
Chapter 10
An Energy-Preserving and Symmetric
Scheme for Nonlinear Hamiltonian Wave
Equations

In this chapter, we derive and analyse an energy-preserving and symmetric scheme
for nonlinear Hamiltonian wave equations, which can exactly preserve the energy
of the underlying Hamiltonian wave equations. To this end, we first define and dis-
cuss the bounded operator-argument functions on the underlying domain. We then
introduce an operator-variation-of-constants formula, based on which we present an
energy-preserving scheme for nonlinear Hamiltonian wave equations. The scheme
preserves the energy of the original continuous Hamiltonian system exactly. In com-
parison with the existing work on this topic, such as the well-known Average Vector
Field (AVF) formula for Hamiltonian ordinary differential equations, the energy-
preserving scheme avoids the semi-discretisation of spatial derivatives and exactly
preserves the Hamiltonian of the original continuous Hamiltonian wave equation.
This point is very significant in comparison with the AVF formula, since the AVF
formula can preserve only the energy of Hamiltonian ordinary differential equations.
Hence, the main theme of this chapter is to establish a scheme which can exactly
preserve the energy of the nonlinear Hamiltonian wave equation. The chapter is also
accompanied by some examples.

10.1 Introduction

Nonlinear wave or heat equations arise frequently in a wide variety of applications,
which can usually be expressed in suitable nonlinear Hamiltonian forms, and par-
tial differential equations with a Hamiltonian structure are important in the study
of solitons. Hamiltonian systems have some characteristic properties such as inner
symmetries and energy conservation. However, there are no general methods guar-
anteed to find closed form solutions to nonlinear Hamiltonian systems. Over the last
20 years, geometric numerical integration has become an important area of numeri-
cal analysis and scientific computing. Structure-preserving integrators have received
much attention in recent years and have applications in many areas of physics, such
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as molecular dynamics, fluid dynamics, celestial mechanics, and particle acceler-
ators. An integrator is said to be structure-preserving if it preserves one or more
physical/geometric properties of the system exactly. In this chapter, we pay attention
to an energy-preserving scheme for the nonlinear Hamiltonian wave equation of the
form {

utt − a2Δu = f (u), t ≥ t0,

u(x, t0) = ϕ1(x), ut (x, t0) = ϕ2(x),
(10.1)

where Δ = ∂2
x , and f (u) = −V ′(u) is the negative derivative of a potential function

V (u) with respect to u.
The nonlinear wave equation (10.1) in this chapter is assumed to be subject to the

following periodic boundary condition

u(x, t) = u(x + Γ, t), (10.2)

where Γ is the fundamental period in x .
It is known that Δ is an unbounded operator which is not defined for every v ∈

L2([x, x + Γ ]). In order tomodel periodic boundary conditions,we restrict ourselves
to the case where Δ is defined on the domain

D(Δ) = {v(x) : ∀v ∈ L2([x, x + Γ ]) and v(x) = v(x + Γ )}. (10.3)

We consider (10.1) with independent variables (x, t) ∈ [xl , xr ] × {t ≥ t0} and
suppose that Γ = xr − xl is the period. Let v = (u, p)ᵀ with p = ut . The nonlinear
wave equation (10.1) can be thought of as an infinite dimensionalHamiltonian system
of the form

∂t v = J
δH

δv
, ∀v ∈ B. (10.4)

This is equivalent to

⎧⎪⎨
⎪⎩
ut = p,

pt = a2Δu + f (u),

u(x, t0) = ϕ1(x), p(x, t0) = ϕ2(x),

(10.5)

where the Hamiltonian

H(u, p) := 1

2

∫ xr

xl

[
p2 + a2u2x + 2V (u)

]
dx (10.6)

is defined on the infinite dimensional “phase-space”B := V × L2([xl, xr ]), where
V = {

u : u ∈ H 1([xl, xr ]) and u(xl) = u(xr )
}
, and the non-degenerate antisymmet-

ric operator J represents a symplectic structure: the variables v = (u, p)ᵀ are “Dar-
boux coordinates” (see, e.g. [1]). TheHamiltonian system (10.4) preserves the energy
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(or the Hamiltonian) because J is skew-adjoint with respect to the L2 inner product,
i.e., ∫ xr

xl

u Judx = 0, ∀u ∈ B. (10.7)

The conservation of the energy (or the Hamiltonian) is one of the most important
properties of the nonlinear Hamiltonian wave equation (10.1), i.e.

E(t) = 1

2

∫ xr

xl

[
u2t (x, t) + a2u2x (x, t) + 2V

(
u(x, t)

)]
dx = E(t0), (10.8)

or

H(u, p) = H(u, p)
∣∣
t=t0

, (10.9)

for the Hamiltonian system (10.5).
The nonlinear Hamiltonian wave equation (10.1) arises in a wide variety of appli-

cation areas in science and engineering such as nonlinear optics, solid state physics
and quantum field theory. Its description and understanding are of great importance
both from the theoretical and practical point of view, and it has been investigated by
many authors (see, e.g. [2, 8–11, 18, 26, 28, 35, 38]). This equation is the relativistic
version of the Schrödinger equation [6, 7, 30]. Such a problem appears naturally in
the study of some nonlinear dynamical problems of mathematical physics, includ-
ing radiation theory, general relativity, the scattering and stability of kinks, vortices,
and other coherent structures. This equation is the basis of much work in studying
solitons and condensed matter physics, in investigating the interaction of solitons in
collisionless plasma and the recurrence of initial states, in lattice dynamics, and in
examining nonlinear phenomena.

