
Chapter 1
Functionally Fitted Continuous Finite
Element Methods for Oscillatory
Hamiltonian Systems

In recent decades, the numerical simulation for nonlinear oscillators has received
much attention and a large number of integrators for oscillatory problems have
been developed. In this chapter, based on the continuous finite element approach,
we propose and analyse new energy-preserving functionally-fitted, in particular,
trigonometrically-fitted methods of an arbitrarily high order for solving oscillatory
nonlinear Hamiltonian systems with a fixed frequency. In order to implement these
new methods in an accessable and efficient style, they are formulated as a class
of continuous-stage Runge–Kutta methods. The numerical results demonstrate the
remarkable accuracy and efficiency of the new methods compared with the existing
high-order energy-preserving methods in the literature.

1.1 Introduction

It is known that an important area of numerical analysis and scientific computing
is geometric numerical integration for differential equations. In this chapter, we
consider nonlinear Hamiltonian systems:

ẏ(t) = f (y(t)) = J−1∇H(y(t)), y(t0) = y0 ∈ R
d , (1.1)

where y ∈ R
d , d = 2d1, f : Rd → R

d , H : Rd → R are sufficiently smooth func-
tions and

J =
(

Od1×d1 Id1×d1
−Id1×d1 Od1×d1

)

is the canonical symplectic matrix. It is well known that the flow of (1.1) preserves
the symplectic form dy ∧ Jdy and the Hamiltonian or energy H(y(t)). In the spirit
of geometric numerical integration, it is a natural idea to design schemes that preserve
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2 1 Functionally Fitted Continuous Finite Element Methods …

both the symplecticity of theflowand the energy.Unfortunately, however, a numerical
scheme cannot achieve this goal unless it generates the exact solution (see, e.g.
[23], p. 379). Hence, researchers face a choice between preserving symplecticity or
preserving energy, andmany of them have givenmore weight to the former in the last
decades, and readers are referred to [23] and references therein. Despite insufficient
work in the literature on energy-preserving (EP) methods (see, e.g. [1, 4, 6, 10, 11,
17, 19, 21, 29, 38]), EP methods compared with symplectic methods have better
nonlinear stability properties, are easier to adapt the time step for, and are more
suitable for the integration of chaotic systems (see, e.g. [12, 20, 35, 36]).

On the other hand, in scientific computing and modelling, the design and analysis
of methods for periodic or oscillatory systems has been considered by many authors
(see, e.g. [2, 18, 22, 34, 42, 46]). Generally, these methods utilize a priori informa-
tion of special problems and they are more efficient than general-purpose methods.
A popular approach to constructing methods suitable for oscillatory problems is
using the functionally-fitted (FF) condition, namely, deriving a suitable method by
requiring it to integrate members of a given finite-dimensional function space X
exactly. If X incorporates trigonometrical or exponential functions, the correspond-
ing methods are also called trigonometrically-fitted (TF) or exponentially-fitted (EF)
methods (see, e.g. [15, 27, 32, 37]).

Therefore, combining the ideas of the EF/TF and structure-preserving methods is
a promising approach to developing numerical methods which allow long-term com-
putation of solutions to oscillatory Hamiltonian systems (1.1). Just as the research
of symplectic and EP methods, EF/TF symplectic methods have been studied exten-
sively by many authors (see, e.g. [7–9, 16, 39, 40, 43]). By contrast, as far as we
know, only a few papers paid attention to the EF/TFEP methods (see, e.g. [30, 31,
41]). Usually the existing EF/TFEPmethods are derived in the context of continuous-
stage Runge–Kutta (RK) methods. The coefficients in these methods are determined
by a system of equations resulting from EF/TF, EP and symmetry conditions. As
mentioned at the end of [30], it is not easy to find such a system with a unique solu-
tion when deriving high-order methods. Furthermore, how to verify the algebraic
order of such methods falls into question. A common way is to check the order con-
ditions related to rooted trees. Again, this is inconvenient in the high-order setting
since the number of trees increases extremely fast as the order grows. In this chapter,
we will construct FFEP methods based on the continuous finite element method,
which is inherently energy preserving (see, e.g. [1, 17, 38]). Intuitively, we expect
to increase the order of the method through enlarging the finite element space. By
adding trigonometrical functions to the space, the corresponding method is natu-
rally trigonometrically fitted. Thus, we are hopeful of constructing FFEP methods,
in particular TFEP methods, of arbitrarily high orders.

This chapter is organized as follows. In Sect. 1.2, we construct functionally fit-
ted continuous finite element (FFCFE) methods and present their most important
geometric properties. In Sect. 1.3, we interpret them as continuous-stage Runge–
Kutta methods and analyse the algebraic order. We then discuss implementation
details of these new methods in Sect. 1.4. Numerical results are shown in Sect. 1.5,
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including the comparison between our new TFEP methods and other prominent
structure-preserving methods in the literature. The last section is concerned with the
conclusion and discussion.

1.2 Functionally-Fitted Continuous Finite Element
Methods for Hamiltonian Systems

Throughout this chapter, we consider the approximation of the solution of the IVP
(1.1) on the time interval I = [t0, T ]. Let S be a linear space of continuous functions
y(t) on the interval I . Let {ϕi }r−1

i=0 be a family of sufficiently smooth and linearly
independent real-valued functions on I , and letY be the subspace spanned by {ϕi }r−1

i=0 :

Y =
{
w : w(t) =

r−1∑
i=0

Wiϕi (t),Wi ∈ R
d

}
.

We assume that the interval I = [t0, T ] is equally partitioned into t0 < t1 < . . . <

tN = T , with tn = t0 + nh for n = 0, 1, . . . , N . A function w on I is called a piece-
wise Y -type function if for any 0 ≤ n ≤ N − 1, there exists a function g ∈ Y , such
that

w|(tn ,tn+1) = g|(tn ,tn+1).

It is convenient to introduce the transformation t = t0 + τh for τ ∈ [0, 1] in the
following analysis. Accordingly, we denote

Yh(t0) = {v on [0, 1] : v(τ ) = w(t0 + τh), w ∈ Y } .

Hence,
Yh(t0) = span {ϕ̃0, . . . , ϕ̃r−1} ,

where ϕ̃i (τ ) = ϕi (t0 + τh) for i = 0, 1, . . . , r − 1. Inwhat follows, lowercaseGreek
letters such as τ, σ, α always indicate variables on the interval [0,1] unless confusions
arise.

Given two integrable functions (scalar-valued or vector-valued) w1 and w2 on
[0, 1], the inner product 〈·, ·〉 is defined by

〈w1,w2〉 = 〈w1(τ ),w2(τ )〉τ =
∫ 1

0
w1(τ ) · w2(τ )dτ,

where · is the entrywise multiplication operation if w1,w2 are both vector-valued
functions of the same length.

