ(τ)!(2l)!
(ρ(τ) + 2l)! , ∀τ ∈ SNTm , m + 2l + 1 ≤ p.

(6.31)

This means that we only need show the correctness of (6.31) instead of (6.28).
Noting that Φi (τ ) is the weight of SNT tree τ , then cki Φi (τ ) will be the weight of

a new SNT tree τ ′ = τ0 × τ , where τ0 =
...1 2 k

.

Considering Lemma6.1, and noting that γ (τ0) = ρ(τ0) = k + 1, we then have

ρ(τ ′) = ρ(τ) + k, γ (τ ′) = ρ(τ) · γ (τ)

ρ(τ0)
· γ (τ)

ρ(τ0)
= γ (τ)

ρ(τ) + k

ρ(τ)
, Φi (τ

′) = cki Φi (τ ). (6.32)

For any k ≤ 2l, it can be deduced that k + ρ(τ) ≤ p, i.e. ρ(τ ′) ≤ p. Thus, together
with the order conditions (6.27) for the special SNT tree τ ′ and (6.32), the following
equations

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

s∑
i=1

b̄i
(
cki Φi (τ )

) = ρ(τ)

γ (τ )(ρ(τ) + k)(ρ(τ) + k + 1)
, ∀τ ∈ SNTm , m + k + 1 ≤ p − 1,

s∑
i=1

bi
(
cki Φi (τ )

) = ρ(τ)

γ (τ )(ρ(τ) + k)
, ∀τ ∈ SNTm , m + k + 1 ≤ p.

(6.33)

are satisfied. Multiplying by (−1)kCk
2l the two sides of (6.33) and summing over k

from 0 to 2l, we obtain
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2l∑
k=0

(−1)kCk
2l

s∑
i=1

b̄i
(
cki Φi (τ )

) =
s∑

i=1

b̄i (1 − ci )
2lΦi (τ )

=
2l∑
k=0

(−1)kCk
2l

ρ(τ)

γ (τ )(ρ(τ ) + k)(ρ(τ ) + k + 1)
,

2l∑
k=0

(−1)kCk
2l

s∑
i=1

bi
(
cki Φi (τ )

) =
s∑

i=1

bi (1 − ci )
2lΦi (τ )

=
2l∑
k=0

(−1)kCk
2l

ρ(τ)

γ (τ )(ρ(τ ) + k)
.

(6.34)
Comparing (6.31) with (6.34), it can be concluded that if the two conditions,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2l∑
k=0

(−1)kCk
2l

ρ(τ)

(ρ(τ) + k)(ρ(τ ) + k + 1)
= ρ(τ)!(2l + 1)!

(ρ(τ ) + 1 + 2l)!
2l∑
k=0

(−1)kCk
2l

ρ(τ)

(ρ(τ) + k)
= ρ(τ)!(2l)!

(ρ(τ ) + 2l)! ,
(6.35)

hold for any ρ(τ) ≤ p, the Eq. (6.31) will be satisfied. HereCk
2l denotes the binomial

coefficient (2l)!
k!(2l−k)! . It is clear that (6.35) is just a special case of the two identical

equations

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2l∑
k=0

(−1)kCk
2l

n

(n + k)(n + k + 1)
= n!(2l + 1)!

(n + 1 + 2l)! , ∀n ∈ N+,

2l∑
k=0

(−1)kCk
2l

n

(n + k)
= n!(2l)!

(n + 2l)! , ∀n ∈ N+.

(6.36)

Hence, the proof of this part is complete.
For the second part of the proof, we suppose that the order conditions for ϕ(Ψ )

hold for any d(τ ) = K (ρ(τ) ≤ p). This means that the equations

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

s∑
i=1

B̄iΦi (τ ) = ρ(τ)!
γ (τ)s(τ )

φρ(τ)+1 + O(h p−ρ(τ)),

s∑
i=1

BiΦi (τ ) = ρ(τ)!
γ (τ)s(τ )