Many authors have investigated energy preservation for semi-discrete Hamilto-
nian wave equations via classical spatial discretisation approximations. Usually, the
semi-discrete systems are of the form

{
y′′(t) + My(t) = g(y(t)), t ∈ [t0, T ],
y(t0) = y0, y′(t0) = y′

0,
(10.10)

where M ∈ R
m×m is a positive and semi-definite matrix (not necessarily diagonal

or symmetric, in general). The solution of the system (10.10) exhibits nonlinear
oscillations. When such oscillations occur, effective ODE solvers for (10.10) can be
used, such as Gautschi-type methods (see, e.g. [16]), trigonometric Fourier colloca-
tionmethods (see, e.g. [34]), and extended Runge–Kutta–Nyström (ERKN)methods
(see, e.g. [42, 43]). With regard to the discrete energy-preserving method, the AVF
formula is very popular (see, e.g. [3, 19, 21–25, 40]). However, the AVF formula
cannot exactly preserve the energy of the original continuous Hamiltonian wave
equation. In general, the discrete energy is different from the original energy of the
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continuous Hamiltonian wave equations. This means that the AVF formula based
on classical discrete approximations cannot preserve the energy of the Hamiltonian
wave equations exactly. This motivates an energy-preserving scheme for nonlinear
Hamiltonian wave equations, which can exactly preserve the energy of the nonlin-
ears Hamiltonian wave equation (10.1). It should be noted that, in this chapter, all
essential analytical features are present in the one-dimensional case (10.1), although
the discussions are equally valid for high-dimensional nonlinear Hamiltonian wave
equations.

The outline of this chapter is as follows. Somepreliminaries are given in Sect. 10.2.
In Sect. 10.3, we introduce an operator-variation-of-constants formula for the non-
linear Hamiltonian wave equation (10.1), which is an analytical expression of the
solution to the nonlinear Hamiltonian wave equation (10.1) expressed in a nonlin-
ear integral equation. We then dicuss an energy-preserving scheme and analyse its
properties in Sect. 10.4. Some illustrative examples are presented in Sect. 10.5. The
last section is devoted to conclusions.

10.2 Preliminaries

This section presents some preliminaries in order to gain an insight into an exact
energy-preserving scheme for the nonlinear Hamiltonian wave equation (10.1) sub-
ject to the periodic boundary condition (10.2).

To begin with, we define the following operator-argument functions:

φ j (Δ) :=
∞∑
k=0

Δk

(2k + j)! , j = 0, 1, . . . . (10.11)

For example, Δ is the Laplace operator defined on D(Δ) in (10.3) and in this case,
the operators defined by (10.11) is bounded on the subspace under the Sobolev norm
‖ · ‖L2←L2 (see, e.g. [17, 20]). Accordingly, φ j (Δ) for j = 0, 1, . . . in (10.11) are
called operator-argument functions.Besides,Δ can also be related to a linearmapping
such as a positive semi-definite matrix M ∈ R

m×m and in this particular case of Δ =
−M , (10.11) reduces to the matrix-valued functions which have been widely used in
ARKN methods (Adapted Runge–Kutta–Nyström methods) and ERKN (Extended
Runge–Kutta–Nyström methods) methods for the numerical solution of oscillatory
or highly oscillatory differential equations (see, e.g. [12–14, 29, 31, 32, 40, 41, 43,
44]). These kinds of oscillatory problems have received a great deal of attention in
the last few years (see, e.g. [4, 14–17, 34]).

In this chapter, some useful properties of these operator-argument functions are
only sketched below for the sake of brevity.

Theorem 10.1 For a symmetric negative (semi) definite operator Δ, the bounded
φ-functions defined by (10.11) satisfy (9.10)–(9.14) in Chap.9 and
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{
φ0(m

2a2Δ)φ0(n
2a2Δ) + mna2Δφ1(m

2a2Δ)φ1(n
2a2Δ) = φ0((m + n)2a2Δ),

mφ0(n
2a2Δ)φ1(m

2a2Δ) + nφ0(m
2a2Δ)φ1(n

2a2Δ) = (m + n)φ1((m + n)2a2Δ).

(10.12)

Proof These results are evident. �

Theorem 10.2 Suppose that Δ is a Laplacian defined on the domain D(Δ). The
bounded operator-argument functions φ0 and φ1 defined by (10.11) satisfy (9.9) in
Chap.9.

Proof The results have been shown in Chap.9. �

Some properties of the periodic functions are stated blow.

Theorem 10.3 Assuming that u(x, t), v(x, t) are any sufficiently smooth periodic
functions with respect to the variable x, i.e. u(x + Γ, t) = u(x, t), and Γ is the
fundamental period, then the following properties hold:

(i) For all k, l = 0, 1, . . . , we have

∂k
x u(x + Γ, t) = ∂k

x u(x, t), ∂ l
t u(x + Γ, t) = ∂ l

t u(x, t). (10.13)

(ii) Applying integration by parts to the periodic functions u(x, t), v(x, t) yields

∫ xr

xl

∂2k
x u(x, t) · v(x, t)dx =

∫ xr

xl

u(x, t) · ∂2k
x v(x, t)dx,∫ xr

xl

∂2k+1
x u(x, t) · v(x, t)dx = −

∫ xr

xl

u(x, t) · ∂2k+1
x v(x, t)dx, k = 0, 1, 2, . . . ,

(10.14)
where the length xr − xl of the interval [xl, xr ] is the period Γ or any nonnegative
integer multiple of Γ .

(iii) For any function f (·), the composite function f
(
u(x, t)

)
is also a periodic

function with respect to the variable x, and the fundamental period is Γ .

10.3 Operator-Variation-of-Constants Formula
for Nonlinear Hamiltonian Wave Equations

The next theorem presents the operator-variation-of-constants formula for the non-
linear Hamiltonian wave equation (10.1).

Theorem 10.4 If f (u) is continuous in (10.1) andΔ is the Laplace operator defined
on the subspace D(Δ) ⊂ L2, then the exact solution of (10.1) and its derivative satisfy
the following equations
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(x, t) = φ0
(
(t − t0)

2a2Δ
)
u(x, t0) + (t − t0)φ1

(
(t − t0)

2a2Δ
)
ut (x, t0)

+
∫ t

t0

(t − ζ )φ1
(
(t − ζ )2a2Δ

)
f̃ (ζ )dζ,

ut (x, t) = (t − t0)a
2Δφ1

(
(t − t0)

2a2Δ
)
u(x, t0) + φ0

(
(t − t0)

2a2Δ
)
ut (x, t0)

+
∫ t

t0

φ0
(
(t − ζ )2a2Δ

)
f̃ (ζ )dζ,

(10.15)
for x ∈ [xl, xr ], t0, t ∈ (−∞,+∞), where f̃ (ζ ) = f

(
u(x, ζ )

)
, and the bounded

operator-argument functions φ0(·) and φ1(·) are defined by (10.11).

