
Chapter 11
Arbitrarily High-Order Time-Stepping
Schemes for Nonlinear Klein–Gordon
Equations

This chapter presents arbitrarily high-order time-stepping schemes for solving high-
dimensional nonlinear Klein–Gordon equations with different boundary conditions.
We first formulate an abstract ordinary differential equation (ODE) on a suitable
infinite–dimensional function space based on the operator spectrum theory. We then
introduce an operator-variation-of-constants formula for the nonlinear abstract ODE.
The nonlinear stability and convergence are rigorously analysed once the spatial dif-
ferential operator is approximated by an appropriate positive semi-definite matrix.
With regard to the two dimensional Dirichlet or Neumann boundary problems, the
time-stepping schemes coupled with discrete Fast Sine/Cosine Transformation can
be applied to simulate the two-dimensional nonlinear Klein–Gordon equations effec-
tively. The numerical results demonstrate the advantage of the schemes in comparison
with the existing numerical methods for solving nonlinear Klein–Gordon equations
in the literature.

11.1 Introduction

The computation of the Klein–Gordon equation which has a nonlinear potential
function, is of great importance in a wide range of application areas in science and
engineering. The nonlinear potential gives rise to major challenges. In this chapter,
we begin with the following nonlinear Klein–Gordon equation in a single space
variable: {

utt − a2Δu = f (u), t0 < t ≤ T, x ∈ Ω,

u(x, t0) = ϕ1(x), ut (x, t0) = ϕ2(x), x ∈ Ω̄,
(11.1)

and suppose that the initial valued problem (11.1) is supplementedwith the following
periodic boundary condition on the domain Ω = (−π, π)
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u(x, t) = u(x + 2π, t), (11.2)

where u(x, t) represents the wave displacement at position x and time t , Δ = ∂2

∂x2 ,
and f (u) is a nonlinear function of u chosen as the negative derivative of a potential
energy V (u) ≥ 0. Generally, there are various choices of the potential function
f (u) to investigate solitons and nonlinear phenomena. For instance, the following
sine–Gordon equation

utt − a2Δu + sin(u) = 0, (11.3)

is well known, and other nonlinear potential functions also appear in the literature
such as f (u) = sinh u and polynomial f (u). Moreover, if u(·, t) ∈ H 1(Ω) and
ut (·, t) ∈ L2(Ω), energy conservation becomes another key feature of the Klein–
Gordon equation, i.e.,

E(t) ≡ 1

2

∫
Ω

(
u2t + a2|∇u|2 + 2V (u)

)
dx = E(t0). (11.4)

This is an essential property in the theory of solitons. Accordingly, it is also signifi-
cant to test the effectiveness of a numerical method in preserving the corresponding
discrete energy.

In a wide variety of application areas in science and engineering, such as non-
linear optics, solid state physics and quantum field theory [10, 23, 53], the non-
linear wave equation plays an important role and has been extensively investi-
gated. In particular, the nonlinear Klein–Gordon equation (11.1) is used to model
many different nonlinear phenomena, including the propagation of dislocations in
crystals and the behavior of elementary particles and of Josephson junctions (see
Chap.8.2 in [24] for details). Its description and understanding are very impor-
tant from both the analytical and numerical aspects, and have been investigated
by many researchers. On the analytical front, the Cauchy problem was investi-
gated (see, e.g. [7, 13, 26, 36]). If the potential function satisfies V (u) ≥ 0
for u ∈ R, the global existence of solutions for the defocusing case, was estab-
lished in [13], whereas if the energy potential satisfies V (u) ≤ 0 for u ∈ R,
the focusing case, possible finite time blow-up was shown in [7]. With regard to
the numerical methods, there have been proposed and studied a variety of solu-
tion procedures for solving the nonlinear Klein–Gordon equation. For instance, the
energy-preserving explicit, semi-implicit and symplectic conservative standard finite
difference time domain (FDTD) discretisations were proposed and analysed in [1,
9, 25, 38, 44]. As far as the finite-difference method is concerned, on the basis
of standard finite-difference approximations, a three-time-level scheme was derived
by Strauss and Vázquez in [47]. Jiménez [35] derived conservative finite differ-
ence schemes with some analogous discretisations to that used in [47] for the non-
linear term. Other approaches, such as the finite element method and the spectral
method, were also studied in [17, 18, 27, 50]. With respect to finite-element tech-
niques, Tourigny [50] proved that the use of product approximations in Galerkin
methods subject to Dirichlet boundary conditions does not affect the convergence
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rate of the method. Guo et al. [27] developed a conservative Legendre spectral
method. Dehghan et al. used radial basis functions, the dual reciprocity boundary
integral equation technique, the collocation and finite-difference collocation meth-
ods for solving the nonlinear Klein–Gordon equations, or coupled Klein–Gordon
equations (see, e.g. [20–22, 37]). Although many numerical methods have been
derived and investigated for solving the nonlinear Klein–Gordon equation in the lit-
erature, in general, the existing numerical methods have limited accuracy, and little
attention was paid to the special structure brought by spatial discretisations. This
motivates the main theme of this chapter, which is to consider arbitrarily high-order
Lagrange collocation-type time-stepping schemes for efficiently solving nonlinear
Klein–Gordon equations.

The plan of this chapter is as follows. In Sect. 11.2, based on the operator spec-
trum theory, we first formulate the one-dimensional nonlinear Klein–Gordon equa-
tion (11.1)–(11.2) as an abstract second-order ordinary differential equation on an
infinite-dimensional Hilbert space L2(Ω). Then, the operator-variation-of-constants
formula for the abstract equation is introduced, which is in fact an integral equation
of the solution for the nonlinear Klein–Gordon equation (11.1)–(11.2). In Sect. 11.3,
using the derived operator-variation-of-constants formula, we calculate the nonlin-
ear integrals appearing in this formula by Lagrange interpolation. This leads to a
class of arbitrarily high-order Lagrange collocation-type time-stepping schemes.
Furthermore, an investigation of the local error bounds is made, which arrives at
the simplified order conditions in a much simpler form. Section11.4 is devoted to
semidiscretisation. This process enables us to take advantage of the properties of
the undiscretised differential operatorA and incorporate the special structure intro-
duced by spatial discretisations with the new integrators. Themain theoretical results
of this work are presented in Sect. 11.5. We use the strategy of energy analysis to
study the nonlinear stability and convergence of the fully discrete scheme. Since
these fully discrete schemes are implicit, iterative solutions are required in practical
computations. Therefore, we use fixed-point iteration and analyse its convergence in
this section. In Sect. 11.6 we apply the Lagrange collocation-type time integrators to
the two-dimensional nonlinear Klein–Gordon equations, equippedwith homogenous
Dirichlet or Neumann boundary conditions. In a similar way to the one-dimensional
periodic boundary case, the abstract ordinary differential equations and the operator-
variation-of-constants formula are established on the infinite-dimensional Hilbert
space L2(Ω). In Sect. 11.7, we are concerned with numerical experiments, and the
numerical results show the advantage and effectiveness of our new schemes in com-
parison with the existing numerical methods in the literature. The last section is
devoted to brief conclusions and discussions.

In this chapter, all essential features of the methodology are presented in the one-
dimensional and two-dimensional cases, although the schemes to be analysed lend
themselves with equal ease to higher dimensions.
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11.2 Abstract Ordinary Differential Equation

Motivated by recent interest in exponential integrators for semilinear parabolic prob-
lems [30–32], and based on the operator spectrum theory (see, e.g. [6]), we will for-
mulate the nonlinear problem (11.1)–(11.2) as an abstract ordinary differential equa-
tion on the Hilbert space L2(Ω), and introduce an operator-variation-of-constants
formula. To this end, some bounded operator-argument functions will be defined
and analysed in advance, because these are essential to introducing the operator-
variation-of-constants formula.

To begin with, we define the functions

φ j (x) :=
∞∑
k=0

(−1)k xk

(2k + j)! , j = 0, 1, 2, . . . , ∀x ≥ 0. (11.5)

It can be observed that φ j (x), j = 0, 1, 2, . . . are bounded functions for any x ≥ 0.
For example, we have

φ0(x) = cos(
√
x), φ1(x) = sin(

√
x)√

x
, (11.6)

with φ1(0) = 1, and it is obvious that |φ j (x)| ≤ 1 for j = 0, 1 and ∀x ≥ 0. For
an abstract formulation of problem (11.1)–(11.2), we define the linear differential
operator A by

(A v)(x) = −a2vxx (x). (11.7)

It is known that the linear differential operator A is an unbounded operator and not
defined for every v ∈ L2(Ω). In order to model the periodic boundary condition
(11.2), we consider A on the domain:

D(A ) := {v ∈ H 2(Ω) : v(x) = v(x + 2π)
}
. (11.8)

Obviously, the defined operator A is positive semi definite, i.e.,

(
A v(x), v(x)

)
=
∫ 2π

0
A v(x) · v(x)dx = a2

∫ 2π

0
v2x (x)dx ≥ 0, ∀v(x) ∈ D(A ).

Here, (·, ·) denotes the inner product of L2(Ω) and integration by parts, or Green’s
formula, has been used. Moreover, we note the important fact that the operator
A has a complete system of orthogonal eigenfunctions

{
eikx : k ∈ Z

}
in the

Hilbert space L2(Ω), and the corresponding eigenvalues are given by a2k2, k =
0,±1,±2, . . . (see, e.g. [49]). From the isomorphismbetween L2(Ω) and l2 = {x =
(xi )i∈Z : ∑

i∈Z
|xi |2 < +∞}, the operator A induces a corresponding operator on l2
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(see, e.g. [6, 32]). Then, it can be observed that the functions (11.5) imply the operator
functions

φ j (tA ) : L2(Ω) → L2(Ω),

for j = 0, 1, 2, . . . and t ≥ t0 as follows:

φ j (tA )v(x) =
∞∑

k=−∞
v̂kφ j (ta

2k2)eikx , for v(x) =
∞∑

k=−∞
v̂ke

ikx . (11.9)

We next show that the defined operator functions are bounded. To do this, we need
to clarify the norm of the function in L2(Ω), which can be characterised in the
frequency space by

‖v‖2 = 2π
∞∑

k=−∞
|v̂k |2. (11.10)

The details can be found in [46]. Therefore, we have

‖φ j (tA )‖2L2(Ω)←L2(Ω) = sup
‖v‖
=0

‖φ j (tA )v‖2
‖v‖2 ≤ sup

t≥t0
|φ j (ta

2k2)| ≤ γ j , (11.11)

where γ j are bounds on the functions |φ j (x)| for j = 0, 1, 2, . . . and x ≥ 0. For
instance, we may choose γ0 = γ1 = 1 and then

‖φ0(tA )‖2L2(Ω)←L2(Ω) ≤ 1 and ‖φ1(tA )‖2L2(Ω)←L2(Ω) ≤ 1. (11.12)

By defining u(t) as the function that maps x to u(x, t):

u(t) = [x �→ u(x, t)],

we now can formulate the systems (11.1)–(11.2) as the following abstract ordinary
differential equation on the Hilbert space L2(Ω):

{
u′′(t) + A u(t) = f

(
u(t)

)
u(t0) = ϕ1(x), u′(t0) = ϕ2(x).

(11.13)

With this premise, we are now in a position to present an integral formula for the
nonlinearKlein–Gordon equation (11.1)–(11.2). The solution of the abstract ordinary
differential equations (11.13) can be given by the operator-variation-of-constants
formula summarised in the following theorem.
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Theorem 11.1 The solution of (11.13) and its derivative satisfy

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(t) = φ0
(
(t − t0)

2A
)
u(t0) + (t − t0)φ1

(
(t − t0)

2A
)
u′(t0)

+
∫ t

t0

(t − ζ )φ1
(
(t − ζ )2A

)
f
(
u(ζ )

)
dζ,

u′(t) = − (t − t0)A φ1
(
(t − t0)

2A
)
u(t0) + φ0

(
(t − t0)

2A
)
u′(t0)

+
∫ t

t0

φ0
(
(t − ζ )2A

)
f
(
u(ζ )

)
dζ,

(11.14)

for t ∈ [t0, T ], where φ0
(
(t − t0)2A

)
and φ1

(
(t − t0)2A

)
are bounded functions of

the operator A .

Proof Applying the Duhamel Principle to Eqs. (11.1) or (11.13), we have(
u(t)
u′(t)

)
= eJ (t−t0)

(
u(t0)
u′(t0)

)
+
∫ t

t0
eJ (t−ζ )

(
0

f
(
u(ζ )

) ) dζ, (11.15)

where

J =
(

0 I
−A 0

)
.

After expanding the exponential operator through its Taylor series, we obtain

eJ (t−t0) =
+∞∑
k=0

J k(t − t0)k

k! .

