
Chapter 4
Symplectic Exponential Runge–Kutta
Methods for Solving Nonlinear
Hamiltonian Systems

Symplecticity is an important property for exponential Runge–Kutta (ERK)methods
when the underlying problem y′(t) = My(t) + f (y(t)) is a Hamiltonian system.
The main theme of this chapter is to present symplectic exponential Runge–Kutta
methods. Using the fundamental analysis of geometric integrators, we first derive
and analyse the symplectic conditions for ERKmethods. These conditions reduce to
the conventional ones when M → 0. Furthermore, revised stiff order conditions are
proposed and investigated in detail. This chapter is also accompanied by numerical
results that demonstrate the potential of the symplectic ERK methods.

4.1 Introduction

The purpose of this chapter is to explore the efficient computation of initial value
problems expressed in the autonomous form

{
y′(t) = My(t) + f (y(t)), t ∈ [t0, T ],
y(t0) = y0,

(4.1)

where thematrix (−M) is symmetric positive definite or skew-Hermitian with eigen-
values of large modulus. Problems of the form (4.1) arise in a wide range of practical
problems, such as fluidmechanics, quantummechanics, electrodynamics, optics, and
water waves. Among them, one typical problem originating from the mixed initial-
boundary value problems of evolution PDEs, can be written in an abstract form as
follows: ⎧⎪⎪⎨

⎪⎪⎩
∂u(x, t)

∂t
= L u + N (u), x ∈ D, t ∈ [t0, T ],

B(x)u(x, t) = 0, x ∈ ∂D, t > t0,

u(x, 0) = g(x), x ∈ D,

(4.2)
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where D is a spatial domain with boundary ∂D in R
d , L and N represent respec-

tively linear and nonlinear operators, and B(x) denotes the boundary operator. Under
appropriate discretisation by finite difference approximations, spectral methods or
finite elements methods, the problem (4.2) can be converted into (4.1). Stiff problems
also yield examples of this type.

It is always challenging to effectively solve the problem (4.1) numerically, since
the stiffness occurs due to the linear term My. In light of this point, exponential
Runge–Kutta (ERK)methodswere proposed for solving this type of problems instead
of classical Runge–Kutta (RK) methods. ERK methods have been studied by many
authors (see, e.g. [1, 2, 5, 6, 10–13, 15, 17, 18, 20]), and detailed analysis such
as the convergence and the construction of these methods can be found therein. It
is noted that the extended Runge–Kutta–Nyström (ERKN) methods (see, e.g. [29–
32]) can also be classified into the category of exponential integrators, since they
are especially designed for efficiently solving second order oscillatory or highly
oscillatory problems.

It is well known that both stiff problems and Hamiltonian systems are of prime
importance in applications. Much effort has been made in developing a wide variety
of approaches to solving each of them. However, it is very clear that problem (4.1)
can become identical to a Hamiltonian system if

f (y(t)) = J−1∇U (y(t))

and
M = J−1Q,

for the skew-symmetric matrix

J =
(

0 I
−I 0

)
,

where U (y) is a smooth potential function, Q is a symmetric matrix, and I is the
identity matrix. This observation motivates the main theme in this chapter, because
(4.1) may be a Hamiltonian system. As is known, in the case of Hamiltonian systems,
symplectic ERK methods are strongly recommended to preserve the symplecticity
of the original problem, since symplectic methods provide long time energy preser-
vation and stability, based on backward error analysis for symplectic methods when
applied to Hamiltonian systems [7, 8]. On account of this point, we make a fur-
ther study on symplectic conditions for ERKmethods. Moreover, using the obtained
symplectic conditions, we also derive and analyse a class of ERK methods with the
important structure-preserving property.

We also note that an important issue for the study of ERK methods is the so-
called stiff order. Unfortunately, however, as claimed by Berland et al. in [1], the stiff
order conditions are rather restrictive in practice, e.g., the fifth-order ERK method
recently constructed by Luan and Ostermann [20] has eight stages provided the full
stiff order conditions are considered. Therefore, in this chapter, we deal with the stiff
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order conditions in a weak form, under which the revised stiff order conditions can
be naturally derived from the classical (nonstiff) ones. This process is reasonable
based on the fact that no order reduction has been observed, as shown in [15], where
ERK methods only need classical (nonstiff) order.

The plan of this chapter is as follows. In Sect. 4.2, we investigate and present suffi-
cient conditions for symplectic ERKmethods. In Sect. 4.3, the revised stiff order con-
ditions are investigated and a class of special and important ERK methods are con-
sidered, which share the same structure-preserving property as their corresponding
RK methods (those corresponding to the underlying ERK methods when M → 0).
Section4.4 is concerned with numerical results to illustrate the efficiency of the sym-
plectic ERKmethods. The last section is concernedwith conclusions and discussions.

4.2 Symplectic Conditions for ERK Methods

In the study of structure-preserving algorithms, it is an important principle that the
construction of numerical schemes for the initial value problem (4.1) should incor-
porate the structure of the original continuous system in an appropriate way. Taking
this point into account, instead of (4.1), we directly consider the following variation-
of-constants formula (or the Volterra integral equation) corresponding to (4.1):

y(t) = e(t−t0)M y0 +
∫ t

t0

e(t−ξ)M f (y(ξ))dξ. (4.3)

It follows from (4.3) that, for any t, μ, h ∈ R with t, t + μh ∈ [t0, T ], the solution
to (4.1) satisfies the following integral equation:

y(t + μh) = eμhM y0 + h
∫ μ

0
e(μ−z)hM f (y(t + hz))dz, (4.4)

which clearly shows the structure of the internal stages and update of an RK-type
integrator for solving (4.1). In fact, the case of 0 < μ < 1 in (4.4) gives the structure
of the internal stages, andμ = 1 in (4.4) presents the structure of the updates of ERK
methods. The integral in (4.4) will be approximated by a suitable quadrature formula
once the numerical simulation is required for the underlying problem. From this point
of view, therefore, ERK methods are generated quite naturally and fundamentally.