Given two finite-dimensional function spaces X and Y whose members are Rd -
valued, the continuous finite element method for (1.1) is described as follows.
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Find a continuous piecewise X -type function U (t) on I with U (t0) = y0, such
that for any piecewise function Y -type function v(t),

∫
I
v(t) · (U ′(t) − f (U (t)))dt = 0, (1.2)

where U (t) ≈ y(t) on I and y(t) solves (1.1). The term ‘continuous finite ele-
ment’(CFE) comes from the continuity of the finite element solution U (t). Since
(1.2) deals with an initial value problem, we only need to consider it on [t0, t0 + h].

Find u ∈ Xh(t0) with u(0) = y0, such that

〈v, u′〉 = h〈v, f ◦ u〉, (1.3)

for any v ∈ Yh(t0), where

u(τ ) = U (t0 + τh) ≈ y(t0 + τh)

for τ ∈ [0, 1]. Since U (t) is continuous, y1 = u(1) is the initial value of the local
problemon the next interval [t1, t2]. Thus,we can solve the global variational problem
(1.2) on I step by step.

In the special case of

X = span
{
1, t, . . . , tr

}
, Y = span

{
1, t, . . . , tr−1

}
,

Equation (1.2) reduces to the classical continuous finite element method (see, e.g. [1,
25]) denoted by CFEr in this chapter. For the purpose of deriving functionally-fitted
methods, we generalise X and Y a little:

Y = span {ϕ0(t), . . . , ϕr−1(t)} , X = span

{
1,
∫ t

t0
ϕ0(s)ds, . . . ,

∫ t

t0
ϕr−1(s)ds

}
. (1.4)

Then it is sufficient to give X or Y since they can be determined by each other.
Furthermore, Y is assumed to be invariant under translation and reflection, namely,

{
v(t) ∈ Y ⇒ v(t + c) ∈ Y for any c ∈ R,

v(t) ∈ Y ⇒ v(−t) ∈ Y.
(1.5)

Clearly, Yh(t0) and Xh(t0) are irrelevant to t0 provided (1.5) holds. For convenience,
we simplify Yh(t0) and Xh(t0) by Yh and Xh , respectively. In the remainder of this
chapter, we denote the CFE method (1.2) or (1.3) based on the general function
spaces (1.4) satisfying the condition (1.5) by FFCFEr .

We note that the FFCFEr method (1.3) is defined by a variational problem, and the
well-definedness of this problem has not been confirmed yet. Here we presume the
existence and uniqueness of the solution to (1.3). This assumption will be proved in
the next section. With this premise, we are able to present three significant properties
of the FFCFEr method.
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We first conclude that the FFCFEr method is functionally fitted with respect to
the space X , from the definition of the variational problem (1.2).

Theorem 1.1 The FFCFEr method (1.2) solves the IVP (1.1) whose solution is a
piecewise X-type function without any error.

Moreover, the FFCFEr method is an inherently energy-preserving method. The
next theorem confirms this point.

Theorem 1.2 The FFCFEr method (1.3) exactly preserves the Hamiltonian H:
H(y1) = H(y0).

Proof Firstly, given a vector V , we denote its i th entry by Vi . For each function
w ∈ Yh , setting v(τ ) = w(τ ) · ei ∈ Yh in (1.3) leads to

∫ 1

0
w(τ )i u

′(τ )i dτ = h
∫ 1

0
w(τ )i f (u(τ ))i dτ, i = 1, 2, . . . , d,

where ei is the i th vector of units. Hence,

∫ 1

0
w(τ )ᵀu′(τ )dτ =

d∑
i=1

∫ 1

0
w(τ )i u

′(τ )i dτ =
d∑

i=1

h
∫ 1

0
w(τ )i f (u(τ ))i dτ

= h
∫ 1

0
w(τ )ᵀ f (u(τ ))dτ.

(1.6)

Since u(τ ) ∈ Xh , u′(τ ) ∈ Yh and J−1u′(τ ) ∈ Yh , taking w(τ ) = J−1u′(τ ) in (1.6),
we obtain

H(y1) − H(y0) =
∫ 1

0

d

dτ
H(u(τ ))dτ =

∫ 1

0
u′(τ )ᵀ∇H(u(τ ))dτ

=
∫ 1

0
(J−1u′(τ ))ᵀ f (u(τ ))dτ = h−1

∫ 1

0
u′(τ )ᵀ Ju′(τ )dτ = 0.

This completes the proof. �

The FFCFEr method can also be viewed as a one-step method Φh : y0 → y1 =
u(1). It is well known that reversible methods show a better long-term behaviour
than nonsymmetric ones when applied to reversible differential systems such as
(1.1) (see, e.g. [23]). This fact motivates the investigation of the symmetry of the
FFCFEr method. Since the spaces X and Y satisfy the invariance (1.5), which is a
kind of symmetry, the FFCFEr method is expected to be symmetric.

Theorem 1.3 The FFCFEr method (1.3) is symmetric provided (1.5) holds.

Proof It follows from (1.5) that we have Xh = X−h,Yh = Y−h .Exchanging y0 ↔ y1
and replacing h with −h in (1.3) give: u(0) = y1, y0 = u(1), where
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〈v(τ ), u′(τ )〉τ = −h〈v(τ ), f (u(τ ))〉τ , u(τ ) ∈ X−h = Xh,

for each v(τ ) ∈ Y−h = Yh . Setting u1(τ ) = u(1 − τ) ∈ Xh and τ → 1 − τ leads to
u1(0) = y0, y1 = u1(1), where

〈v1(τ ), u′
1(τ )〉τ = h〈v1(τ ), f (u1(τ ))〉τ ,

for each v1(τ ) = v(1 − τ) ∈ Yh . This method is exactly the same as (1.3), which
means that the FFCFEr method is symmetric. �

It is well known that polynomials cannot approximate oscillatory functions sat-
isfactorily. If the problem (1.1) has a fixed frequency ω which can be evaluated
effectively in advance, then the function space containing the pair {sin(ωt), cos(ωt)}
seems to be a more promising candidate for X and Y than a polynomial space. For
example, possible Y spaces for deriving the TFCFE method are

Y1 =
{
span {cos(ωt), sin(ωt)} , r = 2,

span
{
1, t, . . . , tr−3, cos(ωt), sin(ωt)

}
, r ≥ 3,

(1.7)

Y2 = span {cos(ωt), sin(ωt), . . . , cos(kωt), sin(kωt)} , r = 2k, (1.8)

and

Y3 = span
{
1, t, . . . , t p, t cos(ωt), t sin(ωt), . . . , t k cos(ωt), t k sin(ωt)

}
. (1.9)

Correspondingly, by equipping the FFCFE method with the space Y = Y1,Y2 or Y3,
we obtain three families of TFCFE methods. According to Theorems1.2 and 1.3, all
for them are symmetric energy-preserving methods. To exemplify this framework
of the TFCFE method, in numerical experiments, we will test the TFCFE method
denoted by TFCFEr and TF2CFEr based on the spaces (1.7) and (1.8). It is noted
that TFCFE2 and TF2CFE2 coincide.

