
Chapter 2
Exponential Average-Vector-Field
Integrator for Conservative
or Dissipative Systems

This chapter focuses on discrete gradient integrators intending to preserve the first
integral or the Lyapunov function of the original continuous system. Incorporating
the discrete gradients with exponential integrators, we discuss a novel exponential
integrator for the conservative or dissipative system ẏ = Q(My + ∇U (y)), where
Q is a d × d real matrix, M is a d × d symmetric real matrix and U : Rd → R is
a differentiable function. For conservative systems, the exponential integrator pre-
serves the energy, while for dissipative systems, the exponential integrator preserves
the decaying property of the Lyapunov function. Two properties of the new scheme
are presented. Numerical experiments demonstrate the remarkable superiority of the
new scheme in comparison with other structure-preserving schemes in the recent
literature.

2.1 Introduction

In this chapter we are interested in the numerical solution of the IVP

ẏ(t) = Q(My(t) + ∇U (y(t))), y(t0) = y0, (2.1)

where the ẏ denotes the derivative with respect to time, Q is a d × d real matrix, M
is a d × d symmetric real matrix andU : Rd → R is a differentiable function. Since
M is symmetric, My(t) + ∇U (y(t)) is the gradient of the function

H(y(t)) = 1

2
y(t)ᵀMy(t) +U (y(t)).
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In physical applications, the quantity H is often referred to as “energy”. Two
special categories are important in applications:

(i) If Q is skew-symmetric, then (2.1) is a conservative system with the first
integral H , i.e. H(y(t)) is constant.

(ii) If Q is negative semi-definite (denoted by Q ≤ 0), then (2.1) is a dissipative
system with the Lyapunov function H , i.e. H(y(t)) is monotonically decreasing
along the solution y(t).

An even more particular case in the first category is that Q in (2.1) is the identity
matrix. The system becomes

ẏ(t) = My(t) + ∇U (y(t)), y(t0) = y0. (2.2)

An algorithm for (2.2) is an exponential integrator if it involves the computation of
matrix exponentials (or relatedmatrix functions) and exactly integrates the following
system

ẏ(t) − My(t) = 0.

In general, exponential integrators permit larger stepsizes and achieve higher accu-
racy than non-exponential ones when (2.2) is a very stiff differential equation such as
a highly oscillatory ODE or a semi-discrete time-dependent PDE. Therefore, numer-
ous exponential algorithms have been proposed for first-order (see, e.g. [1, 10, 20,
22–26, 31]) and second-order (see e.g. [11, 12, 14, 18, 34]) ODEs.

On the other hand, (2.2) often possesses many important geometrical/physical
structures. For example, the canonical Hamiltonian system

ẏ(t) = J−1∇H(y(t)), y(t0) = y0, (2.3)

is a special case of (2.2), with

J =
(

Od×d Id×d

−Id×d Od×d

)
.

The flow of (2.3) preserves the symplectic 2-form dy ∧ Jdy and the function H(y).
In the sense of geometric integration, it is a natural idea to design numerical schemes
that preserve the two structures. As far as we know,most research papers dealingwith
exponential integrators up to now focus on the development of high-order explicit
schemes but fail to be structure preserving except for symmetric/symplectic/energy-
preservingmethods for first-order ODEs in [5, 7] and oscillatory second-order ODEs
(see, e.g. [18, 32, 33]).

It should be noted that the choice for M in (2.1) or in (2.2) is not unique. In order
to take advantage of exponential integrators, the matrix M in (2.1) should be chosen
such that ||QM || � ||QHess(U )||, where Hess(U ) is the Hessian matrix ofU . For
example, highly oscillatory Hamiltonian systems can be characterized by a dominant
linear part My, where M implicitly contains the large frequency component. Up to
now, many energy-preserving or energy-decaying methods have been proposed in
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the case of M = 0 (see, e.g. [3, 4, 15, 17, 19, 29]). However, these general-purpose
methods are not suitable for dealing with (2.1) when ||QM || is very large. On the one
hand, numerical solutions generated by these methods are far from accurate. On the
other hand, they are generally implicit, and iterative solutions are required at each
step. But the fixed-point iterations for them are not convergent unless the stepsize is
taken very small. As mentioned at the beginning, these two obstacles can hopefully
be overcome by introducing exponential integrators. In [32], the authors proposed an
energy-preservingAAVF integrator (a trigonometric method) for solving the second-
order Hamiltonian system

{
q̈(t) + M̃q(t) = ∇Ũ (q(t)), M̃ is a symmetric matrix,

q(t0) = q0, q̇(t0) = q̇0,

which falls into the class of (2.1) by introducing

y = (q̇ᵀ, qᵀ)ᵀ, U (y) = Ũ (q), Q = J−1,

M =
(
Id×d 0d×d

0d×d M̃

)
,

and
U (y) = −Ũ (q).

In this chapter, we present and analyse a new exponential integrator for (2.1) which
can preserve the first integral or the Lyapunov function.

This chapter is organized as follows. Section2.2 presents the discrete gradient
integrators. In Sect. 2.3, we construct a general structure-preserving scheme for
(2.1)–an exponential discrete gradient integrator. Two important properties of the
scheme are proven. Symmetry and convergence of the EAVF integrator are inves-
tigated in Sect. 2.4. We then present a list of problems which can be solved by
this scheme in Sect. 2.5. Numerical results, including the comparison between our
new scheme and other structure-preserving schemes in the literature, are shown in
Sect. 2.6. Section2.7 is devoted to concluding remarks.

2.2 Discrete Gradient Integrators

Let r(z) be a holomorphic function in the neighborhood of zero (r(0) := lim
z→0

r(z) if

0 is a removable singularity)

r(z) =
∞∑
i=0

r (i)(0)

i ! zi . (2.4)
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The series (2.4) is assumed to be absolutely convergent. For a matrix A, the matrix-
valued function r(A) is defined by

r(A) =
∞∑
i=0

r (i)(0)

i ! Ai .