An argument by induction leads to the following results

J k = (−1)�k/2�
(

1+(−1)k

2 A �k/2� 1−(−1)k

2 A �k/2�

− 1−(−1)k

2 A �k/2�+1 1+(−1)k

2 A �k/2�

)
, ∀k ∈ N,

where �k/2� denotes the integer part of k/2. According to the definition of φ j (A )

and a careful calculation, we obtain

eJ (t−t0) =
(

φ0
(
(t − t0)2A

)
(t − t0)φ1

(
(t − t0)2A

)
−(t − t0)A φ1

(
(t − t0)2A

)
φ0
(
(t − t0)2A

) )
.

The conclusion of the theorem can be obtained straightforwardly by inserting the
expansion into (11.15). �

Remark 11.1 Although equation (11.1) is one-dimensional in space, the method of
analysis introduced in this section canbe extended to the considerablymore important
high-dimensional Klein–Gordon equations

utt − a2Δu = f (u), t ≥ t0, x ∈ [−π, π ]d , (11.16)
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where u = u(x, t) and Δ =
d∑

i=1

∂2

∂x2i
, with periodic boundary conditions. In latter

case, if we define the operator as the formA = −a2Δ, the same operator-variation-
of-constants formula as (11.14) for (11.16) can be achieved as well. An application
of this approach can be found in a recent paper [56].

Remark 11.2 For the nonlinear Klein–Gordon equation, the formula (11.14) is a
nonlinear integral equation which reflects the changes of the solution with time t . It
will be helpful in deriving and analysing novel numerical integrators for the nonlinear
Klein–Gordon equations. However, if the right-hand function f does not depend on
u, i.e., {

utt − a2Δu = f (x, t), t0 < t ≤ T, x ∈ Ω,

u(x, t0) = ϕ1(x), ut (x, t0) = ϕ2(x),
(11.17)

this is a linear or homogenous ( f (x, t) = 0)wave equation. The closed-form solution
to the linear problem (11.17) can be obtained by using the operator-variation-of-
constants formula.

As an illustrative example, we consider the following two-dimensional homoge-
nous periodic wave equation

{
utt − a2(uxx + uyy) = 0, (x, y) ∈ (0, 2) × (0, 2), t > 0,

u|t=0 = sin(3πx) sin(4πy), ut |t=0 = 0.
(11.18)

The homogeneous problem is equipped with periodic boundary conditions

u(x + Lx , y, t) = u(x, y + Ly, t) = u(x, y, t) (11.19)

with the fundamental periods Lx = 2
3 and Ly = 1

2 . Applying the formula (11.14) to
(11.18) leads to

{
u(x, y, t) = φ0

(
t2A

)
sin(3πx) sin(4πy),

ut (x, y, t) = ta2Δφ1
(
t2A

)
sin(3πx) sin(4πy).

(11.20)

It follows from a simple calculation that

{
u(x, y, t) = sin(3πx) sin(4πy) cos(5t),

ut (x, y, t) = −5 sin(3πx) sin(4πy) sin(5t),
(11.21)

which is exactly the solution of problem (11.18) and its derivative.
We next consider the following nonhomogeneous linear wave equation

{
utt − (uxx + uyy) = π2 sin(π(x − t)) sin(πy),

u|t=0 = sin(πx) sin(πy), ut |t=0 = −π cos(πx) sin(πy),
(11.22)
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and suppose that the problem is subject to the periodic boundary conditions

u(x + L , y, t) = u(x, y + L , t) = u(x, y, t), (11.23)

with the fundamental periods L = 2. Applying formula (11.14) to (11.22) yields

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(x, y, t) = φ0(t
2Δ) sin(πx) sin(πy) − π tφ1(t

2Δ) cos(πx) sin(πy)

+ π2
∫ t

0
(t − ζ )φ1((t − ζ )2Δ) sin(π(x − ζ )) sin(πy)dζ,

ut (x, y, t) = tΔφ1(t
2Δ) sin(πx) sin(πy) − πφ0(t

2Δ) cos(πx) sin(πy)

+ π2
∫ t

0
φ0((t − ζ )2Δ) sin(π(x − ζ )) sin(πy)dζ.

(11.24)
It follows from a careful calculation that

φ0(t
2Δ) sin(πx) sin(πy) = sin(πx) sin(πy) cos(

√
2π t),

− π tφ1(t
2Δ) cos(πx) sin(πy) = − 1√

2
cos(πx) sin(πy) sin(

√
2π t),

π2
∫ t

0
(t − ζ )φ1((t − ζ )2Δ) sin(π(x − ζ )) sin(πy)dζ

= π√
2

∫ t

0
sin(

√
2π(t − ζ )) sin(π(x − ζ )) sin(πy)dζ.

We finally obtain the exact solution

u(x, y, t) = sin(πx) sin(πy) cos(
√
2π t) − 1√

2
cos(πx) sin(πy) sin(

√
2π t)

+ π√
2

∫ t

0
sin(

√
2π(t − ζ )) sin(π(x − ζ )) sin(πy)dζ

= sin(π(x − t)) sin(πy),
(11.25)

and its derivative
ut (x, y, t) = −π cos(π(x − t)) sin(πy). (11.26)

11.3 Formulation of the Lagrange Collocation-Type
Time Integrators

In light of the useful approach to dealing with the semiclassical Schrödinger equa-
tion (see [8]), this analysis will omit the standard steps of first semidiscretising in
space and then approximating the semidiscretisation. In this section, based on the for-
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mula (11.14), we devote ourselves to constructing arbitrarily high-order Lagrange
collocation-type time integrators for the nonlinear system (11.13) in the infinite-
dimensional Hilbert space L2(Ω). Furthermore, the local error bounds for the con-
structed time integrators will also be considered in detail.

11.3.1 Construction of the Time Integrators

From Theorem 11.1, the solution of (11.13) and its derivative at time tn+1 = tn +Δt
for n = 0, 1, 2, . . . are given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(tn+1) =φ0
(
V
)
u(tn) + Δtφ1

(
V
)
u′(tn)

+ Δt2
∫ 1

0
(1 − z)φ1

(
(1 − z)2V

)
f̃ (tn + zΔt)dz,

u′(tn+1) = − ΔtA φ1
(
V
)
u(tn) + φ0

(
V
)
u′(tn)

+ Δt
∫ 1

0
φ0
(
(1 − z)2V

)
f̃ (tn + zΔt)dz,

(11.27)

where V = Δt2A and f̃ (tn + zΔt) = f
(
u(tn + zΔt)

)
.

In what follows, we pay our attention to deriving efficient methods for approxi-
mating the following two nonlinear integrals:

I1 :=
∫ 1

0
(1 − z)φ1

(
(1 − z)V

)
f̃ (tn + zΔt)dz,

I2 :=
∫ 1

0
φ0
(
(1 − z)V

)
f̃ (tn + zΔt)dz.

(11.28)

We choose non-confluent collocation nodes c1, . . . , cs and approximate the func-
tion f̃ (tn + zΔt) involved in the integrals in (11.28) by its Lagrange interpolation
polynomial at these quadrature nodes

f̃ (tn + zΔt) =
s∑

i=1

li (z) f̃ (tn + ciΔt) + Rs(tn + zΔt)

=
s∑

i=1

li (z) f
(
u(tn + ciΔt)

)+ Rs(tn + zΔt).

(11.29)

Here, li (z) for i = 1, 2, . . . , s are the well-known Lagrange basis polynomials

li (z) =
s∏
j=1
j 
=i

z − c j
ci − c j

, i = 1, 2, . . . , s. (11.30)
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It is obvious that there exists a constant β satisfies max
1≤i≤s

max
0≤z≤1

|li (z)| ≤ β. Moreover,

the interpolation error on [0, 1] is given by

Rs(tn + zΔt) = f̃ (tn + zΔt) −
s∑

i=1

li (z) f̃ (tn + ciΔt)

= Δt s

s! f̃ (s)
t (tn + ξ nΔt)ws(z), ξ n ∈ (0, 1),

(11.31)

where ws(z) =
s∏

i=1
(z − ci ) and f̃ ( j)

t (t) denotes the j th order derivative of f
(
u(t)

)
with respect to t .

Suppose that the following approximations have been given:

un ≈ u(tn), Uni
≈ u(tn + ciΔt).

Replacing f̃ (z) in (11.27) by the Lagrange interpolation (11.29) yields approxima-
tions to the exact solution and its derivative at time tn+1

un+1 =φ0
(
V
)
un + Δtφ1

(
V
)
u′n + Δt2

s∑
i=1

bi (V ) f (Uni ), (11.32)

u′n+1 = − ΔtA φ1
(
V
)
un + φ0

(
V
)
u′n + Δt

s∑
i=1

b̄i (V ) f (Uni ), (11.33)

where bi (V ) and b̄i (V ) are determined by

bi (V ) =
∫ 1

0
(1 − z)φ1

(
(1 − z)2V

)
li (z)dz, (11.34)

b̄i (V ) =
∫ 1

0
φ0
(
(1 − z)2V

)
li (z)dz. (11.35)

It follows from (11.12) that

‖bi (V )‖L2(Ω)←L2(Ω) ≤ max
0≤z≤1

|li (z)| ≤ β and ‖b̄i (V )‖L2(Ω)←L2(Ω) ≤ max
0≤z≤1

|li (z)| ≤ β,

and this means that bi (V ) and b̄i (V ) are uniformly bounded.
Moreover, we note that the basis li (z) for i = 1, . . . , s are polynomials of degree

at most s − 1, the coefficients bi (V ) are linear combinations of the functions

∫ 1

0
(1 − z)φ1

(
(1 − z)2V

)
z jdz = Γ ( j + 1)φ j+2(V ), (11.36)

and the coefficients b̄i (V ) are linear combinations of the functions
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∫ 1

0
φ0
(
(1 − z)2V

)
z jdz = Γ ( j + 1)φ j+1(V ), (11.37)

where Γ ( j + 1) is the Gamma function with Γ (1) = 1 (see, e.g. Abramowitz
and Stegun [3]). Recall that, the Gamma function Γ ( j + 1) satisfies the following
recursion

Γ ( j + 1) = jΓ ( j) = · · · = j !.

It remains to determine the approximation Uni . In a similar way to the formula
(11.32), we replace Δt by ciΔt to define the internal stages:

Uni = φ0
(
c2i V

)
un + ciΔtφ1

(
c2i V

)
u′n + c2i Δt2

s∑
j=1

ai j (V ) f (Unj ), (11.38)

where it is required that the weights ai j (V ) are uniformly bounded. The weights
ai j (V ) will be determined by suitable order conditions, and we will derive these
order conditions in Sect. 11.3.2.

On the basis of the above analysis and the formula (11.27), we present the fol-
lowing Lagrange collocation-type time-stepping integrators for the nonlinear system
(11.13).

Definition 11.1 A Lagrange collocation-type time-stepping integrator for solving
the nonlinear system (11.13) is defined by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un+1 = φ0
(
V
)
un + Δtφ1

(
V
)
u′n + Δt2

s∑
i=1

bi (V ) f (Uni ),

u′n+1 = −ΔtA φ1
(
V
)
un + φ0

(
V
)
u′n + Δt

s∑
i=1

b̄i (V ) f (Uni ),

Uni = φ0
(
c2i V

)
un + ciΔtφ1

(
c2i V

)
u′n + c2i Δt2

s∑
j=1

ai j (V ) f (Unj ), i = 1, 2, . . . , s,

(11.39)
where bi (V ) and b̄i (V ) are defined by (11.34) and (11.35), respectively, and ai j (V )

are uniformly bounded.

11.3.2 Error Analysis for the Lagrange Collocation-Type
Time-Stepping Integrators

In this subsection, wewill analyse the local error bounds of the Lagrange collocation-
type time discretisations (11.39) for the nonlinear system (11.13). Our main hypoth-
esis on the nonlinearity f is described below.
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Assumption 1 It is assumed that (11.13) possesses a sufficiently smooth solution,
and that f : D(A ) → R is sufficiently often Fréchet differentiable in a strip along
the exact solution.

Assumption 2 Let f be locally Lipschitz-continuous in a strip along the exact solu-
tion u(t). Thus, there exists a real number L such that

‖ f
(
v(t)
)− f

(
w(t)

)‖ ≤ L‖v(t) − w(t)‖ (11.40)

for all t ∈ [t0, T ] and max
(‖v(t) − u(t)‖, ‖w(t) − u(t)‖) ≤ R.

