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Preface

An important area of numerical analysis and scientific computing is geometric
numerical integration which is concerned with the discretization of differential
equations while respecting their structural invariants and geometry. In the last few
decades, numerical simulation for nonlinear oscillators has received a great deal of
attention, and many researchers have been concerned with the design and analysis
of numerical schemes for solving oscillatory problems. It has been a common
practice that a numerical scheme should be designed to preserve as much as pos-
sible the (physical/geometric) intrinsic properties of the original continuous sys-
tems. Although great advances have by now been made in numerical treatments for
oscillatory differential equations, further exploration of novel structure-preserving
algorithms is still an active area of research. The objective of this sequel to our
previous monograph, which was entitled “Structure-Preserving Algorithms for
Oscillatory Differential Equations II”, is to study further structure-preserving
schemes for oscillatory systems that can be modelled by systems of ordinary and
partial differential equations. Problems of this type arise in a variety of fields in
science and engineering such as quantum physics, celestial mechanics and
molecular dynamics.

Most of the material presented here is drawn from very recent published research
work in professional journals by the research group of the authors. The first four
chapters of this monograph deal with first-order oscillatory differential equations.
The last four chapters consider oscillatory wave equations, and the other chapters
address second-order oscillatory differential equations.

Chapter 1 presents in detail functionally fitted energy-preserving methods for
solving oscillatory nonlinear Hamiltonian systems. It is known that the exponential
integrator is now a very popular numerical method for solving differential equa-
tions. Chapter 2 investigates exponential integrators preserving first integrals or
Lyapunov functions for conservative or dissipative systems. These methods are
applied to solve some highly significant oscillatory problems. In the literature, a
principal approach to solving oscillatory problems is based on collocation methods.
Therefore, Chap. 3 explores exponential Fourier collocation methods for first-order
differential equations. Symplecticity is one of the fundamental properties of
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Hamiltonian systems. In Chap. 4, we first develop symplectic exponential Runge–
Kutta methods for solving nonlinear Hamiltonian systems. We then consider
high-order symplectic and symmetric composition methods for multi-frequency and
multidimensional oscillatory Hamiltonian systems in Chap. 5. The construction of
high-order ERKN integrators is difficult in practice. Thus, in Chap. 6, we pay our
attention to the construction of arbitrary-order ERKN integrators for second-order
oscillatory differential equations using group theory. Chapter 7 derives trigono-
metric collocation methods based on Lagrange basis polynomials for
multi-frequency oscillatory second-order differential equations. Butcher’s theory of
rooted trees is useful in the study of Runge–Kutta type methods. However, the
research of this theory for ERKN methods for general multi-frequency and multi-
dimensional oscillatory systems is not satisfied yet due to the existence of a large
number of redundant trees. In Chap. 8, we further analyse a compact tri-coloured
rooted-tree theory and order conditions for ERKN methods for general
multi-frequency oscillatory systems. An important fact is that Klein–Gordon
equations can be used to model many nonlinear phenomena. Chapter 9 is concerned
with an integral formula adapted to different boundary conditions for arbitrarily
high-dimensional nonlinear Klein–Gordon equations. Chapter 10 proposes an
energy-preserving and symmetric scheme for nonlinear Hamiltonian wave equa-
tions. Chapter 11 describes arbitrarily high-order time-stepping methods for solving
nonlinear Klein–Gordon equations based on the operator spectrum theory. The last
chapter considers an essential extension of the finite-energy condition for ERKN
integrators when applied to nonlinear wave equations.

The presentation in this monograph reflects the current active state of the subject
matter which is characterized by mathematical analysis, providing insight into
questions of practical calculation and illuminating numerical simulations. All the
schemes derived in this monograph have been tested and verified on oscillatory
systems from a wide range of applications to show the numerical behaviour of the
simulation. Simulations indicate that they are more efficient than the existing
high-quality integrators in the scientific literature.

The authors want to thank all their friends and colleagues for their selfless help
during the preparation of this monograph. Special thanks go to John Butcher of the
University of Auckland, Christian Lubich of Universität Tübingen, Arieh Iserles
of the University of Cambridge and Reinout Quispel of La Trobe University for
their encouragement.

The authors are also grateful to many friends and colleagues for reading the
manuscript and for their valuable suggestions. In particular, the authors take this
opportunity to express their sincere appreciation to Robert Peng Kong Chan of the
University of Auckland, Qin Sheng of Baylor University, Jichun Li of the
University of Nevada Las Vegas, David McLaren of La Trobe University, Adrian
Turton Hill of the University of Bath, Xiaowen Chang of McGill University, Jianlin
Xia of Purdue University, Marcus David Webb of the University of Cambridge and
Xiong You of Nanjing Agricultural University.
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Chapter 1
Functionally Fitted Continuous Finite
Element Methods for Oscillatory
Hamiltonian Systems

In recent decades, the numerical simulation for nonlinear oscillators has received
much attention and a large number of integrators for oscillatory problems have
been developed. In this chapter, based on the continuous finite element approach,
we propose and analyse new energy-preserving functionally-fitted, in particular,
trigonometrically-fitted methods of an arbitrarily high order for solving oscillatory
nonlinear Hamiltonian systems with a fixed frequency. In order to implement these
new methods in an accessable and efficient style, they are formulated as a class
of continuous-stage Runge–Kutta methods. The numerical results demonstrate the
remarkable accuracy and efficiency of the new methods compared with the existing
high-order energy-preserving methods in the literature.

1.1 Introduction

It is known that an important area of numerical analysis and scientific computing
is geometric numerical integration for differential equations. In this chapter, we
consider nonlinear Hamiltonian systems:

ẏ(t) = f (y(t)) = J−1∇H(y(t)), y(t0) = y0 ∈ R
d , (1.1)

where y ∈ R
d , d = 2d1, f : Rd → R

d , H : Rd → R are sufficiently smooth func-
tions and

J =
(

Od1×d1 Id1×d1
−Id1×d1 Od1×d1

)

is the canonical symplectic matrix. It is well known that the flow of (1.1) preserves
the symplectic form dy ∧ Jdy and the Hamiltonian or energy H(y(t)). In the spirit
of geometric numerical integration, it is a natural idea to design schemes that preserve

© Springer Nature Singapore Pte Ltd. And Science Press 2018
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both the symplecticity of theflowand the energy.Unfortunately, however, a numerical
scheme cannot achieve this goal unless it generates the exact solution (see, e.g.
[23], p. 379). Hence, researchers face a choice between preserving symplecticity or
preserving energy, andmany of them have givenmore weight to the former in the last
decades, and readers are referred to [23] and references therein. Despite insufficient
work in the literature on energy-preserving (EP) methods (see, e.g. [1, 4, 6, 10, 11,
17, 19, 21, 29, 38]), EP methods compared with symplectic methods have better
nonlinear stability properties, are easier to adapt the time step for, and are more
suitable for the integration of chaotic systems (see, e.g. [12, 20, 35, 36]).

On the other hand, in scientific computing and modelling, the design and analysis
of methods for periodic or oscillatory systems has been considered by many authors
(see, e.g. [2, 18, 22, 34, 42, 46]). Generally, these methods utilize a priori informa-
tion of special problems and they are more efficient than general-purpose methods.
A popular approach to constructing methods suitable for oscillatory problems is
using the functionally-fitted (FF) condition, namely, deriving a suitable method by
requiring it to integrate members of a given finite-dimensional function space X
exactly. If X incorporates trigonometrical or exponential functions, the correspond-
ing methods are also called trigonometrically-fitted (TF) or exponentially-fitted (EF)
methods (see, e.g. [15, 27, 32, 37]).

Therefore, combining the ideas of the EF/TF and structure-preserving methods is
a promising approach to developing numerical methods which allow long-term com-
putation of solutions to oscillatory Hamiltonian systems (1.1). Just as the research
of symplectic and EP methods, EF/TF symplectic methods have been studied exten-
sively by many authors (see, e.g. [7–9, 16, 39, 40, 43]). By contrast, as far as we
know, only a few papers paid attention to the EF/TFEP methods (see, e.g. [30, 31,
41]). Usually the existing EF/TFEPmethods are derived in the context of continuous-
stage Runge–Kutta (RK) methods. The coefficients in these methods are determined
by a system of equations resulting from EF/TF, EP and symmetry conditions. As
mentioned at the end of [30], it is not easy to find such a system with a unique solu-
tion when deriving high-order methods. Furthermore, how to verify the algebraic
order of such methods falls into question. A common way is to check the order con-
ditions related to rooted trees. Again, this is inconvenient in the high-order setting
since the number of trees increases extremely fast as the order grows. In this chapter,
we will construct FFEP methods based on the continuous finite element method,
which is inherently energy preserving (see, e.g. [1, 17, 38]). Intuitively, we expect
to increase the order of the method through enlarging the finite element space. By
adding trigonometrical functions to the space, the corresponding method is natu-
rally trigonometrically fitted. Thus, we are hopeful of constructing FFEP methods,
in particular TFEP methods, of arbitrarily high orders.

This chapter is organized as follows. In Sect. 1.2, we construct functionally fit-
ted continuous finite element (FFCFE) methods and present their most important
geometric properties. In Sect. 1.3, we interpret them as continuous-stage Runge–
Kutta methods and analyse the algebraic order. We then discuss implementation
details of these new methods in Sect. 1.4. Numerical results are shown in Sect. 1.5,
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including the comparison between our new TFEP methods and other prominent
structure-preserving methods in the literature. The last section is concerned with the
conclusion and discussion.

1.2 Functionally-Fitted Continuous Finite Element
Methods for Hamiltonian Systems

Throughout this chapter, we consider the approximation of the solution of the IVP
(1.1) on the time interval I = [t0, T ]. Let S be a linear space of continuous functions
y(t) on the interval I . Let {ϕi }r−1

i=0 be a family of sufficiently smooth and linearly
independent real-valued functions on I , and letY be the subspace spanned by {ϕi }r−1

i=0 :

Y =
{
w : w(t) =

r−1∑
i=0

Wiϕi (t),Wi ∈ R
d

}
.

We assume that the interval I = [t0, T ] is equally partitioned into t0 < t1 < . . . <

tN = T , with tn = t0 + nh for n = 0, 1, . . . , N . A function w on I is called a piece-
wise Y -type function if for any 0 ≤ n ≤ N − 1, there exists a function g ∈ Y , such
that

w|(tn ,tn+1) = g|(tn ,tn+1).

It is convenient to introduce the transformation t = t0 + τh for τ ∈ [0, 1] in the
following analysis. Accordingly, we denote

Yh(t0) = {v on [0, 1] : v(τ ) = w(t0 + τh), w ∈ Y } .

Hence,
Yh(t0) = span {ϕ̃0, . . . , ϕ̃r−1} ,

where ϕ̃i (τ ) = ϕi (t0 + τh) for i = 0, 1, . . . , r − 1. Inwhat follows, lowercaseGreek
letters such as τ, σ, α always indicate variables on the interval [0,1] unless confusions
arise.

Given two integrable functions (scalar-valued or vector-valued) w1 and w2 on
[0, 1], the inner product 〈·, ·〉 is defined by

〈w1,w2〉 = 〈w1(τ ),w2(τ )〉τ =
∫ 1

0
w1(τ ) · w2(τ )dτ,

where · is the entrywise multiplication operation if w1,w2 are both vector-valued
functions of the same length.

Given two finite-dimensional function spaces X and Y whose members are Rd -
valued, the continuous finite element method for (1.1) is described as follows.
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Find a continuous piecewise X -type function U (t) on I with U (t0) = y0, such
that for any piecewise function Y -type function v(t),

∫
I
v(t) · (U ′(t) − f (U (t)))dt = 0, (1.2)

where U (t) ≈ y(t) on I and y(t) solves (1.1). The term ‘continuous finite ele-
ment’(CFE) comes from the continuity of the finite element solution U (t). Since
(1.2) deals with an initial value problem, we only need to consider it on [t0, t0 + h].

Find u ∈ Xh(t0) with u(0) = y0, such that

〈v, u′〉 = h〈v, f ◦ u〉, (1.3)

for any v ∈ Yh(t0), where

u(τ ) = U (t0 + τh) ≈ y(t0 + τh)

for τ ∈ [0, 1]. Since U (t) is continuous, y1 = u(1) is the initial value of the local
problemon the next interval [t1, t2]. Thus,we can solve the global variational problem
(1.2) on I step by step.

In the special case of

X = span
{
1, t, . . . , tr

}
, Y = span

{
1, t, . . . , tr−1

}
,

Equation (1.2) reduces to the classical continuous finite element method (see, e.g. [1,
25]) denoted by CFEr in this chapter. For the purpose of deriving functionally-fitted
methods, we generalise X and Y a little:

Y = span {ϕ0(t), . . . , ϕr−1(t)} , X = span

{
1,
∫ t

t0
ϕ0(s)ds, . . . ,

∫ t

t0
ϕr−1(s)ds

}
. (1.4)

Then it is sufficient to give X or Y since they can be determined by each other.
Furthermore, Y is assumed to be invariant under translation and reflection, namely,

{
v(t) ∈ Y ⇒ v(t + c) ∈ Y for any c ∈ R,

v(t) ∈ Y ⇒ v(−t) ∈ Y.
(1.5)

Clearly, Yh(t0) and Xh(t0) are irrelevant to t0 provided (1.5) holds. For convenience,
we simplify Yh(t0) and Xh(t0) by Yh and Xh , respectively. In the remainder of this
chapter, we denote the CFE method (1.2) or (1.3) based on the general function
spaces (1.4) satisfying the condition (1.5) by FFCFEr .

We note that the FFCFEr method (1.3) is defined by a variational problem, and the
well-definedness of this problem has not been confirmed yet. Here we presume the
existence and uniqueness of the solution to (1.3). This assumption will be proved in
the next section. With this premise, we are able to present three significant properties
of the FFCFEr method.
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We first conclude that the FFCFEr method is functionally fitted with respect to
the space X , from the definition of the variational problem (1.2).

Theorem 1.1 The FFCFEr method (1.2) solves the IVP (1.1) whose solution is a
piecewise X-type function without any error.

Moreover, the FFCFEr method is an inherently energy-preserving method. The
next theorem confirms this point.

Theorem 1.2 The FFCFEr method (1.3) exactly preserves the Hamiltonian H:
H(y1) = H(y0).

Proof Firstly, given a vector V , we denote its i th entry by Vi . For each function
w ∈ Yh , setting v(τ ) = w(τ ) · ei ∈ Yh in (1.3) leads to

∫ 1

0
w(τ )i u

′(τ )i dτ = h
∫ 1

0
w(τ )i f (u(τ ))i dτ, i = 1, 2, . . . , d,

where ei is the i th vector of units. Hence,

∫ 1

0
w(τ )ᵀu′(τ )dτ =

d∑
i=1

∫ 1

0
w(τ )i u

′(τ )i dτ =
d∑

i=1

h
∫ 1

0
w(τ )i f (u(τ ))i dτ

= h
∫ 1

0
w(τ )ᵀ f (u(τ ))dτ.

(1.6)

Since u(τ ) ∈ Xh , u′(τ ) ∈ Yh and J−1u′(τ ) ∈ Yh , taking w(τ ) = J−1u′(τ ) in (1.6),
we obtain

H(y1) − H(y0) =
∫ 1

0

d

dτ
H(u(τ ))dτ =

∫ 1

0
u′(τ )ᵀ∇H(u(τ ))dτ

=
∫ 1

0
(J−1u′(τ ))ᵀ f (u(τ ))dτ = h−1

∫ 1

0
u′(τ )ᵀ Ju′(τ )dτ = 0.

This completes the proof. �

The FFCFEr method can also be viewed as a one-step method Φh : y0 → y1 =
u(1). It is well known that reversible methods show a better long-term behaviour
than nonsymmetric ones when applied to reversible differential systems such as
(1.1) (see, e.g. [23]). This fact motivates the investigation of the symmetry of the
FFCFEr method. Since the spaces X and Y satisfy the invariance (1.5), which is a
kind of symmetry, the FFCFEr method is expected to be symmetric.

Theorem 1.3 The FFCFEr method (1.3) is symmetric provided (1.5) holds.

Proof It follows from (1.5) that we have Xh = X−h,Yh = Y−h .Exchanging y0 ↔ y1
and replacing h with −h in (1.3) give: u(0) = y1, y0 = u(1), where
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〈v(τ ), u′(τ )〉τ = −h〈v(τ ), f (u(τ ))〉τ , u(τ ) ∈ X−h = Xh,

for each v(τ ) ∈ Y−h = Yh . Setting u1(τ ) = u(1 − τ) ∈ Xh and τ → 1 − τ leads to
u1(0) = y0, y1 = u1(1), where

〈v1(τ ), u′
1(τ )〉τ = h〈v1(τ ), f (u1(τ ))〉τ ,

for each v1(τ ) = v(1 − τ) ∈ Yh . This method is exactly the same as (1.3), which
means that the FFCFEr method is symmetric. �

It is well known that polynomials cannot approximate oscillatory functions sat-
isfactorily. If the problem (1.1) has a fixed frequency ω which can be evaluated
effectively in advance, then the function space containing the pair {sin(ωt), cos(ωt)}
seems to be a more promising candidate for X and Y than a polynomial space. For
example, possible Y spaces for deriving the TFCFE method are

Y1 =
{
span {cos(ωt), sin(ωt)} , r = 2,

span
{
1, t, . . . , tr−3, cos(ωt), sin(ωt)

}
, r ≥ 3,

(1.7)

Y2 = span {cos(ωt), sin(ωt), . . . , cos(kωt), sin(kωt)} , r = 2k, (1.8)

and

Y3 = span
{
1, t, . . . , t p, t cos(ωt), t sin(ωt), . . . , t k cos(ωt), t k sin(ωt)

}
. (1.9)

Correspondingly, by equipping the FFCFE method with the space Y = Y1,Y2 or Y3,
we obtain three families of TFCFE methods. According to Theorems1.2 and 1.3, all
for them are symmetric energy-preserving methods. To exemplify this framework
of the TFCFE method, in numerical experiments, we will test the TFCFE method
denoted by TFCFEr and TF2CFEr based on the spaces (1.7) and (1.8). It is noted
that TFCFE2 and TF2CFE2 coincide.

1.3 Interpretation as Continuous-Stage Runge–Kutta
Methods and the Analysis on the Algebraic Order

An interesting connection between CFE methods and RK-type methods has been
shown in several papers (see, e.g. [3, 25, 38]). Since the RK methods are dominant
in the numerical integration of ODEs, it is meaningful and useful to transform the
FFCFEr method into the corresponding RK-type method which has been widely and
conventionally used in applications. After the transformation, the FFCFEr method
can be analysed and implemented by standard techniques in ODEs conveniently. To
this end, it is helpful to introduce the projection operation Ph . Given a continuous
R

d -valued function w on [0, 1], its projection onto Yh , denoted by Phw, is defined by
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〈v, Phw〉 = 〈v,w〉, for any v ∈ Yh . (1.10)

Clearly, Phw(τ ) can be uniquely expressed as a linear combination of {ϕ̃i (τ )}r−1
i=0 :

Phw(τ ) =
r−1∑
i=0

Ui ϕ̃i (τ ), Ui ∈ R
d .

Taking v(τ ) = ϕ̃i (τ )e j in (1.10) for i = 0, 1, . . . , r − 1 and j = 1, . . . , d, we can
observe that the coefficients Ui satisfy the equation

M ⊗ Id×d

⎛
⎜⎝

U0
...

Ur−1

⎞
⎟⎠ =

⎛
⎜⎝

〈ϕ̃0,w〉
...

〈ϕ̃r−1,w〉

⎞
⎟⎠ ,

where
M = (〈ϕ̃i , ϕ̃ j 〉)0≤i, j≤r−1.

Since {ϕ̃i }r−1
i=0 are linearly independent for h > 0, the stiffness matrix M is nonsin-

gular. Consequently, the projection can be explicitly expressed by

Phw(τ ) = 〈Pτ,σ ,w(σ )〉σ ,

where
Pτ,σ = (ϕ̃0(τ ), . . . , ϕ̃r−1(τ ))M−1(ϕ̃0(σ ), . . . , ϕ̃r−1(σ ))ᵀ. (1.11)

Clearly, Pτ,σ can be calculated by a basis other than {ϕ̃i }r−1
i=0 since they only differ

in a linear transformation. If {φ0, . . . , φr−1} is an orthonormal basis of Xh under the
inner product 〈·, ·〉, then Pτ,σ admits a simpler expression:

Pτ,σ =
r−1∑
i=0

φi (τ )φi (σ ). (1.12)

Now, using (1.3) and the definition (1.10) of the operator Ph , we obtain that u′ =
hPh( f ◦ u) and

u′(τ ) = h〈Pτ,σ , f (u(σ ))〉σ . (1.13)

Integrating the above equation with respect to τ , we transform the FFCFEr method
(1.3) into the continuous-stage RK method:

⎧⎪⎨
⎪⎩
u(τ ) = y0 + h

∫ 1

0
Aτ,σ f (u(σ ))dσ,

y1 = u(1),

(1.14)
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where

Aτ,σ =
∫ τ

0
Pα,σdα =

r−1∑
i=0

∫ τ

0
φi (α)dαφi (σ ). (1.15)

In particular,
φi (τ ) = p̂i (τ ), (1.16)

for the CFEr method for i = 0, 1, . . . , r − 1, where p̂i (τ ) is the shifted Legendre
polynomial of degree i on [0, 1], scaled in order to be orthonormal. Hence, the CFEr
method in the form (1.14) is identical to the energy-preserving collocation method of
order 2r (see [21]) or the Hamiltonian boundary value method HBVM(∞, r) (see,
e.g. [4]). For the FFCFEr method, since Pτ,σ , Aτ,σ are functions of variable h and
u(τ ) is implicitly determined by (1.14), it is necessary to analyse their smoothness
with respect to h before investigating the analytic property of the numerical solution
u(τ ). First of all, it can be observed from (1.11) that Pτ,σ = Pτ,σ (h) is not defined at
h = 0 since the matrix M is singular in this case. Fortunately, however, the following
lemma shows that the singularity is removable.

Lemma 1.1 The limit, lim
h→0

Pτ,σ exists. Furthermore, Pτ,σ can be smoothly extended

to h = 0 by setting Pτ,σ (0) = lim
h→0

Pτ,σ (h).

Proof By expanding {ϕi (t0 + τh)}r−1
i=0 at t0, we obtain that

(ϕ̃0(τ ), . . . , ϕ̃r−1(τ )) = (1, τh, . . . ,
τ r−1hr−1

(r − 1)! )W + O(hr ), (1.17)

where

W =

⎛
⎜⎜⎜⎝

ϕ0(t0) ϕ1(t0) · · · ϕr−1(t0)
ϕ

(1)
0 (t0) ϕ

(1)
1 (t0) · · · ϕ

(1)
r−1(t0)

...
...

...

ϕ
(r−1)
0 (t0) ϕ

(r−1)
1 (t0) · · · ϕ

(r−1)
r−1 (t0)

⎞
⎟⎟⎟⎠ (1.18)

is the Wronskian of {ϕi (t)}r−1
i=0 at t0, and is nonsingular. Post-multiplying the right-

hand side of (1.17) by W−1diag(1, h−1, . . . , h1−r (r − 1)!) yields another basis
of Xh :

{1 + O(h), τ + O(h), . . . , τ r−1 + O(h)}.

Applying the Gram–Schmidt process (with respect to the inner product 〈·, ·〉) to the
above basis, we obtain an orthonormal basis

{
φi (τ ) = p̂i (τ ) + O(h)

}r−1
i=0 . Thus, by

(1.12) and defining

Pτ,σ (0) = lim
h→0

r−1∑
i=0

φi (τ )φi (σ ) =
r−1∑
i=0

p̂i (τ ) p̂i (σ ), (1.19)
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we can extend Pτ,σ to h = 0. Since each φi (τ ) = p̂i (τ ) + O(h) is smooth with
respect to h, Pτ,σ is also a smooth function of h. �

From (1.16) and (1.19), it can be observed that the FFCFEr method (1.14)
reduces to the CFEr method when h → 0, or equivalently, the energy-preserving
collocation method of order 2r and HBVM(∞, r) method mentioned above. Since
Aτ,σ = ∫ τ

0 Pα,σdα is also a smooth function of h, we can assume that

Mk = max
τ,σ,h∈[0,1]

∣∣∣∣∂
k Aτ,σ

∂hk

∣∣∣∣ , k = 0, 1, . . . . (1.20)

Furthermore, since the right function f in (1.1) maps from R
d to R

d , the nth-order
derivative of f at y denoted by f (n)(y) is a multilinear map from R

d × . . . × R
d︸ ︷︷ ︸

n− f old

to

R
d defined by

f (n)(y)(z1, . . . , zn) =
∑

1≤α1,...,αn≤d

∂n f

∂yα1 · · · ∂yαn

(y)zα1
1 . . . zαn

n ,

where y = (y1, . . . , yd)ᵀ and zi = (z1i , . . . , z
d
i )

ᵀ for i = 1, . . . , n. With this back-
ground, we now can give the existence, uniqueness, and especially the smoothness
with respect to h for the continuous finite element approximation u(τ ) associated
with the FFCFEr method. The proof of the following theorem is based on a fixed-
point iteration which is analogous to Picard iteration.

Theorem 1.4 Given a positive constant R, let

B(y0, R) = {
y ∈ R

d : ||y − y0|| ≤ R
}

and
Dn = max

y∈B(y0,R)
|| f (n)(y)||, n = 0, 1, . . . , (1.21)

where || · || = || · ||∞ is the maximum norm for vectors in R
d or the corresponding

induced norm for the multilinear maps f (n)(y), n ≥ 1. Then the FFCFEr method
(1.3) or (1.14) has a unique solution u(τ )which is smoothly dependent of h provided

0 ≤ h ≤ ε < min

{
1

M0D1
,

R

M0D0
, 1

}
. (1.22)

Proof Set u0(τ ) ≡ y0. We construct a function series {un(τ )}∞n=0 defined by the
relation

un+1(τ ) = y0 + h
∫ 1

0
Aτ,σ f (un(σ ))dσ, n = 0, 1, . . . . (1.23)
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Obviously, limn→∞ un(τ ) is a solution to (1.14) provided {un(τ )}∞n=0 is uniformly
convergent. Thus, we only need to prove the uniform convergence of the infinite
series ∞∑

n=0

(un+1(τ ) − un(τ )).

It follows from (1.20), (1.22), (1.23) and induction that

||un(τ ) − y0|| ≤ R, n = 0, 1, . . . (1.24)

Then by using (1.21), (1.22), (1.23), (1.24) and the inequalities

||
∫ 1

0
w(τ )dτ || ≤

∫ 1

0
||w(τ )||dτ, for Rd -valued function w(τ ),

|| f (y) − f (z)|| ≤ D1||y − z||, for y, z ∈ B(y0, R),

we obtain the following inequalities

||un+1(τ ) − un(τ )|| ≤ h
∫ 1

0
M0D1||un(σ ) − un−1(σ )||dσ

≤ β||un − un−1||c, β = εM0D1,

where || · ||c is the maximum norm for continuous functions:

||w||c = max
τ∈[0,1] ||w(τ )||, w is a continuous Rd -valued function on [0, 1].

Therefore, we have
||un+1 − un||c ≤ β||un − un−1||c

and
||un+1 − un||c ≤ βn||u1 − y0||c ≤ βn R, n = 0, 1, . . . . (1.25)

Since β < 1, according toWeierstrass M-test,
∑∞

n=0(un+1(τ ) − un(τ )) is uniformly
convergent, and thus, the limit of {un(τ )}∞n=0 is a solution to (1.14). If v(τ ) is another
solution, then the difference between u(τ ) and v(τ ) satisfies

||u(τ ) − v(τ )|| ≤ h
∫ 1

0
||Aτ,σ ( f (u(σ )) − f (v(σ )))||dσ ≤ β||u − v||c,

and
||u − v||c ≤ β||u − v||c.
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This means ||u − v||c = 0, i.e., u(τ ) ≡ v(τ ). Hence, the existence and uniqueness
have been proved.

As for the smooth dependence of u on h, since every un(τ ) is a smooth function
of h, we only need to prove the sequence

{
∂kun
∂hk

(τ )

}∞

n=0

is uniformly convergent for k ≥ 1. Firstly, differentiating both sides of (1.23) with
respect to h yields

∂un+1

∂h
(τ ) =

∫ 1

0
(Aτ,σ + h

∂Aτ,σ

∂h
) f (un(σ ))dσ + h

∫ 1

0
Aτ,σ f (1)(un(σ ))

∂un
∂h

(σ )dσ. (1.26)

We then have

||∂un+1

∂h
||c ≤ α + β||∂un

∂h
||c, α = (M0 + εM1)D0. (1.27)

By induction, it is easy to show that
{

∂un
∂h (τ )

}∞
n=0

is uniformly bounded:

||∂un
∂h

||c ≤ α(1 + β + . . . + βn−1) ≤ α

1 − β
= C∗, n = 0, 1, . . . . (1.28)

Combining (1.25), (1.26) and (1.28), we obtain

||∂un+1

∂h
− ∂un

∂h
||c

≤
∫ 1

0
(M0 + hM1)|| f (un(σ )) − f (un−1(σ ))||dσ

+ h
∫ 1

0
M0

(
||( f (1)(un(σ )) − f (1)(un−1(σ )))

∂un
∂h

(σ )||

+|| f (1)(un−1(σ ))(
∂un
∂h

(σ ) − ∂un−1

∂h
(σ ))||

)
dσ

≤ γβn−1 + β||∂un
∂h

− ∂un−1

∂h
||c,

where
γ = (M0D1 + εM1D1 + εM0L2C

∗)R,

and L2 is a constant satisfying

|| f (1)(y) − f (1)(z)|| ≤ L2||y − z||, for y, z ∈ B(y0, R).
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Thus, again by induction, we have

||∂un+1

∂h
− ∂un

∂h
||c ≤ nγβn−1 + βnC∗, n = 1, 2, . . .

and
{

∂un
∂h (τ )

}∞
n=0

is uniformly convergent. By a similar argument, one can show that

other function sequence
{

∂kun
∂hk (τ )

}∞
n=0

for k ≥ 2 are uniformly convergent as well.

Therefore, u(τ ) is smoothly dependent on h. The proof is complete. �

Since our analysis of the algebraic order of the FFCFEr method is mainly based
on Taylor’s theorem, it is meaningful to investigate the expansion of Pτ,σ (h).

Proposition 1.1 Assume that the Taylor expansion of Pτ,σ (h) with respect to h at
zero is

Pτ,σ =
r−1∑
n=0

P [n]
τ,σh

n + O(hr ). (1.29)

Then the coefficients P [n]
τ,σ satisfy

〈P [n]
τ,σ , gm(σ )〉σ =

{
gm(τ ), n = 0, m = r − 1,

0, n = 1, . . . , r − 1, m = r − 1 − n,

for any gm ∈ Pm([0, 1]), where Pm([0, 1]) consists of polynomials of degrees ≤ m
on [0, 1].
Proof It can be observed from (1.11) that

〈Pτ,σ , ϕi (t0 + σh)〉σ = ϕi (t0 + τh), i = 0, 1, . . . , r − 1. (1.30)

Meanwhile, expanding ϕi (t0 + τh) at t0 yields

ϕi (t0 + τh) =
r−1∑
n=0

ϕ
(n)
i (t0)

n! τ nhn + O(hr ). (1.31)

Then by inserting (1.29) and (1.31) into the Eq. (1.30), we obtain that

〈
r−1∑
n=0

P [n]
τ,σh

n,

r−1∑
m=0

ϕ
(m)
i (t0)

m! σmhm〉σ =
r−1∑
k=0

ϕ
(k)
i (t0)

k! τ khk + O(hr ).
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Considering the terms in hk leads to

r−1∑
k=0

( ∑
m+n=k

ϕ
(m)
i (t0)

m! 〈P [n]
τ,σ , σm〉σ − ϕ

(k)
i (t0)

k! τ k

)
hk = O(hr ),

k−1∑
m=0

ϕ
(m)
i (t0)

m! Pm,k−m + ϕ
(k)
i (t0)

k! (Pk0 − τ k) = 0, i, k = 0, 1, . . . , r − 1,

and
WᵀV = 0,

where Pmn = 〈P [n]
τ,σ , σm〉σ , W is the Wronskian (1.18), and V = (Vmk)0≤m,k≤r−1 is

an upper triangular matrix with the entries determined by

Vmk =

⎧⎪⎨
⎪⎩

1

m! Pm,k−m, m < k,

1

m! (Pm,0 − τm), m = k.

Since W is nonsingular, V = 0,

Pmn =
{

τm, n = 0, m + n ≤ r − 1,

0, n = 1, 2, . . . , r − 1, m + n ≤ r − 1.
(1.32)

Then the statement of the proposition directly follows from (1.32). �

Aside from Pτ,σ , it is also crucial to analyse the expansion of the solution u(τ ).
For convenience, we say that an h-dependent function w(τ ) is regular if it can be
expanded as

w(τ ) =
r−1∑
n=0

w[n](τ )hn + O(hr ),

where

w[n](τ ) = 1

n!
∂nw(τ )

∂hn
|h=0

is a vector-valued function with polynomial entries of degrees ≤ n.

Lemma 1.2 Given a regular function w and an h-independent sufficiently smooth
function g, the composition (if exists) is regular. Moreover, the difference between w
and its projection satisfies

Phw(τ ) − w(τ ) = O(hr ).
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Proof Assume that the expansion of g(w(τ )) with respect to h at zero is

g(w(τ )) =
r−1∑
n=0

p[n](τ )hn + O(hr ).

Then, differentiating g(w(τ )) with respect to h at zero iteratively and using

p[n](τ ) = 1

n!
∂ng(w(τ ))

∂hn
|h=0, the degree of

∂nw(τ )

∂hn
|h=0 ≤ n, n = 0, 1, . . . , r − 1,

we can observe that p[n](τ ) is a vector with polynomial entries of degrees ≤ n for
n = 0, 1, . . . , r − 1 and the first statement is confirmed.

As for the second statement, using Proposition 1.1, we have

Phw(τ ) − w(τ )

= 〈
r−1∑
n=0

P [n]
τ,σh

n,

r−1∑
k=0

w[k](σ )hk〉σ −
r−1∑
m=0

w[m](τ )hm + O(hr )

=
r−1∑
m=0

(
∑

n+k=m

〈P [n]
τ,σ ,w[k](σ )〉σ − w[m](τ ))hm + O(hr )

=
r−1∑
m=0

(〈P [0]
τ,σ ,w[m](σ )〉σ − w[m](τ ))hm + O(hr ) = O(hr ).

�

Before further discussions, it may be useful to recall some standard results in the
theory of ODEs. To emphasize the dependence of the solution to y′(t) = f (y(t)) on
the initial value, we assume that y(·, t̃, ỹ) solves the IVP:

d

dt
y(t, t̃, ỹ) = f (y(t, t̃, ỹ)), y(t̃, t̃, ỹ) = ỹ.

Clearly, this problem is equivalent to the following integral equation:

y(t, t̃, ỹ) = ỹ +
∫ t

t̃
f (y(ξ, t̃, ỹ))dξ.

Differentiating it with respect to t̃ and ỹ and using the uniqueness of the solution
leads to

∂y

∂ t̃
(t, t̃, ỹ) = − ∂y

∂ ỹ
(t, t̃, ỹ) f (ỹ). (1.33)

With the previous analysis results, we are in a position to give the order of FFCFEr .

Theorem 1.5 The stage order and order of the FFCFEr method (1.3) or (1.14) are
r and 2r , respectively. That is,



1.3 Interpretation as Continuous-Stage Runge–Kutta … 15

u(τ ) − y(t0 + τh) = O(hr+1),

for 0 < τ < 1, and
u(1) − y(t0 + h) = O(h2r+1).

Proof Firstly, by Theorem 1.4 and Lemma 1.1, we can expand u(τ ) and Aτ,σ with
respect to h at zero:

u(τ ) =
r−1∑
m=0

u[m](τ )hm + O(hr ), Aτ,σ =
r−1∑
m=0

A[m]
τ,σh

m + O(hr ).

Then let

δ = u(σ ) − y0 =
r−1∑
m=1

u[m](σ )hm + O(hr ) = O(h).

Expanding f (u(σ )) at y0 and inserting the above equalities into the first equation of
(1.14), we obtain

r−1∑
m=0

u[m](τ )hm = y0 + h
∫ 1

0

r−1∑
k=0

A[k]
τ,σ h

k
r−1∑
n=0

F (n)(y0)(δ, . . . , δ︸ ︷︷ ︸
n− f old

)dσ + O(hr ), (1.34)

where F (n)(y0) = f (n)(y0)/n!. We claim that u(τ ) is regular, i.e.

u[m](τ ) ∈ Pd
m = Pm([0, 1]) × . . . × Pm([0, 1])︸ ︷︷ ︸

d− f old

form = 0, 1, . . . , r − 1. This fact can be confirmed by induction. Clearly, u[0](τ ) =
y0 ∈ Pd

0 . If u
[n](τ ) ∈ Pd

n for n = 0, 1, . . . ,m, then by comparing the coefficients of
hm+1 on both sides of (1.34) and using (1.15) and Proposition 1.1, we obtain that

u[m+1](τ ) =
∑

k+n=m

∫ 1

0
A[k]

τ,σ gn(σ )dσ =
∑

k+n=m

∫ τ

0

∫ 1

0
P [k]

α,σ gn(σ )dσdα

=
∫ τ

0

∫ 1

0
P [0]

α,σ gm(σ )dσdα =
∫ τ

0
gm(α)dα ∈ Pd

m+1, gn(σ ) ∈ Pd
n .

This completes the induction. By Lemma 1.2, f (u(τ )) is also regular and

f (u(τ )) − Ph( f ◦ u)(τ ) = O(hr ). (1.35)

Then it follows from (1.13), (1.33) and (1.35) that
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u(τ ) − y(t0 + τh) = y(t0 + τh, t0 + τh, u(τ )) − y(t0 + τh, t0, y0)

=
∫ τ

0

d

dα
y(t0 + τh, t0 + αh, u(α))dα

=
∫ τ

0
(h

∂y

∂ t̃
(t0 + τh, t0 + αh, u(α)) + ∂y

∂ ỹ
(t0 + τh, t0 + αh, u(α))u′(α))dα

= −h
∫ τ

0
Φτ (α)( f (u(α)) − Ph( f ◦ u)(α))dα

= O (hr+1),

(1.36)

where

Φτ(α) = ∂y

∂ ỹ
(t0 + τh, t0 + αh, u(α)).

As for the algebraic order, setting τ = 1 in (1.36) leads to

u(1) − y(t0 + h)

= −h
∫ 1

0
Φ1(α)( f (u(α)) − Ph( f ◦ u)(α))dα.

(1.37)

Since Φ1(α) is a matrix-valued function, we partition it as Φ1(α) = (Φ1
1 (α), . . . ,

Φ1
d (α))ᵀ. Using Lemma 1.2 again leads to

Φ1
i (α) = PhΦ

1
i (α) + O(hr ), i = 1, 2, . . . , d. (1.38)

Meanwhile, setting w(α) = PhΦi (α)ᵀ in (1.6) and using (1.13) yields

∫ 1

0
PhΦ1

i (α) f (u(α))dα = h−1
∫ 1

0
PhΦ1

i (α)u′(α)dα =
∫ 1

0
PhΦ1

i (α)Ph( f ◦ u)(α)dα,

i = 1, 2, . . . , d.

(1.39)

Therefore, using (1.37)–(1.39) we have

u(1) − y(t0 + h)

= −h
∫ 1

0

⎛
⎜⎝
⎛
⎜⎝

PhΦ1
1 (α)

.

.

.

PhΦ1
d (α)

⎞
⎟⎠+ O(hr )

⎞
⎟⎠ ( f (u(α)) − Ph( f ◦ u)(α))dα

= −h
∫ 1

0

⎛
⎜⎝

PhΦ1
1 (α)( f (u(α)) − Ph( f ◦ u)(α))

.

.

.

PhΦ1
d (α)( f (u(α)) − Ph( f ◦ u)(α))

⎞
⎟⎠ dα − h

∫ 1

0
O(hr ) × O(hr )dα = O(h2r+1).

�

According to Theorem 1.5, the TF CFE methods based on the spaces (1.7)–(1.9)
are of order 2r , 4k and 2(k + p + 1), respectively.
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1.4 Implementation Issues

It should be noted that (1.14) is not a practical form for applications. In this section,
we will detail the implementation of the FFCFEr method. Firstly, it is necessary to
introduce the generalized Lagrange interpolation functions li (τ ) ∈ Xh with respect
to (r + 1) distinct points {di }r+1

i=1 ⊆ [0, 1]:

(l1(τ ), . . . , lr+1(τ )) = (Φ̃1(τ ), Φ̃2(τ ), . . . , Φ̃r+1(τ ))Λ−1, (1.40)

where {Φi (t)}r+1
i=1 is a basis of X , Φ̃i (τ ) = Φi (t0 + τh) and

Λ =

⎛
⎜⎜⎜⎝

Φ̃1(d1) Φ̃2(d1) . . . Φ̃r+1(d1)
Φ̃1(d2) Φ̃2(d2) . . . Φ̃r+1(d2)

...
...

...

Φ̃1(dr+1) Φ̃2(dr+1) . . . Φ̃r+1(dr+1)

⎞
⎟⎟⎟⎠ .

By means of the expansions

Φi (t0 + d jh) =
r∑

n=0

Φ
(n)
i (t0)

n! dn
j h

n + O(hr+1), i, j = 1, 2, . . . , r + 1,

we have

Λ =

⎛
⎜⎜⎜⎜⎝

1 d1h . . .
dr1h

r

r !
1 d2h . . .

dr2h
r

r !
...

...
...

1 dr+1h . . .
drr+1h

r

r !

⎞
⎟⎟⎟⎟⎠ W̃ + O(hr+1),

where W̃ is the Wronskian of {Φi (t)}r+1
i=1 at t0. Since W̃ is nonsingular, Λ is also

nonsingular for h which is sufficiently small but not zero and the Eq. (1.40) makes
sense in this case. Then {li (τ )}r+1

i=1 is a basis of Xh satisfying li (d j ) = δi j and u(τ )

can be expressed as

u(τ ) =
r+1∑
i=1

u(di )li (τ ).

Choosing di = (i − 1)/r and denoting yσ = u(σ ), (1.14) now reads

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

yσ =
r+1∑
i=1

y i−1
r
li (σ ),

y i−1
r

= y0 + h
∫ 1

0
A i−1

r ,σ f (yσ )dσ, i = 2, . . . , r + 1.

(1.41)
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When f is a polynomial and {Φi (t)}r+1
i=1 are polynomials, trigonometrical or exponen-

tial functions, the integral in (1.41) can be calculated exactly. After solving this alge-
braic system about variables y1/r , y2/r , . . . , y1 by iterations, we obtain the numerical
solution y1 ≈ y(t0 + h). Therefore, although the FFCFEr method can be analysed
in the form of continuous-stage RK method (1.14), it is indeed an r -stage method
in practice. If the integral cannot be directly calculated, we approximate it by a
high-order quadrature rule (bk, ck)sk=1. The corresponding fully discrete scheme for
(1.41) is ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

yσ =
r+1∑
i=1

y i−1
r
li (σ ),

y i−1
r

= y0 + h
s∑

k=1

bk A i−1
r ,ck f (yck ), i = 2, . . . , r + 1.

(1.42)

By an argument which is similar to that stated at the beginning of Sect. 1.3, (1.42) is
equivalent to a discrete version of the FFCFEr method (1.3):

⎧⎪⎨
⎪⎩
u(0) = y0,

〈v, u′〉τ = h[v, f ◦ u], u(τ ) ∈ Xh, for all v(τ ) ∈ Yh,

y1 = u(1),

where [·, ·] is the discrete inner product:

[w1,w2] = [w1(τ ),w2(τ )]τ =
s∑

k=1

bkw1(ck) · w2(ck).

By the proof procedure of Theorem 1.3, one can show that the fully discrete scheme
is still symmetric provided the quadrature rule is symmetric, i.e. cs+1−k = 1 − ck
and bs+1−k = bk for k = 1, 2, . . . , s.

Now it is clear that the practical form (1.41) or (1.42) is determined by the
Lagrange interpolation functions li (τ ) and the coefficient Aτ,σ . For theCFEr method,

Yh = span
{
1, τ, . . . , τ r−1} , Xh = span

{
1, τ, . . . , τ r

}
,

and all li (τ ) for i = 1, 2, . . . , r + 1 are Lagrange interpolation polynomials of
degrees r . The Aτ,σ for r = 2, 3, 4 are given by

Aτ,σ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(4 + 6σ(−1 + τ) − 3τ)τ, r = 2,

τ (9 − 18τ + 10τ 2 + 30σ 2(1 − 3τ + 2τ 2) − 12σ(3 − 8τ + 5τ 2)), r = 3,

τ (16 − 60τ + 80τ 2 − 35τ 3 + 140σ 3(−1 + 6τ − 10τ 2 + 5τ 3)

+ 60σ(−2 + 10τ − 15τ 2 + 7τ 3) − 30σ 2(−8 + 45τ − 72τ 2 + 35τ 3)), r = 4.
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For the TFCFEr method,

Y = span
{
1, t, . . . , tr−3, cos(ωt), sin(ωt)

}
,

then
Yh = span

{
1, τ, . . . , τ r−3, cos(ντ), sin(ντ)

}
,

Xh = span
{
1, τ, . . . , τ r−2, cos(ντ), sin(ντ)

}
,

where ν = hω. The corresponding Aτ,σ and li (τ ) are more complicated than those of
CFEr , but one can calculate them by the formulae (1.15) and (1.40) without any dif-
ficulty before solving the IVP numerically. Consequently, the computational cost of
the TFCFEr method at each step is comparable to that of the CFEr method. Besides,
when ν is small, in order to avoid unacceptable cancellation, it is recommended to
calculate variable coefficients in TFmethods by their Taylor expansions with respect
to ν at zero.

1.5 Numerical Experiments

In this section, we carry out four numerical experiments to test the effectiveness
and efficiency of the new methods TFCFEr based on the space (1.7) for r = 2, 3, 4
and TF2CFE4 based on the space (1.8) in the long-term computation of structure
preservation. These new methods are compared with standard r -stage 2r th-order
EP CFEr methods for r = 2, 3, 4. Other methods such as the 2-stage 4th-order EF
symplectic Gauss–Legendre collocation method (denoted by EFGL2) derived in [7]
and the 2-stage 4th-order EF EP method (denoted by EFCRK2) derived in [30] are
also considered. Since all of these structure-preserving methods are implicit, fixed-
point iterations are needed to solve the nonlinear algebraic systems at each step. The
tolerance error for the iteration solution is set to 10−15 in the numerical simulation.

Numerical quantities with which we are mainly concerned are the Hamiltonian
error

EH = (EH 0, EH 1, . . .),

with
EHn = |H(yn) − H(y0)|,

and the solution error
ME = (ME0, ME1, . . .),

with
MEn = ||yn − y(tn)||∞.
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Fig. 1.1 a The logarithm of the maximum global error against the logarithm of the stepsize.
The dashed lines have slopes four, six and eight. b The logarithm of the maximum global error
against the logarithm of function evaluations. c The logarithm of the maximum global error of
Hamiltonian against the logarithm of the stepsize. Copyright c©2016 Society for Industrial and
Applied Mathematics. Reprinted with permission. All rights reserved.

Correspondingly, the maximum global errors of Hamiltonian (GEH) and the solution
(GE) are defined by:

GEH = max
n≥0

EHn, GE = max
n≥0

MEn,

respectively. Here the numerical solution at the time node tn is denoted by yn .

Example 1.1 Consider the Perturbed Kepler problem defined by the Hamiltonian:

H(p, q) = 1

2
(p21 + p22) − 1

(q2
1 + q2

2 )
1
2

− 2ε + ε2

3(q2
1 + q2

2 )
3
2

,

with the initial condition q1(0) = 1, q2 = 0, p1(0) = 0, p2 = 1 + ε, where ε is a
small parameter. The exact solution of this IVP is

q1(t) = cos((1 + ε)t), q2(t) = sin((1 + ε)t), pi (t) = q ′
i (t), i = 1, 2.

Taking ω = 1, ε = 0.001 and h = 1/2i for i = −1, 0, . . . , 6,we integrate this prob-
lem over the interval [0, 200π ] by the TF2CFE4, TFCFEr and CFEr methods for
r = 2, 3, 4. The nonlinear integral in the r -stage method is evaluated by the (r + 1)-
point Gauss–Legendre quadrature rule. Numerical results are presented in Fig. 1.1.

From Fig. 1.1a it can be observed that TFCFEr and TF2CFE4 methods show
the expected order. Under the same stepsize, the TF method is more accurate than
the non-TF method of the same order. Since the double precision provides only 16
significant digits, the numerical results are polluted significantly by rounding errors
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logarithm of iteration times. c The logarithm of the maximum global error of Hamiltonian against
the logarithm of the stepsize. Copyright c©2016 Society for Industrial and Applied Mathematics.
Reprinted with permission. All rights reserved.

when the maximum global error attains the magnitude 10−11. Figure1.1b shows that
the efficiency of the TF method is higher than that of the non-TF method of the same
order. Besides, high-order methods are more efficient than low-order ones when the
stepsize is relatively small.

In Fig. 1.1c, one can see that all of these EP methods preserve the Hamiltonian
very well. The errors in the Hamiltonian are mainly contributed by the quadrature
error when the stepsize h is large and the rounding error when h is small.

Example 1.2 Consider the Duffing equation defined by the Hamiltonian:

H(p, q) = 1

2
p2 + 1

2
(ω2 + k2)q2 − k2

2
q4

with the initial value q(0) = 0, p(0) = ω. The exact solution of this IVP is

q(t) = sn(ωt; k/ω), p(t) = cn(ωt; k/ω)dn(ωt; k/ω).

where sn, cn and dn are Jacobi elliptic functions. Taking k = 0.07, ω = 5 and h =
1/5 × 1/2i for i = 0, 1, . . . , 5, we integrate this problem over the interval [0, 100]
by TFCFE2, TFCFE3, CFE2, CFE3 and EFCRK2methods. Since the nonlinear term
f is polynomial, we can calculate the integrals involved in these methods exactly by
Mathematica at the beginning of the computation. Numerical results are shown in
Fig. 1.2.

In Fig. 1.2a, one can see that the TF method is more accurate than the non-TF
method of the same order under the same stepsize. For both as 2-stage 4th-order
methods, TFCFE2 method is more accurate than EFCRK2 method for this problem.
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Again, it can be observed from Fig. 1.2b that the efficiency of the CFEr method is
lower than that of the EF/TF method of the same order. Although the nonlinear inte-
grals are exactly calculated in theory, Fig. 1.2c shows that all of these methods only
approximately preserve the Hamiltonian. It seems that the rounding error increases
as h → 0.

Example 1.3 Consider the Fermi–Pasta–Ulam problem studied by Hairer et al. in
[22, 23], which is defined by the Hamiltonian

H(p, q) = 1

2
pᵀ p + 1

2
qᵀMq +U (q),

where

M =
(
Om×m Om×m

Om×m ω2 Im×m

)
,

U (q) = 1

4

(
(q1 − qm+1)

4 +
m−1∑
i=1

(qi+1 − qm+i+1 − qi − qm+i )
4 + (qm + q2m)4

)
.

In this problem, we choose m = 2, q1(0) = 1, p1(0) = 1, q3(0) = 1/ω, p3(0) = 1,
and zero for the remaining initial values. Setting ω = 50, h = 1/50 and ω =
100, h = 1/100, we integrate this problem over the interval [0, 100] byCFE2, CFE3,
TFCFE2, TFCFE3 and EFCRK2 methods. The nonlinear integrals are calculated
exactly by Mathematica at the beginning of the computation. We choose the numeri-
cal solution obtained by a high-order method with a sufficiently small stepsize as the
‘reference solution’ in the FPU problem. Numerical results are plotted in Fig. 1.3.

In Fig. 1.3a, c, one can see that the TF methods are more accurate than non-TF
ones. Unlike the previous problem, the EFCRK2method wins slightly over TFCFE2
method in this case. The Fig. 1.3b, d also show that all of these methods display
promising EP property, which is especially important in the FPU problem.

Example 1.4 Consider the IVP defined by the nonlinear Schrödinger equation

{
iut + uxx + 2|u|2u = 0,

u(x, 0) = ϕ(x),
(1.43)

where u is a complex function of x, t , and i is the imaginary unit. Taking the periodic
boundary condition u(x0, t) = u(x0 + L , t) and discretizing the spatial derivative
∂xx by the pseudospectral method (see e.g. [13]), this problem is converted into a
complex system of ODEs:

⎧⎨
⎩
i
d

dt
U + D2U + 2|U |2 ·U = 0,

U (0) = (ϕ(x0), ϕ(x1), . . . , ϕ(xd−1))
ᵀ,
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or an equivalent Hamiltonian system:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d

dt
P = −D2Q − 2(P2 + Q2) · Q,

d

dt
Q = D2P + 2(P2 + Q2) · P,

P(0) = real(U (0)), Q(0) = imag(U (0)),

(1.44)

where the superscript ‘2’ is the entrywise square multiplication operation for
vectors, xn = x0 + nΔx/d for n = 0, 1, . . . , d − 1, U = (U0(t),U1(t), . . . ,
Ud−1(t))ᵀ, P(t) = real(U (t)), Q(t) = imag(U (t)) and D = (Djk)0≤ j,k≤d−1 is the
pseudospectral differential matrix defined by:

Djk =
{

π
L (−1) j+kcot(π x j−xk

L ), j �= k,
0, j = k.

The Hamiltonian or the total energy of (1.44) is

H(P, Q) = 1

2
PᵀD2P + 1

2
QᵀD2Q + 1

2

d−1∑
i=0

(P2
i + Q2

i )
2.

In [33], the author constructed a periodic bi-soliton solution of (1.43):

u(x, t) = Φ

Ψ
, (1.45)

where

Φ = (exp(iM2t)M cosh−1(M(x − A)) − exp(i N 2t)N cosh−1(N (x + A))),

Ψ = (cosh(J ) − sinh(J )(tanh(M(x − A)) tanh(N (x + A))

+ cos((M2 − N 2)t) cosh−1(M(x − A)) cosh−1(N (x + A))))

with

J = tanh−1(
2MN

M2 + N 2
).

This solution can be viewed approximately as the superposition of two single solitons
located at x = A and x = −A respectively. Since it decays exponentially when x →
∞, we can take the periodic boundary condition for sufficiently small x0 and large
L with little loss of accuracy. Aside from the total energy, it is well known that the
semi-discrete NLS (1.44) has another invariant, the total charge

C(P, Q) =
d−1∑
i=0

(P2
i + Q2

i ).
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Fig. 1.4 a The logarithm of the solution error against time t (left). b The logarithm of the Hamil-
tonian error against time t (middle). c The logarithm of the charge error against time t (right).
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Thus, we also calculate the error in the charge (EC):

EC = (EC0, EC1, . . .)

with
ECn = |Cn − C0|, Cn = C(Pn, Qn)

where Pn ≈ P(tn), Qn ≈ Q(tn) is the numerical solution at the time node tn . Taking
x0 = −50, L = 100, A = 10, M = 1, N = 2

1
2 , d = 450, h = 0.2, ω = 2, we inte-

grate the semi-discrete problem (1.44) by the TFCFE2, CFE2 and EFGL2 methods
over the time interval [0, 100]. The nonlinear integrals are calculated exactly by
Mathematica at the beginning of the computation. Numerical results are presented
in Fig. 1.4.

It is noted that the exact solution (1.45) has two approximate frequency M2 and
N 2. By choosing the larger frequency N 2 = 2 as the fitting frequency ω, the EF/TF
methods still reach higher accuracy than the general-purpose method CFE2, see
Fig. 1.4a. Among three EF/TF methods, TFCFE2 is the most accurate. Figure1.4b
shows that three EPmethods CFE2, TFCFE2 and EFCRK2 preserve the Hamiltonian
(apart from the rounding error). Since EFGL2 is a symplectic method, it preserves
the discrete charge, which is a quadratic invariant, see Fig. 1.4c. Although TFCFE2
method cannot preserve the discrete charge, its error in the charge is smaller than the
charge errors of CFE2 and EFCRK2.
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1.6 Conclusions and Discussions

Highly oscillatory systems constitute an important category of differential equa-
tions in applied sciences. The numerical treatment of oscillatory systems is full of
challenges. Readers are referred to Hairer et al. [23], Iserles [26], Petzold et al.
[14], Cohen et al. [34], Wu et al. [44, 45], and references contained therein. This
chapter is mainly concerned with the establishment of high-order functionally-fitted
energy-preserving methods for solving oscillatory nonlinear Hamiltonian systems.
We have derived new FFCFEr methods based on the analysis of continuous finite
element methods. The FFCFEr methods can be thought of as a continuous-stage
Runge–Kutta methods, and hence it can be used conveniently in applications. The
geometric properties and algebraic orders of themethod have been analysed in detail.
By equipping FFCFEr with the spaces (1.7) and (1.8), we have developed the TFEP
methods denoted byTFCFEr andTF2CFEr which are suitable for solving oscillatory
Hamiltonian systems with a fixed frequency ω. Evaluating the nonlinear integrals in
the EPmethods exactly or approximately, we have compared TFCFEr for r = 2, 3, 4
and TF2CFE4 with other structure-preserving methods such as EP methods CFEr
for r = 2, 3, 4, the EP method EFCRK2 and the symplectic method EFGL2. The
numerical results show that the newly derived TFEP methods exhibit definitely a
high accuracy, an excellent invariant-preserving property and a prominent long-term
behaviour.

In numerical experiments, we are mainly concerned with the TFCFEr methods
when applied to oscillatory Hamiltonian systems. However, the FFCFEr methods,
by nature, are symmetric and of order 2r for the general autonomous system y′(t) =
f (y(t)). By choosing appropriate function spaces, the FFCFEr methods can be
applied to solve amuchwider class of dynamic systems in applications. For example,
the application of the FF Runge–Kutta method to the stiff system has been shown
in [32]. Consequently, we conclude that FFCFEr methods are likely to be a class of
highly flexible methods with many potential applications.

In conclusion, in this chapter, from the perspective of the continuous finite ele-
ment method, we have presented and analysed energy-preserving functionally fitted
methods, in particular, trigonometrically fitted methods of an arbitrarily high order
for solving oscillatory nonlinear Hamiltonian systems with a fixed frequency. In the
next chapters, we will consider multi-frequency highly oscillatory systems.

This chapter is based on the work of Li and Wu [28].
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Chapter 2
Exponential Average-Vector-Field
Integrator for Conservative
or Dissipative Systems

This chapter focuses on discrete gradient integrators intending to preserve the first
integral or the Lyapunov function of the original continuous system. Incorporating
the discrete gradients with exponential integrators, we discuss a novel exponential
integrator for the conservative or dissipative system ẏ = Q(My + ∇U (y)), where
Q is a d × d real matrix, M is a d × d symmetric real matrix and U : Rd → R is
a differentiable function. For conservative systems, the exponential integrator pre-
serves the energy, while for dissipative systems, the exponential integrator preserves
the decaying property of the Lyapunov function. Two properties of the new scheme
are presented. Numerical experiments demonstrate the remarkable superiority of the
new scheme in comparison with other structure-preserving schemes in the recent
literature.

2.1 Introduction

In this chapter we are interested in the numerical solution of the IVP

ẏ(t) = Q(My(t) + ∇U (y(t))), y(t0) = y0, (2.1)

where the ẏ denotes the derivative with respect to time, Q is a d × d real matrix, M
is a d × d symmetric real matrix andU : Rd → R is a differentiable function. Since
M is symmetric, My(t) + ∇U (y(t)) is the gradient of the function

H(y(t)) = 1

2
y(t)ᵀMy(t) +U (y(t)).

© Springer Nature Singapore Pte Ltd. And Science Press 2018
X. Wu and B. Wang, Recent Developments in Structure-Preserving Algorithms
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In physical applications, the quantity H is often referred to as “energy”. Two
special categories are important in applications:

(i) If Q is skew-symmetric, then (2.1) is a conservative system with the first
integral H , i.e. H(y(t)) is constant.

(ii) If Q is negative semi-definite (denoted by Q ≤ 0), then (2.1) is a dissipative
system with the Lyapunov function H , i.e. H(y(t)) is monotonically decreasing
along the solution y(t).

An even more particular case in the first category is that Q in (2.1) is the identity
matrix. The system becomes

ẏ(t) = My(t) + ∇U (y(t)), y(t0) = y0. (2.2)

An algorithm for (2.2) is an exponential integrator if it involves the computation of
matrix exponentials (or relatedmatrix functions) and exactly integrates the following
system

ẏ(t) − My(t) = 0.

In general, exponential integrators permit larger stepsizes and achieve higher accu-
racy than non-exponential ones when (2.2) is a very stiff differential equation such as
a highly oscillatory ODE or a semi-discrete time-dependent PDE. Therefore, numer-
ous exponential algorithms have been proposed for first-order (see, e.g. [1, 10, 20,
22–26, 31]) and second-order (see e.g. [11, 12, 14, 18, 34]) ODEs.

On the other hand, (2.2) often possesses many important geometrical/physical
structures. For example, the canonical Hamiltonian system

ẏ(t) = J−1∇H(y(t)), y(t0) = y0, (2.3)

is a special case of (2.2), with

J =
(

Od×d Id×d

−Id×d Od×d

)
.

The flow of (2.3) preserves the symplectic 2-form dy ∧ Jdy and the function H(y).
In the sense of geometric integration, it is a natural idea to design numerical schemes
that preserve the two structures. As far as we know,most research papers dealingwith
exponential integrators up to now focus on the development of high-order explicit
schemes but fail to be structure preserving except for symmetric/symplectic/energy-
preservingmethods for first-order ODEs in [5, 7] and oscillatory second-order ODEs
(see, e.g. [18, 32, 33]).

It should be noted that the choice for M in (2.1) or in (2.2) is not unique. In order
to take advantage of exponential integrators, the matrix M in (2.1) should be chosen
such that ||QM || � ||QHess(U )||, where Hess(U ) is the Hessian matrix ofU . For
example, highly oscillatory Hamiltonian systems can be characterized by a dominant
linear part My, where M implicitly contains the large frequency component. Up to
now, many energy-preserving or energy-decaying methods have been proposed in
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the case of M = 0 (see, e.g. [3, 4, 15, 17, 19, 29]). However, these general-purpose
methods are not suitable for dealing with (2.1) when ||QM || is very large. On the one
hand, numerical solutions generated by these methods are far from accurate. On the
other hand, they are generally implicit, and iterative solutions are required at each
step. But the fixed-point iterations for them are not convergent unless the stepsize is
taken very small. As mentioned at the beginning, these two obstacles can hopefully
be overcome by introducing exponential integrators. In [32], the authors proposed an
energy-preservingAAVF integrator (a trigonometric method) for solving the second-
order Hamiltonian system

{
q̈(t) + M̃q(t) = ∇Ũ (q(t)), M̃ is a symmetric matrix,

q(t0) = q0, q̇(t0) = q̇0,

which falls into the class of (2.1) by introducing

y = (q̇ᵀ, qᵀ)ᵀ, U (y) = Ũ (q), Q = J−1,

M =
(
Id×d 0d×d

0d×d M̃

)
,

and
U (y) = −Ũ (q).

In this chapter, we present and analyse a new exponential integrator for (2.1) which
can preserve the first integral or the Lyapunov function.

This chapter is organized as follows. Section2.2 presents the discrete gradient
integrators. In Sect. 2.3, we construct a general structure-preserving scheme for
(2.1)–an exponential discrete gradient integrator. Two important properties of the
scheme are proven. Symmetry and convergence of the EAVF integrator are inves-
tigated in Sect. 2.4. We then present a list of problems which can be solved by
this scheme in Sect. 2.5. Numerical results, including the comparison between our
new scheme and other structure-preserving schemes in the literature, are shown in
Sect. 2.6. Section2.7 is devoted to concluding remarks.

2.2 Discrete Gradient Integrators

Let r(z) be a holomorphic function in the neighborhood of zero (r(0) := lim
z→0

r(z) if

0 is a removable singularity)

r(z) =
∞∑
i=0

r (i)(0)

i ! zi . (2.4)
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The series (2.4) is assumed to be absolutely convergent. For a matrix A, the matrix-
valued function r(A) is defined by

r(A) =
∞∑
i=0

r (i)(0)

i ! Ai .

I and O always denote identity and zero matrices of appropriate dimensions respec-
tively. A

1
2 is a square root (not necessarily principal) of a symmetric matrix A. If

r (i)(0) = 0 for all odd i , then r(A
1
2 ) is well defined for every symmetric A (indepen-

dent of the choice of A
1
2 ). For functions of matrices, the reader is referred to [21].

The discrete gradient method is an effective approach to constructing energy-
preserving integrators. A discrete gradient (DG) of a differentiable function g is a
bi-variate mapping ∇Dg : Rd × R

d → R
d satisfying

{∇Dg(y, ŷ)ᵀ(y − ŷ) = g(y) − g(ŷ),

∇Dg(y, y) = ∇g(y).
(2.5)

Accordingly, a DG integrator for the system (2.3) is defined by

y1 = y0 + h J−1∇DH(y1, y0). (2.6)

Multiplying ∇Dg(y1, y0)ᵀ on both sides of (2.6) and using the first identity of (2.5),
we obtain H(y1) = H(y0), i.e., the scheme (2.6) is energy preservation. For more
details on the DGmethod, readers are referred to [15, 30]. A typical discrete gradient
is the average-vector-field (AVF) which is defined by

∇Dg(y, ŷ) =
∫ 1

0
∇g((1 − τ)ŷ + τ y)dτ. (2.7)

Then the AVF integrator for the system (2.3) is given by

y1 = y0 + h J−1
∫ 1

0
∇H((1 − τ)y0 + τ y1)dτ. (2.8)

2.3 Exponential Discrete Gradient Integrators

We next derive the exponential discrete gradient method for the problem (2.1). The
starting point is the following variation-of-constants formula for the problem (2.1):

y(t0+h) = exp(hQM)y(t0)+h
∫ 1

0
exp((1−ξ)hQM)Q∇U (y(t0+ξh))dξ. (2.9)
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Approximating ∇U (y(t0 + ξh)) in (2.9) by ∇DU (y1, y0), we obtain the following
exponential discrete gradient (EDG) integrator:

y1 = exp(V )y0 + hϕ(V )Q∇DU (y1, y0), (2.10)

where V = hQM ,
ϕ(V ) = (exp(V ) − I )V−1,

and y1 is an approximation of y(t0 + h).
Due to the energy-preserving property of the DG method, we are hopeful of

preserving the first integral by (2.10) when Q is skew symmetric. For simplicity, we
sometimes write∇DU (y1, y0) in brief as∇DU . To begin with, we give the following
preliminary lemma.

Lemma 2.1 For any real symmetric matrix M and scalar h > 0, the matrix

B = exp(hQM)ᵀM exp(hQM) − M

satisfies:

B =
{

= 0, if Q is skew-symmetric,

≤ 0, if Q ≤ 0.

Proof Consider the linear ODE:

ẏ(t) = QMy(t). (2.11)

When Q is skew symmetric, (2.11) is a conservative equation with the first integral
1
2 y

ᵀMy, and its exact solution starting from the initial value y(0) = y0 is y(t) =
exp(t QM)y0. It then follows immediately from

1

2
y(h)ᵀMy(h) = 1

2
y0ᵀMy0

that
1

2
y0ᵀ exp(hQM)ᵀM exp(hQM)y0 = 1

2
y0ᵀMy0

for any vector y0. Therefore,

B = exp(hQM)ᵀM exp(hQM) − M

is skew-symmetric. Since it is also symmetric, B = 0.
Likewise, the case that Q ≤ 0 can be proved. �
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Theorem 2.1 If Q is skew-symmetric, then the integrator (2.10) preserves the first
integral H in (2.1):

H(y1) = H(y0),

where H(y) = 1
2 y

ᵀMy +U (y).

Proof Here we firstly assume that the matrix M is nonsingular. We next calculate
1
2 y

1ᵀMy1. Denote M−1∇DU = ∇̃U . Replacing y1 by exp(V )y0 + hϕ(V )Q∇D

U (y1, y0) leads to

1

2
y1ᵀMy1

= 1

2
(y0ᵀ exp(V )ᵀ + h∇DUᵀQᵀϕ(V )ᵀ)M(exp(V )y0 + hϕ(V )Q∇DU )

= 1

2
y0ᵀ exp(V )ᵀM exp(V )y0 + hy0ᵀ exp(V )ᵀMϕ(V )Q∇DU

+ h2

2
∇DUᵀQᵀϕ(V )ᵀMϕ(V )Q∇DU

= 1

2
y0ᵀ exp(V )ᵀM exp(V )y0 + y0ᵀ exp(V )ᵀMϕ(V )V ∇̃U

+ 1

2
∇̃UᵀV ᵀϕ(V )ᵀMϕ(V )V ∇̃U (using V = hQM)

= 1

2
y0ᵀ exp(V )ᵀM exp(V )y0 + y0ᵀ exp(V )ᵀM(exp(V ) − I )∇̃U

+ 1

2
∇̃Uᵀ(exp(V )ᵀ − I )M(exp(V ) − I )∇̃U (using ϕ(V )V = exp(V ) − I )

= 1

2
y0ᵀ exp(V )ᵀM exp(V )y0 + y0ᵀ(exp(V )ᵀM exp(V ) − exp(V )ᵀM)∇̃U

+ 1

2
∇̃Uᵀ(exp(V )ᵀM exp(V ) − exp(V )ᵀM − M exp(V ) + M)∇̃U.

(2.12)
On the other hand, it follows from the property of the discrete gradient (2.5) that

U (y1) −U (y0)

= (y1ᵀ − y0ᵀ)∇DU (y1, y0)

= y0ᵀ(exp(V )ᵀ − I )∇DU + h∇DUᵀQᵀϕ(V )ᵀ∇DU

= y0ᵀ(exp(V )ᵀM − M)∇̃U + ∇̃UᵀV ᵀϕ(V )ᵀM∇̃U

= y0ᵀ(exp(V )ᵀM − M)∇̃U + ∇̃Uᵀ(exp(V )ᵀM − M)∇̃U.