I and O always denote identity and zero matrices of appropriate dimensions respec-
tively. A

1
2 is a square root (not necessarily principal) of a symmetric matrix A. If

r (i)(0) = 0 for all odd i , then r(A
1
2 ) is well defined for every symmetric A (indepen-

dent of the choice of A
1
2 ). For functions of matrices, the reader is referred to [21].

The discrete gradient method is an effective approach to constructing energy-
preserving integrators. A discrete gradient (DG) of a differentiable function g is a
bi-variate mapping ∇Dg : Rd × R

d → R
d satisfying

{∇Dg(y, ŷ)ᵀ(y − ŷ) = g(y) − g(ŷ),

∇Dg(y, y) = ∇g(y).
(2.5)

Accordingly, a DG integrator for the system (2.3) is defined by

y1 = y0 + h J−1∇DH(y1, y0). (2.6)

Multiplying ∇Dg(y1, y0)ᵀ on both sides of (2.6) and using the first identity of (2.5),
we obtain H(y1) = H(y0), i.e., the scheme (2.6) is energy preservation. For more
details on the DGmethod, readers are referred to [15, 30]. A typical discrete gradient
is the average-vector-field (AVF) which is defined by

∇Dg(y, ŷ) =
∫ 1

0
∇g((1 − τ)ŷ + τ y)dτ. (2.7)

Then the AVF integrator for the system (2.3) is given by

y1 = y0 + h J−1
∫ 1

0
∇H((1 − τ)y0 + τ y1)dτ. (2.8)

2.3 Exponential Discrete Gradient Integrators

We next derive the exponential discrete gradient method for the problem (2.1). The
starting point is the following variation-of-constants formula for the problem (2.1):

y(t0+h) = exp(hQM)y(t0)+h
∫ 1

0
exp((1−ξ)hQM)Q∇U (y(t0+ξh))dξ. (2.9)
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Approximating ∇U (y(t0 + ξh)) in (2.9) by ∇DU (y1, y0), we obtain the following
exponential discrete gradient (EDG) integrator:

y1 = exp(V )y0 + hϕ(V )Q∇DU (y1, y0), (2.10)

where V = hQM ,
ϕ(V ) = (exp(V ) − I )V−1,

and y1 is an approximation of y(t0 + h).
Due to the energy-preserving property of the DG method, we are hopeful of

preserving the first integral by (2.10) when Q is skew symmetric. For simplicity, we
sometimes write∇DU (y1, y0) in brief as∇DU . To begin with, we give the following
preliminary lemma.

Lemma 2.1 For any real symmetric matrix M and scalar h > 0, the matrix

B = exp(hQM)ᵀM exp(hQM) − M

satisfies:

B =
{

= 0, if Q is skew-symmetric,

≤ 0, if Q ≤ 0.

Proof Consider the linear ODE:

ẏ(t) = QMy(t). (2.11)

When Q is skew symmetric, (2.11) is a conservative equation with the first integral
1
2 y

ᵀMy, and its exact solution starting from the initial value y(0) = y0 is y(t) =
exp(t QM)y0. It then follows immediately from

1

2
y(h)ᵀMy(h) = 1

2
y0ᵀMy0

that
1

2
y0ᵀ exp(hQM)ᵀM exp(hQM)y0 = 1

2
y0ᵀMy0

for any vector y0. Therefore,

B = exp(hQM)ᵀM exp(hQM) − M

is skew-symmetric. Since it is also symmetric, B = 0.
Likewise, the case that Q ≤ 0 can be proved. �
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Theorem 2.1 If Q is skew-symmetric, then the integrator (2.10) preserves the first
integral H in (2.1):

H(y1) = H(y0),

where H(y) = 1
2 y

ᵀMy +U (y).

Proof Here we firstly assume that the matrix M is nonsingular. We next calculate
1
2 y

1ᵀMy1. Denote M−1∇DU = ∇̃U . Replacing y1 by exp(V )y0 + hϕ(V )Q∇D

U (y1, y0) leads to

1

2
y1ᵀMy1

= 1

2
(y0ᵀ exp(V )ᵀ + h∇DUᵀQᵀϕ(V )ᵀ)M(exp(V )y0 + hϕ(V )Q∇DU )

= 1

2
y0ᵀ exp(V )ᵀM exp(V )y0 + hy0ᵀ exp(V )ᵀMϕ(V )Q∇DU

+ h2

2
∇DUᵀQᵀϕ(V )ᵀMϕ(V )Q∇DU

= 1

2
y0ᵀ exp(V )ᵀM exp(V )y0 + y0ᵀ exp(V )ᵀMϕ(V )V ∇̃U

+ 1

2
∇̃UᵀV ᵀϕ(V )ᵀMϕ(V )V ∇̃U (using V = hQM)

= 1

2
y0ᵀ exp(V )ᵀM exp(V )y0 + y0ᵀ exp(V )ᵀM(exp(V ) − I )∇̃U

+ 1

2
∇̃Uᵀ(exp(V )ᵀ − I )M(exp(V ) − I )∇̃U (using ϕ(V )V = exp(V ) − I )

= 1

2
y0ᵀ exp(V )ᵀM exp(V )y0 + y0ᵀ(exp(V )ᵀM exp(V ) − exp(V )ᵀM)∇̃U

+ 1

2
∇̃Uᵀ(exp(V )ᵀM exp(V ) − exp(V )ᵀM − M exp(V ) + M)∇̃U.