Inserting the exact solution into the time integrators (11.39) yields

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(tn+1) = φ0
(
V
)
u(tn) + Δtφ1

(
V
)
u′(tn) + Δt2

s∑
i=1

bi (V ) f̃ (tn + ciΔt) + δn+1,

u′(tn+1) = −ΔtA φ1
(
V
)
u(tn) + φ0

(
V
)
u′(tn) + Δt

s∑
i=1

b̄i (V ) f̃ (tn + ciΔt) + δ′n+1,

u(tn + ciΔt) = φ0
(
c2i V

)
u(tn) + ciΔtφ1

(
c2i V

)
u′(tn) + c2i Δt2

s∑
j=1

ai j (V ) f̃ (tn + c jΔt) + Δni ,

i = 1, 2, . . . , s,
(11.41)

where bi (V ) and b̄i (V ) are defined by (11.34) and (11.35), respectively, and ai j (V )

are uniformly bounded.
Applying the Lagrange interpolation polynomial (11.29) to the nonlinear integrals

in the operator-variation-of-constants formula (11.27), and comparing with the first
two equations of (11.41), we obtain the residuals δn+1 and δ′n+1:

δn+1 = Δt s+2

s!
∫ 1

0
(1 − z)φ1

(
(1 − z)2V

)
ws(z)dz f

(s)
t

(
u(tn + ξ nΔt)

)
,

δ′n+1 = Δt s+1

s!
∫ 1

0
φ0
(
(1 − z)2V

)
ws(z)dz f

(s)
t

(
u(tn + ξ nΔt)

)
.

(11.42)

It follows from (11.42) that

‖δn+1‖ ≤ C1Δt s+2 and ‖δ′n+1‖ ≤ C1Δt s+1, (11.43)

where

C1 = 1

s! max
0≤z≤1

|ws(z)| max
t0≤t≤T

‖ f (s)
t

(
u(t)

)‖ (11.44)

is a constant.
In order to clarify the representation of the residuals Δni , we expand f̃ (tn + zΔt)

into a Taylor series with remainder in integral form:
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f̃ (tn+zΔt) =
s∑

k=1

zk−1Δt k−1

(k − 1)! f̃ (k−1)
t (tn)+ Δt s

(s − 1)!
∫ z

0
f̃ (s)
t (tn+σΔt)(z−σ)s−1dσ.

(11.45)
On the one hand, inserting the Taylor formula (11.45) into the right-hand side of the
operator-variation-of-constants formula gives

u(tn + ciΔt) = φ0(c
2
i V )u(tn) + ciΔtφ1(c

2
i V )u′(tn) +

s∑
k=1

ck+1
i Δtk+1φk+1(c

2
i V ) f̃ (k−1)

t (tn)

+ cs+2
i Δt s+2

(s − 1)!
∫ 1

0
(1 − z)φ1

(
(1 − z)2V

) ∫ z

0
f̃ (s)
t (tn + σciΔt)(z − σ)s−1dσdz.

(11.46)
Substituting the Taylor formula (11.45) into the right-hand side of the last equations
for i = 1, 2, . . . , s of (11.41) yields

u(tn + ciΔt) = φ0
(
c2i V

)
u(tn) + ciΔtφ1

(
c2i V

)
u′(tn)

+
s∑

k=1

c2i Δt k+1
s∑

j=1

ai j (V )
ck−1
j

(k − 1)! f̃
(k−1)
t (tn)

+ c2i Δt s+2

(s − 1)!
s∑

j=1

ai j (V )

∫ c j

0
f̃ (s)
t (tn + σΔt)(c j − σ)s−1dσ + Δni .

(11.47)
Subtracting (11.46) from (11.47), we obtain

Δni =
s∑

k=1

c2i Δtk+1

⎛
⎝ck−1

i φk+1(c
2
i V ) −

s∑
j=1

ai j (V )
ck−1
j

(k − 1)!

⎞
⎠ f̃ (k−1)

t (tn)

+ cs+2
i Δt s+2

(s − 1)!
∫ 1

0
(1 − z)φ1

(
(1 − z)2V

) ∫ z

0
f̃ (s)
t (tn + σciΔt)(z − σ)s−1dσdz

− c2i Δt s+2

(s − 1)!
s∑

j=1

ai j (V )

∫ c j

0
f̃ (s)
t (tn + σΔt)(c j − σ)s−1dσ.

By the following order conditions:

s∑
j=1

ai j (V )
ck−1
j

(k − 1)! = ck−1
i φk+1(c

2
i V ), k = 1, 2, . . . , s, i = 1, 2, . . . , s,

(11.48)
the residuals Δni can be explicitly expressed as:

Δni =cs+2
i Δt s+2

(s − 1)!
∫ 1

0
(1 − z)φ1

(
(1 − z)2V

) ∫ z

0
f̃ (s)
t (tn + σciΔt)(z − σ)s−1dσdz

− c2i Δt s+2

(s − 1)!
s∑

j=1

ai j (V )

∫ c j

0
f̃ (s)
t (tn + σΔt)(c j − σ)s−1dσ.

(11.49)
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Likewise, we can deduce the following results

‖Δni‖ ≤ c2i Δt s+2

(s − 1)!
(
csi +γ

s∑
i=1

csi
)
max
t0≤t≤T

‖ f (s)
t

(
u(t)

)‖ ≤ C2Δt s+2, i = 1, 2, . . . , s,

(11.50)
where the constant C2 is given by

C2 = 1 + sγ

(s − 1)! max
t0≤t≤T

‖ f (s)
t

(
u(t)

)‖, (11.51)

and γ is the uniform bound on ai j (V ) under the norm ‖ · ‖L2(Ω)←L2(Ω).
Concerning the local error bounds of the Lagrange collocation-type time-stepping

integrators (11.39), we have the following result.

Theorem 11.2 Suppose that f (s)
t ∈ L∞(0, T ; L2(Ω)). Under the local assumptions

of un = u(tn), u′n = u′(tn), the local error bounds of the time integrators (11.39)
satisfy the following inequalities

‖u(tn+1) − un+1‖ ≤ 2Δt2βL
s∑

i=1

‖Δni‖ + ‖δn+1‖,

‖u′(tn+1) − u′n+1‖ ≤ 2ΔtβL
s∑

i=1

‖Δni‖ + ‖δ′n+1‖,
(11.52)

where the residuals δn+1, δ′n+1 and Δni are explicitly represented by (11.42) and
(11.49), respectively.

Proof It follows on subtracting (11.39) from (11.41) that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(tn+1) − un+1 = Δt2
s∑

i=1

bi (V )
(
f̃ (tn + ciΔt) − f (Uni )

)
+ δn+1,

u′(tn+1) − u′n+1 = Δt
s∑

i=1

b̄i (V )
(
f̃ (tn + ciΔt) − f (Uni )

)
+ δ′n+1,

u(tn + ciΔt) −Uni = c2i Δt2
s∑

j=1

ai j (V )
(
f̃ (tn + c jΔt) − f (Unj )

)+ Δni , i = 1, 2, . . . , s.

(11.53)
By taking norms on both sides of the Eq. (11.53) and using Assumption 2, the first
two equations yield

‖u(tn+1) − un+1‖ ≤Δt2
s∑

i=1

‖bi (V )‖L2(Ω)←L2(Ω)‖ f̃ (tn + ciΔt) − f (Uni )‖ + ‖δn+1‖

≤Δt2βL
s∑

i=1

‖u(tn + ciΔt) −Uni‖ + ‖δn+1‖,
(11.54)



11.3 Formulation of the Lagrange Collocation-Type Time Integrators 283

and

‖u′(tn+1) − u′n+1‖ ≤Δt
s∑

i=1

‖b̄i (V )‖L2(Ω)←L2(Ω)‖ f̃ (tn + ciΔt) − f (Uni )‖ + ‖δ′n+1‖

≤ΔtβL
s∑

i=1

‖u(tn + ciΔt) −Uni‖ + ‖δ′n+1‖.
(11.55)

The last equations of (11.53) give

‖u(tn + ciΔt) −Uni‖ ≤c2i Δt2
s∑

j=1

‖āi j (V )‖L2(Ω)←L2(Ω)‖ f̃ (tn + c jΔt) − f (Unj )‖ + ‖Δni‖

≤c2i Δt2γ L
s∑

j=1

‖u(tn + c jΔt) −Unj‖ + ‖Δni‖, i = 1, 2, . . . , s,

(11.56)
where γ is the uniform bound on ai j (V ) under the norm ‖ · ‖L2(Ω)←L2(Ω). Summing
up the results of (11.56) for i from 1 to s, we obtain

s∑
i=1

‖u(tn + ciΔt) −Uni‖ ≤ Δt2γ L
s∑

i=1

c2i

s∑
j=1

‖u(tn + c jΔt) −Unj‖ +
s∑

i=1

‖Δni‖.
(11.57)

If the sufficiently small time stepsize Δt satisfies Δt2γ L
s∑

i=1
c2i ≤ 1

2 , namely,

Δt ≤
√√√√√ 1

2γ L
s∑

i=1
c2i

, (11.58)

then we have
s∑

i=1

‖u(tn + ciΔt) −Uni‖ ≤ 2
s∑

i=1

‖Δni‖. (11.59)

Inserting (11.59) into the right-hand sides of inequalities (11.54) and (11.55) yields
the following results

‖u(tn+1) − un+1‖ ≤2Δt2βL
s∑

i=1

‖Δni‖ + ‖δn+1‖, (11.60)

and

‖u′(tn+1) − u′n+1‖ ≤2ΔtβL
s∑

i=1

‖Δni‖ + ‖δ′n+1‖. (11.61)

The statement of the theorem is proved. �
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Using the estimate of the residuals δn+1, δ′n+1 andΔni in (11.43) and (11.50), and
inserting them into (11.52), the following corollary clarifies the local error bounds
of the Lagrange collocation-type time integrators (11.39).

Corollary 11.1 Under the condition of Theorem 11.2, the local error bounds of the
time integrators (11.39) can be explicitly presented as

‖u(tn+1) − un+1‖ ≤ C̃1Δt s+2 and ‖u′(tn+1) − u′n+1‖ ≤ C̃1Δt s+1, (11.62)

where C̃1 = (C1 + 2C2sβLΔt2), and C1,C2 are defined as (11.44) and (11.51),
respectively.

Remark 11.3 The weights bi (V ), b̄i (V ) and ai j (V ) of the time integrators (11.39)
are determined by (11.34), (11.35) and the order conditions (11.48) with appropriate
nodes ci for i = 1, 2, . . . , s, respectively.

Remark 11.4 Furthermore, from the analysis of the local error bounds for the time
integrators (11.39), it can be observed that there is a term max

0≤z≤1
|ws(z)| appearing in

the constant C1. In order to minimise the constant C1, it is wise to choose the nodes
{ci }si=1 as the Gauss-Legendre nodes in this chapter.

Remark 11.5 Here, we should point out that the limitation on the time stepsize
(11.58) is only a sufficient condition for our theoretical analysis. It is also important
for the analysis of the stability and convergence for the proposed fully discrete
schemes.

11.4 Spatial Discretisation

The proposed arbitrarily high-order Lagrange collocation-type time-stepping inte-
grators (11.39) are expressed in terms of operator in the infinite dimensional Hilbert
space L2(Ω). In order to obtain proper numerical schemes, it remains to approxi-
mate the differential operatorA with an appropriate differentiation matrix A acting
on an M-dimensional space. Furthermore, it is our ideal choice to approximate the
differential operator A by a positive semi-definite matrix A, in such a way that we
can achieve a reasonable and rigorous nonlinear stability and convergence analysis.
Fortunately, much research has been done on the spatial derivatives of nonlinear sys-
tem (11.1) with periodic boundary conditions (11.2), from which it is easy to choose
a suitable positive semi-definite differential matrix.

In this section, we mainly consider the following two types of spatial discretisa-
tions.

1. Symmetric finite difference (SFD) (see, e.g. R. Bank, R.L. Graham, J. Stoer,
R. Varga, H. Yserentant [5])
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As an option, we use the finite difference approximation to approximate the oper-
ator A by the following 9-diagonal differential matrix:

As f d = −a2

Δx2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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M×M

.

In general, the finite difference method is a local approximation and has limited
accuracy. The accuracy of this approximation for the space derivative is of order
eight with O(Δx8), and the differential matrix As f d is positive semi definite.

2. Fourier spectral collocation (FSC) (see, e.g. J. Shen, T. Tang, L. L. Wang [46]
and J. S. Hesthaven, S. Gottlieb, D. Gottlieb [29])

Spectral methods are global in character, where the computation at any given
point depends not only on the information at neighboring points, but on the infor-
mation from the entire domain. The Fourier spectral collocation method is our other
choice, which can be presented as a limit of local finite difference approximations of
increasing orders of accuracy (see, e.g. J. S. Hesthaven, S. Gottlieb, D. Gottlieb [29]).
The entries of the second-order Fourier differentiation matrix A f sc = (akj )M×M are
given by

akj =

⎧⎪⎨
⎪⎩

(−1)k+ j

2 sin−2
(

(k− j)π
M

)
, k 
= j,

M2

12 + 1
6 , k = j.