Proof (10.15) solves the Eq. (10.1) exactly. In fact, this can be verified by directly
inserting the formula (10.15) into the wave equation (10.1). The details of the proof
for this theorem can be found in Appendix A of this chapter. �

Moreover, it can be proved that the operator-variation-of-constants formula
(10.15) for the nonlinear Hamiltonian wave equation (10.1) is completely consis-
tent with Dirichlet boundary conditions, Neumann boundary conditions, and Robin
boundary conditions, respectively, under suitable assumptions. Readers are referred
to the recent papers by Wu et al. [37, 39].

Let un(x) = u(x, tn) and unt (x) = ut (x, tn) represent the exact solution of (10.1)
and its derivative with respect to t at t = tn . It follows immediately from (10.15)
with the change of variable ξ = tn + hz that

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

un+1(x) = φ0
(
h2a2Δ

)
un(x) + hφ1

(
h2a2Δ

)
unt (x)

+h2
∫ 1
0 (1 − z)φ1

(
(1 − z)2h2a2Δ

)
f
(
u(x, tn + hz)

)
dz,

un+1
t (x) = ha2Δφ1

(
h2a2Δ

)
un(x) + φ0

(
h2a2Δ

)
unt (x)

+h
∫ 1
0 φ0

(
(1 − z)2h2a2Δ

)
f
(
u(x, tn + hz)

)
dz,

(10.16)

where h is a time stepsize.
It is noted that the Eq. (10.15) or (10.16) is not a closed-form solution to the

nonlinear Hamiltonian wave equation (10.1), but a nonlinear integral equation. In
order to gain an energy-preserving scheme for (10.1), a further analysis based on
(10.16) is still required.
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10.4 Exact Energy-Preserving Scheme for Nonlinear
Hamiltonian Wave Equations

In this section we establish an exact energy-preserving scheme for nonlinear Hamil-
tonian wave equations.

In light of the operator-variation-of-constants formula (10.16), it is natural to
consider the following scheme:

{
un+1(x) = φ0

(
h2a2Δ

)
un(x) + hφ1

(
h2a2Δ

)
unt (x) + h2 I1(x),

un+1
t (x) = ha2Δφ1

(
h2a2Δ

)
un(x) + φ0

(
h2a2Δ

)
unt (x) + hI2(x),

(10.17)

where h is the stepsize, and I1(x), I2(x) are undetermined functions such that the
following condition of energy preservation

E(tn+1) = E(tn) or H(un+1, pn+1) = H(un, pn),

is satisfied exactly, where p = ut . It follows from (10.17) that

{
un+1
x (x) = φ0

(
h2a2Δ

)
unx (x) + h∂xφ1

(
h2a2Δ

)
unt (x) + h2∂x I1(x),

un+1
t (x) = ha2∂xφ1

(
h2a2Δ

)
unx (x) + φ0

(
h2a2Δ

)
unt (x) + hI2(x).

(10.18)

To begin with, we compute

H(un+1, pn+1) = H(un+1, un+1
t ) = 1

2

∫ xr

xl

[
(un+1

t (x))2 + a2(un+1
x (x))2 + 2V (un+1(x))

]
dx .

(10.19)
Inserting (10.18) into (10.19), a careful calculation yields

H(un+1, un+1
t ) = 1

2

∫ xr

xl

[
φ0

(
h2a2Δ

)
unt · φ0

(
h2a2Δ

)
unt + a2h∂xφ1

(
h2a2Δ

)
unt · h∂xφ1

(
h2a2Δ

)
unt

]
dx

+ a2

2

∫ xr

xl

[
ha2∂xφ1

(
h2a2Δ

)
unx · h∂xφ1

(
h2a2Δ

)
unx + φ0

(
h2a2Δ

)
unx · φ0

(
h2a2Δ

)
unx

]
dx

+
∫ xr

xl

[
ha2∂xφ1

(
h2a2Δ

)
unx · φ0

(
h2a2Δ

)
unt + a2φ0

(
h2a2Δ

)
unx · h∂xφ1

(
h2a2Δ

)
unt

]
dx

+ 1

2

∫ xr

xl

[
φ0

(
h2a2Δ

)
unt · hI2(x) + a2h∂xφ1

(
h2a2Δ

)
unt · h2∂x I1(x)

]
dx

+ a2
∫ xr

xl

[
h∂xφ1

(
h2a2Δ

)
unx · hI2(x) + φ0

(
h2a2Δ

)
unx (x) · h2∂x I1(x)

]
dx

+ 1

2

∫ xr

xl

[
h2 I2(x) · I2(x) + a2h4∂x I1(x) · ∂x I1(x)

]
dx +

∫ xr

xl
V (un+1(x))dx .

(10.20)
Applying Theorem 10.3 to (10.20) gives
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H(un+1, un+1
t ) = 1

2

∫ xr

xl

[
φ2
0

(
h2a2Δ

) − h2a2Δφ2
1

(
h2a2Δ

)]
unt · unt dx

+ a2

2

∫ xr

xl

[
φ2
0

(
h2a2Δ

) − h2a2Δφ2
1

(
h2a2Δ

)]
unx · unxdx

+ a2h
∫ xr

xl

[
∂xφ1

(
h2a2Δ

)
φ0

(
h2a2Δ

) − φ0
(
h2a2Δ

)
∂xφ1

(
h2a2Δ

)]
unx · unt dx

+
∫ xr

xl

[
φ0

(
h2a2Δ

)
unt · hI2(x) + a2h∂xφ1

(
h2a2Δ

)
unt · h2∂x I1(x)

]
dx

+ a2
∫ xr

xl

[
h∂xφ1

(
h2a2Δ

)
unx · hI2(x) + φ0

(
h2a2Δ

)
unx (x) · h2∂x I1(x)

]
dx

+ 1

2

∫ xr

xl

[
h2 I2(x) · I2(x) + a2h4∂x I1(x) · ∂x I1(x)

]
dx +

∫ xr

xl
V (un+1(x))dx .