(2.12)
On the other hand, it follows from the property of the discrete gradient (2.5) that

U (y1) −U (y0)

= (y1ᵀ − y0ᵀ)∇DU (y1, y0)

= y0ᵀ(exp(V )ᵀ − I )∇DU + h∇DUᵀQᵀϕ(V )ᵀ∇DU

= y0ᵀ(exp(V )ᵀM − M)∇̃U + ∇̃UᵀV ᵀϕ(V )ᵀM∇̃U

= y0ᵀ(exp(V )ᵀM − M)∇̃U + ∇̃Uᵀ(exp(V )ᵀM − M)∇̃U.

(2.13)

Combining (2.12), (2.13) and collecting terms by types ‘y0ᵀ ∗ y0’, ‘y0ᵀ ∗ ∇̃U ’,
‘∇̃Uᵀ ∗ ∇̃U ’ lead to
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H(y1) − H(y0)

= 1

2
y1ᵀMy1 − 1

2
y0ᵀMy0 +U (y1) −U (y0)

= 1

2
y0ᵀ(exp(V )ᵀM exp(V ) − M)y0 + y0ᵀ(exp(V )ᵀM exp(V ) − M)∇̃U

+ 1

2
∇̃Uᵀ(exp(V )ᵀM exp(V ) − M)∇̃U + 1

2
∇̃Uᵀ(exp(V )ᵀM − M exp(V ))∇̃U

= 1

2
(y0 + ∇̃U )ᵀB(y0 + ∇̃U ) + 1

2
∇̃UᵀC∇̃U = 0,

(2.14)
where B = exp(V )ᵀM exp(V )−M and C = exp(V )ᵀM −M exp(V ). The last step
is from the skew-symmetry of the matrix B (according to Lemma2.1) and C .

If M is singular, it is easy to find a series of symmetric and nonsingular matrices
{Mε} which converge to M when ε → 0. Thus, according to the result stated above,
it still holds that

Hε(y
1
ε ) = Hε(y

0) (2.15)

for all ε, where Hε(y) = 1
2 y

ᵀMε y + U (y) is the first integral of the perturbed
problem

ẏ = Q(Mε y + ∇U (y)), y(t0) = y0,

and
y1ε = exp(Vε)y

0 + hϕ(Vε)Q∇DU (y1ε , y
0), Vε = hQMε.

Therefore, when ε → 0, y1ε → y1 and (2.15) lead to

H(y1) = H(y0).

This completes the proof. �
Moreover, the scheme (2.10) can also respect the decay of the first integral when

Q ≤ 0 in (2.1). The next theorem shows this point.

Theorem 2.2 If Q is negative semi-definite (not necessarily symmetric), then the
scheme (2.10) preserves the decaying property of the Lyapunov function H in (2.1):

H(y1) ≤ H(y0),

where H(y) = 1
2 y

ᵀMy +U (y).

Proof If M is nonsingular, the equation in (2.14)

H(y1) − H(y0) = 1

2
(y0 + ∇̃U )ᵀB(y0 + ∇̃U )

still holds, since the derivation does not depend on the skew-symmetry of Q. By
Lemma2.1, B is negative semi-definite. Thus H(y1) ≤ H(y0). In the case that M
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is singular, this theorem can be easily proved by replacing the equalities

Hε(y
1
ε ) = Hε(y

0), H(y1) = H(y0)

in the proof of Theorem2.1 with the inequalities

Hε(y
1
ε ) ≤ Hε(y

0), H(y1) ≤ H(y0).

We omit the details. �

2.4 Symmetry and Convergence of the EAVF Integrator

In this chapter, we consider a special type of the discrete gradient in (2.10), the
average vector field,

∇DU (y, ŷ) =
∫ 1

0
∇U ((1 − τ)ŷ + τ y)dτ.

The corresponding integrator becomes

y1 = exp(V )y0 + hϕ(V )Q
∫ 1

0
∇U ((1 − τ)y0 + τ y1)dτ, (2.16)

where V = hQM and y1 ≈ y(t0 + h). The scheme (2.16) is called an exponential
AVF integrator and denoted by EAVF.

In the sequel we present and prove two properties of EAVF—symmetry and
convergence.

Theorem 2.3 The EAVF integrator (2.16) is symmetric.

Proof Exchanging y0 ↔ y1 and replacing h by −h in (2.16), we obtain

y0 = exp(−V )y1 − hϕ(−V )Q
∫ 1

0
∇U ((1 − τ)y1 + τ y0)dτ. (2.17)

We rewrite (2.17) as:

y1 = exp(V )y0 + h exp(V )ϕ(−V )Q
∫ 1

0
∇U ((1 − τ)y0 + τ y1)dτ. (2.18)

Since exp(V )ϕ(−V ) = ϕ(V ), (2.18) is the same as (2.16) exactly. This means that
EAVF is symmetric. �
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It should be noted that the scheme (2.16) is implicit in general, and thus iterative
solutions are required. We next discuss the convergence of the fixed-point iteration
for the EAVF integrator.

Theorem 2.4 Suppose that ||ϕ(V )||2 ≤ C, and that ∇U (u) satisfies a Lipschitz
condition; i.e., there exists a constant L such that

||∇U (v) − ∇U (w)||2 ≤ L||v − w||2,

for all arguments v and w ∈ R
d . If

0 < h ≤ ĥ <
2

CL||Q||2 , (2.19)

then the mapping

Ψ : z �→ exp(V )y0 + hϕ(V )Q
∫ 1

0
∇U ((1 − τ)y0 + τ z)dτ

has a unique fixed point and the iteration for theEAVF integrator (2.16) is convergent.