(11.63)

The main appeal of spectral methods is that they exhibit spectral convergence to
approximateA : the error decays faster than O(M−α), ∀α > 0 for sufficiently large
M . In terms of classical concepts, the method is of an infinite order. Similarly, the
differential matrix A f sc is also a positive semi-definite matrix.

It has been noted that the energy conservation is a crucial property of the nonlinear
Klein–Gordon equations (11.1)–(11.2). After approximating the operator A by a
positive semi-definite differential matrix A, there is also a corresponding energy
conservation law, which can be characterised in the following form:

Ẽ(t) ≡ Δx

2
‖u′(t)‖2+a2Δx

2
‖Du(t)‖2+Δx

M∑
j=1

V
(
u j (t)

) = · · · = Ẽ(t0), (11.64)
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where the norm ‖ · ‖ is the standard vector 2-norm and Δx = 2π
M is the spatial

stepsize. Actually, this energy can be regarded as an approximate energy (a semi-
discrete energy) of the original continuous system. Therefore, in the part of the
numerical experiments, we will also test the effectiveness of our methods to preserve
the semi-discrete energy (11.64).

11.5 The Analysis of Nonlinear Stability and Convergence
for the Fully Discrete Scheme

The nonlinear stability and error analysis for the fully discrete scheme over a finite
time interval [t0, T ] will be investigated in this section. The main strategy used in
this section is the popular energy analysis method. Here, it is noted that, throughout
this section ‖ · ‖ presents the vector 2-norm or matrix 2-norm (spectral norm).

11.5.1 Analysis of the Nonlinear Stability

In this subsection, we will show the nonlinear stability of our time-steeping integra-
tors (11.39), once the differential operator A is replaced by a differential matrix A.

Suppose that the perturbed problem of (11.13) is

{
v′′(t) + A v(t) = f

(
v(t)
)
, t ∈ [t0, T ],

v(t0) = ϕ1(x) + ϕ̃1(x), v′(t0) = ϕ2(x) + ϕ̃2(x),
(11.65)

where ϕ̃1(x), ϕ̃2(x) are perturbation functions. Letting η(t) = v(t) − u(t) and sub-
tracting (11.13) from (11.65), we obtain

{
η′′(t) + A η(t) = f

(
v(t)
)− f

(
u(t)

)
, t ∈ [t0, T ],

η(t0) = ϕ̃1(x), η′(t0) = ϕ̃2(x).
(11.66)

In general, the operatorA is approximated by a symmetric, positive semi-definite,
differential matrix A in the sense of structure preservation. Then, there exists an
orthogonal matrix P and a positive semi-definite diagonal matrix � such that

A = Pᵀ�P.

By defining the matrix D = Pᵀ�
1
2 P , we obtain the decomposition of matrix A

as A = D2. The bounded operator functions φ j (t2A ) are replaced by the matrix
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functions φ j (t2A). Similarly to the boundedness of the operator functions, we also
have

‖φ j (t
2A)‖ =

√
λmax

(
φ2
j (t

2A)
)

≤ γ j , j = 0, 1, 2 . . . . (11.67)

Applying our time-stepping integrators (11.39) to (11.66), we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ηn+1 = φ0
(
V
)
ηn + Δtφ1

(
V
)
η′n + Δt2

s∑
i=1

bi (V )
(
f (V ni ) − f (Uni )

)
,

η′n+1 = −Δt Aφ1
(
V
)
ηn + φ0

(
V
)
η′n + Δt

s∑
i=1

b̄i (V )
(
f (V ni ) − f (Uni )

)
,

V ni −Uni = φ0
(
c2i V

)
ηn + ciΔtφ1

(
c2i V

)
η′n + c2i Δt2

s∑
j=1

ai j (V )
(
f (V nj ) − f (Unj )

)
,

i = 1, 2, . . . , s,
(11.68)

where V = Δt2A and bi (V ) and b̄i (V ) are defined by (11.34) and (11.35), respec-
tively. Likewise, we have

‖bi (V )‖ ≤ max
0≤z≤1

|li (z)| ≤ β and ‖b̄i (V )‖ ≤ max
0≤z≤1

|li (z)| ≤ β,

which are uniformly bounded.
We rewrite the first two formulae of (11.68) in the following matrix form:

(
Dηn+1

η′n+1

)
=Ω

(
Dηn

η′n

)
+

s∑
i=1

Δt
∫ 1

0
Ωi (z)dz

(
0

f (Uni ) − f (V ni )

)
,

(11.69)
where

Ω =
(

φ0(V ) Δt Dφ1(V )

−Δt Dφ1(V ) φ0(V )

)
(11.70)

and

Ωi (z) = li (z)

(
φ0((1 − z)2V ) Δt (1 − z)Dφ1((1 − z)2V )

−Δt (1 − z)Dφ1((1 − z)2V ) φ0((1 − z)2V )

)
,

(11.71)

for i = 1, . . . , s. Before the stability analysis, we state a property of the operator-
argument functions φ0 and φ1, and bound the spectral norm of matricesΩ andΩi (z)
for i = 1, 2, . . . , s.
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Lemma 11.1 The bounded operator-argument functions φ0(A) and φ1(A) defined
by (11.5) satisfy

φ2
0(A) + Aφ2

1(A) = I, (11.72)

where A is any positive semi-definite operator or matrix.

Proof Lemma 11.1 can be obtained by a direct calculation based on (11.12). We
omit the details of the proof. �

Lemma 11.2 Assume that A is a symmetric positive semi-definite matrix and that
V = Δt2A. Let the matrices Ω and Ωi (z) for i = 1, 2, . . . , s be defined by (11.70)
and (11.71), respectively. Then, the spectral norms of matrices Ω and Ωi (z) satisfy

‖Ω‖ = 1 and ‖Ωi (z)‖ = |li (z)| ≤ β, ∀z ∈ [0, 1], i = 1, 2, . . . , s, (11.73)

where β is the uniform bound for the Lagrange basis |li (z)|.
Proof It is straightforward to verify that

ΩᵀΩ =
(

φ2
0(V ) + Vφ2

1(V ) 0
0 φ2

0(V ) + Vφ2
1(V )

)
,

and

Ω
ᵀ
i (z)Ωi (z) =l2i (z)

(
Ω11

i 0
0 Ω22

i

)
,

where
Ω11

i = φ2
0((1 − z)2V ) + (1 − z)2Vφ2

1((1 − z)2V ),

Ω22
i = φ2

0((1 − z)2V ) + (1 − z)2Vφ2
1((1 − z)2V ).

It follows from Lemma 11.1 that

ΩᵀΩ = I2M×2M , and Ωi (z)
ᵀΩi (z) = l2i (z)I2M×2M . (11.74)

We then have

‖Ω‖ = 1 and ‖Ωi (z)‖ = |li (z)| ≤ β, ∀z ∈ [0, 1], i = 1, 2, . . . , s.

The conclusion of the lemma is proved. �

Theorem 11.3 Supposing that the nonlinear function f satisfies Assumption 2 and
that the operatorA is approximated by a symmetric positive semi-definite differential
matrix A. Then, if the sufficiently small time stepsize Δt satisfies (11.58), we have
the following nonlinear stability results
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‖ηn‖ ≤ exp
(
(1 + 4sβL)T

)(‖ϕ̃1‖ +
√

‖Dϕ̃1‖2 + ‖ϕ̃2‖2
)
,

‖η′n‖ ≤ exp
(
(1 + 4sβL)T

)(‖ϕ̃1‖ +
√

‖Dϕ̃1‖2 + ‖ϕ̃2‖2
)
,

(11.75)

where γ is a uniform bound for ‖ai j (V )‖.
Proof It follows from taking the l2 norm on both sides of the first formula (11.68)
and (11.69) that

‖ηn+1‖ ≤ ‖ηn‖ + Δt‖η′n‖ + Δt2β
s∑

i=1

(‖ f (V ni ) − f (Uni )‖),
(11.76)

√
‖Dηn+1‖2 + ‖η′n+1‖2 ≤

√
‖Dηn‖2 + ‖η′n‖2 + Δtβ

s∑
i=1

(‖ f (V ni ) − f (Uni )‖).
(11.77)

Then summing up the results, we obtain

‖ηn+1‖ +
√

‖Dηn+1‖2 + ‖η′n+1‖2 ≤‖ηn‖ +
√

‖Dηn‖2 + ‖η′n‖2 + Δt‖η′n‖

+ Δt (1 + Δt)β
s∑

i=1

(‖ f (V ni ) − f (Uni )‖).
(11.78)

Applying Assumption 2 to the right-hand side of the inequality (11.78), we obtain

‖ηn+1‖ +
√

‖Dηn+1‖2 + ‖η′n+1‖2 ≤‖ηn‖ +
√

‖Dηn‖2 + ‖η′n‖2 + Δt‖η′n‖

+ Δt (1 + Δt)βL
s∑

i=1

(‖V ni −Uni‖).
(11.79)

Likewise, it follows from the last equations in (11.68) that

‖V ni −Uni‖ ≤‖ηn‖ + ciΔt‖η′n‖ + c2i Δt2
s∑

j=1

‖ai j (V )‖ · ‖ f (V nj ) − f (Unj )‖

≤‖ηn‖ + ciΔt‖η′n‖ + c2i Δt2γ L
s∑

j=1

‖V nj −Unj‖, i = 1, . . . , s.

(11.80)
Then, summing up the results of (11.80) between i from 1 to s, we obtain

s∑
i=1

‖V ni −Uni‖ ≤
s∑

i=1

(‖ηn‖ + ciΔt‖η′n‖)+ Δt2γ L
s∑

i=1

c2i

s∑
j=1

‖V nj −Unj‖.
(11.81)

This gives
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(
1 − Δt2γ L

s∑
i=1

c2i
) s∑
i=1

‖V ni −Uni‖ ≤
s∑

i=1

(‖ηn‖ + ciΔt‖η′n‖). (11.82)

If the sufficiently small time stepsize Δt satisfies (11.58), then we have

s∑
i=1

‖V ni −Uni‖ ≤ 2
s∑

i=1

(‖ηn‖ + ciΔt‖η′n‖). (11.83)

Inserting (11.83) into (11.79) yields

‖ηn+1‖ +
√

‖Dηn+1‖2 + ‖η′n+1‖2

≤‖ηn‖ +
√

‖Dηn‖2 + ‖η′n‖2 + Δt‖η′n‖ + 2Δt (1 + Δt)βL
s∑

i=1

(‖ηn‖ + ciΔt‖η′n‖).
(11.84)

An argument by induction leads to the following result

‖ηn+1‖ +
√

‖Dηn+1‖2 + ‖η′n+1‖2 ≤(1 + Δt (1 + 4sβL)
)n(‖η0‖ +

√
‖Dη0‖2 + ‖η′0‖2)

≤ exp
(
T (1 + 4sβL)

)(‖ϕ̃1‖ +
√

‖Dϕ̃1‖2 + ‖ϕ̃2‖2
)
.

(11.85)
Thus, the following inequalities are derived

‖ηn‖ ≤ exp
(
(1 + 4sβL)T

)(‖ϕ̃1‖ +
√

‖Dϕ̃1‖2 + ‖ϕ̃2‖2
)
,

‖η′n‖ ≤ exp
(
(1 + 4sβL)T

)(‖ϕ̃1‖ +
√

‖Dϕ̃1‖2 + ‖ϕ̃2‖2
)
.

(11.86)

The conclusions of the theorem are proved. �

11.5.2 Convergence of the Fully Discrete Scheme

As is known, the convergence of the classical methods for linear partial differential
equations is governed by the Lax equivalence theorem: convergence equals consis-
tency plus stability [33]. However, the Lax equivalence theorem does not directly
apply to nonlinear problems.

In this subsection, the error analysis of the fully discrete scheme for nonlinear
problems will be discussed. Based on some suitable assumptions of smoothness and
spatial discretisation strategies, the original continuous system (11.1) or (11.13) can
be discretised as follows:{

U ′′(t) + AU (t) = f
(
U (t)

)+ δ(Δx), t ∈ [t0, T ],
U (t0) = ϕ1, U ′(t0) = ϕ2,

(11.87)
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where A is a positive semi-definite differential matrix,

U (t) = (u(x1, t), u(x2, t), . . . , u(xM , t)
)ᵀ

and
ϕl = (ϕl(x1), ϕl(x2), . . . , ϕl(xM)

)ᵀ
,

for l = 1, 2.
Here, it should be noted that δ(Δx) is the truncation error produced by approxi-

mating the spatial differential operator A by a positive semi-definite matrix A. For
example, if wewere to approximate the spatial derivative by the classical fourth-order
finite difference method (see, e.g. [5, 39]), then the truncation error δ(Δx) would be
‖δ(Δx)‖ = O(Δx4).