(2.13)

Combining (2.12), (2.13) and collecting terms by types ‘y0ᵀ ∗ y0’, ‘y0ᵀ ∗ ∇̃U ’,
‘∇̃Uᵀ ∗ ∇̃U ’ lead to
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H(y1) − H(y0)

= 1

2
y1ᵀMy1 − 1

2
y0ᵀMy0 +U (y1) −U (y0)

= 1

2
y0ᵀ(exp(V )ᵀM exp(V ) − M)y0 + y0ᵀ(exp(V )ᵀM exp(V ) − M)∇̃U

+ 1

2
∇̃Uᵀ(exp(V )ᵀM exp(V ) − M)∇̃U + 1

2
∇̃Uᵀ(exp(V )ᵀM − M exp(V ))∇̃U

= 1

2
(y0 + ∇̃U )ᵀB(y0 + ∇̃U ) + 1

2
∇̃UᵀC∇̃U = 0,

(2.14)
where B = exp(V )ᵀM exp(V )−M and C = exp(V )ᵀM −M exp(V ). The last step
is from the skew-symmetry of the matrix B (according to Lemma2.1) and C .

If M is singular, it is easy to find a series of symmetric and nonsingular matrices
{Mε} which converge to M when ε → 0. Thus, according to the result stated above,
it still holds that

Hε(y
1
ε ) = Hε(y

0) (2.15)

for all ε, where Hε(y) = 1
2 y

ᵀMε y + U (y) is the first integral of the perturbed
problem

ẏ = Q(Mε y + ∇U (y)), y(t0) = y0,

and
y1ε = exp(Vε)y

0 + hϕ(Vε)Q∇DU (y1ε , y
0), Vε = hQMε.

Therefore, when ε → 0, y1ε → y1 and (2.15) lead to

H(y1) = H(y0).

This completes the proof. �
Moreover, the scheme (2.10) can also respect the decay of the first integral when

Q ≤ 0 in (2.1). The next theorem shows this point.

Theorem 2.2 If Q is negative semi-definite (not necessarily symmetric), then the
scheme (2.10) preserves the decaying property of the Lyapunov function H in (2.1):

H(y1) ≤ H(y0),

where H(y) = 1
2 y

ᵀMy +U (y).

Proof If M is nonsingular, the equation in (2.14)

H(y1) − H(y0) = 1

2
(y0 + ∇̃U )ᵀB(y0 + ∇̃U )

still holds, since the derivation does not depend on the skew-symmetry of Q. By
Lemma2.1, B is negative semi-definite. Thus H(y1) ≤ H(y0). In the case that M
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is singular, this theorem can be easily proved by replacing the equalities

Hε(y
1
ε ) = Hε(y

0), H(y1) = H(y0)

in the proof of Theorem2.1 with the inequalities

Hε(y
1
ε ) ≤ Hε(y

0), H(y1) ≤ H(y0).

We omit the details. �

2.4 Symmetry and Convergence of the EAVF Integrator

In this chapter, we consider a special type of the discrete gradient in (2.10), the
average vector field,

∇DU (y, ŷ) =
∫ 1

0
∇U ((1 − τ)ŷ + τ y)dτ.

The corresponding integrator becomes

y1 = exp(V )y0 + hϕ(V )Q
∫ 1

0
∇U ((1 − τ)y0 + τ y1)dτ, (2.16)

where V = hQM and y1 ≈ y(t0 + h). The scheme (2.16) is called an exponential
AVF integrator and denoted by EAVF.

In the sequel we present and prove two properties of EAVF—symmetry and
convergence.

Theorem 2.3 The EAVF integrator (2.16) is symmetric.

Proof Exchanging y0 ↔ y1 and replacing h by −h in (2.16), we obtain

y0 = exp(−V )y1 − hϕ(−V )Q
∫ 1

0
∇U ((1 − τ)y1 + τ y0)dτ. (2.17)

We rewrite (2.17) as:

y1 = exp(V )y0 + h exp(V )ϕ(−V )Q
∫ 1

0
∇U ((1 − τ)y0 + τ y1)dτ. (2.18)

Since exp(V )ϕ(−V ) = ϕ(V ), (2.18) is the same as (2.16) exactly. This means that
EAVF is symmetric. �
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It should be noted that the scheme (2.16) is implicit in general, and thus iterative
solutions are required. We next discuss the convergence of the fixed-point iteration
for the EAVF integrator.

Theorem 2.4 Suppose that ||ϕ(V )||2 ≤ C, and that ∇U (u) satisfies a Lipschitz
condition; i.e., there exists a constant L such that

||∇U (v) − ∇U (w)||2 ≤ L||v − w||2,

for all arguments v and w ∈ R
d . If

0 < h ≤ ĥ <
2

CL||Q||2 , (2.19)

then the mapping

Ψ : z �→ exp(V )y0 + hϕ(V )Q
∫ 1

0
∇U ((1 − τ)y0 + τ z)dτ

has a unique fixed point and the iteration for theEAVF integrator (2.16) is convergent.

Proof Since

||Ψ (z1) − Ψ (z2)||2
= ||hϕ(V )Q

∫ 1

0
(∇U ((1 − τ)y0 + τ z1) − ∇U ((1 − τ)y0 + τ z2))dτ ||2

≤ h‖ϕ(V )‖2‖Q‖2
∫ 1

0
‖∇U ((1 − τ)y0 + τ z1) − ∇U ((1 − τ)y0 + τ z2)‖2dτ

≤ hCL||Q||2
∫ 1

0
τ ||z1 − z2||2dτ

= h

2
CL||Q||2||z1 − z2||2

≤ ρ||z1 − z2||2,

where ρ = ĥ

2
CL||Q||2 < 1, by the Contraction Mapping Theorem, the mapping Ψ

has a unique fixed point and the iteration solving the Eq. (2.16) is convergent. �

Remark 2.1 We note two special and important cases in practical applications. If
QM is skew-symmetric or symmetric negative semi-definite, then the spectrum of
V lies in the left half-plane. Since QM is unitarily diagonalizable and |ϕ(z)| ≤ 1 for
any z satisfying Re(z) ≤ 0, we have ||ϕ(V )||2 ≤ 1.

In many cases, the matrix M has an extremely large norm (e.g., M incorporates
high frequency components in oscillatory problems or M is the differential matrix
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in semi-discrete PDEs), and hence Theorem2.4 ensures the possibility of choosing
relatively large stepsize regardless of M .

In practice, the integral in (2.16) usually cannot be easily calculated. Therefore,
we can evaluate it using the s-point Gauss-Legendre (GLs) formula (bi , ci )si=1:

∫ 1

0
∇U ((1 − τ)y0 + τ y1)dτ ≈

s∑
i=1

bi∇U ((1 − ci )y
0 + ci y

1)).

The corresponding scheme is denoted byEAVFGLs. Since the s-point GL quadrature
formula is symmetric, EAVFGLs is also symmetric. Due to the fact that

∑s
i=1 bici =

1/2, the corresponding iteration for EAVFGLs is convergent provided (2.19) holds.

2.5 Problems Suitable for EAVF

2.5.1 Highly Oscillatory Nonseparable Hamiltonian Systems

Consider the Hamiltonian

H(p, q) = 1

2
pᵀ
1 M

−1
1 p1 + 1

2ε2
qᵀ
1 A1q1 + S(p, q),

where p and q are both d-length vectors, partitioned as

p =
(
p0
p1

)
, q =

(
q0
q1

)
,

M1, A1 are symmetric positive definite matrices, and 0 < ε � 1. This Hamiltonian
governs oscillatory mechanical systems in 2 or 3 spatial dimensions such as the
stiff spring pendulum and the dynamics of the multi-atomic molecule (see, e.g. [8,
9]). With an appropriate canonical transformation (see, e.g. [18]), the Hamiltonian
becomes

H(p, q) = 1

2

l∑
j=1

(
p21, j + λ2

j

ε2
q2
1, j

)
+ S(p, q), (2.20)

where p1 = (p1,1, . . . , p1,l)ᵀ, q1 = (q1,1, . . . , q1,l)ᵀ. The corresponding differential
equations are given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ṗ0 = −∇q0 S(p, q),

ṗ1 = −ω2q1 − ∇q1 S(p, q),

q̇0 = p0 + (∇p0 S(p, q) − p0),

q̇1 = p1 + ∇p1 S(p, q),

(2.21)
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where ω2 = diag(ω2
1, . . . , ω

2
l ), ω j = λ j/ε for j = 1, . . . , l. Equation (2.21) is of

the form (2.1) with

y =
(
p
q

)
, Q =

(
O −Id×d

Id×d O

)
, M =

(
Id×d O
O Ωd×d

)
,

and

U (p, q) = S(p, q) − 1

2
pᵀ
0 p0, Ω = diag(0, . . . , 0, ω2

1, . . . , ω
2
l ).

Since q11, . . . , q1l and p11, . . . , p1l are fast variables, it is favorable to integrate the
linear part of them exactly by the scheme (2.16). Note that

ϕ(V ) =
(
sinc(hΩ

1
2 ) h−1g2(hΩ

1
2 )

hg1(hΩ
1
2 ) sinc(hΩ

1
2 )

)
,

where sinc(z) = sin(z)/z, g1(z) = (1 − cos(z))/z2, g2(z) = cos(z) − 1. Unfortu-
nately, the block h−1g2(hΩ

1
2 ) is not uniformly bounded. In the first experiment, the

iteration still works well, perhaps due to the small Lipshitz constant of ∇S.

2.5.2 Second-Order (Damped) Highly Oscillatory System

Consider
q̈ − Nq̇ + Ωq = −∇U1(q), (2.22)

where q is a d-length vector variable, U1 : Rd → R is a differential function, N is
a symmetric negative semi-definite matrix, Ω is a symmetric positive semi-definite
matrix, ||Ω|| or ||N || � 1. (2.22) stands for highly oscillatory problems such as the
dissipative molecular dynamics, the (damped) Duffing and semi-discrete nonlinear
wave equations. By introducing p = q̇, we write (2.22) as a first-order system
of ODEs: (

ṗ
q̇

)
=

(
N −Ω

I O

) (
p
q

)
+

(−∇U1(q)

O

)
, (2.23)

which falls into the class of (2.1), where

y =
(
p
q

)
, Q =

(
N −I
I O

)
, M =

(
I O
O Ω

)
,U (y) = U1(q).
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Clearly, Q ≤ 0 and (2.23) is a dissipative system with the Lyapunov function
H = 1

2 p
ᵀ p+ 1

2q
ᵀΩq+U1(q). Applying the EAVF integrator (2.16) to the Eq. (2.23)

yields the scheme:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p1 = exp11 p
0 + exp12 q

0 − hϕ11

∫ 1

0
∇U1((1 − τ)q0 + τq1)dτ,

q1 = exp21 p
0 + exp22 q

0 − hϕ21

∫ 1

0
∇U1((1 − τ)q0 + τq1)dτ,

(2.24)

where exp(hQM) and ϕ(hQM) are partitioned into

(
exp11 exp12
exp21 exp22

)
and

(
ϕ11 ϕ12

ϕ21 ϕ22

)
,

respectively.
It should be noted that only the second equation in the scheme (2.24) needs to be

solved by iteration. From the proof procedure of Theorem2.4, one can find that the
convergence of the fixed-point iteration for the second equation in (2.24) is irrelevant
to ||QM || provided ϕ21 is uniformly bounded.

Theorem 2.5 Suppose thatΩ and N commute and ||∇U1(v)−∇U1(w)||2 ≤ L||v−
w||2. Then the iteration

Φ : z �→ exp21 p
0 + exp22 q

0 − hϕ21

∫ 1

0
∇U1((1 − τ)q0 + τ z)dτ

for the scheme (2.24) is convergent provided

0 < h ≤ ĥ <
2

L
1
2

.

Proof It is crucial here to find a uniform bound of ‖ϕ21‖. Since Ω and N commute,
they can be simultaneously diagonalized:

Ω = FᵀΛF, N = FᵀΣF,

where F is an orthogonal matrix, Λ = diag(λ1, . . . , λd),Σ = diag(σ1, . . . , σd) and
λi ≥ 0, σi ≤ 0 for i = 1, 2, . . . , d. It now follows from

QM =
(
Fᵀ O
O Fᵀ

)(
O I

−Λ Σ

) (
F O
O F

)

that

exp(hQM) =
(
Fᵀ O
O Fᵀ

)
exp

{(
O hI

−hΛ hΣ

)}(
F O
O F

)
.
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To show that exp21 and ϕ21 depends on h, we denote them by exph21 and ϕh
21, respec-

tively. After some calculations, we have

exph21 = Fᵀ(Σ2 − 4Λ)−
1
2 · 2 sinh(h(Σ2 − 4Λ)

1
2 /2) exp

(
hΣ

2

)
F.

We then have

|| exph21 ||2 = ||2(Σ2 − 4Λ)−
1
2 sinh(h(Σ2 − 4Λ)

1
2 /2) exp

(
hΣ

2

)
||2

= hmax
i

| sinh((h
2σ 2

i /4 − λi )
1
2 )

(h2σ 2
i /4 − λi )

1
2

exp

(
hσi

2

)
|.

(2.25)

In order to estimate || exph21 ||2, the bound of the function

g(λ, σ ) = sinh((σ 2 − 4λ)
1
2 )

(σ 2 − 4λ)
1
2

exp (σ ) ,

should be considered for σ ≤ 0, λ ≥ 0. If σ 2 − 4λ < 0, we set (σ 2 − 4λ)
1
2 = ia,

where i is the imaginary unit and a is a real number. Then we have

|g| = | sin(a)

a
exp (σ ) | ≤ | sin(a)

a
| ≤ 1.

If σ 2 − 4λ ≥ 0, then a = (σ 2 − 4λ)
1
2 ≤ −σ ,

|g| = | sinh(a)

a
exp (σ ) | ≤ | sinh(a)

a
exp(−a)| = |1 − exp(−2a)

2a
| ≤ 1.

Thus,
|g(λ, σ )| ≤ 1 for σ ≤ 0, λ ≥ 0. (2.26)

It follows from (2.25) and (2.26) that

|| exph21 ||2 = hmax
i

|g
(
hσi

2
, λi

)
| ≤ h. (2.27)

Therefore, using ϕ(hQM) = ∫ 1
0 exp((1 − ξ)hQM)dξ and (2.27), we obtain

||ϕ21||2 = ||
∫ 1

0
exp(1−ξ)h

21 dξ ||2 ≤
∫ 1

0
|| exp(1−ξ)h

21 ||2dξ ≤
∫ 1

0
(1 − ξ)hdξ = 1

2
h.

The rest of the proof is similar to that of Theorem2.4 which we omit here. �
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It can be observed that in the particular case that N = 0, the scheme (2.24) reduces
to the AAVF integrator in [32].

2.5.3 Semi-discrete Conservative or Dissipative PDEs

Many time-dependent PDEs are in the form:

∂

∂t
y(x, t) = Q

δH

δy
, (2.28)

where y(·, t) ∈ X for every t ≥ 0, X is a Hilbert space like L2(D), L2(D) ×
L2(D), . . . , D is a domain in R

d , and Q is a linear operator on X , the functional
H [y] = ∫

D f (y, ∂α y)dx ( f is smooth, x = (x1, . . . , xd), dx = dx1 . . . dxd and
∂α y denote the partial derivatives of y with respect to spatial variables xi , 1 ≤ i ≤
d). Under a suitable boundary condition (BC), the variational derivative

δH

δy
is

defined by:

〈δH
δy

, z〉 = d

dε

∣∣
ε=0H [y + εz]

for any smooth z ∈ X vanishing on the boundary of D , where 〈·, ·〉 is the inner
product of X . IfQ is a skew or negative semi-definite operator with respect to 〈·, ·〉,
then the Eq. (2.28) is conservative (e.g., the nonlinear wave, nonlinear Schrödinger,
Korteweg–de Vries and Maxwell equations) or dissipative (e.g., the Allen–Cahn,
Cahn–Hilliard, Ginzburg–Landau and heat equations), i.e., H [y] is constant or
monotonically decreasing (see, e.g. [6, 13]). In general, after the spatial discretisa-
tion, (2.28) becomes a conservative or dissipative system of ODEs in the form (2.1).

A typical example of a conservative system is the nonlinear Schrödinger (NSL)
equation:

i
∂

∂t
y + ∂2

∂x2
y + V

′
(|y|2)y = 0 (2.29)

subject to the periodic BC y(0, t) = y(L , t). Denoting y = p+ iq (i2 = −1), where
p, q are the real and imaginary parts of y, the Eq. (2.29) can be written in the form
of (2.28):

∂

∂t

(
p
q

)
=

(
0 −1
1 0

) ⎛
⎜⎝

∂2

∂x2
p + V

′
(p2 + q2)p

∂2

∂x2
q + V

′
(p2 + q2)q

⎞
⎟⎠ , (2.30)

where X = L2([0, L]) × L2([0, L]),
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H [y] = 1

2

∫ L

0

(
V (p2 + q2) −

(
∂

∂x
p

)2

−
(

∂

∂x
q

)2
)
dx .

We consider the spatial discretisation of (2.30). It is supposed that the spatial domain
is equally partitioned into N intervals: 0 = x0 < x1 < . . . < xN = L . Discretizing
the spatial derivatives of (2.30) by central differences gives

( ˙̃p
˙̃q
)

=
(
O −I
I O

) (
D p̃ + V

′
( p̃2 + q̃2) p̃

Dq̃ + V
′
( p̃2 + q̃2)q̃

)
, (2.31)

where

D =

⎛
⎜⎜⎜⎜⎜⎝

−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2

⎞
⎟⎟⎟⎟⎟⎠

,

is an N × N symmetric differential matrix, p̃ = (p0, . . . , pN−1)
ᵀ, q̃ = (q0, . . . ,

qN−1)
ᵀ, pi (t) ≈ p(xi , t) and qi (t) ≈ q(xi , t) for i = 0, . . . , N − 1.

As an example of dissipative PDEs we consider the Allen–Cahn (AC) equation

∂y

∂t
= β

∂2y

∂x2
+ y − y3, β ≥ 0, (2.32)

subject to the the Neumann BC ∂
∂x y(0, t) = ∂

∂x y(L , t). X = L2([0, L]),Q =
−1,H [y] = ∫ L

0 ( 12β( ∂
∂x y)

2 − 1
2 y

2 + 1
4 y

4)dx . The spatial grids are chosen in the
same way as the NLS. Discretizing the spatial derivative with the central difference,
we obtain

˙̃y = β D̂ ỹ + ỹ − ỹ3, (2.33)

where

D̂ =

⎛
⎜⎜⎜⎜⎜⎝

−1 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −1

⎞
⎟⎟⎟⎟⎟⎠

,

is the (N−1)×(N−1) symmetric differential matrix, ỹ = (y1, . . . , yN−1)
ᵀ, yi (t) ≈

y(xi , t).
Both the semi-discrete NLS equation (2.31) and AC equation (2.33) are of the

form (2.1). For the NLS equation, we have
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Q =
(
O −I
I O

)
, M =

(
D O
O D

)
, U = 1

2

N−1∑
i=0

V (p2i + q2
i ),

while for the AC equation, we have

Q = −I, M = −β D̂, U =
N−1∑
i=1

(
−1

2
y2i + 1

4
y4i

)
.

Therefore, the scheme (2.16) can be applied to solve them. Since the matrix
QM is skew or symmetric negative semi-definite in these two cases, according to
Remark2.1, the convergence of fixed-point iterations for them is independent of the
differential matrix.

2.6 Numerical Experiments

In this section, we compare the EAVF method (2.16) with the well-known implicit
midpoint method which is denoted by MID:

y1 = y0 + hQ∇Ũ

(
y0 + y1

2

)
, (2.34)

and the traditional AVF method for (2.1) given by

y1 = y0 + hQ
∫ 1

0
∇Ũ ((1 − τ)y0 + τ y1)dτ, (2.35)

where Ũ (y) = U (y) + 1
2 y

ᵀMy. The authors in [30] showed that (2.35) preserves
the first integral or the Lyapunov function Ũ . Our comparison also includes another
energy-preserving method of order four for (2.1):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y
1
2 = y0 + hQ

∫ 1

0

(
5

4
− 3

2
τ

)
∇Ũ (yτ )dτ,

y1 = y0 + hQ
∫ 1

0
∇Ũ (yτ )dτ,

(2.36)

where
yτ = (2τ − 1)(τ − 1)y0 − 4τ(τ − 1)y

1
2 + (2τ − 1)τ y1.

This method is denoted by CRK since it can be written as a continuous Runge–Kutta
method. For details, readers are referred to [17].
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Throughout the experiment, the ‘reference solution’ is computed by high-order
methods with a sufficiently small stepsize. We always start to calculate from t0 = 0.
yn ≈ y(tn) is obtained by the time-stepping way y0 → y1 → · · · → yn → · · ·
for n = 1, 2, . . . and tn = nh. The error tolerance for iteration solutions of the four
methods is set as 10−14. The maximum global error (GE) over the total time interval
is defined by:

GE = max
n≥0

||yn − y(tn)||∞.

The maximum global error of H (EH ) on the interval is:

EH = max
n≥0

|Hn − H(y(tn))|.

In our numerical experiments, the computational cost of each method is measured
by the number of function evaluations (FE).

Example 2.1 The motion of a triatomic molecule can be modelled by a Hamiltonian
system with the Hamiltonian of the form (2.20) (see, e.g. [8]):

H(p, q) = S(p, q) + 1

2
(p21,1 + p21,2 + p21,3) + ω2

2
(q2

1,1 + q2
1,2 + q2

1,3), (2.37)

where

S(p, q) = 1

2
p20 + 1

4
(q0 − q1,3)

2 − 1

4

2q1,2 + q21,2
(1 + q1,2)2

(p0 − p1,3)
2 − 1

4

2q1,1 + q21,1
(1 + q1,1)2

(p0 + p1,3)
2.

The initial values are given by:

⎧⎨
⎩

p0(0) = p1,1(0) = p1,2(0) = p1,3(0) = 1,

q0(0) = 0.4, q1,1(0) = q1,2(0) = 1

ω
, q1,3 = 1

2
1
2 ω

.

Setting h = 1/2i for i = 6, . . . , 10,ω = 50, and h = 1/100×1/2i for i = 0, . . . , 4,
ω = 100, we integrate the problem (2.21) with the Hamiltonian (2.37) over the
interval [0, 50]. Since the nonlinear term ∇S(p, q) is complicated to be integrated,
we evaluate the integrals in EAVF, AVF and CRK by the 3-point Gauss–Legendre
(GL) quadrature formula (bi , ci )3i=1:

b1 = 5

18
, b2 = 4

9
, b3 = 5

18
; c1 = 1

2
− 15

1
2

10
, c2 = 1

2
, c3 = 1

2
+ 15

1
2

10
.

The corresponding schemes are denoted by EAVFGL3, AVFGL3 and CRKGL3
respectively. Numerical results are presented in Fig. 2.1.

Figure2.1a, c show that MID and AVFGL3 lost basic accuracy. It can be observed
from Fig. 2.1b, d that AVFGL3, EAVFGL3, CRKGL3 are much more efficient in
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Fig. 2.1 Efficiency curves. Copyright ©2016 Society for Industrial and Applied Mathematics.
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preserving energy thanMID. In the aspects of both energy preservation and algebraic
accuracy, EAVF is the most efficient among the four methods.
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Example 2.2 The equation

ẋ1 = −ζ x1 − λx2 + x1x2,

ẋ2 = λx1 − ζ x2 + 1

2
(x21 − x22 ),

(2.38)

is an averaged system in wind-induced oscillation, where ζ ≥ 0 is a damping
factor and λ is a detuning parameter (see, e.g. [16]). For convenience, setting
ζ = rcos(θ), λ = rsin(θ), r ≥ 0, 0 ≤ θ ≤ π/2, (see [29]) we write (2.38) as

(
ẋ1
ẋ2

)
=

( − cos(θ) − sin(θ)

sin(θ) − cos(θ)

) (
r x1 − 1

2 sin(θ)(x22 − x21 ) − cos(θ)x1x2
r x2 − sin(θ)x1x2 + 1

2 cos(θ)(x22 − x21 )

)
, (2.39)

which is of the form (2.1), where

Q =
(− cos(θ) − sin(θ)

sin(θ) − cos(θ)

)
, M =

(
r 0
0 r

)
,

U = −1

2
sin(θ)

(
x1x

2
2 − 1

3
x31

)
+ 1

2
cos(θ)

(
1

3
x32 − x21 x2

)
.

(2.40)

Its Lyapunov function (dissipative case, when θ < π/2) or the first integral (conser-
vative case, when θ = π/2) is:

H = 1

2
r(x21 + x22 ) − 1

2
sin(θ)

(
x1x

2
2 − 1

3
x31

)
+ 1

2
cos(θ)

(
1

3
x32 − x21 x2

)
.

The matrix exponential of the EAVF scheme (2.16) for (2.39) is calculated by:

exp(V ) =
(
exp(−hcr)cos(hsr) − exp(−hcr)sin(hsr)
exp(−hcr)sin(hsr) exp(−hcr)cos(hsr)

)
,

where c = cos(θ), s = sin(θ), and ϕ(V ) can be obtained by (exp(V ) − I )V−1.
Given the initial values:

x1(0) = 0, x2(0) = 1,

wefirst integrate the conservative system (2.39)with the parameters θ = π/2, r = 20
and stepsizes h = 1/20 × 1/2i for i = −1, . . . , 4 over the interval [0, 200]. Setting
θ = π/2 − 10−4, r = 20, we then integrate the dissipative (2.39) with the stepsizes
h = 1/20 × 1/2i for i = −1, . . . , 4 over the interval [0, 100]. Numerical errors are
presented in Figs. 2.2 and 2.3. It is noted that the integrands appearing in AVF, EAVF
are polynomials of degree two and the integrands in CRK are polynomials of degree
five. We evaluate the integrals in AVF, EAVF by the 2-point GL quadrature:

b1 = 1

2
, b2 = 1

2
, c1 = 1

2
− 3

1
2

6
, c2 = 1

2
+ 3

1
2

6
,
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and the integrals appearing in CRK by the 3-point GL quadrature. Then there is no
quadrature error.

The efficiency curves of AVF and MID consist of only five points in Figs. 2.2a, b,
and 2.3a (two points overlap in Figs. 2.2a and 2.3a), since the fixed-point iterations of
MID and AVF are not convergent when h = 1/10. Note that QM is skew-symmetric
or negative semi-definite, the convergence of iterations for the EAVF method is
independent of r by Theorem2.4 and Remark2.1. Thus larger stepsizes are allowed
for EAVF. The experiment shows that the iterations for EAVF uniformly converge
for h = 1/20× 1/2i for i = −1, . . . , 4. Moreover, it can be observed from Fig. 2.3b
that MID cannot strictly preserve the decay of the Lyapunov function.

Example 2.3 The PDE:

∂2u

∂t2
= β

∂3u

∂t∂x2
+ ∂2u

∂x2

(
1 + ε

(
∂u

∂x

)p)
− γ

∂u

∂t
− m2u, (2.41)

where ε > 0, β, γ ≥ 0, is a continuous generalization of α-FPU (Fermi–Pasta–
Ulam) system (see, e.g. [28]). Taking ∂t u = v and the homogeneous Dirichlet BC
u(0, t) = u(L , t) = 0, the Eq. (2.41) is of the type (2.28), where X = L2([0, L]) ×
L2([0, L]) and
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y =
(
u
v

)
, Q =

(
0 1

−1 β∂2
x − γ

)
,

H [y] =
∫ L

0

(
1

2
u2x + m2

2
u2 + v2

2
+ εu p+2

x

(p + 2)(p + 1)

)
dx .

It is easy to verify that Q is a negative semi-definite operator, and thus (2.41) is
dissipative. The spatial discretization yields a dissipative system of ODEs:

ü j (t) − c2(u j−1 − 2u j + u j+1) + m2u j − β
′
(u̇ j−1 − 2u̇ j + u̇ j+1) + γ u̇ j (t)

= ε
′
(V

′
(u j+1 − u j ) − V

′
(u j − u j−1)),

where c = 1/Δx, β
′ = c2β, ε

′ = cp+2ε, V (u) = u p+2/[(p + 2)(p + 1)], u j (t) ≈
u(x j , t), x j = j/Δx for j = 1, . . . , N − 1 and u0(t) = uN (t) = 0. Note that the
nonlinear term uxxu

p
x is approximated by:

∂2u

∂x2

(
∂u

∂x

)p

|x=x j = 1

p + 1
∂x

(
∂u

∂x

)p+1

|x=x j

≈ 1

p + 1

((
u j+1 − u j

Δx

)p+1

−
(
u j − u j−1

Δx

)p+1
)

/Δx .
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We now write it in the compact form (2.22):

q̈ − Nq̇ + Ωq = −∇U1(q),

where q = (u1, . . . , uN−1)
ᵀ, N = β

′
D − γ I,Ω = −c2D + m2 I,U1(q) =

ε
′ ∑N−1

j=0 V (u j+1 − u j ) and

D =

⎛
⎜⎜⎜⎜⎜⎝

−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2

⎞
⎟⎟⎟⎟⎟⎠

.

In this experiment, we set p = 1,m = 0, c = 1, ε = 3
4 , and γ = 0.005. Consider

the initial conditions in [28]:

φ j (t) = B ln

{(
1 + exp[2(κ( j − 97) + t sinh(κ))]
1 + exp[2(κ( j − 96) + t sinh(κ))]

) (
1 + exp[2(κ( j − 32) + t sinh(κ))]
1 + exp[2(κ( j − 33) + t sinh(κ))]

)}

with B = 5, κ = 0.1, that is,

{
u j (0) = φ j (0),

v j (0) = φ̇ j (0).

for j = 1, . . . , N − 1. Let N = 128, β = 0, 2. We compute the numerical solution
by MID, AVF and EAVF with the stepsizes h = 1/2i for i = 1, . . . , 5 over the time
interval [0, 100]. Similarly to EAVF (2.24), the nonlinear systems resulting from
MID (2.34) and AVF (2.35) can be reduced to:

q1 = q0 + hp0 + h

2
N (q1 − q0) − h2

4
Ω(q1 + q0) − h2

2
∇U1

(
q0 + q1

2

)
,

and

q1 = q0 +hp0 + h

2
N (q1 −q0)− h2

4
Ω(q1 +q0)− h2

2

∫ 1

0
∇U1((1− τ)q0 + τq1)dτ

respectively. Both the velocity p1 of MID and AVF can be recovered by

q1 − q0

h
= p1 + p0

2
.

The integrals in AVF and EAVF are exactly evaluated by the 2-point GL quadrature.
Since exp(hA), ϕ(hA) in (2.24) have no explicit expressions, they are calculated by
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the Matlab package in [2]. The basic idea is to evaluate exp(hA), ϕ(hA) by their
Padé approximations. Numerical results are plotted in Fig. 2.4. Alternatively, there
are other popular algorithms such as the contour integral method and the Krylov
subspace method for matrix exponentials and ϕ-functions. Readers are referred to
[23] for a summary of algorithms and well-established mathematical software.

According to Theorem2.5, the convergence of iterations in the EAVF scheme
is independent of Ω and N . Iterations of MID and AVF are not convergent when
β = 2, h = 1/2. Thus the efficiency curves of MID and AVF in Fig. 2.4b consist of
only 4 points. From Fig. 2.4c, it can be observed that the EAVFmethod is dissipative
even using the relatively large stepsize h = 1/2.

2.7 Conclusions and Discussions

Exponential integrators date back to the original work by Hersch [20]. The term
“exponential integrators” was coined in the seminal paper by Hochbruck, Lubich
and Selhofer [22]. It turns out that exponential integrators have constituted an impor-
tant class of effective methods for the numerical solution of differential equations in
applied sciences and engineering. In this chapter, combining the ideas of the expo-
nential integrator with the average vector field, a new exponential scheme EAVF
was proposed and analysed. The EAVF method can preserve the first integral or the
Lyapunov function for the conservative or dissipative system (2.1). The symmetry of
EAVF is responsible for the good long-term numerical behavior. The implicitness of
EAVF means that the solution must be solved iteratively. We have analysed the con-
vergence of the fixed-point iteration and showed that the convergence is free from the
influence of a large class of coefficient matrices M . In the dynamics of the triatomic
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molecule, wind-induced oscillation and the damped FPU problem, we compared
the new EAVF method with the MID, AVF and CRK methods. The three problems
are modelled by the system (2.1) having a dominant linear term and small nonlin-
ear term. As for the efficiency as well as preserving energy and dissipation, EAVF
is superior to the other three methods. In general, energy-preserving and energy-
decaying methods are implicit, and iterative solutions are required. With relatively
large stepsizes, the iterations of EAVF converge while those of AVF and MID do
not. We conclude that EAVF is a promising method for solving the system (2.1) with
||QM || � ||Q Hess(U )||.

In conclusion, exponential integrators are an important class of structure-
preserving numerical methods for differential equations. Therefore, we will further
discuss and analyse exponential Fourier collocation methods in the next chapter, and
symplectic exponential Runge–Kutta methods for solving nonlinear Hamiltonian
systems in Chap.4.

This chapter is based on the work of Li and Wu [27].
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Chapter 3
Exponential Fourier Collocation Methods
for First-Order Differential Equations

Commencing from the variation-of-constants formula and incorporating a local
Fourier expansion of the underlying problem with collocation methods, this chapter
presents a novel class of exponential Fourier collocation methods (EFCMs) for solv-
ing systems of first-order ordinary differential equations. We discuss in detail the
connections of EFCMs with trigonometric Fourier collocation methods (TFCMs),
the well-known Hamiltonian Boundary Value Methods (HBVMs), Gauss methods
and Radau IIA methods. It turns out that the novel EFCMs are an extension, in a
strict mathematical sense, of these existing methods in the literature.

3.1 Introduction

The subject of this chapter is devoted to analysing and designing novel and efficient
numerical integrators for solving the following first-order initial value problem

u′(t) + A u(t) = g(t, u(t)), u(0) = u0, t ∈ [0, tend], (3.1)

where g : R×R
d → R

d is an analytic function,A is assumed to be a linear operator
on a Banach space X with a norm ‖·‖, and (−A ) is the infinitesimal generator of a
strongly continuous semigroup e−tA on X (see, e.g. [27]). These conditions on A
imply that there exist two non-negative real constants C and ω satisfying

∥
∥e−tA

∥
∥
X←X

≤ Ceωt , t ≥ 0. (3.2)

An analysis of this result can be found in [27]. It is noted that if X is chosen as
X = R

d or X = C
d , then the linear operator A can be expressed by a d × d matrix

A. Accordingly, e−t A in this case is exactly the matrix exponential function. It also
can be observed that the condition (3.2) holds withω = 0 provided the field of values
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of A is contained in the right complex half-plane. In the special and important case
where A is skew-Hermitian or Hermitian positive semidefinite, we have C = 1 and
ω = 0 in the Euclidean norm, independently of the dimension d. If A originates
from a spatial discretisation of a partial differential equation, then this assumption
on A leads to temporal convergence results that are independent of the spatial mesh.

As is known, the exact solution of (3.1) can be represented by the variation-of-
constants formula

u(t) = e−t Au0 +
∫ t

0
e−(t−τ)Ag(τ, u(τ ))dτ. (3.3)

Note that the exponential subsumes the full information on linear oscillations for os-
cillatory problems. This class of problems (3.1) frequently arises in a wide variety of
applications including engineering, mechanics, quantum physics, circuit simulation-
s, flexible body dynamics and other applied sciences (see, e.g. [10, 16, 24, 27, 39,
41, 44, 48]). Parabolic partial differential equations with their spatial discretisations
and highly oscillatory problems yield two typical examples of the system (3.1) (see,
e.g. [30–34, 42]). Linearizing stiff systems u′(t) = F(t, u(t)) also yields examples
of the form (3.1) (see, e.g. [15, 25, 28]).

Commencing from the variation-of-constants formula (3.3), the numerical scheme
for (3.1) is usually constructed by incorporating the exact propagator of (3.1) in
an appropriate way. For example, interpolating the nonlinearity at the known val-
ue g(0, u0) yields the exponential Euler approximation for (3.3). Approximating
the functions arising from rational approximation leads to implicit or semi-implicit
Runge–Kutta methods, Rosenbrock methods or W-schemes. Recently, the construc-
tion, analysis, implementation and application of exponential integrators have been
studied by many researchers, and readers are referred to [3, 11–13, 16, 37, 46]. Ex-
ponential integrators make explicit use of the quantity Au of (3.1), and a systematic
survey of exponential integrators is presented in [27].

Exponential Runge–Kutta methods of collocation type were constructed based on
Lagrange interpolation polynomials, and their convergence properties were analysed
in [26]. In [40], the authors developed and researched a novel type of trigonometric
Fourier collocation methods (TFCMs) for second-order oscillatory differential equa-
tions q ′′(t)+ Mq(t) = f (q(t)) with a principal frequency matrix M ∈ R

d×d . These
new trigonometric Fourier collocation methods take full advantage of the special
structure introduced by the linear term Mq, and their construction analysis incor-
porates the idea of collocation methods, the variation-of-constants formula and the
local Fourier expansion of the system. The results of numerical experiments in [40]
show that the trigonometric Fourier collocation methods are much more efficient in
comparison with some alternative approaches appeared in the literature. On the basis
of the work in [26, 40], in this chapter we make an effort to conduct the research
of novel exponential Fourier collocation methods (EFCMs) for efficiently solving
first-order differential equations (3.1). The construction of the novel EFCMs incor-
porates the exponential integrators, the collocation methods, and the local Fourier
expansion of the system. Moveover, EFCMs can be of an arbitrarily high order, and
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when A → 0, EFCMs reduce to the well-known Hamiltonian Boundary Value meth-
ods (HBVMs) which have been studied by many researchers (see, e.g. [6–8]). It is
also shown in this chapter that EFCMs are an extension of Gauss methods, Radau
IIA methods and TFCMs.

The plan of this chapter is as follows. We first formulate the scheme of EFCMs
in Sect. 3.2. Section3.3 discusses the connections of the novel EFCMs with HB-
VMs, Gauss methods, Radau IIA methods and TFCMs. In Sect. 3.4, we analyse the
properties of EFCMs. Section3.5 is concerned with constructing a practical EFCM
and reporting four numerical experiments to demonstrate the excellent qualitative
behavior of the novel approximation. The last section includes some concluding
comments.

3.2 Formulation of EFCMs

This section presents the formulation of exponential Fourier collocation methods
(EFCMs) for systems of first-order differential equations (3.1). We begin with the
local Fourier expansion.

3.2.1 Local Fourier Expansion

We first restrict the first-order differential equations (3.1) to an interval [0, h] with
any h > 0:

u′(t) + Au(t) = g(t, u(t)), u(0) = u0, t ∈ [0, h]. (3.4)

Consider the shifted Legendre polynomials {P̂j }∞j=0 satisfying

∫ 1

0
P̂i (x)P̂j (x)dx = δi j , deg

(

P̂j
) = j, i, j ≥ 0,

where δi j is the Kronecker symbol.
We then expand the right-hand-side function of (3.4) as follows:

g(ξh, u(ξh)) =
∞
∑

j=0

P̂j (ξ)κ j (h, u), ξ ∈ [0, 1]; κ j (h, u) :=
∫ 1

0
P̂j (τ )g(τh, u(τh))dτ. (3.5)

The system (3.4) now can be rewritten as

u′(ξh) + Au(ξh) =
∞

∑

j=0

P̂j (ξ)κ j (h, u), u(0) = u0. (3.6)
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Its solution is given by the next theorem.

Theorem 3.1 The solution of (3.4) can be expressed by

u(t) = ϕ0(−t A)u0 + t
∞

∑

j=0

I j (t A)κ j (t, u), (3.7)

where t ∈ [0, h] and

I j (t A) :=
∫ 1

0
P̂j (z)e

−(1−z)t Adz = √

2 j + 1
j

∑

k=0

(−1) j+k ( j + k)!
k!( j − k)!ϕk+1(−t A).

(3.8)
The ϕ-functions in (3.8) (see, e.g. [24, 25, 27, 28]) are defined by:

ϕ0(z) = ez, ϕk(z) =
∫ 1

0
e(1−σ)z σ k−1

(k − 1)!dσ, k = 1, 2, . . . .

Proof It follows from the variation-of-constants formula (3.3) that

u(t) = e−t Au0 +
∫ t

0
e−(t−τ)Ag(τ, u(τ ))dτ

= ϕ0(−t A)u0 + t
∫ 1

0
e−(1−z)t Ag(zt, u(zt))dz.

(3.9)

Replacing the function g(zt, u(zt)) under the integral in (3.9) by the expansion (3.5)
yields

u(t) = ϕ0(−t A)u0 + t
∫ 1

0
e−(1−z)t A

∞
∑

j=0

P̂j (z)κ j (t, u)dz

= ϕ0(−t A)u0 + t
∞

∑

j=0

∫ 1

0
P̂j (z)e

−(1−z)t Adzκ j (t, u),

which gives the formula (3.7) by letting I j (t A) = ∫ 1
0 P̂j (z)e−(1−z)t Adz.

It then follows from the definition of shifted Legendre polynomials on the inter-
val [0, 1]:

P̂j (x) = (−1) j
√

2 j + 1
j

∑

k=0

(
j

k

)(
j + k

k

)

(−x)k , j = 0, 1, . . . , x ∈ [0, 1], (3.10)
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that

I j (t A) =
∫ 1

0
P̂j (z)e

−(1−z)t Adz

=
∫ 1

0
(−1) j

√

2 j + 1
j

∑

k=0

(
j

k

)(
j + k

k

)

(−z)ke−(1−z)t Adz

=√

2 j + 1
j

∑

k=0

(−1) j+k

(
j

k

)(
j + k

k

) ∫ 1

0
zke−(1−z)t Adz

=√

2 j + 1
j

∑

k=0

(−1) j+k ( j + k)!
k!( j − k)!ϕk+1(−t A).

The proof is complete. �

3.2.2 Discretisation

The authors in [8] made use of interpolation quadrature formulae to construct a
discretisation for initial value problems. Following [8], two tools are coupled in this
subsection. We first truncate the local Fourier expansion after a finite number of
terms and then compute the coefficients of the expansion by a suitable quadrature
formula.

We now consider truncating the Fourier expansion, a technique which originally
appeared in [8]. This can be achieved by truncating the series (3.7) after n (n ≥ 2)
terms with the stepsize h and V := hA:

ũ(h) = ϕ0(−V )u0 + h
n−1
∑

j=0

I j (V )κ j (h, ũ), (3.11)

which satisfies the following initial value problem:

ũ′(ξh) + Aũ(ξh) =
n−1
∑

j=0

P̂j (ξ)κ j (h, ũ), ũ(0) = u0.

The key challenge in designing practical methods is how to deal with κ j (h, ũ)

effectively. To this end,we introduce a quadrature formula using k abscissae 0 ≤ c1 ≤
. . . ≤ ck ≤ 1 and being exact for polynomials of degree up tom−1. It is required that
m ≥ k in this chapter, and we note that many existing quadrature formulae satisfy
this requirement, such as the well-known Gauss–Legendre quadrature and Radau
quadrature. We thus obtain an approximation of the form
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κ j (h, ũ) ≈
k

∑

l=1

bl P̂j (cl)g(clh, ũ(clh)), j = 0, 1, . . . , n − 1, (3.12)

where bl for l = 1, 2, . . . , k are the quadrature weights. It is noted that since the
number of the integrals κ j (h, ũ) is n, it is assumed that k ≥ n. Thus, we havem ≥ n.

Therefore, the approximation gives

Δ j (h, ũ) := κ j (h, ũ) −
k

∑

l=1

bl P̂j (cl)g(clh, ũ(clh))

=
∫ 1

0
P̂j (τ )g(τh, ũ(τh))dτ −

k
∑

l=1

bl P̂j (cl)g(clh, ũ(clh)).

Since the quadrature is exact for polynomials of degree m − 1, its remainder de-
pends on the mth derivative of the integrand P̂j (τ )g(τh, u(τh)) with respect to τ .
Consequently, we obtain

Δ j (h, ũ) = C
∫ 1

0

dm
(

P̂j (τ )g(τh, ũ(τh))
)

dτm
|τ=ζω(τ)dτ,

where C is a constant, ζ (ζ ∈ [0, 1]) depends on τ , and ω(τ) =
k∏

i=1
(τ − ci ). Taking

account of P̂ (k)
j (τ ) = 0 for k > j , we obtain

Δ j (h, ũ) = C
∫ 1

0
P̂j (ζ )ĝ(m)(ζh)ω(τ)dτhm + Cm

∫ 1

0
P̂ ′
j (ζ )ĝ(m−1)(ζh)ω(τ)dτhm−1

+ · · · + C

(
m

j

) ∫ 1

0
P̂( j)
j (ζ )ĝ(m− j)(ζh)ω(τ)dτhm− j = O(hm− j ),

j = 0, 1, . . . , n − 1,

with the notation ĝ(k)(ζh) = g(k)(ζh, ũ(ζh)). This guarantees that each Δ j (h, ũ)

has good accuracy for any j = 0, 1, . . . , n−1. Choosing k large enough, along with
a suitable choice of cl , bl for l = 1, 2, . . . , k, allows us to approximate the given
integral κ j (h, ũ) to any degree of accuracy.

With (3.11) and (3.12), it is natural to consider the following numerical scheme

v(h) = ϕ0(−V )u0 + h
n−1
∑

j=0

I j (V )

k
∑

l=1

bl P̂j (cl)g(clh, v(clh)),
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which exactly solves the initial value problem as follows:

v′(ξh) = −Av(ξh) +
n−1
∑

j=0

P̂j (ξ)

k
∑

l=1

bl P̂j (cl)g(clh, v(clh)), v(0) = u0.

(3.13)
It follows from (3.13) that v(ci h) for i = 1, 2, . . . , k satisfy the following first-order
differential equations:

v′(cih) + Av(ci h) =
n−1
∑

j=0

P̂j (ci )
k

∑

l=1

bl P̂j (cl)g(clh, v(clh)), v(0) = u0. (3.14)

Let vi = v(ci h). It is clear that (3.14) can be solved by the variation-of-constants
formula (3.3). This gives

vi= ϕ0(−ci V )u0 + ci h
n−1
∑

j=0

I j,ci (V )

k
∑

l=1

bl P̂j (cl)g(clh, vl), i = 1, 2, . . . , k,

where

I j,ci (V ) :=
∫ 1

0
P̂j (ci z)e

−(1−z)ci V dz

=
∫ 1

0
(−1) j

√

2 j + 1
j

∑

k=0

(
j

k

)(
j + k

k

)

(−ci z)
ke−(1−z)ci V dz

= (−1) j
√

2 j + 1
j

∑

k=0

(−ci )
k

(
j

k

)(
j + k

k

) ∫ 1

0
zke−(1−z)ci V dz

= (−1) j
√

2 j + 1
j

∑

k=0

(−ci )
k ( j + k)!
k!( j − k)!ϕk+1(−ci V ).

(3.15)

3.2.3 The Exponential Fourier Collocation Methods

Weare now in a position to present the novel exponential Fourier collocationmethods
for systems of first-order differential equations (3.1).

Definition 3.1 The k-stage exponential Fourier collocationmethodwith an integer n
(denoted by EFCM(k,n)) for integrating systems of first-order differential equations
(3.1) is defined by
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⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

vi = ϕ0(−ci V )u0 + ci h
k

∑

l=1

bl
( n−1

∑

j=0

I j,ci (V )P̂j (cl)
)

g(clh, vl), i = 1, 2, . . . , k,

v(h) = ϕ0(−V )u0 + h
k

∑

l=1

bl
( n−1

∑

j=0

I j (V )P̂j (cl)
)

g(clh, vl),

(3.16)
where h is the stepsize, V := hA, P̂j for j = 0, 1, . . . , n − 1 are defined by (3.10),
and cl , bl for l = 1, 2, . . . , k are the node points and the quadrature weights of a
quadrature formula, respectively. Here, n is an integer which is required to satisfy
the condition: 2 ≤ n ≤ k. I j (V ) and I j,ci (V ) are determined by

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

I j (V ) = √

2 j + 1
j

∑

k=0

(−1) j+k ( j + k)!
k!( j − k)!ϕk+1(−V ),

I j,ci (V ) = (−1) j
√

2 j + 1
j

∑

k=0

(−ci )
k ( j + k)!
k!( j − k)!ϕk+1(−ci V ).

Remark 3.1 Clearly, it can be observed that the EFCM(k,n) defined by (3.16) exactly
integrates the homogeneous linear system u′ + Au = 0. Therefore, it is trivially A-
stable. The EFCM(k,n) (3.16) approximates the solution of (3.1) in the time interval
[0, h]. Obviously, the solution v(h) after one time-step can be considered as the
initial condition for a new initial value problem and u(t) can be approximated in
the next time interval [h, 2h]. In general, the EFCM(k,n) can be extended to the
approximation of the solution in an arbitrary interval [0, Nh], where N is a positive
integer.

Remark 3.2 The novel EFCM(k,n) (3.16) developed here is a kind of exponential
integrator which requires the approximation of products of ϕ-functions with vectors.
It is noted that if A has a simple structure, it is possible to compute the ϕ-functions
in a fast and reliable way. Moveover, many different approaches to evaluating this
action in an efficient way have been proposed in the literature (see, e.g. [1, 2, 4, 22,
23, 27, 35, 36]). Furthermore, all the matrix functions appearing in the EFCM(k,n)
(3.16) only need to be calculated once in the actual implementation for the given
stepsize h. In Sect. 3.5, we will compare our novel methods with some traditional
collocation methods (which do not require the evaluation of matrix functions) by
four experiments. For each problem, we will display the work precision diagram in
which the global error is plotted versus the execution time. The numerical results
given in Sect. 3.5 demonstrate the efficiency of our novel approximation.
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3.3 Connections with Some Existing Methods

Various effective methods have been developed so far for solving first-order differ-
ential equations and this section is devoted to analysing the connections between our
novel EFCMs and some other existingmethods in the literature. It turns out that some
existing traditional methods can be gained by letting A → 0 in the corresponding
EFCMs or by applying EFCMs to special second-order differential equations.

3.3.1 Connections with HBVMs and Gauss Methods

Hamiltonian Boundary Value methods (HBVMs) are an interesting class of integra-
tors, which exactly preserve the energy of polynomial Hamiltonian systems (see, e.g.
[6–8]). We first consider the connection between EFCMs and HBVMs.

It can be observed that from (3.15) that when A → 0, I j (V ) and I j,ci (V ) in (3.16)
become

Ĩ j : = I j (0) =
∫ 1

0
P̂j (z)dz =

{

1, j = 0,

0, j ≥ 1,

and

Ĩ j,ci : = I j,ci (0) =
∫ 1

0
P̂j (ci z)dz.

This can be summed up in the following result.

Theorem 3.2 When A → 0, the EFCM(k,n) defined by (3.16) reduces to

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

vi = u0 + ci h
k

∑

l=1

bl
( n−1

∑

j=0

Ĩ j,ci P̂j (cl)
)

g(clh, vl), i = 1, 2, . . . , k,

v(h) = u0 + h
k

∑

l=1

blg(clh, vl),

(3.17)

which can be rewritten as a k-stage Runge–Kutta method with the following Butcher
tableau

c1
... Ā = (āi j )k×k =

(

b j

n−1∑

l=0
P̂l(c j )

∫ ci
0 P̂l(τ )dτ

)

k×k

ck

b1 · · · bk
(3.18)
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This method is exactly theHamiltonian Boundary ValueMethodHBVM(k,n) by using
the discretisation researched in [6–8] for the first-order initial value problem

u′(t) = g(t, u(t)), u(0) = u0.

Furthermore, it follows from the property of HBVM(k,n) given in [8] that HB-
VM(k,k) reduces to a k-stage Gauss-Legendre collocation method when a Gaussian
distribution of the nodes (c1, . . . , ck) is used. In view of this observation and as
a straightforward consequence of Theorem 3.2, we obtain a connection between
EFCMs and Gauss methods. This result is described below.

Theorem 3.3 Under the condition that cl , bl for l = 1, 2, . . . , k are chosen respec-
tively as the node points and the quadrature weights of a k-point Gauss–Legendre
quadrature over the interval [0, 1], then the EFCM(k,k) defined by (3.16) reduces to
the the corresponding k-stage Gauss method presented in [19] when A → 0.

3.3.2 Connection between EFCMs and Radau IIA Methods

Radau collocation methods are well known (see e.g. [20]). The following theorem
states the connection between EFCMs and Radau IIA methods.

Theorem 3.4 Choose cl , bl for l = 1, 2, . . . , k respectively as the node points and
the weights of the Radau-right quadrature formula. Then the EFCM(k,k) defined by
(3.16) reduces to a k-stage Radau IIA method presented in [20] when A → 0.

Proof It follows from Theorem 3.2 that when A → 0, the EFCM(k,k) defined by
(3.16) reduces to (3.17) with n = k. As is known, the shifted Legendre polynomials
{P̂j }∞j=0 satisfy the following integration formulae (see, e.g. [20])

∫ x

0
P̂0(t)dt = ξ1 P̂1(x) + 1

2
P̂0(x),

∫ x

0
P̂m(t)dt = ξm+1 P̂m+1(x) − ξm P̂m−1(x), m = 1, 2, . . . , k − 2,

∫ x

0
P̂k−1(t)dt = βk P̂k−1(x) − ξk−1 P̂k−2(x),

where

ξm = 1

2
√
4m2 − 1

, βk = 1

4k − 2
.
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These formulae imply

Ā =
⎛

⎜
⎝

∫ c1
0 P̂0(τ )dτ . . .

∫ c1
0 P̂k−1(τ )dτ

...
...

∫ ck
0 P̂0(τ )dτ . . .

∫ ck
0 P̂k−1(τ )dτ

⎞

⎟
⎠

⎛

⎜
⎝

b1 P̂0(c1) . . . bs P̂0(cs)
...

...

b1 P̂k−1(c1) . . . bs P̂k−1(cs)

⎞

⎟
⎠

= WXkQ,

where the matrix W is defined by

ωi j = P̂j−1(ci ), i, j = 1, . . . , k,

and the matrices Xk, Q are determined by

Xk =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1
2 −ξ1
ξ1 0 −ξ2

. . .
. . .

. . .

ξk−2 0 −ξk−1

ξk−1 βk

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, Q =
⎛

⎜
⎝

b1 P̂0(c1) . . . bs P̂0(cs)
...

...

b1 P̂k−1(c1) . . . bs P̂k−1(cs)

⎞

⎟
⎠ .

(3.19)
On noticing the fact that the Radau-right quadrature formula is of order 2k − 1,

we obtain that polynomials P̂m(x)P̂n(x) (m + n ≤ 2k − 2) are integrated exactly by
this quadrature formula, i.e.,

k
∑

i=1

bi P̂m(ci )P̂n(ci ) =
∫ 1

0
P̂m(x)P̂n(x)dx = δmn,

which means WQ = I. Therefore,

Ā = WXkW
−1.

(3.18) now becomes

c1
... Ā = WXkW−1

ck

b1 · · · bk

which is exactly the same as the scheme of Radau IIA method presented in [5] by
using the W-transformation. �
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3.3.3 Connection between EFCMs and TFCMs

A novel type of trigonometric Fourier collocation methods (TFCMs) for second-
order oscillatory differential equations

q ′′(t) + Mq(t) = f (q(t)), q(0) = q0, q ′(0) = q ′
0 (3.20)

has been developed and researched in [40]. These methods can attain arbitrary al-
gebraic order in a very simple way. This is of importance for solving systems of
second-order oscillatory ODEs. This subsection is devoted to clarifying the connec-
tion between EFCMs and TFCMs.

We apply the TFCMs presented in [40] to (3.20) and denote the numerical solution
by (vT , uT )ᵀ. According to the analysis in [40], the numerical solution satisfies the
following differential equation

(

vT (ξh)

uT (ξh)

)′
=

⎛

⎝

uT (ξh)

−MvT (ξh) +
n−1∑

j=0
P̂j (ξ)

k∑

l=1
bl P̂j (cl) f (vT (clh))

⎞

⎠ (3.21)

with the initial value
(

vT (0), uT (0)
)ᵀ = (q0, q

′
0)

ᵀ.

By appending the equation q ′ = p, the system (3.20) can be written as

(

q(t)
p(t)

)′
+

(

0 −I
M 0

) (

q(t)
p(t)

)

=
(

0
f (q(t))

)

,

(

q(0)
p(0)

)

=
(

q0
q ′
0

)

. (3.22)

We apply the EFCM(k,n) defined by (3.16) to the system of first-order differential
equations (3.22) and denote the corresponding numerical solution by (vE , uE )ᵀ. It
follows from the formulation of EFCMs presented in Sect. 3.2 that (vE , uE )ᵀ is the
solution of the system

(

vE (ξh)

uE (ξh)

)′
+

(

0 −I
M 0

) (

vE (ξh)

uE (ξh)

)

=
⎛

⎝

0
n−1∑

j=0
P̂j (ξ)

k∑

l=1
bl P̂j (cl) f (vE (clh))

⎞

⎠

(3.23)
with the initial value

(

vE (0), uE (0)
)ᵀ = (q0, q

′
0)

ᵀ.

Clearly, the system (3.23) as well as the initial condition is exactly the same as
(3.21). Hence, we have the following theorem.

Theorem 3.5 The EFCM(k,n) defined by (3.16) reduces to a trigonometric Fouri-
er collocation method proposed in [40] when it is applied to solve the special
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first-order differential equations (3.22); namely, the second-order oscillatory dif-
ferential equations (3.20).

Remark 3.3 It follows from Theorems 3.2, 3.3, 3.4 and 3.5 that EFCMs are an
effective extension of HBVMs, Gauss methods, Radau IIA methods and TFCMs.
Consequently, EFCMs can be regarded as a generalization of these existing methods
in the literature.

3.4 Properties of EFCMs

This section turns to analysing the properties of EFCMs, including their accuracy in
preserving the Hamiltonian energy and the quadratic invariants once the underlying
problem is aHamiltonian system, their algebraic order and the convergence condition
for fixed-point iteration.

The following result is needed in our analysis, and its proof can be found in [8].

Lemma 3.1 Let f : [0, h] → R
d have j continuous derivatives in the interval

[0, h]. Then, we obtain ∫ 1
0 P̂j (τ ) f (τh)dτ = O(h j ).

As a consequence of this lemma, we have

κ j (h, v) =
∫ 1

0
P̂j (τ )g(τh, v(τh))dτ = O(h j ).

3.4.1 The Hamiltonian Case

Consider the following initial-value Hamiltonian systems

u′(t) = J∇H(u(t)), u(0) = u0, (3.24)

for the Hamiltonian function H(u) and the skew-symmetric matrix J . Under the
condition that

J∇H(u(t)) = g(t, u(t)) − Au(t), (3.25)

the Hamiltonian system (3.24) is identical to first-order initial value problems of the
form (3.1). An important example (see, e.g. [14, 40]) is given by

H(p, q) = 1

2
pᵀ p + 1

2
qᵀMq +U (q),

whereM is a symmetric andpositive semi-definitematrix, andU is a smooth potential
with moderately bounded derivatives. This kind of Hamiltonian system frequently
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arises in applied mathematics, molecular biology, electronics, chemistry, astronomy,
classical mechanics and quantum physics, and can be expressed by the following
differential equation:

(

q
p

)′
+

(

0 −I
M 0

) (

q
p

)

=
(

0
−∇U (q)

)

,

which is exactly a first-order differential system of the form (3.1).
In what follows, we are concerned with the order of preservation for the Hamilto-

nian energywhen EFCMs are applied to solve the Hamiltonian system (3.24)–(3.25).

Theorem 3.6 Let the quadrature formula in (3.16) be exact for polynomials of de-
gree up to m − 1. Then, when EFCM(k,n) is applied to the Hamiltonian system
(3.24)–(3.25), we have

H(v(h)) = H(u0) + O(hr+1) with r = min{m, 2n}.
Proof It follows from (3.13) and (3.25) that

H(v(h)) − H(u0) = h
∫ 1

0
∇H(v(ξh))ᵀv′(ξh)dξ

= h
∫ 1

0
∇H(v(ξh))ᵀ

( n−1
∑

j=0

P̂j (ξ)

k
∑

l=1

bl P̂j (cl )g(clh, v(clh)) − Av(ξh)
)

dξ

= h
∫ 1

0

(

g(v(ξh)) − Av(ξh)
)ᵀ

J
( n−1

∑

j=0

P̂j (ξ)

k
∑

l=1

bl P̂j (cl )g(clh, v(clh)) − Av(ξh)
)

dξ

= h
∫ 1

0

(

g(v(ξh)) − Av(ξh)
)ᵀ

J
(

g(v(ξh)) − Av(ξh)

+
n−1
∑

j=0

P̂j (ξ)

k
∑

l=1

bl P̂j (cl )g(clh, v(clh)) − g(v(ξh))
)

dξ

= h
∫ 1

0

(

g(v(ξh)) − Av(ξh)
)ᵀ

J
(

g(v(ξh)) − Av(ξh)
)

dξ

+ h
∫ 1

0

(

g(v(ξh)) − Av(ξh)
)ᵀ

J
( n−1

∑

j=0

P̂j (ξ)

k
∑

l=1

bl P̂j (cl )g(clh, v(clh)) − g(v(ξh))
)

dξ.

Since J is skew-symmetric, we have

∫ 1

0

(

g(v(ξh)) − Av(ξh)
)ᵀ

J
(

g(v(ξh)) − Av(ξh)
)

dξ = 0.

Hence,
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H(v(h)) − H(u0)

= h
∫ 1

0
∇H(v(ξh))T

( n−1
∑

j=0

P̂j (ξ)

k
∑

l=1

bl P̂j (cl)g(clh, v(clh)) − g(v(ξh))
)

dξ

= h
∫ 1

0
∇H(v(ξh))T

( n−1
∑

j=0

P̂j (ξ)

k
∑

l=1

bl P̂j (cl)g(clh, v(clh)) −
+∞
∑

j=0

P̂j (ξ)κ j (h, v)
)

dξ

= − h
∫ 1

0
∇H(v(ξh))T

( n−1
∑

j=0

P̂j (ξ)Δ j (h, v) +
+∞
∑

j=n

P̂j (ξ)κ j (h, v)
)

dξ

= − h
n−1
∑

j=0

∫ 1

0
∇H(v(ξh))T P̂j (ξ)dξΔ j (h, v) − h

+∞
∑

j=n

∫ 1

0
∇H(v(ξh))T P̂j (ξ)dξκ j (h, v).

From Lemma 3.1, we have

H(v(h)) − H(u0) = −h
n−1
∑

j=0

O(h j × hm− j ) − h
∞
∑

j=n

O(h j × h j ) = O(hm+1) + O(h2n+1),

which shows the result of the theorem. �

3.4.2 The Quadratic Invariants

Quadratic invariants appear often in applications and we thus pay attention to the
quadratic invariants of (3.1) in this subsection. Consider the following quadratic
function

Q(u) = uᵀCu

with a symmetric square matrix C . It is an invariant of (3.1) provided uᵀC(g(t, u)−
Au) = 0 holds.

Theorem 3.7 Let the quadrature formula in (3.16) be exact for polynomials of de-
gree up to m − 1. Then

Q(v(h)) = Q(u0) + O(hr+1) with r = min{m, 2n}.

Proof It follows from the definition of quadratic function Q that

Q(v(h)) − Q(u0)

=
∫ 1

0
dQ(v(ξh)) =

∫ 1

0

dQ(v(ξh))

dξ
dξ = 2h

∫ 1

0
vᵀ(ξh)Cv′(ξh)dξ

= 2h
∫ 1

0
vᵀ(ξh)C

( n−1
∑

j=0

P̂j (ξ)

k
∑

l=1

bl P̂j (cl)g(clh, v(clh)) − Av(ξh)
)

dξ
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= 2h
∫ 1

0
vᵀ(ξh)C

(

g(ξh, v(ξh)) − Av(ξh)

+
n−1
∑

j=0

P̂j (ξ)

k
∑

l=1

bl P̂j (cl)g(clh, v(clh)) − g(ξh, v(ξh))
)

dξ.

Since uᵀC(g(t, u) − Au) = 0, we obtain

Q(v(h)) − Q(u0)

= 2h
∫ 1

0
vᵀ(ξh)C

( n−1
∑

j=0

P̂j (ξ)

k
∑

l=1

bl P̂j (cl)g(clh, v(clh)) − g(ξh, v(ξh))
)

dξ

= − 2h
∫ 1

0
vᵀ(ξh)C

( n−1
∑

j=0

P̂j (ξ)Δ j (h, v) +
+∞
∑

j=n

P̂j (ξ)κ j (h, v)
)

dξ

= − 2h
n−1
∑

j=0

∫ 1

0
vᵀ(ξh)P̂j (ξ)dξCΔ j (h, v) − 2h

+∞
∑

j=n

∫ 1

0
vᵀ(ξh)P̂j (ξ)dξCκ j (h, v)

= − 2h
n−1
∑

j=0

O(h j × hm− j ) − 2h
∞

∑

j=n

O(h j × h j ) = O(hm+1) + O(h2n+1),

which proves the theorem. �

3.4.3 Algebraic Order

Given the importance of different qualitative features, a discussion of the qualitative
theory of the underlying ODEs is required. Therefore, in this subsection, we analyse
the algebraic order of EFCMs in preserving the accuracy of the solution u(t).

To express the dependence of the solutions of

u′(t) = g(t, u(t)) − Au(t)

on the initial values,we denote by u(·, t̃, ũ) the solution satisfying the initial condition
u(t̃, t̃, ũ) = ũ for any given t̃ ∈ [0, h] and set

Φ(s, t̃, ũ) = ∂u(s, t̃, ũ)

∂ ũ
. (3.26)

Recalling the elementary theory of ordinary differential equations, we have the fol-
lowing standard result (see, e.g. [21])
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∂u(s, t̃, ũ)

∂ t̃
= −Φ(s, t̃, ũ)(g(t̃, ũ) − Aũ). (3.27)

The following theorem states the result on the algebraic order of the novel EFCMs.

Theorem 3.8 Let the quadrature formula in (3.16) be exact for polynomials of de-
gree up to m − 1. We then have

u(h) − v(h) = O(hr+1) with r = min{m, 2n},

for the EFCM(k,n) defined by (3.16).

Proof It follows from Lemma 3.1, (3.26) and (3.27) that

u(h) − v(h) = u(h, 0, u0) − u
(

h, h, v(h)
) = −

∫ h

0

du
(

h, τ, v(τ )
)

dτ
dτ

= −
∫ h

0

[ ∂u
(

h, τ, v(τ )
)

∂ t̃
+ ∂u

(

h, τ, v(τ )
)

∂ ũ
v′(τ )

]

dτ

= h
∫ 1

0
Φ

(

h, ξh, v(ξh)
)[

g
(

ξh, v(ξh)
) − Av(ξh) − v′(ξh)

]

dξ

= h
∫ 1

0
Φ

(

h, ξh, v(ξh)
)[

+∞
∑

j=0

P̂j (ξ)κ j (h, v) − Av(ξh)

−
n−1
∑

j=0

P̂j (ξ)

k
∑

l=1

bl P̂j (cl)g(clh, v(clh)) + Av(ξh)
]

dξ

= h
∫ 1

0
Φ

(

h, ξh, v(ξh)
)[

+∞
∑

j=0

P̂j (ξ)κ j (h, v) −
n−1
∑

j=0

P̂j (ξ)

k
∑

l=1

bl P̂j (cl )g(clh, v(clh))
]

dξ

= h
∫ 1

0
Φ

(

h, ξh, v(ξh)
)[

+∞
∑

j=n

P̂j (ξ)κ j (h, v) +
n−1
∑

j=0

P̂j (ξ)Δ j (h, v)
]

dξ

= h
+∞
∑

j=n

∫ 1

0
Φ

(

h, ξh, v(ξh)
)

P̂j (ξ)dξκ j (h, v) + h
n−1
∑

j=0

∫ 1

0
Φ

(

h, ξh, v(ξh)
)

P̂j (ξ)dξΔ j (h, v)

= h
( ∞

∑

j=n

O(h j × h j ) +
n−1
∑

j=0

O(h j × hm− j )
)

= O(h2n+1) + O(hm+1)

= O(hmin{m,2n}+1).

The proof is complete. �

Remark 3.4 This result means that choosing a suitable quadrature formula as well
as a suitable value of n in (3.16) can yield an EFCM of arbitrarily high order. This
manipulation is very simple and convenient, and it opens up a new possibility of
constructing higher–order EFCMs in a simple and routine manner.
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Remark 3.5 It is well known that r th-order numerical methods can preserve the
Hamiltonian energy or a quadratic invariant with at least r th degree of accuracy, but
unfortunately it follows from the analysis of Sects. 3.4.1 and 3.4.2 that our methods
preserve the Hamiltonian energy and quadratic invariants with only r th degree of
accuracy.

3.4.4 Convergence Condition of the Fixed-Point Iteration

It is worth noting that usually the EFCM(k,n) defined by (3.16) constitutes a system
of implicit equations for the determination of vi , and an iterative computation is
required. In this chapter, we only consider using fixed-point iteration in practical
computation. Other iteration methods such as waveform relaxation methods, Krylov
subspace methods and preconditioning can be analysed in a similar way. We present
the following result for the convergence of fixed-point iteration for the EFCM(k,n)
defined by (3.16).

Theorem 3.9 Assume that g satisfies a Lipschitz condition in the variable u, i.e.
there exists a constant L with the property:

‖g(t, u1) − g(t, u2)‖ ≤ L ‖u1 − u2‖ .

If

0 < h <
1

L
Cr2(eω − 1)

ω
max

i, j=1,··· ,k ci |b j |
, (3.28)

then, the fixed-point iteration for the EFCM(k,n) (3.16) is convergent. Here, C and
ω are positive constants independent of A. For a quadrature formula, generally
speaking, not all of the node points ci for i = 1, 2, . . . , k are equal to zero, and this
ensures that max

i, j=1,...,k
ci |b j | 
= 0.

Proof Following Definition 3.1, the first formula of (3.16) can be rewritten as

Q = e−cV u0 + hA(V )g(ch, Q), (3.29)

where c = (c1, c2, . . . , ck)ᵀ, Q = (v1, v2, . . . , vk)ᵀ, A(V ) = (ai j (V ))k×k and
ai j (V ) are defined as

ai j (V ) := cib j

n−1
∑

l=0

Il,ci (V )P̂l(c j ).