1.3 Interpretation as Continuous-Stage Runge–Kutta
Methods and the Analysis on the Algebraic Order

An interesting connection between CFE methods and RK-type methods has been
shown in several papers (see, e.g. [3, 25, 38]). Since the RK methods are dominant
in the numerical integration of ODEs, it is meaningful and useful to transform the
FFCFEr method into the corresponding RK-type method which has been widely and
conventionally used in applications. After the transformation, the FFCFEr method
can be analysed and implemented by standard techniques in ODEs conveniently. To
this end, it is helpful to introduce the projection operation Ph . Given a continuous
R

d -valued function w on [0, 1], its projection onto Yh , denoted by Phw, is defined by
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〈v, Phw〉 = 〈v,w〉, for any v ∈ Yh . (1.10)

Clearly, Phw(τ ) can be uniquely expressed as a linear combination of {ϕ̃i (τ )}r−1
i=0 :

Phw(τ ) =
r−1∑
i=0

Ui ϕ̃i (τ ), Ui ∈ R
d .

Taking v(τ ) = ϕ̃i (τ )e j in (1.10) for i = 0, 1, . . . , r − 1 and j = 1, . . . , d, we can
observe that the coefficients Ui satisfy the equation

M ⊗ Id×d

⎛
⎜⎝

U0
...

Ur−1

⎞
⎟⎠ =

⎛
⎜⎝

〈ϕ̃0,w〉
...

〈ϕ̃r−1,w〉

⎞
⎟⎠ ,

where
M = (〈ϕ̃i , ϕ̃ j 〉)0≤i, j≤r−1.

Since {ϕ̃i }r−1
i=0 are linearly independent for h > 0, the stiffness matrix M is nonsin-

gular. Consequently, the projection can be explicitly expressed by

Phw(τ ) = 〈Pτ,σ ,w(σ )〉σ ,

where
Pτ,σ = (ϕ̃0(τ ), . . . , ϕ̃r−1(τ ))M−1(ϕ̃0(σ ), . . . , ϕ̃r−1(σ ))ᵀ. (1.11)

Clearly, Pτ,σ can be calculated by a basis other than {ϕ̃i }r−1
i=0 since they only differ

in a linear transformation. If {φ0, . . . , φr−1} is an orthonormal basis of Xh under the
inner product 〈·, ·〉, then Pτ,σ admits a simpler expression:

Pτ,σ =
r−1∑
i=0

φi (τ )φi (σ ). (1.12)

Now, using (1.3) and the definition (1.10) of the operator Ph , we obtain that u′ =
hPh( f ◦ u) and

u′(τ ) = h〈Pτ,σ , f (u(σ ))〉σ . (1.13)

Integrating the above equation with respect to τ , we transform the FFCFEr method
(1.3) into the continuous-stage RK method:

⎧⎪⎨
⎪⎩
u(τ ) = y0 + h

∫ 1

0
Aτ,σ f (u(σ ))dσ,

y1 = u(1),

(1.14)
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where

Aτ,σ =
∫ τ

0
Pα,σdα =

r−1∑
i=0

∫ τ

0
φi (α)dαφi (σ ). (1.15)

In particular,
φi (τ ) = p̂i (τ ), (1.16)

for the CFEr method for i = 0, 1, . . . , r − 1, where p̂i (τ ) is the shifted Legendre
polynomial of degree i on [0, 1], scaled in order to be orthonormal. Hence, the CFEr
method in the form (1.14) is identical to the energy-preserving collocation method of
order 2r (see [21]) or the Hamiltonian boundary value method HBVM(∞, r) (see,
e.g. [4]). For the FFCFEr method, since Pτ,σ , Aτ,σ are functions of variable h and
u(τ ) is implicitly determined by (1.14), it is necessary to analyse their smoothness
with respect to h before investigating the analytic property of the numerical solution
u(τ ). First of all, it can be observed from (1.11) that Pτ,σ = Pτ,σ (h) is not defined at
h = 0 since the matrix M is singular in this case. Fortunately, however, the following
lemma shows that the singularity is removable.

Lemma 1.1 The limit, lim
h→0

Pτ,σ exists. Furthermore, Pτ,σ can be smoothly extended

to h = 0 by setting Pτ,σ (0) = lim
h→0

Pτ,σ (h).

Proof By expanding {ϕi (t0 + τh)}r−1
i=0 at t0, we obtain that

(ϕ̃0(τ ), . . . , ϕ̃r−1(τ )) = (1, τh, . . . ,
τ r−1hr−1

(r − 1)! )W + O(hr ), (1.17)

where

W =

⎛
⎜⎜⎜⎝

ϕ0(t0) ϕ1(t0) · · · ϕr−1(t0)
ϕ

(1)
0 (t0) ϕ

(1)
1 (t0) · · · ϕ

(1)
r−1(t0)

...
...

...

ϕ
(r−1)
0 (t0) ϕ

(r−1)
1 (t0) · · · ϕ

(r−1)
r−1 (t0)

⎞
⎟⎟⎟⎠ (1.18)

is the Wronskian of {ϕi (t)}r−1
i=0 at t0, and is nonsingular. Post-multiplying the right-

hand side of (1.17) by W−1diag(1, h−1, . . . , h1−r (r − 1)!) yields another basis
of Xh :

{1 + O(h), τ + O(h), . . . , τ r−1 + O(h)}.

Applying the Gram–Schmidt process (with respect to the inner product 〈·, ·〉) to the
above basis, we obtain an orthonormal basis

{
φi (τ ) = p̂i (τ ) + O(h)

}r−1
i=0 . Thus, by

(1.12) and defining

Pτ,σ (0) = lim
h→0

r−1∑
i=0

φi (τ )φi (σ ) =
r−1∑
i=0

p̂i (τ ) p̂i (σ ), (1.19)
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we can extend Pτ,σ to h = 0. Since each φi (τ ) = p̂i (τ ) + O(h) is smooth with
respect to h, Pτ,σ is also a smooth function of h. �

From (1.16) and (1.19), it can be observed that the FFCFEr method (1.14)
reduces to the CFEr method when h → 0, or equivalently, the energy-preserving
collocation method of order 2r and HBVM(∞, r) method mentioned above. Since
Aτ,σ = ∫ τ

0 Pα,σdα is also a smooth function of h, we can assume that

Mk = max
τ,σ,h∈[0,1]

∣∣∣∣∂
k Aτ,σ

∂hk

∣∣∣∣ , k = 0, 1, . . . . (1.20)

Furthermore, since the right function f in (1.1) maps from R
d to R

d , the nth-order
derivative of f at y denoted by f (n)(y) is a multilinear map from R

d × . . . × R
d︸ ︷︷ ︸

n− f old

to

R
d defined by

f (n)(y)(z1, . . . , zn) =
∑

1≤α1,...,αn≤d

∂n f

∂yα1 · · · ∂yαn

(y)zα1
1 . . . zαn

n ,

where y = (y1, . . . , yd)ᵀ and zi = (z1i , . . . , z
d
i )

ᵀ for i = 1, . . . , n. With this back-
ground, we now can give the existence, uniqueness, and especially the smoothness
with respect to h for the continuous finite element approximation u(τ ) associated
with the FFCFEr method. The proof of the following theorem is based on a fixed-
point iteration which is analogous to Picard iteration.