Applying a time-stepping integrator (11.39) to the semi-discrete system (11.87)
yields the following results

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U (tn+1) = φ0
(
V
)
U (tn) + Δtφ1

(
V
)
U ′(tn) + Δt2

s∑
i=1

bi (V ) f (U (tn + ciΔt)) + Rn+1,

U ′(tn+1) = −Δt Aφ1
(
V
)
U (tn) + φ0

(
V
)
U ′(tn) + Δt

s∑
i=1

b̄i (V ) f (U (tn + ciΔt)) + R′n+1,

U (tn + ciΔt) = φ0
(
c2i V

)
U (tn) + ciΔtφ1

(
c2i V

)
U ′(tn) + c2i Δt2

s∑
j=1

ai j (V ) f (U (tn + c jΔt)) + Rni ,

i = 1, 2, . . . , s,
(11.88)

where the truncation errors Rn+1, R′n+1 and Rni can be explicitly represented as

Rn+1 = Δt s+2

s!
∫ 1

0
(1 − z)φ1

(
(1 − z)2V

)
ws(z)dz f

(s)
t
(
U (tn + ξnΔt)

)
(11.89)

+ Δt2
∫ 1

0
(1 − z)φ1

(
(1 − z)2V

)
δ(Δx)dz, (11.90)

R′n+1 = Δt s+1

s!
∫ 1

0
φ0
(
(1 − z)2V

)
ws(z)dz f

(s)
t
(
U (tn + ξnΔt)

)
(11.91)

+ Δt
∫ 1

0
φ0
(
(1 − z)2V

)
δ(Δx)dz, (11.92)

and

Rni = cs+2
i Δt s+2

(s − 1)!
∫ 1

0
(1 − z)φ1

(
(1 − z)2V

) ∫ z

0
f (s)
t
(
U (tn + σciΔt)

)
(z − σ)s−1dσdz

− c2i Δt s+2

(s − 1)!
s∑

j=1

ai j (V )

∫ c j

0
f (s)
t
(
U (tn + σΔt)

)
(c j − σ)s−1dσ

+ c2i Δt2
∫ 1

0
(1 − z)φ1

(
(1 − z)2c2i V

)
δ(Δx)dz − c2i Δt2

s∑
j=1

ai j (V )δ(Δx).

(11.93)



292 11 Arbitrarily High-Order Time-Stepping Schemes

Under some suitable assumptions of smoothness, the truncation errors Rn+1, R′n+1

and Rni satisfy

‖Rn+1‖ ≤ C1Δt s+2 + 1

2
Δt2‖δ(Δx)‖, ‖R′n+1‖ ≤ C1Δt s+1 + Δt‖δ(Δx)‖,

(11.94)
and

‖Rni‖ ≤ C2Δt s+2 + Δt2(1 + sγ )‖δ(Δx)‖, i = 1, 2, . . . , s, (11.95)

where the constants C1 and C2 are determined by (11.44) and (11.51), respectively.
Omitting the small terms Rn+1, R′n+1 and Rni in (11.88) and using unj ≈ u(x j , tn),

we obtain the following fully discrete scheme⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un+1 = φ0(V )un + Δtφ1(V )u′n + Δt2
s∑

i=1

bi (V ) f (Uni ),

u′n+1 = −Δt Aφ1(V )un + φ0(V )u′n + Δt
s∑

i=1

b̄i (V ) f (Uni ),

Uni = φ0(c
2
i V )un + ciΔtφ1(c

2
i V )u′n + c2i Δt2

s∑
j=1

ai j (V ) f (Unj ), i = 1, 2, . . . , s.

(11.96)

We next consider the convergence of the fully discrete scheme (11.96) for non-
linear problems. To this end, we denote enj = u(x j , tn) − unj , e

′n
j = ut (x j , tn) − u′n

j

and Eni
j = u(x j , tn + ciΔt) −Uni

j for j = 1, 2, . . . , M , i.e., en = U (tn) − un, e′n =
U ′(tn) − u′n and Eni = U (tn + ciΔt) −Uni . Subtracting (11.96) from (11.88), and
on noticing the exact initial conditions, we get a system of error equations expressed
in the form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

en+1 = φ0(V )en + Δtφ1(V )e′n + Δt2
s∑

i=1

bi (V )
(
f
(
U (tn + ciΔt)

)− f (Uni )
)

+ Rn+1,

e′n+1 = −Δt Aφ1(V )en + φ0(V )e′n + Δt
s∑

i=1

b̄i (V )
(
f
(
U (tn + ciΔt)

)− f (Uni )
)

+ Rn+1,

Eni = φ0(c
2
i V )en + ciΔtφ1(c

2
i V )e′n + c2i Δt2

s∑
j=1

ai j (V )
(
f
(
U (tn + ciΔt)

)− f (Uni )
)

+ Rni ,

i = 1, 2, . . . , s,
(11.97)

with the initial conditions e0 = 0, e′0 = 0.
In what follows, we quote the following discrete Gronwall inequality, which plays

an important role in the convergence analysis for the fully discrete scheme.

Lemma 11.3 (See, e.g. [48]) Let μ be positive and ak, bk (k = 0, 1, 2, · · · ) be
nonnegative and satisfy
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ak ≤ (1 + μΔt)ak−1 + Δtbk, k = 1, 2, 3, . . . ,

then

ak ≤ exp(μkΔt)
(
a0 + Δt

k∑
m=1

bm
)
, k = 1, 2, 3, . . . .

Theorem 11.4 Under the Assumptions1 and 2, and suppose that u(x, t) satisfies
some suitable assumptions on smoothness. If the time stepsizeΔt is sufficiently small
and satisfies (11.58), then there exists a constant C such that

‖en‖ ≤ CT exp
(
(1 + 4sβL)T

)(
Δt s + ‖δ(Δx)‖),

‖e′n‖ ≤ CT exp
(
(1 + 4sβL)T

)(
Δt s + ‖δ(Δx)‖), (11.98)

where C is a constant independent of n,Δt and Δx.

Proof The first two equations of the error system (11.97) can be rewritten in the
compact form

(
Den+1

e′n+1

)
=Ω

(
Den

e′n
)

+ Δt
s∑

i=1

∫ 1

0
Ωi (z)dz

(
0

f
(
U (tn + ciΔt)

)− f (Uni )

)
+
(
DRn+1

Rn+1

)
,

(11.99)
where Ω and Ωi (z) are defined by (11.70) and (11.71), respectively.

It follows from taking the l2 norm on both sides of the first formula (11.97) and
(11.99) that

‖en+1‖ ≤ ‖en‖ + Δt‖e′n‖ + Δt2β
s∑

i=1

‖ f
(
U (tn + ciΔt)

)− f (Uni )‖ + ‖Rn+1‖,

√
‖Den+1‖2 + ‖e′n+1‖2 ≤

√
‖Den‖2 + ‖e′n‖2 + Δtβ

s∑
i=1

‖ f
(
U (tn + ciΔt)

)− f (Uni )‖

+
√

‖DRn+1‖2 + ‖R′n+1‖2.
(11.100)

Then, summing up the results of (11.100) and using the Assumption 2, we obtain

‖en+1‖ +
√

‖Den+1‖2 + ‖e′n+1‖2 ≤ ‖en‖ + Δt‖e′n‖ +
√

‖Den‖2 + ‖e′n‖2

+ Δt (1 + Δt)βL
s∑

i=1

‖Eni‖ + ‖Rn+1‖ +
√

‖DRn+1‖2 + ‖R′n+1‖2.
(11.101)

Likewise, taking the l2 norm on both sides of the last equations of the error system
(11.97) yields

‖Eni‖ ≤ ‖en‖ + ciΔt‖e′n‖ + c2i Δt2γ L
s∑

i=1

‖Eni‖ + ‖Rni‖, i = 1, 2, . . . , s.

(11.102)
Summing the results of (11.102) for i from 1 to s gives
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s∑
i=1

‖Eni‖ ≤
s∑

i=1

(‖en‖+ciΔt‖e′n‖+‖Rni‖)+Δt2γ L
s∑

i=1

c2i

s∑
j=1

‖Enj‖. (11.103)

Under the condition (11.58), we obtain

s∑
i=1

‖Eni‖ ≤ 2
s∑

i=1

(‖en‖ + ciΔt‖e′n‖) + 2
s∑

i=1

‖Rni‖. (11.104)

Inserting (11.104) into (11.101) yields

‖en+1‖ +
√

‖Den+1‖2 + ‖e′n+1‖2 ≤ ‖en‖ + Δt‖e′n‖ +
√

‖Den‖2 + ‖e′n‖2

+ 2Δt (1 + Δt)βL
s∑

i=1

(‖en‖ + ciΔt‖e′n‖) + ‖Rn+1‖ +
√

‖DRn+1‖2 + ‖R′n+1‖2

+ 2Δt (1 + Δt)βL
s∑

i=1

‖Rni‖.
(11.105)

It follows from the inequality (11.105) that

‖en+1‖ +
√

‖Den+1‖2 + ‖e′n+1‖2 ≤ (1 + Δt (1 + 4sβL)
)(‖en‖ +

√
‖Den‖2 + ‖e′n‖2)

+ ‖Rn+1‖ +
√

‖DRn+1‖2 + ‖R′n+1‖2 + 2Δt (1 + Δt)βL
s∑

i=1

‖Rni‖.
(11.106)

We note that the truncation errors Rn+1, R′n+1 and Rni satisfy (11.94) and (11.95),
respectively. Then, there exists a constant C satisfying

‖Rn+1‖ +
√

‖DRn+1‖2 + ‖R′n+1‖2 + 2Δt (1 + Δt)βL
s∑

i=1

‖Rni‖ ≤ CΔt
(
Δt s + ‖δ(Δx)‖).

(11.107)
Applying the discrete Gronwall inequality (Lemma 11.3) to (11.106) yields

‖en‖ +
√

‖Den‖2 + ‖e′n‖2 ≤ exp
(
nΔt (1 + 4sβL)

)(‖e0‖ +
√

‖De0‖2 + ‖e′0‖2

+ CnΔt
(
Δt s + ‖δ(Δx)‖)).

(11.108)
Therefore, we obtain the following estimates:

‖en‖ ≤ CT exp
(
(1 + 4sβL)T

)(
Δt s + ‖δ(Δx)‖),

‖e′n‖ ≤ CT exp
(
(1 + 4sβL)T

)(
Δt s + ‖δ(Δx)‖). (11.109)

The conclusions of the theorem are confirmed. �
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11.5.3 The Convergence of the Fixed-Point Iteration

The previous subsections derived and analysed the fully discrete scheme. However,
the scheme (11.96) is implicit in general. Therefore, iteration is required in practical
computations. Fortunately, a wide range of iterative methods (see, e.g. [34, 42, 52])
can be chosen for (11.96). Here, we will use the fixed-point iteration for the implicit
scheme and analyse its convergence.

Actually, the iteration is needed only for the computation of the internal stages.
The iterative procedure of the fixed-point iteration for (11.96) can be read as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Uni
[0] = φ0(c

2
i V )un + ciΔtφ1(c

2
i V )u′n,

Uni
[m+1] = φ0(c

2
i V )un + ciΔtφ1(c

2
i V )u′n + c2i Δt2

s∑
j=1

ai j (V ) f (Unj
[m]),

i = 1, 2, . . . , s, m = 0, 1, 2, . . . ,
(11.110)

and

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
un+1 = φ0(V )un + Δtφ1(V )u′n + Δt2

s∑
i=1

bi (V ) f (Uni ),

u′n+1 = −Δt Aφ1(V )un + φ0(V )u′n + Δt
s∑

i=1

b̄i (V ) f (Uni ).

(11.111)

Theorem 11.5 Let the nonlinear function f satisfy the Assumption 2. If the time
stepsize Δt satisfies the condition (11.58), the iteration procedure determined by
(11.110) and (11.111) is convergent.

Proof According to Assumption 2 and (11.110), the following inequalities can be
obtained

‖Uni
[m+1] −Uni

[m]‖ ≤c2i Δt2
s∑

j=1

‖ai j (V )‖ · ‖ f (Unj
[m]) − f (Unj

[m−1])‖

≤Δt2γ Lc2i

s∑
j=1

‖Unj
[m] −Unj

[m−1]‖, i = 1, 2, . . . , s.

(11.112)

Then, summing over i in (11.112) yields

s∑
i=1

‖Uni
[m] −Uni

[m−1]‖ ≤ Δt2γ L
s∑

i=1

c2i

s∑
j=1

‖Unj
[m] −Unj

[m−1]‖. (11.113)
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An argument by induction then gives the following result:

s∑
i=1

‖Uni
[m] −Uni

[m−1]‖ ≤
(
Δt2γ L

s∑
i=1

c2i
)m s∑

i=1

‖Uni
[1] −Uni

[0]‖. (11.114)

The limitation of the time stepsize (11.58) leads to

lim
m→+∞

( s∑
i=1

‖Uni
[m] −Uni

[m−1]‖
)

≤ lim
m→+∞

1

2m

s∑
i=1

‖Uni
[1] −Uni

[0]‖ = 0. (11.115)

Therefore, the iterative procedure (11.110)–(11.111) is convergent.