φρ(τ) + O(h p−ρ(τ)+1),

(6.37)

are satisfied for τ ∈ SSENT, d(τ ) = K (ρ(τ) ≤ p).We turn to showing that (6.37)
also holds for any τ ∈ SSENT with d(τ ) = K + 1 (ρ(τ) ≤ p).
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Suppose that τ ∈ SSENT, ρ(τ ) ≤ p and d(τ ) = K + 1. It follows from
Definitions6.3 and 6.4 that there must exist two integers l ≥ 1, n ≥ 0 and
a corresponding SSENT tree τn in τ , where τn with the particular form τn =(
W+b+(b+B+)l(τ0)

)
is the nth generation of τ . Here, it is convenient to suppose

that τk+1 is the first generation of τk for 1 ≤ k ≤ n − 1 and τ1 is the the first
generation of τ , that is

τ = (
W+b+(b+B+)0(τ1)

) × τ ′
1, τk = (

W+b+(b+B+)0(τk + 1)
) × τ ′

k+1,

where τ ′
k may be some SSENT tree depending on τ . Using Lemma6.1, we have the

following formula

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

s(τk) = s(τk+1) · s(τ ′
k+1),

ρ(τk) = ρ(τk+1) + ρ(τ ′
k+1) + 1,

γ (τk) = ρ(τk)
(
ρ(τk+1) + 1

)
γ (τk+1)

γ (τ ′
k+1)

ρ(τ ′
k+1)

.

(6.38)

Recursively iterating (6.38) implies that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s(τ ) = s(τn) ·
n∏

k=1

s(τ ′
k+1),

ρ(τ ) = ρ(τk+1) + n +
n∑

k=1

ρ(τ ′
k+1),

γ (τ ) = ρ(τ)
(
ρ(τn) + 1

)
γ (τn) ·

n−1∏
k=1

ρ(τk)
(
ρ(τk) + 1

) ·
n∏

k=1

γ (τ ′
k+1)

ρ(τ ′
k+1)

.

(6.39)

Modifying the SSENT tree τ by merely replacing τn with τ̃n , we obtain a new
tree τ̃ (certainly τk will become a new one τ̃k and τ ′

k remains the same). Let δ =
ρ(τn) − ρ(τ̃n). Then it follows from (6.39) that

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

s(τ̃ ) = s(τ ) · s(τ̃n)
s(τn)

,

ρ(τ ) − ρ(τ̃ ) = ρ(τ1) − ρ(τ̃1) = · · · = ρ(τn) − ρ(τ̃n) = δ,

γ (τ̃ ) = γ (τ)
γ (τ̃n)

γ (τn)

(
1 − δ

ρ(τ)

)(
1 − δ

ρ(τn) + 1

) ·
n−1∏
k=1

(
1 − δ

ρ(τk)

)(
1 − δ

ρ(τk) + 1

)
.

(6.40)

For τn = (
W+b+(b+B+)l(τ0)

)
(see Fig. 6.3), we can derive

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
s(τn) = (−1)l s(τ0),

ρ(τn) = ρ(τ0) + 2l + 2,

γ (τn) = γ (τ0)
(ρ(τ0) + 2l + 2)!

ρ(τ0)!(2l)! .

(6.41)
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1

Fig. 6.3 Figure of tree τn = (
W+b+(b+B+)l (τ0)

)

...k 1 ...
τ0

... 12l − k

Fig. 6.4 Figure of tree τ̃n

We now consider τ̃n (see Fig. 6.4) with the particular form

τ̃n =

2l−k f olds︷ ︸︸ ︷

× ×·· ·× × W+b+(b+B+)0(τ0 ×

k f olds︷ ︸︸ ︷

×·· ·× )
)
, 0 ≤ k ≤ 2l.

We then have⎧⎪⎪⎪⎨
⎪⎪⎪⎩
s(τ̃n) = s(τ0),

ρ(τ̃n) = ρ(τ0) + 2l + 2,

γ (τ̃n) = (
ρ(τ0) + k

)(
ρ(τ0) + k + 1

)(
ρ(τ0) + 21 + 2

)γ (τ0)

ρ(τ0)
.

(6.42)

Combining (6.40) with (6.41–6.42), we derive the following equations

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
s(τ̃ ) = s(τ ) · (−1)l ,

ρ(τ̃ ) = ρ(τ), i.e. δ = 0,

γ (τ̃ ) = γ (τ)

(
ρ(τ0) + k

)(
ρ(τ0) + k + 1

)
(ρ(τ0) − 1)!(2l)!