Proof Since

||Ψ (z1) − Ψ (z2)||2
= ||hϕ(V )Q

∫ 1

0
(∇U ((1 − τ)y0 + τ z1) − ∇U ((1 − τ)y0 + τ z2))dτ ||2

≤ h‖ϕ(V )‖2‖Q‖2
∫ 1

0
‖∇U ((1 − τ)y0 + τ z1) − ∇U ((1 − τ)y0 + τ z2)‖2dτ

≤ hCL||Q||2
∫ 1

0
τ ||z1 − z2||2dτ

= h

2
CL||Q||2||z1 − z2||2

≤ ρ||z1 − z2||2,

where ρ = ĥ

2
CL||Q||2 < 1, by the Contraction Mapping Theorem, the mapping Ψ

has a unique fixed point and the iteration solving the Eq. (2.16) is convergent. �

Remark 2.1 We note two special and important cases in practical applications. If
QM is skew-symmetric or symmetric negative semi-definite, then the spectrum of
V lies in the left half-plane. Since QM is unitarily diagonalizable and |ϕ(z)| ≤ 1 for
any z satisfying Re(z) ≤ 0, we have ||ϕ(V )||2 ≤ 1.

In many cases, the matrix M has an extremely large norm (e.g., M incorporates
high frequency components in oscillatory problems or M is the differential matrix
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in semi-discrete PDEs), and hence Theorem2.4 ensures the possibility of choosing
relatively large stepsize regardless of M .

In practice, the integral in (2.16) usually cannot be easily calculated. Therefore,
we can evaluate it using the s-point Gauss-Legendre (GLs) formula (bi , ci )si=1:

∫ 1

0
∇U ((1 − τ)y0 + τ y1)dτ ≈

s∑
i=1

bi∇U ((1 − ci )y
0 + ci y

1)).

The corresponding scheme is denoted byEAVFGLs. Since the s-point GL quadrature
formula is symmetric, EAVFGLs is also symmetric. Due to the fact that

∑s
i=1 bici =

1/2, the corresponding iteration for EAVFGLs is convergent provided (2.19) holds.

2.5 Problems Suitable for EAVF

2.5.1 Highly Oscillatory Nonseparable Hamiltonian Systems

Consider the Hamiltonian

H(p, q) = 1

2
pᵀ
1 M

−1
1 p1 + 1

2ε2
qᵀ
1 A1q1 + S(p, q),

where p and q are both d-length vectors, partitioned as

p =
(
p0
p1

)
, q =

(
q0
q1

)
,

M1, A1 are symmetric positive definite matrices, and 0 < ε � 1. This Hamiltonian
governs oscillatory mechanical systems in 2 or 3 spatial dimensions such as the
stiff spring pendulum and the dynamics of the multi-atomic molecule (see, e.g. [8,
9]). With an appropriate canonical transformation (see, e.g. [18]), the Hamiltonian
becomes

H(p, q) = 1

2

l∑
j=1

(
p21, j + λ2

j

ε2
q2
1, j

)
+ S(p, q), (2.20)

where p1 = (p1,1, . . . , p1,l)ᵀ, q1 = (q1,1, . . . , q1,l)ᵀ. The corresponding differential
equations are given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ṗ0 = −∇q0 S(p, q),

ṗ1 = −ω2q1 − ∇q1 S(p, q),

q̇0 = p0 + (∇p0 S(p, q) − p0),

q̇1 = p1 + ∇p1 S(p, q),

(2.21)
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where ω2 = diag(ω2
1, . . . , ω

2
l ), ω j = λ j/ε for j = 1, . . . , l. Equation (2.21) is of

the form (2.1) with

y =
(
p
q

)
, Q =

(
O −Id×d

Id×d O

)
, M =

(
Id×d O
O Ωd×d

)
,

and

U (p, q) = S(p, q) − 1

2
pᵀ
0 p0, Ω = diag(0, . . . , 0, ω2

1, . . . , ω
2
l ).

Since q11, . . . , q1l and p11, . . . , p1l are fast variables, it is favorable to integrate the
linear part of them exactly by the scheme (2.16). Note that

ϕ(V ) =
(
sinc(hΩ

1
2 ) h−1g2(hΩ

1
2 )

hg1(hΩ
1
2 ) sinc(hΩ

1
2 )

)
,

where sinc(z) = sin(z)/z, g1(z) = (1 − cos(z))/z2, g2(z) = cos(z) − 1. Unfortu-
nately, the block h−1g2(hΩ

1
2 ) is not uniformly bounded. In the first experiment, the

iteration still works well, perhaps due to the small Lipshitz constant of ∇S.

2.5.2 Second-Order (Damped) Highly Oscillatory System

Consider
q̈ − Nq̇ + Ωq = −∇U1(q), (2.22)

where q is a d-length vector variable, U1 : Rd → R is a differential function, N is
a symmetric negative semi-definite matrix, Ω is a symmetric positive semi-definite
matrix, ||Ω|| or ||N || � 1. (2.22) stands for highly oscillatory problems such as the
dissipative molecular dynamics, the (damped) Duffing and semi-discrete nonlinear
wave equations. By introducing p = q̇, we write (2.22) as a first-order system
of ODEs: (

ṗ
q̇

)
=

(
N −Ω

I O

) (
p
q

)
+

(−∇U1(q)

O

)
, (2.23)

which falls into the class of (2.1), where

y =
(
p
q

)
, Q =

(
N −I
I O

)
, M =

(
I O
O Ω

)
,U (y) = U1(q).
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Clearly, Q ≤ 0 and (2.23) is a dissipative system with the Lyapunov function
H = 1

2 p
ᵀ p+ 1

2q
ᵀΩq+U1(q). Applying the EAVF integrator (2.16) to the Eq. (2.23)

yields the scheme:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p1 = exp11 p
0 + exp12 q

0 − hϕ11

∫ 1

0
∇U1((1 − τ)q0 + τq1)dτ,

q1 = exp21 p
0 + exp22 q

0 − hϕ21

∫ 1

0
∇U1((1 − τ)q0 + τq1)dτ,

(2.24)

where exp(hQM) and ϕ(hQM) are partitioned into

(
exp11 exp12
exp21 exp22

)
and

(
ϕ11 ϕ12

ϕ21 ϕ22

)
,

respectively.
It should be noted that only the second equation in the scheme (2.24) needs to be

solved by iteration. From the proof procedure of Theorem2.4, one can find that the
convergence of the fixed-point iteration for the second equation in (2.24) is irrelevant
to ||QM || provided ϕ21 is uniformly bounded.