11.6 The Application to Two-dimensional Dirichlet
or Neumann Boundary Problems

The problem considered in (11.1) is the one-dimensional case, and is equipped
with the special periodic boundary conditions (11.2). However, our approach can
be extended to the considerably more important high-dimensional Klein–Gordon
equations. The computational methodology developed in this chapter is very use-
ful and has potential applications in solving more sophisticated multi-dimensional
solitary wave equations. In this section, we mainly concentrate on discussing the
application of our time-stepping schemes (11.39) to the two-dimensional nonlinear
Klein–Gordon equations equipped with Dirichlet or Neumann boundary conditions.
There has been a considerable amount of recent discussions on the computation of
2D sine–Gordon type solitons, in particular via different finite difference and finite
element methods, splitting algorithms and predictor–corrector schemes (see, e.g. [2,
4, 11, 12, 19, 45]).

The two-dimensional nonlinear Klein–Gordon equation under consideration is
expressed by

{
utt − a2(uxx + uyy) = f (u), (x, y) ∈ Ω, t0 < t ≤ T,

u(x, y, t0) = ϕ0(x, y), ut (x, y, t0) = ϕ1(x, y), (x, y) ∈ Ω̄,
(11.116)

where f (u) is a nonlinear function of u chosen as the negative derivative of a potential
energy V (u). Here, we suppose that the 2D problem (11.116) is defined on the spatial
domainΩ = (0, π)×(0, π) and supplementedwith homogenousDirichlet boundary
conditions:

u(0, y, t) = u(π, y, t) = 0, u(x, 0, t) = u(x, π, t) = 0, ∀t ∈ [t0, T ],
(11.117)

and homogenous Neumann boundary conditions:
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∂u

∂x

∣∣∣
x=0,π

= 0,
∂u

∂y

∣∣∣
y=0,π

= 0, ∀t ∈ [t0, T ]. (11.118)

For an abstract formulation of the problem (11.116), the linear differential operator
A now should be defined as

(A v)(x, y) = −a2
(
∂2
x + ∂2

y

)
v(x, y). (11.119)

Likewise,A is an unbounded symmetric and positive semi-definite operator but not
defined for every v ∈ L2(Ω). For our further analysis, the inner product of the space
L2(Ω) is defined as

(u, v) =
∫ π

0

∫ π

0
u(x, y)v(x, y)dxdy. (11.120)

In order to model the homogenous Dirichlet and Neumann boundary conditions,
the operator A should be defined on different function spaces respectively. In what
follows, we will analyse the the two-dimensional case.

11.6.1 2D Klein–Gordon Equation with Dirichlet Boundary
Conditions

The operator A is defined on the following domain

D(A ) = H 2(Ω) ∩ H 1
0 (Ω). (11.121)

In this case, the functions sin(mx+ny) are orthogonal eigenfunctions of the operator
A corresponding to the eigenvalues a2(m2 + n2), m, n = 1, 2, . . . . The functions
of the operator A can be defined as:

φ j (tA )v(x, y) =
∞∑

m=1

∞∑
n=1

v̂m,nφ j
(
a2(m2 + n2)t

)
sin(mx + ny) (11.122)

for v(x, y) =
∞∑

m=1

∞∑
n=1

v̂m,n sin(mx + ny) ∈ L2(Ω), where all v̂m,n are the Fourier

coefficients of v(x, y). In order to show the operator functions φ j (tA ) for any ∀t ∈
[t0, T ] are bounded, we will characterise the L2 norm in the frequency space as

‖v‖2 =
∫ π

0

∫ π

0
|v(x, y)|2dxdy = π2

4

∞∑
m=1

∞∑
n=1

|v̂m,n|2. (11.123)
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Lemma 11.4 The functions of the operator A defined by (11.122) are bounded
operator under the norm ‖ · ‖L2(Ω)←L2(Ω), i.e.,

‖φ j (tA )‖L2(Ω)←L2(Ω) ≤ γ j , (11.124)

where γ j are the bounds of the functions φ j (x) for j = 0, 1, 2, ... for x ≥ 0,
respectively.

Proof For any function u(x, y) ∈ L2(Ω), its Fourier series can be expressed as

u(x, y) =
∞∑

m=1

∞∑
n=1

ûm,n sin(mx + ny).

Considering the definition of the norm, we obtain

‖φ j (tA )u‖2 = π2

4

∞∑
m=1

∞∑
n=1

|ûm,n |2|φ j
(
a2(m2+n2)t

)|2 ≤ sup
t≥0

|φ j
(
a2(m2+n2)t |2 ·‖u‖2 ≤ γ 2

j ‖u‖2.

Thus, we deduce the following inequality

‖φ j
(
tA
)‖2L2(Ω)←L2(Ω) = sup

‖u‖
=t0

‖φ j
(
tA
)
u‖2

‖u‖2 ≤ γ 2
j , j = 0, 1, 2, . . . .

The conclusion of the lemma is proved. �

The following lemma shows that the operator functions φ j (tA ) for j = 0, 1,
2, . . . are symmetric.

Lemma 11.5 The bounded operator functions φ j (tA ) for j = 0, 1, 2, . . . are sym-
metric operators with respect to the inner product (11.120).

Proof For any functions u(x, y), v(x, y) ∈ L2(Ω), we have

(φ j
(
tA
)
u, v) =

∫ π

0

∫ π

0
φ j
(
tA
)
u(x, y)v(x, y)dxdy

=π2

4

∞∑
m=1

∞∑
n=1

ûm,nv̂m,nφ j
(
a2(m2 + n2)t

)
,

and

(u, φ j
(
tA
)
v) =

∫ π

0

∫ π

0
u(x, y)φ j

(
tA
)
v(x, y)dxdy

=π2

4

∞∑
m=1

∞∑
n=1

ûm,nv̂m,nφ j
(
a2(m2 + n2)t

)
.
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Hence, we have

(φ j
(
tA
)
u, v) = (u, φ j

(
tA
)
v), j = 0, 1, 2, . . . .

The symmetry of the bounded operator functions is proved. �

11.6.2 2D Klein–Gordon Equation with Neumann Boundary
Conditions

In this case, we define the operator A on the domain

D(A ) = {v ∈ H 2(Ω) : vx = 0, vy = 0, (x, y) ∈ ∂Ω}. (11.125)

The orthogonal eigenfunctions of the operator A are cos(mx + ny), and the cor-
responding eigenvalues are a2(m2 + n2) for m, n = 0, 1, 2, . . . . We define the
operator functions of A as:

φ j (tA )v(x, y) =
∞∑

m=0

∞∑
n=0

v̂m,nφ j
(
a2(m2 + n2)t

)
cos(mx + ny), (11.126)

for v(x, y) =
∞∑

m=0

∞∑
n=0

v̂m,n cos(mx + ny) ∈ L2(Ω), where v̂m,n are the Fourier

coefficients of v(x, y). Similarly, the L2 norm can be characterized in the frequency
space by

‖v‖2 =
∫ π

0

∫ π

0
|v(x, y)|2dxdy = π2

4

∞∑
m=0

∞∑
n=0

|v̂m,n|2. (11.127)

In what follows, we show the boundedness of the operator functions φ j (tA ) for
j = 0, 1, 2, . . . by the following Lemma.

Lemma 11.6 The functions of the operator A defined by (11.126) are bounded
operator under the norm ‖ · ‖L2(Ω)←L2(Ω), i.e.,

‖φ j (tA )‖L2(Ω)←L2(Ω) ≤ γ j , (11.128)

whereγ j are the bounds of the functionsφ j (x), j = 0, 1, 2, ... for x ≥ 0, respectively.

Proof For any function u(x, y) ∈ L2(Ω), its Fourier series can be expressed by

u(x, y) =
∞∑

m=0

∞∑
n=0

ûm,n cos(mx + ny).
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Considering the definition of the norm, we obtain

‖φ j (tA )u‖2 = π2

4

∞∑
m=0

∞∑
n=0

|ûm,n |2|φ j
(
a2(m2+n2)t

)|2 ≤ sup
t≥0

|φ j
(
a2(m2+n2)t

)|2 ·‖u‖2 ≤ γ 2
j ‖u‖2.

Hence, we deduce the following inequality

‖φ j
(
tA
)‖2L2(Ω)←L2(Ω) = sup

‖u‖
=0

‖φ j
(
tA
)
u‖2

‖u‖2 ≤ γ 2
j , j = 0, 1, 2, . . . .

The conclusion of the lemma is proved. �

Similarly, the following lemma shows that the operator functions φ j (tA ) are
symmetric for j = 0, 1, 2, . . . .

Lemma 11.7 The bounded operator functions φ j (tA ) for j = 0, 1, 2, . . . are sym-
metric operators with respect to the inner product (11.120).

Proof For any functions u(x, y), v(x, y) ∈ L2(Ω), we have

(φ j
(
tA
)
u, v) =

∫ π

0

∫ π

0
φ j
(
tA
)
u(x, y)v(x, y)dxdy

=π2

4

∞∑
m=0

∞∑
n=0

ûm,nv̂m,nφ j
(
a2(m2 + n2)t

)
,

and

(u, φ j
(
tA
)
v) =

∫ π

0

∫ π

0
u(x, y)φ j

(
tA
)
v(x, y)dxdy

=π2

4

∞∑
m=0

∞∑
n=0

ûm,nv̂m,nφ j
(
a2(m2 + n2)t

)
.

We then have

(φ j
(
tA
)
u, v) = (u, φ j

(
tA
)
v), j = 0, 1, 2, . . . .

The statement of the theorem is confirmed. �

11.6.3 Abstract ODE Formulation and Spatial Discretisation

Similarly to the one dimensional periodic boundary problem (11.1)–(11.2), by defin-
ing u(t) as the function that maps (x, y) to u(x, y, t):

u(t) = [(x, y) �→ u(x, y, t)],
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we can formulate the two-dimensional problem (11.116) equipped with the Dirich-
let boundary conditions (11.121) or Neumann boundary conditions (11.125) as the
following abstract ODE on the Hilbert space L2(Ω):

{
u′′(t) + A u(t) = f

(
u(t)

)
,

u(t0) = ϕ1(x, y), u′(t0) = ϕ2(x, y).
(11.129)

Theorem 11.6 The solution of the abstract ODE (11.129) and its derivative satisfy

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(t) = φ0
(
(t − t0)

2A
)
u(t0) + (t − t0)φ1

(
(t − t0)

2A
)
u′(t0)

+
∫ t

t0

(t − ζ )φ1
(
(t − ζ )2A

)
f
(
u(ζ )

)
dζ,

u′(t) = − (t − t0)A φ1
(
(t − t0)

2A
)
u(t0) + φ0

(
(t − t0)

2A
)
u′(t0)

+
∫ t

t0

φ0
(
(t − ζ )2A

)
f
(
u(ζ )

)
dζ,

(11.130)

where φ0
(
(t − t0)2A

)
, φ1

(
(t − t0)2A

)
are bounded functions of the operatorA for

∀t ∈ [t0, T ].
Based on the above analysis, it is straightforward to extend our time-stepping inte-

grators (11.39) to two-dimensional nonlinear Klein–Gordon equations with Dirichlet
or Neumann boundary conditions. Moreover, we note that the orthogonal eigen-
functions of the operator A for Dirichlet and Neumann boundary problems are
sin(mx) sin(ny) and cos(mx) cos(ny), respectively. In order to reduce the computa-
tion caused by the spatial discretisation, we focus much more on choosing Fourier
spectral methods. The numerous related researches on the discrete Fast Cosine / Sine
Transformation have been widely studied in the literature (see, e.g. [14–16, 43]). The
corresponding spatial discretisation methods are the discrete Fast Sine Transforma-
tion for the underlying Dirichlet boundary problem, and the discrete Fast Cosine
Transformation for the underlying Neumann boundary case.

11.7 Numerical Experiments

In this section, we derive three practical time integrators and illustrate the numerical
results for one dimensional Klein–Gordon equation with periodic boundary condi-
tions and two-dimensional sine–Gordon with homogenous Dirichlet or Neumann
boundary conditions. It is clear that our time integrators (11.39) are determined by
(11.34), (11.35) and (11.48) with appropriate nodes ci for i = 1, 2, . . . , s. More-
over, we note from our error analysis that there is a term max

0≤z≤1
|ws(z)| involved in
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the constant C1. In order to minimise the constant C1, here and in the following, we
choose Gauss-Legendre nodes.

In the first example, we choose the two-point Gauss-Legendre nodes,

c1 = 3 − √
3

6
, c2 = 3 + √

3

6
, (11.131)

and the corresponding time integrator determined by (11.34), (11.35) and (11.48) is
denoted by GLC2.