(ρ(τ0) + 2l + 1)! .

(6.43)

Keep in mind that the weights of τ and τ̃ (k) (here we concretely denote the new
tree τ̃ as τ̃ (k) since it really depends on k) can be respectively expressed as



154 6 The Construction of Arbitrary Order ERKN Integrators via Group Theory⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Φi (τ ) =
s∑

μ=1

s∑
ν=1

�μA
(2l)
μν �ν =

s∑
μ=1

s∑
ν=1

�μaμν(cμ − cν)
2l (−1)l

2l + 1
�ν,

Φi (τ̃ (k)) =
s∑

μ=1

s∑
ν=1

c2l−k
μ �μaμνc

k
ν�ν,

(6.44)

where �μ,�ν are some summation depending on other branches of τ . It follows
from (6.44) that

Φi (τ ) =
2l∑
k=0

(−1)l+kCk
2l

2l + 1
Φi (τ̃ (k)). (6.45)

Moreover, from Definition6.3, the equation d(τ̃ (k)) = d(τ ) − 1 = K holds for any
0 ≤ k ≤ 2l. By the assumption in this part we know that the order conditions (6.37)
are satisfied for such τ̃ (k) (0 ≤ k ≤ 2l). Combining the Eq. (6.45) with the order
conditions for τ̃ (k), we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s∑
i=1

B̄iΦi (τ ) =
2l∑
k=0

(−1)l+kCk
2l

2l + 1

s∑
i=1

B̄iΦi (τ̃ (k))

=
2l∑
k=0

(−1)l+kCk
2l

2l + 1

ρ(τ̃ (k))!
γ (τ̃ (k))s(τ̃ (k))

φρ(τ̃ (k))+1 + O(h p−ρ(τ̃ (k))),

s∑
i=1

BiΦi (τ ) =
2l∑
k=0

(−1)l+kCk
2l

2l + 1

s∑
i=1

BiΦi (τ̃ (k))

=
2l∑
k=0

(−1)l+kCk
2l

2l + 1

ρ(τ̃ (k))!
γ (τ̃ (k))s(τ̃ (k))

φρ(τ̃ (k)) + O(h p−ρ(τ̃ (k))+1).

(6.46)

Taking account of the formula (6.43), which is related to τ and the new SSENT tree
τ̃ (k), the equations in (6.46) imply that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s∑
i=1

B̄iΦi (τ ) =
2l∑
k=0

(−1)kCk
2l (ρ(τ0) + 2l + 1)!(

ρ(τ0) + k
)(

ρ(τ0) + k + 1
)
(ρ(τ0) − 1)!(2l + 1)! · ρ(τ)!

γ (τ)s(τ )
φρ(τ)+1

+ O (h p−ρ(τ)),

s∑
i=1

BiΦi (τ ) =
2l∑
k=0

(−1)kCk
2l (ρ(τ0) + 2l + 1)!(

ρ(τ0) + k
)(

ρ(τ0) + k + 1
)
(ρ(τ0) − 1)!(2l + 1)! · ρ(τ)!

γ (τ)s(τ )
φρ(τ)

+ O (h p−ρ(τ)+1),

(6.47)

by replacing s(τ̃ (k)), γ (τ̃ (k)), ρ(τ̃ (k)) with s(τ ), γ (τ ), ρ(τ ). Comparing (6.47)
with (6.37), we observe that whether the order conditions are satisfied for τ depends
on the following equation

2l∑
k=0

(−1)kCk
2l(ρ(τ0) + 2l + 1)!(

ρ(τ0) + k
)(

ρ(τ0) + k + 1
)
(ρ(τ0) − 1)!(2l + 1)! = 1. (6.48)
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It has also been known that (6.48) is just a special case of the identity

2l∑
k=0

(−1)kCk
2l(n + 2l + 1)!(

n + k
)(
n + k + 1

)
(n − 1)!(2l + 1)! = 1, n, l ∈ N+.