(10.21)
On noticing Theorem 10.1, (10.21) reduces to

H(un+1, un+1
t ) = 1

2

∫ xr

xl

[
(unt (x))

2 + a2(unx (x))
2 + 2V (un(x))

]
dx

+
∫ xr

xl

[
φ0

(
h2a2Δ

)
unt · hI2(x) + a2h∂xφ1

(
h2a2Δ

)
unt · h2∂x I1(x)

]
dx

+ a2
∫ xr

xl

[
h∂xφ1

(
h2a2Δ

)
unx · hI2(x) + φ0

(
h2a2Δ

)
unx (x) · h2∂x I1(x)

]
dx

+ 1

2

∫ xr

xl

[
h2 I2(x) · I2(x) + a2h4∂x I1(x) · ∂x I1(x)

]
dx +

∫ xr

xl

[
V (un+1(x)) − V (un(x))

]
dx .

(10.22)
In what follows, we calculate

V (un+1) − V (un) =
∫ 1

0
dV

(
(1 − τ)un + τun+1) = −

∫ 1

0
(un+1 − un) · f

(
(1 − τ)un + τun+1)dτ

� − (un+1 − un) · I f ,
(10.23)

where

I f =
∫ 1

0
f
(
(1 − τ)un + τun+1

)
dτ.

The first equation of (10.17) gives

un+1(x) − un(x) = [
φ0

(
h2a2Δ

) − I
]
un(x) + hφ1

(
h2a2Δ

)
unt (x) + h2 I1(x)

= h2a2∂xφ2
(
h2a2Δ

)
unx (x) + hφ1

(
h2a2Δ

)
unt (x) + h2 I1(x).

(10.24)

Inserting (10.24) into (10.23) yields

V (un+1) − V (un) = −h2a2∂xφ2
(
h2a2Δ

)
unx (x) · I f − hφ1

(
h2a2Δ

)
unt (x) · I f − h2 I1(x) · I f .

(10.25)

Then the scheme (10.22) can be rewritten by
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H(un+1, un+1
t ) = 1

2

∫ xr

xl

[
(unt (x))

2 + a2(unx (x))
2 + 2V (un(x))

]
dx + Rn

= H(un, unt ) + Rn,

(10.26)

where

R n =h
∫ xr

xl

[
φ0

(
h2a2Δ

)
unt (x) · I2(x) + a2h2∂xφ1

(
h2a2Δ

)
unt · ∂x I1(x) − φ1

(
h2a2Δ

)
unt (x) · I f

]
dx

+ a2h2
∫ xr

xl

[
∂xφ1

(
h2a2Δ

)
unx · I2(x) + φ0

(
h2a2Δ

)
unx (x) · ∂x I1(x) − ∂xφ2

(
h2a2Δ

)
unx (x) · I f

]
dx

+ h2
∫ xr

xl

[ 1
2

(
I2(x) · I2(x) + h2a2∂x I1(x) · ∂x I1(x)

) − I1(x) · I f
]
dx .

(10.27)
It follows from the results of Theorem 10.3 that

Rn = h
∫ xr

xl

[
φ0

(
h2a2Δ

)
I2(x) − h2a2Δφ1

(
h2a2Δ

)
I1(x) − φ1

(
h2a2Δ

)
I f

] · unt (x)dx

+ a2h2
∫ xr

xl

[
Δφ1

(
h2a2Δ

)
I2(x) − Δφ0

(
h2a2Δ

)
I1(x) − Δφ2

(
h2a2Δ

)
I f

] · unx (x)dx

+ h2
∫ xr

xl

[1
2

(
I2(x) · I2(x) − h2a2ΔI1(x) · I1(x)

) − I1(x) · I f
]
dx .

(10.28)
The above analysis gives the following important theorem immediately.

Theorem 10.5 The scheme (10.17) exactly preserves the energy (10.8) or the
Hamiltonian (10.9), i.e.,

E(tn+1) = E(tn) or H(un+1, pn+1) = H(un, pn), n = 0, 1, . . . , (10.29)

if and only ifRn = 0.

Based on Theorem 10.1, the following theorem gives a sufficient condition for
the scheme (10.17) to be energy-preserving exactly.

Theorem 10.6 If

I1(x) = φ2
(
h2a2Δ

) ∫ 1

0
f
(
(1 − τ)un(x) + τun+1(x)

)
dτ,

I2(x) = φ1
(
h2a2Δ

) ∫ 1

0
f
(
(1 − τ)un(x) + τun+1(x)

)
dτ,

(10.30)

then the scheme (10.17) exactly preserves the energy (10.8) or the Hamiltonian
(10.9).

Proof It is clear from (10.28) that if the following three equations
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φ0
(
h2a2Δ

)
I2(x) − h2a2Δφ1

(
h2a2Δ

)
I1(x) = φ1

(
h2a2Δ

)
I f , (10.31)

φ1
(
h2a2Δ

)
I2(x) − φ0

(
h2a2Δ

)
I1(x) = φ2

(
h2a2Δ

)
I f , (10.32)

1

2

∫ xr

xl

(
I2(x) · I2(x) − h2a2ΔI1(x) · I1(x)

)
dx =

∫ xr

xl

I1(x) · I f dx, (10.33)

are satisfied, then Rn = 0 for n = 0, 1, . . . . Hence, we have

E(tn+1) = E(tn) or H(un+1, pn+1) = H(un, pn).