For the second example, the following three-point Gauss-Legendre nodes

c1 = 5 − √
15

10
, c2 = 1

2
, c3 = 5 + √

15

10
, (11.132)

together with (11.34), (11.35) and (11.48) determine the three-point time integrator
which is denoted by GLC3.

For the third example, we take the four-point Gauss-Legendre nodes

c1 = 1 −
√

15+2
√
30

35

2
, c2 = 1 −

√
15−2

√
30

35

2
,

c3 = 1 +
√

15−2
√
30

35

2
, c4 = 1 +

√
15+2

√
30

35

2
,

(11.133)

and denote the corresponding time integrator determined by (11.34), (11.35) and
(11.48) by GLC4.

For comparison, in what follows, we briefly describe a collection of classical finite
difference and the method-of-lines approximations of the nonlinear Klein–Gordon
equation. The methods are listed below:

1. The standard finite difference schemes (see, e.g. [9, 25, 48])

Let unj be the approximation of u(x j , tn) ( j = 0, 1, . . . , M, n = 0, 1, . . . , N ) and
introduce the finite difference discretisation operators

δ2t u
n
j = un+1

j − 2unj + un−1
j

Δt2
and δ2xu

n
j = unj+1 − 2unj + unj−1

Δx2
.

Here, we consider three frequently used finite difference schemes to discretise the
problem (11.1)–(11.2) as follows:

• Explicit finite difference (Expt-FD) scheme

δ2t u
n
j − a2δ2xu

n
j = f (unj );
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• Semi-implicit finite difference (Simpt-FD) scheme

δ2t u
n
j − a2

2

(
δ2xu

n+1
j + δ2xu

n−1
j

) = f (unj );

• Compact finite difference (Compt-FD) scheme

(
I + Δx2

12
δ2x
)
δ2t u

n
j − a2

2

(
δ2xu

n+1
j + δ2xu

n−1
j

) = (I + Δx2

12
δ2x
)
f (unj ).

2. The method-of-lines schemes

Firstly, we approximate the spatial differential operator A to obtain a semi-
discrete system of the form

u′′(t) + Au(t) = f
(
u(t)

)
, (11.134)

where A is a symmetric and positive semi-definite matrix. Then, we use an ODE
solver to deal with the semi-discrete system. There are many different ODE solvers
for the semi-discrete system (11.134). Here, the time integrators selected for com-
parisons are:

• GAS2s4: the two-stage Gauss time integration method of order four presented
in [28];

• LIIIB4s6: the Labatto IIIB method of order six presented in [28];
• IRKN2s4: the two-stage implicit symplectic Runge-Kutta-Nyström (IRKN)

method of order four derived in [51];
• IRKN3s6: the three-stage implicit symplectic Runge-Kutta-Nyström (IRKN)

method of order six derived in [51];
• ERKN3s4: the three-stage extended Runge-Kutta-Nyström (ERKN) time inte-

gration method of order four for second order ODEs proposed in [54];
• SMMERKN5s5: the five-stage explicit symplectic multi-frequency and multi-

dimensional extended Runge–Kutta–Nyström (ERKN) method of order five with
some small residuals for second order ODEs proposed in [55].

It is noted that we use fixed-point iteration for all of the implicit time integration
methods in our numerical experiments. We set the error tolerance as 10−15, and
put the maximum iteration number m = 1000 in each iteration procedure. Here, it
should be pointed out that, if the error produced by a method is too large for some
time stepsize Δt , then the corresponding point will not be plotted in the figure.

All computations in the numerical experiments are carried out by usingMATLAB
2011b on the the computer Lenovo ThinkCentre M8300t (CPU: Intel (R) Core (TM)
i5-2400 CPU @ 3.10 GHz, Memory: 8 GB, Os: Microsoft Windows 7 with 64 bit).
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11.7.1 One-dimensional Problem with Periodic Boundary
Conditions

Problem 11.1 We consider the sine–Gordon equation

∂2u

∂t2
(x, t) − ∂2u

∂x2
(x, t) = − sin(u(x, t)), (11.135)

on the region −20 ≤ x ≤ 20 and 0 ≤ t ≤ T , subject to the initial conditions

u(x, 0) = 0, ut (x, 0) = 4sech
(
x/
√
1 + c2

)
/
√
1 + c2,

where κ = 1/
√
1 + c2. The exact solution of this problem is given by

u(x, t) = 4 arctan
(
c−1 sin(ct/

√
1 + c2)sech(x/

√
1 + c2)

)
.

This problem is known as the breather solution of the sine–Gordon equation (see,
e.g. [39]), and represents a pulse-type structure of a soliton. The parameter c is the
velocity and we choose c = 0.5. The potential function is V (u) = 1 − cos(u).

In Figs. 11.1 and 11.2, we integrate the sine–Gordon equation (11.135) over the
region (x, t) ∈ [−20, 20] × [0, 100] using the time integrator GLC4 coupled with
the eighth-order symmetric finite difference (SFD) method and the Fourier spectral
collocation (FSC) method. The graphs of the errors are shown in Figs. 11.1 and 11.2
with the time stepsize Δt = 0.01 and several different values of M . The numerical
results demonstrate the accuracy of the spatial discretisation, and also indicate that the
Fourier spectral collocation method is much better to discretise the spatial derivative
than the eighth-order finite differencemethod. Therefore, it is evident that the Fourier
spectral collocation method is the best choice to discretise the spatial variable for
this problem.

Fig. 11.1 The graphs of errors for the sine–Gorden equation obtained by combining the time
integrator GLC4 with eighth-order finite difference spatial discretisation for the time stepsize Δt =
0.01 and several values of M = 100 (left), 200 (middle), and 400 (right)
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Fig. 11.2 The errors produced by combining the time integrator GLC4 with spatial discretisation
by the Fourier spectral method for the time stepsizeΔt = 0.01 and several values ofM = 100 (left),
120 (middle), and 200 (right)
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Fig. 11.3 The logarithms of the global error (GE) obtained by comparing our new schemes with
the standard finite difference schemes (a) and the method-of-lines schemes (b) against different
time integration stepsizes. c The conservation results of the GLCs with spatial discretisation by
Fourier spectral collocation method (M=400). The time stepsize Δt = 0.1 for T = 1000

In Fig. 11.3a and b, the problem is integrated over the region (x, t) ∈ [−20, 20]×
[0, 100]with different time stepsizesΔt and the spatial nodal values M . We compare
our methods with the standard finite difference schemes in Fig. 11.3a. We choose
M = 1000 for the finite difference schemes Expt-FD, SImpt-FD and Compt-FD and
M = 200 for the time integrators GLCs coupled with the Fourier spectral collocation
method (GLC-FSC). The logarithms of the global errors GE = ‖u(tn) − un‖∞
against different time stepsizes Δt = 0.1/2 j−1 for j = 1, 2, 3, 4 are displayed
in Fig. 11.3a. In comparison with the method-of-lines schemes, we first discretise
the spatial derivative by the Fourier spectral collocation method with fixed M =
200, and then integrate the semi-discrete system with different time stepsizes Δt =
0.4, 0.3, 0.2 and 0.1. The efficiency curves are shown in Fig. 11.3b.

Besides, in Fig. 11.3c, the problem is discretised by theFourier spectral collocation
method with the fixed M = 400. We then integrate the semi-discrete system over
the time interval t ∈ [0, 1000] by the derived time integrators GLCs with the time
stepsize Δt = 0.1. The numerical results in Fig. 11.3c present the error of the semi-
discrete energy conservation law as a function of the time stepsize calculated by
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Table 11.1 The total numbers of iterations for different error tolerances with M = 400 and
Δt = 0.1 for T = 100.

IRKN2s4 IRKN3s6 GAS2s4 LIIIB4s6 GLC2 GLC3 GLC4

10−6 2038 1996 4161 9309 1988 1988 1992

10−8 2056 7967 7732 5745 2000 2000 2000

10−10 2063 7579 8587 13519 2993 2993 2999

10−12 2063 9508 45739 21820 3000 3000 3000

Ẽ(t), where log10(EH) = log10(|Ẽ(tn)− Ẽ(t0)|). We also display the total numbers
of iterations in Table11.1 when applying the different methods with different error
tolerances to this problem for showing the efficiency of the fixed-point iteration in
actual computations.

In conclusion, the numerical results demonstrate that the time-stepping integrators
derived in this chapter have much better accuracy and energy conservation. They are
more practical and efficient than existing methods in the literature.

Problem 11.2 We consider the nonlinear Klein–Gordon equation

∂2u

∂t2
(x, t) − a2

∂2u

∂x2
(x, t) + au(x, t) − bu3(x, t) = 0, (11.136)

on the region (x, t) ∈ [−20, 20] × [0, T ], subject to the initial conditions

u(x, 0) =
√
2a

b
sech(λx), ut (x, 0) = cλ

√
2a

b
sech(λx) tanh(λx),

with λ =
√

a
a2−c2 and a, b, a2 − c2 > 0. The exact solution of Problem 11.2 is

given by

u(x, t) =
√
2a

b
sech(λ(x − ct)). (11.137)

The real parameter
√
2a/b represents the amplitude of a soliton which travels with

the velocity c. The potential function is V (u) = a
2u

2 − b
4u

4. The problem can be
found in [39]. We consider the parameters a = 0.3, b = 1 and c = 0.25 which are
similar to those in [39].

The Klein–Gordon equation 11.2 is solved by using the time integrator GLC4
coupled with the eighth-order symmetric finite difference method and the Fourier
spectral collocation method. The graphs of errors are shown in Figs. 11.4 and 11.5
with the fixed time stepsize Δt = 0.01 and several values of M . The numerical
results in Figs. 11.4 and 11.5 indicate that the Fourier spectral collocation method
as a spatial discretisation method is much more accurate than the eighth-order finite
difference method.
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Fig. 11.4 The graphs of errors for theKlein-Gorden equation obtained by combing the time integra-
torGLC4with the eighth-order finite difference spatial discretisation for the time stepsizeΔt = 0.01
and several values of M = 500 (left), 1000 (middle) and 2000 (right)

Fig. 11.5 The errors produced by combining the time integrator GLC4 with spatial discretisation
by the Fourier spectral collocation method for the Klein-Gorden equation with the time stepsize
Δt = 0.01 and M = 200 (left), 400 (middle) and 800 (right)
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Fig. 11.6 The logarithms of the global error (GE) obtained by comparing our new schemes with
a standard finite difference schemes and b the method-of-lines schemes against different time
integration stepsizes. c The energy conservation results for the GLCs with spatial discretisation by
the Fourier spectral collocation method (M=200). The time stepsize Δt = 0.05 for T = 100

In order to compare our methods with the classical finite difference schemes and
the method-of-lines methods, we integrate the problem over the region [−20, 20] ×
[0, 10] with different time stepsizes Δt and spatial nodal values M . In Fig. 11.6a, we
compare our methods with the classical finite difference schemes against different
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Table 11.2 The total numbers of iterations for different error tolerances with M = 800 and
Δt = 0.1 for T = 100

Tolerance IRKN2s4 IRKN3s6 GAS2s4 LIIIB4s6 GLC2 GLC3 GLC4

10−6 2396 2000 5207 5566 686 686 975

10−8 3871 3000 8585 7551 707 707 994

10−10 6460 4568 12600 10659 1038 1038 1464

10−12 9462 6139 16327 13800 1085 1085 1491

time stepsizes Δt = 0.08/2 j−1 for j = 1, 2, 3, 4. We use M = 1000 for the finite
difference schemes Expt-FD, SImpt-FD and Compt-FD and M = 600 for the time
integrators GLCs coupled with the Fourier spectral collocation method. We plot
the logarithms of the global error in Fig. 11.6a. We discretise the spatial variable
of the problem by the Fourier spectral collocation method with fixed M = 800 and
integrate the semi-discretised systemwith the different time stepsizesΔt = 0.4/2 j−1

for j = 1, 2, 3, 4. The efficiency curves are depicted in Fig. 11.6b. The errors of the
semi-discrete energy conservation law as a function of the time-step calculated by
Ẽ(t) are presented in Fig. 11.6c. Furthermore, the total numbers of iterations for
different error tolerances are listed in Table11.2.

It can be seen that the numerical results again indicate that our time-stepping
integrators have higher precision than existing methods in the literature, and the
qualitative property of energy preservation is also quite promising.

11.7.2 Simulation of 2D Sine–Gordon Equation

In this subsection, our time integration method GLC4 coupled with Discrete Fast
Cosine / Sine Transformation is used to simulate the two-dimensional sine–Gordon
equation:

utt − (uxx + uyy) = − sin(u), t > 0, (11.138)

in the spatial region Ω = (−a, a) × (−b, b). The problem is equipped with the
following homogeneous Dirichlet or Neumann boundary conditions, namely,

• Dirichlet boundary conditions:

u(±a, y, t) = u(x,±b, t) = 0; (11.139)

• Neumann boundary conditions:

ux (±a, y, t) = uy(x,±b, t) = 0. (11.140)

The initial conditions are
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u(x, y, 0) = f (x, y), ut (x, y, 0) = g(x, y). (11.141)

It is known that different initial conditions lead to different numerical phenomena.
In what follows, we will use our method to simulate three different types of circular
ring solitons. The initial conditions and parameters are chosen similarly to those in
[12, 45].