It is now easy to formulate ERK methods from the integral equation (4.4). An
s-stage ERK method, especially for the stiff problem (4.1), can be written as (see,
e.g. [12]) ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Yi = eci hM y0 + h
s∑

j=1

āi j (hM) f (Y j ), i = 1, . . . , s,

y1 = ehM y0 + h
s∑

i=1

b̄i (hM) f (Yi ),

(4.5)
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where āi j (hM) and b̄i (hM) are matrix-valued functions of hM . It is worth mention-
ing that an ERK method (4.5) reduces to a classical RK method if M → 0. In this
sense, the latter is called the RK method corresponding to the ERK method (4.5) in
this chapter.

It is very clear that (4.1) becomes a Hamiltonian system if f (y(t)) = J−1∇
U (y(t)) and M = J−1Q, where U (y(t)) is a smooth potential function and Q is
a symmetric matrix. With this premise, in the remainder of this chapter we will
consider the following Hamiltonian system

{
y′(t) = J−1Qy(t) + J−1∇U (y(t)), t ∈ [t0, T ],
y(t0) = y0.

(4.6)

Hence, the existence of symplectic ERKmethods is of great importance for (4.6), but
has not received much attention yet in the literature. Consequently, in what follows,
we will present and prove the symplectic conditions for ERK methods rigorously.
The construction of symplectic ERK methods for solving (4.6) will be analysed in
detail in the next section, which definitely confirms the existence of symplectic ERK
methods.

Theorem 4.1 If the coefficients of an s-stage ERK method satisfy the following
conditions:{

b̄ᵀ
i J SS

−1
i = S−ᵀ

i Sᵀ J b̄i = γ J, γ ∈ R, i = 1, . . . , s,

b̄ᵀ
i J b̄ j = b̄ᵀ

i J SS
−1
i āi j + āᵀ

j i S
−ᵀ
j Sᵀ J b̄ j , i, j = 1, . . . , s,

(4.7)

where S = ehM and Si = eci hM for i = 1, . . . , s, then the ERK method is symplectic.
Here, γ is an arbitrary real number (independent of i).

Proof We first denote

Di = ∂ f (Yi )

∂y
, Xi = ∂Yi

∂y0
,

for i = 1, . . . , s. If f = J−1∇U (y),M = J−1Q in (4.1), then (4.1) is a Hamiltonian
system.Thus,M is the infinitesimal symplecticmatrix. This leads to the symplecticity
of S and Si as they are exponential forms of λM for some λ ∈ R. Differentiating the
scheme (4.5) yields

Xi = ∂Yi
∂y0

= Si + h
s∑

j=1

āi j D j X j , (4.8)

for i = 1, . . . , s, and

∂y1
∂y0

= S + h
s∑

i=1

b̄i Di Xi . (4.9)
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We then have

( ∂y1
∂y0

)ᵀ
J
( ∂y1

∂y0

)
= Sᵀ J S + h

s∑
i=1

(
b̄i Di Xi

)ᵀ
J S

+ h
s∑

i=1

Sᵀ J b̄i Di Xi + h2
( s∑
i=1

b̄i Di Xi
)ᵀ

J
( s∑
i=1

b̄i Di Xi
)

= J + h
s∑

i=1

(
b̄i Di Xi

)ᵀ
J S + h

s∑
i=1

Sᵀ J b̄i Di Xi + h2
s∑

i=1

s∑
j=1

(
b̄i Di Xi

)ᵀ
J
(
b̄ j D j X j

)
. (4.10)

Using Eq. (4.8), we obtain

(
b̄i Di Xi

)ᵀ
J SS−1

i Xi = (
b̄i Di Xi

)ᵀ
J S + h

s∑
j=1

(
b̄i Di Xi

)ᵀ
J SS−1

i āi j D j X j , (4.11)

(Xi )
ᵀS−ᵀ

i Sᵀ J b̄i Di Xi = Sᵀ J b̄i Di Xi + h
s∑

j=1

(
āi j D j X j

)ᵀ
S−ᵀ
i Sᵀ J b̄i Di Xi , (4.12)

which respectively give

(
b̄i Di Xi

)ᵀ
J S = (

b̄i Di Xi
)ᵀ

J SS−1
i Xi − h

s∑
j=1

(
b̄i Di Xi

)ᵀ
J SS−1

i āi j D j X j , (4.13)

Sᵀ J b̄i Di Xi = (Xi )
ᵀS−ᵀ

i Sᵀ J b̄i Di Xi − h
s∑

j=1

(
āi j D j X j

)ᵀ
S−ᵀ
i Sᵀ J b̄i Di Xi . (4.14)

Substituting the new expressions of
(
b̄i Di Xi

)ᵀ
J S and Sᵀ J b̄i Di Xi in Eqs. (4.13) and

(4.14) into (4.10) yields

( ∂y1
∂y0

)ᵀ
J
( ∂y1

∂y0

)
= J + h

s∑
i=1

(
Xᵀ
i D

ᵀ
i b̄

ᵀ
i J SS

−1
i Xi + Xᵀ

i S
−ᵀ
i Sᵀ J b̄i Di Xi

)

− h2
s∑

i=1

s∑
j=1

(
Xᵀ
i D

ᵀ
i b̄

ᵀ
i J SS

−1
i āi j D j X j

)
− h2

s∑
i=1

s∑
j=1

(
Xᵀ

j D
ᵀ
j ā

ᵀ
i j S

−ᵀ
i Sᵀ J b̄i Di Xi

)