Theorem 1.4 Given a positive constant R, let

B(y0, R) = {
y ∈ R

d : ||y − y0|| ≤ R
}

and
Dn = max

y∈B(y0,R)
|| f (n)(y)||, n = 0, 1, . . . , (1.21)

where || · || = || · ||∞ is the maximum norm for vectors in R
d or the corresponding

induced norm for the multilinear maps f (n)(y), n ≥ 1. Then the FFCFEr method
(1.3) or (1.14) has a unique solution u(τ )which is smoothly dependent of h provided

0 ≤ h ≤ ε < min

{
1

M0D1
,

R

M0D0
, 1

}
. (1.22)

Proof Set u0(τ ) ≡ y0. We construct a function series {un(τ )}∞n=0 defined by the
relation

un+1(τ ) = y0 + h
∫ 1

0
Aτ,σ f (un(σ ))dσ, n = 0, 1, . . . . (1.23)
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Obviously, limn→∞ un(τ ) is a solution to (1.14) provided {un(τ )}∞n=0 is uniformly
convergent. Thus, we only need to prove the uniform convergence of the infinite
series ∞∑

n=0

(un+1(τ ) − un(τ )).

It follows from (1.20), (1.22), (1.23) and induction that

||un(τ ) − y0|| ≤ R, n = 0, 1, . . . (1.24)

Then by using (1.21), (1.22), (1.23), (1.24) and the inequalities

||
∫ 1

0
w(τ )dτ || ≤

∫ 1

0
||w(τ )||dτ, for Rd -valued function w(τ ),

|| f (y) − f (z)|| ≤ D1||y − z||, for y, z ∈ B(y0, R),

we obtain the following inequalities

||un+1(τ ) − un(τ )|| ≤ h
∫ 1

0
M0D1||un(σ ) − un−1(σ )||dσ

≤ β||un − un−1||c, β = εM0D1,

where || · ||c is the maximum norm for continuous functions:

||w||c = max
τ∈[0,1] ||w(τ )||, w is a continuous Rd -valued function on [0, 1].

Therefore, we have
||un+1 − un||c ≤ β||un − un−1||c

and
||un+1 − un||c ≤ βn||u1 − y0||c ≤ βn R, n = 0, 1, . . . . (1.25)

Since β < 1, according toWeierstrass M-test,
∑∞

n=0(un+1(τ ) − un(τ )) is uniformly
convergent, and thus, the limit of {un(τ )}∞n=0 is a solution to (1.14). If v(τ ) is another
solution, then the difference between u(τ ) and v(τ ) satisfies

||u(τ ) − v(τ )|| ≤ h
∫ 1

0
||Aτ,σ ( f (u(σ )) − f (v(σ )))||dσ ≤ β||u − v||c,

and
||u − v||c ≤ β||u − v||c.
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This means ||u − v||c = 0, i.e., u(τ ) ≡ v(τ ). Hence, the existence and uniqueness
have been proved.

As for the smooth dependence of u on h, since every un(τ ) is a smooth function
of h, we only need to prove the sequence

{
∂kun
∂hk

(τ )

}∞

n=0

is uniformly convergent for k ≥ 1. Firstly, differentiating both sides of (1.23) with
respect to h yields

∂un+1

∂h
(τ ) =

∫ 1

0
(Aτ,σ + h

∂Aτ,σ

∂h
) f (un(σ ))dσ + h

∫ 1

0
Aτ,σ f (1)(un(σ ))

∂un
∂h

(σ )dσ. (1.26)

We then have

||∂un+1

∂h
||c ≤ α + β||∂un

∂h
||c, α = (M0 + εM1)D0. (1.27)

By induction, it is easy to show that
{

∂un
∂h (τ )

}∞
n=0

is uniformly bounded:

||∂un
∂h

||c ≤ α(1 + β + . . . + βn−1) ≤ α

1 − β
= C∗, n = 0, 1, . . . . (1.28)

Combining (1.25), (1.26) and (1.28), we obtain

||∂un+1

∂h
− ∂un

∂h
||c

≤
∫ 1

0
(M0 + hM1)|| f (un(σ )) − f (un−1(σ ))||dσ

+ h
∫ 1

0
M0

(
||( f (1)(un(σ )) − f (1)(un−1(σ )))

∂un
∂h

(σ )||

+|| f (1)(un−1(σ ))(
∂un
∂h

(σ ) − ∂un−1

∂h
(σ ))||

)
dσ

≤ γβn−1 + β||∂un
∂h

− ∂un−1

∂h
||c,

where
γ = (M0D1 + εM1D1 + εM0L2C

∗)R,

and L2 is a constant satisfying

|| f (1)(y) − f (1)(z)|| ≤ L2||y − z||, for y, z ∈ B(y0, R).



12 1 Functionally Fitted Continuous Finite Element Methods …

Thus, again by induction, we have

||∂un+1

∂h
− ∂un

∂h
||c ≤ nγβn−1 + βnC∗, n = 1, 2, . . .

and
{

∂un
∂h (τ )

}∞
n=0

is uniformly convergent. By a similar argument, one can show that

other function sequence
{

∂kun
∂hk (τ )

}∞
n=0

for k ≥ 2 are uniformly convergent as well.

Therefore, u(τ ) is smoothly dependent on h. The proof is complete. �

Since our analysis of the algebraic order of the FFCFEr method is mainly based
on Taylor’s theorem, it is meaningful to investigate the expansion of Pτ,σ (h).

Proposition 1.1 Assume that the Taylor expansion of Pτ,σ (h) with respect to h at
zero is

Pτ,σ =
r−1∑
n=0

P [n]
τ,σh

n + O(hr ). (1.29)

Then the coefficients P [n]
τ,σ satisfy

〈P [n]
τ,σ , gm(σ )〉σ =

{
gm(τ ), n = 0, m = r − 1,

0, n = 1, . . . , r − 1, m = r − 1 − n,

for any gm ∈ Pm([0, 1]), where Pm([0, 1]) consists of polynomials of degrees ≤ m
on [0, 1].
Proof It can be observed from (1.11) that

〈Pτ,σ , ϕi (t0 + σh)〉σ = ϕi (t0 + τh), i = 0, 1, . . . , r − 1. (1.30)

Meanwhile, expanding ϕi (t0 + τh) at t0 yields

ϕi (t0 + τh) =
r−1∑
n=0

ϕ
(n)
i (t0)

n! τ nhn + O(hr ). (1.31)

Then by inserting (1.29) and (1.31) into the Eq. (1.30), we obtain that

〈
r−1∑
n=0

P [n]
τ,σh

n,

r−1∑
m=0

ϕ
(m)
i (t0)

m! σmhm〉σ =
r−1∑
k=0

ϕ
(k)
i (t0)

k! τ khk + O(hr ).
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Considering the terms in hk leads to

r−1∑
k=0

( ∑
m+n=k

ϕ
(m)
i (t0)

m! 〈P [n]
τ,σ , σm〉σ − ϕ

(k)
i (t0)

k! τ k

)
hk = O(hr ),

k−1∑
m=0

ϕ
(m)
i (t0)

m! Pm,k−m + ϕ
(k)
i (t0)

k! (Pk0 − τ k) = 0, i, k = 0, 1, . . . , r − 1,

and
WᵀV = 0,

where Pmn = 〈P [n]
τ,σ , σm〉σ , W is the Wronskian (1.18), and V = (Vmk)0≤m,k≤r−1 is

an upper triangular matrix with the entries determined by

Vmk =

⎧⎪⎨
⎪⎩

1

m! Pm,k−m, m < k,

1

m! (Pm,0 − τm), m = k.