The difference of (10.31) times φ1
(
h2a2Δ

)
and (10.32) times φ0

(
h2a2Δ

)
is

[
φ2
0
(
h2a2Δ

) − h2a2Δφ2
1
(
h2a2Δ

)]
I1(x) = [

φ2
1
(
h2a2Δ

) − φ0
(
h2a2Δ

)
φ2

(
h2a2Δ

)]
I f .

Likewise, the difference of (10.31) times φ0
(
h2a2Δ

)
and (10.32) times

h2a2φ1
(
h2a2Δ

)
gives[

φ2
0

(
h2a2Δ

) − h2a2Δφ2
1

(
h2a2Δ

)]
I2(x)

= [
φ0

(
h2a2Δ

)
φ1

(
h2a2Δ

) − h2a2Δφ1
(
h2a2Δ

)
φ2

(
h2a2Δ

)]
I f .

Using Theorem 10.1, we obtain

I1(x) = φ2
(
h2a2Δ

)
I f , I2(x) = φ1

(
h2a2Δ

)
I f . (10.34)

It can be verified that under the condition (10.34) and Theorem 10.2, the equation
(10.33) is also valid. Therefore, (10.30) are sufficient conditions for (10.17) to be an
energy-preserving scheme. �

We are now in a position to present the following energy-preserving scheme for
Hamiltonian PDEs.

Definition 10.1 The exact energy-preserving scheme for the nonlinear Hamiltonian
wave equation (10.1) is defined by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

un+1(x) = φ0
(
h2a2Δ

)
un(x) + hφ1

(
h2a2Δ

)
unt (x)

+ h2φ2
(
h2a2Δ

) ∫ 1

0
f
(
(1 − τ)un(x) + τun+1(x)

)
dτ,

un+1
t (x) = ha2Δφ1

(
h2a2Δ

)
un(x) + φ0

(
h2a2Δ

)
unt (x)

+ hφ1
(
h2a2Δ

) ∫ 1

0
f
(
(1 − τ)un(x) + τun+1(x)

)
dτ,

(10.35)

where h > 0 is a time stepsize, φ0(h2a2Δ), φ1(h2a2Δ), and φ2(h2a2Δ) are bounded
operator-argument functions defined by (10.11).
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Since there is a very close similarity between the behaviour of solutions of
reversible and Hamiltonian systems [27], in what follows, we show the symmetry of
the energy-preserving scheme (10.35).

Theorem 10.7 The energy-preserving scheme (10.35) is symmetric in time.

Proof It follows from exchanging un+1(x) ↔ un(x), un+1
t (x) ↔ unt (x) and replac-

ing h by −h in (10.35) that

un(x) = φ0
(
h2a2Δ

)
un+1(x) − hφ1

(
h2a2Δ

)
un+1
t (x)

+ h2φ2
(
h2a2Δ

) ∫ 1

0
f
(
(1 − τ)un+1(x) + τun(x)

)
dτ,

unt (x) = −ha2Δφ1
(
h2a2Δ

)
un+1(x) + φ0

(
h2a2Δ

)
un+1
t (x)

− hφ1
(
h2a2Δ

) ∫ 1

0
f
(
(1 − τ)un+1(x) + τun(x)

)
dτ.

(10.36)

From (10.36) and Theorem 10.1, it follows that

un+1(x) = φ0
(
h2a2Δ

)
un(x) + hφ1

(
h2a2Δ

)
unt (x)

+ h2φ2
(
h2a2Δ

) ∫ 1

0
f
(
(1 − τ)un+1(x) + τun(x)

)
dτ,

un+1
t (x) = ha2Δφ1

(
h2a2Δ

)
un(x) + φ0

(
h2a2Δ

)
unt (x)

+ hφ1
(
h2a2Δ

) ∫ 1

0
f
(
(1 − τ)un+1(x) + τun(x)

)
dτ.

(10.37)

Letting ξ = 1 − τ , we have

∫ 1

0
f
(
(1 − τ)un+1(x) + τun(x)

)
dτ =

∫ 1

0
f
(
ξun+1(x) + (1 − ξ)un(x)

)
dξ

=
∫ 1

0
f
(
(1 − τ)un(x) + τun+1(x)

)
dτ,

which shows (10.37) is exactly the same as (10.35).
Therefore, the conclusion of the theorem is proved. �

Remark 10.1 The extension of the scheme (10.35) to the general high-dimensional
nonlinear Hamiltonian wave equation

{
utt (X, t) − a2Δu(X, t) = f

(
u(X, t)

)
, X ∈ Ω ⊆ R

d , t0 < t ≤ T,

u(X, t0) = ϕ1(X), ut (X, t0) = ϕ2(X), x ∈ Ω ∪ ∂Ω,
(10.38)

with the corresponding periodic boundary conditions, is straightforward (see [20]),
where
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Δ =
d∑

i=1

∂2
xi .

Remark 10.2 It is noted that the new approach described above for dealing with
(10.1) is totally different from classical discrete approximations such as variational
methods, and the method of lines (see, e.g. [26]), since the semidiscretisation of the
spatial derivative is now avoided. Compared with classical discrete approximations,
this approach to solving (10.1) is exact for the space variable x .

Remark 10.3 It can be observed that when the solution of the initial-boundary value
problem (10.1) and (10.2) is independent of the spatial variable x , the system (10.1)
becomes a Hamiltonian ordinary differential equation and, in this case, (10.35)
reduces to the average vector field (AVF) method. Besides, when the spatial interval
is divided into a set of finite points with a fixed spatial stepsize via the classical dis-
crete approximations, then the −Δ is replaced by a symmetric semi-definite positive
matrix which is from a discrete operator, such as the second-order central difference
operator, (10.35) reduces to the adapted average vector field (AAVF) methods [44].
In other words, the exact energy-preserving scheme (10.35) is an essential extension
of AVF to Hamiltonian wave equations based on the operator-variation-of-constants
formula (10.15).

Theorem 10.8 If V = V (αu), where α �= 0, then

∫ 1

0
f
(
(1 − τ)un(x) + τun+1(x)

)
dτ = −1

un+1(x) − un(x)

(
V (αun+1(x)) − V (αun(x))

)
.