+ h2
s∑

i=1

s∑
j=1

Xᵀ
i D

ᵀ
i b̄

ᵀ
i J b̄ j D j X j = J + h

s∑
i=1

Xᵀ
i

(
Dᵀ
i b̄

ᵀ
i J SS

−1
i + S−ᵀ

i Sᵀ J b̄i Di

)
Xi

+ h2
s∑

i=1

s∑
j=1

Xᵀ
i D

ᵀ
i

(
b̄ᵀ
i J b̄ j − b̄ᵀ

i J SS
−1
i āi j − āᵀ

j i S
−ᵀ
j Sᵀ J b̄ j

)
Dj X j . (4.15)

Since f = J−1∇U (y) and Di = ∂ f (Yi )

∂y
, a direct calculation gives

J Di + Dᵀ
i J = 0, i = 1, . . . , s,
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on noticing that the Hessian
∂2U

∂y2
of U at Yi is symmetric for i = 1, . . . , s. It then

follows from the conditions (4.7) that

(∂y1
∂y0

)ᵀ
J
(∂y1
∂y0

)
= J.

Therefore, the method with coefficients satisfying (4.7) is symplectic. �

Remark 4.1 Here, Theorem 4.1 actually provides a class of sufficient conditions
for symplectic ERK methods. Moreover, it can be easily verified that the proposed
conditions will reduce to the classical symplectic conditions for RK methods when
M → 0. The details are analysed as follows. When M → 0, the matrices S = ehM

and Si = eci hM for i = 1, . . . , s become identity matrices, and āi j , b̄i for i, j =
1, . . . , s are scalars (more precisely, they are products of the scalars and the identity
matrix). In this sense, the first equation of (4.7) holds automatically. The second one
is then identical to

b̄i b̄ j J = b̄i āi j J + ā j i b̄ j J.

Hence
b̄i b̄ j = b̄i āi j + b̄ j ā j i ,

which is exactly the classical symplectic conditions of RK methods [7, 8, 22].

4.3 Symplectic ERK Methods

The direct construction of symplectic ERK methods based on the order conditions
accompanying the symplectic conditions is always of high complexity. In spite of
this, we make an effort to find a class of ERK methods with the important structure-
preserving property. To achieve this goal, the “generalized Runge–Kutta methods”,
proposed in [17], are helpful and we are hopeful of obtaining some symplectic ERK
methods. We first introduce the following theorem, which can be found in [1, 17].

Theorem 4.2 If c = (c1, . . . , cs)ᵀ, b = (b1, . . . , bs)ᵀ and A = (ai, j )s×s are coeffi-
cients of an s-stage RK method of order p, then the ERKmethod with the same nodes
c, whose coefficients are defined by

āi j = ai j e
(ci−c j )hM , b̄i = bie

(1−ci )hM , i, j = 1, . . . , s, (4.16)

is also of order p when applied to the stiff problem (4.1).

The mapping (4.16) actually gives an effective approach for constructing ERK
methods based on classical RKmethods. It is rather attractive since RKmethods have
already been well developed in the literature. It is noted that the order is obtained
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in the sense of the classical (nonstiff) order. However, we will show below that the
classical (nonstiff) order conditions are sufficient for the convergence order provided
a class of modified stiff order conditions is admitted.

As claimed by Berland et al. [1], the stiff order conditions are rather restrictive.
Here, we reconsider the stiff order conditions in a revised version, which does not
affect the convergence order of the ERK methods. In fact, the stiff order conditions
are derived from the estimation of the global error bound (see [10] for details). Using
the explicit form of (4.24) in [10], the expression of the global errors en for ERK
methods (4.5) can be written as

en+1 =ehMen + hN (en)en − h2ψ2(hM) f ′(tn)

− h3ψ3(hM) f ′′(tn) − h3
s∑

i=1

b̄i (hM)Jnψ2,i (hM) f ′(tn)

− h4ψ4(hM) f ′′′(tn) − h4
s∑

i=1

b̄i (hM)Jnψ3,i (hM) f ′′(tn)

− h4
s∑

i=1

b̄i (hM)Jn

s∑
j=1

āi j Jnψ2, j (hM) f ′(tn)

− h4
s∑

i=1

b̄i (hM)ci Knψ2, j (hM) f ′(tn) + h5Rn,

(4.17)

where Jn and Kn denote arbitrary squarematrices,ψi (hM) andψi, j (hM) arematrix-
valued functions of hM respectively defined by

ψi (hM) = ϕi (hM) −
s∑

k=1

b̄k(hM)
ci−1
k

(i − 1)! , (4.18)

ψ j,i (hM) = ϕ j (ci hM)c j
i −

s∑
k=1

āik(hM)
c j−1
k

( j − 1)! , (4.19)

and ϕk(z) is defined by

ϕk(z) =
∫ 1

0
e(1−θ)z θ k−1

(k − 1)!dθ, k ≥ 1, (4.20)

which has the recurrence relation

ϕk+1(z) = ϕk(z) − ϕk(0)

z
, ϕ0(z) = ez . (4.21)

By setting some terms in (4.17) as zero, the stiff order conditions can be derived
accordingly, just as the authors did in [10]. However, this results in restrictive
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algebraic conditions which are very difficult to satisfy in practice. Fortunately, a
careful observation from (4.17) can help us deal with the stiff order in a modified
version, in which the stiff order conditions are approximated satisfactorily by the
required order of the underlying integrator instead of the stiff order conditions. In
light of this approach, the revised stiff order conditions up to order four are obtained
and listed in Table 4.1. It is quite reasonable in applications to admit the new revised
stiff order conditions which can be thought of an extension of the conventional ones.
With the revised stiff order conditions, (4.17) can be simplified as

en+1 = ehMen + hN (en)en + h5R̃n, (4.22)

which has no obvious reduction effect on the convergence order. This approach also
can be found in determining the order conditions for ERKN methods [30, 32].