Theorem 2.5 Suppose thatΩ and N commute and ||∇U1(v)−∇U1(w)||2 ≤ L||v−
w||2. Then the iteration

Φ : z �→ exp21 p
0 + exp22 q

0 − hϕ21

∫ 1

0
∇U1((1 − τ)q0 + τ z)dτ

for the scheme (2.24) is convergent provided

0 < h ≤ ĥ <
2

L
1
2

.

Proof It is crucial here to find a uniform bound of ‖ϕ21‖. Since Ω and N commute,
they can be simultaneously diagonalized:

Ω = FᵀΛF, N = FᵀΣF,

where F is an orthogonal matrix, Λ = diag(λ1, . . . , λd),Σ = diag(σ1, . . . , σd) and
λi ≥ 0, σi ≤ 0 for i = 1, 2, . . . , d. It now follows from

QM =
(
Fᵀ O
O Fᵀ

)(
O I

−Λ Σ

) (
F O
O F

)

that

exp(hQM) =
(
Fᵀ O
O Fᵀ

)
exp

{(
O hI

−hΛ hΣ

)}(
F O
O F

)
.
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To show that exp21 and ϕ21 depends on h, we denote them by exph21 and ϕh
21, respec-

tively. After some calculations, we have

exph21 = Fᵀ(Σ2 − 4Λ)−
1
2 · 2 sinh(h(Σ2 − 4Λ)

1
2 /2) exp

(
hΣ

2

)
F.

We then have

|| exph21 ||2 = ||2(Σ2 − 4Λ)−
1
2 sinh(h(Σ2 − 4Λ)

1
2 /2) exp

(
hΣ

2

)
||2

= hmax
i

| sinh((h
2σ 2

i /4 − λi )
1
2 )

(h2σ 2
i /4 − λi )

1
2

exp

(
hσi

2

)
|.

(2.25)

In order to estimate || exph21 ||2, the bound of the function

g(λ, σ ) = sinh((σ 2 − 4λ)
1
2 )

(σ 2 − 4λ)
1
2

exp (σ ) ,

should be considered for σ ≤ 0, λ ≥ 0. If σ 2 − 4λ < 0, we set (σ 2 − 4λ)
1
2 = ia,

where i is the imaginary unit and a is a real number. Then we have

|g| = | sin(a)

a
exp (σ ) | ≤ | sin(a)

a
| ≤ 1.

If σ 2 − 4λ ≥ 0, then a = (σ 2 − 4λ)
1
2 ≤ −σ ,

|g| = | sinh(a)

a
exp (σ ) | ≤ | sinh(a)

a
exp(−a)| = |1 − exp(−2a)

2a
| ≤ 1.

Thus,
|g(λ, σ )| ≤ 1 for σ ≤ 0, λ ≥ 0. (2.26)

It follows from (2.25) and (2.26) that

|| exph21 ||2 = hmax
i

|g
(
hσi

2
, λi

)
| ≤ h. (2.27)

Therefore, using ϕ(hQM) = ∫ 1
0 exp((1 − ξ)hQM)dξ and (2.27), we obtain

||ϕ21||2 = ||
∫ 1

0
exp(1−ξ)h

21 dξ ||2 ≤
∫ 1

0
|| exp(1−ξ)h

21 ||2dξ ≤
∫ 1

0
(1 − ξ)hdξ = 1

2
h.

The rest of the proof is similar to that of Theorem2.4 which we omit here. �
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It can be observed that in the particular case that N = 0, the scheme (2.24) reduces
to the AAVF integrator in [32].

2.5.3 Semi-discrete Conservative or Dissipative PDEs

Many time-dependent PDEs are in the form:

∂

∂t
y(x, t) = Q

δH

δy
, (2.28)

where y(·, t) ∈ X for every t ≥ 0, X is a Hilbert space like L2(D), L2(D) ×
L2(D), . . . , D is a domain in R

d , and Q is a linear operator on X , the functional
H [y] = ∫

D f (y, ∂α y)dx ( f is smooth, x = (x1, . . . , xd), dx = dx1 . . . dxd and
∂α y denote the partial derivatives of y with respect to spatial variables xi , 1 ≤ i ≤
d). Under a suitable boundary condition (BC), the variational derivative

δH

δy
is

defined by:

〈δH
δy

, z〉 = d

dε

∣∣
ε=0H [y + εz]

for any smooth z ∈ X vanishing on the boundary of D , where 〈·, ·〉 is the inner
product of X . IfQ is a skew or negative semi-definite operator with respect to 〈·, ·〉,
then the Eq. (2.28) is conservative (e.g., the nonlinear wave, nonlinear Schrödinger,
Korteweg–de Vries and Maxwell equations) or dissipative (e.g., the Allen–Cahn,
Cahn–Hilliard, Ginzburg–Landau and heat equations), i.e., H [y] is constant or
monotonically decreasing (see, e.g. [6, 13]). In general, after the spatial discretisa-
tion, (2.28) becomes a conservative or dissipative system of ODEs in the form (2.1).