Proof

∫ 1

0
f
(
(1 − τ)un(x) + τun+1(x)

)
dτ = −

∫ 1

0
αV ′(α

(
(1 − τ)un(x) + τun+1(x)

))
dτ

= −α

α
(
un+1(x) − un(x)

) ∫ 1

0

dV
(
α
(
(1 − τ)un(x) + τun+1(x)

))
dτ

dτ

= −1

un+1(x) − un(x)

(
V

(
αun+1(x)

) − V
(
αun(x)

))
.

�
From Theorem 10.8 we obtain the main result of this chapter.

Theorem 10.9 An exact energy-preserving and symmetric scheme for the nonlinear
Hamiltonian wave equation (10.1) is given by

{
un+1(x) = φ0

(
h2a2Δ

)
un(x) + hφ1

(
h2a2Δ

)
unt (x) − h2φ2

(
h2a2Δ

)
Jn(x),

un+1
t (x) = ha2Δφ1

(
h2a2Δ

)
un(x) + φ0

(
h2a2Δ

)
unt (x) − hφ1

(
h2a2Δ

)
Jn(x),
(10.39)

where h > 0 is a time stepsize, φ0(h2a2Δ), φ1(h2a2Δ), φ2(h2a2Δ) are bounded
operator-argument functions defined by (10.11), and
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Jn(x) = V
(
un+1(x)

) − V
(
un(x)

)
un+1(x) − un(x)

. (10.40)

Here, it can be observed that, if un+1(x) − un(x) = 0, then Jn(x) in (10.39) is 0
0 ,

which can be understood as

Jn(x) = dV
(
un(x)

)
du

= − f
(
un(x)

)
. (10.41)

Proof The conclusion of the theorem can be proved directly by applying Theorem
10.8 to the energy-preserving scheme (10.35). �

Theorem 10.9 establishes the exact energy-preserving scheme (10.39) for the
nonlinear Hamiltonian wave equation (10.1) with the periodic boundary condition
(10.2). In the special case f (u) = α(x), that is V (u) = −α(x)u + β(x) and Jn(x) =
−α(x), the formula (10.39) yields the exact solution of the underlying problem.

If f (u) = 0, then (10.1) becomes the homogeneous linear wave equation:

{
utt − a2Δu = 0,

u(x, t0) = ϕ1(x), ut (x, t0) = ϕ2(x),
(10.42)

and accordingly, from Theorem 10.1, (10.39) reduces to

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

un+1(x) = φ0
(
h2a2Δ

)
un(x) + hφ1

(
h2a2Δ

)
unt (x)

= φ0
(
(n + 1)2h2a2Δ

)
ϕ1(x) + (n + 1)hφ1

(
(n + 1)2h2a2Δ

)
ϕ2(x),

un+1
t (x) = ha2Δφ1

(
h2a2Δ

)
un(x) + φ0

(
h2a2Δ

)
unt (x)

= (n + 1)ha2Δφ1
(
(n + 1)2h2a2Δ

)
ϕ1(x) + φ0

(
(n + 1)2h2a2Δ

)
ϕ2(x),
(10.43)

which exactly integrates the homogeneous linearwave equation (10.42). This implies
that (10.43) possesses an additional advantage of energy preservation and quadratic
invariant preservation for the homogeneous wave equation (10.42). Besides, com-
pared with the well-known D’Alembert, Poisson and Kirchhoff formulas, the for-
mula (10.43) is independent of the computation of integrals and presents an exact
closed-form solution to (10.42).

10.5 Illustrative Examples

With regard to applications of the scheme (10.39) or (10.43), we now give some
illustrative examples.

Problem 10.1 Consider the homogeneous linear wave equation
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⎩
utt = uxx , x ∈ (0, 2), t > 0,

u(x, 0) = sin(πx), ut (x, 0) = −1

9
sin(πx),

(10.44)

subject to the periodic boundary conditions u(L , t) = u(0, t) where the period
L = 2.

After a careful calculation, it is easy to see that (10.43) directly gives the analytic
solution of Problem 10.1 and its derivative⎧⎪⎨

⎪⎩
u(x, t) = sin(πx) cos(π t) − 1

9π
sin(πx) sin(π t),

ut (x, t) = −π sin(πx) sin(π t) − 1

9
sin(πx) cos(π t),

(10.45)

on noticing that

φ0(t
2 ∂2

∂x2
) sin(πx) = sin(πx) cos(π t),

tφ1(t
2 ∂2

∂x2
)
( − 1

9
sin(πx)

) = − 1

9π
sin(πx) sin(π t),

and

t
∂2

∂x2
φ1(t

2 ∂2

∂x2
) sin(πx) = −π sin(πx) sin(π t).

Problem 10.2 We consider the following two dimensional homogenous periodic
wave equation

{
utt − a2(uxx + uyy) = 0, (x, y) ∈ (0, 2) × (0, 2), t > 0,

u|t=0 = sin(3πx) sin(4πy), ut |t=0 = 0.
(10.46)

Applying the formula (10.43) (Δ = ∂2
x + ∂2

y in this case) to (10.46) leads to{
u(x, y, t) = φ0

(
t2a2Δ

)
sin(3πx) sin(4πy),

ut (x, y, t) = ta2Δφ1
(
t2a2Δ

)
sin(3πx) sin(4πy).

(10.47)

It follows from a simple calculation that

{
u(x, y, t) = sin(3πx) sin(4πy) cos(5t),

ut (x, y, t) = −5 sin(3πx) sin(4πy) sin(5t).
(10.48)

Problem 10.3 Consider the following non-homogeneous linear periodic wave
equation
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⎩ utt − uxx = cos x, x ∈

(π

4
, 2π + π

4

)
, t > 0,

u|t=0 = sin x, ut |t=0 = 0.
(10.49)

Applying (10.39) to (10.49) gives

{
u(x, t) = φ0(t

2Δ) sin x + t2φ2(t
2Δ) cos x,

ut (x, t) = tΔφ1(t
2Δ) sin x + tφ1(t

2Δ) cos x .
(10.50)

Then a simple calculation yields

{
u(x, t) = (sin x − cos x) cos t + cos x,

ut (x, t) = −(sin x − cos x) sin t,
(10.51)

which is exactly the solution of the problem (10.49).