Hence, (6.37) also holds for any τ ∈ SSENT that d(τ ) = K + 1 (ρ(τ) ≤ p).
Since both the base case and the inductive step have been demonstrated by the

above two processes, we have completed the proof of this theorem. �

The theorems established in this section essentially reveal the relation between
classical RKNmethods andERKNmethods. An original and natural way to construct
certain high-order ERKN methods is based on the order conditions (6.28), by which
only general fifth/sixth order ERKN methods have now been found and it is quite
difficult to find an arbitrarily high order ERKN method due to the high complexity.
However, the theoretical results stated above can provide us with another simple
way to construct high-order ERKN methods. In this way, we only need to find
its corresponding reduced RKN method and these have been well studied in the
literature. Furthermore, ERKNmethodswith particular properties, such as symmetry
and symplecticity, can also be obtained via themapping (6.21) and their reducedRKN
methods. Finally, we are able to obtain knowledge of ERKN methods by studying
RKN methods instead of ERKN methods themselves, especially in the construction
of high-order ERKN methods.

6.5 Numerical Experiments

In order to show applications of the results presented in the previous section, we
conduct some numerical experiments. First, we select some classical RKN methods
as follows:

• RKN3s4: the three-stage symmetric symplectic Runge–Kutta–Nyström method
of order four proposed by Forest and Ruth [6];

• RKN7s6: the seven-stage symmetric symplectic Runge–Kutta–Nyström method
of order six given by Okunbor and Skeel [21];

• RKN6s6: the six-stage Runge–Kutta–Nyström method of order six given by
Papakostas and Tsitourasy [22];

• RKN16s10: the sixteen-stage Runge–Kutta–Nyström method of order ten pre-
sented by Dormand, El-Mikkawy and Prince [5].

Then from themapping (6.21), their corresponding ERKNmethods are also obtained
with the individual properties maintained. We denote their corresponding ERKN
methods as ERKN3s4, ERKN7s6, ERKN6s6, and ERKN16s10, respectively.

During the numerical experiments, we will display the efficiency curves and the
conservation of energy for each Hamiltonian system. It should be noted that, the
numerical solution obtained by RKN16s10 with a small stepsize is used as the stan-
dard reference solution, if the analytical solution cannot be explicitly given.
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Problem 6.1 We first consider an orbital problem with perturbation [29]

⎧⎪⎪⎨
⎪⎪⎩
q ′′
1 = −q1 − 2ε + ε2

r5
q1, q1(0) = 1, q ′

1(0) = 0,

q ′′
2 = −q2 − 2ε + ε2

r5
q2, q2(0) = 0, q ′

1(0) = 1 + ε,

where r =
√
q2
1 + q2

2 , and the analytical solution is given by

q1(t) = cos(t + εt), q2(t) = sin(t + εt),

with the Hamiltonian

H = p21 + p22
2

+ q2
1 + q2

2

2
− 2ε + ε2

3(q2
1 + q2

2 )
3
2

.

We numerically integrate the problem on the interval [0, 1000] with ε = 10−3.
It is clear from the efficiency curves in Fig. 6.5a that ERKN methods are usually
superior to their corresponding reducedRKNmethodswith respect to the global error
(GE), and a high-order RKN/ERKN method also shows better performance than a
low-order RKN/ERKN method in dealing with an oscillatory problem. Figure6.5b
demonstrates that symplectic methods (RKN3s4, RKN7s6, ERKN3s4, ERKN7s6)
show their good energy-conservation property for the Hamiltonian, while the other
methods without symplecticity lead to a linear energy dissipation on a long-term
scale. The detailed results on the energy conservation for ERKN3s4 and ERKN7s6
are shown in Fig. 6.6. All these results from Figs. 6.5 and 6.6 are consistent with
those of classical numerical methods, and show that ERKNmethods obtained by the
map ϕ with the reduced RKN methods are remarkably efficient and effective.

Problem 6.2 We consider the Hénon–Heilse system

{
q ′′
1 + q1 = −2q1q2,

q ′′
2 + q2 = −q2

1 + q2
2 ,

(6.49)

with the initial conditions q1(0) =
√

5
48 , p2(0) = 1

4 , q2(0) = p1(0) = 0. The
Hamiltonian of the system is given by

H(p, q) = 1

2
(p21 + p22) + 1

2
(q2

1 + q2
2 ) + q2

1q2 − 1

3
q3
2 .