It follows from (3.10) that |P̂j | ≤ √
2 j + 1. We then obtain
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∥
∥ai j (V )

∥
∥ ≤ ci |b j |

n−1
∑

l=0

√
2l + 1

∫ 1

0
|P̂l(ci z)|

∥
∥e−(1−z)ci V

∥
∥ dz

≤ ci |b j |
n−1
∑

l=0

(2l + 1)
∫ 1

0

∥
∥e−(1−z)ci V

∥
∥ dz.

Furthermore, we deduce that

∥
∥ai j (V )

∥
∥ ≤ ci |b j |

n−1
∑

l=0

(2l + 1)C
∫ 1

0
eω(1−z)dz = Cci |b j |r2(eω − 1)/ω,

which yields

‖A(V )‖ ≤ Cr2(eω − 1)

ω
max

i, j=1,··· ,k ci |b j |.

Let
ϕ(x) = e−cV u0 + hA(V )g(ch, x).

We then have

‖ϕ(x) − ϕ(y)‖ = ‖hA(V )g(ch, x) − hA(V )g(ch, y)‖ ≤ hL ‖A(V )‖ ‖x − y‖
≤ hL

Cr2(eω − 1)

ω
max

i, j=1,...,k
ci |b j | ‖x − y‖ .

This shows that ϕ(x) is a contraction under the assumption (3.28). The well-
known Contraction Mapping Theorem then ensures the convergence of fixed-point
iteration. �

In what follows, we discuss the convergence of fixed-point iteration for the HB-
VM(k,n) (3.17) for solving (3.1). When the HBVM(k,n) (3.17) is applied to solve

u′(t) = g(t, u(t)) − Au(t), u(0) = u0,

the scheme of HBVM(k,n) becomes
⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

vi = u0 + ci h
k

∑

l=1

bl
( n−1

∑

j=0

Ĩ j,ci P̂j (cl )
)

(g(clh, vl ) − Avl ), i = 1, 2, . . . , k,

v(h) = u0 + h
k

∑

l=1

bl (g(clh, vl ) − Avl ).

(3.30)

The first formula of (3.30) is also implicit and it requires iterative computation as
well. Under the assumption that g satisfies a Lipschitz condition in the variable u, in
order to analyse the convergence of fixed-point iteration for the formula (3.30), we
denote the iterative function by
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ψ(x) = u0 + h Ã(g(ch, x) − Ax),

where Ã = (ãi j )k×k and ãi j = cib j

n−1∑

l=0
Ĩl,ci P̂l(c j ).

We then have

‖ψ(x) − ψ(y)‖ =
∥
∥
∥h Ã(g(ch, x) − Ax) − h Ã(g(ch, y) − Ay)

∥
∥
∥

≤ hL
∥
∥
∥ Ã

∥
∥
∥ ‖x − y‖ + h

∥
∥
∥ Ã

∥
∥
∥ ‖A‖ ‖x − y‖

≤ h(L + ‖A‖) max
i, j=1,...,k

|ãi j | ‖x − y‖ ,

which means that if

0 < h <
1

(L + ‖A‖) max
i, j=1,...,k

|ãi j | ,

then, fixed-point iteration for HBVM(k,n) is convergent.

Remark 3.6 It is very clear that the convergence of HBVM(k,n) when applied to
u′(t) = g(u(t)) − Au(t) depends on ‖A‖ , and the larger ‖A‖ becomes, the smaller
the stepsize required. Whereas, it is of prime importance to note that from (3.28), the
convergence of EFCM(k,n) is completely independent of ‖A‖. This fact implies that
EFCMs have better convergence behaviour than HBVMs, especially when ‖A‖ is
large, such as when the problem (3.1) is a stiff system. This point will be numerically
demonstrated by the experiments carried out in next section. We also note that an
efficient implementation of HBVMs has been considered in [7], and this technique
is suitable for stiff first–order and second–order problems.

3.5 A Practical EFCM and Numerical Experiments

Asan illustrative example ofEFCMs,we choose the 2-pointGauss–Legendre quadra-
ture as the quadrature formula in (3.16), that is exact for all polynomials of degree
≤ 3. This means that k = 2 in the k-point Gauss–Legendre quadrature, and this case

c1 = 3 − √
3

6
, c2 = 3 + √

3

6
,

b1 = 1

2
, b2 = 1

2
.

(3.31)

We next choose n = 2 in (3.16) and denote the corresponding exponential Fourier
collocation method as EFCM(2,2). After some calculations, this method can be
expressed as
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v1 = ϕ0(−c1V )u0 + h

6

(√
3ϕ1(−c1V ) + (3 − 2

√
3)ϕ2(−c1V )

)

g(c1h, v1)

+ 3 − 2
√
3

6
h
(

ϕ1(−c1V ) − ϕ2(−c1V )
)

g(c2h, v2),

v2 = ϕ0(−c2V )u0 + 3 + 2
√
3

6
h
(

ϕ1(−c2V ) − ϕ2(−c2V )
)

g(c1h, v1)

+ h

6

(

− √
3ϕ1(−c2V ) + (3 + 2

√
3)ϕ2(−c2V )

)

g(c2h, v2),

v(h) = ϕ0(−V )u0 + h

2

(

(1 + √
3)ϕ1(−V ) − 2

√
3ϕ2(−V )

)

g(c1h, v1)

+ h

2

(

(1 − √
3)ϕ1(−V ) + 2

√
3ϕ2(−V )

)

g(c2h, v2).

(3.32)

When A → 0, the method EFCM(2,2) reduces to HBVM(2,2) given in [8], which
coincides with the two-stage Gauss method given in [19]. Various examples of E-
FCMs can be obtained by choosing different quadrature formula and different values
of n, and we do not expand on this point in this chapter for brevity.

In order to show the efficiency and robustness of the fourth order method E-
FCM(2,2), the integrators we select for comparison are also of order four, and we
denote them as follows:

• EFCM(2,2): the EFCM(2,2) method of order four derived in this section;
• HBVM(2,2): the Hamiltonian Boundary Value Method of order four in [8] which
coincides with the two-stage Gauss method in [19];

• EPCM5s4: the fourth-order energy-preserving collocationmethod (the case s = 2)
in [17] with the integrals approximated by the Lobatto quadrature of order eight,
which is precisely the “extended Labatto IIIA method of order four” in [29];

• EERK5s4: the explicit five-stage exponential Runge–Kutta method of order four
derived in [25].

It is noted that the first three methods are implicit and we use one fixed-point
iteration in practical computations for showing theworkprecisiondiagram (theglobal
error versus the execution time) as well as energy conservation for a Hamiltonian
system. For each problem,we also present the requisite total numbers of iterations for
implicit methodswhen choosing different error tolerances in the fixed-point iteration.

In all the numerical experiments, the matrix exponential is calculated by the
algorithm given in [1].

Problem 1 We first consider the Hénon-Heiles Model which is created for describ-
ing stellar motion (see, e.g. [9, 19]). The Hamiltonian function of the system is
given by

H(p, q) = 1

2
(p21 + p22) + 1

2
(q2

1 + q2
2 ) + q2

1q2 − 1

3
q3
2 .
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Fig. 3.1 Results for Problem 1. i: The log-log plot of the maximum global error (GE) over the
integration interval against the execution time. ii: The logarithm of the global error of Hamiltonian
GEH = |Hn − H0| against t

This is identical to the following first-order differential equations:

⎛

⎜
⎜
⎝

q1
q2
p1
p2

⎞

⎟
⎟
⎠

′

+

⎛

⎜
⎜
⎝

0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

q1
q2
p1
p2

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

0
0

−2q1q2
−q2

1 + q2
2

⎞

⎟
⎟
⎠

.

The initial values are chosen as

(

q1(0), q2(0), p1(0), p2(0)
)ᵀ =

(
√

11

96
, 0, 0,

1

4

)ᵀ
.

It is noted that we use the result of the standard ODE45 in MATLAB as the true
solution for this problem and the next problem. We first solve the problem on the
interval [0, 1000] with different stepsizes h = 1/2i for i = 2, 3, 4, 5. The work-
precision diagram is presented in Fig. 3.1i. Then, we integrate this problem with the
stepsize h = 1.5 on the interval [0, 3000]. See Fig. 3.1ii for the energy conservation
for different methods. We also solve the problem on [0, 10] with h = 0.01 by the
three implicit methods and display the total numbers of iterations in Table3.1 for
different error tolerances (tol) chosen in the fixed-point iteration.

Problem 2 The Fermi–Pasta–Ulam problem is an important model for simulations
in statisticalmechanicswhich is considered in [14, 18, 19, 43, 47]. It is aHamiltonian
system with the Hamiltonian
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Table 3.1 Results for Problem 1. The total numbers of iterations for different error tolerances (tol)

Methods tol = 1.0e − 006 tol = 1.0e − 008 tol = 1.0e − 010 tol = 1.0e − 012

EFCM(2,2) 2000 2000 2000 3000

HBVM(2,2) 2000 3000 3769 4000

EPCM5s4 2000 3000 4000 4999

H(x, y) = 1

2

2m∑

i=1
y2i + ω2

2

m∑

i=1
x2m+i + 1

4

[

(x1 − xm+1)
4

+
m−1∑

i=1
(xi+1 − xm+i−1 − xi − xm+i )

4 + (xm + x2m)4
]

.

This leads to

(

x
y

)′
+

(

02m×2m −I2m
M 02m×2m

) (

x
y

)

=
(

0
−∇U (x)

)

, t ∈ [0, tend], (3.33)

where

M =
(

0m×m 0m×m

0m×m ω2 Im×m

)

,

U (x) = 1

4

[

(x1 − xm+1)
4 +

m−1∑

i=1
(xi+1 − xm+i−1 − xi − xm+i )

4 + (xm + x2m)4
]

.

We choose

m = 3, ω = 50, x1(0) = 1, y1(0) = 1, x4(0) = 1

ω
, y4(0) = 1,

and choose zero for the remaining initial values. The system is integrated on the
interval [0, 10] with the stepsizes h = 1/2k, k = 3, 4, 5, 6. We plot the work-
precision diagram in Fig. 3.2i. Then, we solve this problem on the interval [0, 1000]
with the stepsize h = 1/10 and present the energy conservation in Fig. 3.2ii.Here, it is
noted that we do not plot some points in Fig. 3.2 when the errors of the corresponding
numerical results are too large. Similar situations occur in the next two problems.
Furthermore, we solve the problem on [0, 10]with h = 0.01 to show the convergence
rate of iterations for the three implicit methods. Table3.2 lists the total numbers of
iterations for different error tolerances.

Problem 3 Consider the semilinear parabolic problem (this problem has been con-
sidered in [25])



78 3 Exponential Fourier Collocation Methods for First-Order Differential Equations

1.5 2 2.5 3
−5

−4

−3

−2

−1

0

log
10

(CPU time)

lo
g

1
0
(G

E
)

Problem 2: the work−precision diagram

 

 

EFCM(2,2)
HBVM(2,2)
EPCM5s4
EERK5s4

0 500 1000
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

t
lo

g
1
0
(G

E
H

)

Problem 2: energy conservation

 

 

EFCM(2,2)
HBVM(2,2)
EPCM5s4
EERK5s4

)ii()i(

Fig. 3.2 Results for Problem 2. i: The log-log plot of the maximum global error (GE) over the
integration interval against the execution time. ii: The logarithm of the global error of Hamiltonian
GEH = |Hn − H0| against t

Table 3.2 Results for Problem 2. The total numbers of iterations for different error tolerances (tol)

Methods tol = 1.0e − 006 tol = 1.0e − 008 tol = 1.0e − 010 tol = 1.0e − 012

EFCM(2,2) 2000 2080 2998 3027

HBVM(2,2) 6801 9291 10980 13912

EPCM5s4 9937 11925 14844 16945

∂u

∂t
(x, t) = ∂2u

∂x2
(x, t) + 1

1 + u(x, t)2
+ Φ(x, t)

for x ∈ [0, 1] and t ∈ [0, 1], subject to homogeneous Dirichlet boundary conditions.
The source function Φ(x, t) is chosen in such a way that the exact solution of the
problem is u(x, t) = x(1 − x)et .

We discretise this problem in space by using second-order symmetric differences
with 1000 grid points. The problem is solved on the interval [0, 1] with different
stepsizes h = 1/2i for i = 2, 3, 4, 5. The work-precision diagram is presented in
Fig. 3.3. Then, the problem is solved on [0, 1] with h = 1

10 to show the convergence
rate of iterations. See Table3.3 for the total numbers of iterations for different error
tolerances.

Problem 4 Consider a stiff partial differential equation: the Allen–Cahn equation.
The Allen–Cahn equation (see, e.g. [15, 32]) is a reaction-diffusion equation of
mathematical physics, given by
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Fig. 3.3 Results for Problem3. The log-log plot of the maximum global error (GE) over the
integration interval against the execution time

Table 3.3 Results for Problem 3. The total numbers of iterations for different error tolerances (tol)

Methods tol = 1.0e − 006 tol = 1.0e − 008 tol = 1.0e − 010 tol = 1.0e − 012

EFCM(2,2) 40 50 60 73

HBVM(2,2) 86 86 86 86

EPCM5s4 87 87 87 87

ut − εuxx = u − u3, x ∈ [−1, 1],

with ε = 0.01 and initial conditions

u(x, 0) = 0.53x + 0.47 sin(−1.5πx), u(−1, t) = −1, u(1, t) = 1.

We use a 30-point Chebyshev spectral method which yields a system of ordinary
differential equations

Ut − AU = U −U 3.

Weapply theMATLAB function cheb from [38] for the grid generation and obtain the
differentiation matrix A. It is noted that the differentiation matrix A in this example
is full.

We first solve this problem on the interval [0, 70] with different stepsizes h =
1

100 ,
1

200 ,
1

500 . The time-evolution of the Allen-Cahn equation for different methods
is presented in Figs. 3.4 and 3.5. It is noted that the numerical results of HBVM(2,2)
and EPCM5s4 are too large for some stepsizes and thus there is no graph for this
case, which means that these methods cannot provide a satisfactory simulation for
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Fig. 3.4 Time evolution for Allen-Cahn equation. The x axis runs from x = −1 to x = 1 and the
t-axis runs from t = 0 to t = 70

Table 3.4 Results for Problem 4. The total numbers of iterations for different error tolerances (tol)

Methods tol = 1.0e − 006 tol = 1.0e − 008 tol = 1.0e − 010 tol = 1.0e − 012

EFCM(2,2) 400 435 608 800

HBVM(2,2) 526 793 1095 1644

EPCM5s4 886 1449 2826 4346

this problem. It can be observed from Fig. 3.5 that EERK5s4 does not produce a
satisfactory approximation uniformly, and when the stepsize is decreased, it gives
a good approximation. However, our method EFCM(2,2) produces a consistently
good approximation no matter which stepsize is chosen. Then, the problem is solved
in [0, 100] with h = 0.16/2i for i = 0, . . . , 3. For this problem, we use the result of
the standard ODE15s in MATLAB as the true solution. The work-precision diagram
is presented in Fig. 3.6. Finally, we solve the problem on [0, 1] with h = 1

200 to show
the convergence rate of iterations. See Table3.4 for the total numbers of iterations
for different error tolerances.
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Fig. 3.5 Time evolution for Allen-Cahn equation. The x axis runs from x = −1 to x = 1 and the
t-axis runs from t = 0 to t = 70
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Fig. 3.6 Results for Problem 4. The log-log plot of the global error (GE) over the integration
interval against the execution time
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It can be clearly observed from the results that the novel method EFCM(2,2)
provides a considerably more accurate numerical solution than other methods and p-
reserves well the Hamiltonian energy when solving Hamiltonian systems. Moreover,
ourmethodEFCM(2,2) requires less fixed-point iterations than bothHBVM(2,2) and
EPCM5s4, which is important in long-term computations.

Problem 4 is an important example of the numerical solution of stiff PDEs, which
shows that implicit exponential-type integrators are worth studying further.

3.6 Conclusions and Discussions

In this chapter, we formulated and analysed the novel methods EFCMs for solving
systems of first-order differential equations. The novel EFCMs are an efficient class
of exponential integrators, and their construction takes full advantage of the variation-
of-constants formula, local Fourier expansion and collocation.We discussed the con-
nections with HBVMs, Gauss methods, Radau IIA methods and TFCMs. It turns out
that the first three traditional methods can be obtained by letting A → 0 in the corre-
sponding EFCMs, and applying EFCMs to the second-order oscillatory differential
equation (3.20) yields TFCMs. The properties of EFCMs were also analysed, and it
was shown that the new EFCMs can reach arbitrarily high order in a very convenient
and simple way. Practical versions of EFCMs were constructed in this chapter. The
numerical experiments were carried out and the results affirmatively demonstrate
that the novel EFCMs have excellent numerical behaviour in comparison with some
existing effective methods in the scientific literature.

Undoubtedly, this is a preliminary research on EFCMs for first-order ordinary
differential equations and there are still some issues which could be further consid-
ered:

• The error bounds and convergence properties of EFCMs for linear and semilinear
problems should be further discussed.

• For the EFCM(k,n) defined by (3.16), it is assumed that k ≥ n in this chapter.
EFCMs with k < n can be discussed, and this case maybe not affect the compu-
tational cost associated with the implementation of the methods for some special
systems. Some simplifications may be made.

• We only consider fixed-point iteration for the EFCMs in this chapter. Other iter-
ation methods such as waveform relaxation methods, Krylov subspace methods
and preconditioning, as well as their actual implementation for EFCMs, can be
analysed.

• The shifted Legendre polynomials are chosen as an orthonormal basis to give
the Fourier expansion of the function g(t, u(t)). It can be observed that a different
choice of orthonormal basis wouldmodify the arguments presented in this chapter.
The numerical methods, as well as the corresponding analysis are then modified
accordingly. Different choices of the orthonormal basis may be considered.
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• Another issue for future exploration is the application of this methodology to other
differential equations such as Schrödinger equations and other stiff PDEs.

Symplecticity is an important property, once the underlying system is a Hamil-
tonian system. Symplectic exponential Runge–Kutta methods for solving nonlinear
Hamiltonian systems will be considered in next chapter.

The material of this chapter is based on the work by Wang et al. [45].
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Chapter 4
Symplectic Exponential Runge–Kutta
Methods for Solving Nonlinear
Hamiltonian Systems

Symplecticity is an important property for exponential Runge–Kutta (ERK)methods
when the underlying problem y′(t) = My(t) + f (y(t)) is a Hamiltonian system.
The main theme of this chapter is to present symplectic exponential Runge–Kutta
methods. Using the fundamental analysis of geometric integrators, we first derive
and analyse the symplectic conditions for ERKmethods. These conditions reduce to
the conventional ones when M → 0. Furthermore, revised stiff order conditions are
proposed and investigated in detail. This chapter is also accompanied by numerical
results that demonstrate the potential of the symplectic ERK methods.

4.1 Introduction

The purpose of this chapter is to explore the efficient computation of initial value
problems expressed in the autonomous form

{
y′(t) = My(t) + f (y(t)), t ∈ [t0, T ],
y(t0) = y0,

(4.1)

where thematrix (−M) is symmetric positive definite or skew-Hermitian with eigen-
values of large modulus. Problems of the form (4.1) arise in a wide range of practical
problems, such as fluidmechanics, quantummechanics, electrodynamics, optics, and
water waves. Among them, one typical problem originating from the mixed initial-
boundary value problems of evolution PDEs, can be written in an abstract form as
follows: ⎧⎪⎪⎨

⎪⎪⎩
∂u(x, t)

∂t
= L u + N (u), x ∈ D, t ∈ [t0, T ],

B(x)u(x, t) = 0, x ∈ ∂D, t > t0,

u(x, 0) = g(x), x ∈ D,

(4.2)
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where D is a spatial domain with boundary ∂D in R
d , L and N represent respec-

tively linear and nonlinear operators, and B(x) denotes the boundary operator. Under
appropriate discretisation by finite difference approximations, spectral methods or
finite elements methods, the problem (4.2) can be converted into (4.1). Stiff problems
also yield examples of this type.

It is always challenging to effectively solve the problem (4.1) numerically, since
the stiffness occurs due to the linear term My. In light of this point, exponential
Runge–Kutta (ERK)methodswere proposed for solving this type of problems instead
of classical Runge–Kutta (RK) methods. ERK methods have been studied by many
authors (see, e.g. [1, 2, 5, 6, 10–13, 15, 17, 18, 20]), and detailed analysis such
as the convergence and the construction of these methods can be found therein. It
is noted that the extended Runge–Kutta–Nyström (ERKN) methods (see, e.g. [29–
32]) can also be classified into the category of exponential integrators, since they
are especially designed for efficiently solving second order oscillatory or highly
oscillatory problems.

It is well known that both stiff problems and Hamiltonian systems are of prime
importance in applications. Much effort has been made in developing a wide variety
of approaches to solving each of them. However, it is very clear that problem (4.1)
can become identical to a Hamiltonian system if

f (y(t)) = J−1∇U (y(t))

and
M = J−1Q,

for the skew-symmetric matrix

J =
(

0 I
−I 0

)
,

where U (y) is a smooth potential function, Q is a symmetric matrix, and I is the
identity matrix. This observation motivates the main theme in this chapter, because
(4.1) may be a Hamiltonian system. As is known, in the case of Hamiltonian systems,
symplectic ERK methods are strongly recommended to preserve the symplecticity
of the original problem, since symplectic methods provide long time energy preser-
vation and stability, based on backward error analysis for symplectic methods when
applied to Hamiltonian systems [7, 8]. On account of this point, we make a fur-
ther study on symplectic conditions for ERKmethods. Moreover, using the obtained
symplectic conditions, we also derive and analyse a class of ERK methods with the
important structure-preserving property.

We also note that an important issue for the study of ERK methods is the so-
called stiff order. Unfortunately, however, as claimed by Berland et al. in [1], the stiff
order conditions are rather restrictive in practice, e.g., the fifth-order ERK method
recently constructed by Luan and Ostermann [20] has eight stages provided the full
stiff order conditions are considered. Therefore, in this chapter, we deal with the stiff
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order conditions in a weak form, under which the revised stiff order conditions can
be naturally derived from the classical (nonstiff) ones. This process is reasonable
based on the fact that no order reduction has been observed, as shown in [15], where
ERK methods only need classical (nonstiff) order.

The plan of this chapter is as follows. In Sect. 4.2, we investigate and present suffi-
cient conditions for symplectic ERKmethods. In Sect. 4.3, the revised stiff order con-
ditions are investigated and a class of special and important ERK methods are con-
sidered, which share the same structure-preserving property as their corresponding
RK methods (those corresponding to the underlying ERK methods when M → 0).
Section4.4 is concerned with numerical results to illustrate the efficiency of the sym-
plectic ERKmethods. The last section is concernedwith conclusions and discussions.

4.2 Symplectic Conditions for ERK Methods

In the study of structure-preserving algorithms, it is an important principle that the
construction of numerical schemes for the initial value problem (4.1) should incor-
porate the structure of the original continuous system in an appropriate way. Taking
this point into account, instead of (4.1), we directly consider the following variation-
of-constants formula (or the Volterra integral equation) corresponding to (4.1):

y(t) = e(t−t0)M y0 +
∫ t

t0

e(t−ξ)M f (y(ξ))dξ. (4.3)

It follows from (4.3) that, for any t, μ, h ∈ R with t, t + μh ∈ [t0, T ], the solution
to (4.1) satisfies the following integral equation:

y(t + μh) = eμhM y0 + h
∫ μ

0
e(μ−z)hM f (y(t + hz))dz, (4.4)

which clearly shows the structure of the internal stages and update of an RK-type
integrator for solving (4.1). In fact, the case of 0 < μ < 1 in (4.4) gives the structure
of the internal stages, andμ = 1 in (4.4) presents the structure of the updates of ERK
methods. The integral in (4.4) will be approximated by a suitable quadrature formula
once the numerical simulation is required for the underlying problem. From this point
of view, therefore, ERK methods are generated quite naturally and fundamentally.

It is now easy to formulate ERK methods from the integral equation (4.4). An
s-stage ERK method, especially for the stiff problem (4.1), can be written as (see,
e.g. [12]) ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Yi = eci hM y0 + h
s∑

j=1

āi j (hM) f (Y j ), i = 1, . . . , s,

y1 = ehM y0 + h
s∑

i=1

b̄i (hM) f (Yi ),

(4.5)
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where āi j (hM) and b̄i (hM) are matrix-valued functions of hM . It is worth mention-
ing that an ERK method (4.5) reduces to a classical RK method if M → 0. In this
sense, the latter is called the RK method corresponding to the ERK method (4.5) in
this chapter.

It is very clear that (4.1) becomes a Hamiltonian system if f (y(t)) = J−1∇
U (y(t)) and M = J−1Q, where U (y(t)) is a smooth potential function and Q is
a symmetric matrix. With this premise, in the remainder of this chapter we will
consider the following Hamiltonian system

{
y′(t) = J−1Qy(t) + J−1∇U (y(t)), t ∈ [t0, T ],
y(t0) = y0.

(4.6)

Hence, the existence of symplectic ERKmethods is of great importance for (4.6), but
has not received much attention yet in the literature. Consequently, in what follows,
we will present and prove the symplectic conditions for ERK methods rigorously.
The construction of symplectic ERK methods for solving (4.6) will be analysed in
detail in the next section, which definitely confirms the existence of symplectic ERK
methods.

Theorem 4.1 If the coefficients of an s-stage ERK method satisfy the following
conditions:{

b̄ᵀ
i J SS

−1
i = S−ᵀ

i Sᵀ J b̄i = γ J, γ ∈ R, i = 1, . . . , s,

b̄ᵀ
i J b̄ j = b̄ᵀ

i J SS
−1
i āi j + āᵀ

j i S
−ᵀ
j Sᵀ J b̄ j , i, j = 1, . . . , s,

(4.7)

where S = ehM and Si = eci hM for i = 1, . . . , s, then the ERK method is symplectic.
Here, γ is an arbitrary real number (independent of i).

Proof We first denote

Di = ∂ f (Yi )

∂y
, Xi = ∂Yi

∂y0
,

for i = 1, . . . , s. If f = J−1∇U (y),M = J−1Q in (4.1), then (4.1) is a Hamiltonian
system.Thus,M is the infinitesimal symplecticmatrix. This leads to the symplecticity
of S and Si as they are exponential forms of λM for some λ ∈ R. Differentiating the
scheme (4.5) yields

Xi = ∂Yi
∂y0

= Si + h
s∑

j=1

āi j D j X j , (4.8)

for i = 1, . . . , s, and

∂y1
∂y0

= S + h
s∑

i=1

b̄i Di Xi . (4.9)
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We then have

( ∂y1
∂y0

)ᵀ
J
( ∂y1

∂y0

)
= Sᵀ J S + h

s∑
i=1

(
b̄i Di Xi

)ᵀ
J S

+ h
s∑

i=1

Sᵀ J b̄i Di Xi + h2
( s∑
i=1

b̄i Di Xi
)ᵀ

J
( s∑
i=1

b̄i Di Xi
)

= J + h
s∑

i=1

(
b̄i Di Xi

)ᵀ
J S + h

s∑
i=1

Sᵀ J b̄i Di Xi + h2
s∑

i=1

s∑
j=1

(
b̄i Di Xi

)ᵀ
J
(
b̄ j D j X j

)
. (4.10)

Using Eq. (4.8), we obtain

(
b̄i Di Xi

)ᵀ
J SS−1

i Xi = (
b̄i Di Xi

)ᵀ
J S + h

s∑
j=1

(
b̄i Di Xi

)ᵀ
J SS−1

i āi j D j X j , (4.11)

(Xi )
ᵀS−ᵀ

i Sᵀ J b̄i Di Xi = Sᵀ J b̄i Di Xi + h
s∑

j=1

(
āi j D j X j

)ᵀ
S−ᵀ
i Sᵀ J b̄i Di Xi , (4.12)

which respectively give

(
b̄i Di Xi

)ᵀ
J S = (

b̄i Di Xi
)ᵀ

J SS−1
i Xi − h

s∑
j=1

(
b̄i Di Xi

)ᵀ
J SS−1

i āi j D j X j , (4.13)

Sᵀ J b̄i Di Xi = (Xi )
ᵀS−ᵀ

i Sᵀ J b̄i Di Xi − h
s∑

j=1

(
āi j D j X j

)ᵀ
S−ᵀ
i Sᵀ J b̄i Di Xi . (4.14)

Substituting the new expressions of
(
b̄i Di Xi

)ᵀ
J S and Sᵀ J b̄i Di Xi in Eqs. (4.13) and

(4.14) into (4.10) yields

( ∂y1
∂y0

)ᵀ
J
( ∂y1

∂y0

)
= J + h

s∑
i=1

(
Xᵀ
i D

ᵀ
i b̄

ᵀ
i J SS

−1
i Xi + Xᵀ

i S
−ᵀ
i Sᵀ J b̄i Di Xi

)

− h2
s∑

i=1

s∑
j=1

(
Xᵀ
i D

ᵀ
i b̄

ᵀ
i J SS

−1
i āi j D j X j

)
− h2

s∑
i=1

s∑
j=1

(
Xᵀ

j D
ᵀ
j ā

ᵀ
i j S

−ᵀ
i Sᵀ J b̄i Di Xi

)

+ h2
s∑

i=1

s∑
j=1

Xᵀ
i D

ᵀ
i b̄

ᵀ
i J b̄ j D j X j = J + h

s∑
i=1

Xᵀ
i

(
Dᵀ
i b̄

ᵀ
i J SS

−1
i + S−ᵀ

i Sᵀ J b̄i Di

)
Xi

+ h2
s∑

i=1

s∑
j=1

Xᵀ
i D

ᵀ
i

(
b̄ᵀ
i J b̄ j − b̄ᵀ

i J SS
−1
i āi j − āᵀ

j i S
−ᵀ
j Sᵀ J b̄ j

)
Dj X j . (4.15)

Since f = J−1∇U (y) and Di = ∂ f (Yi )

∂y
, a direct calculation gives

J Di + Dᵀ
i J = 0, i = 1, . . . , s,
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on noticing that the Hessian
∂2U

∂y2
of U at Yi is symmetric for i = 1, . . . , s. It then

follows from the conditions (4.7) that

(∂y1
∂y0

)ᵀ
J
(∂y1
∂y0

)
= J.

Therefore, the method with coefficients satisfying (4.7) is symplectic. �

Remark 4.1 Here, Theorem 4.1 actually provides a class of sufficient conditions
for symplectic ERK methods. Moreover, it can be easily verified that the proposed
conditions will reduce to the classical symplectic conditions for RK methods when
M → 0. The details are analysed as follows. When M → 0, the matrices S = ehM

and Si = eci hM for i = 1, . . . , s become identity matrices, and āi j , b̄i for i, j =
1, . . . , s are scalars (more precisely, they are products of the scalars and the identity
matrix). In this sense, the first equation of (4.7) holds automatically. The second one
is then identical to

b̄i b̄ j J = b̄i āi j J + ā j i b̄ j J.

Hence
b̄i b̄ j = b̄i āi j + b̄ j ā j i ,

which is exactly the classical symplectic conditions of RK methods [7, 8, 22].

4.3 Symplectic ERK Methods

The direct construction of symplectic ERK methods based on the order conditions
accompanying the symplectic conditions is always of high complexity. In spite of
this, we make an effort to find a class of ERK methods with the important structure-
preserving property. To achieve this goal, the “generalized Runge–Kutta methods”,
proposed in [17], are helpful and we are hopeful of obtaining some symplectic ERK
methods. We first introduce the following theorem, which can be found in [1, 17].

Theorem 4.2 If c = (c1, . . . , cs)ᵀ, b = (b1, . . . , bs)ᵀ and A = (ai, j )s×s are coeffi-
cients of an s-stage RK method of order p, then the ERKmethod with the same nodes
c, whose coefficients are defined by

āi j = ai j e
(ci−c j )hM , b̄i = bie

(1−ci )hM , i, j = 1, . . . , s, (4.16)

is also of order p when applied to the stiff problem (4.1).

The mapping (4.16) actually gives an effective approach for constructing ERK
methods based on classical RKmethods. It is rather attractive since RKmethods have
already been well developed in the literature. It is noted that the order is obtained
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in the sense of the classical (nonstiff) order. However, we will show below that the
classical (nonstiff) order conditions are sufficient for the convergence order provided
a class of modified stiff order conditions is admitted.

As claimed by Berland et al. [1], the stiff order conditions are rather restrictive.
Here, we reconsider the stiff order conditions in a revised version, which does not
affect the convergence order of the ERK methods. In fact, the stiff order conditions
are derived from the estimation of the global error bound (see [10] for details). Using
the explicit form of (4.24) in [10], the expression of the global errors en for ERK
methods (4.5) can be written as

en+1 =ehMen + hN (en)en − h2ψ2(hM) f ′(tn)

− h3ψ3(hM) f ′′(tn) − h3
s∑

i=1

b̄i (hM)Jnψ2,i (hM) f ′(tn)

− h4ψ4(hM) f ′′′(tn) − h4
s∑

i=1

b̄i (hM)Jnψ3,i (hM) f ′′(tn)

− h4
s∑

i=1

b̄i (hM)Jn

s∑
j=1

āi j Jnψ2, j (hM) f ′(tn)

− h4
s∑

i=1

b̄i (hM)ci Knψ2, j (hM) f ′(tn) + h5Rn,

(4.17)

where Jn and Kn denote arbitrary squarematrices,ψi (hM) andψi, j (hM) arematrix-
valued functions of hM respectively defined by

ψi (hM) = ϕi (hM) −
s∑

k=1

b̄k(hM)
ci−1
k

(i − 1)! , (4.18)

ψ j,i (hM) = ϕ j (ci hM)c j
i −

s∑
k=1

āik(hM)
c j−1
k

( j − 1)! , (4.19)

and ϕk(z) is defined by

ϕk(z) =
∫ 1

0
e(1−θ)z θ k−1

(k − 1)!dθ, k ≥ 1, (4.20)

which has the recurrence relation

ϕk+1(z) = ϕk(z) − ϕk(0)

z
, ϕ0(z) = ez . (4.21)

By setting some terms in (4.17) as zero, the stiff order conditions can be derived
accordingly, just as the authors did in [10]. However, this results in restrictive
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algebraic conditions which are very difficult to satisfy in practice. Fortunately, a
careful observation from (4.17) can help us deal with the stiff order in a modified
version, in which the stiff order conditions are approximated satisfactorily by the
required order of the underlying integrator instead of the stiff order conditions. In
light of this approach, the revised stiff order conditions up to order four are obtained
and listed in Table 4.1. It is quite reasonable in applications to admit the new revised
stiff order conditions which can be thought of an extension of the conventional ones.
With the revised stiff order conditions, (4.17) can be simplified as

en+1 = ehMen + hN (en)en + h5R̃n, (4.22)

which has no obvious reduction effect on the convergence order. This approach also
can be found in determining the order conditions for ERKN methods [30, 32].

The most important advantage of admitting the revised stiff order conditions is
that these conditions can be naturally deduced from the classical order conditions.
Here, we give an example to show how to achieve the fifth condition in Table 4.1,
based on the fourth (classical) order conditions. For convenience,we formally express
āi j (hM) and b̄i (hM) as

āi j (hM) =
∞∑
k=0

ā(k)
i j · (hM)k , b̄i (hM) =

∞∑
k=0

b̄(k)
i · (hM)k , i, j = 1, . . . , s, (4.23)

where the coefficients ā(k)
i j and b̄(k)

i are real numbers. Moreover, it can be derived
from the recurrence relation (4.21) that

ϕk(V ) =
∞∑
j=0

V j

( j + k)! , (4.24)

for any matrix V and k ≥ 0. Hence, taking (4.19), (4.23) and (4.24) into account,
we have

s∑
i=0

b̄i (hM)Jnψ2,i (hM) =
∞∑

μ=0

μ∑
ν=0

s∑
i=1

b̄(ν)
i

⎛
⎝ c2+μ−ν

i
(2 + μ − ν)! −

s∑
k=1

ā(μ−ν)
ik ck

⎞
⎠ · hμ(Mν JnM

μ−ν ). (4.25)

The fifth condition
∑s

i=0 b̄i (hM)Jnψ2,i (hM) = O(h2) in Table 4.1 then becomes
identical to

s∑
i=1

b̄(0)
i

(
c2i
2! −

s∑
k=1

ā(0)
ik ck

)
= 0, (4.26)
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Table 4.1 The revised stiff order conditions up to order four

No. Order Order conditions

1 1 ψ1(hM) = O(h4)

2 2 ψ2(hM) = O(h3)

3 2 ψ1,i (hM) = O(h3)

4 3 ψ3(hM) = O(h2)

5 3
∑s

i=0 b̄i (hM)Jnψ2,i (hM) = O(h2)

6 4 ψ4(hM) = O(h)

7 4
∑s

i=1 b̄i (hM)Jnψ3,i (hM) = O(h)

8 4
∑s

i=1 b̄i (hM)Jn
∑s

j=1 āi j Jnψ2, j (hM) = O(h)

9 4
∑s

i=1 b̄i (hM)ci Knψ2, j (hM) = O(h)

1∑
ν=0

s∑
i=1

b̄(ν)
i

⎛
⎝ c3−ν

i
(3 − ν)! −

s∑
k=1

ā(1−ν)
ik ck

⎞
⎠ =

s∑
i=1

b̄(0)
i

⎛
⎝ c3i

3! −
s∑

k=1

ā(1)
ik ck

⎞
⎠

+ b̄(1)
i

⎛
⎝ c2i

2! −
s∑

k=1

ā(0)
ik ck

⎞
⎠ = 0. (4.27)

In can be easily verified that the two Eqs. (4.26) and (4.27) are satisfied, based on the
following conditions of order four [1, 10]:

s∑
i=1

b̄(0)
i c2i = 1

3
,

s∑
i=1

s∑
k=1

b̄(0)
i ā(0)

ik ck = 1

6
,

s∑
i=1

b̄(0)
i c3i = 1

4
,

s∑
i=1

s∑
k=1

b̄(0)
i ā(1)

ik ck = 1

24
,

s∑
i=1

b̄(1)
i c2i = 1

12
,

s∑
i=1

s∑
k=1

b̄(1)
i ā(0)

ik ck = 1

24
.

The other conditions in Table 4.1 can be verified in a similar way and the details are
omitted here.

The discussions about the stiff order conditions is not pursued further here, since
we are mainly devoted to investigating the symplectic conditions for ERK meth-
ods, and developing symplectic ERK integrators in this chapter. In the sequel,
we will denote the coefficients of classical RK methods by c = (c1, . . . , cs)ᵀ,
b = (b1, . . . , bs)ᵀ and A = (ai j )s×s for convenience. The following theorem states
the main result of this chapter.

Theorem 4.3 If an s-stage RK method is symplectic, then the ERK method yielded
by (4.16) is also symplectic.
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Proof Inserting (4.16) into each term in (4.7) yields⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

b̄ᵀ
i J SS

−1
i = (

bi e
(1−ci )hM

)ᵀ
J
(
e(1−ci )hM

)
,

S−ᵀ
i Sᵀ J b̄i = (

e(1−ci )hM
)ᵀ

J
(
bi e

(1−ci )hM
)
,

b̄ᵀ
i J b̄ j = (

bi e
(1−ci )hM

)ᵀ
J
(
b j e

(1−c j )hM
)
,

b̄ᵀ
i J SS

−1
i āi j + āᵀ

j i S
−ᵀ
j Sᵀ J b̄ j = (

bi e
(1−ci )hM

)ᵀ
J
(
e(1−ci )hM

)(
ai j e

(ci−c j )hM
)

+ (
a ji e

(c j−ci )hM
)ᵀ(

e(1−c j )hM
)ᵀ

J
(
b j e

(1−c j )hM
)
.

(4.28)

Noting that the following identity holds

Pᵀ J P = J, (4.29)

provided P is symplectic, and that eβhM is symplectic for any real β and infinitesimal
symplectic matrix M , it follows from (4.28) that⎧⎪⎪⎨
⎪⎪⎩
b̄ᵀ
i J SS

−1
i = S−ᵀ

i Sᵀ J b̄i = bi
(
e(1−ci )hM

)ᵀ
J
(
e(1−ci )hM

) = bi J,

b̄ᵀ
i J b̄ j = (

bi e
(1−ci )hM

)ᵀ
J
(
b j e

(1−c j )hM
) = bi b j

(
e−ci hM

)ᵀ
J
(
e−c j hM

) = bi b j J
(
e(ci−c j )hM

)
,

b̄ᵀ
i J SS

−1
i āi j + āᵀ

j i S
−ᵀ
j Sᵀ J b̄ j = (bi ai j + b j a ji )J

(
e(ci−c j )hM

)
,

(4.30)

which immediately leads to the satisfaction of the symplectic conditions (4.7) based
on those conditions for RK methods, i.e.,

bib j = biai j + b ja ji .

This completes the proof. �

Another interesting result about the “generalized Runge–Kutta methods” of [17]
is that if the corresponding RK method is symmetric, i.e., the coefficients of an
s-stage ERK method satisfy the following conditions

⎧⎪⎨
⎪⎩
1 − cs+1−i = ci , i = 1, . . . , s,

b̄i (hM) = ehMb̄s+1−i (−hM), i = 1, . . . , s,

e(1−cs+1−i )hM b̄s+1− j (−hM) = āi j (hM) + ās+1−i,s+1− j (−hM), i, j = 1, . . . , s,
(4.31)

then the ERK method yielded by (4.16) is symmetric as well. We refer the reader to
[3] for more details on this result.

Theorem 4.4 If the coefficients of an s-stageERKmethod satisfy both the symplectic
conditions (4.7) and symmetric conditions (4.31), then the ERKmethod is symplectic
and symmetric.

Proof Under the assumptions of the theorem, the conclusion is quite clear. We there-
fore omit the details of the proof here. �
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4.4 Numerical Experiments

In this section, we implement some numerical experiments to show the high accuracy
and good energy preservation of symplectic ERK methods stated in the previous
section. In our experiments, the corresponding RK methods are selected as follows:

• RK2: the implicit midpoint method of order two;
• RK4: the Legendre-Gauss collocation method of order four [8].

It should be noted here that both RK2 and RK4 are symplectic, and then ERK2 and
ERK4 obtained by the formula (4.16) share the same order as them by Theorem 4.2
and the same symplecticity as their correspondingRKmethodsbyTheorem4.3. Since
all these underlying methods are implicit, iterations are required in the implementa-
tion of these methods. The study of existence and uniqueness of numerical solutions
of ERKmethods is entirely similar to that of implicit RK methods (see, e.g. [4, 16]),
and we shall therefore assume unique existence of solution in the remainder of this
chapter. As recommended by Hairer et al. (see VIII.6 in [8]), fixed-point iteration is
used for the solution of the implicit RKmethods,whereas theNewton iteration should
be considered for the two implicit ERK methods (see, e.g. [24, 27]). The iteration
will be stopped once the norm of the difference of two successive approximations is
smaller than 10−16. In all the experiments, the maximum norm is used for both the
global errors (GE) and the difference of two successive approximations during the
iterations. Throughout the numerical experiments,wepoint out that thematrix-valued
functions ϕk(V ) (k ≥ 0) are exactly evaluated. For larger problems, the Krylov sub-
space method is well known, and recommended in this case due to its fast conver-
gence. The details about Krylov subspace methods can be found in [9, 13].

As emphasised by the authors in [9, 12, 13], we are hopeful of showing higher
accuracy for the ERK methods than their corresponding RK methods in numerical
experiments, since they can exactly solve the homogeneous equation y′(t) = My,
and M always has eigenvalues of large modulus. Meanwhile, good energy preser-
vation is also expected due to the symplecticity of the underlying ERK methods.
Another point is that the convergence of iterations for the implicit ERK methods is
much better than that for the corresponding RK methods. The main reason is that
the occurrence of My in the RK methods when applied to system (4.1) will obvi-
ously decrease the convergence due to the large norm of M . Consequently, the faster
convergence for the ERK methods results in less consumed CPU time. On the basis
of the analysis stated above, we will focus on the previously mentioned advantages
of the symplectic ERK methods over their corresponding traditional symplectic RK
methods during our numerical experiments.

Problem 4.1 Consider the Duffing equation (see, e.g. [19])

{
q̈ + ω2q = k2(2q3 − q),

q(0) = 0, q̇(0) = ω,

with 0 ≤ k < ω.
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Fig. 4.1 Results for Problem 4.1: the global errors with h = 1/40

Let p = q ′, z = (p, q)ᵀ. Then the Duffing equation can be rewritten as

z′(t) = Mz + f (z),

where

M =
(
0 −ω2

1 0

)
,

and
f =

(
k2(2q3 − q), 0

)ᵀ
.

This is a Hamiltonian system with the Hamiltonian

H(p, q) = 1

2
p2 + 1

2
ω2q2 + k2

2
(q2 − q4).

The analytic solution is given by

q(t) = sn(ωt, k/ω),

where sn is the Jacobian elliptic function.

This problem is solved on the interval [0, 100] with ω = 10, k = 0.03 and the
stepsize h = 1/40. The global errors for these methods are shown in Fig. 4.1. It can
be observed from Fig. 4.1 that these two ERK methods significantly display better
numerical behaviour in terms of accuracy than their corresponding RK methods.
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Fig. 4.2 Results for Problem 4.1: the energy preservation

Energy preservation behaviour is shown in Fig. 4.2, from which it can be observed
that the obtained ERK methods show comparable energy preservation in compar-
ison with their corresponding RK methods. The CPU times (in seconds) are 0.52,
0.91, 3.26 and 3.34, respectively, for ERK2, ERK4, RK2 and RK4. This shows the
faster convergence and higher efficiency of ERKmethods than the corresponding RK
methods. This also indicates the superiority of the two symplectic ERK methods.

Problem 4.2 Consider the Fermi–Pasta–Ulam problem (see, e.g. [8]) which is an
important nonlinear model for research on nonlinear dynamical systems in physics:

x ′′(t) + Ax(t) = −∇xU (x(t)), (4.32)

where

A =
(
0m×m 0m×m

0m×m ω2 Im×m

)
,

U (x) = 1

4

(
(x1 − xm+1)

4 +
m−1∑
i=1

(xi+1 − xm+i−1 − xi − xm+i )
4 + (xm + x2m)4

)
.
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Fig. 4.3 Results for Problem 4.2: the global errors with h = 1/200

With y = x ′, this problem can be expressed by the following Hamiltonian system:

z′(t) = Mz(t) + f (z(t)),

where z = (yᵀ, xᵀ)ᵀ,

M =
(
0 −A
E 0

)
,

and
f =

(
− (∇xU (x)

)ᵀ
, 0ᵀ

)ᵀ
,

with the Hamiltonian

H(z) = 1

2

2m∑
i=1

y2i + ω2

2

m∑
i=1

x2m+i +U (x). (4.33)

Here, E is the identity matrix.
In this experiment, we choose

m = 3, x1(0) = 1, y1(0) = 1, x4(0) = 1

ω
, y1(0) = 1, ω = 100,

and zero for the remaining initial data. This problem is integrated on the interval
[0, 100] with the stepsize h = 1/200. As shown in Fig. 4.3, the ERK methods give
much better accuracy than their corresponding RK methods in global errors. Good
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Fig. 4.4 Results for Problem 4.2: the energy preservation

energy preservation behaviour is also displayed by ERK2 and ERK4 in Fig. 4.4. The
higher efficiency of the symplectic ERK methods than RK methods is supported by
their smaller CPU times (seconds), which are 2.09, 8.43, 29.20 and 30.20, respec-
tively, for ERK2, ERK4, RK2, and RK4.

Problem 4.3 Consider the sine-Gordon equation with the periodic boundary con-
ditions (see, e.g. [23])

⎧⎨
⎩

∂2u

∂t2
= ∂2u

∂x2
− sin u, −5 ≤ x ≤ 5, t ≥ 0,

u(−5, t) = u(5, t).
(4.34)

Here, we use the Fourier pseudo-spectral discretisation (see e.g. [26]) for the spatial
derivative. Then it can be converted into the followingordinary differential equations:

d

dt

(
U ′
U

)
=

(
0 M
E 0

) (
U ′
U

)
+

(− sin(U )

0

)
, (4.35)

where U (t) = (u1(t), . . . , uN (t))ᵀ with ui (t) ≈ u(xi , t), xi = −5 + iΔx for
i = 1, . . . , N , Δx = 10/N , E is the identity matrix and the second-order spectral
differentiationmatrixM can be found in [26]. It can be verified that−M is symmetric
positive semi-definite. The Hamiltonian corresponding to (4.35) is given by
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Fig. 4.5 Results for Problem 4.3: the global errors with h = 1/40

H(U ′,U ) = 1

2
U ′ᵀU ′ + 1

2
Uᵀ(−M)U − (

cos u1 + . . . + cos uN
)
.

For this problem, we set the initial conditions as

U (0) = (π)Ni=1, U ′(0) = √
N

(
0.01 + sin

(
2π i

N

))N

i=1

,

with N = 64. Again, Fig. 4.5 shows the much better accuracy of the two ERK
methods than their corresponding RK methods. The detailed behaviour of energy
conservation for each method is shown in Fig. 4.6, which clearly displays compa-
rable performance in qualitative behaviour between the ERK integrators and their
corresponding RK methods. The CPU times (in seconds) are 0.86, 3.77, 5.59 and
6.50, respectively, for ERK2, ERK4, RK2 and RK4.

Problem 4.4 Consider the nonlinear Klein–Gordon equation with the periodic
boundary condition (see, e.g. [14, 28])

{
utt + uxx + u + u3 = 0, 0 < x < L , t ∈ (0, T ),

u(0, t) = u(L , t).

The initial conditions are given by

u(x, 0) = A

[
1 + cos

(
2π

L
x

)]
, ut (x, 0) = 0,
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Fig. 4.6 Results for Problem 4.3: the energy preservation

where L = 1.28 and A is the amplitude. Similarly to Problem 4.3, if the Fourier
pseudo-spectral discretisation is applied to this problem, the semi-discrete ODEs
can be obtained:

d

dt

(
U ′
U

)
=

(
0 M
E 0

) (
U ′
U

)
+

(−U −U 3

0

)
, (4.36)

whose Hamiltonian is given by

H(U ′,U ) = 1

2
U ′ᵀU ′ + 1

2
Uᵀ(−M)U + 1

2
U 2 + 1

4
U 4.

For this problem, we set A = 20. As claimed in [14, 28], this equation is chal-
lenging for numerical methods, since the solution shows abrupt changes in both
time and space directions with a large amplitude. Similarly to [28], we also carry
out numerical simulations with the space stepsize Δx = 0.02 and the time step-
size h = 0.01. The good energy preservation for the two symplectic ERK methods
is shown in Fig. 4.7, where the relative errors RGEH = GEH

H0
are plotted for the

large value of H0 = 1.14 × 107 and amplitude A = 20. Moreover, we display the
numerical wave forms from the two ERK methods in Figs. 4.8 and 4.9, respectively.
It is shown that both the two ERK methods perform very well, since they preserve
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Fig. 4.7 Results for Problem 4.4: the energy preservation
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Fig. 4.8 Results for Problem 4.4: the numerical wave forms of ERK2 on different time intervals:
the left t ∈ [0, 1] and the right t ∈ [9, 10]
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Fig. 4.9 Results for Problem 4.4: the numerical wave forms of ERK4 on different time intervals:
the left t ∈ [0, 1] and the right t ∈ [9, 10]

spatial symmetry as well as the continuity of the solution. Unfortunately, however,
the two corresponding RKmethods cannot give effective numerical results, since the
iterations in the case of Δx = 0.02 and h = 0.01 are not convergent for both RK2
and RK4. The CPU times (in seconds) are 0.23 and 2.37, respectively, for ERK2 and
ERK4.
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Fig. 4.10 Results for Problem 4.5: exact solutions and the global errors with h = 0.01 at T = 1

Finally, we turn to the important nonlinear Schrödinger (NLS) equations.

Problem 4.5 Consider the nonlinear Schrödinger (NLS) equation (see, e.g. [25])

iqt = qxx + 2|q|2q, t ∈ (0, T ),

on the interval x ∈ [−10, 10] with periodic boundary conditions. The exact solution
is given by

q(x, t) = 2ηe−i[2ζ x−4(ζ 2−η2)t+(Φ0+ π
2 )]sech(2ηx − 8ζηt − x0),

where x0, Φ0, ζ and η are some constants.

For this problem, we respectively denote u and v as the real and imaginary parts
of q. If the Fourier pseudo-spectral method is used for the spatial discretization, this
problem can be converted into the Hamiltonian system of the form

d

dt

(
U
V

)
=

(
0 M

−M 0

)(
U
V

)
+

(
2(U 2 + V 2)V

−2(U 2 + V 2)U

)
, (4.37)

whose Hamiltonian reads

H(U, V ) = 1

2
Uᵀ(−M)U + 1

2
V ᵀ(−M)V − 1

2

(
UᵀU + V ᵀV

)2
, (4.38)

whereM is the second-order spectral differentiationmatrix approximating the spatial
derivative, U (t) = (u1(t), . . . , uN (t))ᵀ, and V (t) = (v1(t), . . . , vN (t))ᵀ. Note that
the multiplication of two vectors occurring in (4.37) is in the componentwise sense.

This problem is numerically solved with the given parameters x0 = 0, Φ0 =
0, ζ = 1, η = 1, N = 128 and T = 1. The real and imaginary parts of the exact
solution and the global errors for ERK2 and ERK4 with h = 0.01 at the endpoint
are plotted in Fig. 4.10. It is worth mentioning that only numerical results for ERK
methods are plotted in Fig. 4.10, as their corresponding RKmethods do not work due
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Fig. 4.11 Results for Problem 4.5: the energy preservation

to the appearance of non-convergence during the interactive process. This shows the
better performance and broader applicability of symplectic ERK methods over their
corresponding symplectic RK methods. Moreover, it can be observed from Fig.4.11
that both ERK methods show good energy preservation behaviour as well. The CPU
times (in seconds) are 0.20 and 0.57, respectively, for ERK2 and ERK4.

4.5 Conclusions and Discussions

Exponential Runge–Kutta methods are very attractive and practical in applications
since they always show better performance than classical RK methods in dealing
with stiff problems. However, when the underlying problem (4.1) is a Hamiltonian
system, the research work has not received much attention up to now. This motivates
the main theme of this work: effective integrators for this kind of Hamiltonian sys-
tems using ERK integrators. With respect to the construction of effective high-order
ERK methods, we investigated the structure-preserving property of the novel ERK
integrators such as the symplecticity in this chapter. To this end, sufficient conditions
for symplecticity were derived by a fundamental analysis of geometric integrators.
Furthermore, we presented a novel class of structure-preserving ERK methods; that
is the structure-preserving “generalized Runge–Kutta methods” (see Lawson [17]),
which can preserve symplecticity in the same way as their corresponding RK meth-
ods. In order to dispose of the restriction of the conventional stiff order conditions,
revised stiff conditions were proposed and investigated in detail. After the establish-
ment of the associated theory for structure-preserving ERK methods, we derived a
class of symplectic ERK methods. We took ERK2 and ERK4 as examples in this
chapter. Finally, we conducted some numerical experiments, including the approxi-
mation of a nonlinear Schrödinger equation, in comparison with the corresponding
symplectic Gauss-Legendre RK methods: RK2 and RK4, and the numerical results
(both the accuracy and behaviour of energy preservation) are quite promising, and
strongly support our theoretical analysis in this chapter. The numerical experiments
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demonstrate that our symplectic ERK methods are more efficient in many settings
than classical methods for the computation of nonlinear Hamiltonian systems.

It is noted that a new exponential scheme EAVF was proposed in the recent paper
[18] and summarised in Chap.2, which preserves the first integral or the Lyapunov
function for the conservative or dissipative system. Therefore, it seems that the other
properties of structure preservation such as energy preservation and symmetry should
be investigated further for the development of ERK integrators. This is the point we
also wish to emphasise here.

In the previous four chapters we paid attention to first-order differential equa-
tions. In the next four chapters, we will turn to structure-preserving algorithms for
multi-frequency and multi-dimensional highly oscillatory second-order differential
equations which frequently occur in a wide variety of science and engineering appli-
cations.

The material of this chapter is based on the work by Mei and Wu [21].
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Chapter 5
High-Order Symplectic and Symmetric
Composition Integrators
for Multi-frequency Oscillatory
Hamiltonian Systems

This chapter presents symplectic and symmetric composition methods based on
Adapted Runge–Kutta–Nyström (ARKN) and extended Runge–Kutta–Nyström
(ERKN) integrators for solving multi-frequency and multi-dimensional oscillatory

Hamiltonian systems with the Hamiltonian H(p, q) = 1

2
pᵀ p + 1

2
qᵀKq +U (q),

where p = q ′ and K is a symmetric and positive semi-definite matrix. We first con-
sider the symplecticity conditions formulti-frequency andmulti-dimensional ARKN
integrators. We then analyse the symplecticity of the adjoint integrators of the multi-
frequency and multi-dimensional symplectic ARKN and ERKN integrators, respec-
tively. On the basis of the theoretical analysis, and using the idea of composition
methods, we derive four new high-order symplectic and symmetric integrators. The
numerical results quantitatively show the advantage and efficiency of the high-order
symplectic and symmetric integrators.

5.1 Introduction

Geometric numerical integrators are designed specially for the numerical solution of
differential equations which possess some geometric/physical properties (Hamilto-
nian, divergence-free, symmetry, symplecticity, etc.) that should be respected by
numerical methods as much as possible. Readers are referred to [3, 4, 10, 13,
16, 19, 31] for this topic. Oscillation is also an important physical property. In
fact, differential equations having oscillatory solutions are frequently encountered
in many fields of the applied sciences and engineering, such as celestial mechan-
ics, theoretical physics, quantum chemistry and molecular dynamics. The study of
modelling and simulation for oscillatory problems is of particular interest in appli-
cations. A lot of theoretical and numerical analysis has been done in this field [10,
31]. A variety of methods and analytical tools arise in this area such as stroboscopic
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averaging methods, heterogeneous multiscale methods, the technique of modified
Fourier expansions. For these methods, readers are referred to [5–7, 9, 18] and the
references therein.

Among typical topics is the numerical integration of an oscillatory system of the
form {

q ′′(t) + Kq(t) = f (q(t)), t ∈ [t0, T ],
q(t0) = q0, q ′(t0) = q ′

0,
(5.1)

where K is a d × d positive semi-definitematrix that implicitly contains the dominant
frequencies of the oscillatory problem and f : Rd → R

d , q ∈ R
d , q ′ ∈ R

d . It should
be noted that (5.1) is a multi-frequency and multi-dimensional nonlinear oscillatory
problem. The design and analysis of numerical methods for nonlinear oscillators is
an important problem that has received a great deal of attention in the last few years.

It has now become a common practice in geometric numerical integration that
numerical algorithms should take advantage of the special structure of the under-
lying problem. In [29], the authors took account of the special structure of system
(5.1) brought by the linear term Kq and proposed the so-called multi-frequency and
multi-dimensional ARKN integrators. An outstanding advantage of multi-frequency
and multi-dimensional ARKN integrators for (5.1) is that their updates are incorpo-
rated with the special structure of the system (5.1) so that they naturally integrate
exactly the multi-frequency oscillatory homogeneous system y′′ + Ky = 0. Very
recently, Wu et al. (see [30]) formulated a standard form of the multi-frequency and
multi-dimensional ERKN methods in which both the internal stages and updates
are incorporated with the special structure of the system (5.1). Therefore, the multi-
frequency oscillatory homogeneous system y′′ + Ky = 0 can be exactly integrated,
not only by the updates but also by the internal stages of an ERKN integrator. The
ERKN integrators exhibit the correct qualitative behaviour much better than classical
RKN methods (see, e.g. [20, 22, 24, 26–29, 32]).

On the other hand, the idea of composition methods is quite useful to improve the
order of a basic method while preserving some desirable properties. It is well known
that numerical integrators of arbitrarily high orders can be achieved by composition
of an integrator with low order. Let ϕh be a basicmethod and γ1, . . . , γs real numbers.
We then call its composition

ψh = ϕγs h ◦ · · · ◦ ϕγ1h (5.2)

the corresponding composition method.
A more general case is to consider the composition of both the basic integrators

and their adjoint integrators with different stepsizes, i.e., to replace composition (5.2)
by the more general formula

ψh = ϕαs h ◦ ϕ∗
βs h ◦ · · · ◦ ϕ∗

β2h ◦ ϕα1h ◦ ϕ∗
β1h . (5.3)

The adjoint method of a method is defined as follows [11].
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Definition 5.1 The adjoint method Φ∗
h of a methodΦh is defined as the inverse map

of the original method with reversed time step −h, i.e., Φ∗
h := Φ−1

−h . A method with
Φ∗

h = Φh is called symmetric.

With regard to composition methods, readers are referred to [1, 2, 15, 17, 23,
33]. A systematic introduction of the idea for composition methods, including the
order conditions, can be found in [10].

This chapter focuses on the compositions of multi-frequency and multi-
dimensional symplectic ARKN and ERKN integrators. The remainder of this chapter
is organized as follows. In Sects. 5.2 and 5.3, we derive some properties for ARKN
and ERKN integrators. Based on these properties, we derive four novel high-order
symplectic and symmetric methods by using the composition of multi-frequency
and multi-dimensional symplectic ARKN and ERKN integrators, respectively. In
Sect. 5.4, numerical experiments are carried out, and the advantage and the effi-
ciency of the new methods is shown by the numerical results. The last section is
devoted to conclusions and discussions.

5.2 Composition of Multi-frequency ARKN Methods

To begin with, we consider the unconditionally convergent matrix-valued functions
which were first defined in [32]

φl(K ) :=
∞∑
k=0

(−1)k K k

(2k + l)! , l = 0, 1. (5.4)

Some properties of the matrix-valued functions (5.4) are given in the following
proposition, which can be proved in a straightforward way.

Proposition 5.1 For a symmetric and positive semi-definite matrix K , the φ-
functions φl(K ) for l = 0, 1, defined by (5.4) satisfy:

(i)
φ2
0(K ) + Kφ2

1(K ) = I, (5.5)

where I is the identity matrix with the same dimension as M.
(i i)

φ0(a
2K )φ0(b

2K ) ± abKφ1(a
2K )φ1(a

2K ) = φ0((a ∓ b)2K ),

bφ1(b
2K )φ0(a

2K ) ± aφ1(a
2K )φ0(b

2K ) = (b ± a)φ1((b ± a)2K ),∀a, b ∈ R.
(5.6)

In the recent paper (see [32]), the authors presented the following variation-of-
constants formula for the exact solution and its derivative for the multi-frequency
oscillatory system (5.1).

Theorem 5.1 If K ∈ R
d×d is a positive semi-definite matrix and f : Rd → R

d is
continuous in (5.1), then the solution of (5.1) and its derivative satisfy
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩
q(t) = φ0((t − t0)

2K )q0 + (t − t0)φ1((t − t0)
2K )q ′

0 +
∫ t

t0
(t − ξ)φ1((t − ξ)2K ) f̂ (ξ)dξ,

q ′(t) = −(t − t0)Kφ1((t − t0)
2K )q0 + φ0((t − t0)

2K )q ′
0 +

∫ t

t0
φ0((t − ξ)2K ) f̂ (ξ)dξ,

(5.7)
for any real number t0, t , where f̂ (ξ) = f (q(ξ)).

We note that if K is a symmetric and positive semi-definite matrix, K has the decom-
position: K = PᵀΩ2P = W 2 with W = PᵀΩP . However, (5.7) does not involve
the decomposition of matrix K . This point is important, especially for the computa-
tional issues of an integrator based on (5.7), since K is not necessarily diagonal or
symmetric in (5.1) and the decomposition K = W 2 is not always feasible.

It follows immediately from (5.7) that⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

q(tn + νh) = φ0
(
ν2h2K

)
qn + hφ1

(
ν2h2K

)
q ′
n

+h2
∫ ν

0 (ν − γ )φ1
(
(ν − γ )2h2K

)
f̂ (tn + hγ )dγ,

q ′(tn + νh) = −νhKφ1
(
ν2h2K

)
qn + φ0

(
ν2h2K

)
q ′
n

+νh
∫ ν

0 φ0
(
(ν − γ )2h2K

)
f̂ (tn + hγ )dγ,

(5.8)

for 0 < ν < 1, and⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

q(tn + h) = φ0
(
h2K

)
qn + hφ1

(
h2K

)
q ′
n

+h2
∫ 1
0 (1 − γ )φ1

(
(1 − γ )2h2K

)
f̂ (tn + hγ )dγ,

q ′(tn + h) = −hKφ1
(
h2K

)
qn + φ0

(
h2K

)
q ′
n

+h
∫ 1
0 φ0

(
(1 − γ )2h2K

)
f̂ (tn + hγ )dγ.

(5.9)

From (5.9), revising only the updates of classical RKN methods obtains the fol-
lowing s-stage multi-frequency and multi-dimensional ARKN integrators proposed
in [32]:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qi = qn + ci hq
′
n + h2

s∑
j=1

āi j
(
f (Q j ) − K Q j

)
, i = 1, . . . , s,

qn+1 = φ0(V )qn + hφ1(V )q ′
n + h2

s∑
i=1

b̄i (V ) f (Qi ),

q ′
n+1 = φ0(V )q ′

n − hKφ1(V )qn + h
s∑

i=1

bi (V ) f (Qi ),

(5.10)

where, āi j ∈ R for i, j=1, . . . , s, the weights bi , b̄i : Rd×d → R
d×d for i = 1, . . . , s

are matrix-valued functions of V = h2K .
A numerical method has order p, if for a sufficiently smooth Problem(5.1) the

conditions:

en+1 := qn+1 − q(tn + h) = O(h p+1) and e′
n+1 := q ′

n+1 − q ′(tn + h) = O(h p+1) (5.11)
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are satisfied, where q(tn + h) and q ′(tn + h) are the exact solution of (5.1) and its
derivative at tn + h, respectively, qn+1 and q ′

n+1 are the one step numerical results
obtained by the method from the exact starting values qn = q(tn) and q ′

n = q ′(tn)
(the local assumptions). The order conditions of the multi-frequency and multi-
dimensional ARKN integrators (5.10) have been investigated in [32].

The following theorem gives the adjoint integrator of amulti-frequency andmulti-
dimensional ARKN method.

Theorem 5.2 The adjoint integrator of an s-stage multi-frequency and multi-
dimensional ARKN method (5.10) with stepsize h has the following form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qi = (
φ0(V ) + cs+1−i Vφ1(V )

)
qn + (

φ1(V ) − cs+1−iφ0(V )
)
hq ′

n

+h2
s∑

j=1
ās+1−i,s+1− j

(
f (Q j ) − KQ j

) + h2
s∑

j=1

(
b̄∗
j (V ) − cs+1−i b

∗
j (V )

)
f (Q j ),

qn+1 = φ0(V )qn + hφ1(V )q ′
n + h2

s∑
i=1

b̄∗
i (V ) f (Qi ),

q ′
n+1 = −hKφ1(V )qn + φ0(V )q ′

n + h
s∑

i=1
b∗
i (V ) f (Qi ),

(5.12)

where{
b̄∗
i (V ) = φ1(V )bs+1−i (V ) − φ0(V )b̄s+1−i (V ),

b∗
i (V ) = Vφ1(V )b̄s+1−i (V ) + φ0(V )bs+1−i (V ), i = 1, 2, . . . , s.

(5.13)

Proof Exchanging qn+1 ↔ qn, q ′
n+1 ↔ q ′

n and replacing h by −h in the ARKN
method (5.10) yields

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Qi = qn+1 − ci hq ′
n+1 + h2

s∑
j=1

āi j ( f (Q j ) − K Q j ), i = 1, 2, . . . , s,

qn = φ0(V )qn+1 − hφ1(V )q ′
n+1 + h2

s∑
i=1

b̄i (V ) f (Qi ),

q ′
n = hKφ1(V )qn+1 + φ0(V )q ′

n+1 − h
s∑

i=1
bi (V ) f (Qi ).

(5.14)

It follows from (5.14) that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qi = (
φ0(V ) + ci Vφ1(V )

)
qn + (

φ1(V ) − ciφ0(V )
)
hq ′

n − h2
s∑

j=1
āi j K Q j

+h2
s∑

j=1

[
āi j − ci

(
φ0(V )b j (V ) + Vφ1(V )b̄ j (V )

) + (
φ1(V )b j (V ) − φ0(V )b̄ j (V )

)]
f (Q j ),

qn+1 = φ0(V )qn + hφ1(V )q ′
n + h2

s∑
i=1

(
φ1(V )bi (V ) − φ0(V )b̄i (V )

)
f (Qi ),

q ′
n+1 = −hKφ1(V )qn + φ0(V )q ′

n + h
s∑

i=1

(
φ0(V )bi (V ) + Vφ1(V )b̄i (V )

)
f (Qi ).

(5.15)

Replacing all indices i and j by s + 1 − i and s + 1 − j , respectively, we obtain the
result of the theorem. �
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From Theorem5.2, it is easy to see that the adjoint integrator of an ARKN inte-
grator is not again an ARKN method.

If f (q) in (5.1) is the negative gradient of a real-valued function U (q) and K
is a symmetric and positive semi-definite matrix, let p = q ′, and then (5.1) is in
fact identical to the following multi-frequency and multi-dimensional Hamiltonian
system ⎧⎪⎨

⎪⎩
q ′ = Hp(p, q),

p′ = −Hq(p, q),

q(t0) = q0, p(t0) = p0,

(5.16)

with the Hamiltonian

H(p, q) = 1

2
pᵀ p + 1

2
qᵀKq +U (q). (5.17)

The following theorem gives the symplectic conditions of a multi-frequency and
multi-dimensional ARKN method.

Theorem 5.3 If the coefficients of an s-stagemulti-frequency andmulti-dimensional
ARKN method (5.10) satisfy the following conditions

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

bi (V )φ0(V ) + b̄i (V )Vφ1(V ) = di I, i = 1, . . . , s,

bi (V )φ1(V ) − b̄i (V )φ0(V ) = cidi I, i = 1, . . . , s,

di āi j = 0, i, j = 1, . . . , s,

bi (V )b̄ j (V ) = b j (V )b̄i (V ), i, j = 1, . . . , s,

(5.18)

where di ∈ R for i = 1, . . . , s, then the integrator is symplectic.

Proof With the notation of a differential 2-form used in [19], the symplecticity of
the methods (5.10) for (5.1) is identical to

d∑
J=1

dq J
n+1 ∧ dq ′ J

n+1 =
d∑

J=1

dq J
n ∧ dq ′ J

n .