The most important advantage of admitting the revised stiff order conditions is
that these conditions can be naturally deduced from the classical order conditions.
Here, we give an example to show how to achieve the fifth condition in Table 4.1,
based on the fourth (classical) order conditions. For convenience,we formally express
āi j (hM) and b̄i (hM) as

āi j (hM) =
∞∑
k=0

ā(k)
i j · (hM)k , b̄i (hM) =

∞∑
k=0

b̄(k)
i · (hM)k , i, j = 1, . . . , s, (4.23)

where the coefficients ā(k)
i j and b̄(k)

i are real numbers. Moreover, it can be derived
from the recurrence relation (4.21) that

ϕk(V ) =
∞∑
j=0

V j

( j + k)! , (4.24)

for any matrix V and k ≥ 0. Hence, taking (4.19), (4.23) and (4.24) into account,
we have

s∑
i=0

b̄i (hM)Jnψ2,i (hM) =
∞∑

μ=0

μ∑
ν=0

s∑
i=1

b̄(ν)
i

⎛
⎝ c2+μ−ν

i
(2 + μ − ν)! −

s∑
k=1

ā(μ−ν)
ik ck

⎞
⎠ · hμ(Mν JnM

μ−ν ). (4.25)

The fifth condition
∑s

i=0 b̄i (hM)Jnψ2,i (hM) = O(h2) in Table 4.1 then becomes
identical to

s∑
i=1

b̄(0)
i

(
c2i
2! −

s∑
k=1

ā(0)
ik ck

)
= 0, (4.26)
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Table 4.1 The revised stiff order conditions up to order four

No. Order Order conditions

1 1 ψ1(hM) = O(h4)

2 2 ψ2(hM) = O(h3)

3 2 ψ1,i (hM) = O(h3)

4 3 ψ3(hM) = O(h2)

5 3
∑s

i=0 b̄i (hM)Jnψ2,i (hM) = O(h2)

6 4 ψ4(hM) = O(h)

7 4
∑s

i=1 b̄i (hM)Jnψ3,i (hM) = O(h)

8 4
∑s

i=1 b̄i (hM)Jn
∑s

j=1 āi j Jnψ2, j (hM) = O(h)

9 4
∑s

i=1 b̄i (hM)ci Knψ2, j (hM) = O(h)

1∑
ν=0

s∑
i=1

b̄(ν)
i

⎛
⎝ c3−ν

i
(3 − ν)! −

s∑
k=1

ā(1−ν)
ik ck

⎞
⎠ =

s∑
i=1

b̄(0)
i

⎛
⎝ c3i

3! −
s∑

k=1

ā(1)
ik ck

⎞
⎠

+ b̄(1)
i

⎛
⎝ c2i

2! −
s∑

k=1

ā(0)
ik ck

⎞
⎠ = 0. (4.27)

In can be easily verified that the two Eqs. (4.26) and (4.27) are satisfied, based on the
following conditions of order four [1, 10]:

s∑
i=1

b̄(0)
i c2i = 1

3
,

s∑
i=1

s∑
k=1

b̄(0)
i ā(0)

ik ck = 1

6
,

s∑
i=1

b̄(0)
i c3i = 1

4
,

s∑
i=1

s∑
k=1

b̄(0)
i ā(1)

ik ck = 1

24
,

s∑
i=1

b̄(1)
i c2i = 1

12
,

s∑
i=1

s∑
k=1

b̄(1)
i ā(0)

ik ck = 1

24
.

The other conditions in Table 4.1 can be verified in a similar way and the details are
omitted here.

The discussions about the stiff order conditions is not pursued further here, since
we are mainly devoted to investigating the symplectic conditions for ERK meth-
ods, and developing symplectic ERK integrators in this chapter. In the sequel,
we will denote the coefficients of classical RK methods by c = (c1, . . . , cs)ᵀ,
b = (b1, . . . , bs)ᵀ and A = (ai j )s×s for convenience. The following theorem states
the main result of this chapter.

Theorem 4.3 If an s-stage RK method is symplectic, then the ERK method yielded
by (4.16) is also symplectic.
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Proof Inserting (4.16) into each term in (4.7) yields⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

b̄ᵀ
i J SS

−1
i = (

bi e
(1−ci )hM

)ᵀ
J
(
e(1−ci )hM

)
,

S−ᵀ
i Sᵀ J b̄i = (

e(1−ci )hM
)ᵀ

J
(
bi e

(1−ci )hM
)
,

b̄ᵀ
i J b̄ j = (

bi e
(1−ci )hM

)ᵀ
J
(
b j e

(1−c j )hM
)
,

b̄ᵀ
i J SS

−1
i āi j + āᵀ

j i S
−ᵀ
j Sᵀ J b̄ j = (

bi e
(1−ci )hM

)ᵀ
J
(
e(1−ci )hM

)(
ai j e

(ci−c j )hM
)

+ (
a ji e

(c j−ci )hM
)ᵀ(

e(1−c j )hM
)ᵀ

J
(
b j e

(1−c j )hM
)
.