Remark 10.4 The main purpose of this chapter is to establish a general framework
for an exact energy-preserving scheme for nonlinear Hamiltonian wave equations,
although we cannot achieve a closed-form solution for the nonlinear Hamiltonian
wave equation (10.1). Consequently, we do not consider further computational issues
in detail in this chapter.

10.6 Conclusions and Discussions

Energy-preserving schemes have a long history, and can date back to Courant,
Friedrichs, and Lewy’s work [5]. In this chapter, we considered the properties of
energy-preserving schemes and presented an exact energy-preserving scheme for
the nonlinear Hamiltonian wave equation (10.1) equipped with the periodic bound-
ary condition (10.2), which is in fact identical to the infinite dimensional nonlinear
Hamiltonian system (10.4) or (10.5).We first defined the bounded operator-argument
functions (10.11) and analysed their properties, then established an operator-
variation-of-constants formula for the nonlinear Hamiltonian wave equation (10.1).
The proposed energy-preserving scheme is based on the operator-variation-of-
constants formula which avoids the semidiscretisation of the spatial derivative and
exactly preserves the energy of the original continuous Hamiltonian wave equa-
tion (10.1). This energy-preserving scheme (10.35) is a significant generalisation of
the AVF formula and the AAVF formula (see, e.g. [33, 40]) as stated in Remark
10.3, since both the AVF formula and AAVF formula can preserve only the semi-
discrete energy of the continuation Hamiltonian PDEs (10.1). In fact, both the AVF
formula and AAVF formula are designed specially for Hamiltonian ordinary differ-
ential equations. In applications, such Hamiltonian ODEs in time can be obtained
from Hamiltonian PDEs by the discretisation of the spatial derivative via classical
discrete approximations such as variational methods, and the method of lines. Fur-
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thermore, we have also derived an exact energy-preserving and symmetric scheme
(10.39) for the nonlinear Hamiltonian wave equation (10.1) with the periodic bound-
ary condition (10.2), which avoids the evaluation of the integral

∫ 1

0
f
(
(1 − τ)un(x) + τun+1(x)

)
dτ

in the exact energy-preserving scheme (10.35). Therefore,we have in fact derived an
exact energy-preserving and symmetric scheme (10.39) for the nonlinear Hamilto-
nian wave equation (10.1), although the closed form solution to (10.1) is not acces-
sible (even though it exists).

Last but not least, the extension of scheme (10.35) to the general high-dimensional
nonlinear wave equation (10.38) is straightforward, as stated in Remark 10.1. All
essential analytical features presented for (10.1) are applicable to high-dimensional
nonlinear Hamiltonian wave equations (10.38).

It should also be noted that the operator-variation-of-constants formula for wave
equations makes it possible to systematically incorporate the inner structure prop-
erties of the original continuous system into numerical schemes in the design of
structure-preserving integrators for nonlinear wave equations. Chapter11 will try to
demonstrate this point.

The material of this chapter is based on the work by Wu and Liu [36].

References

1. Berti, M.: Nonlinear Oscillations of Hamiltonian PDEs. Springer, Berlin (2007)
2. Biswas, A.: Soliton perturbation theory for phi-four model and nonlinear Klein–Gordon equa-

tions. Commun. Nonlinear Sci. Numer. Simul. 14, 3239–3249 (2009)
3. Celledoni, E., Grimm, V., McLachlan, R.I., McLaren, D.I., O’Neale, D., Owren, B., Quispel,

G.R.W.: Preserving energy resp. dissipation in numerical PDEs using the "Average Vector
Field" method. J. Comput. Phys. 231(20), 6770–6789 (2012)

4. Cohen, D., Jahnke, T., Lorenz, K., Lubich, C.: Numerical integrators for highly oscillatory
Hamiltonian systems: a review. In: Mielke, A. (ed.) Analysis, Modeling and Simulation of
Multiscale Problems, pp. 553–576. Springer, Berlin (2006)

5. Courant, R., Friedrichs, K., Lewy, H.: Über die partiellen Differenzengleichungen der mathe-
matischen Physik, Math. Annal. 100, 32–74 (1928); reprinted and translated. IBM J. Res. Dev.
11, 215–234 (1967)

6. Dehghan,M.: Finite difference procedures for solving a problem arising inmodeling and design
of certain optoelectronic devices. Math. Comput. Simul. 71, 16–30 (2006)

7. Dehghan, M., Mirezaei, D.: Numerical solution to the unsteady two-dimensional Schrödinger
equation using meshless local boundary integral equation method. Int. J. Numer. Methods Eng.
76, 501–520 (2008)

8. Dehghan, M., Shokri, A.: Numerical solution of the nonlinear KleinCGordon equation using
radial basis functions. J. Comput. Appl. Math. 230, 400–410 (2009)

9. Dodd, R.K., Eilbeck, I.C., Gibbon, J.D., Morris, H.C.: Solitons and NonlinearWave Equations.
Academic, London (1982)

10. Eilbeck, J.C.: Numerical studies of solitons. In: Bishop, A.R., Schneider, T. (eds.) Solitons and
Condensed Matter Physics, pp. 28–43. Springer, New York (1978)



References 267

11. Fordy, A.P.: Soliton Theory: A Survey of Results. Manchester University Press (1990)
12. Franco, J.M.: New methods for oscillatory systems based on ARKN methods. Appl. Numer.