We first consider the special case, where K is a diagonal matrix with non-
negative entries, i.e., K = diag(k11, k22, · · · , kdd), then V = diag(v11, v22, · · · , vdd)
with v j j = h2k j j for j = 1, . . . , d. Accordingly, φ0(V ), φ1(V ), bi (V ) and b̄i (V ) are
all diagonal matrices. Denote fi = f (Qi ). The ARKN method (5.10) then becomes
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

QJ
i = q J

n + ci hq
′ J
n + h2

s∑
j=1

ai j ( f Jj − kJ J QJ
j ), i = 1, . . . , s,

q J
n+1 = φ0(vJ J )q J

n + φ1(vJ J )hq
′ J
n + h2

s∑
i=1

b̄i (vJ J ) f Ji ,

q
′ J
n+1 = −hkJ Jφ1(vJ J )q J

n + φ0(vJ J )q
′ J
n + h

s∑
i=1

bi (vJ J ) f Ji ,

(5.19)

where the superscript indices J = 1, 2, . . . , d denote the J th component of a vector.
Differentiating q J

n+1 and q
′ J
n+1 and taking external products, we have

dq J
n+1 ∧ dq

′ J
n+1 = [φ2

0(vJ J ) + vJ Jφ
2
1(vJ J )]dq J

n ∧ dq
′ J
n

+ h
s∑

i=1
[bi (vJ J )φ0(vJ J ) + b̄i (vJ J )vJ Jφ1(vJ J )]dq J

n ∧ d f Ji

+ h2
s∑

i=1
[bi (vJ J )φ1(vJ J ) − b̄i (vJ J )φ0(vJ J )]dq ′ J

n ∧ d f Ji

+ h3
s∑

i, j=1
b̄i (vJ J )b j (vJ J )d f Ji ∧ d f Jj .

It follows from the identity φ2
0(vJ J ) + vJ Jφ2

1(vJ J ) = 1 that

dq J
n+1 ∧ dq

′ J
n+1 = dq J

n ∧ dq
′ J
n + h

s∑
i=1

[bi (vJ J )φ0(vJ J ) + b̄i (vJ J )vJ Jφ1(vJ J )]dq J
n ∧ d f Ji

+ h2
s∑

i=1
[bi (vJ J )φ1(vJ J ) − b̄i (vJ J )φ0(vJ J )]dq ′ J

n ∧ d f Ji

+ h3
s∑

i, j=1
b̄i (vJ J )b j (vJ J )d f Ji ∧ d f Jj .

(5.20)
Differentiating the first formula of (5.19) yields

dq J
n = dQJ

i − ci hdq
′ J
n − h2

s∑
j=1

āi j (d f
J
j − kJ JdQ

J
j ), i = 1, . . . , s.

Thus,

dq J
n ∧ d f Ji = dQJ

i ∧ d f Ji − ci hdq
′ J
n ∧ d f Ji − h2

s∑
j=1

āi j (d f
J
j − kJ J dQ

J
j ) ∧ d f Ji . (5.21)

Substituting (5.21) into (5.20) gives

dq J
n+1 ∧ dq ′ J

n+1

= dq J
n ∧ dq ′ J

n + h
s∑

i=1

[(bi (vJ J )φ0(vJ J ) + b̄i (vJ J )vJ Jφ1(vJ J ))]dQJ
i ∧ d f Ji
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+ h
s∑

i, j=1

[vJ J bi (vJ J )āi jφ0(vJ J ) + v2J J b̄i (vJ J )āi jφ1(vJ J )]dQJ
j ∧ d f Ji

+ h2
s∑

i=1

[bi (vJ J )φ1(vJ J ) − b̄i (vJ J )ci vJ Jφ1(vJ J ) − bi (vJ J )ciφ0(vJ J )

− b̄i (vJ J )φ0(vJ J )]dq ′ J
n ∧ d f Ji

+ h3
s∑

i, j=1

[bi (vJ J )āi jφ0(vJ J ) + b̄i (vJ J )āi j vJ Jφ1(vJ J ) + b̄i (vJ J )b j (vJ J )]d f Ji ∧ d f Jj (5.22)

for each J = 1, . . . , d. Summing over all J yields

d∑
J=1

dq J
n+1 ∧ dq ′ J

n+1

=
d∑

J=1

dq J
n ∧ dq ′ J

n + h
s∑

i=1

d∑
J=1

[(bi (vJ J )φ0(vJ J ) + b̄i (vJ J )vJ Jφ1(vJ J ))]dQJ
i ∧ d f Ji

+ h
s∑

i, j=1

d∑
J=1

[vJ J bi (vJ J )āi jφ0(vJ J ) + v2J J b̄i (vJ J )āi jφ1(vJ J )]dQJ
j ∧ d f Ji

+ h2
s∑

i=1

d∑
J=1

[bi (vJ J )φ1(vJ J ) − b̄i (vJ J )ci vJ Jφ1(vJ J ) − bi (vJ J )ciφ0(vJ J )

− b̄i (vJ J )φ0(vJ J )]dq ′ J
n ∧ d f Ji

+ h3
s∑

i, j=1

d∑
J=1

[bi (vJ J )āi jφ0(vJ J ) + b̄i (vJ J )āi j vJ Jφ1(vJ J ) + b̄i (vJ J )b j (vJ J )]d f Ji ∧ d f Jj .

(5.23)
By the first and second equations in (5.18), the h2 term in the right-hand side vanishes
and (5.23) can be rewritten as

d∑
J=1

dq Jn+1 ∧ dq ′ J
n+1

=
d∑

J=1

dq Jn ∧ dq ′ J
n + h

s∑
i=1

di

d∑
J=1

dQJ
i ∧ d f Ji + h

s∑
i, j=1

di āi j

d∑
J=1

vJ J dQ
J
j ∧ d f Ji

+ h3
s∑

i, j=1

d∑
J=1

[āi j di + b̄i (vJ J )b j (vJ J )]d f Ji ∧ d f Jj .

(5.24)

Since

d f Ji ∧ dQJ
i = ( d∑

I=1

∂ f J

∂q I
(Qi )dQ

I
i

) ∧ dQJ
i =

d∑
I=1

∂ f J

∂q I
(Qi )dQ

I
i ∧ dQJ

i ,
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it follows from f = −∇U that

d∑
J=1

d f Ji ∧ dQJ
i =

d∑
I,J=1

(∂ f J

∂q I
(Qi )dQ

I
i

) ∧ dQJ
i

=
∑
I<J

(∂ f J

∂q I
(Qi ) − ∂ f I

∂q J
(Qi )

)
dQI

i ∧ dQJ
i

=
∑
I<J

[ − ∂2U

∂q J∂q I
(Qi ) + ∂2U

∂q I ∂q J
(Qi )

]
dQI

i ∧ dQJ
i

= 0,

(5.25)

where the last term vanishes by the symmetry of the Hessian matrix.
Therefore, it follows from (5.25) and the assumptions (5.18) that

d∑
J=1

dq J
n+1 ∧ dq ′ J

n+1 =
d∑

J=1

dq J
n ∧ dq ′ J

n .

For the general case, since K is a symmetric and positive semi-definite matrix, K
has the following decomposition:

K = PᵀΩ2P = W 2 with W = PᵀΩP, (5.26)

where P is an orthogonal matrix andΩ is a diagonal matrix with nonnegative diago-
nal entries which are the square roots of the eigenvalues of K . Accordingly, by using
the variable substitution z(t) = Pq(t), the system (5.1) is identical to the system

{
z′′(t) + Ω2z(t) = P f (PT z(t)), t ∈ [t0, T ],
z(t0) = z0 = Py0, q ′(t0) = q ′

0 = Pq ′
0,

(5.27)

where f (q) = −∇qU (q), P f
(
Pᵀz(t)

) = −P∇qU
(
Pᵀz(t)

) = −∇zU
(
Pᵀz(t)

)
.

Then the symplectic multi-frequency and multi-dimensional ARKN method, for
the case where K is diagonal with nonnegative entries, can be applied to the trans-
formed system. Furthermore, the methods are invariant under linear transformation.
Hence, the methods applied to the system (5.1) can be expressed in terms of z(t) via
the multiplication by P and with the notation Zi = PQi , zn = Pqn .

We then have
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d∑
J=1

dz Jn+1 ∧ dz′ J
n+1 =

d∑
J=1

d
d∑

i=1
(pJiqi

n+1) ∧
d∑

J=1
d

d∑
k=1

(pJkq
′k
n+1)

=
d∑

J=1

d∑
i=1

(pJidqi
n+1) ∧

d∑
J=1

d∑
k=1

(pJkdq
′k
n+1)

=
d∑

J=1

d∑
i=1

d∑
k=1

pJi pJk(dqi
n+1 ∧ dq

′k
n+1)

=
d∑

J=1
dq J

n+1 ∧ dq
′ J
n+1.

(5.28)

Likewise,
d∑

J=1

dzn ∧ dz′ J
n =

d∑
J=1

dq J
n ∧ dq ′ J

n . (5.29)

Therefore, it follows from (5.28) and (5.29) that

d∑
J=1

dq J
n+1 ∧ dq ′ J

n+1 =
d∑

J=1

dq J
n ∧ dq ′ J

n .

The orthogonality of the matrix P = (pJi )d×d is used in the proof of (5.28). The
proof is complete. �

Remark 5.1 It is clear from Theorem5.3 that a symplectic ARKN method for a
single-frequency oscillatory Hamiltonian system cannot ensure itself to be again a
symplectic method when applied to multi-frequency and multi-dimensional oscilla-
tory Hamiltonian system, since a symplectic multi-frequency and multi-dimensional
ARKN method requires additional conditions in comparison with a symplectic
single-frequency ARKN method as shown in (5.18). With regard to symplecticity
conditions for single-frequency ARKNmethods, readers are referred to [20, 21]. For
exactly the same reason, a symplectic ERKN method for a single-frequency oscil-
latory Hamiltonian system cannot be guaranteed to be a symplectic method when
applied to multi-frequency and multi-dimensional oscillatory Hamiltonian systems.

Remark 5.2 From the first two equations in symplecticity conditions (5.18), we can
solve bi (V ), b̄i (V ) explicitly:

{
bi (V ) = di

(
φ0(V ) + ci Vφ1(V )

)
,

b̄i (V ) = di
(
φ1(V ) − ciφ0(V )

)
, i = 1, 2, . . . , s.

(5.30)

Thus, ifdi 
= 0 for some i , thenbi (V ), b̄i (V ) 
= 0, and the third equationof conditions
(5.18) indicates āi j = 0 for j = 1, 2, . . . , s. Therefore, stage i with nonzero bi (V )

and b̄i (V ), is independent of internal stages. On the other hand, if di = 0 for some
i, then bi (V ) = b̄i (V ) = 0 and the i-stage can neither contribute to the updates of
ARKN methods, nor to any other internal stages with nonzero bi (V ) and b̄i (V ).
Hence, in the rest of this section, we always assume that di 
= 0 for i = 1, 2, . . . , s.
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Before going on to the analysis of symplecticiy of the adjoint integrator of amulti-
frequency and multi-dimensional ARKNmethod, we present the following theorem.

Theorem 5.4 If the coefficients of an s-stagemulti-frequency andmulti-dimensional
ARKNmethod satisfy conditions (5.18), i.e., themethod is symplectic, then, c1 = c2 =
· · · = cs .

Proof From (5.30), choosing arbitrary i and j , we have

bi (V )b̄ j (V ) = did j
(
φ0(V ) + ci Vφ1(V )

)(
φ1(V ) − c jφ0(V )

)
,

b j (V )b̄i (V ) = did j
(
φ0(V ) + c j Vφ1(V )

)(
φ1(V ) − ciφ0(V )

)
.

On noticing the fourth equation of conditions (5.18), we obtain(
φ0(V ) + ci Vφ1(V )

)(
φ1(V ) − c jφ0(V )

) = (
φ0(V ) + c j Vφ1(V )

)(
φ1(V ) − ciφ0(V )

)
,

or
(ci − c j )

(
φ2
0(V ) + Vφ2

1(V )
) = 0.

Using (5.5), we have ci = c j for arbitrary i and j . �

By Remark5.2 and Theorem5.4, we present the following conclusion.

Theorem 5.5 Themulti-frequency andmulti-dimensional symplectic ARKNmethod
has only one stage.

Proof From Remark5.2 we have āi j = 0 for i, j = 1, 2, . . . , s, and from
Theorem5.4 we have c1 = c2 = · · · = cs . �

By Theorem5.5, it can be verified that the order of a multi-frequency and multi-
dimensional symplectic ARKN cannot exceed two (see [20]).

We are now in a position to present the analysis on the symplecticiy of the adjoint
integrator for a multi-frequency and multi-dimensional ARKN method. It follows
from Theorems5.3 and 5.5 that a multi-frequency, multi-dimensional, symplectic
ARKN method has the following form

⎧⎪⎨
⎪⎩

Q1 = qn + c1hq
′
n,

qn+1 = φ0(V )qn + hφ1(V )q ′
n + h2b̄1(V ) f (Q1),

q ′
n+1 = φ0(V )q ′

n − hKφ1(V )qn + hb1(V ) f (Q1),

(5.31)

where
b1(V ) = d1

(
φ0(V ) + c1Vφ1(V )

)
,

b̄1(V ) = d1
(
φ1(V ) − c1φ0(V )

)
,

and the corresponding adjoint integrator is given by
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⎩

Q1 = (
φ0(V ) + c1Vφ1(V )

)
qn + (

φ1(V ) − c1φ0(V )
)
hq ′

n

qn+1 = φ0(V )qn + hφ1(V )q ′
n + h2b̄∗

1(V ) f (Q1),

q ′
n+1 = −hKφ1(V )qn + φ0(V )q ′

n + hb∗
1(V ) f (Q1),

(5.32)

where {
b̄∗
1(V ) = φ1(V )b1(V ) − φ0(V )b̄1(V ) = c1d1 I,

b∗
1(V ) = Vφ1(V )b̄1(V ) + φ0(V )b1(V ) = d1 I.

By (5.32),wehave the following result on the symplecticiy of the adjoint integrator
for a multi-frequency and multi-dimensional ARKN method.

Theorem 5.6 The adjoint integrator (5.32) of a multi-frequency and multi-
dimensional symplectic ARKN method (5.31) is symplectic.

Proof By Theorem5.5, a symplectic ARKN method has only one stage. Hence, it is
easy to verify that its adjoint method is symplectic and we omit details. �

From the analysis described above, it is clear that high-order symplectic ARKN
methods do not exist. Furthermore, since the adjoint integrator of anARKNmethod is
not again an ARKNmethod, an ARKNmethod cannot be symmetric. To get through
this barrier, we can resort to the composition of ARKNmethods to obtain high-order
symplectic and symmetric methods, although they are not ARKNmethods anymore.

Consider the following one-stage ARKN method of order two, which can be
thought of as an extended version of the Störmer–Verlet method [25]:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Q1 = qn + 1

2
hq ′

n,

qn+1 = φ0(V )qn + φ1(V )(hq ′
n) + h2

(
φ1(V ) − 1

2
φ0(V )

)
f (Q1),

q ′
n+1 = −hKφ1(V )qn + φ0(V )q ′

n + h
(
φ0(V ) + 1

2
Vφ1(V )

)
f (Q1).

(5.33)

It can be observed that (5.33) is a symplectic method and its adjoint integrator is also
symplectic by Theorem 5.6. If we let V → 0 in (5.33), then (5.33) reduces to the
Störmer–Verlet formula for (5.1) or (5.16):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Q1 = qn + h

2
q ′
n,

qn+1 = qn + hq ′
n + h2

2
g(Q1),

q ′
n+1 = q ′

n + hg(Q1),

(5.34)

where g(q) = f (q) − Kq.
Using (5.33) as the basic method, we consider the fourth order symmetric com-

position of the form (5.3) with the coefficients (see, e.g. [10])
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α1 = β3 = 1

2(2 − 21/3)
, α2 = β2 = − 21/3

2(2 − 21/3)
, α3 = β1 = 1

2(2 − 21/3)
.

(5.35)
We denote the composition of (5.33) with coefficients (5.35) by CARKNp4s6.

As pointed out in [10], for achieving a composition method of high order, the
solutions with the minimal number of stages do not give the best methods. Thus, we
consider the following fourth order symmetric composition coefficients given in [2]:

α1 = β6 = 0.16231455076687, α2 = β5 = 0.37087741497958,

α3 = β4 = 0.059762097006575, α4 = β3 = −0.40993371990193,

α5 = β2 = 0.23399525073150, α6 = β1 = 0.082984406417405.

(5.36)

We denote the composition of (5.33) with the coefficients (5.36) by CARKNp4s12.
Both CARKNp4s6 and CARKNp4s12 methods are symplectic and symmetric and
of order four.

5.3 Composition of ERKN Integrators

Another class of efficient methods for the oscillatory system (5.1) is the so-called
multi-frequency and multi-dimensional ERKN integrators (see [30]). ERKN inte-
grators are designed by taking advantage of the special structure brought by Kq in
both the updates and the internal stages. In light of the variation-of-constants formula
(5.8)–(5.9) for (5.1), improving both the internal stages and updates of a classical
RKN method leads to the definition of ERKN integrators.

Definition 5.2 An s-stage multi-frequency andmulti-dimensional ERKN integrator
with stepsize h for oscillatory system (5.1) is defined by

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Qi = φ0(c
2
i V )qn + hciφ1(c

2
i V )q ′

n + h2
s∑

j=1
ai j (V ) f (Q j ), i = 1, . . . , s,

qn+1 = φ0(V )qn + hφ1(V )q ′
n + h2

s∑
i=1

b̄i (V ) f (Qi ),

q ′
n+1 = −hKφ1(V )qn + φ0(V )q ′

n + h
s∑

i=1
bi (V ) f (Qi ),

(5.37)
where bi , b̄i for i = 1, . . . , s, and ai j for i, j = 1, . . . , s are matrix-valued functions
of V = h2K .

The order conditions for multi-frequency and multi-dimensional ERKN integra-
tors can be found in [26].We are now concernedwith the adjoint integrators of ERKN
integrators.
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Theorem 5.7 The adjoint integrator of an s-stage multi-frequency and multi-
dimensional ERKN integrator (5.37) with stepsize h has the following form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qi = φ0(c
∗2
i V )qn + c∗

i φ1(c
∗2
i V )hq ′

n + h2
s∑

j=1

a∗
i j (V ) f (Q j ), i = 1, 2, . . . , s,

qn+1 = φ0(V )qn + hφ1(V )q ′
n + h2

s∑
i=1

b̄∗
i (V ) f (Qi ),

q ′
n+1 = −hMφ1(V )qn + φ0(V )q ′

n + h
s∑

i=1

b∗
i (V ) f (Qi ),

(5.38)
where⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

c∗
i = 1 − cs+1−i ,

b̄∗
i (V ) = φ1(V )bs+1−i (V ) − φ0(V )b̄s+1−i (V ),

b∗
i (V ) = Vφ1(V )b̄s+1−i (V ) + φ0(V )bs+1−i (V ),

a∗
i j (V ) = φ0(c

2
s+1−i V )b̄∗

j (V ) − cs+1−iφ1(c
2
s+1−i V )b∗

j (V ) + as+1−i,s+1− j (V ),

i, j = 1, 2, . . . , s.
(5.39)

Proof The proof is similar to that of Theorem5.2 and we omit the details. �

From Theorem5.7, it can be observed that the adjoint integrator of a multi-
frequency and multi-dimensional ERKN integrator is again an ERKN integrator.

With regard to the symplecticity conditions of ERKN integrators, we have the
following theorem [28].

Theorem 5.8 An s-stage multi-frequency and multi-dimensional ERKN integrator
(5.37) is symplectic if its coefficients satisfy the following conditions:

⎧⎨
⎩

φ0(V )bi (V ) + Vφ1(V )b̄i (V ) = diφ0(c2i V ), di ∈ R, i = 1, 2, . . . , s,
φ1(V )bi (V ) − φ0(V )b̄i (V ) = cidiφ1(c2i V ), i = 1, 2, . . . , s,
b̄i (V )b j (V ) + diai j (V ) = b̄ j (V )bi (V ) + d ja ji (V ), i, j = 1, 2, . . . , s,

(5.40)
where V = h2K.

Remark 5.3 From the first two equations in symplectic conditions (5.40), we can
solve bi (V ), b̄i (V ) explicitly:

bi (V ) = di
(
φ0(V )φ0(c

2
i V ) + ci Vφ1(V )φ1(c

2
i V )

)
,

b̄i (V ) = di
(
φ1(V )φ0(c

2
i V ) − ciφ0(V )φ1(c

2
i V )

)
, i = 1, 2, . . . , s.

Thus, by (5.6), we have
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bi (V ) = diφ0((1 − ci )
2V ), b̄i (V ) = di (1 − ci )φ1((1 − ci )

2V ), i = 1, 2, . . . , s.
(5.41)

In what follows, we give an analysis of the symplecticiy of the adjoint integrator
of a multi-frequency and multi-dimensional ERKN integrator.

Theorem 5.9 If the coefficients of an s-stagemulti-frequency andmulti-dimensional
ERKN integrator satisfy conditions (5.40), i.e., the integrator is symplectic, then its
adjoint integrator (5.38) is also symplectic.

Proof It is sufficient to prove that the coefficients of (5.38) satisfy the symplectic-
ity conditions (5.40). In fact, by (5.39) and (5.40), the coefficients of the adjoint
integrator of a symplectic ERKN integrator satisfy

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c∗
i = 1 − cs+1−i ,

b̄∗
i (V ) = cs+1−i ds+1−iφ1(c

2
s+1−i V ),

b∗
i (V ) = ds+1−iφ0(c

2
s+1−i V ),

a∗
i j (V ) = cs+1− j ds+1− jφ0(c

2
s+1−i V )φ1(c

2
s+1− j V )

− cs+1−i ds+1− jφ1(c
2
s+1−i V )φ0(c

2
s+1− j V ) + as+1−i,s+1− j (V ),

i, j = 1, 2, . . . , s.

We then have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ0(V )b∗
i (V ) + Vφ1(V )b̄i

∗
(V )

= φ0(V )ds+1−iφ0(c
2
s+1−i V ) + Vφ1(V )cs+1−i ds+1−iφ1(c

2
s+1−i V )

= ds+1−iφ0((1 − cs+1−i )
2V ) = ds+1−iφ0(c

∗2
i V ), i = 1, 2, . . . , s,

φ1(V )b∗
i (V ) − φ0(V )b̄∗

i (V )

= φ1(V )ds+1−iφ0(c
2
s+1−i V ) − φ0(V )cs+1−i ds+1−iφ1(c

2
s+1−i V )

= ds+1−i (1 − cs+1−i )φ1((1 − cs+1−i )
2V ) = ds+1−i c

∗
i φ1(c

∗2
i V ),

i = 1, 2, . . . , s.

(5.42)

Let d∗
i = ds+1−i . Then, the first two conditions are satisfied in (5.40). Concerning

the third condition in (5.40), we have

b̄∗
i (V )b∗

j (V ) + d∗
i a

∗
i j (V ) − (b̄∗

j (V )b∗
i (V ) + d∗

j a
∗
j i (V ))

= cs+1−i ds+1−iφ1(c
2
s+1−i V )ds+1− jφ0(c

2
s+1− j V )

− cs+1− j ds+1− jφ1(c
2
s+1− j V )ds+1−iφ0(c

2
s+1−i V )

+ ds+1−i
(
cs+1− j ds+1− jφ0(c

2
s+1−i V )φ1(c

2
s+1− j V )

− cs+1−i ds+1− jφ1(c
2
s+1−i V )φ0(c

2
s+1− j V ) + as+1−i,s+1− j (V )

)
− ds+1− j

(
cs+1−i ds+1−iφ0(c

2
s+1− j V )φ1(c

2
s+1−i V ) (5.43)



122 5 High-Order Symplectic and Symmetric Composition Integrators…

− cs+1− j ds+1−iφ1(c
2
s+1− j V )φ0(c

2
s+1−i V ) + as+1− j,s+1−i (V )

)
= ds+1−i

(
cs+1− j ds+1− jφ0(c

2
s+1−i V )φ1(c

2
s+1− j V ) + as+1−i,s+1− j (V )

)
− ds+1− j

(
cs+1−i ds+1−iφ0(c

2
s+1− j V )φ1(c

2
s+1−i V ) + as+1− j,s+1−i (V )

)
= ds+1−i ds+1− j (cs+1− j − cs+1−i )φ1((cs+1− j − cs+1−i )

2V )

+ ds+1−i as+1−i,s+1− j (V ) − ds+1− j as+1− j,s+1−i (V ).

By (5.41) and the third equation of (5.40), we obtain

ds+1−i as+1−i,s+1− j (V ) − ds+1− j as+1− j,s+1−i (V )

= b̄s+1− j (V )bs+1−i (V ) − b̄s+1−i (V )bs+1− j (V )

= ds+1−i ds+1− j (1 − cs+1− j )φ1((1 − cs+1− j )
2V )φ0((1 − cs+1−i )

2V )

− ds+1−i ds+1− j (1 − cs+1−i )φ1((1 − cs+1−i )
2V )φ0((1 − cs+1− j )

2V )

= ds+1−i ds+1− j (cs+1−i − cs+1− j )φ1((cs+1−i − cs+1− j )
2V ).

(5.44)

Substituting (5.44) into (5.43) yields

b̄∗
i (V )b∗

j (V ) + d∗
i a

∗
i j (V ) − (b̄∗

j (V )b∗
i (V ) + d∗

j a
∗
j i (V )) = 0.

The proof is complete. �

Section5.2 remarks that the composition of an ARKN method is not again an
ARKN method. However, the composition of an ERKN integrator is still an ERKN
integrator, as shown in the next theorem.

Theorem 5.10 The composition of an s1-stage ERKN integrator with stepsize αh
and an s2-stage ERKN integrator with stepsize βh is a new ERKN integrator with
s = s1 + s2 stages and stepsize (α + β)h.

Proof Let the two ERKN integrators with stepsizes αh and βh be

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qi = φ0(c
2
i α

2h2K )qn + αhciφ1(c
2
i α

2h2K )q ′
n + α2h2

s1∑
j=1

ai j (α2h2K ) f (Q j ),

i = 1, . . . , s1,

qn+1 = φ0(α
2h2K )qn + αhφ1(α

2h2K )q ′
n + α2h2

s1∑
i=1

b̄i (α2h2K ) f (Qi ),

q ′
n+1 = −αhKφ1(α

2h2K )qn + φ0(α
2h2K )q ′

n + αh
s1∑
i=1

bi (α2h2K ) f (Qi ),

(5.45)
and
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q∗
i = φ0(c

∗2
i β2h2K )qn + βhc∗

i φ1(c
∗2
i β2h2K )q ′

n + β2h2
s2∑
j=1

a∗
i j (β

2h2K ) f (Q∗
j ),

i = 1, . . . , s2,

qn+1 = φ0(β
2h2K )qn + βhφ1(β

2h2K )q ′
n + β2h2

s2∑
i=1

b̄∗
i (β

2h2K ) f (Q∗
i ),

q ′
n+1 = −βhKφ1(β

2h2K )qn + φ0(β
2h2K )q ′

n + βh
s2∑
i=1

b∗
i (β

2h2K ) f (Q∗
i ).

(5.46)
Denote them by ϕ1

h1
and ϕ2

h2
, respectively. Then ϕ2

h2
◦ ϕ1

h1
has the following form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qi = φ0(c
2
i α

2h2K )qn + αhciφ1(c
2
i α

2h2K )q ′
n + α2h2

s1∑
j=1

ai j (α
2h2K ) f (Q j ),

i = 1, . . . , s1,

q̃n+1 = φ0(α
2h2K )qn + αhφ1(α

2h2K )q ′
n + α2h2

s1∑
i=1

b̄i (α
2h2K ) f (Qi ),

q̃ ′
n+1 = −αhKφ1(α

2h2K )qn + φ0(α
2h2K )q ′

n + αh
s1∑
i=1

bi (α
2h2K ) f (Qi ),

Q∗
i = φ0(c

∗2
i β2h2K )q̃n+1 + βhc∗i φ1(c

∗2
i β2h2K )q̃ ′

n+1 + β2h2
s2∑
j=1

a∗
i j (β

2h2K ) f (Q∗
j ),

i = 1, . . . , s2,

qn+1 = φ0(β
2h2K )q̃n+1 + βhφ1(β

2h2K )q̃ ′
n+1 + β2h2

s2∑
i=1

b̄∗
i (β2h2K ) f (Q∗

i ),

q ′
n+1 = −βhKφ1(β

2h2K )q̃n+1 + φ0(β
2h2K )q̃ ′

n+1 + βh
s2∑
i=1

b∗
i (β2h2K ) f (Q∗

i ).

(5.47)

Let Qs1+i = Q∗
i for i = 1, . . . , s2 and s = s1 + s2. Substituting the second and third

terms into the last three terms of (5.47), with some tedious computations and manip-
ulations, we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qi = φ0(c
2
i α

2h2K )qn + αhciφ1(c
2
i α

2h2K )q ′
n + α2h2

s1∑
j=1

ai j (α2h2K ) f (Q j ),

i = 1, . . . , s1,

Qi = φ0((α + c∗
i β)2h2K )qn + (α + c∗

i β)hφ1((α + c∗
i β)2h2K )q ′

n + h2
s∑

j=1
ãi j f (Q j ),

i = s1 + 1, . . . , s,

qn+1 = φ0((α + β)2h2K )qn + (α + β)hφ1((α + β)2h2K )q ′
n + (α + β)2h2

s∑
i=1

˜̄bi f (Qi ),

q ′
n+1 = −(α + β)hKφ1((α + β)2h2K )qn + φ0((α + β)2h2K )q ′

n + (α + β)h
s∑

i=1
b̃i f (Qi ),

(5.48)

where ãi j ,
˜̄bi , b̃i for i, j = 1, . . . , s are the algebraic compositions of the coeffi-

cients of the two ERKN integrators, that makes them the matrix-valued functions of
V = h2K . �
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Table 5.1 The number of equations from order conditions for order p = 1, . . . , 8

Order p 1 2 3 4 5 6 7 8

Number of
equations

1 3 6 11 21 40 79 157

It should be noted here that although there exist high-order symplectic and sym-
metric ERKN integrators, the order conditions together with the symmetry and sym-
plecticity conditions are very important for achieving a high-order symplectic and
symmetric ERKN integrator. Table 5.1 shows the number of equations that need to
be solved from order conditions. It can be observed that, as the order of the method
grows, the number of equations from the order conditions increases rapidly, not to
mention the equations from the symmetry and symplecticity conditions (the num-
ber of equations depends on how many stages the integrator uses; the number of
equations may be reduced but the number is still very large). Therefore, in practice,
the derivation of a high-order symplectic and symmetric ERKN integrator based on
order conditions, symmetry conditions and symplecticity conditions is very difficult.
However, it will be useful to generate high-order symplectic and symmetric ERKN
integrators by using a procedure of composition.

Consider the following one-stage ERKN integrator of order two, which is another
extended version of the Störmer–Verlet method [25]⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Q1 = φ0(
V

4
)qn + 1

2
hφ1(

V

4
)q ′

n,

qn+1 = φ0(V )qn + φ1(V )(hq ′
n) + h2

2
φ1(

V

4
) f (Q1),

q ′
n+1 = −hKφ1(V )qn + φ0(V )q ′

n + hφ0(
V

4
) f (Q1),

(5.49)

It can be verified that (5.49) is symplectic and symmetric.We note that letting V → 0
in (5.49) also gives the Störmer–Verlet formula (5.34).

Using (5.49) as the basic method, since it is symmetric, we consider the sixth
order symmetric composition of the form (5.2) with coefficients given in [33]

γ1 = γ7 = 0.78451361047755726381949763, γ2 = γ6 = 0.23557321335935813368479318,

γ3 = γ5 = −1.17767998417887100694641568, γ4 = 1.31518632068391121888424973.
(5.50)

We denote the composition of (5.49) with the coefficients (5.50) by CERKNp6s7.
The method CERKNp6s7 is symplectic and symmetric of order six. Moreover, it can
be seen from Theorem5.10 that CERKNp6s7 is a seven-stage multi-frequency and
multi-dimensional ERKN integrator of order six.

We also consider the following eighth order symmetric composition coeffi-
cients [10]:
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γ1 = γ15 = 0.74167036435061295344822780, γ2 = γ14 = −0.40910082580003159399730010,

γ3 = γ13 = 0.19075471029623837995387626, γ4 = γ12 = −0.57386247111608226665638773,

γ5 = γ11 = 0.29906418130365592384446354, γ6 = γ10 = 0.33462491824529818378495798,

γ7 = γ9 = 0.31529309239676659663205666, γ8 = −0.79688793935291635401978884.

(5.51)

We denote the composition of (5.49) with the coefficients (5.51) by CERKNp8s15
which is a symplectic and symmetric ERKN integrator of order eight.

Remark 5.4 The second-order symmetric Gautschi-type method is also an alterna-
tive basic method for oscillatory problem. Take Deuflhard’s Trigonometric Method
(see [8]) for example, and let Ω = K 1/2. The one-step form of Deuflhard’s method
for (5.1) reads⎧⎪⎪⎨

⎪⎪⎩
qn+1 = cos(hΩ)qn + Ω−1 sin(hΩ)q ′

n + h2

2
(hΩ)−1 sin(hΩ) f (qn),

q ′
n+1 = −Ω sin(hΩ)qn + cos(hΩ)q ′

n + 1

2
h(cos(hΩ) f (qn) + f (qn+1)).

(5.52)
The method is also symmetric and symplectic, which makes it a good option as
the basic method. It is noted from the definition of the φ-functions that Deuflhard’s
method can be reformulated as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q1 = qn,

Q2 = φ0(V )qn + φ1(V )(hq ′
n) + h2

2
φ1(V ) f (Q1),

qn+1 = φ0(V )qn + φ1(V )(hq ′
n) + h2

2
φ1(V ) f (Q1),

q ′
n+1 = −hKφ1(V )qn + φ0(V )q ′

n + h

2
(φ0(V ) f (Q1) + f (Q2)).

(5.53)

In other words, Deuflhard’s method can be viewed as a two-stage ERKN integrator
of order two with FSAL property (the last evaluation at any step is the same as the
first evaluation at the next step). Thus it only needs one function evaluation per step.

5.4 Numerical Experiments

In order to show the robustness and efficiency of the symplectic and symmetric
methods proposed in this chapter in comparison with the existing methods in the
scientific literature, we use four problems in numerical experiments. The methods
used for comparison are:

• CRKNp6s7: the composition of Störmer–Verlet method with coefficients (5.50);
• CRKNp8s15: the composition of Störmer–Verlet method with coefficients (5.51);
• CDeuflhardp6s7: the composition of Deuflhard’s method with coefficients (5.50);
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• CDeuflhardp8s15: the composition ofDeuflhard’smethodwith coefficients (5.51);
• SRKNp4s3: the three-stage symplectic Runge–Kutta–Nyström method of order
four given in [11].

For each experiment, we will display the efficiency curves: accuracy versus the
computational cost measured by the number of function evaluations required by
each method and the energy error of each method. If the error is very large, we do
not plot the points in the figure of the numerical results.

Problem 1 Consider the orbital problem with perturbation

q ′′
1 + q1 = −2ε + ε2

r5
q1, q1(0) = 1, q ′

1(0) = 0,

q ′′
2 + q2 = −2ε + ε2

r5
q2, q2(0) = 0, q ′

2(0) = 1 + ε,

where r =
√
q2
1 + q2

2 . This is a Hamiltonian system with the Hamiltonian

H = 1

2
pT p + 1

2
qT Kq +U (q),

where

U (q) = − 2ε + ε2

3(q2
1 + q2

2 )
3
2

, K =
(
1 0
0 1

)
.

The analytic solution is given by

q1(t) = cos(t + εt), q2(t) = sin(t + εt).

The problem is solved on the interval [0, 1000] with ε = 10−3.We take stepsizes h =
1/2 j for the methods CERKNp8s15, CRKNp8s15, CDeuflhardp8s15, h = 1/2 j+1

for CERKNp6s7, CRKNp6s7, CDeuflhardp6s7, h = 6/(15 × 2 j ) for CARKNp4s6,
h = 12/(15 × 2 j ) for CARKNp4s12, and h = 3/(15 × 2 j ) for SRKNp4s3, where
j = 0, . . . , 3.

Figure5.1(i) shows the error of the position q at tend = 1000 versus the com-
putational effort. We integrate this problem with stepsize h = 1.5 in the interval
[0, tend ], tend = 5 × 10i for i = 0, . . . , 3. Figure5.1(ii) shows the energy errors of
different methods.

Problem 2 Consider the Fermi–Pasta–Ulam problem, which can be expressed by a
Hamiltonian system with the Hamiltonian

H(p, q) = 1

2
pT p + 1

2
qT Kq +U (q),

where
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Fig. 5.1 Results for Problem1. (i): The logarithm of the global error (GE) over the integration
interval against the logarithm of the number of function evaluations. (ii): The logarithm of the
maximum global error of Hamiltonian GEH = max |Hn − H0| against log10(tend )

K =
(
0m×m 0m×m

0m×m ω2 Im×m

)
,

U (q) = 1

4

(
(q1 − qm+1)

4 +
m−1∑
i=1

(qi+1 − qm+i+1 − qi − qm+i )
4 + (qm + q2m)4

)
.

Following [10], we choose ω = 100 and

m = 3, q1(0) = 1, p1(0) = 1, q4(0) = 1

ω
, p4(0) = 1, (5.54)

and choose zero for the remaining initial values.
The problem is integrated on the interval [0, 20] with stepsizes h = 0.08/2 j

for the methods CERKNp8s15, CRKNp8s15, CDeuflhardp8s15, h = 0.08/2 j+1 for
CERKNp6s7, CRKNp6s7, CDeuflhardp6s7, h = 0.08 × 6/(15 × 2 j ) for CARKN
p4s6, h = 0.08 × 12/(15 × 2 j ) for CARKNp4s12, and h = 0.08 × 3/(15 × 2 j ) for
SRKNp4s3, where j = 0, . . . , 3.

Figure5.2 (i) shows the error of the position q at tend = 20 versus the compu-
tational effort. We integrate this problem with stepsize h = 0.01 on the interval
[0, tend ], tend = 10 × 5i for i = 0, . . . , 3. Figure5.2(ii) shows the energy errors of
different methods.
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Fig. 5.2 Results for Problem2. (i): The logarithm of the global error (GE) over the integration
interval against the logarithm of the number of function evaluations. (ii): The logarithm of the
maximum global error of Hamiltonian GEH = max |Hn − H0| against log10(tend )

Problem 3 Consider the sine-Gordon equation with periodic boundary conditions

⎧⎨
⎩

∂2u

∂t2
= ∂2u

∂x2
− sin u, −1 < x < 1, t > 0,

u(−1, t) = u(1, t).

By semi-discretization on the spatial variable with second-order symmetric dif-
ferences, and introducing generalized momenta p = q ′, we obtain a Hamiltonian
system with the Hamiltonian

H(p, q) = 1

2
pᵀ p + 1

2
qᵀKq +U (q),

where q(t) = (u1(t), . . . , ud(t))ᵀ and U (q) = −(cos(u1) + . . . + cos(ud)) with
ui (t) ≈ u(xi , t), xi = −1 + iΔx for i = 1, . . . , d, Δx = 2/d, and

K = 1

Δx2

⎛
⎜⎜⎜⎜⎜⎝

2 −1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 −1 2

⎞
⎟⎟⎟⎟⎟⎠ . (5.55)
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Fig. 5.3 Results for Problem3. (i): The logarithm of the global error (GE) over the integration
interval against the logarithm of the number of function evaluations. (ii): The logarithm of the
maximum global error of Hamiltonian GEH = max |Hn − H0| against log10(tend )

We take d = 32 and the initial conditions as

q(0) = (π)di=1, p(0) = √
d

(
0.01 + sin(

2π i

d
)

)d

i=1

.

The problem is integrated on the interval [0, 10]with stepsizes h = 1/2 j for themeth-
ods CERKNp8s15, CRKNp8s15, CDeuflhardp8s15, h = 1/2 j+1 for CERKNp6s7,
CRKNp6s7,CDeuflhardp6s7,h = 6/(15 × 2 j ) forCARKNp4s6,h = 12/(15 × 2 j )

for CARKNp4s12, and h = 3/(15 × 2 j ) for SRKNp4s3, where j = 1, . . . , 4.
Figure5.3 (i) shows the error of the position q at tend = 10 versus the compu-

tational effort. We integrate this problem with stepsize h = 0.08 in the interval
[0, tend ], tend = 10 × 5i for i = 0, . . . , 3. Figure5.3(ii) shows the energy errors of
different methods.

Problem 4 Consider the nonlinear Klein-Gordon equation (see, e.g. [12])

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂2u

∂t2
− ∂2u

∂x2
+ u + u3 = 0, 0 < x < L , t > 0,

u(x, 0) = A
(
1 + cos( 2πL x)

)
,

ut (x, 0) = 0,
u(0, t) = u(L , t),
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where L = 1.28, A = 0.9.
By the same semi-discretization on the spatial variable as Problem 3, and introduc-

ing generalized momenta p = q ′, we obtain the corresponding Hamiltonian system
with the Hamiltonian

H(p, q) = 1

2
pᵀ p + 1

2
qᵀKq +U (q),

where q(t) = (u1(t), . . . , ud(t))ᵀ and U (q) = 1
2u

2
1 + 1

4u
4
1 + . . . + 1

2u
2
d + 1

4u
4
d with

ui (t) ≈ u(xi , t), xi = iΔx for i = 1, . . . , d, Δx = L/d,

K = 1

Δx2

⎛
⎜⎜⎜⎜⎜⎝

2 −1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 −1 2

⎞
⎟⎟⎟⎟⎟⎠ . (5.56)

and the initial conditions are

q(0) =
(
0.9

(
1 + cos(

2π i

d
)
))d

i=1
, p(0) =

(
0
)d

i=1
.

We take d = 32, and integrate the problem on the interval [0, 10] with stepsizes h =
1/2 j for the methods CERKNp8s15, CRKNp8s15, CDeuflhardp8s15, h = 1/2 j+1

for CERKNp6s7, CRKNp6s7, CDeuflhardp6s7, h = 6/(15 × 2 j ) for CARKNp4s6,
h = 12/(15 × 2 j ) for CARKNp4s12, and h = 3/(15 × 2 j ) for SRKNp4s3, where
j = 3, . . . , 6.

Figure5.4(i) shows the error of the position q at tend = 10 versus the computa-
tional effort. We then integrate the problem with stepsize h = 0.08 on the interval
[0, tend ], tend = 10 × 5i for i = 0, . . . , 3. Figure5.4(ii) shows the energy errors of
the different methods.

It follows from the numerical results shown in Figs. 5.1, 5.2, 5.3 and 5.4 that,
overall, for the problems under consideration, the symmetric and symplectic com-
position methods based on ARKN and ERKN methods (extended Störmer–Verlet
method, Deuflhard’s method) give more efficient and accurate qualitative features
than the classical symmetric and symplectic composition methods based on the RKN
method (Störmer–Verlet method). In addition, the classical method SRKNp4s3 gives
the poorest results for both efficiency and energy conservation. This fact shows that
taking account of the oscillatory structure is a significant factor to be considered
in the numerical integration of oscillatory Hamiltonian systems. On the other hand,
from Figs. 5.1 and 5.4, it is clear that for Problems1 and 4, the symmetric and sym-
plectic composition method CRKNp8s15 of order eight is more efficient than the
ARKN-based symmetric and symplectic composition methods CARKNp4s6 and
CARKNp4s12 of order four. This means that apart from symplecticity, symmetry,



5.4 Numerical Experiments 131

3 3.2 3.4 3.6 3.8 4
−13

−12

−11

−10

−9

−8

−7

−6

−5

−4

−3

log
10

(Function evaluations)

lo
g

1
0(G

E
)

Klein−Gordon: The efficiency curves

 

 
CARKNp4s6
CARKNp4s12
CERKNp6s7
CERKNp8s15
CRKNp6s7
CRKNp8s15
SRKNp4s3
CDeuflhardp6s7
CDeuflhardp8s15

1 1.5 2 2.5 3
−7

−6

−5

−4

−3

−2

−1

0

1

2

log
10

(t)

lo
g

1
0
(G

E
H

)

Klein−Gordon: The energy conservation

 

 
CARKNp4s6
CARKNp4s12
CERKNp6s7
CERKNp8s15
CRKNp6s7
CRKNp8s15
SRKNp4s3
CDeuflhardp6s7
CDeuflhardp8s15

)ii()i(

Fig. 5.4 Results for Problem4. (i): The logarithm of the global error (GE) over the integration
interval against the logarithm of the number of function evaluations. (ii): The logarithm of the
maximum global error of Hamiltonian GEH = max |Hn − H0| against log10(tend )

adaption to oscillation, the algebraic order cannot be ignoredwhen designing efficient
numerical methods.

For a large stepsize, it can be observed from the results of the numerical experi-
ments that the compositionmethods based onARKNmethods and ERKN integrators
perform verywell. However, the traditional compositionmethods give unsatisfactory
qualitative behavior. Therefore, the symmetric and symplectic composition methods
based on ARKNmethods and ERKN integrators are more suitable for the long-term
integration of oscillatory Hamiltonian systems.

5.5 Conclusions and Discussions

For solving a multi-frequency and multi-dimensional oscillatory second-order initial
value problem of the form q ′′ + Kq = f (q), multi-frequency andmulti-dimensional
ARKN methods and multi-frequency and multi-dimensional ERKN integrators
are incorporated with the special structure brought by the linear term Kq. These
integrators exactly integrate the multi-frequency oscillatory homogeneous system
q ′′ + Kq = 0. The sympletic conditions of multi-frequency and multi-dimensional
ERKN integrators were presented for second-order oscillatory Hamiltonian sys-
tems (see [28]). This chapter derived the symplectic conditions for multi-frequency
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and multi-dimensional ARKN methods. Furthermore, the symplectic conditions for
the adjoint integrators of multi-frequency and multi-dimensional symplectic ARKN
methods and symplectic ERKN integrators were analysed, respectively. We showed
that the adjointmethod of the one-stage symplecticARKNmethod is still symplectic.
The adjoint integrator of amulti-frequency andmulti-dimensional symplectic ERKN
integrator is also symplectic. With these properties, we analysed and derived four
newhigh-order symplectic and symmetricmethods by the composition ofARKNand
ERKN integrators. The numerical results support the theoretical analysis and show
that these new compositionmethods aremore efficient than the compositionmethods
of traditional RKNmethods when applied to multi-frequency and multi-dimensional
oscillatory Hamiltonian systems. Last but not least, we again point out that a sym-
plectic ARKNmethod or a symplectic ERKN integrator for a single-frequency oscil-
latoryHamiltonian system cannot ensure itself to be again a symplectic methodwhen
applied to a multi-frequency and multi-dimensional oscillatory Hamiltonian system.

This chapter focused on symplectic and symmetric composition integrators of
RKN-type methods for multi-frequency oscillatory Hamiltonian systems. The next
chapter will be concerned with the construction of arbitrary order ERKN integrators,
including symplectic and symmetric ERKN methods.

The material of this chapter is based on the work by Liu and Wu [14].
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Chapter 6
The Construction of Arbitrary Order
ERKN Integrators via Group Theory

This chapter presents the construction of arbitrary order extended Runge–Kutta–
Nyström (ERKN) integrators. In general, ERKNmethods aremore effective than tra-
ditional Runge–Kutta–Nyström (RKN)methods in dealing with oscillatory Hamilto-
nian systems. However, the theoretical analysis for ERKNmethods, such as the order
conditions, the symplecticity conditions and the symmetric conditions, becomes
much more complicated than that for RKN methods. Therefore, it is a bottleneck
to construct high-order ERKN methods efficiently. This chapter first establishes the
ERKNgroupΩ for ERKNmethods and theRKNgroupG for RKNmethods, respec-
tively, and then shows that ERKNmethods are a natural extension of RKNmethods.
That is, there exists an epimorphism η of the ERKN group Ω onto the RKN group
G. This epimorphism gives a global insight into the structure of the ERKN group by
the analysis of its kernel and the corresponding RKN group G. We also establish a
particular mapping ϕ of G into Ω that each image element is an ideal representative
element of the congruence class in Ω . Furthermore, an elementary theoretical anal-
ysis shows that this mapping ϕ can preserve many structure-preserving properties,
such as the order, the symmetry and the symplecticity. From the epimorphism η

together with its section ϕ, we may gain knowledge about the structure of the ERKN
group Ω through the RKN group G.

6.1 Introduction

We are concerned in this chapter with initial value problems (IVP) of second-order
oscillatory differential equations

{
y′′(t) + My(t) = f (y(t)),

y(t0) = y0, y′(t0) = y′
0,

(6.1)
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with M a (symmetric) positive semi-definite matrix and ‖M‖ � 1, which fre-
quently arise in many aspects of scientific and engineering computing, such as celes-
tial mechanics, theoretical physics, chemistry and electronics. Effective numerical
methods for solving this type of problems are of great importance (see, e.g. [4, 7–10,
13, 14]). Using the oscillatory structure introduced by the linear term My in (6.1),
Yang et al. [34] proposed extended Runge–Kutta–Nyström (ERKN) methods. Much
research effort on ERKN methods has been made and ERKN methods show notable
efficiency and higher accuracy than the traditional Runge–Kutta–Nyström (RKN)
methods in dealing with (6.1) (see, e.g. [28, 29, 31, 32, 35, 36]). It is clear that (6.1)
becomes a Hamiltonian system once f (y) = −∇U (y), where U (y) is a smooth
potential function. The symmetric conditions and symplectic conditions for ERKN
methods have also been investigated [15, 16, 25, 27, 30]. However, it is very difficult
to obtain a high-order ERKNmethod with some important structure properties, even
though the order conditions, the symmetric conditions and the symplectic conditions
have been well established.

On the one hand, we have known an important property of ERKN methods, that
is, whenM → 0, each ERKNmethod reduces to a classical RKNmethod. This prop-
erty implies that there exists an intrinsic relation between ERKN and RKNmethods.
On the other hand, the structural properties such as symmetry and symplecticity of
RKN methods have been studied by many authors and very useful results have been
achieved [1–3, 19–21, 23, 24, 26]. Taking account of these two points, in this chapter
we attempt to clarify this intrinsic relation between ERKN and RKN methods by
introducing an epimorphism η from the ERKN group Ω to the RKN group G. In
particular, we establish a particular mapping η fromG toΩ . Consequently, the prop-
erties of ERKN methods including the order, the symmetry, and the symplecticity,
are inherited from the classical RKN methods via the mapping ϕ.

The plan of this chapter is as follows. In Sect. 6.2 we briefly review the classi-
cal RKN methods and then construct the RKN group G. In Sect. 6.3, the theories
associated with the ERKN group Ω are established. Especially, we show that there
exists an epimorphism η from Ω to G. In Sect. 6.4, we address the particular map-
ping ϕ from G to Ω in detail. It turns out that this mapping preserves the order, the
symplecticity, and almost the symmetry. In Sect. 6.5 we carry out some numerical
experiments for the high-order structure-preserving ERKN methods derived from
the theoretical analysis in Sect. 6.4. The last section is concerned with conclusions
and discussions.

6.2 Classical RKN Methods and the RKN Group

This section begins with an overview of the results on classical RKN methods for
second-order initial value problems

{
y′′(t) = f (y(t)),

y(t0) = y0, y′(t0) = y′
0,

(6.2)
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where the right-hand-side function f does not depend on the derivative y′ and time t .
As is well known, to approximate this autonomous systemmore efficiently than with
traditional Runge–Kutta (RK)methods, the so-called Runge–Kutta–Nyström (RKN)
methods were proposed [18]. An s-stage classical RKNmethod with a stepsize h for
the problem (6.2) is defined as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yi = yn + ci hy
′
n + h2

s∑
j=1

ai j f (Y j ), i = 1, . . . , s,

yn+1 = yn + hy′
n + h2

s∑
i=1

b̄i f (Yi ),

y′
n+1 = y′

n + h
s∑

i=1

bi f (Yi ),

(6.3)

where ai j , b̄i , bi for i, j = 1, . . . , s are real constants. Usually, the RKN method
(6.3) can be briefly expressed in a Butcher Tableau

c A

b̄ᵀ

bᵀ

.=

c1 a11 · · · a1s
...

...
...

cs as1 · · · ass

b̄1 · · · b̄s
b1 · · · bs

. (6.4)

In order to establish an RKN group conveniently, we will specify an RKNmethodΦ

with a stepsize h by Φh . Then Φγ h and Φβh are regarded as two different elements
once γ �= β, even though they share the same coefficients. To construct a group
related to RKN methods, a binary composition is needed. Similarly to Hairer and
Wanner [11] in 1974,we consider the composition of twoRKNmethods butmatching
allowance for their corresponding stepsizes.

We then introduce the following definition.

Definition 6.1 Suppose that Φh is an s-stage RKN method defined by (6.3) for the
problem (6.2), Φ ′

h is called an essential 0-stepsi ze form of Φh if the formula for
Φ ′

h reads ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yi = yn + ci hy
′
n + h2

s∑
j=1

ai j f (Y j ), i = 1, . . . , s,

yn+1 = yn + h2
s∑

i=1

b̄i f (Yi ),

y′
n+1 = y′

n + h
s∑

i=1

bi f (Yi ).

(6.5)
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Accordingly, Φh is called an h-stepsi ze form of Φ ′
h .

Remark 6.1 From Definition6.1, the only difference is in the second equation com-
pared with (6.3). This is essential. That is, the equation

yn+1 = yn + hy′
n + h2

s∑
i=1

b̄i f (Yi ) ,

for Φh has been changed into

yn+1 = yn + h2
s∑

i=1

b̄i f (Yi ) ,

in (6.5) for Φ ′
h . This means that the numerical solution (yn+1, y′

n+1) = Φh(yn, y′
n)

approximates the exact solution at tn + h, whereas (yn+1, y′
n+1) = Φ ′

h(yn, y
′
n) can

only approximate to (y(tn), y′(tn)) at tn . It is noted that if Ψh is a classical RKN
method, then Ψ0·h is just the identity I . This implies that an RKN method Ψ0·h with
the stepsize 0 is totally different from its essential 0-stepsi ze form Ψ ′

h under our
new definition.

Suppose thatΦ1
h andΦ2

h are twoRKNmethodswith s1 stages and s2 stages, respec-
tively.Their coefficients are respectively denotedby c = (c1, . . . , cs1)

ᵀ, b = (b1, . . . ,
bs1)

ᵀ, b̄ = (b̄1, . . . , b̄s1)
ᵀ, A = (

ai j
)
s1×s1

and c∗ = (c∗
1, . . . , c

∗
s2)

ᵀ, b∗ = (b∗
1, . . . ,

b∗
s2)

ᵀ, b̄∗ = (b̄∗
1, . . . , b̄

∗
s2)

ᵀ, A∗ = (
a∗
i j

)
s2×s2

. We next consider the composition of

Φ1
γ h and Φ2

βh . Taking (y0, y′
0) as the starting value at t0 and (y1, y′

1) as the updated
value after one step, we can express the composition law of (y1, y′

1) = (
Φ2

βh ◦
Φ1

γ h

)
(y0, y′

0) as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yi = y0 + γ ci hy
′
0 + γ 2h2

s1∑
j=1

ai j f (Y j ), i = 1, . . . , s1,

ỹ1 = y0 + γ hy′
0 + γ 2h2

s1∑
i=1

b̄i f (Yi ),

ỹ′
1 = y′

0 + γ h
s1∑
i=1

bi f (Yi ),

Ỹk = ỹ1 + βc∗
k h ỹ

′
1 + β2h2

s2∑
j=1

a∗
k j f (Ỹ j ), k = 1, . . . , s2,

y1 = ỹ1 + βh ỹ′
1 + β2h2

s2∑
i=1

b̄∗
i f (Ỹi ),

y′
1 = ỹ′

1 +
s2∑
i=1

βhb∗
i f (Ỹi ).

(6.6)



6.2 Classical RKN Methods and the RKN Group 139

Canceling ỹ1 and ỹ′
1 from (6.6), we obtain the following simplified form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yi = y0 + γ ci hy
′
0 + h2

s1∑
j=1

γ 2ai j f (Y j ), i = 1, . . . , s1

Ỹk = y0 + (γ + βc∗k )hy′
0 + h2

( s1∑
j=1

(γ 2b̄ j + γβc∗k b j ) f (Y j ) +
s2∑
j=1

β2a∗
k j f (Ỹ j )

)
, k = 1, . . . , s2

y1 = y0 + (γ + β)hy′
0 + h2

( s1∑
i=1

(γ 2b̄i + γβbi ) f (Yi ) +
s2∑
i=1

β2b̄∗
i f (Ỹi )

)
,

y′
1 = y′

0 + h
( s1∑
i=1

γ bi f (Yi ) +
s2∑
i=1

βb∗
i f (Ỹi )

)
.

(6.7)

Now let us have a further discussion on the formula (6.7). If γ +β �= 0,we observe
that (6.7) is just an RKN method Ψ(γ+β)h with the stepsize (γ + β)h. Meanwhile,
by a careful calculation the Butcher tableau of RKN method Ψh reads

γ c/δ γ 2A/δ2

(γ e + βc∗)/δ Ã/δ2 β2A∗/δ2

b̃ᵀ/δ2 β2b̄∗ᵀ/δ2

γ bᵀ/δ βb∗ᵀ/δ

, (6.8)

where δ = γ +β, Ãi j = γ 2b̄ j + γβc∗
i b j , b̃ j = γ 2b̄ j + γβb j for i = 1, . . . , s2, j =

1, . . . , s1, and e = (1, . . . , 1)ᵀ is the s2 ×1 vector of units. It is clear that the updated
value (y1, y′

1) just approximates the exact value at t0 + (γ + β)h.
However, for the case of γ + β = 0, the formula (6.7) is no longer of classical

RKN type. In this case,Φ1
βh ◦Φ1

γ h is just an essential 0-stepsizeRKNmethod, whose
corresponding h-stepsi ze form can be expressed in the following Butcher tableau

γ c γ 2A
γ e + βc∗ Ã β2A∗

b̃ᵀ β2b̄∗ᵀ

γ bᵀ βb∗ᵀ

, (6.9)

where Ãi j and b̃ j are the same as in formula (6.8). In this case, it should be noted
that

∑
i γ bi + ∑

i βb
∗
i = 0 when γ + β = 0 and

∑
i bi = ∑

i b
∗
i = 1. Although

this case is not significant in practice, it will be indispensable in the construction of
an RKN group in the remainder of this chapter.

Define
G1 := {Φαh | Φh is a classical RKN method for α ∈ R},
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G0 := {Φ ′
αh | Φ ′

αh is the essential 0-stepsize form of Φαh and Φαh ∈ G1 with∑
i bi = 0}, and G = G1

⋃
G0.

We then have the following result.

Theorem 6.1 (G, ◦, I ) is a group with respect to the composition ◦ and the
identity I .

Proof It is clear that the composition ◦ is associative, and for each elementΘ ∈ G we
certainly haveΘ ◦ I = I ◦Θ = Θ . Moreover, ifΦ andΨ are two arbitrary elements
in G, from the formula (6.7) and the above analysis we know that Φ ◦ Ψ ∈ G. This
shows the closure property ofG under the product ◦. We next show that each element
in G is invertible.

For an s-stage RKN method Λh defined by (6.3), the existing results [19] have
revealed the existence of its adjoint method Λ∗

h . If the coefficients of the adjoint
method are denoted by c∗ = (c∗

1, . . . , c
∗
s )

ᵀ, b∗ = (b∗
1, . . . , b

∗
s )

ᵀ, b̄∗ = (b̄∗
1, . . . , b̄

∗
s )

ᵀ,
and A∗ = (

a∗
i j

)
s×s , then they satisfy

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c∗
i = 1 − cs+1−i ,

a∗
i j = (1 − cs+1−i )bs+1− j − b̄s+1− j + as+1−i,s+1− j ,

b̄∗
j = bs+1− j − b̄s+1− j ,

b∗
j = bs+1− j ,

(6.10)

for 1 � i, j � s. Certainly Λ∗
h belongs to G, and hence Λ∗

−h ∈ G. Furthermore,
from the definition of adjoint methods, we have Λ−1

h = Λ∗
−h straightforwardly.

Consequently, we have Λ−1
h ∈ G, so does its essential 0-stepsi ze form Λ′

h , namely,
Λ

′−1
h ∈ G. This completes the proof. �

Remark 6.2 Here, the above way of defining an RKN group has some nonessential
differences from that of the RK group defined by Hairer and Wanner [11]. These
differences actually rely on the following fact. If Φh and Ψh are two different RKN
methods and they are not adjoint to each other, then the composition Φh ◦ Ψ ∗

−h does
not belong to G1 any more. Here Ψ ∗

h denotes the adjoint method of Ψh . That is why
we have additionally introduced Definition6.1 and the set G0. Likewise, it is also
needed to introduce another new definition (Definition6.2) when constructing the
ERKN group in the next section.

6.3 ERKN Group and Related Issues

6.3.1 Construction of ERKN Group

In this section, we are concerned with the group-structure analysis of the efficient
integrator for the oscillatory second-order initial problem (6.1). It seems that classical
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RKN methods could still be applied to these problems as numerical integrators,
since one may move the term My from the left-hand side to the right-hand side of
the differential equation and then the problem (6.1) can be also transformed to the
type of (6.2). However, when ||M || � 1, RKN methods may not be very effective
methods for solving (6.1) and show bad numerical behavior. This is mainly caused
by the highly oscillatory effect introduced by the linear term My. Taking account
of this point, the extended Runge–Kutta–Nyström (ERKN) methods were proposed
and designed especially for the oscillatory problem (6.1).

Based on the matrix-variation-of-constants formula [33], an s-stage ERKN
method [34] for IVP (6.1) is defined by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yi = φ0(c
2
i V )yn + ci hφ1(c

2
i V )y′

n + h2
s∑

j=1

ai j (V ) f (Y j ), i = 1, . . . , s,

yn+1 = φ0(V )yn + hφ1(V )y′
n + h2

s∑
i=1

b̄i (V ) f (Yi ),

y′
n+1 = −hMφ1(V )yn + φ0(V )y′

n + h
s∑

i=1

bi (V ) f (Yi ).

(6.11)
Here, c1, . . . , cs are real constants, bi (V ), b̄i (V ) and ai j (V ) for i, j = 1, . . . , s are
matrix-valued functions of V ≡ h2M which are usually expressed in formal series
in terms of V

bi (V ) =
∞∑
k=0

b(2k)
i

(2k)!V
k, b̄i (V ) =

∞∑
k=0

b̄(2k)
i

(2k)!V
k, ai j (V ) =

∞∑
k=0

a(2k)
i j

(2k)!V
k, (6.12)

and

φ j (V ) :=
∞∑
k=0

(−1)kV k

(2k + j)! , j = 0, 1, . . . . (6.13)

The properties related to φ j (V ) for j = 0, 1, . . . can be found in [31] and the details
are omitted here. We can also express the ERKN method (6.11) in a Butcher tableau

c A(V )

b̄(V )
ᵀ

b(V )ᵀ

=

c1 a11(V ) · · · a1s(V )
...

...
...

cs as1(V ) · · · ass(V )

b̄1(V ) · · · b̄s(V )

b1(V ) · · · bs(V )

. (6.14)

Proceeding in the same spirit as for RKN methods, we also introduce a new
definition for ERKN methods as follows.
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Definition 6.2 Suppose that Ψh is an s-stage ERKN method defined by (6.11) for
the problem (6.1), Ψ ′

h is called essential 0-stepsi ze form of Ψh if the formula for
Ψ ′
h reads⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yi = φ0(c
2
i V )yn + ci hφ1(c

2
i V )y′

n + h2
s∑

j=1

ai j (V ) f (Y j ), i = 1, . . . , s,

yn+1 = yn + h2
s∑

i=1

b̄i (V ) f (Yi ),

y′
n+1 = y′

n + h
s∑

i=1

bi (V ) f (Yi ).

(6.15)
Then Ψh is called an h-stepsi ze form of Ψ ′

h .

Suppose that ϒ1
h and ϒ2

h are two ERKN methods with s1 stages and s2 stages,
respectively. The coefficients of ϒ1

h are denoted as (c, b, b̄, A), and those of ϒ2
h are

additionally denoted with a star (c∗, b∗, b̄∗, A∗). We now consider the composition
of ϒ1

γ h and ϒ2
βh . After a careful calculation, we derive the scheme ϒ2

βh ◦ ϒ1
γ h as

follows

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yi = φ0(γ
2c2i V )y0 + γ ci hφ1(γ

2c2i V )y′
0 + h2

s1∑
j=1

γ 2Ai j (γ
2V ) f (Y j ), i = 1, . . . , s1,

Ỹk = φ0((γ + βc∗
k )

2V )y0 + (γ + βc∗
k )hφ1((γ + βc∗

k )
2V )y′

0

+ h2
( s1∑

j=1

(
γ 2b̄ j (γ

2V )φ0(β
2c∗2

k V ) + γβc∗
k b j (γ

2V )φ1(β
2c∗2

k V )
)
f (Y j )

+
s2∑
j=1

β2A∗
k j (β

2V ) f (Ỹ j )
)
, k = 1, . . . , s2,

y1 = φ0((γ + β)2V )y0 + (γ + β)hφ1((γ + β)2V )y′
0

+ h2
( s1∑

j=1

(
γ 2b̄ j (γ

2V )φ0(β
2V ) + γβb j (γ

2V )φ1(β
2V )

)
f (Y j ) +

s2∑
i=1

β2b̄∗
i (β

2V ) f (Ỹi )
)
,

y′
1 = −(γ + β)hMφ1((γ + β)2V )y0 + φ0((γ + β)2V )y′

0

+ h
( s1∑

j=1

( − γ 2βV b̄ j (γ
2V )φ1(β

2V ) + γ b j (γ
2V )φ0(β

2V )
)
f (Y j ) +

s∑
i=1

βbi (β
2V ) f (Ỹi )

)
.

For the case γ + β �= 0, gives that the composition ϒ2
βh ◦ ϒ1

γ h indicates a new
ϒδh , namely, an (s1 + s2)-stage ERKNmethod with the stepsize δh = (γ +β)h, and
Butcher tableau



6.3 ERKN Group and Related Issues 143

γ c/δ γ 2A(γ 2/δ2V )/δ2

(γ e + βc∗)/δ Ā(V/δ2)/δ2 β2A∗(β2/δ2V )/δ2

B̄ᵀ(V/δ2)/δ2 β2b̄∗ᵀ(β2/δ2V )/δ2

Bᵀ(V/δ2)/δ βb∗ᵀ(β2/δ2V )/δ

, (6.16)

where⎧⎪⎨
⎪⎩

Āi j (V ) = γ 2b̄ j (γ
2V )φ0(β

2c∗2
i V ) + γβc∗

i b j (γ
2V )φ1(β

2c∗2
i V ),

B̄ j (V ) = γ 2b̄ j (γ
2V )φ0(β

2V ) + γβb j (γ
2V )φ1(β

2V ),

Bj (V ) = −γ 2βV b̄ j (γ
2V )φ1(β

2V ) + γ b j (γ
2V )φ0(β

2V ),

(6.17)

for i = 1, . . . , s2, j = 1, . . . , s1.
If γ + β = 0, the composition ϒ ′ = ϒ2

βh ◦ ϒ1
γ h is also essential 0-stepsi ze,

whose corresponding h-stepsi ze form can be expressed in the following Butcher
tableau

γ c γ 2A(γ 2V )

γ e + βc∗ Ā(V ) β2A∗(β2V )

B̄ᵀ(V ) β2b̄∗ᵀ(β2V )

Bᵀ(V ) βb∗ᵀ(β2V )

, (6.18)

where Āi j (V ), B̄ j (V ), Bj (V ) have the same expression as (6.17) with
∑

i γ b
(0)
i +∑

i βb
∗(0)
i = 0.

Define
Ω1 := {Φαh | Φh is an ERK N method f or α ∈ R},
Ω0 := {Φ ′

αh | Φ ′
αh is the essential 0-stepsize form of Φαh, Φαh ∈ Ω1 with∑

i b
(0)
i = 0}, and Ω = Ω1

⋃
Ω0.

Then we have the following theorem.

Theorem 6.2 (Ω, ◦, I ) is a group with respect to the composition ◦ and the
identity I .

The proof is similar to that of Theorem6.1, except that the coefficients of the adjoint
method of (6.11) can be expressed as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c∗
i = 1 − cs+1−i ,

a∗
i j (V ) = φ0(c

2
s+1−i V )b̄ j (V ) − cs+1−iφ1(c

2
s+1−i V )b j (V ) + as+1−i,s+1− j (V ) ,

b̄∗
j (V ) = φ1(V )bs+1− j (V ) − φ0(V )b̄s+1− j (V ) ,

b∗
j (V ) = Vφ1(V )b̄s+1− j (V ) + φ0(V )bs+1− j (V ) ,

(6.19)

for 1 � i, j � s. Hence, we omit the details here.
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6.3.2 The Relation Between the RKN Group G
and the ERKN Group Ω

In the previous sections, we have established the RKNgroup (G, ◦, I ) and the ERKN
group (Ω, ◦, I ). A direct observation shows that when M → 0, the oscillatory
problem (6.1) becomes the traditional second-order initial value problem (6.2), and
theERKNmethod (6.11) hence reduces to theRKNmethod (6.3). This point indicates
that there exists an inherent relationship between RKNmethods and ERKNmethods.
Thus, ERKN methods are usually regarded as an extension of RKN methods. In the
following, we will rigorously demonstrate this extension relationship.

In what follows, we will denote the coefficients of an RKN method in lower-case
by (c, b, b̄, a) and those of an ERKN method in upper-case by (C, B, B̄, A). As
ERKN methods depend on the matrix M , for each element Ψ ∈ Ω we will denote it
as Ψ (M) to show this relevance if necessary. Then the word reduces can be defined
as a map

η : Ω −→ G, η(Ψ ) = lim
M→0

Ψ (M), ∀ Ψ ∈ Ω.

As a continuation, we arrive at the following useful theorem.

Theorem 6.3 The map η is an epimorphism of the group Ω onto the group G.