(4.28)

Noting that the following identity holds

Pᵀ J P = J, (4.29)

provided P is symplectic, and that eβhM is symplectic for any real β and infinitesimal
symplectic matrix M , it follows from (4.28) that⎧⎪⎪⎨
⎪⎪⎩
b̄ᵀ
i J SS

−1
i = S−ᵀ

i Sᵀ J b̄i = bi
(
e(1−ci )hM

)ᵀ
J
(
e(1−ci )hM

) = bi J,

b̄ᵀ
i J b̄ j = (

bi e
(1−ci )hM

)ᵀ
J
(
b j e

(1−c j )hM
) = bi b j

(
e−ci hM

)ᵀ
J
(
e−c j hM

) = bi b j J
(
e(ci−c j )hM

)
,

b̄ᵀ
i J SS

−1
i āi j + āᵀ

j i S
−ᵀ
j Sᵀ J b̄ j = (bi ai j + b j a ji )J

(
e(ci−c j )hM

)
,

(4.30)

which immediately leads to the satisfaction of the symplectic conditions (4.7) based
on those conditions for RK methods, i.e.,

bib j = biai j + b ja ji .

This completes the proof. �

Another interesting result about the “generalized Runge–Kutta methods” of [17]
is that if the corresponding RK method is symmetric, i.e., the coefficients of an
s-stage ERK method satisfy the following conditions

⎧⎪⎨
⎪⎩
1 − cs+1−i = ci , i = 1, . . . , s,

b̄i (hM) = ehMb̄s+1−i (−hM), i = 1, . . . , s,

e(1−cs+1−i )hM b̄s+1− j (−hM) = āi j (hM) + ās+1−i,s+1− j (−hM), i, j = 1, . . . , s,
(4.31)

then the ERK method yielded by (4.16) is symmetric as well. We refer the reader to
[3] for more details on this result.

Theorem 4.4 If the coefficients of an s-stageERKmethod satisfy both the symplectic
conditions (4.7) and symmetric conditions (4.31), then the ERKmethod is symplectic
and symmetric.

Proof Under the assumptions of the theorem, the conclusion is quite clear. We there-
fore omit the details of the proof here. �
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4.4 Numerical Experiments

In this section, we implement some numerical experiments to show the high accuracy
and good energy preservation of symplectic ERK methods stated in the previous
section. In our experiments, the corresponding RK methods are selected as follows:

• RK2: the implicit midpoint method of order two;
• RK4: the Legendre-Gauss collocation method of order four [8].

It should be noted here that both RK2 and RK4 are symplectic, and then ERK2 and
ERK4 obtained by the formula (4.16) share the same order as them by Theorem 4.2
and the same symplecticity as their correspondingRKmethodsbyTheorem4.3. Since
all these underlying methods are implicit, iterations are required in the implementa-
tion of these methods. The study of existence and uniqueness of numerical solutions
of ERKmethods is entirely similar to that of implicit RK methods (see, e.g. [4, 16]),
and we shall therefore assume unique existence of solution in the remainder of this
chapter. As recommended by Hairer et al. (see VIII.6 in [8]), fixed-point iteration is
used for the solution of the implicit RKmethods,whereas theNewton iteration should
be considered for the two implicit ERK methods (see, e.g. [24, 27]). The iteration
will be stopped once the norm of the difference of two successive approximations is
smaller than 10−16. In all the experiments, the maximum norm is used for both the
global errors (GE) and the difference of two successive approximations during the
iterations. Throughout the numerical experiments,wepoint out that thematrix-valued
functions ϕk(V ) (k ≥ 0) are exactly evaluated. For larger problems, the Krylov sub-
space method is well known, and recommended in this case due to its fast conver-
gence. The details about Krylov subspace methods can be found in [9, 13].

As emphasised by the authors in [9, 12, 13], we are hopeful of showing higher
accuracy for the ERK methods than their corresponding RK methods in numerical
experiments, since they can exactly solve the homogeneous equation y′(t) = My,
and M always has eigenvalues of large modulus. Meanwhile, good energy preser-
vation is also expected due to the symplecticity of the underlying ERK methods.
Another point is that the convergence of iterations for the implicit ERK methods is
much better than that for the corresponding RK methods. The main reason is that
the occurrence of My in the RK methods when applied to system (4.1) will obvi-
ously decrease the convergence due to the large norm of M . Consequently, the faster
convergence for the ERK methods results in less consumed CPU time. On the basis
of the analysis stated above, we will focus on the previously mentioned advantages
of the symplectic ERK methods over their corresponding traditional symplectic RK
methods during our numerical experiments.

Problem 4.1 Consider the Duffing equation (see, e.g. [19])

{
q̈ + ω2q = k2(2q3 − q),

q(0) = 0, q̇(0) = ω,

with 0 ≤ k < ω.
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Fig. 4.1 Results for Problem 4.1: the global errors with h = 1/40

Let p = q ′, z = (p, q)ᵀ. Then the Duffing equation can be rewritten as

z′(t) = Mz + f (z),

where

M =
(
0 −ω2

1 0

)
,

and
f =

(
k2(2q3 − q), 0

)ᵀ
.

This is a Hamiltonian system with the Hamiltonian

H(p, q) = 1

2
p2 + 1

2
ω2q2 + k2

2
(q2 − q4).

The analytic solution is given by

q(t) = sn(ωt, k/ω),

where sn is the Jacobian elliptic function.

This problem is solved on the interval [0, 100] with ω = 10, k = 0.03 and the
stepsize h = 1/40. The global errors for these methods are shown in Fig. 4.1. It can
be observed from Fig. 4.1 that these two ERK methods significantly display better
numerical behaviour in terms of accuracy than their corresponding RK methods.
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Fig. 4.2 Results for Problem 4.1: the energy preservation

Energy preservation behaviour is shown in Fig. 4.2, from which it can be observed
that the obtained ERK methods show comparable energy preservation in compar-
ison with their corresponding RK methods. The CPU times (in seconds) are 0.52,
0.91, 3.26 and 3.34, respectively, for ERK2, ERK4, RK2 and RK4. This shows the
faster convergence and higher efficiency of ERKmethods than the corresponding RK
methods. This also indicates the superiority of the two symplectic ERK methods.