A typical example of a conservative system is the nonlinear Schrödinger (NSL)
equation:

i
∂

∂t
y + ∂2

∂x2
y + V

′
(|y|2)y = 0 (2.29)

subject to the periodic BC y(0, t) = y(L , t). Denoting y = p+ iq (i2 = −1), where
p, q are the real and imaginary parts of y, the Eq. (2.29) can be written in the form
of (2.28):

∂

∂t

(
p
q

)
=

(
0 −1
1 0

) ⎛
⎜⎝

∂2

∂x2
p + V

′
(p2 + q2)p

∂2

∂x2
q + V

′
(p2 + q2)q

⎞
⎟⎠ , (2.30)

where X = L2([0, L]) × L2([0, L]),
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H [y] = 1

2

∫ L

0

(
V (p2 + q2) −

(
∂

∂x
p

)2

−
(

∂

∂x
q

)2
)
dx .

We consider the spatial discretisation of (2.30). It is supposed that the spatial domain
is equally partitioned into N intervals: 0 = x0 < x1 < . . . < xN = L . Discretizing
the spatial derivatives of (2.30) by central differences gives

( ˙̃p
˙̃q
)

=
(
O −I
I O

) (
D p̃ + V

′
( p̃2 + q̃2) p̃

Dq̃ + V
′
( p̃2 + q̃2)q̃

)
, (2.31)

where

D =

⎛
⎜⎜⎜⎜⎜⎝

−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2

⎞
⎟⎟⎟⎟⎟⎠

,

is an N × N symmetric differential matrix, p̃ = (p0, . . . , pN−1)
ᵀ, q̃ = (q0, . . . ,

qN−1)
ᵀ, pi (t) ≈ p(xi , t) and qi (t) ≈ q(xi , t) for i = 0, . . . , N − 1.

As an example of dissipative PDEs we consider the Allen–Cahn (AC) equation

∂y

∂t
= β

∂2y

∂x2
+ y − y3, β ≥ 0, (2.32)

subject to the the Neumann BC ∂
∂x y(0, t) = ∂

∂x y(L , t). X = L2([0, L]),Q =
−1,H [y] = ∫ L

0 ( 12β( ∂
∂x y)

2 − 1
2 y

2 + 1
4 y

4)dx . The spatial grids are chosen in the
same way as the NLS. Discretizing the spatial derivative with the central difference,
we obtain

˙̃y = β D̂ ỹ + ỹ − ỹ3, (2.33)

where

D̂ =

⎛
⎜⎜⎜⎜⎜⎝

−1 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −1

⎞
⎟⎟⎟⎟⎟⎠

,

is the (N−1)×(N−1) symmetric differential matrix, ỹ = (y1, . . . , yN−1)
ᵀ, yi (t) ≈

y(xi , t).
Both the semi-discrete NLS equation (2.31) and AC equation (2.33) are of the

form (2.1). For the NLS equation, we have
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Q =
(
O −I
I O

)
, M =

(
D O
O D

)
, U = 1

2

N−1∑
i=0

V (p2i + q2
i ),

while for the AC equation, we have

Q = −I, M = −β D̂, U =
N−1∑
i=1

(
−1

2
y2i + 1

4
y4i

)
.

Therefore, the scheme (2.16) can be applied to solve them. Since the matrix
QM is skew or symmetric negative semi-definite in these two cases, according to
Remark2.1, the convergence of fixed-point iterations for them is independent of the
differential matrix.

2.6 Numerical Experiments

In this section, we compare the EAVF method (2.16) with the well-known implicit
midpoint method which is denoted by MID:

y1 = y0 + hQ∇Ũ

(
y0 + y1

2

)
, (2.34)

and the traditional AVF method for (2.1) given by

y1 = y0 + hQ
∫ 1

0
∇Ũ ((1 − τ)y0 + τ y1)dτ, (2.35)

where Ũ (y) = U (y) + 1
2 y

ᵀMy. The authors in [30] showed that (2.35) preserves
the first integral or the Lyapunov function Ũ . Our comparison also includes another
energy-preserving method of order four for (2.1):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y
1
2 = y0 + hQ

∫ 1

0

(
5

4
− 3

2
τ

)
∇Ũ (yτ )dτ,

y1 = y0 + hQ
∫ 1

0
∇Ũ (yτ )dτ,

(2.36)

where
yτ = (2τ − 1)(τ − 1)y0 − 4τ(τ − 1)y

1
2 + (2τ − 1)τ y1.

This method is denoted by CRK since it can be written as a continuous Runge–Kutta
method. For details, readers are referred to [17].
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Throughout the experiment, the ‘reference solution’ is computed by high-order
methods with a sufficiently small stepsize. We always start to calculate from t0 = 0.
yn ≈ y(tn) is obtained by the time-stepping way y0 → y1 → · · · → yn → · · ·
for n = 1, 2, . . . and tn = nh. The error tolerance for iteration solutions of the four
methods is set as 10−14. The maximum global error (GE) over the total time interval
is defined by:

GE = max
n≥0

||yn − y(tn)||∞.

The maximum global error of H (EH ) on the interval is:

EH = max
n≥0

|Hn − H(y(tn))|.

In our numerical experiments, the computational cost of each method is measured
by the number of function evaluations (FE).

Example 2.1 The motion of a triatomic molecule can be modelled by a Hamiltonian
system with the Hamiltonian of the form (2.20) (see, e.g. [8]):

H(p, q) = S(p, q) + 1

2
(p21,1 + p21,2 + p21,3) + ω2

2
(q2

1,1 + q2
1,2 + q2

1,3), (2.37)

where

S(p, q) = 1

2
p20 + 1

4
(q0 − q1,3)

2 − 1

4

2q1,2 + q21,2
(1 + q1,2)2

(p0 − p1,3)
2 − 1

4

2q1,1 + q21,1
(1 + q1,1)2

(p0 + p1,3)
2.