Proof Suppose thatΨ 1 andΨ 2 are two elements ofΩ respectively with the stepsizes
γ h and βh, Φ1 = η(Ψ 1), and Φ2 = η(Ψ 2). From the composition laws (6.8) and
(6.9) of RKNmethods and those of ERKNmethods (6.16) and (6.18), it can be easily
verified that η(Ψ 2 ◦ Ψ 1) = Φ2 ◦ Φ1 = η(Ψ 2) ◦ η(Ψ 1). In addition, from the fact
that η(I ) = I , we conclude that η is a homomorphism of Ω into G.

Wenext show thatη is surjective. For each elementΦ ∈ G, which is denoted by the
coefficients (c, b, b̄, a), there exists Ψ ∈ Ω , whose coefficients can be expressed as

C = c, B(V ) = b ⊗ En, B̄(V ) = b̄ ⊗ En, A(V ) = a ⊗ En, (6.20)

where ⊗ is the Kronecker product, En is an n × n identity matrix and n is the
dimension of square matrix M . Obviously the coefficients (C, B, B̄, A) define an
element in Ω , and thus η is surjective. This completes the proof. �

Corollary 6.1 Let K be the kernel of η, i.e. K = η−1(I ), then K is a normal
subgroup of Ω . Moreover, the induced map η̄ is an isomorphism of the quotient
group Ω = Ω/K onto the group G.

Theorem6.3 actually gives a global view of ERKN methods by connecting them
with classical RKN methods via the epimorphism map η. From Corollary6.1, the
map η defines a congruence relation ≡ by the normal subgroup K , where

Φ ≡ Ψ (mod K ) if Φ−1 ◦ Ψ ∈ K .
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Then by finding a representative element Ψ for each congruence class Ψ ∈ Ω , we
can theoretically give all the elements inΨ , since for eachΘ ∈ Ψ there exists� ∈ K
such that Θ = Ψ ◦ �. This fact indicates that Ψ is the coset of Ψ relative to K , i.e.
Ψ = Ψ ◦ K . Hence it only remains to describe the normal subgroup K in detail.
This can be easily obtained from the following definition of K

K = {
Ψ ∈ Ω0|b(0)

j = 0 and b̄(0)
j = 0, ∀ j

}
.

6.4 A Particular Mapping of G into Ω

In Sect. 6.3,we have investigated theERKNgroup as awhole.However, asmentioned
in the previous section, we can just have a theoretical description for each congruence
class Ψ ∈ Ω , and this is not associated with the important properties of the method,
such as the symplecticity, the symmetry and the order. Recalling Corollary6.1 again,
and taking account of the fact that Ψ = Ψ ◦ K , it is of great importance to select
a representative element Ψ with favourable properties for the congruence class Ψ ,
even though we cannot give a detailed analysis for each element in Ψ .

Meanwhile, because η(Ψ ) = Φ ∈ G, Φ inherits all the advantages of the ERKN
elements in Ψ . Hence all the ERKN elements in Ψ cannot have better structural
properties than the reduced RKN element Φ. Taking account of this point, we may
find this appropriate representative element Ψ with the help of the corresponding
reducedRKNelementΦ. In fact, whatwe are considering is to find a normalmapping
ϕ from G into Ω , so that ϕ(Φ) can preserve as many properties as the original RKN
method Φ does. A direct result about the potential mapping ϕ is that it should be the
section of η. That is, the composition η ◦ ϕ = I is the identity on G. In this sense,
the underlying mapping defined by (6.20) may be a straightforward candidate for ϕ.
Unfortunately, most properties cannot be preserved in this easy way, and we have to
reconsider a proper mapping ϕ.

From the variation-of-constants formula (see, e.g. [31, 32]) for the problem (6.2)
and the problem (6.1), as well as the corresponding RKNmethod for (6.2) and ERKN
integrator (6.11), we consider the following mapping:

ϕ : G −→ Ω,

c a

b̄ᵀ

bᵀ

�−→
C A(V )

B̄(V )
ᵀ

B(V )ᵀ

, (6.21)

where ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ci = ci ,

Ai j (V ) = ai jφ1((ci − c j )
2V ),

B̄i (V ) = b̄iφ1((1 − ci )
2V ),

Bi (V ) = biφ0((1 − ci )
2V ),
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for 1 � i, j � s and s is the stage of the RKN method. This mapping naturally
maps a classical RKN method Φ to an ERRK method ϕ(Φ). Meanwhile, being a
representative element for the congruence class ϕ(Φ), we will show by the following
several theorems that ϕ(Φ) almost preserves all the properties that the original RKN
method Φ has.

Theorem 6.4 If Φ ∈ G is symplectic, then ϕ(Φ) ∈ Ω is symplectic.

Proof From the definition of G, it is needed to verify that the result holds for all
RKNmethods. Hence we can suppose that Φ is an s-stage symplectic RKNmethod.
The results from Suris [26] and Okunbor and Skeel [19] show that the coefficients
of Φ should satisfy the following symplectic conditions:

{
b̄i = (1 − ci )bi , 1 ≤ i ≤ s,

b̄i b j + biai j = b̄ j bi + b ja ji , 1 ≤ i, j ≤ s.
(6.22)

We next show that the ERKN method ϕ(Φ), whose coefficients C, A(V ), B̄(V ),

B(V ) defined by (6.21), is symplectic. Although there is no sufficient and necessary
conditions for the symplecticity of ERKNmethods, we will prove that ϕ(Φ) satisfies
the following conditions:

⎧⎪⎨
⎪⎩

φ0(V )Bi (V ) + Vφ1(V )B̄i (V ) = diφ0(c
2
i V ), di ∈ R, i = 1, 2, ..., s,

φ1(V )Bi (V ) − φ0(V )B̄i (V ) = cidiφ1(c
2
i V ), i = 1, 2, ..., s,

B̄i B j + di Ai j = B̄ j Bi + d j A ji , i, j = 1, 2, ..., s,

(6.23)

which are sufficient conditions for symplectic ERKN methods originally proposed
by Wu et al. [30].

The equations B̄i (V ) = b̄iφ1((1− ci )2V ) and Bi (V ) = biφ0((1− ci )2V ) exactly
give the first two equations of (6.23), with di = bi . Then, inserting the expression
of A(V ), B̄(V ), B(V ) into the the third equation of (6.23), we obtain

B̄i B j + di Ai j − (B̄ j Bi + d j A ji )

=(1 − ci )bib jφ1((1 − ci )
2V )φ0((1 − c j )

2V ) + biai jφ1((ci − c j )
2V )

− (
(1 − c j )bib jφ1((1 − c j )

2V )φ0((1 − ci )
2V ) + b ja jiφ1((ci − c j )

2V )
)

=(
bib j (c j − ci ) + biai j − b ja ji

)
φ1((ci − c j )

2V )

=0.

The last equation directly follows from (6.22). This completes the proof. �

Theorem 6.5 If Φ ∈ G is symmetric and the coefficients satisfy the simplifying
assumption b̄i = bi (1 − ci ), then ϕ(Φ) ∈ Ω is symmetric.
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Proof Similarly to Theorem6.4, we only need to verify the case that Φ is an s-stage
RKNmethod. Hence, we need to derive the symmetric conditions of ERKNmethods
[16, 27]

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ci = 1 − cs+1−i ,

Ai j (V ) = φ0(c
2
s+1−i V )B̄ j (V ) − cs+1−iφ1(c

2
s+1−i V )Bj (V ) + As+1−i,s+1− j (V ) ,

B̄ j (V ) = φ1(V )Bs+1− j (V ) − φ0(V )B̄s+1− j (V ) ,

Bj (V ) = Vφ1(V )B̄s+1− j (V ) + φ0(V )Bs+1− j (V ) ,

(6.24)
from the symmetric conditions of RKN methods [12],

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ci = 1 − cs+1−i ,

ai j = (1 − cs+1−i )bs+1− j − b̄s+1− j + as+1−i,s+1− j ,

b̄ j = bs+1− j − b̄s+1− j ,

b j = bs+1− j .

(6.25)

The first equation of (6.24) naturally holds. On noting that b j = bs+1− j and b̄ j =
b j (1 − c j ), we have

φ1(V )Bs+1− j − φ0(V )B̄s+1− j

=bs+1− jφ1(V )φ0((1 − cs+1− j )
2V ) − bs+1− j (1 − cs+1− j )φ0(V )φ1((1 − cs+1− j )

2V )

=b jφ1(V )φ0(c
2
j V ) − b j c jφ1(V )φ0(c

2
j V )

=b j (1 − c j )φ1((1 − c j )
2V )

=B̄ j (V ),

and

Vφ1(V )B̄s+1− j + φ0(V )Bs+1− j

=bs+1− j (1 − cs+1− j )Vφ1(V )φ1((1 − cs+1− j )
2V ) + bs+1− jφ0(V )φ0((1 − cs+1− j )

2V )

=b j
(
c j Vφ1(V )φ1(c

2
j V ) + φ0(V )φ0(c

2
j V )

)
=b jφ0((1 − c j )

2V )

=Bj (V ).

These give the third and fourth equations of (6.24). Furthermore, it follows from
(6.25) and the simplifying assumption ai j = b j (ci − c j ) + as+1−i,s+1− j . We thus
have

φ0(c
2
s+1−i V )B̄ j (V ) − cs+1−iφ1(c

2
s+1−i V )Bj (V ) + As+1−i,s+1− j (V )

=b j (1 − c j )φ0((1 − ci )
2V )φ1((1 − c j )

2V ) − b j (1 − ci )φ1((1 − ci )
2V )φ0((1 − c j )

2V )

+ as+1−i,s+1− jφ1((ci − c j )
2V )

=(
b j (ci − c j ) + as+1−i,s+1− j

)
φ1((ci − c j )

2V ),

=ai jφ1((ci − c j )
2V )

=Ai j (V ),
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...
τn

...τ1

...

��

��

τ̃k
...

···
pk1

...��

��

τ̃1 ...

···
p1

1

τ

Fig. 6.1 Figure of tree τ = τ1×τ2×· · ·×τn×
(
W+b+(b+B+)p1 (̃τ1)

)×· · ·×(
W+b+(b+B+)pk (̃τk)

)

τ ′
...

��

��τ1
...

τ

Fig. 6.2 Figure of tree τ = (W+b+(b+B+)0(τ1)) × τ ′

and consequently the second equation of (6.24) is satisfied. This completes the
proof. �

Remark 6.3 Although the condition b̄i = bi (1− ci ) required by Theorem6.5, looks
like an additional simplifying condition, in fact this assumption is already contained
in the symplectic conditions for RKN methods in Theorem6.4.

The following theorem is related to the order of a numerical method and the
corresponding order conditions. Hence it seems plausible to gain some knowledge of
special Nyström tree (SNT) and simplified special extended Nyström tree (SSENT),
which is respectively designed to deal with order conditions of RKN and ERKN
methods. Further details concerning SNT and SSENT can be found in [12, 35]. For
the convenience of the proof, we introduce the following two definitions and a basic
lemma, which will be used in the proof of the theorem later.

Definition 6.3 The degree of merge node d(τ ) on SSENT are recursively defined
as follows.
1. d(τ ) = 0, if τ ∈ SNT ;
2. d(τ ) = k + ∑n

j=1 d(τ j ) + ∑k
i=1 d (̃τi ), if τ = τ1 × τ2 × · · · × τn ×(

W+b+(b+B+)p1 (̃τ1)
)×· · ·×(

W+b+(b+B+)pk (̃τk)
)
and τi , τ̃ j ∈ SSENT , pi ∈ N+

(see Fig. 6.1).

Definition 6.4 If τ = (
W+b+(b+B+)0(τ1)

) × τ ′ (see Fig. 6.2), then we define τ1 to
be the first generation of τ . We recursively define that τn is the nth (n ≥ 2) generation
of τ , if there exists τ0 ∈ SSENT that τn is the first generation of τ0 and τ0 is the
(n − 1)th generation of τ .
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Lemma 6.1 If τ = τ1 × τ2, τ1, τ2 ∈ SSENT , then the order ρ(τ), the sign s(τ ),
the density γ (τ), and the weight Φi (τ ) satisfy

ρ(τ) =ρ(τ1) + ρ(τ2) − 1, s(τ ) = s(τ1) · s(τ2),
γ (τ ) =ρ(τ) · γ (τ1)

ρ(τ1)
· γ (τ2)

ρ(τ2)
, Φi (τ ) = Φi (τ1) · Φi (τ2).

(6.26)

This lemma can be directly obtained from the definition of order, density and sign
of an SSENT tree. Hence, we omit the remaining details of the proof here.

Theorem 6.6 If Ψ ∈ G is of order p (p ≥ 1), then ϕ(Ψ ) ∈ Ω is also of order p.

Proof Suppose that Ψ is an s-stage RKN method. The theorem can be stated as
follows.

If the order conditions [12]

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

s∑
i=1

b̄iΦi (τ ) = 1

(ρ(τ ) + 1)γ (τ )
, ∀τ ∈ SNTm, m ≤ p − 1,

s∑
i=1

biΦi (τ ) = 1

γ (τ)
, ∀τ ∈ SNTm, m ≤ p,

(6.27)

hold for Ψ , then the order conditions [35]

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

s∑
i=1

B̄iΦi (τ ) = ρ(τ)!
γ (τ)s(τ )

φρ(τ)+1 + O(h p−ρ(τ)), ∀τ ∈ SSENTm , m ≤ p − 1,

s∑
i=1

BiΦi (τ ) = ρ(τ)!
γ (τ)s(τ )

φρ(τ) + O(h p−ρ(τ)+1), ∀τ ∈ SSENTm , m ≤ p,

(6.28)
also hold for ϕ(Ψ ) under the mapping (6.21).

We will prove this theorem by induction. To this end, the degree of merge node
d(τ ) is used as an indicator. To show this in detail, we split the proof in two parts
with d(τ ) = 0 and d(τ ) > 0 for all τ ∈ SSENT . As stated in [35], we should first
note that SNT is in fact a subset of SSENT. In the first part of the proof we will show
that for each τ ∈ SNT , i.e. d(τ ) = 0, the statement of (6.28) holds.

Noting that s(τ ) = 1 holds for all τ ∈ SNT , we can rewrite (6.28) as an equivalent
form

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

s∑
i=1

B̄(2l)
i Φi (τ ) = ρ(τ)!

γ (τ)

(−1)l(2l)!
(ρ(τ ) + 1 + 2l)! , ∀τ ∈ SNTm, 2l ≤ p − m − 2,

s∑
i=1

B(2l)
i Φi (τ ) = ρ(τ)!

γ (τ)

(−1)l(2l)!
(ρ(τ ) + 2l)! , ∀τ ∈ SNTm, 2l ≤ p − m − 1,

(6.29)
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with the definitions of matrix-valued functions (6.12–6.13). Furthermore, taking
account of the mapping (6.21) and (6.12–6.13), we obtain the following equations

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

A(2k)
i j = ai j (ci − c j )

k (−1)k

2k + 1
,

B̄(2k)
j = b̄ j (1 − c j )

k (−1)k

2k + 1
,

B(2k)
j = b j (1 − c j )

k(−1)k,

(6.30)

for the constants A(2k)
i j , B(2k)

j , B̄(2k)
j by comparing the corresponding coefficients of

each term V k . Inserting the new expressions of (6.30) into (6.29) gives

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

s∑
i=1

b̄i (1 − ci )
2lΦi (τ ) = 1

γ (τ)

ρ(τ)!(2l + 1)!
(ρ(τ) + 1 + 2l)! , ∀τ ∈ SNTm , m + 2l + 1 ≤ p − 1,

s∑
i=1

bi (1 − ci )
2lΦi (τ ) = 1

γ (τ)

ρ(τ)!(2l)!
(ρ(τ) + 2l)! , ∀τ ∈ SNTm , m + 2l + 1 ≤ p.

(6.31)

This means that we only need show the correctness of (6.31) instead of (6.28).
Noting that Φi (τ ) is the weight of SNT tree τ , then cki Φi (τ ) will be the weight of

a new SNT tree τ ′ = τ0 × τ , where τ0 =
...1 2 k

.

Considering Lemma6.1, and noting that γ (τ0) = ρ(τ0) = k + 1, we then have

ρ(τ ′) = ρ(τ) + k, γ (τ ′) = ρ(τ) · γ (τ)

ρ(τ0)
· γ (τ)

ρ(τ0)
= γ (τ)

ρ(τ) + k

ρ(τ)
, Φi (τ

′) = cki Φi (τ ). (6.32)

For any k ≤ 2l, it can be deduced that k + ρ(τ) ≤ p, i.e. ρ(τ ′) ≤ p. Thus, together
with the order conditions (6.27) for the special SNT tree τ ′ and (6.32), the following
equations

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

s∑
i=1

b̄i
(
cki Φi (τ )

) = ρ(τ)

γ (τ )(ρ(τ) + k)(ρ(τ) + k + 1)
, ∀τ ∈ SNTm , m + k + 1 ≤ p − 1,

s∑
i=1

bi
(
cki Φi (τ )

) = ρ(τ)

γ (τ )(ρ(τ) + k)
, ∀τ ∈ SNTm , m + k + 1 ≤ p.

(6.33)

are satisfied. Multiplying by (−1)kCk
2l the two sides of (6.33) and summing over k

from 0 to 2l, we obtain
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2l∑
k=0

(−1)kCk
2l

s∑
i=1

b̄i
(
cki Φi (τ )

) =
s∑

i=1

b̄i (1 − ci )
2lΦi (τ )

=
2l∑
k=0

(−1)kCk
2l

ρ(τ)

γ (τ )(ρ(τ ) + k)(ρ(τ ) + k + 1)
,

2l∑
k=0

(−1)kCk
2l

s∑
i=1

bi
(
cki Φi (τ )

) =
s∑

i=1

bi (1 − ci )
2lΦi (τ )

=
2l∑
k=0

(−1)kCk
2l

ρ(τ)

γ (τ )(ρ(τ ) + k)
.

(6.34)
Comparing (6.31) with (6.34), it can be concluded that if the two conditions,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2l∑
k=0

(−1)kCk
2l

ρ(τ)

(ρ(τ) + k)(ρ(τ ) + k + 1)
= ρ(τ)!(2l + 1)!

(ρ(τ ) + 1 + 2l)!
2l∑
k=0

(−1)kCk
2l

ρ(τ)

(ρ(τ) + k)
= ρ(τ)!(2l)!

(ρ(τ ) + 2l)! ,
(6.35)

hold for any ρ(τ) ≤ p, the Eq. (6.31) will be satisfied. HereCk
2l denotes the binomial

coefficient (2l)!
k!(2l−k)! . It is clear that (6.35) is just a special case of the two identical

equations

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2l∑
k=0

(−1)kCk
2l

n

(n + k)(n + k + 1)
= n!(2l + 1)!

(n + 1 + 2l)! , ∀n ∈ N+,

2l∑
k=0

(−1)kCk
2l

n

(n + k)
= n!(2l)!

(n + 2l)! , ∀n ∈ N+.

(6.36)

Hence, the proof of this part is complete.
For the second part of the proof, we suppose that the order conditions for ϕ(Ψ )

hold for any d(τ ) = K (ρ(τ) ≤ p). This means that the equations

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

s∑
i=1

B̄iΦi (τ ) = ρ(τ)!
γ (τ)s(τ )

φρ(τ)+1 + O(h p−ρ(τ)),

s∑
i=1

BiΦi (τ ) = ρ(τ)!
γ (τ)s(τ )

φρ(τ) + O(h p−ρ(τ)+1),

(6.37)

are satisfied for τ ∈ SSENT, d(τ ) = K (ρ(τ) ≤ p).We turn to showing that (6.37)
also holds for any τ ∈ SSENT with d(τ ) = K + 1 (ρ(τ) ≤ p).
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Suppose that τ ∈ SSENT, ρ(τ ) ≤ p and d(τ ) = K + 1. It follows from
Definitions6.3 and 6.4 that there must exist two integers l ≥ 1, n ≥ 0 and
a corresponding SSENT tree τn in τ , where τn with the particular form τn =(
W+b+(b+B+)l(τ0)

)
is the nth generation of τ . Here, it is convenient to suppose

that τk+1 is the first generation of τk for 1 ≤ k ≤ n − 1 and τ1 is the the first
generation of τ , that is

τ = (
W+b+(b+B+)0(τ1)

) × τ ′
1, τk = (

W+b+(b+B+)0(τk + 1)
) × τ ′

k+1,

where τ ′
k may be some SSENT tree depending on τ . Using Lemma6.1, we have the

following formula

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

s(τk) = s(τk+1) · s(τ ′
k+1),

ρ(τk) = ρ(τk+1) + ρ(τ ′
k+1) + 1,

γ (τk) = ρ(τk)
(
ρ(τk+1) + 1

)
γ (τk+1)

γ (τ ′
k+1)

ρ(τ ′
k+1)

.

(6.38)

Recursively iterating (6.38) implies that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s(τ ) = s(τn) ·
n∏

k=1

s(τ ′
k+1),

ρ(τ ) = ρ(τk+1) + n +
n∑

k=1

ρ(τ ′
k+1),

γ (τ ) = ρ(τ)
(
ρ(τn) + 1

)
γ (τn) ·

n−1∏
k=1

ρ(τk)
(
ρ(τk) + 1

) ·
n∏

k=1

γ (τ ′
k+1)

ρ(τ ′
k+1)

.

(6.39)

Modifying the SSENT tree τ by merely replacing τn with τ̃n , we obtain a new
tree τ̃ (certainly τk will become a new one τ̃k and τ ′

k remains the same). Let δ =
ρ(τn) − ρ(τ̃n). Then it follows from (6.39) that

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

s(τ̃ ) = s(τ ) · s(τ̃n)
s(τn)

,

ρ(τ ) − ρ(τ̃ ) = ρ(τ1) − ρ(τ̃1) = · · · = ρ(τn) − ρ(τ̃n) = δ,

γ (τ̃ ) = γ (τ)
γ (τ̃n)

γ (τn)

(
1 − δ

ρ(τ)

)(
1 − δ

ρ(τn) + 1

) ·
n−1∏
k=1

(
1 − δ

ρ(τk)

)(
1 − δ

ρ(τk) + 1

)
.

(6.40)

For τn = (
W+b+(b+B+)l(τ0)

)
(see Fig. 6.3), we can derive

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
s(τn) = (−1)l s(τ0),

ρ(τn) = ρ(τ0) + 2l + 2,

γ (τn) = γ (τ0)
(ρ(τ0) + 2l + 2)!

ρ(τ0)!(2l)! .

(6.41)
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��

��

τ0...

···
l

1

Fig. 6.3 Figure of tree τn = (
W+b+(b+B+)l (τ0)

)

...k 1 ...
τ0

... 12l − k

Fig. 6.4 Figure of tree τ̃n

We now consider τ̃n (see Fig. 6.4) with the particular form

τ̃n =

2l−k f olds︷ ︸︸ ︷

× ×·· ·× × W+b+(b+B+)0(τ0 ×

k f olds︷ ︸︸ ︷

×·· ·× )
)
, 0 ≤ k ≤ 2l.

We then have⎧⎪⎪⎪⎨
⎪⎪⎪⎩
s(τ̃n) = s(τ0),

ρ(τ̃n) = ρ(τ0) + 2l + 2,

γ (τ̃n) = (
ρ(τ0) + k

)(
ρ(τ0) + k + 1

)(
ρ(τ0) + 21 + 2

)γ (τ0)

ρ(τ0)
.

(6.42)

Combining (6.40) with (6.41–6.42), we derive the following equations

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
s(τ̃ ) = s(τ ) · (−1)l ,

ρ(τ̃ ) = ρ(τ), i.e. δ = 0,

γ (τ̃ ) = γ (τ)

(
ρ(τ0) + k

)(
ρ(τ0) + k + 1

)
(ρ(τ0) − 1)!(2l)!

(ρ(τ0) + 2l + 1)! .

(6.43)

Keep in mind that the weights of τ and τ̃ (k) (here we concretely denote the new
tree τ̃ as τ̃ (k) since it really depends on k) can be respectively expressed as
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⎪⎪⎪⎪⎪⎩

Φi (τ ) =
s∑

μ=1

s∑
ν=1

�μA
(2l)
μν �ν =

s∑
μ=1

s∑
ν=1

�μaμν(cμ − cν)
2l (−1)l

2l + 1
�ν,

Φi (τ̃ (k)) =
s∑

μ=1

s∑
ν=1

c2l−k
μ �μaμνc

k
ν�ν,

(6.44)

where �μ,�ν are some summation depending on other branches of τ . It follows
from (6.44) that

Φi (τ ) =
2l∑
k=0

(−1)l+kCk
2l

2l + 1
Φi (τ̃ (k)). (6.45)

Moreover, from Definition6.3, the equation d(τ̃ (k)) = d(τ ) − 1 = K holds for any
0 ≤ k ≤ 2l. By the assumption in this part we know that the order conditions (6.37)
are satisfied for such τ̃ (k) (0 ≤ k ≤ 2l). Combining the Eq. (6.45) with the order
conditions for τ̃ (k), we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s∑
i=1

B̄iΦi (τ ) =
2l∑
k=0

(−1)l+kCk
2l

2l + 1

s∑
i=1

B̄iΦi (τ̃ (k))

=
2l∑
k=0

(−1)l+kCk
2l

2l + 1

ρ(τ̃ (k))!
γ (τ̃ (k))s(τ̃ (k))

φρ(τ̃ (k))+1 + O(h p−ρ(τ̃ (k))),

s∑
i=1

BiΦi (τ ) =
2l∑
k=0

(−1)l+kCk
2l

2l + 1

s∑
i=1

BiΦi (τ̃ (k))

=
2l∑
k=0

(−1)l+kCk
2l

2l + 1

ρ(τ̃ (k))!
γ (τ̃ (k))s(τ̃ (k))

φρ(τ̃ (k)) + O(h p−ρ(τ̃ (k))+1).

(6.46)

Taking account of the formula (6.43), which is related to τ and the new SSENT tree
τ̃ (k), the equations in (6.46) imply that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s∑
i=1

B̄iΦi (τ ) =
2l∑
k=0

(−1)kCk
2l (ρ(τ0) + 2l + 1)!(

ρ(τ0) + k
)(

ρ(τ0) + k + 1
)
(ρ(τ0) − 1)!(2l + 1)! · ρ(τ)!

γ (τ)s(τ )
φρ(τ)+1

+ O (h p−ρ(τ)),

s∑
i=1

BiΦi (τ ) =
2l∑
k=0

(−1)kCk
2l (ρ(τ0) + 2l + 1)!(

ρ(τ0) + k
)(

ρ(τ0) + k + 1
)
(ρ(τ0) − 1)!(2l + 1)! · ρ(τ)!

γ (τ)s(τ )
φρ(τ)

+ O (h p−ρ(τ)+1),

(6.47)

by replacing s(τ̃ (k)), γ (τ̃ (k)), ρ(τ̃ (k)) with s(τ ), γ (τ ), ρ(τ ). Comparing (6.47)
with (6.37), we observe that whether the order conditions are satisfied for τ depends
on the following equation

2l∑
k=0

(−1)kCk
2l(ρ(τ0) + 2l + 1)!(

ρ(τ0) + k
)(

ρ(τ0) + k + 1
)
(ρ(τ0) − 1)!(2l + 1)! = 1. (6.48)
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It has also been known that (6.48) is just a special case of the identity

2l∑
k=0

(−1)kCk
2l(n + 2l + 1)!(

n + k
)(
n + k + 1

)
(n − 1)!(2l + 1)! = 1, n, l ∈ N+.

Hence, (6.37) also holds for any τ ∈ SSENT that d(τ ) = K + 1 (ρ(τ) ≤ p).
Since both the base case and the inductive step have been demonstrated by the

above two processes, we have completed the proof of this theorem. �

The theorems established in this section essentially reveal the relation between
classical RKNmethods andERKNmethods. An original and natural way to construct
certain high-order ERKN methods is based on the order conditions (6.28), by which
only general fifth/sixth order ERKN methods have now been found and it is quite
difficult to find an arbitrarily high order ERKN method due to the high complexity.
However, the theoretical results stated above can provide us with another simple
way to construct high-order ERKN methods. In this way, we only need to find
its corresponding reduced RKN method and these have been well studied in the
literature. Furthermore, ERKNmethodswith particular properties, such as symmetry
and symplecticity, can also be obtained via themapping (6.21) and their reducedRKN
methods. Finally, we are able to obtain knowledge of ERKN methods by studying
RKN methods instead of ERKN methods themselves, especially in the construction
of high-order ERKN methods.

6.5 Numerical Experiments

In order to show applications of the results presented in the previous section, we
conduct some numerical experiments. First, we select some classical RKN methods
as follows:

• RKN3s4: the three-stage symmetric symplectic Runge–Kutta–Nyström method
of order four proposed by Forest and Ruth [6];

• RKN7s6: the seven-stage symmetric symplectic Runge–Kutta–Nyström method
of order six given by Okunbor and Skeel [21];

• RKN6s6: the six-stage Runge–Kutta–Nyström method of order six given by
Papakostas and Tsitourasy [22];

• RKN16s10: the sixteen-stage Runge–Kutta–Nyström method of order ten pre-
sented by Dormand, El-Mikkawy and Prince [5].

Then from themapping (6.21), their corresponding ERKNmethods are also obtained
with the individual properties maintained. We denote their corresponding ERKN
methods as ERKN3s4, ERKN7s6, ERKN6s6, and ERKN16s10, respectively.

During the numerical experiments, we will display the efficiency curves and the
conservation of energy for each Hamiltonian system. It should be noted that, the
numerical solution obtained by RKN16s10 with a small stepsize is used as the stan-
dard reference solution, if the analytical solution cannot be explicitly given.
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Problem 6.1 We first consider an orbital problem with perturbation [29]

⎧⎪⎪⎨
⎪⎪⎩
q ′′
1 = −q1 − 2ε + ε2

r5
q1, q1(0) = 1, q ′

1(0) = 0,

q ′′
2 = −q2 − 2ε + ε2

r5
q2, q2(0) = 0, q ′

1(0) = 1 + ε,

where r =
√
q2
1 + q2

2 , and the analytical solution is given by

q1(t) = cos(t + εt), q2(t) = sin(t + εt),

with the Hamiltonian

H = p21 + p22
2

+ q2
1 + q2

2

2
− 2ε + ε2

3(q2
1 + q2

2 )
3
2

.

We numerically integrate the problem on the interval [0, 1000] with ε = 10−3.
It is clear from the efficiency curves in Fig. 6.5a that ERKN methods are usually
superior to their corresponding reducedRKNmethodswith respect to the global error
(GE), and a high-order RKN/ERKN method also shows better performance than a
low-order RKN/ERKN method in dealing with an oscillatory problem. Figure6.5b
demonstrates that symplectic methods (RKN3s4, RKN7s6, ERKN3s4, ERKN7s6)
show their good energy-conservation property for the Hamiltonian, while the other
methods without symplecticity lead to a linear energy dissipation on a long-term
scale. The detailed results on the energy conservation for ERKN3s4 and ERKN7s6
are shown in Fig. 6.6. All these results from Figs. 6.5 and 6.6 are consistent with
those of classical numerical methods, and show that ERKNmethods obtained by the
map ϕ with the reduced RKN methods are remarkably efficient and effective.

Problem 6.2 We consider the Hénon–Heilse system

{
q ′′
1 + q1 = −2q1q2,

q ′′
2 + q2 = −q2

1 + q2
2 ,

(6.49)

with the initial conditions q1(0) =
√

5
48 , p2(0) = 1

4 , q2(0) = p1(0) = 0. The
Hamiltonian of the system is given by

H(p, q) = 1

2
(p21 + p22) + 1

2
(q2

1 + q2
2 ) + q2

1q2 − 1

3
q3
2 .

We first integrate this problem on the interval [0, 1000] with different stepsizes.
The efficiency curves for each method are shown in Fig. 6.7a, which indicate the
comparable efficiency for ERKNmethods to their corresponding reduced RKNones,
since ||M || now nearly has the same magnitude as || ∂ f

∂q ||. This phenomenon also
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Fig. 6.5 Results for Problem 6.1: a The log-log plot of maximum global error GE against number
of function evaluations; b the logarithm of the maximum global error of Hamiltonian GEH =
max |Hn − H0| against log10(t) with the stepsize h = 1
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Fig. 6.7 Results for Problem6.2: a The log-log plot of maximum global error GE against the
number of function evaluations; b the logarithm of the maximum global error of Hamiltonian
GEH = max|Hn − H0| against log10(t) with the stepsize h = 0.5

occurs in Fig. 6.7b, where the energy-conservation curve for each method is plotted.
Besides, we can also observe from Fig. 6.7 that the difference between symplectic
methods is a little more remarkable than that between non-symplectic ones. The
good energy-conservation property of symplectic ERKN methods (ERKN3s4 and
ERKN7s6) is clearly shown in Fig. 6.8, which demonstrates that the symplecticity is
maintained by the mapping ϕ very well.

Problem 6.3 Weconsider the sine-Gordon equation [13]with the periodic boundary
conditions ⎧⎨

⎩
∂2u

∂t2
= ∂2u

∂x2
− sin u, −5 ≤ x ≤ 5, t ≥ 0,

u(−5, t) = u(5, t).
(6.50)

A semi-discretization on the spatial variable with the second-order symmetric dif-
ferences gives the following differential equations in time

d2U

dt2
+ MU = F(U ), (6.51)

where U (t) = (u1(t), . . . , uN (t))ᵀ with ui (t) ≈ u(xi , t), xi = −5 + i�x for
i = 1, . . . , N , �x = 10/N , and
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Fig. 6.8 Results for Problem6.2: the global error forHamiltonian of symplecticmethods ERKN3s4
and ERKN7s6 with the stepsize h = 0.5
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⎟⎟⎟⎟⎟⎠

F(U ) = − sin(U ) = −(sin u1, . . . , sin uN )ᵀ.

The corresponding Hamiltonian is given by

H(U ′,U ) = 1

2
U ′ᵀU ′ + 1

2
UᵀMU − (

cos u1 + . . . + cos uN
)
.

For this problem, we take the initial conditions as

U (0) = (π)Ni=1, Ut (0) = √
N

(
0.01 + sin(

2π i

N
)
)N
i=1,

with N = 64. For the efficiency curves in Fig. 6.9a, we integrate the problem for
tend = 10 with the different stepsizes. Figure6.9a shows the good efficiency and
accuracy of all the ERKN methods. In Fig. 6.9b, all methods give rise to energy
dissipation even if the method is symplectic. This phenomenon is mainly caused by
the chaotic behavior of the problem, in which a sufficiently small perturbation may
lead to a significant error after a long time, and this increase is always exponential.
It can be observed from Fig. 6.10 that the numerical reference solution obtained by
RKN16s10 obviously shows notable difference between the initial interval [0, 100]
and the terminal interval [900, 1000]. Figure6.11 gives a further demonstration that
the global errors of RKN7s6 and ERKN7s6 increase nearly in an exponential fashion
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Fig. 6.9 Results for Problem6.3: a The log-log plot of maximum global error GE against number
of function evaluations; b the logarithm of the maximum global error of Hamiltonian GEH =
max|Hn − H0| against log10(t) with the stepsize h = 0.01
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Fig. 6.10 Results for Problem6.3: The numerical reference solution in different interval obtained
by RKN16s10 with the stepsize h = 0.001

with time t . This may lead to non-conservation for symplectic methods in practical
numerical computations.

Problem 6.4 We consider the Fermi-Pasta-Ulam problem (see, e.g. [10]), which
can be expressed by a Hamiltonian system with the Hamiltonian
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Fig. 6.11 Results for Problem6.3: the global error for RKN7s6 and ERKN7s6 with the stepsize
h = 0.01, respectively

H(y, x) = 1

2

2m∑
i=1

y2i + ω2

2

m∑
i=1

x2m+i + 1

4

(
(x1 − xm+1)

4

+
m−1∑
i=1

(xi+1 − xm+i−1 − xi − xm+i )
4 + (xm + x2m)4

)
,

(6.52)

where xi represents a scaled displacement of the i th stiff spring, xm+i is a scaled
expansion (or compression) of the i th stiff spring, and yi , ym+i are their velocities
(or momenta).

The corresponding Hamiltonian system is given by

{
x ′ = Hy(y, x),

y′ = −Hx (y, x),
(6.53)

which can be also written in the equivalent form of the oscillatory second-order
differential equations

x ′′(t) + Mx(t) = −∇xU (x), (6.54)

where

y = x ′, M =
(
0m×m 0m×m

0m×m ω2 Im×m

)
,

U (x) = 1

4

(
(x1 − xm+1)

4 +
m−1∑
i=1

(xi+1 − xm+i−1 − xi − xm+i )
4 + (xm + x2m)4

)
.
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Fig. 6.12 Results for Problem6.4: a The log-log plot of maximum global error GE against the
number of function evaluations; b the logarithm of the maximum global error of Hamiltonian
GEH = max |Hn − H0| against log10(t) with the stepsize h = 0.005

In the experiment, we choose

m = 3, x1(0) = 1, y1(0) = 1, x4(0) = 1

ω
, y1(0) = 1, ω = 200,

and choose zero for the remaining initial values. The numerical results are shown
in Fig. 6.12. Similarly to Problem6.3, we also integrate the equation over a short
interval with tend = 20 to decrease the influence of chaotic behavior. Both figures
show good efficiency in the global error and energy error for the ERKN methods.
In particular, symplecticity is also maintained by the map ϕ, such as ERKN3s4 and
ERKN7s6 in Fig. 6.13 display a stable energy conservation in the sense of numerical
computation.

6.6 Conclusions and Discussions

In this chapter, we studied in greater depth the ERKNmethods for solving (6.1) based
on the group structure of numericalmethods.After the construction of theRKNgroup
and the ERKN group, we first presented the inherent relationship between ERKN
and RKN methods, that is, there exists an epimorphism η of the ERKN group onto
the RKN group. This epimorphism gives a clear and exact meaning for the word
extension from RKN methods to ERKN methods and describes the ERKN group in
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Fig. 6.13 Results for Problem6.4: the global error for Hamiltonian of symplectic methods
ERKN3s4 and ERKN7s6 with the stepsize h = 0.01

terms of the RKN group in the sense of structure preservation. Moreover, we estab-
lished the particular mapping ϕ defined by (6.21), which maps an RKNmethod to an
ERKNmethod. A series of theorems about the mapping show that the image element
can be regarded as an ideal representative element for each congruence class of the
ERKN group. That is, the image ERKN element almost preserves as many proper-
ties as the RKN element does. This mapping ϕ also provides us with an effective
approach to constructing arbitrarily high order (symmetric or symplectic) ERKN
methods, whereas the original way based directly on order conditions (symmetric or
symplectic conditions) is more complicated. Furthermore, the numerical simulations
in Sect. 6.5 strongly support our theoretical analysis in Sect. 6.4, and the numerical
results are really promising. The high-order structure-preserving ERKN methods
obtained in such a simple and effective way show better efficiency and accuracy than
their corresponding reduced methods (letting V = 0), namely, the RKN methods.

Remember that the exponential Fourier collocation methods for first-order differ-
ential equations were derived and analysed in Sect. 6.3. Accordingly, the next chapter
will present trigonometric collocation methods for multi-frequency and multidimen-
sional second-order oscillatory systems.

The material of this chapter is based on the recent work by Mei and Wu [17].
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Chapter 7
Trigonometric Collocation Methods for
Multi-frequency and Multidimensional
Oscillatory Systems

This chapter presents a class of trigonometric collocationmethods based onLagrange
basis polynomials for solving multi-frequency and multidimensional oscillatory
systems q ′′(t) + Mq(t) = f

(
q(t)

)
. The properties of the collocation methods are

investigated in detail. It is shown that the convergence condition of these methods is
independent of ‖M‖, which is crucial for solving multi-frequency oscillatory
systems.

7.1 Introduction

The numerical treatment of multi-frequency oscillatory systems is a computational
problem of overarching importance in a wide range of applications, such as quantum
physics, circuit simulations, flexible body dynamics and mechanics (see, e.g. [3, 5,
6, 8, 9, 32, 33] and the references therein). The main purpose of this chapter is
to construct and analyse a class of efficient collocation methods for solving multi-
frequency and multidimensional oscillatory second-order differential equations of
the form

q ′′(t) + Mq(t) = f
(
q(t)

)
, q(0) = q0, q ′(0) = q ′

0, t ∈ [0, tend], (7.1)

where M is a d × d positive semi-definite matrix implicitly containing the dominant
frequencies of the oscillatory problem and f : Rd → R

d is an analytic function.
The solution of this system is a multi-frequency nonlinear oscillator because of the
presence of the linear term Mq. The system (7.1) is a highly oscillatory problem
when ‖M‖ � 1. In recent years, various numerical methods for approximating
solutions of oscillatory systems have been developed by many researchers. Readers
are referred to [12–14, 21–25, 31] and the references therein. Once it is further
assumed that M is symmetric and f is the negative gradient of a real-valued function
U (q), the system (7.1) is identical to the following initial value Hamiltonian system
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{
q̇(t) = ∇p H(q(t), p(t)), q(0) = q0,

ṗ(t) = −∇q H(q(t), p(t)), p(0) = p0 ≡ q ′
0,

(7.2)

with the Hamiltonian

H(q, p) = 1

2
pᵀ p + 1

2
qᵀMq + U (q). (7.3)

This is an important Hamiltonian problem which has seen studied by many authors
(see, e.g. [3–5, 8, 9]).

In [26], the authors took advantage of shifted Legendre polynomials to obtain a
local Fourier expansion of the system (7.1) and derived the so-called trigonometric
Fourier collocation methods. Theoretical analysis and numerical experiments in [26]
showed that the trigonometric Fourier collocation methods are more efficient than
some earlier codes. Motivated by the work in [26], this chapter is devoted to the
formulation and analysis of another trigonometric collocation method for solving
multi-frequency oscillatory second-order systems (7.1). We will consider a classical
approach and use Lagrange polynomials to derive a class of trigonometric collo-
cation methods. Because of this different approach, compared with the methods in
[26], the collocation methods have a simpler scheme and can be implemented at a
lower cost in practical computations. These trigonometric collocation methods are
designed by interpolating the function f of (7.1) by Lagrange basis polynomials,
and incorporating the variation-of-constants formula and the idea of collocation. It
is noted that these integrators are a class of collocation methods and they share all of
the important features of collocation methods. We analyse the properties of trigono-
metric collocation methods and study the convergence of the fixed-point iteration
for these methods. It is important to emphasize that for the trigonometric colloca-
tion methods, the convergence condition is independent of ‖M‖, which is a crucial
property for solving highly oscillatory systems.

This chapter is organized as follows. In Sect. 7.2, we formulate the scheme of
trigonometric collocation methods based on Lagrange basis polynomials. The prop-
erties of the obtained methods are analysed in Sect. 7.3. In Sect. 7.4, a fourth-order
scheme of the collocation methods is presented and numerical results confirm that
the method proposed in this chapter yields a dramatic improvement. Conclusions are
included in the last section.

7.2 Formulation of the Methods

We first restrict the multi-frequency oscillatory system (7.1) to the interval [0, h]
with any h > 0:

q ′′(t) + Mq(t) = f
(
q(t)

)
, q(0) = q0, q ′(0) = q ′

0, t ∈ [0, h]. (7.4)
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With regard to the variation-of-constants formula for (7.1) given in [29], we have
the following result on the exact solution q(t) of the system (7.1) and its derivative
q ′(t) = p(t):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

q(t) = φ0(t
2M)q0 + tφ1(t

2M)p0 + t2
∫ 1

0
(1 − z)φ1

(
(1 − z)2t2M

)
f
(
q(t z)

)
dz,

p(t) = −t Mφ1(t
2M)q0 + φ0(t

2M)p0 + t
∫ 1

0
φ0

(
(1 − z)2t2M

)
f
(
q(t z)

)
dz,

(7.5)

where t ∈ [0, h] and

φi (M) :=
∞∑

l=0

(−1)l Ml

(2l + i)! , i = 0, 1. (7.6)

It follows from (7.5) that
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

q(h) = φ0(V )q0 + hφ1(V )p0 + h2
∫ 1

0
(1 − z)φ1

(
(1 − z)2V

)
f
(
q(hz)

)
dz,

p(h) = −hMφ1(V )q0 + φ0(V )p0 + h
∫ 1

0
φ0

(
(1 − z)2V

)
f
(
q(hz)

)
dz,

(7.7)

where V = h2M.

The main idea in designing practical schemes to solve (7.1) is to approximate
f (q) in (7.7) by a quadrature. In this chapter, we interpolate f (q) as

f
(
q(ξh)

) ∼
s∑

j=1

l j (ξ) f
(
q(c j h)

)
, ξ ∈ [0, 1], (7.8)

where

l j (x) =
s∏

k=1,k �= j

x − ck

c j − ck
, (7.9)

for j = 1, . . . , s, are the Lagrange basis polynomials, and c1, . . . , cs are distinct real
numbers (s ≥ 1, 0 ≤ ci ≤ 1). Then replacing f (q(ξh)) in (7.7) by the series (7.8)
yields an approximation of q(h), p(h) as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

q̃(h) = φ0(V )q0 + hφ1(V )p0 + h2
s∑

j=1

I1, j f
(
q̃(c j h)

)
,

p̃(h) = −hMφ1(V )q0 + φ0(V )p0 + h
s∑

j=1

I2, j f
(
q̃(c j h)

)
,

(7.10)

where

I1, j :=
∫ 1

0
l j (z)(1 − z)φ1

(
(1 − z)2V

)
dz, I2, j :=

∫ 1

0
l j (z)φ0

(
(1 − z)2V

)
dz. (7.11)
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From the variation-of-constants formula (7.5) for (7.4), the approximation (7.10)
satisfies the following system

⎧
⎪⎪⎨

⎪⎪⎩

q̃ ′(ξh) = p̃(ξh), q̃(0) = q0,

p̃′(ξh) = −Mq̃(ξh) +
s∑

j=1

l j (ξ) f
(
q̃(c j h)

)
, p̃(0) = p0.

(7.12)

In what follows we first approximate f
(
q̃(c j h)

)
, I1, j , I2, j in (7.10), and then

formulate a class of trigonometric collocation methods.

7.2.1 The Computation of f (q̃(c j h))

It follows from (7.12) that q̃(ci h) for i = 1, 2, . . . , s, can be obtained by solving the
following discrete problems:

q̃ ′′(ci h) + Mq̃(ci h) =
s∑

j=1

l j (ci ) f
(
q̃(c j h)

)
, q̃(0) = q0, q̃ ′(0) = p0. (7.13)

Set q̃i = q̃(ci h) for i = 1, 2, . . . , s. Then (7.13) can be solved by the variation-of-
constants formula (7.5) in the form:

q̃i = φ0(c
2
i V )q0 + ci hφ1(c

2
i V )p0 + (ci h)2

s∑

j=1

Ĩci , j f (q̃ j ), i = 1, 2, . . . , s,

where

Ĩci , j :=
∫ 1

0
l j (ci z)(1 − z)φ1

(
(1 − z)2c2i V

)
dz, i, j = 1, . . . , s. (7.14)

7.2.2 The Computation of I1, j, I2, j, Ĩci , j

With the definition (7.9), the integrals I1, j , I2, j , Ĩci , j appearing in (7.11) and (7.14)
can be computed as follows:

I1, j =
∫ 1

0
l j (z)(1 − z)φ1

(
(1 − z)2V

)
dz

=
s∏

k=1,k �= j

∞∑

l=0

∫ 1

0

z − ck

c j − ck
(1 − z)2l+1dz

(−1)l V l

(2l + 1)!
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=
∞∑

l=0

( s∏

k=1,k �= j

1
2l+3 − ck

c j − ck

) (−1)l V l

(2l + 2)! =
∞∑

l=0

l j

( 1

2l + 3

) (−1)l V l

(2l + 2)! ,

I2, j =
∫ 1

0
l j (z)φ0

(
(1 − z)2V

)
dz =

s∏

k=1,k �= j

∞∑

l=0

∫ 1

0

z − ck

c j − ck
(1 − z)2ldz

(−1)l V l

(2l)!

=
∞∑

l=0

( s∏

k=1,k �= j

1
2l+2 − ck

c j − ck

) (−1)l V l

(2l + 1)! =
∞∑

l=0

l j

( 1

2l + 2

) (−1)l V l

(2l + 1)! ,

Ĩci , j =
∫ 1

0
l j (ci z)(1 − z)φ1

(
(1 − z)2c2i V

)
dz

=
s∏

k=1,k �= j

∞∑

l=0

∫ 1

0

ci z − ck

c j − ck
(1 − z)2l+1dz

(−1)l(c2i V )l

(2l + 1)!

=
∞∑

l=0

( s∏

k=1,k �= j

ci
2l+3 − ck

c j − ck

) (−1)l(c2i V )l

(2l + 2)! =
∞∑

l=0

l j

( ci

2l + 3

) (−1)l(c2i V )l

(2l + 2)! ,

i, j = 1, . . . , s.

If M is symmetric and positive semi-definite, we have the decomposition of M as
follows:

M = PᵀW 2P = Ω2
0 with Ω0 = PᵀW P,

where P is an orthogonal matrix and W = diag(λk) with nonnegative diagonal
entries which are the square roots of the eigenvalues of M . Hence the above integrals
become

I1, j = Pᵀ
∫ 1

0
l j (z)W −1 sin

(
(1 − z)W

)
dz P

= Pᵀdiag
( ∫ 1

0
l j (z)λ

−1
k sin

(
(1 − z)λk

)
dz

)
P,

I2, j = Pᵀ
∫ 1

0
l j (z) cos

(
(1 − z)W

)
dz P = Pᵀdiag

( ∫ 1

0
l j (z) cos

(
(1 − z)λk

)
dz

)
P,

Ĩci , j = Pᵀ
∫ 1

0
l j (ci z)(ci W )−1 sin

(
(1 − z)ci W

)
dz P

= Pᵀdiag
( ∫ 1

0
l j (ci z)(ciλk)

−1 sin
(
(1 − z)ciλk

)
dz

)
P,

i, j = 1, . . . , s.
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Here, it is noted that W −1 sin
(
(1−z)W

)
, (ci W )−1 sin

(
(1−z)ci W

)
are well defined

also for singular W . The case λk = 0 gives:

∫ 1

0
l j (z)λ

−1
k sin

(
(1 − z)λk

)
dz =

∫ 1

0
l j (z)(1 − z)dz,

∫ 1

0
l j (z) cos

(
(1 − z)λk

)
dz =

∫ 1

0
l j (z)dz,

∫ 1

0
l j (ci z)(ciλk)

−1 sin
(
(1 − z)ciλk

)
dz =

∫ 1

0
l j (ci z)(1 − z)dz,

which can be evaluated easily since l j (z) is a polynomial function. If λk �= 0, they
can be evaluated as follows:

∫ 1

0
l j (z)λ

−1
k sin

(
(1 − z)λk

)
dz

= 1/λk

∫ 1

0
l j (z) sin

(
(1 − z)λk

)
dz

= 1/λ2
k

∫ 1

0
l j (z)d cos

(
(1 − z)λk

)

= 1/λ2
kl j (1) − 1/λ2

kl j (0) cos(λk) − 1/λ2
k

∫ 1

0
l ′j (z) cos

(
(1 − z)λk

)
dz

= 1/λ2
kl j (1) − 1/λ2

kl j (0) cos(λk) + 1/λ3
k

∫ 1

0
l ′j (z)d sin

(
(1 − z)λk

)

= 1/λ2
kl j (1) − 1/λ2

kl j (0) cos(λk) − 1/λ3
kl ′j (0) sin(λk)

− 1/λ3
k

∫ 1

0
l ′′j (z) sin

(
(1 − z)λk

)
dz

= 1/λ2
kl j (1) − 1/λ2

kl j (0) cos(λk) − 1/λ3
kl ′j (0) sin(λk)

− 1/λ4
kl ′′j (1) + 1/λ4

kl ′′j (0) cos(λk) + 1/λ5
kl(3)j (0) sin(λk)

+ 1/λ5
k

∫ 1

0
l(4)l, j (z) sin

(
(1 − z)λk

)
dz

= · · ·
·
·
·

=
�deg(l j )/2�∑

k=0

(−1)k/λ2k+2
k

(
l(2k)

j (1) − l(2k)
j (0) cos(λk) − 1/λkl(2k+1)

j (0) sin(λk)
)
,

for i = 1, 2, . . . , s, where deg(l j ) is the degree of l j and �deg(l j )/2� denotes the
integral part of deg(l j )/2.
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Likewise, we can obtain
∫ 1

0
l j (z) cos

(
(1 − z)λk

)
dz

=
�deg(l j )/2�∑

k=0

(−1)k/λ2k+1
k

(
l(2k)

j (0) sin(λk) + 1/λkl(2k+1)
j (1) − 1/λ2kl(2k+1)

j (0) cos(λk)
)
,

∫ 1

0
l j (ci z)(ci λk)

−1 sin
(
(1 − z)ci λk

)
dz

=
�deg(l j )/2�∑

k=0

(−1)k/(ci λk)
2k+2

(
l(2k)

j (ci ) − l(2k)
j (0) cos(ci λk) − 1/λkl(2k+1)

j (0) sin(ci λk)
)
,

(7.15)
for i, j = 1, 2, . . . , s.

7.2.3 The Scheme of Trigonometric Collocation Methods

We are now in a position to present a class of trigonometric collocation methods for
the multi-frequency oscillatory second-order oscillatory system (7.1).

Definition 7.1 A trigonometric collocation method for integrating the multi-
frequency oscillatory system (7.1) is defined as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q̃i = φ0(c
2
i V )q0 + ci hφ1(c

2
i V )p0 + (ci h)2

s∑

j=1

Ĩci , j f (q̃ j ), i = 1, 2, . . . , s,

q̃(h) = φ0(V )q0 + hφ1(V )p0 + h2
s∑

j=1

I1, j f (q̃ j ),

p̃(h) = −hMφ1(V )q0 + φ0(V )p0 + h
s∑

j=1

I2, j f (q̃ j ),

(7.16)

where h is the stepsize and I1, j , I2, j , Ĩci , j can be computed as stated in Sect. 7.2.2.

Remark 7.1 In [26], the authors took advantage of shifted Legendre polynomials
to obtain a local Fourier expansion of the system (7.1) and derived trigonometric
Fourier collocation methods (TFCMs). TFCMs are a subclass of s-stage ERKN
methods presented in [29] with the following Butcher tableau:
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c1
r−1∑

j=0
I I1, j,c1(V )b1 P̂j (c1) . . .

r−1∑

j=0
I I1, j,c1(V )bs P̂j (cs)

...
...

. . .
...

cs

r−1∑

j=0
I I1, j,cs (V )b1 P̂j (c1) · · ·

r−1∑

j=0
I I1, j,cs (V )bs P̂j (cs)

r−1∑

j=0
I I1, j (V )b1 P̂j (c1) · · ·

r−1∑

j=0
I I1, j (V )bs P̂j (cs)

r−1∑

j=0
I I2, j (V )b1 P̂j (c1) · · ·

r−1∑

j=0
I I2, j (V )bs P̂j (cs)

(7.17)

where

I I1, j (V ) :=
∫ 1

0
P̂j (z)(1 − z)φ1

(
(1 − z)2V

)
dz,

I I2, j (V ) :=
∫ 1

0
P̂j (z)φ0

(
(1 − z)2V

)
dz,

I I1, j,ci (V ) :=
∫ 1

0
P̂j (ci z)(1 − z)φ1

(
(1 − z)2c2i V

)
dz,

r is an integer with the requirement: 2 ≤ r ≤ s, all P̂j are shifted Legendre polyno-
mials over the interval [0, 1], and cl , bl for l = 1, 2, . . . , s are the node points and
the quadrature weights of a quadrature formula, respectively.

It is noted that the method (7.16) is also the subclass of s-stage ERKN methods
with the following Butcher tableau:

c1 Ĩc1,1 . . . Ĩc1,s
...

...
. . .

...

cs Ĩcs ,1 · · · Ĩcs ,s

I1,1 · · · I1,s

I2,1 · · · I2,s

, (7.18)

where

I1, j :=
∫ 1

0
l j (z)(1 − z)φ1

(
(1 − z)2V

)
dz,

I2, j :=
∫ 1

0
l j (z)φ0

(
(1 − z)2V

)
dz,

Ĩci , j =
∫ 1

0
l j (ci z)(1 − z)φ1

(
(1 − z)2c2i V

)
dz.

From (7.17) and (7.18), it follows clearly that the coefficients of (7.18) are simpler
than (7.17). Therefore, the scheme of the methods derived in this chapter is much
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simpler than that given in [26]. The obtained methods can be implemented at a lower
cost in practical computations, which will be shown by the numerical experiments in
Sect. 7.4. The reason for this better efficiency is that we use a classical approach and
choose Lagrange polynomials to give a local Fourier expansion of the system (7.1).

Remark 7.2 We also note that in the recent monograph [2], it has been shown that
the approach of constructing energy-preserving methods for Hamiltonian systems
which are based upon the use of shifted Legendre polynomials (such as in [1])
and Lagrange polynomials constructed on Gauss–Legendre nodes (such as in [10])
leads to precisely the same methods. Therefore, by choosing special real numbers
c1, . . . , cs for (7.18) and special quadrature formulae for (7.17), the methods given
in this chapter may have some connections with those in [26], which need to be
investigated.

Remark 7.3 It is noted that the method (7.16) can be applied to the system (7.1)
with an arbitrary matrix M since trigonometric collocation methods do not need the
symmetry of M . Moreover, the method (7.16) exactly integrates the linear system
q ′′ + Mq = 0 and it has an additional advantage of energy preservation for linear
systems while respecting structural invariants and geometry of the underlying prob-
lem. The method approximates the solution in the interval [0, h]. We then repeat
this procedure with equal ease over the next interval. Namely, we can consider the
obtained result as the initial condition for a new initial value problem in the interval
[h, 2h]. In this way, the method (7.16) can approximate the solution in an arbitrary
interval [0, tend] with tend = Nh.

When M = 0, (7.1) reduces to a special and important class of systems of second-
order ODEs expressed in the traditional form

q ′′(t) = f
(
q(t)

)
, q(0) = q0, q ′(0) = q ′

0, t ∈ [0, tend]. (7.19)

For this case, with the definition (7.6) and the results of I1, j , I2, j , Ĩci , j in Sect. 7.2.2,
the trigonometric collocation method (7.16) reduces to the following RKN-type
method.

Definition 7.2 An RKN-type collocation method for integrating the traditional
second-order ODEs (7.19) is defined as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q̃i = q0 + ci hp0 + (ci h)2
s∑

j=1

1

2
l j

(ci

3

)
f (q̃ j ), i = 1, 2, . . . , s,

q̃(h) = q0 + hp0 + h2
s∑

j=1

1

2
l j

(1
3

)
f (q̃ j ),

p̃(h) = p0 + h
s∑

j=1

l j

(1
2

)
f (q̃ j ),

(7.20)

where h is the stepsize.
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Remark 7.4 The method (7.20) is the subclass of s-stage RKN methods with the
following Butcher tableau:

c Ā = (āi j )s×s

b̄T

bT

=

c1 l1
(

c1
3

)
/2 . . . ls

(
c1
3

)
/2

...
...

. . .
...

cs l1
(

cs
3

)
/2 · · · ls

(
cs
3

)
/2

l1
(
1
3

)
/2 · · · ls

(
1
3

)
/2

l1
(
1
2

)
· · · ls

(
1
2

)

(7.21)

Thus, by letting M = 0, the trigonometric collocation methods yield a subclass of
RKN methods for solving traditional second-order ODEs, which demonstrates wide
applications of the methods.

7.3 Properties of the Methods

For the exact solution of (7.2) at t = h, let y(h) =
(

qᵀ(h), pᵀ(h)
)ᵀ

. Then the

oscillatory Hamiltonian system (7.2) can be rewritten in the form

y′(ξh) = F(y(ξh)) :=
(

p(ξh)

−Mq(ξh) + f
(
q(ξh)

)
)

, y0 =
(

q0

p0

)
, (7.22)

for 0 ≤ ξ ≤ 1. The Hamiltonian is

H(y) = 1

2
pᵀ p + 1

2
qᵀMq + U (q). (7.23)

On the other hand, if we denote the updates of (7.16) by

ω(h) =
(

q̃ᵀ(h), p̃ᵀ(h)
)ᵀ

,

then we have

ω′(ξh) =
⎛

⎝
p̃(ξh)

−Mq̃(ξh) +
s∑

j=1
l j (ξ) f

(
q̃(c j h)

)

⎞

⎠ , ω0 =
(

q0

p0

)
. (7.24)

The next lemma is useful for the subsequent analysis.

Lemma 7.1 Let g : [0, h] → R
d have j continuous derivatives. Then
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∫ 1

0
Pj (τ )g(τh)dτ = O(h j ),

where Pj (τ ) is an orthogonal polynomial of degree j on the interval [0, 1].
Proof We assume that g(τh) can be expanded in Taylor series at the origin for sake
of simplicity. Then, for all j ≥ 0, by considering that Pj (τ ) is orthogonal to all
polynomials of degree n < j :

∫ 1

0
Pj (τ )g(τh)dτ =

∞∑

n=1

g(n)(0)

n! hn
∫ 1

0
Pj (τ )τ ndτ = O(h j ). �

7.3.1 The Order of Energy Preservation

In this subsection we analyse the order of preservation of the Hamiltonian energy.

Theorem 7.1 Assume that cl for l = 1, 2, . . . , s are chosen as the node points of an
s-point Gauss–Legendre’s quadrature over the integral [0, 1]. Then we have

H(ω(h)) − H(y0) = O(h2s+1),

where the constant symbolized by O is independent of h.

Proof It follows from Lemma7.1, (7.23) and (7.24) that

H(ω(h)) − H(y0) = h
∫ 1

0
∇ H(ω(ξh))ᵀω′(ξh)dξ

= h
∫ 1

0

((
Mq̃(ξh) − f (q̃(ξh)

)ᵀ
, p̃(ξh)ᵀ

)
·
⎛

⎝
p̃(ξh)

−Mq̃(ξh) +
s∑

j=1
l j (ξ) f

(
q̃(c j h)

)

⎞

⎠ dξ

= h
∫ 1

0
p̃(ξh)ᵀ

( s∑

j=1

l j (ξ) f (q̃(c j h)) − f
(
q̃(ξh)

))
dξ.

Moreover, we have

f
(
q̃(ξh)

) −
s∑

j=1

l j (ξ) f
(
q̃(c j h)

) = f (s+1)
(
q̃(ξh)

)|ξ=ζ

(n + 1)!
s∏

i=1

(ξh − ci h).

Here f (s+1)
(
q̃(ξh)

)
denotes the (s + 1)th derivative of f (q̃(t)) with respect to t . We

then obtain
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H(ω(h)) − H(y0) = − h
∫ 1

0
p̃(ξh)ᵀ

f (s+1)
(
q̃(ξh)

)|ξ=ζ

(n + 1)!
s∏

i=1

(ξh − ci h)dξ

= − hs+1
∫ 1

0
p̃(ξh)ᵀ

f (s+1)
(
q̃(ξh)

)|ξ=ζ

(n + 1)!
s∏

i=1

(ξ − ci )dξ.

Since cl for l = 1, 2, . . . , s are chosen as the node points of a s-point Gauss–

Legendre’s quadrature over the integral [0, 1],
s∏

i=1
(ξ−ci ) is an orthogonal polynomial

of degree s on the interval [0, 1]. Therefore, using Lemma7.1 we obtain

H(ω(h)) − H(y0) = −hs+1O(hs) = O(h2s+1).

This gives the result of the theorem. �

7.3.2 The Order of Quadratic Invariant

We next turn to the quadratic invariant Q(y) = qᵀ Dp of (7.1). The quadratic form
Q is a first integral of (7.1) if and only if pᵀ Dp + qᵀ D( f (q) − Mq) = 0 for all
p, q ∈ R

d . This implies that D is a skew-symmetric matrix and that qᵀ D( f (q) −
Mq) = 0 for any q ∈ R

d . The following result states the degree of accuracy of the
method (7.16).

Theorem 7.2 Under the condition in Theorem7.1, we have

Q(ω(h)) − Q(y0) = O(h2s+1),

where the constant symbolized by O is independent of h.

Proof From Q(y) = qᵀ Dp and Dᵀ = −D, it follows that

Q(ω(h)) − Q(y0) = h
∫ 1

0
∇Q(ω(ξh))ᵀω′(ξh)dξ

= h
∫ 1

0

(
− p̃(ξh)ᵀ D, q̃(ξh)ᵀ D

)
⎛

⎝
p̃(ξh)

−Mq̃(ξh) +
s∑

j=1
l j (ξ) f

(
q̃(c j h)

)

⎞

⎠ dξ.

Since qᵀ D( f (q) − Mq) = 0 for any q ∈ R
d , we have
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Q(ω(h)) − Q(y0) = h
∫ 1

0
q̃(ξh)ᵀ D

(
− Mq̃(ξh) +

s∑

j=1

l j (ξ) f
(
q̃(c j h)

))
dξ

= h
∫ 1

0
q̃(ξh)ᵀ D

f (s+1)
(
q̃(ξh)

)|ξ=ζ

(n + 1)!
s∏

i=1

(ξh − ci h)dξ

= hs+1
∫ 1

0
q̃(ξh)ᵀ D

f (s+1)
(
q̃(ξh)

)|ξ=ζ

(n + 1)!
s∏

i=1

(ξ − ci )dξ

= O(hs+1)O(hs) = O(h2s+1).

This completes the proof. �

7.3.3 The Algebraic Order

To emphasize the dependence of the solutions of y′(t) = F(y(t)) on the initial
values, for any given t̃ ∈ [0, h], we denote by y(·, t̃, ỹ) the solution satisfying the
initial condition y(t̃, t̃, ỹ) = ỹ and set

Φ(s, t̃, ỹ) = ∂y(s, t̃, ỹ)
∂ ỹ

. (7.25)

Recalling the elementary theory of ODEs, we have the following standard result (see,
e.g. [11])

∂y(s, t̃, ỹ)
∂ t̃

= −Φ(s, t̃, ỹ)F(ỹ). (7.26)

The following theorem states the result on the order of the trigonometric colloca-
tion methods.

Theorem 7.3 Under the condition in Theorem7.1, the trigonometric collocation
method (7.16) satisfies

y(h) − ω(h) = O(h2s+1),

where the constant symbolized by O is independent of h.

Proof It follows from (7.25) and (7.26) that
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y(h) − ω(h) = y(h, 0, y0) − y
(
h, h, ω(h)

) = −
∫ h

0

dy
(
h, τ, ω(τ)

)

dτ
dτ

= −
∫ h

0

[∂y
(
h, τ, ω(τ)

)

∂ t̃
+ ∂y

(
h, τ, ω(τ)

)

∂ ỹ
ω′(τ )

]
dτ

= h
∫ 1

0
Φ

(
h, ξh, ω(ξh)

)[
F

(
ω(ξh)

) − ω′(ξh)
]
dξ

= h
∫ 1

0
Φ

(
h, ξh, ω(ξh)

)
⎛

⎝
0

f
(
q̃(ξh)

) −
s∑

j=1
l j (ξ) f

(
q̃(c j h)

)

⎞

⎠ dξ.

We rewrite Φ
(
h, ξh, ω(ξh)

)
as a block matrix:

Φ
(
h, ξh, ω(ξh)

) =
(

Φ11(ξh) Φ12(ξh)

Φ21(ξh) Φ22(ξh)

)
,

where Φi j (i, j = 1, 2) are d × d matrices.
We then obtain

y(h) − ω(h) = h

⎛

⎜⎜
⎝

∫ 1
0 Φ12(ξh)

f (s+1)
(

q̃(ξh)

)
|ξ=ζ

(n+1)!
s∏

i=1
(ξh − ci h)dξ

∫ 1
0 Φ22(ξh)

f (s+1)
(

q̃(ξh)

)
|ξ=ζ

(n+1)!
s∏

i=1
(ξh − ci h)dξ

⎞

⎟⎟
⎠

= hs+1

⎛

⎜⎜
⎝

∫ 1
0 Φ12(ξh)

f (s+1)
(

q̃(ξh)

)
|ξ=ζ

(n+1)!
s∏

i=1
(ξ − ci )dξ

∫ 1
0 Φ22(ξh)

f (s+1)
(

q̃(ξh)

)
|ξ=ζ

(n+1)!
s∏

i=1
(ξ − ci )dξ

⎞

⎟⎟
⎠ = hs+1O(hs) = O(h2s+1).

The proof is complete. �

7.3.4 Convergence Analysis of the Iteration

Theorem 7.4 Assume that M is symmetric and positive semi-definite and that f
satisfies a Lipschitz condition in the variable q, i.e., there exists a constant L such
that ‖ f (q1) − f (q2)‖ ≤ L ‖q1 − q2‖. If

0 < h <
1

√
L max

i, j=1,...,s

∫ 1
0 |l j (ci z)(1 − z)|dz

, (7.27)

then the fixed-point iteration for the method (7.16) is convergent.



7.3 Properties of the Methods 181

Proof Following Definition7.1, the first formula of (7.16) can be rewritten as

Q = φ0(c
2V )(e ⊗ q0) + hcφ1(c

2V )(e ⊗ p0) + h2 A(V ) f (Q), (7.28)

where c = (c1, . . . , cs)
ᵀ, e = (1, . . . , 1)ᵀ, Q = (q̃1, . . . , q̃s)

ᵀ, f (Q) =(
f (q̃1)

ᵀ, . . . , f (q̃s)
ᵀ)ᵀ

, A(V ) = (
ai j (V )

)
s×s and ai j (V ) are the block diagonal

matrices defined by

ai j (V ) :=
∫ 1

0
l j (ci z)(1 − z)φ1

(
(1 − z)2c2i V

)
dz,

φ0(c
2V ) := diag

(
φ0(c

2
1V ), . . . , φ0(c

2
s V )

)ᵀ
,

cφ1(c
2V ) := diag

(
c1φ1(c

2
1V ), . . . , csφ1(c

2
s V )

)ᵀ
.

It follows from Proposition 2.1 in [18] that
∥
∥φ1

(
(1 − z)2c2i V

)∥∥ ≤ 1. We then obtain

∥∥ai j (V )
∥∥ ≤

∫ 1

0
|l j (ci z)(1 − z)|dz.

Let
ϕ(x) = φ0(c

2V )(e ⊗ q0) + hcφ1(c
2V )(e ⊗ p0) + h2 A(V ) f (x).