Problem 4.2 Consider the Fermi–Pasta–Ulam problem (see, e.g. [8]) which is an
important nonlinear model for research on nonlinear dynamical systems in physics:

x ′′(t) + Ax(t) = −∇xU (x(t)), (4.32)

where

A =
(
0m×m 0m×m

0m×m ω2 Im×m

)
,

U (x) = 1

4

(
(x1 − xm+1)

4 +
m−1∑
i=1

(xi+1 − xm+i−1 − xi − xm+i )
4 + (xm + x2m)4

)
.
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Fig. 4.3 Results for Problem 4.2: the global errors with h = 1/200

With y = x ′, this problem can be expressed by the following Hamiltonian system:

z′(t) = Mz(t) + f (z(t)),

where z = (yᵀ, xᵀ)ᵀ,

M =
(
0 −A
E 0

)
,

and
f =

(
− (∇xU (x)

)ᵀ
, 0ᵀ

)ᵀ
,

with the Hamiltonian

H(z) = 1

2

2m∑
i=1

y2i + ω2

2

m∑
i=1

x2m+i +U (x). (4.33)

Here, E is the identity matrix.
In this experiment, we choose

m = 3, x1(0) = 1, y1(0) = 1, x4(0) = 1

ω
, y1(0) = 1, ω = 100,

and zero for the remaining initial data. This problem is integrated on the interval
[0, 100] with the stepsize h = 1/200. As shown in Fig. 4.3, the ERK methods give
much better accuracy than their corresponding RK methods in global errors. Good
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Fig. 4.4 Results for Problem 4.2: the energy preservation

energy preservation behaviour is also displayed by ERK2 and ERK4 in Fig. 4.4. The
higher efficiency of the symplectic ERK methods than RK methods is supported by
their smaller CPU times (seconds), which are 2.09, 8.43, 29.20 and 30.20, respec-
tively, for ERK2, ERK4, RK2, and RK4.

Problem 4.3 Consider the sine-Gordon equation with the periodic boundary con-
ditions (see, e.g. [23])

⎧⎨
⎩

∂2u

∂t2
= ∂2u

∂x2
− sin u, −5 ≤ x ≤ 5, t ≥ 0,

u(−5, t) = u(5, t).
(4.34)

Here, we use the Fourier pseudo-spectral discretisation (see e.g. [26]) for the spatial
derivative. Then it can be converted into the followingordinary differential equations:

d

dt

(
U ′
U

)
=

(
0 M
E 0

) (
U ′
U

)
+

(− sin(U )

0

)
, (4.35)

where U (t) = (u1(t), . . . , uN (t))ᵀ with ui (t) ≈ u(xi , t), xi = −5 + iΔx for
i = 1, . . . , N , Δx = 10/N , E is the identity matrix and the second-order spectral
differentiationmatrixM can be found in [26]. It can be verified that−M is symmetric
positive semi-definite. The Hamiltonian corresponding to (4.35) is given by
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Fig. 4.5 Results for Problem 4.3: the global errors with h = 1/40

H(U ′,U ) = 1

2
U ′ᵀU ′ + 1

2
Uᵀ(−M)U − (

cos u1 + . . . + cos uN
)
.

For this problem, we set the initial conditions as

U (0) = (π)Ni=1, U ′(0) = √
N

(
0.01 + sin

(
2π i

N

))N

i=1

,

with N = 64. Again, Fig. 4.5 shows the much better accuracy of the two ERK
methods than their corresponding RK methods. The detailed behaviour of energy
conservation for each method is shown in Fig. 4.6, which clearly displays compa-
rable performance in qualitative behaviour between the ERK integrators and their
corresponding RK methods. The CPU times (in seconds) are 0.86, 3.77, 5.59 and
6.50, respectively, for ERK2, ERK4, RK2 and RK4.

Problem 4.4 Consider the nonlinear Klein–Gordon equation with the periodic
boundary condition (see, e.g. [14, 28])

{
utt + uxx + u + u3 = 0, 0 < x < L , t ∈ (0, T ),

u(0, t) = u(L , t).

The initial conditions are given by

u(x, 0) = A

[
1 + cos

(
2π

L
x

)]
, ut (x, 0) = 0,
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Fig. 4.6 Results for Problem 4.3: the energy preservation

where L = 1.28 and A is the amplitude. Similarly to Problem 4.3, if the Fourier
pseudo-spectral discretisation is applied to this problem, the semi-discrete ODEs
can be obtained:

d

dt

(
U ′
U

)
=

(
0 M
E 0

) (
U ′
U

)
+

(−U −U 3

0

)
, (4.36)

whose Hamiltonian is given by

H(U ′,U ) = 1

2
U ′ᵀU ′ + 1

2
Uᵀ(−M)U + 1

2
U 2 + 1

4
U 4.

For this problem, we set A = 20. As claimed in [14, 28], this equation is chal-
lenging for numerical methods, since the solution shows abrupt changes in both
time and space directions with a large amplitude. Similarly to [28], we also carry
out numerical simulations with the space stepsize Δx = 0.02 and the time step-
size h = 0.01. The good energy preservation for the two symplectic ERK methods
is shown in Fig. 4.7, where the relative errors RGEH = GEH