Math. 56, 1040–1053 (2006)
13. García-Archilla, B., Sanz-Serna, J.M., Skeel, R.D.: Long-time-step methods for oscillatory

differential equations. SIAM J. Sci. Comput. 20, 930–963 (1998)
14. Hairer, E., Lubich, C.: Long-time energy conservation of numerical methods for oscillatory

differential equations. SIAM J. Numer. Anal. 38, 414–441 (2000)
15. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving

Algorithms for Ordinary Differential Equations, 2nd edn. Springer, Berlin (2006)
16. Hochbruck, M., Lubich, C.: A Gautschi-type method for oscillatory second-order differential

equations. Numer. Math. 83, 403-426 (1999)
17. Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer. 19, 209–286 (2010)
18. Infeld, E., Rowlands, G.: Nonlinear Waves, Solitons and Chaos. Cambridge University Press,

New York (1990)
19. Liu, K., Wu, X.Y.: An extended discrete gradient formula for oscillatory Hamiltonian systems.

J. Phys. A: Math. Theor. 46(165203), 19 (2013)
20. Liu, C., Wu, X.Y.: The boundness of the operator-valued functions for multidimensional non-

linear wave equations with applications. Appl. Math. Lett. 74, 60–67 (2017)
21. Matsuo, T.: New conservative schemes with discrete variational derivatives for nonlinear wave

equations. J. Comput. Appl. Math. 203, 32–56 (2007)
22. Matsuo, T., Yamaguchi, H.: An energy-conserving Galerkin scheme for a class of nonlinear

dispersive equations. J. Comput. Phys. 228, 4346–4358 (2009)
23. McLachlan, R.I., Quispel, G.R.W., Robidoux, N.: Geometric integration using discrete gradi-

ents. Philos. Trans. R. Soc. A 357, 1021–1045 (1999)
24. Quispel, G.R.W.,McLaren, D.I.: A new class of energy-preserving numerical integrationmeth-

ods. J. Phys. A 41(045206), 7 (2008)
25. Ringler, T.D., Thuburn, J., Klemp, J.B., Skamarock, W.C.: A unified approach to energy con-

servation and potential vorticity dynamics for arbitrarily structured C-grids. J. Comput. Phys.
229, 3065–3090 (2010)

26. Schiesser, W.: The Numerical Methods Of Lines: Integration Of Partial Differential Equation.
Academic Press, San Diego (1991)

27. Sevryuk, M. B., Lectures in Mathematics., 1211, Springer, Berlin (1986)
28. Shakeri, F.,Dehghan,M.:Numerical solution of theKlein–Gordon equation viaHe’s variational

iteration method. Nonlinear Dyn. 51, 89–97 (2008)
29. Shi, W., Wu, X.Y., Xia, J.: Explicit multi-symplectic extended leap-frog methods for Hamilto-

nian wave equations. J. Comput. Phys. 231, 7671–7694 (2012)
30. Taleei, A., Dehghan, M.: Time-splitting pseudo-spectral domain decomposition method for the

soliton solutions of the one and multi-dimensional nonlinear Schrödinger equations. Comput.
Phys. Commun. 185, 1515–1528 (2014)

31. Van deVyver, H.: Scheifele two-stepmethods for perturbed oscillators. J. Comput. Appl.Math.
224, 415–432 (2009)

32. Wang, B., Liu, K., Wu, X.Y.: A Filon-type asymptotic approach to solving highly oscillatory
second-order initial value problems. J. Comput. Phys. 243, 210–223 (2013)

33. Wang,B.,Wu,X.Y.:Anewhigh precision energy-preserving integrator for systemof oscillatory
second-order differential equations. Phys. Lett. A 376, 1185–1190 (2012)

34. Wang, B., Iserles, A., Wu, X.Y.: Arbitrary-order trigonometric Fourier collocation methods for
multi-frequency oscillatory systems. Found. Comput. Math. 16, 151–181 (2016)

35. Wazwaz, A.M.: New travelling wave solutions to the Boussinesq and the Klein–Gordon equa-
tions. Commun. Nonlinear Sci. Numer. Simul. 13, 889–901 (2008)

36. Wu, X.Y., Liu, C.: An energy-preserving and symmetric scheme for nonlinear Hamiltonian
wave equations. J. Math. Anal. Appl. 440, 167–182 (2016)

37. Wu, X.Y., Liu, C.: An integral formula adapted to different boundary conditions for arbitrarily
high-dimensional nonlinear Klein–Gordon equations with its applications. J. Math. Phys. 57,
021504 (2016)



268 10 An Energy-Preserving and Symmetric Scheme …

38. Wu, X.Y., Liu, C., Mei, L.J.: A new framework for solving partial differential equations using
semi-analytical explicit RK(N)-type integrators. J. Comput. Appl. Math. 301, 74–90 (2016)

39. Wu, X.Y., Mei, L.J., Liu, C.: An analytical expression of solutions to nonlinear wave equations
in higher dimensions with Robin boundary conditions. J. Math. Anal. Appl. 426, 1164–1173
(2015)

40. Wu,X.Y.,Wang,B., Shi,W.: Efficient energy-preserving integrators for oscillatoryHamiltonian
systems. J. Comput. Phys. 235, 587–605 (2013)

41. Wu, X.Y., You, X., Xia, J.: Order conditions for ARKN methods solving oscillatory systems.
Comput. Phys. Commun. 180, 2250–2257 (2009)

42. Wu, X.Y., Wang, B., Xia, J.: Explicit symplectic multidimensional exponential fitting modified
Runge–Kutta–Nystrom methods. BIT Numer. Math. 52, 773–795 (2012)

43. Wu,X.Y., You,X., Shi,W.,Wang, B.: ERKN integrators for systems of oscillatory second-order
differential equations. Comput. Phys. Commun. 181, 1873–1887 (2010)

44. Wu, X.Y., You, X., Wang, B.: Structure-Preserving Algorithms for Oscillatory Differential
Equations. Springer, Berlin (2013)


	10 An Energy-Preserving and Symmetric Scheme for Nonlinear Hamiltonian Wave Equations
	10.1 Introduction
	10.2 Preliminaries
	10.3 Operator-Variation-of-Constants Formula  for Nonlinear Hamiltonian Wave Equations
	10.4 Exact Energy-Preserving Scheme for Nonlinear Hamiltonian Wave Equations
	10.5 Illustrative Examples
	10.6 Conclusions and Discussions
	References