We first integrate this problem on the interval [0, 1000] with different stepsizes.
The efficiency curves for each method are shown in Fig. 6.7a, which indicate the
comparable efficiency for ERKNmethods to their corresponding reduced RKNones,
since ||M || now nearly has the same magnitude as || ∂ f

∂q ||. This phenomenon also
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Fig. 6.5 Results for Problem 6.1: a The log-log plot of maximum global error GE against number
of function evaluations; b the logarithm of the maximum global error of Hamiltonian GEH =
max |Hn − H0| against log10(t) with the stepsize h = 1
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Fig. 6.7 Results for Problem6.2: a The log-log plot of maximum global error GE against the
number of function evaluations; b the logarithm of the maximum global error of Hamiltonian
GEH = max|Hn − H0| against log10(t) with the stepsize h = 0.5

occurs in Fig. 6.7b, where the energy-conservation curve for each method is plotted.
Besides, we can also observe from Fig. 6.7 that the difference between symplectic
methods is a little more remarkable than that between non-symplectic ones. The
good energy-conservation property of symplectic ERKN methods (ERKN3s4 and
ERKN7s6) is clearly shown in Fig. 6.8, which demonstrates that the symplecticity is
maintained by the mapping ϕ very well.

Problem 6.3 Weconsider the sine-Gordon equation [13]with the periodic boundary
conditions ⎧⎨

⎩
∂2u

∂t2
= ∂2u

∂x2
− sin u, −5 ≤ x ≤ 5, t ≥ 0,

u(−5, t) = u(5, t).
(6.50)

A semi-discretization on the spatial variable with the second-order symmetric dif-
ferences gives the following differential equations in time

d2U

dt2
+ MU = F(U ), (6.51)

where U (t) = (u1(t), . . . , uN (t))ᵀ with ui (t) ≈ u(xi , t), xi = −5 + i�x for
i = 1, . . . , N , �x = 10/N , and
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Fig. 6.8 Results for Problem6.2: the global error forHamiltonian of symplecticmethods ERKN3s4
and ERKN7s6 with the stepsize h = 0.5
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F(U ) = − sin(U ) = −(sin u1, . . . , sin uN )ᵀ.

The corresponding Hamiltonian is given by

H(U ′,U ) = 1

2
U ′ᵀU ′ + 1

2
UᵀMU − (

cos u1 + . . . + cos uN
)
.

For this problem, we take the initial conditions as

U (0) = (π)Ni=1, Ut (0) = √
N

(
0.01 + sin(

2π i

N
)
)N
i=1,

with N = 64. For the efficiency curves in Fig. 6.9a, we integrate the problem for
tend = 10 with the different stepsizes. Figure6.9a shows the good efficiency and
accuracy of all the ERKN methods. In Fig. 6.9b, all methods give rise to energy
dissipation even if the method is symplectic. This phenomenon is mainly caused by
the chaotic behavior of the problem, in which a sufficiently small perturbation may
lead to a significant error after a long time, and this increase is always exponential.
It can be observed from Fig. 6.10 that the numerical reference solution obtained by
RKN16s10 obviously shows notable difference between the initial interval [0, 100]
and the terminal interval [900, 1000]. Figure6.11 gives a further demonstration that
the global errors of RKN7s6 and ERKN7s6 increase nearly in an exponential fashion
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Fig. 6.9 Results for Problem6.3: a The log-log plot of maximum global error GE against number
of function evaluations; b the logarithm of the maximum global error of Hamiltonian GEH =
max|Hn − H0| against log10(t) with the stepsize h = 0.01
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Fig. 6.10 Results for Problem6.3: The numerical reference solution in different interval obtained
by RKN16s10 with the stepsize h = 0.001

with time t . This may lead to non-conservation for symplectic methods in practical
numerical computations.