Then,

‖ϕ(x) − ϕ(y)‖ = ∥∥h2 A(V ) f (x) − h2 A(V ) f (y)
∥∥ ≤ h2L ‖A(V )‖ ‖x − y‖

≤ h2L max
i, j=1,...,s

∫ 1

0
|l j (ci z)(1 − z)|dz ‖x − y‖ ,

which means that ϕ(x) is a contraction from the assumption (7.27). The well-known
Contraction Mapping Theorem then ensures the convergence of the fixed-point iter-
ation. This proof is complete. �

Remark 7.5 We note that the convergence of the methods is independent of ‖M‖.
This point is of prime importance especially for highly oscillatory systems where
‖M‖ � 1, which will be shown by the numerical results of Problem2 in Sect. 7.4.

7.3.5 Stability and Phase Properties

In this part we are concerned with the stability and phase properties. We consider
the test equation:

q ′′(t) + ω2q(t) = −εq(t) with ω2 + ε > 0, (7.29)
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where ω represents an estimation of the dominant frequency λ and ε = λ2 − ω2 is
the error of that estimation. Applying (7.16) to (7.29) produces

(
q̃

h p̃

)
= S(V, z)

(
q0

hp0

)
,

where the stability matrix S(V, z) is given by

S(V, z) =
(

φ0(V ) − zb̄ᵀ(V )N−1φ0(c2V ) φ1(V )−zb̄ᵀ(V )N−1(c · φ1(c2V ))

−V φ1(V )−zbᵀ(V )N−1φ0(c2V ) φ0(V )−zbᵀ(V )N−1(c · φ1(c2V ))

)

with N = I + z A(V ), b̄(V ) =
(

I1,1, . . . , I1,s
)ᵀ

, b(V ) =
(

I2,1, . . . , I2,s
)ᵀ

.

Accordingly, we have the following definitions of stability and dispersion order
and dissipation order for our method (7.16).

Definition 7.3 (See [30]) Let ρ(S) be the spectral radius of S,

Rs = {(V, z)| V > 0 and ρ(S) < 1}

and
Rp = {(V, z)| V > 0, ρ(S) = 1 and tr(S)2 < 4 det(S)}.

Then Rs and and Rp are called the stability region and the periodicity region of the
method (7.16) respectively. The quantities

φ(ζ ) = ζ − arccos
( tr(S)

2
√
det(S)

)
, d(ζ ) = 1 − √

det(S)

are called the dispersion error and the dissipation error of the method (7.16), respec-
tively, where ζ = √

V + z. Then, a method is said to be dispersive of order r and
dissipative of order s, if φ(ζ ) = O(ζ r+1) and d(ζ ) = O(ζ s+1), respectively. If
φ(ζ ) = 0 and d(ζ ) = 0, then the corresponding method is said to be zero dispersive
and zero dissipative, respectively.

7.4 Numerical Experiments

As an example of the trigonometric collocation methods (7.16), we choose the
node points of a two-point Gauss–Legendre’s quadrature over the integral [0, 1], as
follows:

c1 = 3 − √
3

6
, c2 = 3 + √

3

6
. (7.30)
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Fig. 7.1 Stability region (shaded area) of the method LTCM

Then we choose s = 2 in (7.16) and denote the corresponding fourth-order method
as LTCM.

The stability region of this method is shown in Fig. 7.1. Here we choose the subset
V ∈ [0, 100], z ∈ [−5, 5] and the region shown in Fig. 7.1 only gives an indication
of the stability of this method.

The dissipative error and dispersion error are given respectively by

d(ζ ) = ε2

24(ε + ω2)2
ζ 4 + O(ζ 5), φ(ζ ) = ε2

6(ε + ω2)2
ζ 3 + O(ζ 4).

Note that when M = 0, the method LTCM reduces to a fourth-order RKNmethod
given by the Butcher tableau (7.21) with nodes in (7.30).

In order to show the efficiency and robustness of the fourth-order method LTCM,
several other integrators in the literature we select for comparison are:

• TFCM: a fourth-order trigonometric Fourier collocation method in [26] with c1 =
3−√

3
6 , c2 = 3+√

3
6 , b1 = b2 = 1/2, r = 2;

• SRKM1: the symplectic Runge–Kutta method of order five in [20] based on Radau
quadrature;

• EPCM1: the “extended Lobatto IIIA method of order four” in [15], which is an
energy-preserving collocation method (the case s = 2 in [10]);

• EPRKM1: the energy-preserving Runge–Kuttamethod of order four (formula (19)
in [1]).

Since all of these methods are implicit, we use the classical waveform Picard
algorithm. For each experiment, first we show the convergence rate of iterations for
different error tolerances. Then, for different methods, we set the error tolerance as
10−16 and set the maximum number of iteration as 5. We display the global errors
and the energy errors once the problem is a Hamiltonian system.
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Table 7.1 Results for Problem1: The total CPU time (s) of iterations for different error tolerances
(tol)

Methods tol = 1.0e−006 tol = 1.0e−008 tol = 1.0e−010 tol = 1.0e−012

LTCM 6.8215 8.8964 8.8500 10.5551

TFCM 9.7892 9.7553 9.9806 13.0105

SRKM1 67.0230 64.1777 75.9390 86.8317

EPCM1 104.4341 112.9710 126.4438 145.6188

EPRKM1 56.2409 64.3123 75.2503 84.9962

Problem 1 Consider the Hamiltonian equation which governs the motion of an
artificial satellite (this problem has been considered in [19]) with the Hamiltonian

H(q, p) = 1

2
pᵀ p + 1

2

κ

2
qᵀq + λ

( (q1q3 + q2q4)
2

r4
− 1

12r2

)
,

where q = (q1, q2, q3, q4)
ᵀ and r = qᵀq. The initial conditions are given on an

elliptic equatorial orbit by

q0 =
√

r0
2

(
− 1,−

√
3

2
,−1

2
, 0

)ᵀ
, p0 = 1

2

√

K 2
1 + e

2

(
1,

√
3

2
,
1

2
, 0

)ᵀ
.

Here M = κ
2 and κ is the total energy of the elliptic motion which is defined by

κ = K 2−2|p0|2
r0

− V0 with V0 = − λ

12r30
. The parameters of this problem are chosen as

K 2 = 3.98601 × 105, r0 = 6.8 × 103, e = 0.1, λ = 3
2 K 2 J2R2, J2 = 1.08625 ×

10−3, R = 6.37122 × 103. First the problem is solved on the interval [0, 104] with
the stepsize h = 1

10 to show the convergence rate of iterations. Table7.1 displays the
CPU time of iterations for different error tolerances. Then this equation is integrated
on [0, 1000] with the stepsizes 1/2i for i = 2, 3, 4, 5. The global errors against CPU
time are shown in Fig. 7.2i. We finally integrate this problem with the fixed stepsize
h = 1/20 on the interval [0, tend], and tend = 10, 100, 103, 104. Themaximum global
errors of Hamiltonian energy against CPU time are presented in Fig. 7.2ii.

Problem 2 Consider the Fermi–Pasta–Ulam problem [9].
Fermi–Pasta–Ulam problem is a Hamiltonian system with the Hamiltonian

H(y, x) = 1
2

2m∑

i=1
y2i + ω2

2

m∑

i=1
x2

m+i + 1
4

[
(x1 − xm+1)

4

+
m−1∑

i=1
(xi+1 − xm+i−1 − xi − xm+i )

4 + (xm + x2m)4
]
,

where xi is a scaled displacement of the i th stiff spring, xm+i represents a scaled
expansion (or compression) of the i th stiff spring, and yi , ym+i are their velocities
(or momenta). This system can be rewritten as
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Fig. 7.2 Results for Problem1. iThe logarithmof the global error (G E) over the integration interval
against the logarithm of CPU time. ii The logarithm of the maximum global error of Hamiltonian
energy (G E H ) against the logarithm of CPU time

x ′′(t) + Mx(t) = −∇U (x), t ∈ [t0, tend],

where

M =
(

0m×m0m×m

0m×mω2 Im×m

)
,

U (x) = 1

4

[
(x1 − xm+1)

4 +
m−1∑

i=1
(xi+1 − xm+i−1 − xi − xm+i )

4 + (xm + x2m)4
]
.

Following [9], we choose

m = 3, x1(0) = 1, y1(0) = 1, x4(0) = 1

ω
, y4(0) = 1,

with zero for the remaining initial values.
First, the problem is solved on the interval [0, 1000] with the stepsize h = 1

100
and ω = 100, 200 to show the convergence rate of iterations. See Table7.2 for the
total CPU time of iterations for different error tolerances. It can be observed that
when ω increases, the convergence rates of LTCM and TFCM are almost unaffected.
However, the convergence rates of the other methods vary greatly as ω becomes
large.

We then integrate the system on the interval [0, 50] with ω = 50, 100, 150, 200
and the stepsizes h = 1/(20 × 2 j ) for j = 1, . . . , 4. The global errors are shown
in Fig. 7.4. Finally, we integrate this problem with a fixed stepsize h = 1/100 on
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Table 7.2 Results for Problem2: The total CPU time (s) of iterations for different error tolerances
(tol)

Methods tol = 1.0e−006 tol = 1.0e−008 tol = 1.0e−010 tol = 1.0e−012

LTCM (ω = 100) 7.1570 9.7010 9.6435 12.2449

LTCM (ω = 200) 7.5169 10.0160 9.2135 11.1672

TFCM (ω = 100) 7.6434 10.3224 10.3341 12.7998

TFCM (ω = 200) 7.8861 11.1322 10.0578 12.3621

SRKM1 (ω = 100) 32.0491 39.4922 48.5822 57.0720

SRKM1 (ω = 200) 58.2410 70.5585 86.1757 99.6403

EPCM1 (ω = 100) 50.8899 70.5920 87.9782 102.9839

EPCM1 (ω = 200) 121.2714 149.7104 189.4323 220.1096

EPRKM1 (ω = 100) 31.0881 39.0050 47.6389 56.4456

EPRKM1 (ω = 200) 55.2205 68.8459 82.5919 98.5277

the interval [0, tend] with tend = 1, 10, 100, 1000. The maximum global errors of
Hamiltonian energy are presented in Fig. 7.4. Here, it is noted that some results are
too large, and hence we do not plot the corresponding points in Figs. 7.3 and 7.4. A
similar situation occurs in the next two problems.

Problem 3 Consider the nonlinear Klein-Gordon equation [17]

{
∂2u
∂t2 − ∂2u

∂x2 = −u3 − u, 0 < x < L , t > 0,
u(x, 0) = A(1 + cos( 2πL x)), ut (x, 0) = 0, u(0, t) = u(L , t),

with L = 1.28, A = 0.9. Carrying out a semi-discretization on the spatial variable
by using second-order symmetric differences yields

d2U
dt2 + MU = F(U ), 0 < t ≤ tend,

where U (t) = (
u1(t), . . . , uN (t)

)ᵀ
with ui (t) ≈ u(xi , t) for i = 1, . . . , N ,

M = 1

Δx2

⎛

⎜⎜⎜⎜⎜
⎝

2 −1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 −1 2

⎞

⎟⎟⎟⎟⎟
⎠

N×N

with Δx = L/N , xi = iΔx, F(U ) = ( − u3
1 − u1, . . . ,−u3

N − uN
)ᵀ

and N = 32.
The corresponding Hamiltonian of this system is

H(U ′, U ) = 1

2
U ′ᵀU ′ + 1

2
UᵀMU + 1

2
u2
1 + 1

4
u4
1 + · · · + 1

2
u2

N + 1

4
u4

N .
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Fig. 7.3 Results for Problem2. The logarithm of the global error (G E) over the integration interval
against the logarithm of CPU time

We choose N = 32. The problem is solved on the interval [0, 500] with the stepsize
h = 1

100 to show the convergence rate of iterations. See Table7.3 for the total CPU
time of iterations for different error tolerances. We then solve this problem on [0, 20]
with stepsizes h = 1/(3× 2 j ) for j = 1, . . . , 4. Figure7.5i shows the global errors.
Finally this problem is integrated with a fixed stepsize h = 0.002 on the interval
[0, tend]with tend = 10i for i = 0, 1, 2, 3. Themaximumglobal errors ofHamiltonian
energy are presented in Fig. 7.5ii.
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Fig. 7.4 Results for Problem2. The logarithm of the maximum global error of Hamiltonian energy
(GEH) against the logarithm of CPU timelabelfig

Table 7.3 Results for Problem3: The total CPU time (s) of iterations for different error tolerances
(tol)

Methods tol = 1.0e−006 tol = 1.0e−008 tol = 1.0e−010 tol = 1.0e−012

LTCM 5.9325 7.9263 8.1816 10.0602

TFCM 6.5318 8.7008 8.8934 10.7489

SRKM1 24.1600 29.4173 34.5310 39.5161

EPCM1 37.2757 46.4011 53.1403 66.2339

EPRKM1 22.6571 27.8341 33.5435 39.4533
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Fig. 7.5 Results for Problem3. iThe logarithmof the global error (G E) over the integration interval
against the logarithm of CPU time. ii The logarithm of the maximum global error of Hamiltonian
energy (G E H ) against the logarithm of CPU time

Problem 4 Consider the wave equation

∂2u
∂t2 − a(x) ∂2u

∂x2 + 92u = f (t, x, u), 0 < x < 1, t > 0,

u(0, t) = 0, u(1, t) = 0, u(x, 0) = a(x), ut (x, 0) = 0

with a(x) = 4x(1 − x), f (t, x, u) = u5 − a2(x)u3 + a5(x)

4 sin2(20t) cos(10t). The
exact solution of this problem is u(x, t) = a(x) cos(10t). Using semi-discretization
on the spatial variable with second-order symmetric differences, we obtain

d2U
dt2 + MU = F(t, U ), U (0) = (

a(x1), . . . , a(xN−1)
)ᵀ

, U ′(0) = 0, 0 < t ≤ tend,

where U (t) = (
u1(t), . . . , uN−1(t)

)ᵀ
with ui (t) ≈ u(xi , t), xi = iΔx , Δx = 1/N

for i = 1, . . . , N − 1,

M = 92IN−1 + 1

Δx2

⎛

⎜⎜
⎜⎜⎜
⎝

2a(x1) −a(x1)
−a(x2) 2a(x2) −a(x2)

. . .
. . .

. . .

−a(xN−2) 2a(xN−2) −a(xN−2)

−a(xN−1) 2a(xN−1)

⎞

⎟⎟
⎟⎟⎟
⎠

,

and

F(t, U ) = (
f (t, x1, u1), . . . , f (t, xN−1, uN−1)

)ᵀ
.
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Table 7.4 Results for Problem4: The total CPU time (s) of iterations for different error tolerances
(tol)

Methods tol = 1.0e−006 tol = 1.0e−008 tol = 1.0e−010 tol = 1.0e−012

LTCM 1.8980 1.8737 2.1212 2.3196

TFCM 1.9213 1.9345 2.2227 2.3736

SRKM1 13.8634 16.6963 19.0854 22.6142

EPCM1 23.5110 28.1288 32.2263 36.8443

EPRKM1 13.5526 17.2289 18.8744 23.0066
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Fig. 7.6 Results for Problem4: The logarithm of the global error (G E) over the integration interval
against the logarithm of CPU time

The problem is solved on the interval [0, 100] with the stepsize h = 1
40 to show the

convergence rate of iterations. See Table7.4 for the total CPU time of iterations for
different error tolerances. Then, the system is integrated on the interval [0, 100]with
N = 40 and h = 1/2 j for j = 5, . . . , 8. The global errors are shown in Fig. 7.6.

Remark 7.6 It follows from the numerical results that our method LTCM is very
promising in comparisonwith the classicalmethods SRKM1,EPCM1andEPRKM1.
Although LTCM has a similar performance to TFCM in preserving the solution and
the energy, it can be observed from Figs. 7.2i, 7.3 and 7.5i that LTCM performs a bit
better than TFCM in presenting the solution. Moreover, it follows from Tables7.1,
7.2, 7.3 and 7.4 that LTCM has a better convergence performance of iterations than
TFCM. This means that LTCM can have a lower computational cost when the same
error tolerance is required in the iteration procedure.

Remark 7.7 From Figs. 7.2ii, 7.4 and 7.5ii, it can be observed that the energy-
preserving Runge–Kutta method EPRKM1 cannot preserve the Hamiltonian energy,
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and the errors seem to grow with the CPU time when the stepsize is reduced. The
reason for this phenomenon may be that EPRKM1 does not take advantage of the
special structure introduced by the linear term Mq of the oscillatory system (7.1)
and its convergence depends on ‖M‖. The method LTCM developed in this chapter
makes good use of the matrix M appearing in the oscillatory systems (7.1) and its
convergence condition is independent of ‖M‖. This property enables LTCM to per-
form well in preserving Hamiltonian energy, although it is not an energy-preserving
method.

7.5 Conclusions and Discussions

It is known that the trigonometric Fourier collocation method is a kind of collocation
method for ODEs (see, e.g. [7, 9, 10, 16, 28]). In this chapter we have investigated a
class of trigonometric collocationmethods based on Lagrange basis polynomials, the
variation-of-constants formula and the idea of collocationmethods for solvingmulti-
frequency oscillatory second-order differential equations (7.1) efficiently. It has been
shown that the convergence condition of these trigonometric collocation methods is
independent of ‖M‖, which is crucial for solving highly oscillatory systems. This
presents an approach to treating multi-frequency oscillatory systems. The numerical
experiments were carried out, and the numerical results show that the trigonometric
collocation methods based on Lagrange basis polynomials derived in this chapter
have remarkable efficiency compared with standard methods in the literature. How-
ever, it is believed that other collocation methods based on suitable bases different
from the Lagrange basis are also possible for the numerical simulation of ODEs.

The material of this chapter is based on the work by Wang et al. [27].
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Chapter 8
A Compact Tri-Colored Tree Theory
for General ERKN Methods

This chapter develops a compact tri-colored rooted-tree theory for the order condi-
tions for general ERKN methods. The bottleneck of the original tri-colored rooted-
tree theory is the existence of numerous redundant trees. This chapter first introduces
the extended elementary differential mappings. Then, the new compact tri-colored
rooted tree theory is established based on a subset of the original tri-colored rooted-
tree set. This new theory makes all redundant trees no longer appear, and hence the
order conditions of ERKN methods for general multi-frequency and multidimen-
sional second-order oscillatory systems are greatly simplified.

8.1 Introduction

Runge–Kutta–Nyström (RKN) methods (see [12]) are very popular for solving
second-order differential equations. This chapter develops the rooted-tree theory
and B-series for extended Runge–Kutta–Nyström (ERKN) methods solving general
multi-frequency and multi-dimensional oscillatory second-order initial value prob-
lems (IVPs) of the form

{
y′′(t) + M y(t) = f

(
y(t), y′(t)

)
, t ∈ [t0, T ],

y(t0) = y0, y′(t0) = y′
0,

(8.1)

where M is a d × d constant matrix implicitly containing the dominant frequencies
of the system, y ∈ R

d , and f : Rd × R
d → R

d , with position y and velocity y′ as
arguments. In the special case where the right-hand side function of (8.1) does not
depend on velocity y′, (8.1) reduces to the following special second-order oscillatory
system

© Springer Nature Singapore Pte Ltd. And Science Press 2018
X. Wu and B. Wang, Recent Developments in Structure-Preserving Algorithms
for Oscillatory Differential Equations, https://doi.org/10.1007/978-981-10-9004-2_8
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{
y′′(t) + M y(t) = f

(
y(t)
)
, t ∈ [t0, T ],

y(t0) = y0, y′(t0) = y′
0.

(8.2)

Furthermore, if M is symmetric and positive semi-definite and f (q) = −∇U(q),
then, with q = y, p = y′, (8.2) becomes identical to a multi-frequency and multidi-
mensional oscillatory Hamiltonian system

{
p′(t) = −∇q H( p(t), q(t)), p(t0) = p0,
q ′(t) = ∇ pH( p(t), q(t)), q(t0) = q0,

(8.3)

with the Hamiltonian

H( p, q) = 1

2
pᵀ p + 1

2
qᵀMq + U(q),

where U(q) is a smooth potential function. For solving the multi-frequency, multi-
dimensional, oscillatory system (8.3), a large number of studies have beenmade (see,
e.g. [6, 25, 28]). The methods for problems (8.1) and (8.2) are especially important
when M has large positive eigenvalues, as in the case where the wave equations is
semi-discretised in space (see, e.g. [11, 14, 26, 27, 29]). Such problems arise in a
wide range of fields such as astronomy, molecular dynamics, classical mechanics,
quantum mechanics, chemistry, biology and engineering.

ERKNmethodswere proposed originally in the papers [23, 32] to solve the special
oscillatory system (8.2). ERKNmethodsworkwell in practical numerical simulation,
since they are specially designed to be adapted to the structure of the underlying
oscillatory system and do not depend on the decomposition of the matrix M . ERKN
methods have been widely investigated and used in numerous applications in the
fields of science and engineering. For example, the idea of ERKN methods has been
extended to two-step hybrid methods (see, e.g. [8, 9]), to Falkner-type methods (see,
e.g. [7]), to Störmer–Verlet methods (see, e.g. [17]), to energy-preserving methods
(see, e.g. [11, 15, 24]), and to symplectic and multi-symplectic methods (see, e.g.
[14, 16, 19, 20]). Meanwhile, further research on ARKN methods, including the
symplectic conditions and symmetry, has been carried out in the following papers
[10, 13, 21, 22, 31].

In a recent paper [33], ERKN methods were extended to the general oscillatory
system (8.1), and a tri-colored tree theory called extended Nyström tree theory (EN-
T theory) was analysed for the order conditions. Unfortunately, however, the EN-T
theory is not completely satisfactory due to the existence of redundant trees. For
example, there are 7 redundant trees out of 16 trees for third order ERKN methods.
In practice, in order to gain the order conditions for a specific ERKNmethod of order
r , one needs to draw all the trees of order up to r first, and then from them select and
delete about half of the redundant trees. This will lead to inefficiency in the use of
the EN-T theory to achieve the order conditions for ERKN methods.

Hence, in this chapter, we will present an improved theory to eliminate all such
redundant trees. In a similar approach to the case of the special oscillatory system
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(8.2) in [30], extended elementary differentials are required, and we will discuss this
in detail in Sect. 8.4.

This chapter is organized as follows. We first summarise the ERKN method for
the general oscillatory system (8.1) in Sect. 8.2, and then in Sect. 8.3 we illustrate
drawbacks of the EN-T theory proposed in [33]. In Sect. 8.4, we introduce the set of
improved extended-Nyström trees and show how this relates to other tree sets in the
literature. Section 8.5 focuses on the B-series associated with the ERKNmethod for
the general oscillatory system (8.1), and Sect. 8.6 analyses the corresponding order
conditions for the ERKN methods, when applied to the general oscillatory system
(8.1). In Sect. 8.7 we derive some ERKN methods of order up to four, exploiting the
advantages of the new tree theory. The numerical experiments are made in Sect. 8.8.
Conclusive remarks are included in Sect. 8.9.

8.2 General ERKN Methods

To begin with, we summarise the following general ERKN method based on the
matrix-variation-of-constants formula (see [23]) and quadrature formulae.

Definition 8.1 (See [33]) An s-stage general extended Runge–Kutta–Nyström
(ERKN) method for the numerical integration of the IVP (8.1) is defined by the
following scheme

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yi = φ0(c
2
i V ) yn + ci φ1(c

2
i V )h y′n + h2

s∑
j=1

āi j (V ) f (Y j , Y ′
j ), i = 1, . . . , s,

hY ′
i = −ci V φ1(c

2
i V ) yn + φ0(c

2
i V )h y′n + h2

s∑
j=1

ai j (V ) f (Y j , Y ′
j ), i = 1, . . . , s,

yn+1 = φ0(V ) yn + φ1(V )h y′n + h2
s∑

i=1

b̄i (V ) f (Yi , Y ′
i ),

h y′n+1 = −V φ1(V ) yn + φ0(V )h y′n + h2
s∑

i=1

bi (V ) f (Yi , Y ′
i ),

(8.4)
where φ0(V ), φ1(V ), āi j (V ), ai j (V ), b̄i (V ) and bi (V ) for i, j = 1, . . . , s arematrix-
valued functions of V = h2M , and are assumed to have the following series
expansions

āi j (V ) =
+∞∑
k=0

ā(2k)
i j

(2k)! V k, ai j (V ) =
+∞∑
k=0

a(2k)
i j

(2k)! V k,

b̄i (V ) =
+∞∑
k=0

b̄(2k)
i

(2k)! V k, bi (V ) =
+∞∑
k=0

b(2k)
i

(2k)! V k, φi (V ) =
+∞∑
k=0

(−1)k

(2k + i)! V k
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with real coefficients ā(2k)
i j , a(2k)

i j , b̄(2k)
i , b(2k)

i for k = 0, 1, 2, . . ..

The ERKN method (8.4) in Definitions 8.1 can also be represented compactly in
a Butcher tableau of the coefficients [4]:

c1 ā11(V ) ā12(V ) · · · ā1s(V ) a11(V ) a12(V ) · · · a1s(V )

c2 ā21(V ) ā22(V ) · · · ā2s(V ) a21(V ) a22(V ) · · · a2s(V )
...

...
...

. . .
...

...
...

. . .
...

cs ās1(V ) ās2(V ) · · · āss(V ) as1(V ) as2(V ) · · · ass(V )

b̄1(V ) b̄2(V ) · · · b̄s(V ) b1(V ) b2(V ) · · · bs(V )

. (8.5)

In essence, ERKN methods incorporate the particular structure of the oscillatory
system (8.1) into both the internal stages and the updates. Throughout this chapter,
we call methods for the general oscillatory system (8.1) general ERKN methods, and
standard ERKN methods, for the special case (8.2).

8.3 The Failure and the Reduction of the EN-T Theory

The EN-T theory for general ERKN methods was presented in the recent paper [33]
in which some tri-colored trees are supplemented to the classical Nyström trees (N-
Ts). The idea of the EN-T theory comes from the fact that the numbers of the N-Ts
and of the elementary differentials are completely different. The paper [33] tried to
eliminate the difference and then to make one elementary differential correspond
to one tree uniquely. Unfortunately, however, the paper [33] did not succeed on
this point. For example, the two different trees shown in Table 8.1 have the same
elementary differentials F (τ )( y, y′).

Moreover, the great limitation of the EN-T theory is the existence of great numbers
of redundant trees that cause trouble in applications. For example, in Table 8.2 (left),
there are seven EN-Ts but five of them are redundant since their order ρ(τ), density
γ (τ), weight Φi (τ ), and the consequent order conditions can be implied by others
for the general ERKN methods (8.4).

Here, it should be pointed out that it is not necessary that one tree corresponds
to one elementary differential. In other words, one tree may correspond to a set

Table 8.1 Two EN-Ts which have the same elementary differentials F (τ )( y, y′)
EN-Ts ρ γ Φi α F

4 4 c2i
∑

j a(0)
i j 3 f (2)

y y′ (−M y, f )

4 8 ci
∑

j ā(0)
i j 3 f (2)

y y′ (−M y, f )
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Table 8.2 Some EN-Ts and the redundance

EN-Ts ρ γ Φi α F

2 2 ci 1 f (1)
y y′

2 2 ci 1 f (1)
y′ (−My)

3 3 c2i 1 f (2)
y y
(
y′, y′)

3 3 c2i 2 f (2)
y y′
(− M y, y′)

3 3 c2i 1 f (2)
y′ y′
(− M y,−M y

)
3 3 c2i 1 f (1)

y
(− M y

)

3 3 c2i 1 f (1)
y′
(− M y′)

EN-Ts ρ γ Φi α F

2 2 ci 1 f (1)
y y′

+ f (1)
y′ (−My)

3 3 c2i 1 f (2)
y y
(
y′, y′)

+2 f (2)
y y′
(− M y, y′)

+
f (2)
y′ y′
(− M y,−M y

)
+ f (1)

y
(− M y

)
+ f (1)

y′
(− M y′)

of elementary differentials. For example, just as shown in Table 8.2, the sum of
the products of the coefficient α(τ) and the elementary differentials F (τ )( y, y′) is
meaningful. In fact, we have

f (1)
y y′ + f (1)

y′ (−My) = D1
h f
(
φ0(h

2M) y + φ1(h
2M)h y′, φ0(h

2M) y′ − hMφ1(h
2M) y

)
,

namely, f (1)
y y′ + f (1)

y′ (−My) is the first-order derivative of function f with respect
to h, at h = 0, where the function f is evaluated at point ( ŷ, ŷ′

) with

ŷ = φ0(h
2M) y + φ1(h

2M)h y′, (8.6)

ŷ′ = φ0(h
2M) y′ − hMφ1(h

2M) y. (8.7)

Thus, in Table 8.2, we can choose these two bi-colored trees to respectively represent
the sums, and omit all trees with meagre vertices. In this way, we can get rid of the
redundance as shown in Table 8.2 (right).
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On the other hand, although almost all tri-colored trees are redundant, there indeed
exist tri-colored trees which are absolutely necessary in the research of order con-
ditions for the general ERKN methods (8.4). For example, the fifth tree which is
tri-colored in the fifth line in the Table2 in [33] undoubtedly works for the order
conditions. In a word, the theory for the general ERKNmethods (8.4) is a tri-colored
tree theory, but it is based on a subset of the EN-T set.

Hence, it is quite natural that this chapter starts from the N th derivative of the

function f (m+n)
ym y′n

∣∣∣
( ŷ, ŷ′

)
with respect to h, at h = 0. For details aboutmultivariate Taylor

series expansions and some related knowledge, readers are referred to [1, 30]. Inwhat
follows we will denote this derivative as DN

h f (m+n)
ym y′n .

Remark 8.1 The dimension of the matrix DN
h f (m+n)

ym y′n is d × dm+n . If z is a dm+n × 1

matrix, the dimension of DN
h f (m+n)

ym y′n z is d × 1.

Remark 8.2 If the matrix M is null,

DN
h f (m+n)

ym y′n z = f (m+n+N )

ym+N y′n

(
y′, · · · , y′︸ ︷︷ ︸

N fold

, z
)
,

where f (m+n+N )

ym+N y′n is evaluated at the point ( y, y′), and (·, · · · , ·) is the Kronecker
inner product (see [30]).

Remark 8.3 In the special case (8.2) where the function f is independent of y′,
DN

h f (m+n)
ym y′n z is exactly DN

h f (m)z in [30].

At the end of this section we give the following first three results of DN
h f (m+n)

ym y′n z,
which contribute significantly to our understanding of the extended elementary dif-
ferentials (see Definition 8.3 in Sect. 8.4).

D1
h f (m+n)

ym y′n z = f (m+n+1)
ym+1 y′n

(
y′, z

)
+ f (m+n+1)

ym y′n+1

(
− M y, z

)
,

D2
h f (m+n)

ym y′n z = f (m+n+2)
ym+2 y′n

(
y′, y′, z

)
+ f (m+n+1)

ym+1 y′n
(

− M y, z
)

+ 2 f (m+n+2)
ym+1 y′n+1

(
y′,−M y, z

)
+ f (m+n+2)

ym y′n+2

(
− M y,−M y, z

)
+ f (m+n+1)

ym y′n+1

(
− M y′, z

)
,

D3
h f (m+n)

ym y′n z = f (m+n+3)
ym+3 y′n

(
y′, y′, y′, z

)
+ 3 f (m+n+3)

ym+2 y′n+1

(
y′, y′,−M y, z

)
+ 3 f (m+n+3)

ym+1 y′n+2

(
y′,−M y,−M y, z

)
+ f (m+n+3)

ym y′n+3

(
− M y,−M y,−M y, z

)
+ 3 f (m+n+2)

ym+2 y′n
(
y′,−M y, z

)
+ 3 f (m+n+2)

ym+1 y′n+1

(
− M y,−M y, z

)
+ 3 f (m+n+2)

ym+1 y′n+1

(
y′,−M y′, z

)
+ 3 f (m+n+2)

ym y′n+2

(
− M y,−M y′, z

)
+ f (m+n+1)

ym+1 y′n
(

− M y′, z
)

+ f (m+n+1)
ym y′n+1

(
(−M)2 y, z

)
.
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Table 8.3 Four theory systems for second order differential equations

IVPs Methods Trees (graphs) Compact (T/F)

1 y′′ = f
(
y, y′) General RKN

methods
N-Ts T

2 y′′ = f
(
y
)

Standard RKN
methods

SN-Ts T

3 y′′ + M y =
f
(
y, y′) General ERKN

methods
EN-Ts F

4 y′′ + M y =
f
(
y
) Standard ERKN

methods
SSEN-Ts T

8.4 The Set of Improved Extended-Nyström Trees

In the study of order conditions for second-order differential equations, there are
four theory systems listed in Table 8.3, where the abbreviation “SSEN-T” is for
simplified special extended Nyström-tree [30], and here the word “compact” should
be interpreted as meaning that any order condition derived from a tree belonging the
underlining rooted tree set cannot be obtained by another from the same rooted tree
set.

The first two systems are very famous in the numerical analysis for ODEs, where
the second is a special case of the first one. The rooted tree sets in these two systems
are all bi-colored tree sets with the white vertex and the black vertex. The last two
systems are constructed on tri-colored rooted tree sets by adding the meagre vertex
to the graph of bi-colored trees. Similarly, the last system is the special case of the
third.

Moreover, when the matrix M is null, the third is identical to the first, and the
fourth to the second. In a word, the last two systems are the extensions of the first
two systems respectively. However, the extension of the first system is not satisfied
yet, since the last section in this chapter states that the third system is not compact. In
order to make the extension better, a compact theory will be built to replace the third
one, by introducing a completely new tri-colored rooted tree set and six mappings
onto it. In this section, we will define the new tree set and study the relationships to
the N-T set, the EN-T set, and the SSEN-T set.

8.4.1 The IEN-T Set and the Related Mappings

In what follows, we will recursively define a new set named the improved extended-
Nyström tree set, and define six mappings on it.

Definition 8.2 The improved extended-Nyström tree (IEN-T) set, is recursively
defined as follows:
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Table 8.4 Tree W+ B+(b+ B+)p(τ ) (left), and tree W+(b+ B+)p(τ ) (right) in Definition 8.2

τ...

···
p

1

τ...

···
p

1

...
1 N ��

��
τm+n

···qn1 2

...��

��
τm+1

···
q1

1
2��

��
τm

···pm
1

...
��

��

τ1

···
p1

1

τ

Fig. 8.1 The mode of the trees in the IEN-T set

(a) , belong to the IEN-T set.
(b) If τ belongs to the IEN-T set, then the graph obtained by grafting the root

of tree τ to a new black fat node and then to a new meagre node, · · · (p
times), and then to a new black fat node and then last to a new white node,
denoted by W+ B+(b+ B+)p(τ ) (see Table 8.4), belongs to the IEN-T set for
∀p = 0, 1, 2, . . ..

(c) If τ belongs to the IEN-T set, then the graph obtained by grafting the root of tree
τ to a new black fat node and then to a new meagre node, · · · (p times), then
last to a new white node, denoted by W+(b+ B+)p(τ ) (see Table 8.4), belongs to
the IEN-T set for ∀p = 0, 1, 2, . . ..

(d) If τ1, . . . , τμ belong to the IEN-T set, then τ1 × · · · × τμ belongs to the IEN-T
set, where ‘×’ is the merging product [4].

Each tree τ in the IEN-T set can be denoted by

τ := τ∗ × · · · × τ∗︸ ︷︷ ︸
N−fold

×
(

W+ B+(b+ B+)p1(τ1)
)

× · · · ×
(

W+ B+(b+ B+)pm (τm)
)

×
(

W+(b+ B+)q1(τm+1)
)

× · · · ×
(

W+(b+ B+)qn (τm+n)
)
,

(8.8)

where τ∗ = . Figure 8.1 gives the mode of the trees in the IEN-T set.
On the basis of Definition 8.2, the following rules for forming a tree τ in the

IEN-T set can be obtained straightforwardly:

(i) The root of a tree is always a fat white vertex.
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(ii) A white vertex has fat black children, or white children, or meagre children.
(iii) A fat black vertex has at most one child which can be white or meagre.
(iv) A meagre vertex must has one fat black vertex as its child, and must have a

white vertex as its descendant.

Definition 8.3 The order ρ(τ), the extended elementary differential F (τ )( y, y′),
the coefficient α(τ), the weight Φi (τ ), the density γ (τ) and the sign S(τ ) on the
IEN-T set are recursively defined as follows.

1. ρ( ) = 1, F ( ) = f , α( ) = 1, Φi ( ) = 1, γ ( ) = 1 and S( ) = 1.
2. For τ ∈ IEN-T denoted by (8.8),

• ρ(τ) = 1 + N +
m∑

i=1

(
1 + 2pi + ρ(τi )

)
+

n∑
i=1

(
2qi + ρ(τm+i )

)
,

• F (τ ) = DN
h f (m+n)

ym y′n

(
(−M)p1F (τ1), · · · , (−M)pm+nF (τm+n)

)
,

where pm+i = qi , i = 1, · · · , n, and (·, · · · , ·) is the Kronecker inner product
(see [30]),

• α(τ) = (ρ(τ ) − 1)! · 1
N ! ·

m∏
i=1

(
α(τi )

(1+2pi +ρ(τi ))!
)

·
n∏

i=1

(
α(τm+i )

(2qi +ρ(τm+i ))!
)

· 1
J1!...JI ! ,

where J1, · · · , JI count the same branches,

• Φi (τ ) = cN
i ·

m∏
k=1

( s∑
j=1

ā(2pk )

i j Φ j (τk)
)

·
n∏

k=1

( s∑
j=1

a(2qk )

i j Φ j (τm+k)
)
,

• γ (τ) = ρ(τ) ·
m∏

i=1

(
(1+2pi +ρ(τi ))!γ (τi )

(2pi )!ρ(τi )!
)

·
n∏

i=1

(
(2qi +ρ(τm+i ))!γ (τm+i )

(2qi )!ρ(τm+i )!
)
,

• S(τ ) =
m∏

i=1

(
(−1)pi S(τi )

)
·

n∏
i=1

(
(−1)qi S(τm+i )

)
,

where
0∑

k=1
= 0 and

0∏
k=1

= 1.

Definition 8.4 The set IEN-Tm is defined as

IEN-Tm = {τ : ρ(τ) = m, τ ∈ IEN-T
}
.

Remark 8.4 The order ρ(τ) is the number of the tree τ ’s vertices.

Remark 8.5 The extended elementary differential F (τ ) is a product of (−M)p (p
is the number of meagre vertices between a white vertex and the next coming white
vertex), and DN

h f (n+m)
ym y′n (N is the number of end vertices from the white vertex, m

is the number of the non-ending black vertices from the white vertex, and n is the
number of the meagre vertices from the white vertex). We will see that the extended
elementary differential is not only one function but a weighted sum of the traditional
elementary differential.

Remark 8.6 One IEN-T corresponds to one extended elementary differentialF (τ ).
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Remark 8.7 The coefficient α(τ) is the number of possible different monotonic
labelings of τ .

Remark 8.8 TheweightΦi (τ ) is a sumover the indices of all white vertices and of all
end vertices. The general term of the sum is a product of ā(2p)

i j for W+ B+(b+ B+)p(τ ),

of a(2p)

i j for W+(b+ B+)p(τ ) (p is the number of the meagre vertices between the
white vertices i and j), and of cm

i (m is the number of end vertices from the white
vertex i).

Remark 8.9 One IEN-T corresponds to one weight Φi (τ ) .

Remark 8.10 The density γ (τ) is the product of the density of a tree by overlooking
the differences between vertices, and 1

(2p)! , where p is the number of the meagre
vertices between two white vertices.

Remark 8.11 The sign S(τ ) is 1 if the number of the meagre vertices is even, and
−1 if the number of the meagre vertices is odd.

Table 8.5 makes a list of the corresponding mappings: the order ρ, the sign S, the
density γ , the weight Φi , the symmetry α and the extended elementary differential
F for each τ in the IEN-T set of order up to 4.

8.4.2 The IEN-T Set and the N-T Set

In this subsection, we will see that with the disappearance of meagre vertices the
IEN-T set is exactly the N-T set. In fact, in this case, each tree τ in the IEN-T set has
the form shown in Fig 8.2, and the rules to form the tree set are straightforwardly
reduced to:

(i) The root of a tree is always a fat white vertex.
(ii) A white vertex has fat black children, or white children.
(iii) A fat black vertex has at most one child which must be white.

In this case, from Remarks8.4–8.10, the order ρ(τ), the coefficient α(τ) and the
density γ (τ) are exactly the same as the ones on the N-T set respectively. If M is
null, the weight Φi (τ ) and the extended elementary differential F (τ )( y, y′) on the
IEN-T set are exactly the same as the ones on the N-T set respectively, too. In fact,
from Definition 8.3, with the disappearance of meagre vertices, these two mappings
are recursively defined respectively, for τ denoted by Fig. 8.2, as follows:

Φi (τ ) = cN
i ·

m∏
k=1

( s∑
j=1

āi jΦ j (τk)
)

·
n∏

k=1

( s∑
j=1

ai jΦ j (τm+k)
)
,

F (τ ) = DN
h f (m+n)

ym y′n

(
F (τ1), · · · ,F (τm+n)

)
.
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Table 8.5 IEN-Ts and mappings of order up to 4 and the corresponding elementary differentials
on the N-T set

No. IEN-Ts ρ S γ Φi α F F
on the N-T set

1 1 1 1 1 1 f f

2 2 1 2 ci 1 D1
h f f ′

y y′

3 2 1 2
∑

j a(0)
i j 1 f (1)

y′ f f ′
y′ f

4 3 1 3 c2i 1 D2
h f f ′′

yy(y′, y′)

5 3 1 3 ci
∑

j a(0)
i j 1 D1

h f y′ f f ′′
yy′ (y′, f )

6 3 1 3
∑

j,k a(0)
i j a(0)

ik 1 f y′ y′ ( f , f ) f ′′
y′ y′ ( f, f )

7 3 1 6
∑

j ā(0)
i j 1 f (1)

y f f ′
y f

8 3 1 6
∑

j a(0)
i j c j 1 f (1)

y′ D1
h f f ′

y′ fy y′

9 3 1 6
∑

j,k a(0)
i j a(0)

jk 1 f (1)
y′ f (1)

y′ f f ′
y′ f ′

y′ f

10 4 1 4 c3i 1 D3
h f f (3)

yyy(y′, y′, y′)

11 4 1 4 c2i
∑

j a(0)
i j 3 D2

h f (1)
y′ f f (3)

y′ yy( f, y′, y′)

12 4 1 4 ci
∑

j,k a(0)
i j a(0)

ik 3 D1
h f (2)

y′ y′ ( f , f ) f (3)
yy′ y′ (y′, f, f )

13 4 1 4
∑

j,k,l a(0)
i j a(0)

ik a(0)
il 1 f (3)

y′ y′ y′ ( f , f , f ) f (3)
y′ y′ y′ ( f, f, f )

14 4 1 8 ci
∑

j ā(0)
i j 3 D1

h f (1)
y f f ′′

yy(y′, f )

15 4 1 8
∑

j,k ā(0)
i j a(0)

ik 3 f (2)
y y′ ( f , f ) f ′′

yy′ ( f, f )

16 4 1 8 ci
∑

j,k a(0)
i j a(0)

jk 3 D1
h f (1)

y′ f y′ f f ′′
yy′ (y′, fy′ f )

17 4 1 8
∑

j,k,l a(0)
i j a(0)

ik a(0)
kl 3 f (2)

y′ y′ ( f , f (1)
y′ f ) f ′′

y′ y′ ( fy′ f, f )

18 4 1 8 ci
∑

j a(0)
i j c j 3 D1

h f (1)
y′ D1

h f f ′′
yy′ ( fy y′, y′)

19 4 1 8
∑

j,k a(0)
i j a(0)

ik ck 3 f (2)
y′ y′ ( f , D1

h f ) f ′′
y′ y′ ( fy y′, f )

(continued)
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Table 8.5 (continued)

No. IEN-Ts ρ S γ Φi α F F
on the N-T set

20 4 1 24
∑

j ā(0)
i j c j 1 f (1)

y D1
h f f ′

y f ′
y y′

21 4 1 24
∑

j,k ā(0)
i j a(0)

jk 1 f (1)
y f (1)

y′ f f ′
y f ′

y′ f

22 4 1 24
∑

j,k a(0)
i j ā(0)

jk 1 f (1)
y′ f (1)

y f f ′
y′ f ′

y f

23 4 1 24
∑

j,k a(0)
i j a(0)

jk ck 1 f (1)
y′ f (1)

y′ D1
h f f ′

y′ f ′
y′ f ′

y y′

24 4 1 24
∑

j,k,l a(0)
i j a(0)

jk a(0)
kl 1 f (1)

y′ f (1)
y′ f (1)

y′ f f ′
y′ f ′

y′ f ′
y′ f

25 4 -1 12
∑

j a(2)
i j 1 f (1)

y′ (−M) f –

26 4 1 12
∑

j a(0)
i j c2j 1 f (1)

y′ D2
h f f ′

y′ f ′′
yy(y′, y′)

27 4 1 12 ci 2 f (1)
y′ D1

h f (1)
y′ f f ′

y′ f ′′
yy′ (y′, f )

28 4 1 12
∑

j,k,l a(0)
i j a(0)

jk a(0)
jl 1 f (1)

y′ f (2)
y′ y′ ( f , f ) f ′

y′ f ′′
y′ y′ ( f, f )

...1 N
��

��τm+n

...��

��τm+1��

��τm

...
��

��τ1

τ

Fig. 8.2 The form of the trees with meagre vertices disappearing
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Table 8.6 Tri-colored Trees which are appended to the set N-T5 to form the set IEN-T5

Clearly, the IEN-T set is really an extension of the N-T set (see, Table 14.3 on p.
292 in [4]). It can also be seen from Tables8.5 and 8.6 that one 4th order tree, six
5th order trees are appended to the N-T set to form the IEN-T set. All these special
and new appended trees have a meagre vertex (or some vertices) which correspond
to nothing in the N-T set. In fact, the weights Φi in Table 8.6 are all the functions
of ā(2k)

i j and a(2k)
i j , high-order derivatives of āi j (V ) and ai j (V ) with respect to h, at

h = 0.

8.4.3 The IEN-T Set and the EN-T Set

First of all, we note that there are just five mappings defined on the EN-T set in the
paper [33], while there are six mappings on the IEN-T set in this chapter. In the paper
[33], the authors introduced the signed density γ̃ (τ ), but in this chapter we replace
γ̃ (τ ) by the product of the two mappings, the density γ (τ) and the sign S(τ ).

The IEN-T set is a subset of the EN-T set, once one overlooks the (extended)
elementary differential F (τ ) on them.

8.4.4 The IEN-T Set and the SSEN-T Set

From the rules of the IEN-T set and of the SSEN-T set (see [30]), if the function
f in the system (8.1) does not containing y′ explicitly, the IEN-T set is exactly the
SSEN-T set.

8.5 B-Series for the General ERKN Method

In Sect. 8.4 we presented the IEN-T set, on which six mappings are defined. With
these preliminaries, motivated by the concept of B-series, we will describe a totally
different approach from the one described in [33] to deriving the theory of order
conditions for the general ERKN method.



206 8 A Compact Tri-Colored Tree Theory for General ERKN Methods

The main results of the theory of B-series have their origins in the profound paper
[2] of Butcher in 1972, and then are introduced in detail by Hairer and Wanner [5]
in 1974. In what follows, we present the following two elementary theorems.

Theorem 8.1 With Definition 8.3, f ( y(t + h), y′(t + h)) is a B-series

f ( y(t + h), y′(t + h)) =
∑

τ∈IEN-T

hρ(τ)−1

(ρ(τ ) − 1)!α(τ)F (τ )( y, y′).

Proof First, we expand f ( y(t + h), y′(t + h)) at point ( ŷ, ŷ′
), with the definitions

of (8.6) and (8.7).

f ( y(t + h), y′(t + h)) =
∑

m≥0,n≥0

1

(m + n)! f (m+n)

ym y′n
∣∣∣
( ŷ, ŷ′)

(
y(t + h) − ŷ

)⊗m ⊗
(
y′(t + h) − ŷ′)⊗n

,

(8.9)

where the second term f (m+n)
ym y′n

∣∣∣
( ŷ, ŷ′)

in this series is the matrix-valued function of h.

Definition 8.3 ensures that f ( y(t + h), y′(t + h)) is a B-series. In fact, if f ( y(t +
h), y′(t + h)) is a B-series, from thematrix-variation-of-constants formula withμ =
1, (see [33]), and from the properties of the φ-functions (see e.g. [25]), we have

y(t + h) − ŷ = h2
∫ 1
0 (1 − z)φ1((1 − z)2V ) f ( y(t + hz), y′(t + hz))dz

= ∑
τ∈IEN−T

∫ 1
0 (1 − z)φ1((1 − z)2V ) zρ(τ)−1

(ρ(τ )−1)!dz ·
(

hρ(τ)+1α(τ)F (τ )( y, y′)
)

= ∑
τ∈IEN−T

φρ(τ)+1(V ) · hρ(τ)+1α(τ)F (τ )( y, y′)

= ∑
τ∈IEN−T

∑
p≥0

(−1)p V p

(ρ(τ )+1+2p)! h
ρ(τ)+1α(τ)F (τ )( y, y′),

(8.10)
and

y′(t + h) − ŷ′ = ∑
τ∈IEN−T

∑
q≥0

(−1)q V q

(ρ(τ )+2q)! h
ρ(τ)α(τ )F (τ )( y, y′). (8.11)

Taking the Taylor series of f (m+n)
ym y′n

∣∣∣
( ŷ, ŷ′)

at h = 0, and from (8.10) and (8.11), the

Eq. (8.9) becomes

f ( y(t + h), y′(t + h)) = ∑
N ,n,m

∑
τ∈IEN−T

hs

N !(m+n)! DN
h f (n+m)

ym y′n

(
(−M)p1α(τ1)F (τ1)( y)

(ρ(τ1)+1+2p1)! , . . . ,

(−M)pm α(τm )F (τm )( y)
(ρ(τm )+1+2pm )! ,

(−M)q1α(τm+1)F (τm+1)( y)
(ρ(τm+1)+2q1)! , . . . ,

(−M)qn α(τm+n)F (τm+n)( y)
(ρ(τm+n)+2qn)!

)
,

(8.12)
where

s = N +
m∑

k=1

(2pk + ρ(τk) + 1) +
n∑

k=1

(2qk + ρ(τm+k)).

By Definition 8.3, the proof is complete.
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Theorem 8.2 Given a general ERKN method (8.4), by Definition 8.3, each f (Yi , Y ′
i )

is a series of the form

f (Yi , Y ′
i ) =

∑
τ∈IEN-T

hρ(τ)−1

ρ(τ)! ai (τ ),

where ai (τ ) = Φi (τ ) · γ (τ) · S(τ ) · α(τ) · F (τ )( yn, y
′
n).

Proof In a similarway to the proof of Theorem8.1,we expand f (Yi , Y ′
i ) at ( ỹ, ỹ

′
) for

the general ERKN method (8.4), where ỹ = φ0(c2i V ) yn + φ1(c2i V )ci h y′
n and ỹ′ =

φ0(c2i V ) y′
n − ci hMφ1(c2i V ) yn , and obtain the Taylor series expansion as follows:

f (Yi , Y ′
i ) =

∑
m,n≥0

1

(m + n)! f (m+n)

ym y′n
∣∣∣
ỹ, ỹ′

(
h2
∑

j

āi j (V ) f (Y j , Y ′
j )
)⊗m ⊗

(
h
∑

j

ai j (V ) f (Y j , Y ′
j )
)⊗n

,

(8.13)

where the second term f (m+n)
ym y′n

∣∣∣
ỹ, ỹ′ is a function of ci h. Then the Taylor series expan-

sion of f (m+n)
ym y′n

∣∣∣
( ŷ, ŷ′)

at h = 0 is given by

f (m+n)
ym y′n

∣∣∣
( ŷ, ŷ′)

=
∑
N≥0

cN
i

m! hN DN
h f (m+n)

ym y′n . (8.14)

Definition 8.3 ensures that each f (Yi , Y ′
i ) for i = 1, . . . , s is a B-series. In fact,

the third and fourth terms in the Eq. (8.13) are given by

h2∑
j āi j (V ) f (Y j , Y ′

j ) = ∑
τ∈IEN−T

∑
p≥0

∑
j ā(2p)

i j

ρ(τ)!
V p

(2p)! h
ρ(τ)+1a j (τ ), (8.15)

and

h
∑

j ai j (V ) f (Y j , Y ′
j ) = ∑

τ∈IEN−T

∑
q≥0

∑
j a(2q)

i j

ρ(τ)!
V q

(2q)! h
ρ(τ)a j (τ ). (8.16)

We then obtain

f (Yi , Y ′
i ) = ∑

N ,n,m

∑
τ∈IEN−T

cN
i hs

N !(n+m)! DN
h f (m+n)

ym y′n
(∑

j ā
(2p1)

i j
ρ(τ1)!

M p1

(2p1)! a j (τ1), . . . ,

∑
j ā(2pm )

i j
ρ(τm )!

M pm

(2pm )! a j (τm),

∑
j a

(2q1)

i j
ρ(τm+1)!

Mq1

(2q1)! a j (τm+1), . . . ,

∑
j a(2qn )

i j
ρ(τm+n )!

Mqn

(2qn )! a j (τm+n)
)
,

(8.17)

where s = N +
m∑

k=1
(2pk + ρ(τk) + 1) +

n∑
k=1

(2qk + ρ(τm+k)). Using Definition 8.3,

we complete the proof.
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8.6 The Order Conditions for the General ERKN Method

Theorem 8.3 The scheme (8.4) for the general multi-frequency and multidimen-
sional oscillatory second-order initial value problems (8.1) has order r if and only
if the following conditions

s∑
i=1

b̄i (V )S(τ )γ (τ )Φi (τ ) = ρ(τ)!φρ(τ)+1 + O(hr−ρ(τ)), ∀τ ∈ IEN-Tm , m ≤ r − 1,

(8.18)
s∑

i=1

bi (V )S(τ )γ (τ )Φi (τ ) = ρ(τ)!φρ(τ) + O(hr−ρ(τ)+1), ∀τ ∈ IEN-Tm , m ≤ r,

(8.19)

are satisfied.

Proof It follows from the matrix-variation-of-constants formula, Theorems8.1 and
8.2 that

yn+1 = φ0(V ) yn + hφ1(V ) y′
n

+
∑

τ∈IEN−T

hρ(τ)+1

ρ(τ)!
s∑

i=1

b̄i (V )Φi (τ )S(τ )γ (τ )α(τ)F (τ )( yn, y
′
n),

(8.20)

y(t + h) = φ0(V ) y + hφ1(V ) y′

+
∑

τ∈IEN-T
hρ(τ)+1α(τ)F (τ )( y, y)

∫ 1

0
(1 − z)

zρ(τ)−1

(ρ(τ ) − 1)!φ1((1 − z)V ) dz.

(8.21)
Comparing the Eqs. (8.20) with (8.21) and using the properties of the φ-functions,
we obtain the first result of Theorem 8.3. Likewise, we deduce the second part of the
theorem.

Theorem8.3 in this chapter and Theorem4.1 in [33] share the same expression.
However, it should be noted that there exist redundant order conditions in [33], while
any order condition in this chapter cannot be replaced by others, provided the entries
āi j (V ), ai j (V ), bi (V ) and b̄i (V ) in the general ERKNmethod (8.4) are independent.
Obviously, the elimination of redundant order conditions makes the construction of
high-order general ERKN methods (8.4) much clearer and simpler.

It is easy to see that Theorem8.3 implies the order conditions for the standard
ERKN methods in [23, 30] when the right-hand side function f does not depend
on y′. It is noted that, if the matrix M is null, Theorem 8.3 reduces to the classical
general RKN method when applied to y′′ = f ( y, y′), since the IEN-T set is exactly
the N-T set in this special case.
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8.7 The Construction of General ERKN Methods

In this section, using Theorem 8.3, we present some general ERKNmethods (8.4) of
order up to 4. The approach to constructing new methods in this section is different
from that described in [33].

8.7.1 Second-Order General ERKN Methods

From Theorem 8.3 and the three IEN-Ts with order no more than 2 which are listed
in Table 8.5, for an s-stage general ERKN method (8.4) expressed in the Butcher
tableau (8.5), we have the following second order conditions:

s∑
i=1

b̄i (V ) = φ2(V ) + O(h),
s∑

i=1
bi (V ) = φ1(V ) + O(h2),

s∑
i=1

bi (V )ci = φ2(V ) + O(h),
s∑

i=1
bi (V )a(0)

i j = φ2(V ) + O(h).

Comparing the coefficients of h0 and h, we obtain 4 equations:

s∑
i=1

b̄(0)
i = 1

2
,

s∑
i=1

b(0)
i = 1,

s∑
i=1

b(0)
i ci = 1

2
,

s∑
i=1

b(0)
i a(0)

i j = 1

2
.

It can be observed that these equations are exactly the second order conditions for
the following traditional RKN method

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yi = yn + ci h y′
n + h2

s∑
j=1

ā(0)
i j

(
f (Y j , Y ′

j ) − MY j

)
, i = 1, · · · , s,

Y ′
i = y′

n + h
s∑

j=1

a(0)
i j

(
f (Y j , Y ′

j ) − MY j

)
, i = 1, · · · , s,

yn+1 = yn + h y′
n + h2

s∑
i=1

b̄(0)
i

(
f (Yi , Y ′

i ) − MYi

)
,

y′
n+1 = y′

n + h
s∑

i=1

b(0)
i

(
f (Yi , Y ′

i ) − MYi

)
,

(8.22)

applied to the initial value problems (8.1), with the tableau
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c1 ā(0)
11 ā(0)

12 · · · ā(0)
1s a(0)

11 a(0)
12 · · · a(0)

1s

c2 ā(0)
21 ā(0)

22 · · · ā(0)
2s a(0)

21 a(0)
22 · · · a(0)

2s
...

...
...

. . .
...

...
...

. . .
...

cs ā(0)
s1 ā(0)

s2 · · · ā(0)
s,s a(0)

s1 a(0)
s2 · · · a(0)

s,s

b̄(0)
1 b̄(0)

2 · · · b̄(0)
s b(0)

1 b(0)
2 · · · b(0)

s

. (8.23)

This means that we can easily solve
(

ci , ā(0)
i j , a(0)

i j , b̄(0)
i , b(0)

i

)
in terms of a classical

general RKN method. For example, from the explicit 2 stage second-order general
RKN method with the Butcher tableau

0
2
3 0 2

3

1
4

3
4

1
4

1
4

, (8.24)

we can obtain 2 stage second-order explicit general ERKN methods. Two examples
are given below.

Example 1 The first 2 stage second-order explicit general ERKN method (8.4) has
Butcher tableau

0
2
3 0 2

3 I
1
4 I 3

4 I 1
4 I 1

4 I

. (8.25)

Example 2 The Butcher tableau of the second one is

0
2
3 0 2

3φ0(
4
9V )

1
4φ1(V ) 3

4φ1(
1
9V ) 1

4 φ0(V ) 1
4φ0(

1
9V )

. (8.26)

8.7.2 Third-Order General ERKN Methods

From Theorem 8.3 and 9 trees in the set of IEN-Tm, (m ≤ 3) in Table 8.5, for an
s-stage general ERKN method (8.4) expressed in the Butcher tableau (8.5), we have
the third order conditions as follows:

s∑
i=1

b̄i (V ) = φ2(V ) + O(h2),
s∑

i=1
b̄i (V )ci = φ3(V ) + O(h),

s∑
i=1

s∑
j=1

b̄i (V )a(0)
i j = φ3(V ) + O(h),

s∑
i=1

bi (V ) = φ1(V ) + O(h3),
s∑

i=1
bi (V )ci = φ2(V ) + O(h2),

s∑
i=1

s∑
j=1

bi (V )a(0)
i j = φ2(V ) + O(h2),

s∑
i=1

bi (V )c2i = 2φ3(V ) + O(h),
s∑

i=1

s∑
j=1

bi (V )ci a
(0)
i j = 2φ3(V ) + O(h),

s∑
i=1

s∑
j=1

s∑
k=1

bi (V )a(0)
i j a(0)

ik = 2φ3(V ) + O(h),

s∑
i=1

bi (V )ā(0)
i j = φ3(V ) + O(h),

s∑
i=1

s∑
j=1

bi (V )a(0)
i j c j = φ3(V ) + O(h),

s∑
i=1

s∑
j=1

s∑
k=1

bi (V )a(0)
i j a(0)

jk = φ3(V ) + O(h).
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Equating coefficients for each power of h, we obtain 13 equations,where 12 equations
are exactly the third order conditions for the classical general RKN method (8.22)
with the Butcher tableau (8.23)

s∑
i=1

b̄(0)
i γ (τ)Φi (τ ) = 1

ρ(τ) + 1
, ∀τ ∈ N-Tm, m ≤ 2, (8.27)

s∑
i=1

b(0)
i γ (τ)Φi (τ ) = 1, ∀τ ∈ N-Tm, m ≤ 3. (8.28)

The extra equation is
s∑

i=1
b̄(2)

i = − 1
3 . We can solve

(
ci , ā(0)

i j , a(0)
i j , b̄(0)

i , b(0)
i

)
from the

Eqs. (8.27) and (8.28) via a classical general RKN method. We can then find b(2)
i

from the extra equation. Using this approach, we can complete the construction of
the general ERKN methods of order three. For example, from the explicit 3 stage
third-order general RKN method with the Butcher tableau

0
1
2 0 1

2
1 1 0 −1 2

1
6

2
6 0 1

6
4
6

1
6

(8.29)

we can construct the 3 stage third-order explicit general ERKN methods straightfor-
wardly. The three examples are listed below.

Example 3 The first 3 stage third-order explicit general ERKN method (8.4) is
expressed in the Butcher tableau

0
1
2 0 1

2 I
1 I 0 −I 2I

1
6 I 2

6 I 0 1
6 (I − 9

20 V ) 4
6 (I − 3

20 V ) 1
6 (I + 1

20 V )

. (8.30)

Example 4 The Butcher tableau of the second 3 stage third-order explicit general
ERKN method (8.4) is given by

0
1
2 0 1

2 I
1 I 0 −I 2I

1
6 (I − 1

6V ) 2
6 (I − 1

24V ) 0 1
6 (I − 1

2 V ) 4
6 (I − 1

8V ) 1
6 I

. (8.31)

Example 5 The third 3 stage third-order explicit general ERKN method (8.4) is
denoted by the Butcher tableau
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0
1
2 0 1

2φ0(
1
4V )

1 φ1(V ) 0 −φ0(V ) 2φ0(
1
4V )

1
6φ1(V ) 2

6φ1(
1
4V ) 0 1

6φ0(V ) 4
6φ0(

1
4V ) 1

6 I

. (8.32)

8.7.3 Fourth-Order General ERKN Methods

From Theorem 8.3 and Table 8.5, comparing the coefficients of the power of h
of (8.18) and (8.19), for an s-stage general ERKN method (8.4) with the coefficient(

āi j (V ), ai j (V ), b̄i (V ), bi (V )
)
displayed in the Butcher tableau (8.5), we can obtain

41 fourth order conditions, in which 36 conditions are as follows:

s∑
i=1

b̄(0)
i γ (τ)Φi (τ ) = 1

ρ(τ) + 1
, ∀τ ∈ N-Tm, m ≤ 3, (8.33)

s∑
i=1

b(0)
i γ (τ)Φi (τ ) = 1, ∀τ ∈ N-Tm, m ≤ 4. (8.34)

The remaining 5 conditions are

s∑
i=1

s∑
j=1

b(0)
i a(2)

i j = − 1

12
,

s∑
i=1

b(2)
i = −1

3
,

s∑
i=1

b(2)
i ci = − 1

12
,

s∑
i=1

s∑
j=1

b(2)
i a(0)

i j = − 1

12
,

s∑
i=1

b̄(2)
i = − 1

12
.

(8.35)

For each specific classical general RKN method of order four, we can solve for(
ci , ā(0)

i j , a(0)
i j , b̄(0)

i , b(0)
i

)
from (8.33) and (8.34), since these 36 conditions are exactly

the order conditions for the classical general RKN method (8.22) with the Butcher

tableau (8.23). Then we can find
(

a(2)
i j , b̄(2)

i , b(2)
i

)
from conditions (8.35). In this way,

we construct the general ERKN methods (8.4) of order four.
In what follows, we will construct explicit 4 stage fourth order general ERKN

methods from the following explicit 4 stage fourth-order classical general RKN
method (8.22) with the Butcher tableau

0
1
2

1
8

1
2

1
2

1
8 0 0 1

2
1 0 0 1

2 0 0 1
1
6

1
6

1
6 0 1

6
2
6

2
6

1
6

. (8.36)
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Some general ERKN methods of order four constructed in this approach are shown
below.

Example 6 The Butcher tableau of the first explicit 4 stage fourth-order general
ERKN method (8.4) is given by

0
1
2

1
8 I 1

2 I
1
2

1
8 I 0 0 1

2 I
1 0 0 1

2 I 0 0 I − 1
4 V

1
6 (I − 1

12 V ) 1
6 (I − 1

12 V ) 1
6 (I − 1

12 V ) 0 1
6 (I − 1

2 V ) 2
6 (I − 1

8V ) 2
6 (I − 1

8V ) 1
6 I

.

(8.37)

Example 7 The second explicit 4 stage fourth-order general ERKN method is
expressed in the Butcher tableau

0
1
2

1
8 I 1

2 (I − 1
8V )

1
2

1
8 I 0 0 1

2 I
1 0 0 1

2 I 0 0 I − 1
8 V

1
6 (I − 1

6V ) 1
6 (I − 1

24V ) 1
6 (I − 1

24V ) 0 1
6 (I − 1

2 V ) 2
6 (I − 1

8V ) 2
6 (I − 1

8V ) 1
6 I

.

(8.38)

Example 8 The third explicit 4 stage fourth-order general ERKN method (8.4) has
the Butcher tableau as follows:

0
1
2

1
8φ1(

1
4V ) 1

2φ0(
1
4V )

1
2

1
8φ1(

1
4V ) 0 0 1

2 I
1 0 0 1

2φ1(
1
4V ) 0 0 φ0(

1
4V )

1
6φ1(V ) 1

6φ1(
1
4V ) 1

6φ1(
1
4V ) 0 1

6φ0(V ) 2
6φ0(

1
4V ) 2

6φ0(
1
4V ) 1

6 I

. (8.39)

8.7.4 An Effective Approach to Constructing the General
ERKN Methods

In the paper [33], in order to construct 4th order general ERKN methods for the
systems (8.1), the authors first considered all 62 graphs of the EN-Ts (see Tables
1 and 2 in [33]), and then selected and deleted 34 redundant trees. Finally, they
obtained 28 non-redundant EN-Ts (see Tables 3 and 4 in [33]). With these 28 EN-
Ts, the authors in [33] achieved special 4th-order conditions, and then the authors
derived a 4th-order ERKN method under two auxiliary simplifying assumptions.
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Obviously, as shown in the paper [33] more than half of the construction effort
was spent on drawing the redundant trees. In a word, the process described in the
paper [33] is difficult to follow since the number of the redundant trees in the EN-T
set is large.

However, in this chapter, these 28 trees can be directly obtained since 27 of them
are exactly the classical N-Ts as shown in Sect. 8.4.2. In this way, it becomes quite
easy to get the 4th-order conditions for the general ERKN method (8.4). Then using
expansions of these order conditions, and equating each power of h, we can see that
most are exactly the order conditions for the classical general RKN method (8.22).
This approach to constructing the general ERKN integrators is very effective and
efficient in practice, as shown in the previous sections where 2nd, 3rd and 4th order
general ERKN methods are constructed as examples.

8.8 Numerical Experiments

In this section, some numerical experiments are implemented to illustrate the poten-
tial of the general ERKN methods (8.4) in comparison with the others in the litera-
ture. The criterion used in the numerical comparisons is the base-10 logarithm of the
maximum global error (log10 ‖MGE‖) versus the base-2 logarithm of the stepsizes
(log2(h)). The following 11 methods are used to solve the general system (8.1) for
the comparison:

• RKN2: The 2 stage second-order general RKN method (8.24).
• ERKN2a: The first 2 stage second-order general ERKN method (8.25) given in
Sect. 8.7 of this chapter.

• ERKN2b: The second 2 stage second-order general ERKN method (8.26) given
in Sect. 8.7 of this chapter.

• RKN3: The 3 stage third-order general RKN method (8.29).
• ERKN3a: The first 3 stage third-order general ERKN method (8.30) given in
Sect. 8.7 of this chapter.

• ERKN3b: The second 3 stage third-order general ERKN method (8.31) given in
Sect. 8.7 of this chapter.

• ERKN3c: The third 3 stage third-order general ERKN method (8.32) given in
Sect. 8.7 of this chapter.

• RKN4: The 4 stage fourth-order general RKN method (8.36).
• ERKN4a: The first 4 stage fourth-order general ERKN method (8.37) given in
Sect. 8.7 of this chapter.

• ERKN4b: The second 4 stage fourth-order general ERKN method (8.38) given in
Sect. 8.7 of this chapter.

• ERKN4c: The third 4 stage fourth-order general ERKN method (8.39) given in
Sect. 8.7 of this chapter.
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Fig. 8.3 Problem1 integrated on [0, 300]

Problem 1 We consider the damped equation

my′′ + by′ + ky = 0,

as one of the test problems. When the damping constant b is small we would expect
the system to still oscillate, but with decreasing amplitude as its energy is converted
to heat. In this numerical test, the problem is integrated on the interval [0, 300]
with m = 1, b = 0.01, k = 3 and the initial conditions

(
y(0), y′(0)

) = (1, 0). The
analytic solution to the problem is given by

y(t) = e− 0.01
2 t
(
cos(

√
12 − 0.012

2
t) + 0.01√

12 − 0.012
sin(

√
12 − 0.012

2
t)
)
.

The numerical results are displayed in Fig. 8.3,where the small stepsizes for themeth-
ods are h = 1

2 j for j = 3, . . . , 8 and the big stepsizes are h = j
8 for j = 2, . . . , 6.