The initial values are given by:

⎧⎨
⎩

p0(0) = p1,1(0) = p1,2(0) = p1,3(0) = 1,

q0(0) = 0.4, q1,1(0) = q1,2(0) = 1

ω
, q1,3 = 1

2
1
2 ω

.

Setting h = 1/2i for i = 6, . . . , 10,ω = 50, and h = 1/100×1/2i for i = 0, . . . , 4,
ω = 100, we integrate the problem (2.21) with the Hamiltonian (2.37) over the
interval [0, 50]. Since the nonlinear term ∇S(p, q) is complicated to be integrated,
we evaluate the integrals in EAVF, AVF and CRK by the 3-point Gauss–Legendre
(GL) quadrature formula (bi , ci )3i=1:

b1 = 5

18
, b2 = 4

9
, b3 = 5

18
; c1 = 1

2
− 15

1
2

10
, c2 = 1

2
, c3 = 1

2
+ 15

1
2

10
.

The corresponding schemes are denoted by EAVFGL3, AVFGL3 and CRKGL3
respectively. Numerical results are presented in Fig. 2.1.

Figure2.1a, c show that MID and AVFGL3 lost basic accuracy. It can be observed
from Fig. 2.1b, d that AVFGL3, EAVFGL3, CRKGL3 are much more efficient in
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preserving energy thanMID. In the aspects of both energy preservation and algebraic
accuracy, EAVF is the most efficient among the four methods.
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Example 2.2 The equation

ẋ1 = −ζ x1 − λx2 + x1x2,

ẋ2 = λx1 − ζ x2 + 1

2
(x21 − x22 ),

(2.38)

is an averaged system in wind-induced oscillation, where ζ ≥ 0 is a damping
factor and λ is a detuning parameter (see, e.g. [16]). For convenience, setting
ζ = rcos(θ), λ = rsin(θ), r ≥ 0, 0 ≤ θ ≤ π/2, (see [29]) we write (2.38) as

(
ẋ1
ẋ2

)
=

( − cos(θ) − sin(θ)

sin(θ) − cos(θ)

) (
r x1 − 1

2 sin(θ)(x22 − x21 ) − cos(θ)x1x2
r x2 − sin(θ)x1x2 + 1

2 cos(θ)(x22 − x21 )

)
, (2.39)

which is of the form (2.1), where

Q =
(− cos(θ) − sin(θ)

sin(θ) − cos(θ)

)
, M =

(
r 0
0 r

)
,

U = −1

2
sin(θ)

(
x1x

2
2 − 1

3
x31

)
+ 1

2
cos(θ)

(
1

3
x32 − x21 x2

)
.

(2.40)

Its Lyapunov function (dissipative case, when θ < π/2) or the first integral (conser-
vative case, when θ = π/2) is:

H = 1

2
r(x21 + x22 ) − 1

2
sin(θ)

(
x1x

2
2 − 1

3
x31

)
+ 1

2
cos(θ)

(
1

3
x32 − x21 x2

)
.

The matrix exponential of the EAVF scheme (2.16) for (2.39) is calculated by:

exp(V ) =
(
exp(−hcr)cos(hsr) − exp(−hcr)sin(hsr)
exp(−hcr)sin(hsr) exp(−hcr)cos(hsr)

)
,

where c = cos(θ), s = sin(θ), and ϕ(V ) can be obtained by (exp(V ) − I )V−1.
Given the initial values:

x1(0) = 0, x2(0) = 1,

wefirst integrate the conservative system (2.39)with the parameters θ = π/2, r = 20
and stepsizes h = 1/20 × 1/2i for i = −1, . . . , 4 over the interval [0, 200]. Setting
θ = π/2 − 10−4, r = 20, we then integrate the dissipative (2.39) with the stepsizes
h = 1/20 × 1/2i for i = −1, . . . , 4 over the interval [0, 100]. Numerical errors are
presented in Figs. 2.2 and 2.3. It is noted that the integrands appearing in AVF, EAVF
are polynomials of degree two and the integrands in CRK are polynomials of degree
five. We evaluate the integrals in AVF, EAVF by the 2-point GL quadrature:

b1 = 1

2
, b2 = 1

2
, c1 = 1

2
− 3

1
2

6
, c2 = 1

2
+ 3

1
2

6
,
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and the integrals appearing in CRK by the 3-point GL quadrature. Then there is no
quadrature error.

The efficiency curves of AVF and MID consist of only five points in Figs. 2.2a, b,
and 2.3a (two points overlap in Figs. 2.2a and 2.3a), since the fixed-point iterations of
MID and AVF are not convergent when h = 1/10. Note that QM is skew-symmetric
or negative semi-definite, the convergence of iterations for the EAVF method is
independent of r by Theorem2.4 and Remark2.1. Thus larger stepsizes are allowed
for EAVF. The experiment shows that the iterations for EAVF uniformly converge
for h = 1/20× 1/2i for i = −1, . . . , 4. Moreover, it can be observed from Fig. 2.3b
that MID cannot strictly preserve the decay of the Lyapunov function.

Example 2.3 The PDE:

∂2u

∂t2
= β

∂3u

∂t∂x2
+ ∂2u

∂x2

(
1 + ε

(
∂u

∂x

)p)
− γ

∂u

∂t
− m2u, (2.41)

where ε > 0, β, γ ≥ 0, is a continuous generalization of α-FPU (Fermi–Pasta–
Ulam) system (see, e.g. [28]). Taking ∂t u = v and the homogeneous Dirichlet BC
u(0, t) = u(L , t) = 0, the Eq. (2.41) is of the type (2.28), where X = L2([0, L]) ×
L2([0, L]) and
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y =
(
u
v

)
, Q =

(
0 1

−1 β∂2
x − γ

)
,

H [y] =
∫ L

0

(
1

2
u2x + m2

2
u2 + v2

2
+ εu p+2

x

(p + 2)(p + 1)

)
dx .