Problem 6.4 We consider the Fermi-Pasta-Ulam problem (see, e.g. [10]), which
can be expressed by a Hamiltonian system with the Hamiltonian
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Fig. 6.11 Results for Problem6.3: the global error for RKN7s6 and ERKN7s6 with the stepsize
h = 0.01, respectively

H(y, x) = 1

2

2m∑
i=1

y2i + ω2

2

m∑
i=1

x2m+i + 1

4

(
(x1 − xm+1)

4

+
m−1∑
i=1

(xi+1 − xm+i−1 − xi − xm+i )
4 + (xm + x2m)4

)
,

(6.52)

where xi represents a scaled displacement of the i th stiff spring, xm+i is a scaled
expansion (or compression) of the i th stiff spring, and yi , ym+i are their velocities
(or momenta).

The corresponding Hamiltonian system is given by

{
x ′ = Hy(y, x),

y′ = −Hx (y, x),
(6.53)

which can be also written in the equivalent form of the oscillatory second-order
differential equations

x ′′(t) + Mx(t) = −∇xU (x), (6.54)

where

y = x ′, M =
(
0m×m 0m×m

0m×m ω2 Im×m

)
,

U (x) = 1

4

(
(x1 − xm+1)

4 +
m−1∑
i=1

(xi+1 − xm+i−1 − xi − xm+i )
4 + (xm + x2m)4

)
.
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Fig. 6.12 Results for Problem6.4: a The log-log plot of maximum global error GE against the
number of function evaluations; b the logarithm of the maximum global error of Hamiltonian
GEH = max |Hn − H0| against log10(t) with the stepsize h = 0.005

In the experiment, we choose

m = 3, x1(0) = 1, y1(0) = 1, x4(0) = 1

ω
, y1(0) = 1, ω = 200,

and choose zero for the remaining initial values. The numerical results are shown
in Fig. 6.12. Similarly to Problem6.3, we also integrate the equation over a short
interval with tend = 20 to decrease the influence of chaotic behavior. Both figures
show good efficiency in the global error and energy error for the ERKN methods.
In particular, symplecticity is also maintained by the map ϕ, such as ERKN3s4 and
ERKN7s6 in Fig. 6.13 display a stable energy conservation in the sense of numerical
computation.

6.6 Conclusions and Discussions

In this chapter, we studied in greater depth the ERKNmethods for solving (6.1) based
on the group structure of numericalmethods.After the construction of theRKNgroup
and the ERKN group, we first presented the inherent relationship between ERKN
and RKN methods, that is, there exists an epimorphism η of the ERKN group onto
the RKN group. This epimorphism gives a clear and exact meaning for the word
extension from RKN methods to ERKN methods and describes the ERKN group in
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Fig. 6.13 Results for Problem6.4: the global error for Hamiltonian of symplectic methods
ERKN3s4 and ERKN7s6 with the stepsize h = 0.01

terms of the RKN group in the sense of structure preservation. Moreover, we estab-
lished the particular mapping ϕ defined by (6.21), which maps an RKNmethod to an
ERKNmethod. A series of theorems about the mapping show that the image element
can be regarded as an ideal representative element for each congruence class of the
ERKN group. That is, the image ERKN element almost preserves as many proper-
ties as the RKN element does. This mapping ϕ also provides us with an effective
approach to constructing arbitrarily high order (symmetric or symplectic) ERKN
methods, whereas the original way based directly on order conditions (symmetric or
symplectic conditions) is more complicated. Furthermore, the numerical simulations
in Sect. 6.5 strongly support our theoretical analysis in Sect. 6.4, and the numerical
results are really promising. The high-order structure-preserving ERKN methods
obtained in such a simple and effective way show better efficiency and accuracy than
their corresponding reduced methods (letting V = 0), namely, the RKN methods.

Remember that the exponential Fourier collocation methods for first-order differ-
ential equations were derived and analysed in Sect. 6.3. Accordingly, the next chapter
will present trigonometric collocation methods for multi-frequency and multidimen-
sional second-order oscillatory systems.

The material of this chapter is based on the recent work by Mei and Wu [17].