Since W is nonsingular, V = 0,

Pmn =
{

τm, n = 0, m + n ≤ r − 1,

0, n = 1, 2, . . . , r − 1, m + n ≤ r − 1.
(1.32)

Then the statement of the proposition directly follows from (1.32). �

Aside from Pτ,σ , it is also crucial to analyse the expansion of the solution u(τ ).
For convenience, we say that an h-dependent function w(τ ) is regular if it can be
expanded as

w(τ ) =
r−1∑
n=0

w[n](τ )hn + O(hr ),

where

w[n](τ ) = 1

n!
∂nw(τ )

∂hn
|h=0

is a vector-valued function with polynomial entries of degrees ≤ n.

Lemma 1.2 Given a regular function w and an h-independent sufficiently smooth
function g, the composition (if exists) is regular. Moreover, the difference between w
and its projection satisfies

Phw(τ ) − w(τ ) = O(hr ).
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Proof Assume that the expansion of g(w(τ )) with respect to h at zero is

g(w(τ )) =
r−1∑
n=0

p[n](τ )hn + O(hr ).

Then, differentiating g(w(τ )) with respect to h at zero iteratively and using

p[n](τ ) = 1

n!
∂ng(w(τ ))

∂hn
|h=0, the degree of

∂nw(τ )

∂hn
|h=0 ≤ n, n = 0, 1, . . . , r − 1,

we can observe that p[n](τ ) is a vector with polynomial entries of degrees ≤ n for
n = 0, 1, . . . , r − 1 and the first statement is confirmed.

As for the second statement, using Proposition 1.1, we have

Phw(τ ) − w(τ )

= 〈
r−1∑
n=0

P [n]
τ,σh

n,

r−1∑
k=0

w[k](σ )hk〉σ −
r−1∑
m=0

w[m](τ )hm + O(hr )

=
r−1∑
m=0

(
∑

n+k=m

〈P [n]
τ,σ ,w[k](σ )〉σ − w[m](τ ))hm + O(hr )

=
r−1∑
m=0

(〈P [0]
τ,σ ,w[m](σ )〉σ − w[m](τ ))hm + O(hr ) = O(hr ).

�

Before further discussions, it may be useful to recall some standard results in the
theory of ODEs. To emphasize the dependence of the solution to y′(t) = f (y(t)) on
the initial value, we assume that y(·, t̃, ỹ) solves the IVP:

d

dt
y(t, t̃, ỹ) = f (y(t, t̃, ỹ)), y(t̃, t̃, ỹ) = ỹ.

Clearly, this problem is equivalent to the following integral equation:

y(t, t̃, ỹ) = ỹ +
∫ t

t̃
f (y(ξ, t̃, ỹ))dξ.

Differentiating it with respect to t̃ and ỹ and using the uniqueness of the solution
leads to

∂y

∂ t̃
(t, t̃, ỹ) = − ∂y

∂ ỹ
(t, t̃, ỹ) f (ỹ). (1.33)

With the previous analysis results, we are in a position to give the order of FFCFEr .

Theorem 1.5 The stage order and order of the FFCFEr method (1.3) or (1.14) are
r and 2r , respectively. That is,
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u(τ ) − y(t0 + τh) = O(hr+1),

for 0 < τ < 1, and
u(1) − y(t0 + h) = O(h2r+1).

Proof Firstly, by Theorem 1.4 and Lemma 1.1, we can expand u(τ ) and Aτ,σ with
respect to h at zero:

u(τ ) =
r−1∑
m=0

u[m](τ )hm + O(hr ), Aτ,σ =
r−1∑
m=0

A[m]
τ,σh

m + O(hr ).

Then let

δ = u(σ ) − y0 =
r−1∑
m=1

u[m](σ )hm + O(hr ) = O(h).

Expanding f (u(σ )) at y0 and inserting the above equalities into the first equation of
(1.14), we obtain

r−1∑
m=0

u[m](τ )hm = y0 + h
∫ 1

0

r−1∑
k=0

A[k]
τ,σ h

k
r−1∑
n=0

F (n)(y0)(δ, . . . , δ︸ ︷︷ ︸
n− f old

)dσ + O(hr ), (1.34)

where F (n)(y0) = f (n)(y0)/n!. We claim that u(τ ) is regular, i.e.

u[m](τ ) ∈ Pd
m = Pm([0, 1]) × . . . × Pm([0, 1])︸ ︷︷ ︸

d− f old

form = 0, 1, . . . , r − 1. This fact can be confirmed by induction. Clearly, u[0](τ ) =
y0 ∈ Pd

0 . If u
[n](τ ) ∈ Pd

n for n = 0, 1, . . . ,m, then by comparing the coefficients of
hm+1 on both sides of (1.34) and using (1.15) and Proposition 1.1, we obtain that

u[m+1](τ ) =
∑

k+n=m

∫ 1

0
A[k]

τ,σ gn(σ )dσ =
∑

k+n=m

∫ τ

0

∫ 1

0
P [k]

α,σ gn(σ )dσdα

=
∫ τ

0

∫ 1

0
P [0]

α,σ gm(σ )dσdα =
∫ τ

0
gm(α)dα ∈ Pd

m+1, gn(σ ) ∈ Pd
n .

This completes the induction. By Lemma 1.2, f (u(τ )) is also regular and

f (u(τ )) − Ph( f ◦ u)(τ ) = O(hr ). (1.35)

Then it follows from (1.13), (1.33) and (1.35) that
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u(τ ) − y(t0 + τh) = y(t0 + τh, t0 + τh, u(τ )) − y(t0 + τh, t0, y0)

=
∫ τ

0

d

dα
y(t0 + τh, t0 + αh, u(α))dα

=
∫ τ

0
(h

∂y

∂ t̃
(t0 + τh, t0 + αh, u(α)) + ∂y

∂ ỹ
(t0 + τh, t0 + αh, u(α))u′(α))dα

= −h
∫ τ

0
Φτ (α)( f (u(α)) − Ph( f ◦ u)(α))dα

= O (hr+1),

(1.36)

where

Φτ(α) = ∂y

∂ ỹ
(t0 + τh, t0 + αh, u(α)).

As for the algebraic order, setting τ = 1 in (1.36) leads to

u(1) − y(t0 + h)

= −h
∫ 1

0
Φ1(α)( f (u(α)) − Ph( f ◦ u)(α))dα.