Problem 2 We consider the initial value problem

y′′(t) +
(

13 −12
−12 13

)
y(t) = 12ε

5

(
3 2

−2 −3

)
y′(t) + ε2

( 36
5 sin(t) + 24 sin(5t)

− 24
5 sin(t) − 36 sin(5t)

)
,

with the initial values y(0) = (ε, ε)ᵀ and y′(0) = (−4, 6)ᵀ. The analytic solution is
given by

y(t) =
(

sin(t) − sin(5t) + ε cos(t)
sin(t) + sin(5t) + ε cos(5t)

)
.
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Fig. 8.4 Problem2 integrated on [0, 300]

In the numerical experiment, we choose the parameter value ε = 10−3 and integrate
this problem on the interval [0, 300]. The numerical results are displayed in Fig. 8.4.
The small stepsizes are h = 1

2 j for j = 3, . . . , 8 and the big stepsizes are h = j
8 for

j = 2, . . . , 6. In this numerical test with the big stepsizes, the classical general RKN
methods (RKN2, RKN3 and RKN4) give disappointing numerical results. Thus we
do not depict the corresponding points in Fig. 8.4.

Problem 3 Consider the damped wave equation with periodic conditions (wave
propagation in a medium, see e.g. Weinberger [18])

{
∂2u
∂t2 + δ ∂u

∂t = ∂2u
∂x2 − f (u), −1 < x < 1, t > 0,

u(−1, t) = u(1, t),

where f (u) = − sin u, (i.e., the damped sine Gordon equation) and δ = 1. A semi-
discretization in the spatial variable by second-order symmetric differences leads to
the following system of second-order ODEs in time

Ü + MU = F(U, U̇ ), 0 < t ≤ tend ,

where U (t) = (u1(t), · · · , uN (t)
)ᵀ

with ui (t) ≈ u(xi , t) for i = 1, . . . , N ,

M = 1

�x2

⎛
⎜⎜⎜⎜⎜⎝

2 −1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 −1 2

⎞
⎟⎟⎟⎟⎟⎠ ,
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�x = 2/N , xi = −1 + i�x and F(U, U̇ ) = ( f (u1) − δu̇1, · · · , f (uN ) − δu̇N
)ᵀ
.

Following the paper [3], we take the initial conditions as

U (0) =
(
π, · · · , π

)ᵀ
, Ut (0) = √

N
(
0.01 + sin

(2π
N

)
, · · · , 0.01 + sin

(2π N

N

))ᵀ
,

with N = 64 and integrate the problem on the interval [0, 300] with small stepsizes
h = 1

2 j for j = 5, . . . , 8 and with big stepsizes h = j
128 for j = 5, 6, 8, 10. The

numerical results are displayed in Fig. 8.5. In this numerical test for the big stepsizes,
the classical general RKN methods (RKN2, RKN3 and RKN4) all behave badly,
yielding large errors.

It can be observed from Figs. 8.3, 8.4 and 8.5 that

• The general ERKN methods perform more efficiently than the classical general
RKN methods.

• The higher order general ERKN methods are more efficient than the lower ones.
• As the stepsize decreases, the difference among the general ERKNmethods of the
same order becomes negligible.

• The general ERKN methods behave perfectly for the large stepsizes.
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8.9 Conclusions and Discussions

In this chapter,wehave established an improved theory for the order conditions for the
general ERKN methods designed specially for solving multi-frequency oscillatory
system (8.1). The original tri-colored tree theory and the order conditions for the
general ERKN methods presented in the paper [33] are not satisfied yet due to the
existence of large numbers of redundant trees. This chapter has succeeded inmaking a
simplification, by defining the IEN-T set onwhich some specialmappings (especially
the extended elementary differential mapping) are introduced.

This simplification of the order conditions for the general ERKN methods when
applied to the oscillatory system (8.1) is of great importance. The new tri-colored
tree theory and the B-series theory for the general ERKN methods when solving
the general system (8.1) reduce to those for standard ERKN methods when solving
special system (8.2), where the right-hand side vector-valued function f does not
depend on y′ (see [23, 30]).

This successful simplification makes the construction of the general ERKNmeth-
ods much simpler and more efficient for the system (8.1). In light of the reduced tree
theory analysed in this chapter, almost one half of algebraic conditions in the paper
[33] can be eliminated. Furthermore, in this chapter, from the relation between the
theories of order conditions for the general RKN method and for general ERKN
method, we propose a simple approach to constructing new integrators. The numer-
ical results show that the general ERKN methods are more suitable for long-term
integration with a large stepsize, in comparison with the RKN methods in the litera-
ture.

The previous eight chapters concentrated on numerical integrators of oscilla-
tory ordinary differential equations, although their applications to partial differential
equations were implemented as well. However, in the next four chapters we will turn
to structure-preserving schemes for partial differential equations.

The material of this chapter is based on the work by Zeng et al. [34].
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Chapter 9
An Integral Formula Adapted to
Different Boundary Conditions for
Arbitrarily High-Dimensional Nonlinear
Klein–Gordon Equations

This chapter is concerned with the initial-boundary value problem for arbitrarily
high-dimensional Klein–Gordon equations, posed on a bounded domain Ω ⊂ R

d

for d ≥ 1 and subject to suitable boundary conditions. We derive and analyse an
integral formula which proves to be adapted to different boundary conditions for
general Klein–Gordon equations in arbitrarily high-dimensional spaces. The formula
gives a closed-form solution to arbitrarily high-dimensional homogeneous linear
Klein–Gordon equations,which is totally different from thewell-knownD’Alembert,
Poisson and Kirchhoff formulas.

9.1 Introduction

Nonlinear phenomena appear in many areas of scientific and engineering applica-
tions such as solid state physics, plasma physics, fluid dynamics, gas dynamics, wave
mechanics, mathematical biology and chemical kinetics, which can be modelled by
partial differential equations (PDEs). For the past four decades, there has been broad
interest in a class of nonlinear evolution equations that admits extremely stable solu-
tions termed solitons (see, e.g. [1, 2, 5, 6, 8, 16, 21, 27]). An important and typical
example of such equations is the Klein–Gordon equation which can be expressed in
the form:

⎧
⎪⎨

⎪⎩

Utt (X, t) − a2ΔU (X, t) = g
(
U (X, t)

)
, X ∈ Ω, t0 < t ≤ T,

U (X, t0) = U0(X),

Ut (X, t0) = U1(X),

(9.1)

where g is a function of U , U : R
d × R → R with d ≥ 1, representing the wave

displacement at position X ∈ R
d and time t , and

© Springer Nature Singapore Pte Ltd. And Science Press 2018
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g
(
U (X, t)

) = −G ′(U ) = −dG(U ),

for some smooth function G(U ). The general Klein–Gordon equation can be written
as

⎧
⎪⎨

⎪⎩

Utt (X, t) − a2ΔU (X, t) = −G ′(U (X, t)
)
, X ∈ Ω, t0 < t ≤ T,

U (X, t0) = U0(X),

Ut (X, t0) = U1(X).

(9.2)

The Klein–Gordon equation was derived in 1928 as a relativistic version of the
Schrödinger equation describing free particles. However, theKlein–Gordon equation
was named after the physicists Oskar Klein and Walter Gordon, and proposed in
1926. The model describes relativistic electrons and correctly represents the spinless
pion, a composite particle [17]. Here, it is assumed that (9.1) is subject to the given
boundary conditions, such as Dirichlet boundary conditions, or Neumann boundary
conditions, or Robin boundary conditions. Equation (9.1) is a natural generalization
of the linear wave equation (see, e.g. [16]). A simple model of (9.1) with d = 1 and
g = 0 is the homogeneous one-dimensional undamped wave equation,

⎧
⎪⎨

⎪⎩

Utt − a2Uxx = 0, xl < x < xr , t0 < t ≤ T,

U (x, t0) = u0(x),

Ut (x, t0) = u1(x),

(9.3)

subject to the Dirichlet boundary conditions

U (xl, t) = α(t), U (xr , t) = β(t), t0 ≤ t ≤ T,

where a means the horizontal propagation speed of the wave motion.
In the numerical simulation it is well known that themethod of lines is an effective

approach to solving partial differential equations such as nonlinear wave equations.
Using the method of lines [20], the semidiscretisation of (9.1) in space in the one-
dimensional case suggests semi-discrete differential equations, namely, a system of
second-order ordinary differential equations in time. Using this approach, each one-
dimensional nonlinear wave equation can be converted into a system of second-order
ordinary differential equations in time:

{
q ′′(t) + Mq(t) = g̃

(
q(t), q ′(t)

)
, t ∈ [t0, tend],

q(t0) = q0, q ′(t0) = q ′
0,

(9.4)

where g̃ : Rm × R
m → R

m is assumed to be continuous and M is a m × m positive
semi-definite constant matrix. The solution of system (9.4) is a nonlinear multi-
frequency oscillator. Such an oscillatory system has received a great deal of attention
in the last few years (see, e.g. [3, 10, 12, 14, 24, 31]).
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With regard to the exact solution of the system (9.4) and its derivative, the authors
in [29, 32] established the following matrix-variation-of-constants formula which in
fact is a semi-analytical expression of the solution of (9.4), or an integral formula
for the oscillatory system (9.4).

Theorem 9.1 If g̃ : Rm × R
m → R

m is continuous in (9.4), then the solution of
(9.4) and its derivative satisfy

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(t) = φ0
(
(t − t0)

2M
)
q0 + (t − t0)φ1

(
(t − t0)

2M
)
q ′
0

+
∫ t

t0

(t − ζ )φ1((t − ζ )2M)g̃
(
q(ζ ), q ′(ζ )

)
dζ,

q ′(t) = −(t − t0)Mφ1
(
(t − t0)

2M
)
q0 + φ0

(
(t − t0)

2M
)
q ′
0

+
∫ t

t0

φ0
(
(t − ζ )2M

)
g̃
(
q(ζ ), q ′(ζ )

)
dζ,

(9.5)

for t0, t ∈ (−∞,+∞), where the unconditionally convergent matrix-valued func-
tions are defined by

φ j (M) :=
∞∑

k=0

(−1)kMk

(2k + j)! , j = 0, 1, . . . . (9.6)

Much attention has been paid to thematrix-variation-of-constants formula to develop
new integrators such as ARKN (Adapted Runge–Kutta Nyström) methods, ERKN
(Extended Runge–Kutta Nyström) methods, Gautschi-type methods, and trigono-
metric Fourier collocation methods for solving (9.4) (see, e.g. [9–13, 15, 22, 23, 25,
26, 29–32, 34]).

In practice, there exists a very small class of nonlinear PDEs that can be solved
exactly by analytical methods. One such method is the well-known inverse scatter-
ing method (see, e.g. [4]), also called the inverse spectral transform, which is, for
nonlinear PDEs, a direct generalization of the Fourier transform for linear PDEs.
Regrettably, the inverse scattering method can solve the initial value problems for a
very small class of nonlinear PDEs (see, e.g. [8]) with the requirement that U and
various of its derivatives tend to zero as ‖X‖ → ∞. For this reason, one therefore
might think that the set of solvable nonlinear PDEs has “measure zero”, and that lin-
ear PDEs and solvable nonlinear PDEs could be considered as belonging to a class in
which solutions can be added in some function spaces (see, e.g. [16]). On the other
hand, it is known that a formal solution to arbitrarily high-dimensionalKlein–Gordon
equations may be valuable in understanding new nonlinear physical phenomena and
investigating novel numerical integrators for the simulation of nonlinear phenomena.

As stated above, nonlinear PDEs in general cannot be solved explicitly. Fortu-
nately, however, we note that the mathematical structure of (9.1) is similar to (9.4),
observing the fact that −M in (9.4) can be regarded as a discrete operator of the
Laplacian Δ in the one-dimensional case of the nonlinear wave equation based on
the method of lines. This observation motivates us to derive and analyse an integral
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formula for the general Klein–Gordon equation (9.1) posed on a bounded domain
Ω ⊂ R

d for d ≥ 1 equipped with the requirement of suitable boundary conditions.
The outline of this chapter is as follows. In Sect. 9.2, we analyse and derive an

integral formula for (9.1). In Sect. 9.3, for the one-dimensional Klein–Gordon equa-
tions,we show in detail the consistency of the integral formulawith the corresponding
Dirichlet boundary conditions and Neumann boundary conditions, respectively. In
Sect. 9.4, for arbitrarily high-dimensional Klein–Gordon equations, we prove the
consistency of the formula with the underlying Dirichlet boundary conditions, and
Neumann boundary conditions, respectively. To show the applications of the for-
mula, illustrative examples are presented in Sect. 9.5. The last section is devoted to
conclusions.

9.2 An Integral Formula for Arbitrarily High-Dimensional
Klein–Gordon Equations

9.2.1 General Case

It is known that Δ is an unbounded operator which is not defined for all v ∈ L2(Ω).
In order to model boundary conditions, we restrict ourselves to the case where Δ is
defined on a domain D(Δ) ⊂ L2(Ω), such that the underlying boundary condition is
satisfied. For example, wewill consider the one-dimensional Klein–Gordon equation
of the form {

utt − a2Δu = f (u), x ∈ [0, Γ ], t ≥ t0,

u(x, t0) = ϕ1(x), ut (x, t0) = ϕ2(x), x ∈ [0, Γ ], (9.7)

subject to the periodic boundary condition

u(0, t) = u(Γ, t),

where Γ is a fundamental period with respect to x , where Δ = ∂2
x and f (u) =

−V ′(u) is the negative derivative of a potential function V (u). We then have

D(Δ) = {v(x) : ∀v ∈ L2([0, Γ ]) and v(0) = v(Γ )}.

The functions in D(Δ) are continuously differentiable and satisfy the underlying
boundary condition.

In what follows, we will present an integral formula for the arbitrarily high-
dimensional Klein–Gordon equation (9.1). To this end, we first define the formal
operator-argument functions as follows:



9.2 An Integral Formula for Arbitrarily High-Dimensional Klein–Gordon Equations 225

φ j (Δ) :=
∞∑

k=0

Δk

(2k + j)! , j = 0, 1, . . . , (9.8)

where Δ is an operator defined on a normed space, such as the Laplacian defined on
a subspace D(Δ) of L2(Ω), and in this case, the operator-argument functions φ j (Δ)

for j = 0, 1, . . . defined by (9.8) are bounded. Accordingly, φ j (Δ) in (9.8) can be
called Laplacian-argument functions defined on D(Δ). Besides, Δ can also be a
linear transformation such as a matrix and in the particular case of Δ = −M , where
M is a positive semi-definite constant matrix, (9.8) reduces to the matrix-valued
functions (9.6) which have been widely used in the study of ARKN methods and
ERKN methods for solving oscillatory or highly oscillatory differential equations
(see, e.g. [32]).

It can be observed that (9.8) is obtained from replacing −x by Δ in

φ j (x) =
∞∑

k=0

(−1)k xk

(2k + j)! , j = 0, 1, 2, . . . ,

and all φ j (x) are bounded for any x ≥ 0. Each of these operators has a complete
system of orthogonal eigenfunctions in the complex Hilbert space L2(Ω). Because
of the isomorphism between L2 and �2, the operator Δ on L2(Ω) induces a cor-
responding operator on �2. An elementary analysis which is similar to that for the
exponential differential operator presented by Hochbruck and Ostermann in [15]
can make sure that the Laplacian-argument functions defined on D(Δ) depending
on different boundary conditions are bounded operators with respect to the norm
‖ · ‖L2(Ω)←L2(Ω), where Ω is the space region under consideration. The details can
be found in [18]. It is noted that the exponential differential operator has the proper-
ties of a semigroup which are required for analysis. However, the operators defined
by (9.8) do not have the semigroup property, but this is not needed in our analysis
here.

Some useful properties of Laplacian-argument functions (9.8) are established in
the next two theorems.

Theorem 9.2 Suppose that Δ is the Laplacian defined on a subspace D(Δ) of
L2(Ω). The Laplacian-argument functions φ0 and φ1 defined by (9.8) satisfy:

⎧
⎪⎪⎨

⎪⎪⎩

d

dζ

[
φ0

(
(t − ζ )2a2Δ

)] = −(t − ζ )a2Δφ1
(
(t − ζ )2a2Δ

)
,

d

dζ

[
(t − ζ )φ1

(
(t − ζ )2a2Δ

)] = −φ0
(
(t − ζ )2a2Δ

)
, t, ζ ∈ R.

(9.9)
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Proof
d

dζ

[
φ0

(
(t − ζ )2a2Δ

)] = d

dζ

∞∑

k=0

(t − ζ )2ka2kΔk

(2k)!

= −
∞∑

k=1

(t − ζ )2k−1a2kΔk

(2k − 1)!

= −
∞∑

k=0

(t − ζ )2k+1a2k+2Δk+1

(2k + 1)!
= −(t − ζ )a2Δφ1

(
(t − ζ )2a2Δ

)
.

The second formula of (9.9) can be proved in a similar way. �

Theorem 9.3 For a symmetric negative (semi-) definite operatorΔ, the φ-functions
defined by (9.8) satisfy:

(i)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

φ0(a
2Δ) =

∞∑

k=0

a2kΔk

(2k)! =
∞∑

k=0

(a
√−Δ)2k(−1)k

(2k)! = cos(a
√−Δ),

φ1(a
2Δ) =

∞∑

k=0

a2kΔk

(2k + 1)! =
∞∑

k=0

(a
√−Δ)2k(−1)k

(2k + 1)! = 1

a
√−Δ

sin(a
√−Δ), a 
= 0.

(9.10)

(ii)

φ2
0(a

2Δ) − a2Δφ2
1(a

2Δ) = I, (9.11)

φ0(a
2Δ) − I = a2Δφ2(a

2Δ). (9.12)

(iii) ⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φ2
1(a

2Δ) − φ0(a
2Δ)φ2(a

2Δ) = φ2(a
2Δ),

φ0(a
2Δ)φ1(a

2Δ) − a2Δφ1(a
2Δ)φ2(a

2Δ) = φ1(a
2Δ),

1

2

(
φ2
1(a

2Δ) − a2Δφ2
2(a

2Δ)
) = φ2(a

2Δ).

(9.13)

(iv)
∫ 1

0

(1 − ξ)φ1
(
a2(1 − ξ)2Δ

)
ξ j

j ! dξ = φ j+2(a
2Δ),

∫ 1

0

φ0
(
a2(1 − ξ)2Δ

)
ξ j

j ! dξ = φ j+1(a
2Δ).

(9.14)

Proof These results can be derived straightforwardly and we omit the details of the
proof for the sake of brevity. �
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Weare now in a position to present an integral formula for the initial-value problem
of the general arbitrarily high-dimensional Klein–Gordon equation (9.1).

Theorem 9.4 If Δ is a Laplacian defined on a subspace D(Δ) of L2(Ω) and g(U )

in (9.1) is continuous, then the exact solution of (9.1) and its derivative satisfy

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

U (X, t) = φ0
(
(t − t0)

2a2Δ
)
U (X, t0) + (t − t0)φ1

(
(t − t0)

2a2Δ
)
Ut (X, t0)

+
∫ t

t0

(t − ξ)φ1
(
(t − ξ)2a2Δ

)
f̃ (ξ)dξ,

U ′(X, t) = (t − t0)a
2Δφ1

(
(t − t0)

2a2Δ
)
U (X, t0) + φ0

(
(t − t0)

2a2Δ
)
Ut (X, t0)

+
∫ t

t0

φ0
(
(t − ξ)2a2Δ

)
f̃ (ξ)dξ

(9.15)
for t0, t ∈ (−∞,+∞), where f̃ (ξ) = g

(
U (X, ξ)

)
, and the Laplacian-argument

functions φ0 and φ1 are defined by (9.8).

Proof We first let
Y (X, t) = (

U (X, t),Ut (X, t)
)ᵀ

,

Y0(X) = (
U0(X),U1(X)

)ᵀ
,

F
(
Y (X, t)

) = (
0, g(U (X, t))

)ᵀ
,

and

W =
(

0 I
a2Δ 0

)

.

Then the initial value problem (9.1) can be rewritten in a more compact form

{
Yt (X, t) = WY (X, t) + F

(
Y (X, t)

)
,

Y (X, t0) = Y0(X), t ≥ t0.
(9.16)

From the well-known result on inhomogeneous linear differential equations, the
solution at t ≥ t0 of the system (9.16) has the form

Y (X, t) = exp
(
(t − t0)W

)
Y0(X) +

∫ t

t0

exp
(
(t − ξ)W

)
F

(
Y (X, t − ξ)

)
dξ.

(9.17)
It follows from a careful calculation that

W 2 =
(
a2Δ 0
0 a2Δ

)

, W 3 =
(

0 a2Δ
a4Δ2 0

)

, W 4 =
(
a4Δ2 0
0 a4Δ2

)

,

W 5 =
(

0 a4Δ2

a6Δ3 0

)

, W 6 =
(
a6Δ3 0
0 a6Δ3

)

, W 7 =
(

0 a6Δ3

a8Δ4 0

)

,

. . . .
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An argument by induction leads to the result that, for each nonnegative integer k, we
have

Wk =
(

1+(−1)k

2 (a2Δ)�k/2� 1−(−1)k

2 (a2Δ)�k/2�
1−(−1)k

2 (a2Δ)�k/2�+1 1+(−1)k

2 (a2Δ)�k/2�

)

,

where �k/2� denotes the integer part of k/2, and then we have

exp
(
(t − t0)W

) =
∞∑

k=0

(t − t0)
k

k! Wk

=
(
I + (t−t0)2

2! a2Δ + (t−t0)4

4! (a2Δ)2 + . . . (t − t0)I + (t−t0)3

3! a2Δ + . . .

(t − t0)a
2Δ + (t−t0)3

3! (a2Δ)2 + . . . I + (t−t0)2

2! a2Δ + (t−t0)4

4! (a2Δ)2 + . . .

)

=
(

φ0
(
(t − t0)

2a2Δ
)

(t − t0)φ1
(
(t − t0)

2a2Δ
)

(t − t0)a
2Δφ1

(
(t − t0)

2a2Δ
)

φ0
(
(t − t0)

2a2Δ
)

)

.

(9.18)
Inserting the result of (9.18) into Eq. (9.17) yields

(
U (X, t)
Ut (X, t)

)

=
(

φ0
(
(t − t0)

2a2Δ
)

(t − t0)φ1
(
(t − t0)

2a2Δ
)

(t − t0)a
2Δφ1

(
(t − t0)

2a2Δ
)

φ0
(
(t − t0)

2a2Δ
)

) (
U (X, t0)
Ut (X, t0)

)

+
∫ t

t0

(
φ0

(
(t − ξ)2a2Δ

)
(t − ξ)φ1

(
(t − ξ)2a2Δ

)

(t − ξ)a2Δφ1
(
(t − ξ)2a2Δ

)
φ0

(
(t − ξ)2a2Δ

)

) (
0

g
(
U (X, ξ)

)

)

dξ

=
(

φ0
(
(t − t0)

2a2Δ
)
u(x, t0) + (t − t0)φ1

(
(t − t0)

2a2Δ
)
Ut (X, t0)

(t − t0)a
2Δφ1

(
(t − t0)

2a2Δ
)
U (X, t0) + φ0

(
(t − t0)

2a2Δ
)
Ut (X, t0)

)

+
(∫ t

t0
(t − ξ)φ1

(
(t − ξ)2a2Δ

)
f̃ (ξ)dξ

∫ t
t0

φ0
(
(t − ξ)2a2Δ

)
f̃ (ξ)dξ

)

.

This gives the form of (9.15) exactly and completes the proof. �

Let Un(X) = U (X, tn) and Un
t (X) = Ut (X, tn) represent the exact solution of

(9.7) and its derivative with respect to t at t = tn . It follows immediately from (9.15)
with the change of variable ξ = tn + hz that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Un+1(X) = φ0
(
h2a2Δ

)
Un(X) + hφ1

(
h2a2Δ

)
Un

t (X)

+ h2
∫ 1

0
(1 − z)φ1

(
(1 − z)2h2a2Δ

)
f̃ (z)dz,

Un+1
t (X) = ha2Δφ1

(
h2a2Δ

)
Un(X) + φ0

(
h2a2Δ

)
Un

t (X)

+ h
∫ 1

0
φ0

(
(1 − z)2h2a2Δ

)
f̃ (z)dz,

(9.19)

where h is the temporal stepsize.

Remark 9.1 In comparison with the matrix-variation-of-constants formula (9.5) for
(9.4) based on the method of lines for solving one-dimensional nonlinear wave
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equations, the formula (9.15) is a formal solution to the Klein–Gordon equation
(9.1), whereas the matrix-variation-of-constants formula (9.5) is a formal solution
to (9.4) but not a formal solution to (9.1). Thus, significant progress has been made
on integral representations of solutions of the arbitrarily high-dimensional Klein–
Gordon equation (9.1).

9.2.2 Homogeneous Case

We now turn to the special and important homogeneous case.
If g(U ) = 0, then (9.1) reduces to the following homogeneous linear Klein–

Gordon equation: ⎧
⎪⎨

⎪⎩

Utt − a2ΔU = 0,

U (X, t0) = U0(X),

Ut (X, t0) = U1(X),

(9.20)

and then (9.15) becomes

{
U (X, t) = φ0

(
(t − t0)

2a2Δ
)
U0(X) + (t − t0)φ1

(
(t − t0)

2a2Δ
)
U1(X),

U ′(X, t) = (t − t0)a
2Δφ1

(
(t − t0)

2a2Δ
)
U0(X) + φ0

(
(t − t0)

2a2Δ
)
U1(X),

(9.21)
which integrates (9.20) exactly. This means that (9.21) expresses a closed-form solu-
tion to the arbitrarily high-dimensional homogeneous linear Klein–Gordon equation
(9.20). This fact shows that (9.21) possesses the additional advantage of energy
preservation and quadratic invariant preservation for the homogeneous linear Klein–
Gordon equation (9.20). Another key point is that, compared with the seminal
D’Alembert, Poisson and Kirchhoff formulas, the formula (9.21) doesn’t depend
on the evaluation of complicated integrals, whereas the evaluation of integrals is
required by the D’Alembert, Poisson and Kirchhoff formulas.

9.2.3 Towards Numerical Simulations

For the purpose of numerical simulations, we rewrite the Klein–Gordon equation
(9.1) as

{
Utt (X, t) = g

(
U (X, t)

) + a2ΔU (X, t), X ∈ Ω ⊆ R
d , t > t0

U (X, t0) = ϕ1(X), Ut (X, t0) = ϕ2(X), X ∈ Ω ∪ ∂Ω,
(9.22)
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where

Δ =
d∑

i=1

∂2

∂x2i
.

It follows from Theorem 9.4 that the solution to (9.22) is given by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

U (X, t) = U (X, t0) + (t − t0)Ut (X, t0) +
∫ t

t0

(t − ζ )ĝ
(
U (X, ζ )

)
dζ,

Ut (X, t) = Ut (X, t0) +
∫ t

t0

ĝ
(
U (X, ζ )

)
dζ,

X ∈ Ω ∪ ∂Ω,

(9.23)

i.e.,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

U (X, t) = ϕ1(X) + (t − t0)ϕ2(x) +
∫ t

t0

(t − ζ )ĝ
(
U (X, ζ )

)
dζ,

Ut (X, t) = ϕ2(X) +
∫ t

t0

ĝ
(
U (X, ζ )

)
dζ,

X ∈ Ω ∪ ∂Ω,

(9.24)

or

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Un+1(X) = Un(X) + hUn
t (x) + h2

∫ 1

0
(1 − z)ĝ

(
U (X, tn + zh)

)
dz,

Un+1
t (X) = Un

t (X) + h
∫ 1

0
ĝ
(
U (X, tn + zh)

)
dz,

X ∈ Ω ∪ ∂Ω,

(9.25)

where Un(X) = U (X, tn) and

ĝ
(
U (X, ζ )

) = g
(
U (X, ζ )

) + a2ΔU (X, ζ ).

Then, for each fixed X ∈ Ω ∪ ∂Ω , approximating the integrals in (9.25) by using a
quadrature formula yields a semi-analytical explicit RKN-type integrator.

Applying the modified midpoint rule (replacing ĝ
(
Un+ 1

2 (X)
)
by ĝ(Ũ n(X) +

h

2
Ũ n

t (X))) in the integrals in (9.25), we obtain

⎧
⎪⎪⎨

⎪⎪⎩

Ũ n+1(X) = Ũ n(X) + hŨn
t (X) + h2

2
ĝ(Ũ n(X) + h

2
Ũ n

t (X)),

Ũ n+1
t (X) = Ũ n

t (X) + hĝ(Ũ n(X) + h

2
Ũ n

t (X)),

(9.26)
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where Ũ n(X) ≈ Un(X) = U (X, tn). This is the well-known Störmer–Verlet for-
mula, and we call (9.26) the SV-scheme for (9.22). Hence, the SV-scheme is a sym-
plectic integrator of order two.

In applications, (9.1) is defined on bounded domains on the boundary of which
some physical conditions must be prescribed. These boundary conditions can be of
different sorts. We will consider the most classical ones: Dirichlet boundary con-
ditions, Neumann boundary conditions, and Robin boundary conditions. In what
follows, we pay attention to the consistency of the formula (9.15) with the corre-
sponding boundary conditions under suitable assumptions.

9.3 The Consistency of the Boundary Conditions for
One-dimensional Klein–Gordon Equations

We now consider the initial problem in the one-dimensional case with u : R × R →
R given by

{
utt − a2Δu = f (u), xl < x < xr , t > t0,

u(x, t0) = ϕ1(x), ut (x, t0) = ϕ2(x), xl ≤ x ≤ xr ,
(9.27)

where f
(
u(x, t)

) = −G ′(u) for some smooth function G(u). From Theorem 9.4,
the solution of (9.27) satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(x, t) = φ0
(
(t − t0)

2a2Δ
)
ϕ1(x) + (t − t0)φ1

(
(t − t0)

2a2Δ
)
ϕ2(x)

+
∫ t

t0

(t − ζ )φ1((t − ζ )2a2Δ) f̃
(
ζ
)
dζ,

u′(x, t) = (t − t0)a
2Δφ1

(
(t − t0)

2a2Δ
)
ϕ1(x) + φ0

(
(t − t0)

2a2Δ
)
ϕ2(x)

+
∫ t

t0

φ0
(
(t − ζ )2a2Δ

)
f̃
(
ζ
)
dζ,

(9.28)

where Δ = ∂2

∂x2
and f̃ (ζ ) = f

(
u(x, ζ )

)
.

9.3.1 Dirichlet Boundary Conditions

Firstly, we consider the nonlinear wave equation (9.27) with the Dirichlet boundary
conditions:

u(xl , t) = α(t), u(xr , t) = β(t), t ≥ t0. (9.29)
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The next theorem shows the consistency of the formula (9.28) with the Dirichlet
boundary conditions (9.29), i.e.,

α(t) =
[
φ0

(
(t − t0)

2a2Δ
)
ϕ1(x) + (t − t0)φ1

(
(t − t0)

2a2Δ
)
ϕ2(x)

+
∫ t

t0

(t − ζ )φ1
(
(t − ζ )2a2Δ

)
f̃
(
ζ
)
dζ

]∣
∣
∣
x=xl

,

β(t) =
[
φ0

(
(t − t0)

2a2Δ
)
ϕ1(x) + (t − t0)φ1

(
(t − t0)

2a2Δ
)
ϕ2(x)

+
∫ t

t0

(t − ζ )φ1
(
(t − ζ )2a2Δ

)
f̃
(
ζ
)
dζ

]∣
∣
∣
x=xr

.

Theorem 9.5 Assume that α(t), β(t), and f
(
u(x, t)

)
are sufficiently differentiable

with respect to t . Then the formula (9.28) is consistent with the Dirichlet boundary
conditions (9.29).

Proof Using the initial conditions, we obtain

α(t0) = ϕ1(xl), α′(t0) = ϕ2(xl), β(t0) = ϕ1(xr ), β ′(t0) = ϕ2(xr ).

It follows from (9.27) that

utt = a2Δu + f (u)

⇒
{

α′′(t0) = a2Δϕ1(xl) + f
(
u(xl , t0)

)
,

β ′′(t0) = a2Δϕ1(xr ) + f
(
u(xr , t0)

)
,

u(3)
t = a2Δut + f ′

t (u)

⇒
{

α(3)(t0) = a2Δϕ2(xl) + f ′
t

(
u(xl , t0)

)
,

β(3)(t0) = a2Δϕ2(xr ) + f ′
t

(
u(xr , t0)

)
,

u(4)
t = a4Δ2u + a2Δ f (u) + f (2)

t (u)

⇒
{

α(4)(t0) = a4Δ2ϕ1(xl) + a2Δ f
(
u(xl , t0)

) + f (2)
t

(
u(xl , t0)

)
,

β(4)(t0) = a4Δ2ϕ1(xr ) + a2Δ f
(
u(xr , t0)

) + f (2)
t

(
u(xr , t0)

)
,

u(5)
t = a4Δ2ut + a2Δ f ′

t (u) + f (3)
t (u)

⇒
{

α(5)(t0) = a4Δ2ϕ2(xl) + a2Δ f ′
t

(
u(xl , t0)

) + f (3)
t

(
u(xl , t0)

)
,

β(5)(t0) = a4Δ2ϕ2(xr ) + a2Δ f ′
t

(
u(xr , t0)

) + f (3)
t

(
u(xr , t0)

)
,

u(6)
t = a6Δ3u + a4Δ2 f (u) + a2Δ f (2)

t (u) + f (4)
t (u)

⇒

⎧
⎪⎪⎨

⎪⎪⎩

α(6)(t0) = a6Δ3ϕ1(xl) + a4Δ2 f
(
u(xl , t0)

)

+a2Δ f (2)
t

(
u(xl , t0)

) + f (4)
t

(
u(xl , t0)

)
,

β(6)(t0) = a6Δ3ϕ1(xr ) + a4Δ2 f
(
u(xr , t0)

)

+a2Δ f (2)
t

(
u(xr , t0)

) + f (4)
t

(
u(xr , t0)

)
,
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u(7)
t = a6Δ3ut + a4Δ2 f ′

t (u) + a2Δ f (3)
t (u) + f (5)

t (u)

⇒

⎧
⎪⎪⎨

⎪⎪⎩

α(7)(t0) = a6Δ3ϕ2(xl) + a4Δ2 f ′
t

(
u(xl , t0)

)

+a2Δ f (3)
t

(
u(xl , t0)

) + f (5)
t

(
u(xl , t0)

)
,

β(7)(t0) = a6Δ3ϕ2(xr ) + a4Δ2 f ′
t

(
u(xr , t0)

)

+a2Δ f (3)
t

(
u(xr , t0)

) + f (5)
t

(
u(xr , t0)

)
.

. . . .

An argument by induction leads to the results

α(2k)(t0) = a2kΔkϕ1(xl) +
k∑

j=1

a2(k− j)Δk− j f (2 j−2)
t

(
u(xl , t0)

)
,

α(2k+1)(t0) = a2kΔkϕ2(xl) +
k∑

j=1

a2(k− j)Δk− j f (2 j−1)
t

(
u(xl , t0)

)
,

(9.30)

and

β(2k)(t0) = a2kΔkϕ1(xr ) +
k∑

j=1

a2(k− j)Δk− j f (2 j−2)
t

(
u(xr , t0)

)

β(2k+1)(t0) = a2kΔkϕ2(xr ) +
k∑

j=1

a2(k− j)Δk− j f (2 j−1)
t

(
u(xr , t0)

)
,

(9.31)

for k = 1, 2, . . . .
The Taylor expansion of α(t) and β(t) at the point t0 gives

α(t) =
∞∑

k=0

(t − t0)
k

k! α(k)(t0) =
∞∑

k=0

(t − t0)
2k

(2k)! α(2k)(t0) +
∞∑

k=0

(t − t0)
2k+1

(2k + 1)! α(2k+1)(t0),

β(t) =
∞∑

k=0

(t − t0)
k

k! β(k)(t0) =
∞∑

k=0

(t − t0)
2k

(2k)! β(2k)(t0) +
∞∑

k=0

(t − t0)
2k+1

(2k + 1)! β(2k+1)(t0).

(9.32)
Inserting the results of (9.30) and (9.31) into (9.32) yields

α(t) =
{
φ0

(
(t − t0)

2a2Δ
)
ϕ1(x) + (t − t0)φ1

(
(t − t0)

2a2Δ
)
ϕ2(x)

+
∞∑

k=1

[ (t − t0)2k

(2k)!
k∑

j=1

a2(k− j)Δk− j f (2 j−2)
t

(
u(x, t0)

)

+ (t − t0)2k+1

(2k + 1)!
k∑

j=1

a2(k− j)Δk− j f (2 j−1)
t

(
u(x, t0)

)]}∣
∣
∣
x=xl

,

(9.33)
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and

β(t) =
{
φ0

(
(t − t0)

2a2Δ
)
ϕ1(x) + (t − t0)φ1

(
(t − t0)

2a2Δ
)
ϕ2(x)

+
∞∑

k=1

[ (t − t0)2k

(2k)!
k∑

j=1

a2(k− j)Δk− j f (2 j−2)
t

(
u(x, t0)

)

+ (t − t0)2k+1

(2k + 1)!
k∑

j=1

a2(k− j)Δk− j f (2 j−1)
t

(
u(x, t0)

)]}∣
∣
∣
x=xr

.

(9.34)

Let

F(x, t) �
∫ t

t0

(t − ζ )φ1
(
(t − ζ )2a2Δ

)
f̃
(
ζ
)
dζ.

It is easy to see F(x, t0) = 0, and a careful calculation gives

F ′
t (x, t) =

∫ t

t0
φ0

(
(t − ζ )2a2Δ

)
f̃
(
ζ
)
dζ

⇒ F ′
t (x, t0) = 0,

F (2)
t (x, t) = f

(
u(x, t)

) +
∫ t

t0
(t − ζ )a2Δφ1

(
(t − ζ )2a2Δ

)
f̃
(
ζ
)
dζ

⇒ F (2)
t (x, t0) = f

(
u(x, t0)

)
,

F (3)
t (x, t) = f ′

t

(
u(x, t)

) +
∫ t

t0
a2Δφ0

(
(t − ζ )2a2Δ

)
f̃
(
ζ
)
dζ

⇒ F (3)
t (x, t0) = f ′

t

(
u(x, t0)

)
,

F (4)
t (x, t) = f (2)

t
(
u(x, t)

) + a2Δ f
(
u(x, t)

) +
∫ t

t0
(t − ζ )a4Δ2φ1

(
(t − ζ )2a2Δ

)
f̃
(
ζ
))
dζ

⇒ F (4)
t (x, t0) = f (2)

t
(
u(x, t0)

) + a2Δ f
(
u(x, t0)

)
,

F (5)
t (x, t) = f (3)

t
(
u(x, t)

) + a2Δ f ′
t

(
u(x, t)

) +
∫ t

t0
a4Δ2φ0

(
(t − ζ )2a2Δ

)
f̃
(
ζ
)
dζ

⇒ F (5)
t (x, t0) = f (3)

t
(
u(x, t0)

) + a2Δ f ′
t

(
u(x, t0)

)
,

F (6)
t (x, t) = f (4)

t
(
u(x, t)

) + a2Δ f (2)
t

(
u(x, t)

) + a4Δ2 f
(
u(x, t)

)

+
∫ t

t0
(t − ζ )a6Δ3φ1

(
(t − ζ )2a2Δ

)
f̃
(
ζ
)
dζ

⇒ F (6)
t (x, t0) = f (4)

t
(
u(x, t0)

) + a2Δ f (2)
t

(
u(x, t0)

) + a4Δ2 f
(
u(x, t0)

)
),

F (7)
t (x, t) = f (5)

t
(
u(x, t)

) + a2Δ f (3)
t

(
u(x, t)

) + a4Δ2 f ′
t

(
u(x, t)

)

+
∫ t

t0
a6Δ3φ0

(
(t − ζ )2a2Δ

)
f̃
(
ζ
)
dζ

⇒ F (7)
t (x, t0) = f (5)

t
(
u(x, t0)

) + a2Δ f (3)
t

(
u(x, t0)

) + a4Δ2 f ′
t

(
u(x, t0)

)
,

. . . .
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An argument by induction then gives

F (2k)
t (x, t0) =

k∑

j=1

a2(k− j)Δk− j f (2 j−2)
t

(
u(x, t0)

)

F (2k+1)
t (x, t0) =

k∑

j=1

a2(k− j)Δk− j f (2 j−1)
t

(
u(x, t0)

)
, k = 1, 2, . . . .

The Taylor expansion of F(x, t) at t = t0 is

F(x, t) =
∞∑

k=0

(t − t0)k

k! F (k)
t (x, t0) =

∞∑

k=2

(t − t0)k

k! F (k)
t (x, t0)

=
∞∑

k=1

(t − t0)2k

(2k)! F (2k)
t (x, t0) +

∞∑

k=1

(t − t0)2k+1

(2k + 1)! F (2k+1)
t (x, t0)

=
∞∑

k=1

[ (t − t0)2k

(2k)!
k∑

j=1

a2(k− j)Δk− j f (2 j−2)
t

(
u(x, t0)

)

+ (t − t0)2k+1

(2k + 1)!
k∑

j=1

a2(k− j)Δk− j f (2 j−1)
t

(
u(x, t0)

)]
.

(9.35)

Inserting the result of (9.35) into (9.33) and (9.34) yields

α(t) =
[
φ0

(
(t − t0)

2a2Δ
)
ϕ1(x) + (t − t0)φ1

(
(t − t0)

2a2Δ
)
ϕ2(x)

+
∫ t

t0

(t − ζ )φ1
(
(t − ζ )2a2Δ

)
f̃
(
ζ
)
dζ

]∣
∣
∣
x=xl

β(t) =
[
φ0

(
(t − t0)

2a2Δ
)
ϕ1(x) + (t − t0)φ1

(
(t − t0)

2a2Δ
)
ϕ2(x)

+
∫ t

t0

(t − ζ )φ1
(
(t − ζ )2a2Δ

)
f̃
(
ζ
)
dζ

]∣
∣
∣
x=xr

.

The proof is complete. �

9.3.2 Neumann Boundary Conditions

We next consider the nonlinear wave equation (9.27) with the Neumann boundary
conditions

∂u

∂x

∣
∣
xl

= γ (t),
∂u

∂x

∣
∣
xr

= δ(t). (9.36)
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Theorem 9.6 Assume that γ (t), δ(t), and f
(
u(x, t)

)
are sufficiently differentiable

with respect to t . Then the formula (9.28) is consistent with the Neumann boundary
conditions (9.36).

Proof From the initial conditions,we have

γ (t0) = ϕ′
1(xl), γ ′(t0) = ϕ′

2(xl), δ(t0) = ϕ′
1(xr ), δ′(t0) = ϕ′

2(xr ).

Calculating the derivative of u with respect to x in (9.27) gives

⎧
⎪⎨

⎪⎩

(∂u

∂x

)

t t
= a2Δ

(∂u

∂x

)
+ ∂

∂x

(
f (u)

)
, xl < x < xr , t > t0,

∂u

∂x
(x, t0) = ϕ′

1(x),
∂ut
∂x

(x, t0) = ϕ′
2(x), xl ≤ x ≤ xr .

(9.37)

Let v = ∂u

∂x
. We then have the following initial-boundary problem

⎧
⎪⎨

⎪⎩

vtt = a2Δv + f̃ (u), xl < x < xr , t ≥ t0,

v(x, t0) = ϕ′
1(x), vt (x, t0) = ϕ′

2(x), xl ≤ x ≤ xr ,

v(xl , t) = γ (t), v(xr , t) = δ(t), t ≥ t0,

(9.38)

where

f̃ (u) = f ′
x

(
u(x, t)

) = ∂

∂x
f
(
u(x, t)

)
.

For the transformed initial-boundary value problem (9.38), after an analysis sim-
ilarly to that in Sect. 9.3.1, we conclude that

γ (t) =
[
φ0

(
(t − t0)

2a2Δ
)
ϕ′
1(x) + (t − t0)φ1

(
(t − t0)

2a2Δ
)
ϕ′
2(x)

+
∫ t

t0

(t − ζ )φ1
(
(t − ζ )2a2Δ

)
f̂
(
ζ
)
dζ

]∣
∣
∣
x=xl

,

δ(t) =
[
φ0

(
(t − t0)

2a2Δ
)
ϕ′
1(x) + (t − t0)φ1

(
(t − t0)

2a2Δ
)
ϕ′
2(x)

+
∫ t

t0

(t − ζ )φ1
(
(t − ζ )2a2Δ

)
f̂
(
ζ
)
dζ

]∣
∣
∣
x=xr

,

where f̂
(
ζ
) = f ′

x

(
u(x, ζ )

)
.

The proof is complete. �

Another direct proof can be found in Appendix1 of this chapter.
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9.4 Towards Arbitrarily High-Dimensional Klein–Gordon
Equations

Let Ω be a bounded Lipschitz domain in R
d . We next consider the initial valued

problem of the arbitrarily high-dimensional nonlinear Klein–Gordon equations

{
Utt − a2ΔU = f

(
U

)
, X ∈ Ω, t > t0,

U (X, t0) = ϕ1(X), Ut (X, t0) = ϕ2(X), X ∈ Ω ∪ ∂Ω.
(9.39)

The integral formula for (9.39) is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

U (X, t) = φ0
(
(t − t0)

2a2Δ
)
ϕ1(X) + (t − t0)φ1

(
(t − t0)

2a2Δ
)
ϕ2(X)

+
∫ t

t0

(t − ζ )φ1((t − ζ )2a2Δ) f̃ (ζ )dζ,

U ′(X, t) = (t − t0)a
2Δφ1

(
(t − t0)

2a2Δ
)
ϕ1(X) + φ0

(
(t − t0)

2a2Δ
)
ϕ2(X)

+
∫ t

t0

φ0
(
(t − ζ )2a2Δ

)
f̃ (ζ )dζ,

(9.40)
where f̃ (ζ ) = f

(
U (X, ζ )

)
.

9.4.1 Dirichlet Boundary Conditions

Firstly, we consider the arbitrarily high-dimensional nonlinear Klein–Gordon equa-
tion (9.39) with the Dirichlet boundary condition:

U (X, t) = α(X, t), X ∈ ∂Ω, t ≥ t0. (9.41)

Theorem 9.7 Assume that α(X, t) and f
(
U (X, t)

)
are sufficiently differentiable

with respect to t . Then, formula (9.40) is consistent with the Dirichlet boundary
condition (9.41).

Proof From the initial conditions, we obtain

α(X, t0) = ϕ1(X), α′
t (X, t0) = ϕ2(X), X ∈ ∂Ω.

It follows from (9.39) that
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Utt = a2ΔU + f (U )

⇒ α
′′
t (X, t0) = [

a2Δϕ1(X) + f
(
U (X, t0)

)]∣
∣
∂Ω

,

U (3)
t = a2ΔUt + f ′

t (U )

⇒ α
(3)
t (X, t0) = [

a2Δϕ2(X) + f ′
t

(
U (X, t0)

)]∣
∣
∂Ω

,

U (4)
t = a4Δ2U + a2Δ f (U ) + f (2)

t (U )

⇒ α
(4)
t (X, t0) = [

a4Δ2ϕ1(X) + a2Δ f
(
U (X, t0)

) + f (2)
t

(
U (X, t0)

)]∣
∣
∂Ω

,

U (5)
t = a4Δ2Ut + a2Δ f ′

t (U ) + f (3)
t (U )

⇒ α
(5)
t (X, t0) = [

a4Δ2ϕ2(X) + a2Δ f ′
t

(
U (X, t0)

) + f (3)
t

(
U (X, t0)

)]∣
∣
∂Ω

,

U (6)
t = a6Δ3U + a4Δ2 f (U ) + a2Δ f (2)

t (U ) + f (4)
t (U )

⇒ α
(6)
t (X, t0) = [

a6Δ3ϕ1(X) + a4Δ2 f
(
U (X, t0)

) + a2Δ f (2)
t

(
U (X, t0)

)

+ f (4)
t

(
U (X, t0)

)]∣
∣
∂Ω

,

U (7)
t = a6Δ3Ut + a4Δ2 f ′

t (U ) + a2Δ f (3)
t (U ) + f (5)

t (U )

⇒ α
(7)
t (X, t0) = [

a6Δ3ϕ2(X) + a4Δ2 f ′
t

(
U (X, t0)

) + a2Δ f (3)
t

(
U (X, t0)

)

+ f (5)
t

(
U (X, t0)

)]∣
∣
∂Ω

,

. . . .

An argument by induction leads to the results

α(2k)(X, t0) = a2kΔkϕ1(X) +
k∑

j=1

a2(k− j)Δk− j f (2 j−2)
t

(
U (X, t0)

)

α(2k+1)(X, t0) = a2kΔkϕ2(X) +
k∑

j=1

a2(k− j)Δk− j f (2 j−1)
t

(
U (X, t0)

)
,

(9.42)

for k = 1, 2, . . . , and ∀X ∈ ∂Ω.

Inserting the results of (9.42) into the Taylor expansion of α(X, t) with respect
to t at the point t0 gives

α(X, t) =
{
φ0

(
(t − t0)

2a2Δ
)
ϕ1(X) + (t − t0)φ1

(
(t − t0)

2a2Δ
)
ϕ2(X)

+
∞∑

k=1

[ (t − t0)2k

(2k)!
k∑

j=1

a2(k− j)Δk− j f (2 j−2)
t

(
U (X, t0)

)

+ (t − t0)2k+1

(2k + 1)!
k∑

j=1

a2(k− j)Δk− j f (2 j−1)
t

(
U (X, t0)

)]}∣
∣
∣
∂Ω

.

(9.43)
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Let

F(X, t) �
∫ t

t0

(t − ζ )φ1
(
(t − ζ )2a2Δ

)
f̃ (ζ )dζ.

It is easy to see
F(X, t0) = 0,

and

F ′
t (X, t) =

∫ t

t0
φ0

(
(t − ζ )2a2Δ

)
f̃ (ζ )dζ

⇒ F ′
t (X, t0) = 0,

F(2)
t (X, t) = f

(
U (X, t)

) +
∫ t

t0
(t − ζ )a2Δφ1

(
(t − ζ )2a2Δ

)
f̃ (ζ )dζ

⇒ F(2)
t (X, t0) = f

(
U (X, t0)

)
,

F(3)
t (X, t) = f ′

t
(
U (X, t)

) +
∫ t

t0
a2Δφ0

(
(t − ζ )2a2Δ

)
f̃ (ζ )dζ

⇒ F(3)
t (X, t0) = f ′

t
(
U (X, t0)

)
,

F(4)
t (X, t) = f (2)

t
(
U (X, t)

) + a2Δ f
(
U (X, t)

) +
∫ t

t0
(t − ζ )a4Δ2φ1

(
(t − ζ )2a2Δ

)
f̃ (ζ )dζ

⇒ F(4)
t (X, t0) = f (2)

t
(
U (X, t0)

) + a2Δ f
(
U (X, t0)

)
,

F(5)
t (X, t) = f (3)

t
(
U (X, t)

) + a2Δ f ′
t
(
U (X, t)

) +
∫ t

t0
a4Δ2φ0

(
(t − ζ )2a2Δ

)
f̃ (ζ )dζ

⇒ F(5)
t (X, t0) = f (3)

t
(
U (X, t0)

) + a2Δ f ′
t
(
U (X, t0)

)
,

F(6)
t (X, t) = f (4)

t
(
U (X, t)

) + a2Δ f (2)
t

(
U (X, t)

) + a4Δ2 f
(
U (X, t)

)

+
∫ t

t0
(t − ζ )a6Δ3φ1

(
(t − ζ )2a2Δ

)
f̃ (ζ )dζ

⇒ F(6)
t (X, t0) = f (4)

t
(
U (X, t0)

) + a2Δ f (2)
t

(
U (X, t0)

) + a4Δ2 f
(
U (X, t0)

)
,

F(7)
t (X, t) = f (5)

t
(
U (X, t)

) + a2Δ f (3)
t

(
U (X, t)

) + a4Δ2 f ′
t
(
U (X, t)

)

+
∫ t

t0
a6Δ3φ0

(
(t − ζ )2a2Δ

)
f̃ (ζ )dζ

⇒ F(7)
t (X, t0) = f (5)

t
(
U (X, t0)

) + a2Δ f (3)
t

(
U (X, t0)

) + a4Δ2 f ′
t
(
U (X, t0)

)
,

….

Likewise, an argument by induction yields the following results
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F (2k)
t (X, t0) =

k∑

j=1

a2(k− j)Δk− j f (2 j−2)
t

(
U (X, t0)

)

F (2k+1)
t (X, t0) =

k∑

j=1

a2(k− j)Δk− j f (2 j−1)
t

(
U (X, t0)

)
, k = 1, 2, . . . .

The Taylor expansion of F(X, t) at t = t0 is

F(X, t) =
∞∑

k=1

(t − t0)2k

(2k)! F (2k)
t (X, t0) +

∞∑

k=1

(t − t0)2k+1

(2k + 1)! F (2k+1)
t (X, t0)

=
∞∑

k=1

[ (t − t0)2k

(2k)!
k∑

j=1

a2(k− j)Δk− j f (2 j−2)
t

(
U (X, t0)

)

+ (t − t0)2k+1

(2k + 1)!
k∑

j=1

a2(k− j)Δk− j f (2 j−1)
t

(
U (X, t0)

)]
.

(9.44)

Inserting the result of (9.44) into (9.43) gives

α(X, t) = φ0
(
(t − t0)

2a2Δ
)
ϕ1(X) + (t − t0)φ1

(
(t − t0)

2a2Δ
)
ϕ2(X)

+
∫ t

t0

(t − ζ )φ1
(
(t − ζ )2a2Δ

)
f̃ (ζ )dζ, X ∈ ∂Ω.

The proof is complete. �

9.4.2 Neumann Boundary Conditions

We next consider the arbitrarily high-dimensional nonlinear wave equation (9.39)
with the following Neumann boundary condition:

∇U · n = γ (X, t), X ∈ ∂Ω, (9.45)

where n is the unit outward normal vectors on the boundary ∂Ω.

Theorem 9.8 Assume that γ (X, t) and f
(
U (X, t)

)
are sufficiently differentiable

with respect to t . Then the formula (9.40) is consistent with the Neumann boundary
conditions (9.45).

Proof Using the initial condition, we have

γ (X, t0) = ∇ϕ1(X) · n � ϕ̃1(X), γ ′
t (X, t0) = ∇ϕ2(X) · n � ϕ̃2(X), ∀X ∈ ∂Ω.
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Calculating the directional derivative of U with respect to X in (9.39) yields

{ (∇U · n)

t t = a2Δ
(∇U · n) + f̃

(
U (X, t)

)
, X ∈ Ω, t > t0,

(∇U · n)
(X, t0) = ϕ̃1(X),

(∇Ut · n)
(X, t0) = ϕ̃2(X), X ∈ Ω ∪ ∂Ω,

(9.46)

where f̃
(
U (X, t)

) = ∇ f
(
U (X, t)

) · n.
It follows from (9.46) that

(∇U · n)

t t = a2Δ
(∇U · n) + f̃

(
U

)

⇒ γ ′′
t (X, t0) = [

a2Δϕ̃1(X) + f̃
(
U (X, t0)

)]∣
∣
∂Ω

,
(∇U · n)(3)

t = a2Δ
(∇U · n)′

t + f̃ ′
t

(
U

)

⇒ γ
(3)
t (X, t0) = [

a2Δϕ̃2(X) + f̃ ′
t

(
U (X, t0)

)]∣
∣
∂Ω

,
(∇U · n)(4)

t = a4Δ2
(∇U · n) + a2Δ f̃

(
U

) + f̃ (2)
t

(
U

)

⇒ γ
(4)
t (X, t0) = [

a4Δ2ϕ̃1(X) + a2Δ f̃
(
U (X, t0)

) + f̃ (2)
t

(
U (X, t0)

)]∣
∣
∂Ω

,
(∇U · n)(5)

t = a4Δ2
(∇U · n)′

t + a2Δ f̃ ′
t

(
U

) + f̃ (3)
t

(
U

)

⇒ γ
(5)
t (X, t0) = [

a4Δ2ϕ̃2(X) + a2Δ f̃ ′
t

(
U (X, t0)

) + f̃ (3)
t

(
U (X, t0)

)]∣
∣
∂Ω

,
(∇U · n)(6)

t = a6Δ3
(∇U · n) + a4Δ2 f̃

(
U

) + a2Δ f̃ (2)
t

(
U

) + f̃ (4)
t

(
U

)

⇒ γ
(6)
t (X, t0) = [

a6Δ3ϕ̃1(X) + a4Δ2 f̃
(
U (X, t0)

) + a2Δ f̃ (2)
t

(
U (X, t0)

)

+ f̃ (4)
t

(
U (X, t0)

)]∣
∣
∂Ω

,
(∇U · n)(7)

t
= a6Δ3

(∇U · n)′
t
+ a4Δ2 f̃ ′

t

(
U

) + a2Δ f̃ (3)
t

(
U

) + f̃ (5)
t

(
U

)

⇒ γ
(7)
t (X, t0) = [

a6Δ3ϕ̃2(X) + a4Δ2 f̃ ′
t

(
U (X, t0)

) + a2Δ f̃ (3)
t

(
U (X, t0)

)

+ f̃ (5)
t

(
U (X, t0)

)]∣
∣
∂Ω

,

. . . .

This leads to the results

γ
(2k)
t (X, t0) = a2kΔk ϕ̃1(X) +

k∑

j=1

a2(k− j)Δk− j f̃ (2 j−2)
t

(
U (X, t0)

)
,

γ
(2k+1)
t (X, t0) = a2kΔk ϕ̃2(X) +

k∑

j=1

a2(k− j)Δk− j f̃ (2 j−1)
t

(
U (X, t0)

)
,

(9.47)

for k = 1, 2, . . . , and ∀X ∈ ∂Ω.

Inserting the results of (9.47) into the Taylor expansion of γ (X, t) with respect
to t at the point t = t0 gives
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γ (X, t) =
∞∑

k=0

(t − t0)k

k! γ
(k)
t (X, t0) =

∞∑

k=0

(t − t0)(2k)

(2k)! γ
(2k)
t (X, t0)

+
∞∑

k=0

(t − t0)(2k+1)

(2k + 1)! γ
(2k+1)
t (X, t0)

=
{
φ0

(
(t − t0)

2a2Δ
)
ϕ̃1(x) + (t − t0)φ1

(
(t − t0)

2a2Δ
)
ϕ̃2(x)

+
∞∑

k=1

[ (t − t0)2k

(2k)!
k∑

j=1

a2(k− j)Δk− j f̃ (2 j−2)
t

(
U (x, t0)

)

+ (t − t0)2k+1

(2k + 1)!
k∑

j=1

a2(k− j)Δk− j f̃ (2 j−1)
t

(
U (x, t0)

)]}∣
∣
∣
∂Ω

.

(9.48)

Let

F̃(X, t) �
∫ t

t0

(t − ζ )φ1
(
(t − ζ )2a2Δ

)
f̃
(
U (X, ζ )

)
dζ.

Similarly to the case of Dirichlet boundary conditions, we can obtain

F̃(X, t0) = 0, F̃ ′
t (X, t0) = 0,

and

F̃ (2k)
t (X, t0) =

k∑

j=1

a2(k− j)Δk− j f̃ (2 j−2)
t

(
U (X, t0)

)
,

F̃ (2k+1)
t (X, t0) =

k∑

j=1

a2(k− j)Δk− j f̃ (2 j−1)
t

(
U (X, t0)

)
, k = 1, 2, . . . .

The Taylor expansion of F̃(X, t) at the point t0 with respect to t is

F̃(X, t) =
∞∑

k=1

(t − t0)2k

(2k)! F̃ (2k)
t (X, t0) +

∞∑

k=1

(t − t0)2k+1

(2k + 1)! F̃ (2k+1)
t (X, t0)

=
∞∑

k=1

[ (t − t0)2k

(2k)!
k∑

j=1

a2(k− j)Δk− j f̃ (2 j−2)
t

(
U (x, t0)

)

+ (t − t0)2k+1

(2k + 1)!
k∑

j=1

a2(k− j)Δk− j f̃ (2 j−1)
t

(
U (x, t0)

)]}
.

(9.49)

Comparing the result of (9.48) with (9.49), we obtain
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γ (X, t) = φ0
(
(t − t0)

2a2Δ
)
ϕ̃1(X) + (t − t0)φ1

(
(t − t0)

2a2Δ
)
ϕ̃2(X)

+
∫ t

t0

(t − ζ )φ1
(
(t − ζ )2a2Δ

)
f̃
(
U (X, ζ )

)
dζ

= φ0
(
(t − t0)

2a2Δ
)(∇ϕ1(X) · n) + (t − t0)φ1

(
(t − t0)

2a2Δ
)(∇ϕ2(X) · n)

+
∫ t

t0

(t − ζ )φ1
(
(t − ζ )2a2Δ

)(∇ f
(
U (X, ζ )

) · n)
dζ

= ∇U (X, t) · n, ∀X ∈ ∂Ω.

This proves the theorem. �

9.4.3 Robin Boundary Condition

Inwhat followswe consider the arbitrarily high-dimensional nonlinearwave equation
(9.39) with the following Robin boundary condition:

∇U · n + λU = β(X, t), X ∈ ∂Ω, (9.50)

where n is the unit outward normal vector on the boundary ∂Ω and λ is a constant.

Theorem 9.9 Assume that β(X, t) and f
(
U (X, t)

)
are sufficiently differentiable

with respect to t . Then, the formula (9.40) is consistent with the Robin boundary
condition given by (9.50).

The proof of Theorem 9.9 is similar to that in the recent paper [33] and we omit
the details here.

Remark 9.2 As stated in Sects. 9.3 and 9.4, one need not care about the boundary
conditions when the formula (9.15) is used directly since the formula is adapted to
Dirichlet boundary conditions, Neumann boundary conditions, and Robin bound-
ary conditions, respectively. In fact, (9.15) presents an exact analytical formal of
the true solution to the initial-value problem of arbitrarily high-dimensional Klein–
Gordon equations subject to the given boundary conditions, under the appropriate
assumptions.

9.5 Illustrative Examples

To show applications of the integral formula presented in this chapter, we next present
some illustrative examples.

Problem 9.1 We first consider the following two-dimensional equation
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{
utt − (uxx + uyy) = ω2 sin(ω(x − t)) sin(ωy),

u|t=0 = sin(ωx) sin(ωy), ut |t=0 = −ω cos(ωx) sin(ωy).
(9.51)

Applying (9.15) to Problem 9.1 yields

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(x, y, t) =φ0(t
2Δ) sin(ωx) sin(ωy) − ωtφ1(t

2Δ) cos(ωx) sin(ωy)

+ ω2
∫ t

0
(t − ζ )φ1((t − ζ )2Δ) sin(ω(x − ζ )) sin(ωy)dζ,

ut (x, y, t) =tΔφ1(t
2Δ) sin(ωx) sin(ωy) − ωφ0(t

2Δ) cos(ωx) sin(ωy)

+ ω2
∫ t

0
φ0((t − ζ )2Δ) sin(ω(x − ζ )) sin(ωy)dζ.

(9.52)

It follows from a careful calculation that

φ0(t
2Δ) sin(ωx) sin(ωy) = sin(ωx) sin(ωy) cos(

√
2ωt),

− ωtφ1(t
2Δ) cos(ωx) sin(ωy) = − 1√

2
cos(ωx) sin(ωy) sin(

√
2ωt),

ω2
∫ t

0
(t − ζ )φ1((t − ζ )2Δ) sin(ω(x − ζ )) sin(ωy)dζ

= ω√
2

∫ t

0
sin(

√
2ω(t − ζ )) sin(ω(x − ζ )) sin(ωy)dζ.

We then have

u(x, y, t) = sin(ωx) sin(ωy) cos(
√
2ωt) − 1√

2
cos(ωx) sin(ωy) sin(

√
2ωt)

+ ω√
2

∫ t

0
sin(

√
2ω(t − ζ )) sin(ω(x − ζ )) sin(ωy)dζ

= sin(ω(x − t)) sin(ωy).
(9.53)

Likewise, we can obtain

ut (x, y, t) = −ω cos(ω(x − t)) sin(ωy). (9.54)

Problem 9.2 Wenext consider the three-dimensional linear homogeneous equation:

{
utt = a2(uxx + uyy + uzz),

u|t=0 = x3 + yz, ut |t=0 = 0.
(9.55)

Applying (9.15) to Problem 9.2, we can obtain the analytical solution straightfor-
wardly:
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{
u(x, y, z, t) = φ0(t

2a2Δ)(x3 + yz) = x3 + yz + 3a2t2x,

ut (x, y, z, t) = ta2Δφ1(t
2a2Δ)(x3 + yz) = 6a2t x .

(9.56)

We note that from Poisson’s or Kirchhoff’s formula (see, e.g. [7]) the solution to
(9.55) can be expressed in the form

u(x, y, z, t) = 1

4πa2t

∂

∂t

∫∫

S

(x3 + yz)dS, (9.57)

where S is the sphere of radius a centered at (x0, y0, z0). The calculation of the
integral in (9.57) is quite complicated.

Problem 9.3 We next consider the following the initial valued problem of one
dimensional linear Klein–Gordon equation (see, e.g. [19])

⎧
⎪⎨

⎪⎩

utt − uxx = −9u, −5π

8
< x <

5π

8
, t > 0,

u(x, 0) = cos(4x), ut (x, 0) = 5 cos(4x), −5π

8
≤ x ≤ 5π

8
,

(9.58)

subject to the Dirichlet boundary conditions

u(−5π

8
, t) = 0, u(

5π

8
, t) = 0. (9.59)

The exact solution of the initial-boundary valued problem (9.58) and (9.59) is given
by

u(x, t) = cos(4x) (cos(5t) + sin(5t)) . (9.60)

Applying the SV-scheme (9.26) with the stepsize h = 0.001 to this initial-boundary
valued problem, we obtain the numerical results, together with the true solution and
the global error, which are shown in Fig. 9.1. It can be observed from Fig. 9.1 that

Fig. 9.1 The exact solution (left), the numerical solution (middle) and the global error (right)
obtained by SV-scheme (9.26) with the stepsize h = 0.001, for Problem9.3
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the results show second-order behaviour of the SV-scheme (9.26). This indicates that
the integral formula (9.15) is also helpful in gaining insight into developing efficient
numerical integrators for Klein–Gordon equations.

9.6 Conclusions and Discussions

In this chapter, we considered the initial-boundary value problem of arbitrarily high-
dimensional Klein–Gordon equations (9.1), posed on a bounded domain Ω ⊂ R

d

for d ≥ 1 and equipped with various boundary conditions. We first defined the
bounded operator-argument functions (9.8) which are restricted in a subspace D(Δ)

of L2(Ω), and then established an integral formula (9.15) for theKlein–Gordon equa-
tion in arbitrarily high-dimensional spaces. Thus, this chapter has made progress in
research on integral representations of solutions of the arbitrarily high-dimensional
Klein–Gordon equation (9.1). Another key aspect is that we showed in detail the
consistency of the integral formula with Dirichlet boundary conditions, Neumann
boundary conditions, and Robin boundary conditions, respectively. In other words,
the integral formula (9.15) for (9.1) is completely adapted to the underlying bound-
ary conditions under appropriate assumptions. If g(U ) = 0, then (9.1) reduces to the
arbitrarily high-dimensional homogeneous Klein–Gordon equation (9.20). Then, the
integral formula (9.15) becomes (9.21), which integrates (9.20) exactly. In compar-
ison with the seminal D’Alembert, Poisson and Kirchhoff formulas, formula (9.21)
doesn’t depend on the evaluation of complicated integrals, whereas the evaluation of
integrals is required by theD’Alembert, Poisson andKirchhoff formulas. To show the
applications of the integral formula, some illustrative examples were also presented
in Sect. 9.5.

Before the end of this chapter, we make a comment on the operator-variation-
constants formula for PDEs. Once the operator-variation-constants formula is estab-
lished for the underling PDEs, some structure-preserving schemes can be derived and
analysed based on the formula. For example, Chaps. 10 and 11 will show the details
for nonlinear wave equations. It is also believed that this approach to dealing with
nonlinear wave PDEs can be extended to other PDEs, such as Maxwell’s equations
(see Yang et al. [35]). Further work on this research is in progress.

The material of this chapter is based on the work by Wu and Liu [28].

Appendix 1.A Direct Proof of Theorem9.6

Proof It follows from (9.37) that
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(∂u

∂x

)

t t
= a2Δ

(∂u

∂x

)
+ f̃ (u)

⇒
{

γ ′′(t0) = a2Δϕ′
1(xl) + f̃

(
u
)
,

δ′′(t0) = a2Δϕ′
1(xr ) + f̃

(
u
)
,

(∂u

∂x

)(3)

t
= a2Δ

(∂u

∂x

)

t
+ f̃ ′

t (u)

⇒
{

γ (3)(t0) = a2Δϕ′
2(xl) + f̃ ′

t

(
u
)
,

δ(3)(t0) = a2Δϕ′
2(xr ) + f̃ ′

t

(
u
)
,

(∂u

∂x

)(4)

t
= a4Δ2

(∂u

∂x

)
+ a2Δ f̃ (u) + f̃ (2)

t (u)

⇒
{

γ (4)(t0) = a4Δ2ϕ′
1(xl) + a2Δ f̃

(
u
) + f̃ (2)

t

(
u
)
,

δ(4)(t0) = a4Δ2ϕ′
1(xr ) + a2Δ f̃

(
u
) + f̃ (2)

t

(
u
)
,

(∂u

∂x

)(5)

t
= a4Δ2

(∂u

∂x

)

t
+ a2Δ f̃ ′

t (u) + f̃ (3)
t (u)

⇒
{

γ (5)(t0) = a4Δ2ϕ′
2(xl) + a2Δ f̃ ′

t

(
u
) + f̃ (3)

t

(
u
)
,

δ(5)(t0) = a4Δ2ϕ′
2(xr ) + a2Δ f̃ ′

t

(
u
) + f̃ (3)

t

(
u
)
,

(∂u

∂x

)(6)

t
= a6Δ3

(∂u

∂x

)
+ a4Δ2 f̃ (u) + a2Δ f̃ (2)

t (u) + f̃ (4)
t (u)

⇒

⎧
⎪⎪⎨

⎪⎪⎩

γ (6)(t0) = a6Δ3ϕ′
1(xl) + a4Δ2 f̃

(
u
)

+a2Δ f̃ (2)
t

(
u
) + f̃ (4)

t

(
u
)
,

δ(6)(t0) = a6Δ3ϕ′
1(xr ) + a4Δ2 f̃

(
u
)

+a2Δ f̃ (2)
t

(
u
) + f̃ (4)

t

(
u
)
,

(∂u

∂x

)(7)

t
= a6Δ3

(∂u

∂x

)

t
+ a4Δ2 f̃ ′

t (u) + a2Δ f̃ (3)
t (u) + f̃ (5)

t (u)

⇒

⎧
⎪⎪⎨

⎪⎪⎩

γ (7)(t0) = a6Δ3ϕ′
2(xl) + a4Δ2 f̃ ′

t

(
u
)

+a2Δ f̃ (3)
t

(
u
) + f̃ (5)

t

(
u
)
,

δ(7)(t0) = a6Δ3ϕ′
2(xr ) + a4Δ2 f̃ ′

t

(
u
)

+a2Δ f̃ (3)
t

(
u
) + f̃ (5)

t

(
u
)
,

· · · .