References

1. Blanes, S., Casas, F., Ros, J.: Symplectic integrators with processing: a general study. SIAM
J. Sci. Comput. 21, 711–727 (1999)

2. Blanes, S., Casas, F., Ros, J.: New families of symplectic Runge-Kutta-Nyström integration
methods. NAA 102–109 (2000)



164 6 The Construction of Arbitrary Order ERKN Integrators via Group Theory

3. Calvo, M.P., Sanz-Serna, J.M.: High-order symplectic Runge-Kutta-Nyström methods. SIAM
J. Sci. Comput. 14, 1237–1252 (1993)

4. Deuflhard, P.: A study of extrapolation methods based on multistep schemes without parasitic
solutions. Z. angew. Math. Phys. 30, 177–189 (1979)

5. Dormand, J.R., El-Mikkawy, M.E., Prince, P.J.: High order embedded Runge-Kutta-Nyström
formulae. IMA J. Numer. Anal. 7, 423–430 (1987)

6. Forest, E., Ruth, R.D.: Fourth-order symplectic integration. Phys. D 43, 105–117 (1990)
7. García-Archilla, B., Sanz-Serna, J.M., Skeel, R.D.: Long-time-step methods for oscillatory

differential equations. SIAM J. Sci. Comput. 20, 930–963 (1998)
8. Gautschi, W.: Numerical integration of ordinary differential equations based on trigonometric

polynomials. Numer. Math. 3, 381–397 (1961)
9. Hairer, E., Lubich, C.: Long-time energy conservation of numerical methods for oscillatory

differential equations. SIAM J. Numer. Anal. 38, 414–441 (2000)
10. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving

Algorithms for Ordinary Differential Equations, 2nd edn. Springer, Berlin (2006)
11. Hairer, E., Wanner, G.: On the Butcher group and general multi-value methods. Computing 13,

1–15 (1974)
12. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Non-stiff

Systems. Springer, Berlin (1987)
13. Hochbruck, M., Lubich, C.: A Gautschi-type method for oscillatory second-order differential

equations. Numer. Math. 83, 403–426 (1999)
14. Franco, J.M.: Runge-Kutta-Nyströmmethods adapted to the numerical integration of perturbed

oscillators. Comput. Phys. Commun. 147, 770–787 (2002)
15. Franco, J.M., Gómez, I.: Construction of explicit symmetric and symplectic methods of Runge-

Kutta-Nyström type for solving perturbed oscillators. Appl. Math. Comput. 219, 4637–4649
(2013)

16. Liu, K., Wu, X.Y.: High-order symplectic and symmetric composition methods for multi-
frequency and multi-dimensional oscillatory Hamiltonian systems. J. Comput. Math. 33, 355–
377 (2015)

17. Mei, L.J., Wu, X.Y.: The construction of arbitrary order ERKNmethods based on group theory
for solving oscillatory Hamiltonian systems with applications. J. Comput. Phys. 323, 171–190
(2016)

18. Nyström, E.J.: Ueber die numerische intrgration von differentialgleichungen. Acta Soc. Sci.
Fenn. 50, 1–54 (1925)

19. Okunbor, D.I., Skeel, R.D.: An explicit Runge-Kutta-Nyström method is canonical if and only
if its adjoint is explicit. SIAM J. Numer. Anal. 29, 521–527 (1992)

20. Okunbor, D.I., Skeel, R.D.: Explicit canonical methods for Hamiltonian systems. Math. Com-
put. 59, 439–455 (1992)

21. Okunbor, D.I., Skeel, R.D.: Canonical Runge-Kutta-Nyström methods of orders five and six.
J. Comput. Appl. Math. 51, 375–382 (1994)

22. Papakostas, S.N., Tsitourasy, C.: High phase-lag-order Runge-Kutta-Nyström pairs. SIAM J.
Sci. Comput. 21, 747–763 (1999)

23. Sanz-Serna, J.M.: Symplectic integrators for Hamiltonian problems: an overview. Acta Numer-
ica 1, 243–286 (1992)

24. Sanz-Serna, J.M., Calvo, M.P.: Numerical Hamiltonian Problems. Chapman & Hall, London
(1994)

25. Shi, W., Wu, X.Y., Xia, J.: Explicit multi-symplectic extended leap-frog methods for Hamilto-
nian wave equations. J. Comput. Phys. 231, 7671–7694 (2012)

26. Suris, Y.B.: The canonicity of mappings generated by Runge-Kutta type methods when inte-
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