(1.37)

Since Φ1(α) is a matrix-valued function, we partition it as Φ1(α) = (Φ1
1 (α), . . . ,

Φ1
d (α))ᵀ. Using Lemma 1.2 again leads to

Φ1
i (α) = PhΦ

1
i (α) + O(hr ), i = 1, 2, . . . , d. (1.38)

Meanwhile, setting w(α) = PhΦi (α)ᵀ in (1.6) and using (1.13) yields

∫ 1

0
PhΦ1

i (α) f (u(α))dα = h−1
∫ 1

0
PhΦ1

i (α)u′(α)dα =
∫ 1

0
PhΦ1

i (α)Ph( f ◦ u)(α)dα,

i = 1, 2, . . . , d.

(1.39)

Therefore, using (1.37)–(1.39) we have

u(1) − y(t0 + h)

= −h
∫ 1

0

⎛
⎜⎝
⎛
⎜⎝

PhΦ1
1 (α)

.

.

.

PhΦ1
d (α)

⎞
⎟⎠+ O(hr )

⎞
⎟⎠ ( f (u(α)) − Ph( f ◦ u)(α))dα

= −h
∫ 1

0

⎛
⎜⎝

PhΦ1
1 (α)( f (u(α)) − Ph( f ◦ u)(α))

.

.

.

PhΦ1
d (α)( f (u(α)) − Ph( f ◦ u)(α))

⎞
⎟⎠ dα − h

∫ 1

0
O(hr ) × O(hr )dα = O(h2r+1).

�

According to Theorem 1.5, the TF CFE methods based on the spaces (1.7)–(1.9)
are of order 2r , 4k and 2(k + p + 1), respectively.
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1.4 Implementation Issues

It should be noted that (1.14) is not a practical form for applications. In this section,
we will detail the implementation of the FFCFEr method. Firstly, it is necessary to
introduce the generalized Lagrange interpolation functions li (τ ) ∈ Xh with respect
to (r + 1) distinct points {di }r+1

i=1 ⊆ [0, 1]:

(l1(τ ), . . . , lr+1(τ )) = (Φ̃1(τ ), Φ̃2(τ ), . . . , Φ̃r+1(τ ))Λ−1, (1.40)

where {Φi (t)}r+1
i=1 is a basis of X , Φ̃i (τ ) = Φi (t0 + τh) and

Λ =

⎛
⎜⎜⎜⎝

Φ̃1(d1) Φ̃2(d1) . . . Φ̃r+1(d1)
Φ̃1(d2) Φ̃2(d2) . . . Φ̃r+1(d2)

...
...

...

Φ̃1(dr+1) Φ̃2(dr+1) . . . Φ̃r+1(dr+1)

⎞
⎟⎟⎟⎠ .

By means of the expansions

Φi (t0 + d jh) =
r∑

n=0

Φ
(n)
i (t0)

n! dn
j h

n + O(hr+1), i, j = 1, 2, . . . , r + 1,

we have

Λ =

⎛
⎜⎜⎜⎜⎝

1 d1h . . .
dr1h

r

r !
1 d2h . . .

dr2h
r

r !
...

...
...

1 dr+1h . . .
drr+1h

r

r !

⎞
⎟⎟⎟⎟⎠ W̃ + O(hr+1),

where W̃ is the Wronskian of {Φi (t)}r+1
i=1 at t0. Since W̃ is nonsingular, Λ is also

nonsingular for h which is sufficiently small but not zero and the Eq. (1.40) makes
sense in this case. Then {li (τ )}r+1

i=1 is a basis of Xh satisfying li (d j ) = δi j and u(τ )

can be expressed as

u(τ ) =
r+1∑
i=1

u(di )li (τ ).

Choosing di = (i − 1)/r and denoting yσ = u(σ ), (1.14) now reads

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

yσ =
r+1∑
i=1

y i−1
r
li (σ ),

y i−1
r

= y0 + h
∫ 1

0
A i−1

r ,σ f (yσ )dσ, i = 2, . . . , r + 1.

(1.41)



18 1 Functionally Fitted Continuous Finite Element Methods …

When f is a polynomial and {Φi (t)}r+1
i=1 are polynomials, trigonometrical or exponen-

tial functions, the integral in (1.41) can be calculated exactly. After solving this alge-
braic system about variables y1/r , y2/r , . . . , y1 by iterations, we obtain the numerical
solution y1 ≈ y(t0 + h). Therefore, although the FFCFEr method can be analysed
in the form of continuous-stage RK method (1.14), it is indeed an r -stage method
in practice. If the integral cannot be directly calculated, we approximate it by a
high-order quadrature rule (bk, ck)sk=1. The corresponding fully discrete scheme for
(1.41) is ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

yσ =
r+1∑
i=1

y i−1
r
li (σ ),

y i−1
r

= y0 + h
s∑

k=1

bk A i−1
r ,ck f (yck ), i = 2, . . . , r + 1.

(1.42)

By an argument which is similar to that stated at the beginning of Sect. 1.3, (1.42) is
equivalent to a discrete version of the FFCFEr method (1.3):

⎧⎪⎨
⎪⎩
u(0) = y0,

〈v, u′〉τ = h[v, f ◦ u], u(τ ) ∈ Xh, for all v(τ ) ∈ Yh,

y1 = u(1),

where [·, ·] is the discrete inner product:

[w1,w2] = [w1(τ ),w2(τ )]τ =
s∑

k=1

bkw1(ck) · w2(ck).

By the proof procedure of Theorem 1.3, one can show that the fully discrete scheme
is still symmetric provided the quadrature rule is symmetric, i.e. cs+1−k = 1 − ck
and bs+1−k = bk for k = 1, 2, . . . , s.

Now it is clear that the practical form (1.41) or (1.42) is determined by the
Lagrange interpolation functions li (τ ) and the coefficient Aτ,σ . For theCFEr method,

Yh = span
{
1, τ, . . . , τ r−1} , Xh = span

{
1, τ, . . . , τ r

}
,

and all li (τ ) for i = 1, 2, . . . , r + 1 are Lagrange interpolation polynomials of
degrees r . The Aτ,σ for r = 2, 3, 4 are given by

Aτ,σ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(4 + 6σ(−1 + τ) − 3τ)τ, r = 2,

τ (9 − 18τ + 10τ 2 + 30σ 2(1 − 3τ + 2τ 2) − 12σ(3 − 8τ + 5τ 2)), r = 3,

τ (16 − 60τ + 80τ 2 − 35τ 3 + 140σ 3(−1 + 6τ − 10τ 2 + 5τ 3)

+ 60σ(−2 + 10τ − 15τ 2 + 7τ 3) − 30σ 2(−8 + 45τ − 72τ 2 + 35τ 3)), r = 4.



1.4 Implementation Issues 19

For the TFCFEr method,

Y = span
{
1, t, . . . , tr−3, cos(ωt), sin(ωt)

}
,

then
Yh = span

{
1, τ, . . . , τ r−3, cos(ντ), sin(ντ)

}
,

Xh = span
{
1, τ, . . . , τ r−2, cos(ντ), sin(ντ)

}
,

where ν = hω. The corresponding Aτ,σ and li (τ ) are more complicated than those of
CFEr , but one can calculate them by the formulae (1.15) and (1.40) without any dif-
ficulty before solving the IVP numerically. Consequently, the computational cost of
the TFCFEr method at each step is comparable to that of the CFEr method. Besides,
when ν is small, in order to avoid unacceptable cancellation, it is recommended to
calculate variable coefficients in TFmethods by their Taylor expansions with respect
to ν at zero.