It is easy to verify that Q is a negative semi-definite operator, and thus (2.41) is
dissipative. The spatial discretization yields a dissipative system of ODEs:

ü j (t) − c2(u j−1 − 2u j + u j+1) + m2u j − β
′
(u̇ j−1 − 2u̇ j + u̇ j+1) + γ u̇ j (t)

= ε
′
(V

′
(u j+1 − u j ) − V

′
(u j − u j−1)),

where c = 1/Δx, β
′ = c2β, ε

′ = cp+2ε, V (u) = u p+2/[(p + 2)(p + 1)], u j (t) ≈
u(x j , t), x j = j/Δx for j = 1, . . . , N − 1 and u0(t) = uN (t) = 0. Note that the
nonlinear term uxxu

p
x is approximated by:

∂2u

∂x2

(
∂u

∂x

)p

|x=x j = 1

p + 1
∂x

(
∂u

∂x

)p+1

|x=x j

≈ 1

p + 1

((
u j+1 − u j

Δx

)p+1

−
(
u j − u j−1

Δx

)p+1
)

/Δx .
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We now write it in the compact form (2.22):

q̈ − Nq̇ + Ωq = −∇U1(q),

where q = (u1, . . . , uN−1)
ᵀ, N = β

′
D − γ I,Ω = −c2D + m2 I,U1(q) =

ε
′ ∑N−1

j=0 V (u j+1 − u j ) and

D =

⎛
⎜⎜⎜⎜⎜⎝

−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2

⎞
⎟⎟⎟⎟⎟⎠

.

In this experiment, we set p = 1,m = 0, c = 1, ε = 3
4 , and γ = 0.005. Consider

the initial conditions in [28]:

φ j (t) = B ln

{(
1 + exp[2(κ( j − 97) + t sinh(κ))]
1 + exp[2(κ( j − 96) + t sinh(κ))]

) (
1 + exp[2(κ( j − 32) + t sinh(κ))]
1 + exp[2(κ( j − 33) + t sinh(κ))]

)}

with B = 5, κ = 0.1, that is,

{
u j (0) = φ j (0),

v j (0) = φ̇ j (0).

for j = 1, . . . , N − 1. Let N = 128, β = 0, 2. We compute the numerical solution
by MID, AVF and EAVF with the stepsizes h = 1/2i for i = 1, . . . , 5 over the time
interval [0, 100]. Similarly to EAVF (2.24), the nonlinear systems resulting from
MID (2.34) and AVF (2.35) can be reduced to:

q1 = q0 + hp0 + h

2
N (q1 − q0) − h2

4
Ω(q1 + q0) − h2

2
∇U1

(
q0 + q1

2

)
,

and

q1 = q0 +hp0 + h

2
N (q1 −q0)− h2

4
Ω(q1 +q0)− h2

2

∫ 1

0
∇U1((1− τ)q0 + τq1)dτ

respectively. Both the velocity p1 of MID and AVF can be recovered by

q1 − q0

h
= p1 + p0

2
.

The integrals in AVF and EAVF are exactly evaluated by the 2-point GL quadrature.
Since exp(hA), ϕ(hA) in (2.24) have no explicit expressions, they are calculated by
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the Matlab package in [2]. The basic idea is to evaluate exp(hA), ϕ(hA) by their
Padé approximations. Numerical results are plotted in Fig. 2.4. Alternatively, there
are other popular algorithms such as the contour integral method and the Krylov
subspace method for matrix exponentials and ϕ-functions. Readers are referred to
[23] for a summary of algorithms and well-established mathematical software.

According to Theorem2.5, the convergence of iterations in the EAVF scheme
is independent of Ω and N . Iterations of MID and AVF are not convergent when
β = 2, h = 1/2. Thus the efficiency curves of MID and AVF in Fig. 2.4b consist of
only 4 points. From Fig. 2.4c, it can be observed that the EAVFmethod is dissipative
even using the relatively large stepsize h = 1/2.

2.7 Conclusions and Discussions

Exponential integrators date back to the original work by Hersch [20]. The term
“exponential integrators” was coined in the seminal paper by Hochbruck, Lubich
and Selhofer [22]. It turns out that exponential integrators have constituted an impor-
tant class of effective methods for the numerical solution of differential equations in
applied sciences and engineering. In this chapter, combining the ideas of the expo-
nential integrator with the average vector field, a new exponential scheme EAVF
was proposed and analysed. The EAVF method can preserve the first integral or the
Lyapunov function for the conservative or dissipative system (2.1). The symmetry of
EAVF is responsible for the good long-term numerical behavior. The implicitness of
EAVF means that the solution must be solved iteratively. We have analysed the con-
vergence of the fixed-point iteration and showed that the convergence is free from the
influence of a large class of coefficient matrices M . In the dynamics of the triatomic
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molecule, wind-induced oscillation and the damped FPU problem, we compared
the new EAVF method with the MID, AVF and CRK methods. The three problems
are modelled by the system (2.1) having a dominant linear term and small nonlin-
ear term. As for the efficiency as well as preserving energy and dissipation, EAVF
is superior to the other three methods. In general, energy-preserving and energy-
decaying methods are implicit, and iterative solutions are required. With relatively
large stepsizes, the iterations of EAVF converge while those of AVF and MID do
not. We conclude that EAVF is a promising method for solving the system (2.1) with
||QM || � ||Q Hess(U )||.

In conclusion, exponential integrators are an important class of structure-
preserving numerical methods for differential equations. Therefore, we will further
discuss and analyse exponential Fourier collocation methods in the next chapter, and
symplectic exponential Runge–Kutta methods for solving nonlinear Hamiltonian
systems in Chap.4.

This chapter is based on the work of Li and Wu [27].
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