Problem 11.3 For the particular case of circular ring solitons (see, e.g. [12, 45]),
we select the following initial conditions:

f (x, y) = 4 arctan
(
exp
(
3 −

√
x2 + y2

))
, g(x, y) = 0, (11.142)

over the two-dimensional domain (x, y) ∈ [−14, 14] × [−14, 14]. The simulation
results and the corresponding contour plots at the times t = 0, 4, 8, 11.5, 13 and 15
are presented in Figs. 11.7 and 11.8 in terms of sin(u/2) for the mesh region size
400× 400 and time stepsize Δt = 0.1. It can be clearly observed from Fig. 11.7 that
the ring soliton shrinks at the initial stage (t = 0), but oscillations and radiations
begin to form and continue until time t = 8.Moreover, it can be seen from the graphs
that a ring soliton is nearly formed again at time t = 11.5. In Fig. 11.8, the contour
maps depict the movement of the soliton very clearly. The CPU time required to
reach t = 15 is 668.056765 seconds.

(a) T=0 T=4 T=8

T=11.5 T=13 T=15

(b) (c)

(d) (e) (f)

Fig. 11.7 Circular ring solitons: the function of sin(u/2) for the initial condition and numerical
solutions at the times t = 0, 4, 8, 11.5, 13 and 15, successively
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Fig. 11.8 Circular ring solitons: contours of sin(u/2) for the initial condition and numerical solu-
tions at the times t = 0, 4, 8, 11.5, 13 and 15, successively

Problem 11.4 Furthermore, if we choose the following standard setting:

f (x, y) = 4 arctan
(
exp
(4 −√(x + 3)2 + (y + 7)2

0.436

))
, −10 ≤ x ≤ 10, −7 ≤ y ≤ 7,

g(x, y) = 4.13sech
(
exp
(4 −√(x + 3)2 + (y + 7)2

0.436

))
, −10 ≤ x ≤ 10, −7 ≤ y ≤ 7,

(11.143)
and extend the solution across the sides x = −10 and y = −7 using the symmetry
properties of the problem, the phenomenon of the collision for two circular soliton
will be occurred (see, e.g. [12, 45]). We compute solutions over the domain (x, y) ∈
[−30, 10] × [−21, 7] with the mesh region 800 × 400 and time step Δt = 0.1.
The simulating results, as the function of sin(u/2), are depicted in Fig. 11.9 and
Fig. 11.10. The numerical results in Fig. 11.9 demonstrate the collision between two
expanding circular ring solitons, in which two smaller oval ring solitons bounding
an annular region emerge into a larger oval ring soliton. The contour maps given in
Fig. 11.10 show the movement of solitons much clearly. The CPU time required to
reach t = 10 is 953.263314 s.
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(a) T=0 T=2 T=4

T=6 T=8 T=10

(b) (c)

(d) (e) (f)

Fig. 11.9 Collision of two ring solitons: the function of sin(u/2) for the initial condition and
numerical solutions at the times t = 0, 2, 4, 6, 8, and 10, successively
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Fig. 11.10 Collision of two ring solitons: contours of sin(u/2) for the initial condition and numer-
ical solutions at the times t = 0, 2, 4, 6, 8, and 10, successively
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Problem 11.5 Finally, for collisions of four circular solitons, we take

f (x, y) = 4 arctan
(
exp
(4 −√(x + 3)2 + (y + 3)2

0.436

))
, −10 ≤ x, y ≤ 10,

g(x, y) = 4.13

cosh
(
exp
((
4 −√(x + 3)2 + (y + 3)2

)
/0.436

)) , −10 ≤ x, y ≤ 10.

(11.144)
The simulation of the problem over the region [−30, 10] × [−30, 10] is based on
an extension across x = −10 and y = −10 due to the symmetry of the problem
(see, e.g. [12, 45]). The size of mesh region used is 800× 800 in space with the time
stepsize Δt = 0.1. The numerical results are presented in Figs. 11.11 and 11.12 in
terms of sin(u/2) at the times t = 0, 2.5, 5, 7.5, 9 and 10. Similarly to the case of
the collisions for two circular solitons, the collision between four expanding circu-
lar ring solitons are precisely demonstrated in Fig. 11.11. The smaller ring solitons
bounding an annular region emerge into a large one. Again, the contour maps plotted
in Fig. 11.12 clearly show the movement of solitons. The CPU time required to reach
t = 10 is 2492.677810 s.

(a) T=0 T=2.5 T=5

T=7.5 T=9 T=10

(b) (c)

(d) (e) (f)

Fig. 11.11 Collision of four ring solitons: the function of sin(u/2) for the initial condition and
numerical solutions at the times t = 0, 2.5, 5, 7.5, 9, and 10, successively
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Fig. 11.12 Collision of four ring solitons: contours of sin(u/2) for the initial condition and numer-
ical solutions at the times t = 0, 2.5, 5, 7.5, 9, and 10, successively

11.8 Conclusions and Discussions

In this chapter, the nonlinear Klein–Gordon equation (11.1)–(11.2) was firstly intro-
duced as an abstract ODE on the Hilbert space L2(Ω) on the basis of the opera-
tor spectral theory. Then, the operator-variation-of-constants formula (11.14) was
derived based on the well-known Duhamel Principle, which is in fact an integral
equation of the solution for the nonlinear Klein–Gordon equation. Using the formula
(11.14) and keeping the eventual discretisation inmind, a novel class of time-stepping
methods (11.39) has been derived and analysed. It has been shown that under the
simplified order conditions (11.48) and chosen suitable collocation nodes the derived
time-stepping integrator can have arbitrarily high-order. The spatial discretisation is
implemented, following a Lagrange collocation-type time-stepping integrator. This
allows us to consider a suitable spatial approximation and gives us a great degree
of flexibility when handling nonlinear potentials. The stability and convergence for
the fully discrete scheme were rigorously proved after spatial discretisation. Since
the fully discrete scheme is implicit and iteration is required, we used the fixed-
point iteration (11.110)–(11.111) in practical computation and analysed the conver-
gence of the iteration. Moreover, we also showed that our time-stepping integrators
coupled with discrete Fast Sine / Cosine Transformation can efficiently simulate
the important two-dimensional Klein–Gordon equations, equipped with Dirichlet
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or Neumann boundary conditions. The numerical experiments carried out in this
chapter clearly demonstrate that the time-stepping schemes have excellent numeri-
cal behaviour in comparisonwith existingmethods in the literature. Last but not least,
we again emphasize that all essential features of the methodology are present in the
one-dimensional and two-dimensional cases in this chapter, although the schemes
discussed equally lend themselves to higher-dimensional case.Moreover, remember-
ing the eventual discretisation in space, applying a two–point Hermite interpolation
to the nonlinear integrals that appear in the operator-variation-of-constants formula,
we also can design different time schemes (see [40]).

The material of this chapter is based on the work by Liu and Wu [41].
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35. Jiménez, S.: Derivation of the discrete conservation laws for a family of finite difference

schemes. Appl. Math. Comput. 64, 13–45 (1994)
36. Kosecki, R.: The unit condition and global existence for a class of nonlinear Klein-Gordon

equations. J. Differ. Equ. 100, 257–268 (1992)
37. Lakestani, M., Dehghan, M.: Collocation and finite difference-collocation methods for the

solution of nonlinearKlein-Gordon equation. Comput. Phys. Commun. 181, 1392–1401 (2010)
38. Li, S., Vu-Quoc, L.: Finite difference calculus invariant structure of a class of algorithms for

the nonlinear Klein-Gordon equation. SIAM J. Numer. Anal. 32, 1839–1875 (1995)
39. Liu, C., Shi, W., Wu, X.Y.: An efficient high-order explicit scheme for solving Hamiltonian

nonlinear wave equations. Appl. Math. Comput. 246, 696–710 (2014)
40. Liu, C., Iserles, A., Wu, X.Y.: Symmetric and arbitrarily high-order Brikhoff-Hermite time

integrators and their long-time behavior for solving nonlinear Klein–Gordon equations. J.
Comput. Phys. https://doi.org/10.1016/j.jcp.2017.10.057

41. Liu, C.,Wu,X.Y.:Arbitrarily high-order time-stepping schemes based on the operator spectrum
theory for high-dimensional nonlinearKlein-Gordon equations. J. Comput. Phys. 340, 243–275
(2017)

https://doi.org/10.1016/j.jcp.2017.10.057


316 11 Arbitrarily High-Order Time-Stepping Schemes

42. Lubich, C., Ostermann, A.: Multigrid dynamic iteration for parabolic equations. BIT 27, 216–
234 (1987)

43. Mulholland,L.S.,Huang,W.Z., Sloan,D.M.: Pseudospectral solutionof near-singular problems
using numerical coordinate transformations based on adaptivity. SIAMJ. Sci. Comput. 19,
1261–1289 (1998)

44. Pascual, P.J., Jiménez, S.: Vázquez, L. Numerical Simulations of a Nonlinear Klein-Gordon
Model. Lecture Notes in Computational Physics (Granada, 1994), vol. 448, pp. 211–270.
Springer, Berlin (1995)

45. Sheng, Q., Khaliq, A.Q.M., Voss, D.A.: Numerical simulation of two-dimensional sine-Gordon
solitons via a split cosine scheme. Math. Comput. Simul. 68, 355–373 (2005)

46. Shen, J., Tang, T.,Wang, L.L.: SpectralMethods:Algorithms.Analysis, Applications. Springer,
Berlin (2011)

47. Strauss, W.A., ázquez, L.V.: Numerical solution of a nonlinear Klein–Gordon equation. J.
Comput. Phys. 28, 271–278 (1978)

48. Sun, Z.Z.: Numerical Methods of Partial Differential Equations. Science Press, Beijing (2012).
(2nd version, in Chinese)

49. Teman, R.: Applied Matematical Scinences. In: Infinite-dimensional dynamical systems in
mechanics and physics. Springer, Berlin (2000)

50. Tourigny, Y.: Product approximation for nonlinear Klein-Gordon equations. IMA J. Numer.
Anal. 9, 449–462 (1990)

51. Tang, W.S., Ya, Y.J., Zhang, J.J.: High order symplectic integrators based on continuous-stage
Runge–Kutta Nyström methods. arXiv:1510.04395

52. Vandewalle, S.: Parallel multigrid waveform relaxation for parabolic problems. In: Teubner
Stuttgart, B.G. (ed.) Teubner Scripts on Numerical Mathematics (1993)

53. Wazwaz, A.M.: New travelling wave solutions to the Boussinesq and the Klein-Gordon equa-
tions. Commun. Nonlinear Sci. Numer. Simul. 13, 889–901 (2008)

54. Wu, X.Y., You, X., Wang, B.: Structure-Preserving Algorithms for Oscillatory Differential
Equations. Springer, Berlin (2013)

55. Wu, X.Y., Liu, K., Shi, W.: Structure-Preserving Algorithms for Oscillatory Differential Equa-
tions II. Springer, Heidelberg (2015)

56. Wu, X.Y., Liu, C., Mei, L.J.: A new framework for solving partial differential equations using
semi-analytical explicit RK(N)-type integrators. J. Comput. Appl. Math. 301, 74–90 (2016)

http://arxiv.org/abs/1510.04395

	11 Arbitrarily High-Order Time-Stepping Schemes for Nonlinear Klein–Gordon Equations
	11.1 Introduction
	11.2 Abstract Ordinary Differential Equation
	11.3 Formulation of the Lagrange Collocation-Type  Time Integrators
	11.3.1 Construction of the Time Integrators
	11.3.2 Error Analysis for the Lagrange Collocation-Type Time-Stepping Integrators

	11.4 Spatial Discretisation
	11.5 The Analysis of Nonlinear Stability and Convergence …
	11.5.1 Analysis of the Nonlinear Stability
	11.5.2 Convergence of the Fully Discrete Scheme
	11.5.3 The Convergence of the Fixed-Point Iteration

	11.6 The Application to Two-dimensional Dirichlet …
	11.6.1 2D Klein–Gordon Equation with Dirichlet Boundary Conditions
	11.6.2 2D Klein–Gordon Equation with Neumann Boundary Conditions
	11.6.3 Abstract ODE Formulation and Spatial Discretisation

	11.7 Numerical Experiments
	11.7.1 One-dimensional Problem with Periodic Boundary Conditions
	11.7.2 Simulation of 2D Sine–Gordon Equation

	11.8 Conclusions and Discussions
	References