1.5 Numerical Experiments

In this section, we carry out four numerical experiments to test the effectiveness
and efficiency of the new methods TFCFEr based on the space (1.7) for r = 2, 3, 4
and TF2CFE4 based on the space (1.8) in the long-term computation of structure
preservation. These new methods are compared with standard r -stage 2r th-order
EP CFEr methods for r = 2, 3, 4. Other methods such as the 2-stage 4th-order EF
symplectic Gauss–Legendre collocation method (denoted by EFGL2) derived in [7]
and the 2-stage 4th-order EF EP method (denoted by EFCRK2) derived in [30] are
also considered. Since all of these structure-preserving methods are implicit, fixed-
point iterations are needed to solve the nonlinear algebraic systems at each step. The
tolerance error for the iteration solution is set to 10−15 in the numerical simulation.

Numerical quantities with which we are mainly concerned are the Hamiltonian
error

EH = (EH 0, EH 1, . . .),

with
EHn = |H(yn) − H(y0)|,

and the solution error
ME = (ME0, ME1, . . .),

with
MEn = ||yn − y(tn)||∞.
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Fig. 1.1 a The logarithm of the maximum global error against the logarithm of the stepsize.
The dashed lines have slopes four, six and eight. b The logarithm of the maximum global error
against the logarithm of function evaluations. c The logarithm of the maximum global error of
Hamiltonian against the logarithm of the stepsize. Copyright c©2016 Society for Industrial and
Applied Mathematics. Reprinted with permission. All rights reserved.

Correspondingly, the maximum global errors of Hamiltonian (GEH) and the solution
(GE) are defined by:

GEH = max
n≥0

EHn, GE = max
n≥0

MEn,

respectively. Here the numerical solution at the time node tn is denoted by yn .

Example 1.1 Consider the Perturbed Kepler problem defined by the Hamiltonian:

H(p, q) = 1

2
(p21 + p22) − 1

(q2
1 + q2

2 )
1
2

− 2ε + ε2

3(q2
1 + q2

2 )
3
2

,

with the initial condition q1(0) = 1, q2 = 0, p1(0) = 0, p2 = 1 + ε, where ε is a
small parameter. The exact solution of this IVP is

q1(t) = cos((1 + ε)t), q2(t) = sin((1 + ε)t), pi (t) = q ′
i (t), i = 1, 2.

Taking ω = 1, ε = 0.001 and h = 1/2i for i = −1, 0, . . . , 6,we integrate this prob-
lem over the interval [0, 200π ] by the TF2CFE4, TFCFEr and CFEr methods for
r = 2, 3, 4. The nonlinear integral in the r -stage method is evaluated by the (r + 1)-
point Gauss–Legendre quadrature rule. Numerical results are presented in Fig. 1.1.

From Fig. 1.1a it can be observed that TFCFEr and TF2CFE4 methods show
the expected order. Under the same stepsize, the TF method is more accurate than
the non-TF method of the same order. Since the double precision provides only 16
significant digits, the numerical results are polluted significantly by rounding errors



1.5 Numerical Experiments 21

−2.5 −2 −1.5 −1 −0.5
−12

−10

−8

−6

−4

−2

0

2

log

(a) (b) (b)
10

(h)

lo
g

10
(G

E
)

 

 

CFE2
CFE3
TFCFE2
TFCFE3
EFCRK2

3 3.5 4 4.5 5
−14

−12

−10

−8

−6

−4

−2

0

2

log
10

(Iteration times)

lo
g 10

(G
E

)
 

 

CFE2
CFE3
TFCFE2
TFCFE3
EFCRK2

−2.5 −2 −1.5 −1 −0.5
−13

−12.5

−12

−11.5

−11

−10.5

−10

log
10

(h)

lo
g

10
(G

E
H

)

 

 

CFE2
CFE3
TFCFE2
TFCFE3
EFCRK2

Fig. 1.2 a The logarithm of the maximum global error against the logarithm of the stepsize. The
dashed lines have slopes four and six. b The logarithm of the maximum global error against the
logarithm of iteration times. c The logarithm of the maximum global error of Hamiltonian against
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when the maximum global error attains the magnitude 10−11. Figure1.1b shows that
the efficiency of the TF method is higher than that of the non-TF method of the same
order. Besides, high-order methods are more efficient than low-order ones when the
stepsize is relatively small.

In Fig. 1.1c, one can see that all of these EP methods preserve the Hamiltonian
very well. The errors in the Hamiltonian are mainly contributed by the quadrature
error when the stepsize h is large and the rounding error when h is small.

Example 1.2 Consider the Duffing equation defined by the Hamiltonian:

H(p, q) = 1

2
p2 + 1

2
(ω2 + k2)q2 − k2

2
q4

with the initial value q(0) = 0, p(0) = ω. The exact solution of this IVP is

q(t) = sn(ωt; k/ω), p(t) = cn(ωt; k/ω)dn(ωt; k/ω).

where sn, cn and dn are Jacobi elliptic functions. Taking k = 0.07, ω = 5 and h =
1/5 × 1/2i for i = 0, 1, . . . , 5, we integrate this problem over the interval [0, 100]
by TFCFE2, TFCFE3, CFE2, CFE3 and EFCRK2methods. Since the nonlinear term
f is polynomial, we can calculate the integrals involved in these methods exactly by
Mathematica at the beginning of the computation. Numerical results are shown in
Fig. 1.2.

In Fig. 1.2a, one can see that the TF method is more accurate than the non-TF
method of the same order under the same stepsize. For both as 2-stage 4th-order
methods, TFCFE2 method is more accurate than EFCRK2 method for this problem.
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Again, it can be observed from Fig. 1.2b that the efficiency of the CFEr method is
lower than that of the EF/TF method of the same order. Although the nonlinear inte-
grals are exactly calculated in theory, Fig. 1.2c shows that all of these methods only
approximately preserve the Hamiltonian. It seems that the rounding error increases
as h → 0.

Example 1.3 Consider the Fermi–Pasta–Ulam problem studied by Hairer et al. in
[22, 23], which is defined by the Hamiltonian

H(p, q) = 1

2
pᵀ p + 1

2
qᵀMq +U (q),

where

M =
(
Om×m Om×m

Om×m ω2 Im×m

)
,

U (q) = 1

4

(
(q1 − qm+1)

4 +
m−1∑
i=1

(qi+1 − qm+i+1 − qi − qm+i )
4 + (qm + q2m)4

)
.

In this problem, we choose m = 2, q1(0) = 1, p1(0) = 1, q3(0) = 1/ω, p3(0) = 1,
and zero for the remaining initial values. Setting ω = 50, h = 1/50 and ω =
100, h = 1/100, we integrate this problem over the interval [0, 100] byCFE2, CFE3,
TFCFE2, TFCFE3 and EFCRK2 methods. The nonlinear integrals are calculated
exactly by Mathematica at the beginning of the computation. We choose the numeri-
cal solution obtained by a high-order method with a sufficiently small stepsize as the
‘reference solution’ in the FPU problem. Numerical results are plotted in Fig. 1.3.