H0
are plotted for the

large value of H0 = 1.14 × 107 and amplitude A = 20. Moreover, we display the
numerical wave forms from the two ERK methods in Figs. 4.8 and 4.9, respectively.
It is shown that both the two ERK methods perform very well, since they preserve
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Fig. 4.7 Results for Problem 4.4: the energy preservation
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Fig. 4.8 Results for Problem 4.4: the numerical wave forms of ERK2 on different time intervals:
the left t ∈ [0, 1] and the right t ∈ [9, 10]
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Fig. 4.9 Results for Problem 4.4: the numerical wave forms of ERK4 on different time intervals:
the left t ∈ [0, 1] and the right t ∈ [9, 10]

spatial symmetry as well as the continuity of the solution. Unfortunately, however,
the two corresponding RKmethods cannot give effective numerical results, since the
iterations in the case of Δx = 0.02 and h = 0.01 are not convergent for both RK2
and RK4. The CPU times (in seconds) are 0.23 and 2.37, respectively, for ERK2 and
ERK4.
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Fig. 4.10 Results for Problem 4.5: exact solutions and the global errors with h = 0.01 at T = 1

Finally, we turn to the important nonlinear Schrödinger (NLS) equations.

Problem 4.5 Consider the nonlinear Schrödinger (NLS) equation (see, e.g. [25])

iqt = qxx + 2|q|2q, t ∈ (0, T ),

on the interval x ∈ [−10, 10] with periodic boundary conditions. The exact solution
is given by

q(x, t) = 2ηe−i[2ζ x−4(ζ 2−η2)t+(Φ0+ π
2 )]sech(2ηx − 8ζηt − x0),

where x0, Φ0, ζ and η are some constants.

For this problem, we respectively denote u and v as the real and imaginary parts
of q. If the Fourier pseudo-spectral method is used for the spatial discretization, this
problem can be converted into the Hamiltonian system of the form

d

dt

(
U
V

)
=

(
0 M

−M 0

)(
U
V

)
+

(
2(U 2 + V 2)V

−2(U 2 + V 2)U

)
, (4.37)

whose Hamiltonian reads

H(U, V ) = 1

2
Uᵀ(−M)U + 1

2
V ᵀ(−M)V − 1

2

(
UᵀU + V ᵀV

)2
, (4.38)

whereM is the second-order spectral differentiationmatrix approximating the spatial
derivative, U (t) = (u1(t), . . . , uN (t))ᵀ, and V (t) = (v1(t), . . . , vN (t))ᵀ. Note that
the multiplication of two vectors occurring in (4.37) is in the componentwise sense.

This problem is numerically solved with the given parameters x0 = 0, Φ0 =
0, ζ = 1, η = 1, N = 128 and T = 1. The real and imaginary parts of the exact
solution and the global errors for ERK2 and ERK4 with h = 0.01 at the endpoint
are plotted in Fig. 4.10. It is worth mentioning that only numerical results for ERK
methods are plotted in Fig. 4.10, as their corresponding RKmethods do not work due
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Fig. 4.11 Results for Problem 4.5: the energy preservation

to the appearance of non-convergence during the interactive process. This shows the
better performance and broader applicability of symplectic ERK methods over their
corresponding symplectic RK methods. Moreover, it can be observed from Fig.4.11
that both ERK methods show good energy preservation behaviour as well. The CPU
times (in seconds) are 0.20 and 0.57, respectively, for ERK2 and ERK4.

4.5 Conclusions and Discussions

Exponential Runge–Kutta methods are very attractive and practical in applications
since they always show better performance than classical RK methods in dealing
with stiff problems. However, when the underlying problem (4.1) is a Hamiltonian
system, the research work has not received much attention up to now. This motivates
the main theme of this work: effective integrators for this kind of Hamiltonian sys-
tems using ERK integrators. With respect to the construction of effective high-order
ERK methods, we investigated the structure-preserving property of the novel ERK
integrators such as the symplecticity in this chapter. To this end, sufficient conditions
for symplecticity were derived by a fundamental analysis of geometric integrators.
Furthermore, we presented a novel class of structure-preserving ERK methods; that
is the structure-preserving “generalized Runge–Kutta methods” (see Lawson [17]),
which can preserve symplecticity in the same way as their corresponding RK meth-
ods. In order to dispose of the restriction of the conventional stiff order conditions,
revised stiff conditions were proposed and investigated in detail. After the establish-
ment of the associated theory for structure-preserving ERK methods, we derived a
class of symplectic ERK methods. We took ERK2 and ERK4 as examples in this
chapter. Finally, we conducted some numerical experiments, including the approxi-
mation of a nonlinear Schrödinger equation, in comparison with the corresponding
symplectic Gauss-Legendre RK methods: RK2 and RK4, and the numerical results
(both the accuracy and behaviour of energy preservation) are quite promising, and
strongly support our theoretical analysis in this chapter. The numerical experiments
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demonstrate that our symplectic ERK methods are more efficient in many settings
than classical methods for the computation of nonlinear Hamiltonian systems.

It is noted that a new exponential scheme EAVF was proposed in the recent paper
[18] and summarised in Chap.2, which preserves the first integral or the Lyapunov
function for the conservative or dissipative system. Therefore, it seems that the other
properties of structure preservation such as energy preservation and symmetry should
be investigated further for the development of ERK integrators. This is the point we
also wish to emphasise here.

In the previous four chapters we paid attention to first-order differential equa-
tions. In the next four chapters, we will turn to structure-preserving algorithms for
multi-frequency and multi-dimensional highly oscillatory second-order differential
equations which frequently occur in a wide variety of science and engineering appli-
cations.

The material of this chapter is based on the work by Mei and Wu [21].