In Fig. 1.3a, c, one can see that the TF methods are more accurate than non-TF
ones. Unlike the previous problem, the EFCRK2method wins slightly over TFCFE2
method in this case. The Fig. 1.3b, d also show that all of these methods display
promising EP property, which is especially important in the FPU problem.

Example 1.4 Consider the IVP defined by the nonlinear Schrödinger equation

{
iut + uxx + 2|u|2u = 0,

u(x, 0) = ϕ(x),
(1.43)

where u is a complex function of x, t , and i is the imaginary unit. Taking the periodic
boundary condition u(x0, t) = u(x0 + L , t) and discretizing the spatial derivative
∂xx by the pseudospectral method (see e.g. [13]), this problem is converted into a
complex system of ODEs:

⎧⎨
⎩
i
d

dt
U + D2U + 2|U |2 ·U = 0,

U (0) = (ϕ(x0), ϕ(x1), . . . , ϕ(xd−1))
ᵀ,
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or an equivalent Hamiltonian system:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d

dt
P = −D2Q − 2(P2 + Q2) · Q,

d

dt
Q = D2P + 2(P2 + Q2) · P,

P(0) = real(U (0)), Q(0) = imag(U (0)),

(1.44)

where the superscript ‘2’ is the entrywise square multiplication operation for
vectors, xn = x0 + nΔx/d for n = 0, 1, . . . , d − 1, U = (U0(t),U1(t), . . . ,
Ud−1(t))ᵀ, P(t) = real(U (t)), Q(t) = imag(U (t)) and D = (Djk)0≤ j,k≤d−1 is the
pseudospectral differential matrix defined by:

Djk =
{

π
L (−1) j+kcot(π x j−xk

L ), j �= k,
0, j = k.

The Hamiltonian or the total energy of (1.44) is

H(P, Q) = 1

2
PᵀD2P + 1

2
QᵀD2Q + 1

2

d−1∑
i=0

(P2
i + Q2

i )
2.

In [33], the author constructed a periodic bi-soliton solution of (1.43):

u(x, t) = Φ

Ψ
, (1.45)

where

Φ = (exp(iM2t)M cosh−1(M(x − A)) − exp(i N 2t)N cosh−1(N (x + A))),

Ψ = (cosh(J ) − sinh(J )(tanh(M(x − A)) tanh(N (x + A))

+ cos((M2 − N 2)t) cosh−1(M(x − A)) cosh−1(N (x + A))))

with

J = tanh−1(
2MN

M2 + N 2
).

This solution can be viewed approximately as the superposition of two single solitons
located at x = A and x = −A respectively. Since it decays exponentially when x →
∞, we can take the periodic boundary condition for sufficiently small x0 and large
L with little loss of accuracy. Aside from the total energy, it is well known that the
semi-discrete NLS (1.44) has another invariant, the total charge

C(P, Q) =
d−1∑
i=0

(P2
i + Q2

i ).
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Fig. 1.4 a The logarithm of the solution error against time t (left). b The logarithm of the Hamil-
tonian error against time t (middle). c The logarithm of the charge error against time t (right).
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rights reserved.

Thus, we also calculate the error in the charge (EC):

EC = (EC0, EC1, . . .)

with
ECn = |Cn − C0|, Cn = C(Pn, Qn)

where Pn ≈ P(tn), Qn ≈ Q(tn) is the numerical solution at the time node tn . Taking
x0 = −50, L = 100, A = 10, M = 1, N = 2

1
2 , d = 450, h = 0.2, ω = 2, we inte-

grate the semi-discrete problem (1.44) by the TFCFE2, CFE2 and EFGL2 methods
over the time interval [0, 100]. The nonlinear integrals are calculated exactly by
Mathematica at the beginning of the computation. Numerical results are presented
in Fig. 1.4.

It is noted that the exact solution (1.45) has two approximate frequency M2 and
N 2. By choosing the larger frequency N 2 = 2 as the fitting frequency ω, the EF/TF
methods still reach higher accuracy than the general-purpose method CFE2, see
Fig. 1.4a. Among three EF/TF methods, TFCFE2 is the most accurate. Figure1.4b
shows that three EPmethods CFE2, TFCFE2 and EFCRK2 preserve the Hamiltonian
(apart from the rounding error). Since EFGL2 is a symplectic method, it preserves
the discrete charge, which is a quadratic invariant, see Fig. 1.4c. Although TFCFE2
method cannot preserve the discrete charge, its error in the charge is smaller than the
charge errors of CFE2 and EFCRK2.
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1.6 Conclusions and Discussions

Highly oscillatory systems constitute an important category of differential equa-
tions in applied sciences. The numerical treatment of oscillatory systems is full of
challenges. Readers are referred to Hairer et al. [23], Iserles [26], Petzold et al.
[14], Cohen et al. [34], Wu et al. [44, 45], and references contained therein. This
chapter is mainly concerned with the establishment of high-order functionally-fitted
energy-preserving methods for solving oscillatory nonlinear Hamiltonian systems.
We have derived new FFCFEr methods based on the analysis of continuous finite
element methods. The FFCFEr methods can be thought of as a continuous-stage
Runge–Kutta methods, and hence it can be used conveniently in applications. The
geometric properties and algebraic orders of themethod have been analysed in detail.
By equipping FFCFEr with the spaces (1.7) and (1.8), we have developed the TFEP
methods denoted byTFCFEr andTF2CFEr which are suitable for solving oscillatory
Hamiltonian systems with a fixed frequency ω. Evaluating the nonlinear integrals in
the EPmethods exactly or approximately, we have compared TFCFEr for r = 2, 3, 4
and TF2CFE4 with other structure-preserving methods such as EP methods CFEr
for r = 2, 3, 4, the EP method EFCRK2 and the symplectic method EFGL2. The
numerical results show that the newly derived TFEP methods exhibit definitely a
high accuracy, an excellent invariant-preserving property and a prominent long-term
behaviour.

In numerical experiments, we are mainly concerned with the TFCFEr methods
when applied to oscillatory Hamiltonian systems. However, the FFCFEr methods,
by nature, are symmetric and of order 2r for the general autonomous system y′(t) =
f (y(t)). By choosing appropriate function spaces, the FFCFEr methods can be
applied to solve amuchwider class of dynamic systems in applications. For example,
the application of the FF Runge–Kutta method to the stiff system has been shown
in [32]. Consequently, we conclude that FFCFEr methods are likely to be a class of
highly flexible methods with many potential applications.

In conclusion, in this chapter, from the perspective of the continuous finite ele-
ment method, we have presented and analysed energy-preserving functionally fitted
methods, in particular, trigonometrically fitted methods of an arbitrarily high order
for solving oscillatory nonlinear Hamiltonian systems with a fixed frequency. In the
next chapters, we will consider multi-frequency highly oscillatory systems.

This chapter is based on the work of Li and Wu [28].
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