References

1. Berland, H., Owren, B., Skaflestad, B.: B-series and order conditions for exponential integra-
tors. SIAM J. Numer. Anal. 43, 1715–1727 (2005)

2. Cox, S., Matthews, P.: Exponential time differencing for stiff systems. J. Comput. Phys. 176,
430–455 (2002)

3. Celledoni, E., Cohen, D., Owren, B.: Symmetric exponential integrators with an application to
the cubic Schröinger equation. Found. Comput. Math. 8, 303–317 (2008)

4. Crouzeix, M., Hundsdorfer, W.H., Spijker, M.N.: On the existence of solutions to the algebraic
equations in Runge–Kutta methods. BIT 23, 84–91 (1983)

5. Dimarco, G., Pareschi, L.: Exponential Runge–Kutta methods for stiff kinetic equations. SIAM
J. Numer. Anal. 49, 2057–2077 (2011)

6. Dujardin, G.: Exponential Runge–Kutta methods for the Schröinger equation. Appl. Numer.
Math. 59, 1839–1857 (2009)

7. Feng, K., Qin, M.: Symplectic Geometric Algorithms for Hamiltonian Systems. Springer,
Berlin (2010)

8. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving
Algorithms for Ordinary Differential Equations, 2nd edn. Springer, Berlin (2006)

9. Hochbruck, M., Lubich, C.: On Krylov subspace approximations to the matrix exponential
operator. SIAM J. Numer. Anal. 34, 1911–1925 (1997)

10. Hochbruck, M., Ostermann, A.: Explicit exponential Runge–Kutta methods for semilinear
parabolic problems. SIAM J. Numer. Anal. 43, 1069–1090 (2005)

11. Hochbruck, M., Ostermann, A.: Exponential Runge-Kutta methods for parabolic problems.
Appl. Numer. Math. 53, 323–339 (2005)

12. Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer. 19, 209–286 (2010)
13. Hochbruck, M., Lubich, C., Selhofer, H.: Exponential integrators for large systems of differ-

ential equations. SIAM J. Sci. Comput. 19, 1552–1574 (1998)
14. Jiménez, S., Vázquez, L.: Analysis of four numerical schemes for a nonlinear Klein–Gordon

equation. Appl. Math. Comput. 35, 61–94 (1990)
15. Kassam,A.K.,Trefethen,L.N.: Fourth-order time stepping for stiff PDEs. SIAMJ.Sci.Comput.

26, 1214–1233 (2005)
16. Kraaijevanger, J.F.B.M., Schneid, F.: On the unique solvability of the Runge–Kutta equations.

Numer. Math. 59, 129–157 (1991)



106 4 Symplectic Exponential Runge–Kutta Methods …

17. Lawson, J.D.: Generalized Runge–Kutta processes for stable systems with large Lipschitz
constants. SIAM J. Numer. Anal. 4, 372–380 (1967)

18. Li, Y.W., Wu, X.Y.: Exponential integrators preserving first integrals or Lyapunov functions
for conservative or dissipative systems. SIAM J. Sci. Comput. 38, 1876–1895 (2016)

19. Liu, K., Shi, W., Wu, X.Y.: An extended discrete gradient formula for oscillatory Hamiltonian
systems. J. Phys. A: Math. Theor. 46, 165203(1–19) (2013)

20. Luan, V.T., Ostermann, A.: Explicit exponential Runge-Kutta methods of high order for
parabolic problems. J. Comput. Appl. Math. 256, 168–179 (2014)

21. Mei, L.J.,Wu,X.Y.: Symplectic exponentialRunge-Kuttamethods for solvingnonlinearHamil-
tonian systems. J. Comput. Phys. 338, 567–584 (2017)

22. Sanz-Serna, J.M.: Runge–Kutta schemes for Hamiltonian systems. BIT Numer. Anal. 28, 877–
883 (1988)

23. Schiesser, W.E., Griffiths, G.W.: A Compendium of Partial Differential Equation Models:
Method of Lines Analysis with Matlab. Cambridge University Press, Cambridge (2009)

24. Spijker, M.N.: Stiffness in numerical initial-value problems. J. Comput. Appl. Math. 72, 393–
406 (1996)

25. Taha, T.: A numerical scheme for the nonlinear Schrödinger equation. Comput. Math. Appl.
22, 77–84 (1991)

26. Trefethen, L.N.: Spectral Methods in MATLAB. SIAM, Philadelphia (2000)
27. van Dorsselaer, J.L.M., Spijker, M.N.: The error committed by stopping the Newton iteration

in the numerical solution of stiff initial value problems. IMA J. Numer. Anal. 14, 183–209
(1994)

28. Wang, Y., Wang, B.: High-order multi-symplectic schemes for the nonlinear Klein–Gordon
equation. Appl. Math. Comput. 166, 608–632 (2005)

29. Wu, X.Y., Wang, B., Xia, J.: Explicit symplectic multidimensional exponential fitting modified
Runge–Kutta–Nystrom methods. BIT Numer. Math. 52, 773–791 (2012)

30. Wu, X.Y., You, X., Wang, B.: Structure-Preserving Algorithms for Oscillatory Differential
Equations. Science Press Beijing and Springer, Berlin (2013)

31. Wu, X.Y., Liu, K., Shi, W.: Structure-Preserving Algorithms for Oscillatory Differential Equa-
tions II. Springer, Berlin (2015)

32. Yang, H., Wu, X.Y., You, X., Fang, Y.: Extended RKN-type methods for numerical integration
of perturbed oscillators. Comput. Phys. Commun. 180, 1777–1794 (2009)


	4 Symplectic Exponential Runge–Kutta Methods for Solving Nonlinear Hamiltonian Systems
	4.1 Introduction
	4.2 Symplectic Conditions for ERK Methods
	4.3 Symplectic ERK Methods
	4.4 Numerical Experiments
	4.5 Conclusions and Discussions
	References