After an argument by induction we obtain the following results

γ (2k) = a2kΔkϕ′
1(xl) +

k∑

j=1

a2(k− j)Δk− j f̃ (2 j−2)
t

(
u
)

γ (2k+1) = a2kΔkϕ′
2(xl) +

k∑

j=1

a2(k− j)Δk− j f̃ (2 j−1)
t

(
u
)
, k = 1, 2, . . . .

(9.61)
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and

δ(2k)(t0) = a2kΔkϕ′
1(xr ) +

k∑

j=1

a2(k− j)Δk− j f̃ (2 j−2)
t

(
u
)

δ(2k+1)(t0) = a2kΔkϕ′
2(xr ) +

k∑

j=1

a2(k− j)Δk− j f̃ (2 j−1)
t

(
u
)
, k = 1, 2, . . . .

(9.62)

Inserting the results of (9.61) and (9.62) into the Taylor expansion of γ (t) and δ(t)
at point t0 yields

γ (t) =
{
φ0

(
(t − t0)

2a2Δ
)
ϕ′
1(x) + (t − t0)φ1

(
(t − t0)

2a2Δ
)
ϕ′
2(x)

+
∞∑

k=1

[ (t − t0)2k

(2k)!
k∑

j=1

a2(k− j)Δk− j f̃ (2 j−2)
t

(
u
)

+ (t − t0)2k+1

(2k + 1)!
k∑

j=1

a2(k− j)Δk− j f̃ (2 j−1)
t

(
u
)]}∣

∣
∣
x=xl

,

(9.63)

and

δ(t) =
{
φ0

(
(t − t0)

2a2Δ
)
ϕ′
1(x) + (t − t0)φ1

(
(t − t0)

2a2Δ
)
ϕ′
2(x)

+
∞∑

k=1

[ (t − t0)2k

(2k)!
k∑

j=1

a2(k− j)Δk− j f̃ (2 j−2)
t

(
u
)

+ (t − t0)2k+1

(2k + 1)!
k∑

j=1

a2(k− j)Δk− j f̃ (2 j−1)
t

(
u
)]}∣

∣
∣
x=xr

.

(9.64)

Let

F̃(x, t) �
∫ t

t0

(t − ζ )φ1
(
(t − t0)

2a2Δ
)
f̂
(
ζ
)
dζ.

As deduced for the Dirichlet boundary conditions in Sect. 9.4.1, it can be shown
that

F̃ (2k)
t =

k∑

j=1

a2(k− j)Δk− j f̃ (2 j−2)
t

(
u
)

F̃ (2k+1)
t =

k∑

j=1

a2(k− j)Δk− j f̃ (2 j−1)
t

(
u
)
, k = 1, 2, . . . .

(9.65)

Inserting (9.65) into the Taylor expansion of F̃(x, t) at the point t = t0 gives
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F̃(x, t) =
∞∑

k=0

(t − t0)k

k! F̃ (k)
t =

∞∑

k=2

(t − t0)k

k! F̃ (k)
t

=
∞∑

k=1

(t − t0)2k

(2k)! F̃ (2k)
t +

∞∑

k=1

(t − t0)2k+1

(2k + 1)! F̃ (2k+1)
t

=
∞∑

k=1

[ (t − t0)2k

(2k)!
k∑

j=1

a2(k− j)Δk− j f̃ (2 j−2)
t

(
u
)

+ (t − t0)2k+1

(2k + 1)!
k∑

j=1

a2(k− j)Δk− j f̃ (2 j−1)
t

(
u
)]

.

(9.66)

Comparing the results of (9.66) with (9.63) and (9.64) yields

γ (t) =
[
φ0

(
(t − t0)

2a2Δ
)
ϕ′
1(x) + (t − t0)φ1

(
(t − t0)

2a2Δ
)
ϕ′
2(x)

+
∫ t

t0

(t − ζ )φ1
(
(t − ζ )2a2Δ

)
f̂
(
ζ
)
dζ

]∣
∣
∣
x=xl

,

δ(t) =
[
φ0

(
(t − t0)

2a2Δ
)
ϕ′
1(x) + (t − t0)φ1

(
(t − t0)

2a2Δ
)
ϕ′
2(x)

+
∫ t

t0

(t − ζ )φ1
(
(t − ζ )2a2Δ

)
f̂
(
ζ
)
dζ

]∣
∣
∣
x=xr

.

This finishes the direct proof. �
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Chapter 10
An Energy-Preserving and Symmetric
Scheme for Nonlinear Hamiltonian Wave
Equations

In this chapter, we derive and analyse an energy-preserving and symmetric scheme
for nonlinear Hamiltonian wave equations, which can exactly preserve the energy
of the underlying Hamiltonian wave equations. To this end, we first define and dis-
cuss the bounded operator-argument functions on the underlying domain. We then
introduce an operator-variation-of-constants formula, based on which we present an
energy-preserving scheme for nonlinear Hamiltonian wave equations. The scheme
preserves the energy of the original continuous Hamiltonian system exactly. In com-
parison with the existing work on this topic, such as the well-known Average Vector
Field (AVF) formula for Hamiltonian ordinary differential equations, the energy-
preserving scheme avoids the semi-discretisation of spatial derivatives and exactly
preserves the Hamiltonian of the original continuous Hamiltonian wave equation.
This point is very significant in comparison with the AVF formula, since the AVF
formula can preserve only the energy of Hamiltonian ordinary differential equations.
Hence, the main theme of this chapter is to establish a scheme which can exactly
preserve the energy of the nonlinear Hamiltonian wave equation. The chapter is also
accompanied by some examples.

10.1 Introduction

Nonlinear wave or heat equations arise frequently in a wide variety of applications,
which can usually be expressed in suitable nonlinear Hamiltonian forms, and par-
tial differential equations with a Hamiltonian structure are important in the study
of solitons. Hamiltonian systems have some characteristic properties such as inner
symmetries and energy conservation. However, there are no general methods guar-
anteed to find closed form solutions to nonlinear Hamiltonian systems. Over the last
20 years, geometric numerical integration has become an important area of numeri-
cal analysis and scientific computing. Structure-preserving integrators have received
much attention in recent years and have applications in many areas of physics, such

© Springer Nature Singapore Pte Ltd. And Science Press 2018
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as molecular dynamics, fluid dynamics, celestial mechanics, and particle acceler-
ators. An integrator is said to be structure-preserving if it preserves one or more
physical/geometric properties of the system exactly. In this chapter, we pay attention
to an energy-preserving scheme for the nonlinear Hamiltonian wave equation of the
form {

utt − a2Δu = f (u), t ≥ t0,

u(x, t0) = ϕ1(x), ut (x, t0) = ϕ2(x),
(10.1)

where Δ = ∂2
x , and f (u) = −V ′(u) is the negative derivative of a potential function

V (u) with respect to u.
The nonlinear wave equation (10.1) in this chapter is assumed to be subject to the

following periodic boundary condition

u(x, t) = u(x + Γ, t), (10.2)

where Γ is the fundamental period in x .
It is known that Δ is an unbounded operator which is not defined for every v ∈

L2([x, x + Γ ]). In order tomodel periodic boundary conditions,we restrict ourselves
to the case where Δ is defined on the domain

D(Δ) = {v(x) : ∀v ∈ L2([x, x + Γ ]) and v(x) = v(x + Γ )}. (10.3)

We consider (10.1) with independent variables (x, t) ∈ [xl , xr ] × {t ≥ t0} and
suppose that Γ = xr − xl is the period. Let v = (u, p)ᵀ with p = ut . The nonlinear
wave equation (10.1) can be thought of as an infinite dimensionalHamiltonian system
of the form

∂t v = J
δH

δv
, ∀v ∈ B. (10.4)

This is equivalent to

⎧⎪⎨
⎪⎩
ut = p,

pt = a2Δu + f (u),

u(x, t0) = ϕ1(x), p(x, t0) = ϕ2(x),

(10.5)

where the Hamiltonian

H(u, p) := 1

2

∫ xr

xl

[
p2 + a2u2x + 2V (u)

]
dx (10.6)

is defined on the infinite dimensional “phase-space”B := V × L2([xl, xr ]), where
V = {

u : u ∈ H 1([xl, xr ]) and u(xl) = u(xr )
}
, and the non-degenerate antisymmet-

ric operator J represents a symplectic structure: the variables v = (u, p)ᵀ are “Dar-
boux coordinates” (see, e.g. [1]). TheHamiltonian system (10.4) preserves the energy
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(or the Hamiltonian) because J is skew-adjoint with respect to the L2 inner product,
i.e., ∫ xr

xl

u Judx = 0, ∀u ∈ B. (10.7)

The conservation of the energy (or the Hamiltonian) is one of the most important
properties of the nonlinear Hamiltonian wave equation (10.1), i.e.

E(t) = 1

2

∫ xr

xl

[
u2t (x, t) + a2u2x (x, t) + 2V

(
u(x, t)

)]
dx = E(t0), (10.8)

or

H(u, p) = H(u, p)
∣∣
t=t0

, (10.9)

for the Hamiltonian system (10.5).
The nonlinear Hamiltonian wave equation (10.1) arises in a wide variety of appli-

cation areas in science and engineering such as nonlinear optics, solid state physics
and quantum field theory. Its description and understanding are of great importance
both from the theoretical and practical point of view, and it has been investigated by
many authors (see, e.g. [2, 8–11, 18, 26, 28, 35, 38]). This equation is the relativistic
version of the Schrödinger equation [6, 7, 30]. Such a problem appears naturally in
the study of some nonlinear dynamical problems of mathematical physics, includ-
ing radiation theory, general relativity, the scattering and stability of kinks, vortices,
and other coherent structures. This equation is the basis of much work in studying
solitons and condensed matter physics, in investigating the interaction of solitons in
collisionless plasma and the recurrence of initial states, in lattice dynamics, and in
examining nonlinear phenomena.

Many authors have investigated energy preservation for semi-discrete Hamilto-
nian wave equations via classical spatial discretisation approximations. Usually, the
semi-discrete systems are of the form

{
y′′(t) + My(t) = g(y(t)), t ∈ [t0, T ],
y(t0) = y0, y′(t0) = y′

0,
(10.10)

where M ∈ R
m×m is a positive and semi-definite matrix (not necessarily diagonal

or symmetric, in general). The solution of the system (10.10) exhibits nonlinear
oscillations. When such oscillations occur, effective ODE solvers for (10.10) can be
used, such as Gautschi-type methods (see, e.g. [16]), trigonometric Fourier colloca-
tionmethods (see, e.g. [34]), and extended Runge–Kutta–Nyström (ERKN)methods
(see, e.g. [42, 43]). With regard to the discrete energy-preserving method, the AVF
formula is very popular (see, e.g. [3, 19, 21–25, 40]). However, the AVF formula
cannot exactly preserve the energy of the original continuous Hamiltonian wave
equation. In general, the discrete energy is different from the original energy of the
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continuous Hamiltonian wave equations. This means that the AVF formula based
on classical discrete approximations cannot preserve the energy of the Hamiltonian
wave equations exactly. This motivates an energy-preserving scheme for nonlinear
Hamiltonian wave equations, which can exactly preserve the energy of the nonlin-
ears Hamiltonian wave equation (10.1). It should be noted that, in this chapter, all
essential analytical features are present in the one-dimensional case (10.1), although
the discussions are equally valid for high-dimensional nonlinear Hamiltonian wave
equations.

The outline of this chapter is as follows. Somepreliminaries are given in Sect. 10.2.
In Sect. 10.3, we introduce an operator-variation-of-constants formula for the non-
linear Hamiltonian wave equation (10.1), which is an analytical expression of the
solution to the nonlinear Hamiltonian wave equation (10.1) expressed in a nonlin-
ear integral equation. We then dicuss an energy-preserving scheme and analyse its
properties in Sect. 10.4. Some illustrative examples are presented in Sect. 10.5. The
last section is devoted to conclusions.

10.2 Preliminaries

This section presents some preliminaries in order to gain an insight into an exact
energy-preserving scheme for the nonlinear Hamiltonian wave equation (10.1) sub-
ject to the periodic boundary condition (10.2).

To begin with, we define the following operator-argument functions:

φ j (Δ) :=
∞∑
k=0

Δk

(2k + j)! , j = 0, 1, . . . . (10.11)

For example, Δ is the Laplace operator defined on D(Δ) in (10.3) and in this case,
the operators defined by (10.11) is bounded on the subspace under the Sobolev norm
‖ · ‖L2←L2 (see, e.g. [17, 20]). Accordingly, φ j (Δ) for j = 0, 1, . . . in (10.11) are
called operator-argument functions.Besides,Δ can also be related to a linearmapping
such as a positive semi-definite matrix M ∈ R

m×m and in this particular case of Δ =
−M , (10.11) reduces to the matrix-valued functions which have been widely used in
ARKN methods (Adapted Runge–Kutta–Nyström methods) and ERKN (Extended
Runge–Kutta–Nyström methods) methods for the numerical solution of oscillatory
or highly oscillatory differential equations (see, e.g. [12–14, 29, 31, 32, 40, 41, 43,
44]). These kinds of oscillatory problems have received a great deal of attention in
the last few years (see, e.g. [4, 14–17, 34]).

In this chapter, some useful properties of these operator-argument functions are
only sketched below for the sake of brevity.

Theorem 10.1 For a symmetric negative (semi) definite operator Δ, the bounded
φ-functions defined by (10.11) satisfy (9.10)–(9.14) in Chap.9 and
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{
φ0(m

2a2Δ)φ0(n
2a2Δ) + mna2Δφ1(m

2a2Δ)φ1(n
2a2Δ) = φ0((m + n)2a2Δ),

mφ0(n
2a2Δ)φ1(m

2a2Δ) + nφ0(m
2a2Δ)φ1(n

2a2Δ) = (m + n)φ1((m + n)2a2Δ).

(10.12)

Proof These results are evident. �

Theorem 10.2 Suppose that Δ is a Laplacian defined on the domain D(Δ). The
bounded operator-argument functions φ0 and φ1 defined by (10.11) satisfy (9.9) in
Chap.9.

Proof The results have been shown in Chap.9. �

Some properties of the periodic functions are stated blow.

Theorem 10.3 Assuming that u(x, t), v(x, t) are any sufficiently smooth periodic
functions with respect to the variable x, i.e. u(x + Γ, t) = u(x, t), and Γ is the
fundamental period, then the following properties hold:

(i) For all k, l = 0, 1, . . . , we have

∂k
x u(x + Γ, t) = ∂k

x u(x, t), ∂ l
t u(x + Γ, t) = ∂ l

t u(x, t). (10.13)

(ii) Applying integration by parts to the periodic functions u(x, t), v(x, t) yields

∫ xr

xl

∂2k
x u(x, t) · v(x, t)dx =

∫ xr

xl

u(x, t) · ∂2k
x v(x, t)dx,∫ xr

xl

∂2k+1
x u(x, t) · v(x, t)dx = −

∫ xr

xl

u(x, t) · ∂2k+1
x v(x, t)dx, k = 0, 1, 2, . . . ,

(10.14)
where the length xr − xl of the interval [xl, xr ] is the period Γ or any nonnegative
integer multiple of Γ .

(iii) For any function f (·), the composite function f
(
u(x, t)

)
is also a periodic

function with respect to the variable x, and the fundamental period is Γ .

10.3 Operator-Variation-of-Constants Formula
for Nonlinear Hamiltonian Wave Equations

The next theorem presents the operator-variation-of-constants formula for the non-
linear Hamiltonian wave equation (10.1).

Theorem 10.4 If f (u) is continuous in (10.1) andΔ is the Laplace operator defined
on the subspace D(Δ) ⊂ L2, then the exact solution of (10.1) and its derivative satisfy
the following equations
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(x, t) = φ0
(
(t − t0)

2a2Δ
)
u(x, t0) + (t − t0)φ1

(
(t − t0)

2a2Δ
)
ut (x, t0)

+
∫ t

t0

(t − ζ )φ1
(
(t − ζ )2a2Δ

)
f̃ (ζ )dζ,

ut (x, t) = (t − t0)a
2Δφ1

(
(t − t0)

2a2Δ
)
u(x, t0) + φ0

(
(t − t0)

2a2Δ
)
ut (x, t0)

+
∫ t

t0

φ0
(
(t − ζ )2a2Δ

)
f̃ (ζ )dζ,

(10.15)
for x ∈ [xl, xr ], t0, t ∈ (−∞,+∞), where f̃ (ζ ) = f

(
u(x, ζ )

)
, and the bounded

operator-argument functions φ0(·) and φ1(·) are defined by (10.11).

Proof (10.15) solves the Eq. (10.1) exactly. In fact, this can be verified by directly
inserting the formula (10.15) into the wave equation (10.1). The details of the proof
for this theorem can be found in Appendix A of this chapter. �

Moreover, it can be proved that the operator-variation-of-constants formula
(10.15) for the nonlinear Hamiltonian wave equation (10.1) is completely consis-
tent with Dirichlet boundary conditions, Neumann boundary conditions, and Robin
boundary conditions, respectively, under suitable assumptions. Readers are referred
to the recent papers by Wu et al. [37, 39].

Let un(x) = u(x, tn) and unt (x) = ut (x, tn) represent the exact solution of (10.1)
and its derivative with respect to t at t = tn . It follows immediately from (10.15)
with the change of variable ξ = tn + hz that

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

un+1(x) = φ0
(
h2a2Δ

)
un(x) + hφ1

(
h2a2Δ

)
unt (x)

+h2
∫ 1
0 (1 − z)φ1

(
(1 − z)2h2a2Δ

)
f
(
u(x, tn + hz)

)
dz,

un+1
t (x) = ha2Δφ1

(
h2a2Δ

)
un(x) + φ0

(
h2a2Δ

)
unt (x)

+h
∫ 1
0 φ0

(
(1 − z)2h2a2Δ

)
f
(
u(x, tn + hz)

)
dz,

(10.16)

where h is a time stepsize.
It is noted that the Eq. (10.15) or (10.16) is not a closed-form solution to the

nonlinear Hamiltonian wave equation (10.1), but a nonlinear integral equation. In
order to gain an energy-preserving scheme for (10.1), a further analysis based on
(10.16) is still required.
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10.4 Exact Energy-Preserving Scheme for Nonlinear
Hamiltonian Wave Equations

In this section we establish an exact energy-preserving scheme for nonlinear Hamil-
tonian wave equations.

In light of the operator-variation-of-constants formula (10.16), it is natural to
consider the following scheme:

{
un+1(x) = φ0

(
h2a2Δ

)
un(x) + hφ1

(
h2a2Δ

)
unt (x) + h2 I1(x),

un+1
t (x) = ha2Δφ1

(
h2a2Δ

)
un(x) + φ0

(
h2a2Δ

)
unt (x) + hI2(x),

(10.17)

where h is the stepsize, and I1(x), I2(x) are undetermined functions such that the
following condition of energy preservation

E(tn+1) = E(tn) or H(un+1, pn+1) = H(un, pn),

is satisfied exactly, where p = ut . It follows from (10.17) that

{
un+1
x (x) = φ0

(
h2a2Δ

)
unx (x) + h∂xφ1

(
h2a2Δ

)
unt (x) + h2∂x I1(x),

un+1
t (x) = ha2∂xφ1

(
h2a2Δ

)
unx (x) + φ0

(
h2a2Δ

)
unt (x) + hI2(x).

(10.18)

To begin with, we compute

H(un+1, pn+1) = H(un+1, un+1
t ) = 1

2

∫ xr

xl

[
(un+1

t (x))2 + a2(un+1
x (x))2 + 2V (un+1(x))

]
dx .

(10.19)
Inserting (10.18) into (10.19), a careful calculation yields

H(un+1, un+1
t ) = 1

2

∫ xr

xl

[
φ0

(
h2a2Δ

)
unt · φ0

(
h2a2Δ

)
unt + a2h∂xφ1

(
h2a2Δ

)
unt · h∂xφ1

(
h2a2Δ

)
unt

]
dx

+ a2

2

∫ xr

xl

[
ha2∂xφ1

(
h2a2Δ

)
unx · h∂xφ1

(
h2a2Δ

)
unx + φ0

(
h2a2Δ

)
unx · φ0

(
h2a2Δ

)
unx

]
dx

+
∫ xr

xl

[
ha2∂xφ1

(
h2a2Δ

)
unx · φ0

(
h2a2Δ

)
unt + a2φ0

(
h2a2Δ

)
unx · h∂xφ1

(
h2a2Δ

)
unt

]
dx

+ 1

2

∫ xr

xl

[
φ0

(
h2a2Δ

)
unt · hI2(x) + a2h∂xφ1

(
h2a2Δ

)
unt · h2∂x I1(x)

]
dx

+ a2
∫ xr

xl

[
h∂xφ1

(
h2a2Δ

)
unx · hI2(x) + φ0

(
h2a2Δ

)
unx (x) · h2∂x I1(x)

]
dx

+ 1

2

∫ xr

xl

[
h2 I2(x) · I2(x) + a2h4∂x I1(x) · ∂x I1(x)

]
dx +

∫ xr

xl
V (un+1(x))dx .

(10.20)
Applying Theorem 10.3 to (10.20) gives
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H(un+1, un+1
t ) = 1

2

∫ xr

xl

[
φ2
0

(
h2a2Δ

) − h2a2Δφ2
1

(
h2a2Δ

)]
unt · unt dx

+ a2

2

∫ xr

xl

[
φ2
0

(
h2a2Δ

) − h2a2Δφ2
1

(
h2a2Δ

)]
unx · unxdx

+ a2h
∫ xr

xl

[
∂xφ1

(
h2a2Δ

)
φ0

(
h2a2Δ

) − φ0
(
h2a2Δ

)
∂xφ1

(
h2a2Δ

)]
unx · unt dx

+
∫ xr

xl

[
φ0

(
h2a2Δ

)
unt · hI2(x) + a2h∂xφ1

(
h2a2Δ

)
unt · h2∂x I1(x)

]
dx

+ a2
∫ xr

xl

[
h∂xφ1

(
h2a2Δ

)
unx · hI2(x) + φ0

(
h2a2Δ

)
unx (x) · h2∂x I1(x)

]
dx

+ 1

2

∫ xr

xl

[
h2 I2(x) · I2(x) + a2h4∂x I1(x) · ∂x I1(x)

]
dx +

∫ xr

xl
V (un+1(x))dx .

(10.21)
On noticing Theorem 10.1, (10.21) reduces to

H(un+1, un+1
t ) = 1

2

∫ xr

xl

[
(unt (x))

2 + a2(unx (x))
2 + 2V (un(x))

]
dx

+
∫ xr

xl

[
φ0

(
h2a2Δ

)
unt · hI2(x) + a2h∂xφ1

(
h2a2Δ

)
unt · h2∂x I1(x)

]
dx

+ a2
∫ xr

xl

[
h∂xφ1

(
h2a2Δ

)
unx · hI2(x) + φ0

(
h2a2Δ

)
unx (x) · h2∂x I1(x)

]
dx

+ 1

2

∫ xr

xl

[
h2 I2(x) · I2(x) + a2h4∂x I1(x) · ∂x I1(x)

]
dx +

∫ xr

xl

[
V (un+1(x)) − V (un(x))

]
dx .

(10.22)
In what follows, we calculate

V (un+1) − V (un) =
∫ 1

0
dV

(
(1 − τ)un + τun+1) = −

∫ 1

0
(un+1 − un) · f

(
(1 − τ)un + τun+1)dτ

� − (un+1 − un) · I f ,
(10.23)

where

I f =
∫ 1

0
f
(
(1 − τ)un + τun+1

)
dτ.

The first equation of (10.17) gives

un+1(x) − un(x) = [
φ0

(
h2a2Δ

) − I
]
un(x) + hφ1

(
h2a2Δ

)
unt (x) + h2 I1(x)

= h2a2∂xφ2
(
h2a2Δ

)
unx (x) + hφ1

(
h2a2Δ

)
unt (x) + h2 I1(x).

(10.24)

Inserting (10.24) into (10.23) yields

V (un+1) − V (un) = −h2a2∂xφ2
(
h2a2Δ

)
unx (x) · I f − hφ1

(
h2a2Δ

)
unt (x) · I f − h2 I1(x) · I f .

(10.25)

Then the scheme (10.22) can be rewritten by
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H(un+1, un+1
t ) = 1

2

∫ xr

xl

[
(unt (x))

2 + a2(unx (x))
2 + 2V (un(x))

]
dx + Rn

= H(un, unt ) + Rn,

(10.26)

where

R n =h
∫ xr

xl

[
φ0

(
h2a2Δ

)
unt (x) · I2(x) + a2h2∂xφ1

(
h2a2Δ

)
unt · ∂x I1(x) − φ1

(
h2a2Δ

)
unt (x) · I f

]
dx

+ a2h2
∫ xr

xl

[
∂xφ1

(
h2a2Δ

)
unx · I2(x) + φ0

(
h2a2Δ

)
unx (x) · ∂x I1(x) − ∂xφ2

(
h2a2Δ

)
unx (x) · I f

]
dx

+ h2
∫ xr

xl

[ 1
2

(
I2(x) · I2(x) + h2a2∂x I1(x) · ∂x I1(x)

) − I1(x) · I f
]
dx .

(10.27)
It follows from the results of Theorem 10.3 that

Rn = h
∫ xr

xl

[
φ0

(
h2a2Δ

)
I2(x) − h2a2Δφ1

(
h2a2Δ

)
I1(x) − φ1

(
h2a2Δ

)
I f

] · unt (x)dx

+ a2h2
∫ xr

xl

[
Δφ1

(
h2a2Δ

)
I2(x) − Δφ0

(
h2a2Δ

)
I1(x) − Δφ2

(
h2a2Δ

)
I f

] · unx (x)dx

+ h2
∫ xr

xl

[1
2

(
I2(x) · I2(x) − h2a2ΔI1(x) · I1(x)

) − I1(x) · I f
]
dx .

(10.28)
The above analysis gives the following important theorem immediately.

Theorem 10.5 The scheme (10.17) exactly preserves the energy (10.8) or the
Hamiltonian (10.9), i.e.,

E(tn+1) = E(tn) or H(un+1, pn+1) = H(un, pn), n = 0, 1, . . . , (10.29)

if and only ifRn = 0.

Based on Theorem 10.1, the following theorem gives a sufficient condition for
the scheme (10.17) to be energy-preserving exactly.

Theorem 10.6 If

I1(x) = φ2
(
h2a2Δ

) ∫ 1

0
f
(
(1 − τ)un(x) + τun+1(x)

)
dτ,

I2(x) = φ1
(
h2a2Δ

) ∫ 1

0
f
(
(1 − τ)un(x) + τun+1(x)

)
dτ,

(10.30)

then the scheme (10.17) exactly preserves the energy (10.8) or the Hamiltonian
(10.9).

Proof It is clear from (10.28) that if the following three equations
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φ0
(
h2a2Δ

)
I2(x) − h2a2Δφ1

(
h2a2Δ

)
I1(x) = φ1

(
h2a2Δ

)
I f , (10.31)

φ1
(
h2a2Δ

)
I2(x) − φ0

(
h2a2Δ

)
I1(x) = φ2

(
h2a2Δ

)
I f , (10.32)

1

2

∫ xr

xl

(
I2(x) · I2(x) − h2a2ΔI1(x) · I1(x)

)
dx =

∫ xr

xl

I1(x) · I f dx, (10.33)

are satisfied, then Rn = 0 for n = 0, 1, . . . . Hence, we have

E(tn+1) = E(tn) or H(un+1, pn+1) = H(un, pn).

The difference of (10.31) times φ1
(
h2a2Δ

)
and (10.32) times φ0

(
h2a2Δ

)
is

[
φ2
0
(
h2a2Δ

) − h2a2Δφ2
1
(
h2a2Δ

)]
I1(x) = [

φ2
1
(
h2a2Δ

) − φ0
(
h2a2Δ

)
φ2

(
h2a2Δ

)]
I f .

Likewise, the difference of (10.31) times φ0
(
h2a2Δ

)
and (10.32) times

h2a2φ1
(
h2a2Δ

)
gives[

φ2
0

(
h2a2Δ

) − h2a2Δφ2
1

(
h2a2Δ

)]
I2(x)

= [
φ0

(
h2a2Δ

)
φ1

(
h2a2Δ

) − h2a2Δφ1
(
h2a2Δ

)
φ2

(
h2a2Δ

)]
I f .

Using Theorem 10.1, we obtain

I1(x) = φ2
(
h2a2Δ

)
I f , I2(x) = φ1

(
h2a2Δ

)
I f . (10.34)

It can be verified that under the condition (10.34) and Theorem 10.2, the equation
(10.33) is also valid. Therefore, (10.30) are sufficient conditions for (10.17) to be an
energy-preserving scheme. �

We are now in a position to present the following energy-preserving scheme for
Hamiltonian PDEs.

Definition 10.1 The exact energy-preserving scheme for the nonlinear Hamiltonian
wave equation (10.1) is defined by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

un+1(x) = φ0
(
h2a2Δ

)
un(x) + hφ1

(
h2a2Δ

)
unt (x)

+ h2φ2
(
h2a2Δ

) ∫ 1

0
f
(
(1 − τ)un(x) + τun+1(x)

)
dτ,

un+1
t (x) = ha2Δφ1

(
h2a2Δ

)
un(x) + φ0

(
h2a2Δ

)
unt (x)

+ hφ1
(
h2a2Δ

) ∫ 1

0
f
(
(1 − τ)un(x) + τun+1(x)

)
dτ,

(10.35)

where h > 0 is a time stepsize, φ0(h2a2Δ), φ1(h2a2Δ), and φ2(h2a2Δ) are bounded
operator-argument functions defined by (10.11).
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Since there is a very close similarity between the behaviour of solutions of
reversible and Hamiltonian systems [27], in what follows, we show the symmetry of
the energy-preserving scheme (10.35).

Theorem 10.7 The energy-preserving scheme (10.35) is symmetric in time.

Proof It follows from exchanging un+1(x) ↔ un(x), un+1
t (x) ↔ unt (x) and replac-

ing h by −h in (10.35) that

un(x) = φ0
(
h2a2Δ

)
un+1(x) − hφ1

(
h2a2Δ

)
un+1
t (x)

+ h2φ2
(
h2a2Δ

) ∫ 1

0
f
(
(1 − τ)un+1(x) + τun(x)

)
dτ,

unt (x) = −ha2Δφ1
(
h2a2Δ

)
un+1(x) + φ0

(
h2a2Δ

)
un+1
t (x)

− hφ1
(
h2a2Δ

) ∫ 1

0
f
(
(1 − τ)un+1(x) + τun(x)

)
dτ.

(10.36)

From (10.36) and Theorem 10.1, it follows that

un+1(x) = φ0
(
h2a2Δ

)
un(x) + hφ1

(
h2a2Δ

)
unt (x)

+ h2φ2
(
h2a2Δ

) ∫ 1

0
f
(
(1 − τ)un+1(x) + τun(x)

)
dτ,

un+1
t (x) = ha2Δφ1

(
h2a2Δ

)
un(x) + φ0

(
h2a2Δ

)
unt (x)

+ hφ1
(
h2a2Δ

) ∫ 1

0
f
(
(1 − τ)un+1(x) + τun(x)

)
dτ.

(10.37)

Letting ξ = 1 − τ , we have

∫ 1

0
f
(
(1 − τ)un+1(x) + τun(x)

)
dτ =

∫ 1

0
f
(
ξun+1(x) + (1 − ξ)un(x)

)
dξ

=
∫ 1

0
f
(
(1 − τ)un(x) + τun+1(x)

)
dτ,

which shows (10.37) is exactly the same as (10.35).
Therefore, the conclusion of the theorem is proved. �

Remark 10.1 The extension of the scheme (10.35) to the general high-dimensional
nonlinear Hamiltonian wave equation

{
utt (X, t) − a2Δu(X, t) = f

(
u(X, t)

)
, X ∈ Ω ⊆ R

d , t0 < t ≤ T,

u(X, t0) = ϕ1(X), ut (X, t0) = ϕ2(X), x ∈ Ω ∪ ∂Ω,
(10.38)

with the corresponding periodic boundary conditions, is straightforward (see [20]),
where
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Δ =
d∑

i=1

∂2
xi .

Remark 10.2 It is noted that the new approach described above for dealing with
(10.1) is totally different from classical discrete approximations such as variational
methods, and the method of lines (see, e.g. [26]), since the semidiscretisation of the
spatial derivative is now avoided. Compared with classical discrete approximations,
this approach to solving (10.1) is exact for the space variable x .

Remark 10.3 It can be observed that when the solution of the initial-boundary value
problem (10.1) and (10.2) is independent of the spatial variable x , the system (10.1)
becomes a Hamiltonian ordinary differential equation and, in this case, (10.35)
reduces to the average vector field (AVF) method. Besides, when the spatial interval
is divided into a set of finite points with a fixed spatial stepsize via the classical dis-
crete approximations, then the −Δ is replaced by a symmetric semi-definite positive
matrix which is from a discrete operator, such as the second-order central difference
operator, (10.35) reduces to the adapted average vector field (AAVF) methods [44].
In other words, the exact energy-preserving scheme (10.35) is an essential extension
of AVF to Hamiltonian wave equations based on the operator-variation-of-constants
formula (10.15).

Theorem 10.8 If V = V (αu), where α �= 0, then

∫ 1

0
f
(
(1 − τ)un(x) + τun+1(x)

)
dτ = −1

un+1(x) − un(x)

(
V (αun+1(x)) − V (αun(x))

)
.

Proof

∫ 1

0
f
(
(1 − τ)un(x) + τun+1(x)

)
dτ = −

∫ 1

0
αV ′(α

(
(1 − τ)un(x) + τun+1(x)

))
dτ

= −α

α
(
un+1(x) − un(x)

) ∫ 1

0

dV
(
α
(
(1 − τ)un(x) + τun+1(x)

))
dτ

dτ

= −1

un+1(x) − un(x)

(
V

(
αun+1(x)

) − V
(
αun(x)

))
.

�
From Theorem 10.8 we obtain the main result of this chapter.

Theorem 10.9 An exact energy-preserving and symmetric scheme for the nonlinear
Hamiltonian wave equation (10.1) is given by

{
un+1(x) = φ0

(
h2a2Δ

)
un(x) + hφ1

(
h2a2Δ

)
unt (x) − h2φ2

(
h2a2Δ

)
Jn(x),

un+1
t (x) = ha2Δφ1

(
h2a2Δ

)
un(x) + φ0

(
h2a2Δ

)
unt (x) − hφ1

(
h2a2Δ

)
Jn(x),
(10.39)

where h > 0 is a time stepsize, φ0(h2a2Δ), φ1(h2a2Δ), φ2(h2a2Δ) are bounded
operator-argument functions defined by (10.11), and
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Jn(x) = V
(
un+1(x)

) − V
(
un(x)

)
un+1(x) − un(x)

. (10.40)

Here, it can be observed that, if un+1(x) − un(x) = 0, then Jn(x) in (10.39) is 0
0 ,

which can be understood as

Jn(x) = dV
(
un(x)

)
du

= − f
(
un(x)

)
. (10.41)

Proof The conclusion of the theorem can be proved directly by applying Theorem
10.8 to the energy-preserving scheme (10.35). �

Theorem 10.9 establishes the exact energy-preserving scheme (10.39) for the
nonlinear Hamiltonian wave equation (10.1) with the periodic boundary condition
(10.2). In the special case f (u) = α(x), that is V (u) = −α(x)u + β(x) and Jn(x) =
−α(x), the formula (10.39) yields the exact solution of the underlying problem.

If f (u) = 0, then (10.1) becomes the homogeneous linear wave equation:

{
utt − a2Δu = 0,

u(x, t0) = ϕ1(x), ut (x, t0) = ϕ2(x),
(10.42)

and accordingly, from Theorem 10.1, (10.39) reduces to

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

un+1(x) = φ0
(
h2a2Δ

)
un(x) + hφ1

(
h2a2Δ

)
unt (x)

= φ0
(
(n + 1)2h2a2Δ

)
ϕ1(x) + (n + 1)hφ1

(
(n + 1)2h2a2Δ

)
ϕ2(x),

un+1
t (x) = ha2Δφ1

(
h2a2Δ

)
un(x) + φ0

(
h2a2Δ

)
unt (x)

= (n + 1)ha2Δφ1
(
(n + 1)2h2a2Δ

)
ϕ1(x) + φ0

(
(n + 1)2h2a2Δ

)
ϕ2(x),
(10.43)

which exactly integrates the homogeneous linearwave equation (10.42). This implies
that (10.43) possesses an additional advantage of energy preservation and quadratic
invariant preservation for the homogeneous wave equation (10.42). Besides, com-
pared with the well-known D’Alembert, Poisson and Kirchhoff formulas, the for-
mula (10.43) is independent of the computation of integrals and presents an exact
closed-form solution to (10.42).

10.5 Illustrative Examples

With regard to applications of the scheme (10.39) or (10.43), we now give some
illustrative examples.

Problem 10.1 Consider the homogeneous linear wave equation
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⎩
utt = uxx , x ∈ (0, 2), t > 0,

u(x, 0) = sin(πx), ut (x, 0) = −1

9
sin(πx),

(10.44)

subject to the periodic boundary conditions u(L , t) = u(0, t) where the period
L = 2.

After a careful calculation, it is easy to see that (10.43) directly gives the analytic
solution of Problem 10.1 and its derivative⎧⎪⎨

⎪⎩
u(x, t) = sin(πx) cos(π t) − 1

9π
sin(πx) sin(π t),

ut (x, t) = −π sin(πx) sin(π t) − 1

9
sin(πx) cos(π t),

(10.45)

on noticing that

φ0(t
2 ∂2

∂x2
) sin(πx) = sin(πx) cos(π t),

tφ1(t
2 ∂2

∂x2
)
( − 1

9
sin(πx)

) = − 1

9π
sin(πx) sin(π t),

and

t
∂2

∂x2
φ1(t

2 ∂2

∂x2
) sin(πx) = −π sin(πx) sin(π t).

Problem 10.2 We consider the following two dimensional homogenous periodic
wave equation

{
utt − a2(uxx + uyy) = 0, (x, y) ∈ (0, 2) × (0, 2), t > 0,

u|t=0 = sin(3πx) sin(4πy), ut |t=0 = 0.
(10.46)

Applying the formula (10.43) (Δ = ∂2
x + ∂2

y in this case) to (10.46) leads to{
u(x, y, t) = φ0

(
t2a2Δ

)
sin(3πx) sin(4πy),

ut (x, y, t) = ta2Δφ1
(
t2a2Δ

)
sin(3πx) sin(4πy).

(10.47)

It follows from a simple calculation that

{
u(x, y, t) = sin(3πx) sin(4πy) cos(5t),

ut (x, y, t) = −5 sin(3πx) sin(4πy) sin(5t).
(10.48)

Problem 10.3 Consider the following non-homogeneous linear periodic wave
equation
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⎩ utt − uxx = cos x, x ∈

(π

4
, 2π + π

4

)
, t > 0,

u|t=0 = sin x, ut |t=0 = 0.
(10.49)

Applying (10.39) to (10.49) gives

{
u(x, t) = φ0(t

2Δ) sin x + t2φ2(t
2Δ) cos x,

ut (x, t) = tΔφ1(t
2Δ) sin x + tφ1(t

2Δ) cos x .
(10.50)

Then a simple calculation yields

{
u(x, t) = (sin x − cos x) cos t + cos x,

ut (x, t) = −(sin x − cos x) sin t,
(10.51)

which is exactly the solution of the problem (10.49).

Remark 10.4 The main purpose of this chapter is to establish a general framework
for an exact energy-preserving scheme for nonlinear Hamiltonian wave equations,
although we cannot achieve a closed-form solution for the nonlinear Hamiltonian
wave equation (10.1). Consequently, we do not consider further computational issues
in detail in this chapter.

10.6 Conclusions and Discussions

Energy-preserving schemes have a long history, and can date back to Courant,
Friedrichs, and Lewy’s work [5]. In this chapter, we considered the properties of
energy-preserving schemes and presented an exact energy-preserving scheme for
the nonlinear Hamiltonian wave equation (10.1) equipped with the periodic bound-
ary condition (10.2), which is in fact identical to the infinite dimensional nonlinear
Hamiltonian system (10.4) or (10.5).We first defined the bounded operator-argument
functions (10.11) and analysed their properties, then established an operator-
variation-of-constants formula for the nonlinear Hamiltonian wave equation (10.1).
The proposed energy-preserving scheme is based on the operator-variation-of-
constants formula which avoids the semidiscretisation of the spatial derivative and
exactly preserves the energy of the original continuous Hamiltonian wave equa-
tion (10.1). This energy-preserving scheme (10.35) is a significant generalisation of
the AVF formula and the AAVF formula (see, e.g. [33, 40]) as stated in Remark
10.3, since both the AVF formula and AAVF formula can preserve only the semi-
discrete energy of the continuation Hamiltonian PDEs (10.1). In fact, both the AVF
formula and AAVF formula are designed specially for Hamiltonian ordinary differ-
ential equations. In applications, such Hamiltonian ODEs in time can be obtained
from Hamiltonian PDEs by the discretisation of the spatial derivative via classical
discrete approximations such as variational methods, and the method of lines. Fur-
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thermore, we have also derived an exact energy-preserving and symmetric scheme
(10.39) for the nonlinear Hamiltonian wave equation (10.1) with the periodic bound-
ary condition (10.2), which avoids the evaluation of the integral

∫ 1

0
f
(
(1 − τ)un(x) + τun+1(x)

)
dτ

in the exact energy-preserving scheme (10.35). Therefore,we have in fact derived an
exact energy-preserving and symmetric scheme (10.39) for the nonlinear Hamilto-
nian wave equation (10.1), although the closed form solution to (10.1) is not acces-
sible (even though it exists).

Last but not least, the extension of scheme (10.35) to the general high-dimensional
nonlinear wave equation (10.38) is straightforward, as stated in Remark 10.1. All
essential analytical features presented for (10.1) are applicable to high-dimensional
nonlinear Hamiltonian wave equations (10.38).

It should also be noted that the operator-variation-of-constants formula for wave
equations makes it possible to systematically incorporate the inner structure prop-
erties of the original continuous system into numerical schemes in the design of
structure-preserving integrators for nonlinear wave equations. Chapter11 will try to
demonstrate this point.

The material of this chapter is based on the work by Wu and Liu [36].
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Chapter 11
Arbitrarily High-Order Time-Stepping
Schemes for Nonlinear Klein–Gordon
Equations

This chapter presents arbitrarily high-order time-stepping schemes for solving high-
dimensional nonlinear Klein–Gordon equations with different boundary conditions.
We first formulate an abstract ordinary differential equation (ODE) on a suitable
infinite–dimensional function space based on the operator spectrum theory. We then
introduce an operator-variation-of-constants formula for the nonlinear abstract ODE.
The nonlinear stability and convergence are rigorously analysed once the spatial dif-
ferential operator is approximated by an appropriate positive semi-definite matrix.
With regard to the two dimensional Dirichlet or Neumann boundary problems, the
time-stepping schemes coupled with discrete Fast Sine/Cosine Transformation can
be applied to simulate the two-dimensional nonlinear Klein–Gordon equations effec-
tively. The numerical results demonstrate the advantage of the schemes in comparison
with the existing numerical methods for solving nonlinear Klein–Gordon equations
in the literature.

11.1 Introduction

The computation of the Klein–Gordon equation which has a nonlinear potential
function, is of great importance in a wide range of application areas in science and
engineering. The nonlinear potential gives rise to major challenges. In this chapter,
we begin with the following nonlinear Klein–Gordon equation in a single space
variable: {

utt − a2Δu = f (u), t0 < t ≤ T, x ∈ Ω,

u(x, t0) = ϕ1(x), ut (x, t0) = ϕ2(x), x ∈ Ω̄,
(11.1)

and suppose that the initial valued problem (11.1) is supplementedwith the following
periodic boundary condition on the domain Ω = (−π, π)

© Springer Nature Singapore Pte Ltd. And Science Press 2018
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u(x, t) = u(x + 2π, t), (11.2)

where u(x, t) represents the wave displacement at position x and time t , Δ = ∂2

∂x2 ,
and f (u) is a nonlinear function of u chosen as the negative derivative of a potential
energy V (u) ≥ 0. Generally, there are various choices of the potential function
f (u) to investigate solitons and nonlinear phenomena. For instance, the following
sine–Gordon equation

utt − a2Δu + sin(u) = 0, (11.3)

is well known, and other nonlinear potential functions also appear in the literature
such as f (u) = sinh u and polynomial f (u). Moreover, if u(·, t) ∈ H 1(Ω) and
ut (·, t) ∈ L2(Ω), energy conservation becomes another key feature of the Klein–
Gordon equation, i.e.,

E(t) ≡ 1

2

∫
Ω

(
u2t + a2|∇u|2 + 2V (u)

)
dx = E(t0). (11.4)

This is an essential property in the theory of solitons. Accordingly, it is also signifi-
cant to test the effectiveness of a numerical method in preserving the corresponding
discrete energy.

In a wide variety of application areas in science and engineering, such as non-
linear optics, solid state physics and quantum field theory [10, 23, 53], the non-
linear wave equation plays an important role and has been extensively investi-
gated. In particular, the nonlinear Klein–Gordon equation (11.1) is used to model
many different nonlinear phenomena, including the propagation of dislocations in
crystals and the behavior of elementary particles and of Josephson junctions (see
Chap.8.2 in [24] for details). Its description and understanding are very impor-
tant from both the analytical and numerical aspects, and have been investigated
by many researchers. On the analytical front, the Cauchy problem was investi-
gated (see, e.g. [7, 13, 26, 36]). If the potential function satisfies V (u) ≥ 0
for u ∈ R, the global existence of solutions for the defocusing case, was estab-
lished in [13], whereas if the energy potential satisfies V (u) ≤ 0 for u ∈ R,
the focusing case, possible finite time blow-up was shown in [7]. With regard to
the numerical methods, there have been proposed and studied a variety of solu-
tion procedures for solving the nonlinear Klein–Gordon equation. For instance, the
energy-preserving explicit, semi-implicit and symplectic conservative standard finite
difference time domain (FDTD) discretisations were proposed and analysed in [1,
9, 25, 38, 44]. As far as the finite-difference method is concerned, on the basis
of standard finite-difference approximations, a three-time-level scheme was derived
by Strauss and Vázquez in [47]. Jiménez [35] derived conservative finite differ-
ence schemes with some analogous discretisations to that used in [47] for the non-
linear term. Other approaches, such as the finite element method and the spectral
method, were also studied in [17, 18, 27, 50]. With respect to finite-element tech-
niques, Tourigny [50] proved that the use of product approximations in Galerkin
methods subject to Dirichlet boundary conditions does not affect the convergence
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rate of the method. Guo et al. [27] developed a conservative Legendre spectral
method. Dehghan et al. used radial basis functions, the dual reciprocity boundary
integral equation technique, the collocation and finite-difference collocation meth-
ods for solving the nonlinear Klein–Gordon equations, or coupled Klein–Gordon
equations (see, e.g. [20–22, 37]). Although many numerical methods have been
derived and investigated for solving the nonlinear Klein–Gordon equation in the lit-
erature, in general, the existing numerical methods have limited accuracy, and little
attention was paid to the special structure brought by spatial discretisations. This
motivates the main theme of this chapter, which is to consider arbitrarily high-order
Lagrange collocation-type time-stepping schemes for efficiently solving nonlinear
Klein–Gordon equations.

The plan of this chapter is as follows. In Sect. 11.2, based on the operator spec-
trum theory, we first formulate the one-dimensional nonlinear Klein–Gordon equa-
tion (11.1)–(11.2) as an abstract second-order ordinary differential equation on an
infinite-dimensional Hilbert space L2(Ω). Then, the operator-variation-of-constants
formula for the abstract equation is introduced, which is in fact an integral equation
of the solution for the nonlinear Klein–Gordon equation (11.1)–(11.2). In Sect. 11.3,
using the derived operator-variation-of-constants formula, we calculate the nonlin-
ear integrals appearing in this formula by Lagrange interpolation. This leads to a
class of arbitrarily high-order Lagrange collocation-type time-stepping schemes.
Furthermore, an investigation of the local error bounds is made, which arrives at
the simplified order conditions in a much simpler form. Section11.4 is devoted to
semidiscretisation. This process enables us to take advantage of the properties of
the undiscretised differential operatorA and incorporate the special structure intro-
duced by spatial discretisations with the new integrators. Themain theoretical results
of this work are presented in Sect. 11.5. We use the strategy of energy analysis to
study the nonlinear stability and convergence of the fully discrete scheme. Since
these fully discrete schemes are implicit, iterative solutions are required in practical
computations. Therefore, we use fixed-point iteration and analyse its convergence in
this section. In Sect. 11.6 we apply the Lagrange collocation-type time integrators to
the two-dimensional nonlinear Klein–Gordon equations, equippedwith homogenous
Dirichlet or Neumann boundary conditions. In a similar way to the one-dimensional
periodic boundary case, the abstract ordinary differential equations and the operator-
variation-of-constants formula are established on the infinite-dimensional Hilbert
space L2(Ω). In Sect. 11.7, we are concerned with numerical experiments, and the
numerical results show the advantage and effectiveness of our new schemes in com-
parison with the existing numerical methods in the literature. The last section is
devoted to brief conclusions and discussions.

In this chapter, all essential features of the methodology are presented in the one-
dimensional and two-dimensional cases, although the schemes to be analysed lend
themselves with equal ease to higher dimensions.
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11.2 Abstract Ordinary Differential Equation

Motivated by recent interest in exponential integrators for semilinear parabolic prob-
lems [30–32], and based on the operator spectrum theory (see, e.g. [6]), we will for-
mulate the nonlinear problem (11.1)–(11.2) as an abstract ordinary differential equa-
tion on the Hilbert space L2(Ω), and introduce an operator-variation-of-constants
formula. To this end, some bounded operator-argument functions will be defined
and analysed in advance, because these are essential to introducing the operator-
variation-of-constants formula.

To begin with, we define the functions

φ j (x) :=
∞∑
k=0

(−1)k xk

(2k + j)! , j = 0, 1, 2, . . . , ∀x ≥ 0. (11.5)

It can be observed that φ j (x), j = 0, 1, 2, . . . are bounded functions for any x ≥ 0.
For example, we have

φ0(x) = cos(
√
x), φ1(x) = sin(

√
x)√

x
, (11.6)

with φ1(0) = 1, and it is obvious that |φ j (x)| ≤ 1 for j = 0, 1 and ∀x ≥ 0. For
an abstract formulation of problem (11.1)–(11.2), we define the linear differential
operator A by

(A v)(x) = −a2vxx (x). (11.7)

It is known that the linear differential operator A is an unbounded operator and not
defined for every v ∈ L2(Ω). In order to model the periodic boundary condition
(11.2), we consider A on the domain:

D(A ) := {v ∈ H 2(Ω) : v(x) = v(x + 2π)
}
. (11.8)

Obviously, the defined operator A is positive semi definite, i.e.,

(
A v(x), v(x)

)
=
∫ 2π

0
A v(x) · v(x)dx = a2

∫ 2π

0
v2x (x)dx ≥ 0, ∀v(x) ∈ D(A ).

Here, (·, ·) denotes the inner product of L2(Ω) and integration by parts, or Green’s
formula, has been used. Moreover, we note the important fact that the operator
A has a complete system of orthogonal eigenfunctions

{
eikx : k ∈ Z

}
in the

Hilbert space L2(Ω), and the corresponding eigenvalues are given by a2k2, k =
0,±1,±2, . . . (see, e.g. [49]). From the isomorphismbetween L2(Ω) and l2 = {x =
(xi )i∈Z : ∑

i∈Z
|xi |2 < +∞}, the operator A induces a corresponding operator on l2
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(see, e.g. [6, 32]). Then, it can be observed that the functions (11.5) imply the operator
functions

φ j (tA ) : L2(Ω) → L2(Ω),

for j = 0, 1, 2, . . . and t ≥ t0 as follows:

φ j (tA )v(x) =
∞∑

k=−∞
v̂kφ j (ta

2k2)eikx , for v(x) =
∞∑

k=−∞
v̂ke

ikx . (11.9)

We next show that the defined operator functions are bounded. To do this, we need
to clarify the norm of the function in L2(Ω), which can be characterised in the
frequency space by

‖v‖2 = 2π
∞∑

k=−∞
|v̂k |2. (11.10)

The details can be found in [46]. Therefore, we have

‖φ j (tA )‖2L2(Ω)←L2(Ω) = sup
‖v‖
=0

‖φ j (tA )v‖2
‖v‖2 ≤ sup

t≥t0
|φ j (ta

2k2)| ≤ γ j , (11.11)

where γ j are bounds on the functions |φ j (x)| for j = 0, 1, 2, . . . and x ≥ 0. For
instance, we may choose γ0 = γ1 = 1 and then

‖φ0(tA )‖2L2(Ω)←L2(Ω) ≤ 1 and ‖φ1(tA )‖2L2(Ω)←L2(Ω) ≤ 1. (11.12)

By defining u(t) as the function that maps x to u(x, t):

u(t) = [x �→ u(x, t)],

we now can formulate the systems (11.1)–(11.2) as the following abstract ordinary
differential equation on the Hilbert space L2(Ω):

{
u′′(t) + A u(t) = f

(
u(t)

)
u(t0) = ϕ1(x), u′(t0) = ϕ2(x).

(11.13)

With this premise, we are now in a position to present an integral formula for the
nonlinearKlein–Gordon equation (11.1)–(11.2). The solution of the abstract ordinary
differential equations (11.13) can be given by the operator-variation-of-constants
formula summarised in the following theorem.
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Theorem 11.1 The solution of (11.13) and its derivative satisfy

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(t) = φ0
(
(t − t0)

2A
)
u(t0) + (t − t0)φ1

(
(t − t0)

2A
)
u′(t0)

+
∫ t

t0

(t − ζ )φ1
(
(t − ζ )2A

)
f
(
u(ζ )

)
dζ,

u′(t) = − (t − t0)A φ1
(
(t − t0)

2A
)
u(t0) + φ0

(
(t − t0)

2A
)
u′(t0)

+
∫ t

t0

φ0
(
(t − ζ )2A

)
f
(
u(ζ )

)
dζ,

(11.14)

for t ∈ [t0, T ], where φ0
(
(t − t0)2A

)
and φ1

(
(t − t0)2A

)
are bounded functions of

the operator A .

Proof Applying the Duhamel Principle to Eqs. (11.1) or (11.13), we have(
u(t)
u′(t)

)
= eJ (t−t0)

(
u(t0)
u′(t0)

)
+
∫ t

t0
eJ (t−ζ )

(
0

f
(
u(ζ )

) ) dζ, (11.15)

where

J =
(

0 I
−A 0

)
.

After expanding the exponential operator through its Taylor series, we obtain

eJ (t−t0) =
+∞∑
k=0

J k(t − t0)k

k! .

An argument by induction leads to the following results

J k = (−1)�k/2�
(

1+(−1)k

2 A �k/2� 1−(−1)k

2 A �k/2�

− 1−(−1)k

2 A �k/2�+1 1+(−1)k

2 A �k/2�

)
, ∀k ∈ N,

where �k/2� denotes the integer part of k/2. According to the definition of φ j (A )

and a careful calculation, we obtain

eJ (t−t0) =
(

φ0
(
(t − t0)2A

)
(t − t0)φ1

(
(t − t0)2A

)
−(t − t0)A φ1

(
(t − t0)2A

)
φ0
(
(t − t0)2A

) )
.

The conclusion of the theorem can be obtained straightforwardly by inserting the
expansion into (11.15). �

Remark 11.1 Although equation (11.1) is one-dimensional in space, the method of
analysis introduced in this section canbe extended to the considerablymore important
high-dimensional Klein–Gordon equations

utt − a2Δu = f (u), t ≥ t0, x ∈ [−π, π ]d , (11.16)
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where u = u(x, t) and Δ =
d∑

i=1

∂2

∂x2i
, with periodic boundary conditions. In latter

case, if we define the operator as the formA = −a2Δ, the same operator-variation-
of-constants formula as (11.14) for (11.16) can be achieved as well. An application
of this approach can be found in a recent paper [56].

Remark 11.2 For the nonlinear Klein–Gordon equation, the formula (11.14) is a
nonlinear integral equation which reflects the changes of the solution with time t . It
will be helpful in deriving and analysing novel numerical integrators for the nonlinear
Klein–Gordon equations. However, if the right-hand function f does not depend on
u, i.e., {

utt − a2Δu = f (x, t), t0 < t ≤ T, x ∈ Ω,

u(x, t0) = ϕ1(x), ut (x, t0) = ϕ2(x),
(11.17)

this is a linear or homogenous ( f (x, t) = 0)wave equation. The closed-form solution
to the linear problem (11.17) can be obtained by using the operator-variation-of-
constants formula.

As an illustrative example, we consider the following two-dimensional homoge-
nous periodic wave equation

{
utt − a2(uxx + uyy) = 0, (x, y) ∈ (0, 2) × (0, 2), t > 0,

u|t=0 = sin(3πx) sin(4πy), ut |t=0 = 0.
(11.18)

The homogeneous problem is equipped with periodic boundary conditions

u(x + Lx , y, t) = u(x, y + Ly, t) = u(x, y, t) (11.19)

with the fundamental periods Lx = 2
3 and Ly = 1

2 . Applying the formula (11.14) to
(11.18) leads to

{
u(x, y, t) = φ0

(
t2A

)
sin(3πx) sin(4πy),

ut (x, y, t) = ta2Δφ1
(
t2A

)
sin(3πx) sin(4πy).

(11.20)

It follows from a simple calculation that

{
u(x, y, t) = sin(3πx) sin(4πy) cos(5t),

ut (x, y, t) = −5 sin(3πx) sin(4πy) sin(5t),
(11.21)

which is exactly the solution of problem (11.18) and its derivative.
We next consider the following nonhomogeneous linear wave equation

{
utt − (uxx + uyy) = π2 sin(π(x − t)) sin(πy),

u|t=0 = sin(πx) sin(πy), ut |t=0 = −π cos(πx) sin(πy),
(11.22)
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and suppose that the problem is subject to the periodic boundary conditions

u(x + L , y, t) = u(x, y + L , t) = u(x, y, t), (11.23)

with the fundamental periods L = 2. Applying formula (11.14) to (11.22) yields

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(x, y, t) = φ0(t
2Δ) sin(πx) sin(πy) − π tφ1(t

2Δ) cos(πx) sin(πy)

+ π2
∫ t

0
(t − ζ )φ1((t − ζ )2Δ) sin(π(x − ζ )) sin(πy)dζ,

ut (x, y, t) = tΔφ1(t
2Δ) sin(πx) sin(πy) − πφ0(t

2Δ) cos(πx) sin(πy)

+ π2
∫ t

0
φ0((t − ζ )2Δ) sin(π(x − ζ )) sin(πy)dζ.

(11.24)
It follows from a careful calculation that

φ0(t
2Δ) sin(πx) sin(πy) = sin(πx) sin(πy) cos(

√
2π t),

− π tφ1(t
2Δ) cos(πx) sin(πy) = − 1√

2
cos(πx) sin(πy) sin(

√
2π t),

π2
∫ t

0
(t − ζ )φ1((t − ζ )2Δ) sin(π(x − ζ )) sin(πy)dζ

= π√
2

∫ t

0
sin(

√
2π(t − ζ )) sin(π(x − ζ )) sin(πy)dζ.

We finally obtain the exact solution

u(x, y, t) = sin(πx) sin(πy) cos(
√
2π t) − 1√

2
cos(πx) sin(πy) sin(

√
2π t)

+ π√
2

∫ t

0
sin(

√
2π(t − ζ )) sin(π(x − ζ )) sin(πy)dζ

= sin(π(x − t)) sin(πy),
(11.25)

and its derivative
ut (x, y, t) = −π cos(π(x − t)) sin(πy). (11.26)

11.3 Formulation of the Lagrange Collocation-Type
Time Integrators

In light of the useful approach to dealing with the semiclassical Schrödinger equa-
tion (see [8]), this analysis will omit the standard steps of first semidiscretising in
space and then approximating the semidiscretisation. In this section, based on the for-
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mula (11.14), we devote ourselves to constructing arbitrarily high-order Lagrange
collocation-type time integrators for the nonlinear system (11.13) in the infinite-
dimensional Hilbert space L2(Ω). Furthermore, the local error bounds for the con-
structed time integrators will also be considered in detail.

11.3.1 Construction of the Time Integrators

From Theorem 11.1, the solution of (11.13) and its derivative at time tn+1 = tn +Δt
for n = 0, 1, 2, . . . are given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(tn+1) =φ0
(
V
)
u(tn) + Δtφ1

(
V
)
u′(tn)

+ Δt2
∫ 1

0
(1 − z)φ1

(
(1 − z)2V

)
f̃ (tn + zΔt)dz,

u′(tn+1) = − ΔtA φ1
(
V
)
u(tn) + φ0

(
V
)
u′(tn)

+ Δt
∫ 1

0
φ0
(
(1 − z)2V

)
f̃ (tn + zΔt)dz,

(11.27)

where V = Δt2A and f̃ (tn + zΔt) = f
(
u(tn + zΔt)

)
.

In what follows, we pay our attention to deriving efficient methods for approxi-
mating the following two nonlinear integrals:

I1 :=
∫ 1

0
(1 − z)φ1

(
(1 − z)V

)
f̃ (tn + zΔt)dz,

I2 :=
∫ 1

0
φ0
(
(1 − z)V

)
f̃ (tn + zΔt)dz.

(11.28)

We choose non-confluent collocation nodes c1, . . . , cs and approximate the func-
tion f̃ (tn + zΔt) involved in the integrals in (11.28) by its Lagrange interpolation
polynomial at these quadrature nodes

f̃ (tn + zΔt) =
s∑

i=1

li (z) f̃ (tn + ciΔt) + Rs(tn + zΔt)

=
s∑

i=1

li (z) f
(
u(tn + ciΔt)

)+ Rs(tn + zΔt).

(11.29)

Here, li (z) for i = 1, 2, . . . , s are the well-known Lagrange basis polynomials

li (z) =
s∏
j=1
j 
=i

z − c j
ci − c j

, i = 1, 2, . . . , s. (11.30)
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It is obvious that there exists a constant β satisfies max
1≤i≤s

max
0≤z≤1

|li (z)| ≤ β. Moreover,

the interpolation error on [0, 1] is given by

Rs(tn + zΔt) = f̃ (tn + zΔt) −
s∑

i=1

li (z) f̃ (tn + ciΔt)

= Δt s

s! f̃ (s)
t (tn + ξ nΔt)ws(z), ξ n ∈ (0, 1),

(11.31)

where ws(z) =
s∏

i=1
(z − ci ) and f̃ ( j)

t (t) denotes the j th order derivative of f
(
u(t)

)
with respect to t .

Suppose that the following approximations have been given:

un ≈ u(tn), Uni
≈ u(tn + ciΔt).

Replacing f̃ (z) in (11.27) by the Lagrange interpolation (11.29) yields approxima-
tions to the exact solution and its derivative at time tn+1

un+1 =φ0
(
V
)
un + Δtφ1

(
V
)
u′n + Δt2

s∑
i=1

bi (V ) f (Uni ), (11.32)

u′n+1 = − ΔtA φ1
(
V
)
un + φ0

(
V
)
u′n + Δt

s∑
i=1

b̄i (V ) f (Uni ), (11.33)

where bi (V ) and b̄i (V ) are determined by

bi (V ) =
∫ 1

0
(1 − z)φ1

(
(1 − z)2V

)
li (z)dz, (11.34)

b̄i (V ) =
∫ 1

0
φ0
(
(1 − z)2V

)
li (z)dz. (11.35)

It follows from (11.12) that

‖bi (V )‖L2(Ω)←L2(Ω) ≤ max
0≤z≤1

|li (z)| ≤ β and ‖b̄i (V )‖L2(Ω)←L2(Ω) ≤ max
0≤z≤1

|li (z)| ≤ β,

and this means that bi (V ) and b̄i (V ) are uniformly bounded.
Moreover, we note that the basis li (z) for i = 1, . . . , s are polynomials of degree

at most s − 1, the coefficients bi (V ) are linear combinations of the functions

∫ 1

0
(1 − z)φ1

(
(1 − z)2V

)
z jdz = Γ ( j + 1)φ j+2(V ), (11.36)

and the coefficients b̄i (V ) are linear combinations of the functions
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∫ 1

0
φ0
(
(1 − z)2V

)
z jdz = Γ ( j + 1)φ j+1(V ), (11.37)

where Γ ( j + 1) is the Gamma function with Γ (1) = 1 (see, e.g. Abramowitz
and Stegun [3]). Recall that, the Gamma function Γ ( j + 1) satisfies the following
recursion

Γ ( j + 1) = jΓ ( j) = · · · = j !.

It remains to determine the approximation Uni . In a similar way to the formula
(11.32), we replace Δt by ciΔt to define the internal stages:

Uni = φ0
(
c2i V

)
un + ciΔtφ1

(
c2i V

)
u′n + c2i Δt2

s∑
j=1

ai j (V ) f (Unj ), (11.38)

where it is required that the weights ai j (V ) are uniformly bounded. The weights
ai j (V ) will be determined by suitable order conditions, and we will derive these
order conditions in Sect. 11.3.2.

On the basis of the above analysis and the formula (11.27), we present the fol-
lowing Lagrange collocation-type time-stepping integrators for the nonlinear system
(11.13).

Definition 11.1 A Lagrange collocation-type time-stepping integrator for solving
the nonlinear system (11.13) is defined by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un+1 = φ0
(
V
)
un + Δtφ1

(
V
)
u′n + Δt2

s∑
i=1

bi (V ) f (Uni ),

u′n+1 = −ΔtA φ1
(
V
)
un + φ0

(
V
)
u′n + Δt

s∑
i=1

b̄i (V ) f (Uni ),

Uni = φ0
(
c2i V

)
un + ciΔtφ1

(
c2i V

)
u′n + c2i Δt2

s∑
j=1

ai j (V ) f (Unj ), i = 1, 2, . . . , s,

(11.39)
where bi (V ) and b̄i (V ) are defined by (11.34) and (11.35), respectively, and ai j (V )

are uniformly bounded.

11.3.2 Error Analysis for the Lagrange Collocation-Type
Time-Stepping Integrators

In this subsection, wewill analyse the local error bounds of the Lagrange collocation-
type time discretisations (11.39) for the nonlinear system (11.13). Our main hypoth-
esis on the nonlinearity f is described below.
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Assumption 1 It is assumed that (11.13) possesses a sufficiently smooth solution,
and that f : D(A ) → R is sufficiently often Fréchet differentiable in a strip along
the exact solution.

Assumption 2 Let f be locally Lipschitz-continuous in a strip along the exact solu-
tion u(t). Thus, there exists a real number L such that

‖ f
(
v(t)
)− f

(
w(t)

)‖ ≤ L‖v(t) − w(t)‖ (11.40)

for all t ∈ [t0, T ] and max
(‖v(t) − u(t)‖, ‖w(t) − u(t)‖) ≤ R.

Inserting the exact solution into the time integrators (11.39) yields

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(tn+1) = φ0
(
V
)
u(tn) + Δtφ1

(
V
)
u′(tn) + Δt2

s∑
i=1

bi (V ) f̃ (tn + ciΔt) + δn+1,

u′(tn+1) = −ΔtA φ1
(
V
)
u(tn) + φ0

(
V
)
u′(tn) + Δt

s∑
i=1

b̄i (V ) f̃ (tn + ciΔt) + δ′n+1,

u(tn + ciΔt) = φ0
(
c2i V

)
u(tn) + ciΔtφ1

(
c2i V

)
u′(tn) + c2i Δt2

s∑
j=1

ai j (V ) f̃ (tn + c jΔt) + Δni ,

i = 1, 2, . . . , s,
(11.41)

where bi (V ) and b̄i (V ) are defined by (11.34) and (11.35), respectively, and ai j (V )

are uniformly bounded.
Applying the Lagrange interpolation polynomial (11.29) to the nonlinear integrals

in the operator-variation-of-constants formula (11.27), and comparing with the first
two equations of (11.41), we obtain the residuals δn+1 and δ′n+1:

δn+1 = Δt s+2

s!
∫ 1

0
(1 − z)φ1

(
(1 − z)2V

)
ws(z)dz f

(s)
t

(
u(tn + ξ nΔt)

)
,

δ′n+1 = Δt s+1

s!
∫ 1

0
φ0
(
(1 − z)2V

)
ws(z)dz f

(s)
t

(
u(tn + ξ nΔt)

)
.

(11.42)

It follows from (11.42) that

‖δn+1‖ ≤ C1Δt s+2 and ‖δ′n+1‖ ≤ C1Δt s+1, (11.43)

where

C1 = 1

s! max
0≤z≤1

|ws(z)| max
t0≤t≤T

‖ f (s)
t

(
u(t)

)‖ (11.44)

is a constant.
In order to clarify the representation of the residuals Δni , we expand f̃ (tn + zΔt)

into a Taylor series with remainder in integral form:
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f̃ (tn+zΔt) =
s∑

k=1

zk−1Δt k−1

(k − 1)! f̃ (k−1)
t (tn)+ Δt s

(s − 1)!
∫ z

0
f̃ (s)
t (tn+σΔt)(z−σ)s−1dσ.

(11.45)
On the one hand, inserting the Taylor formula (11.45) into the right-hand side of the
operator-variation-of-constants formula gives

u(tn + ciΔt) = φ0(c
2
i V )u(tn) + ciΔtφ1(c

2
i V )u′(tn) +

s∑
k=1

ck+1
i Δtk+1φk+1(c

2
i V ) f̃ (k−1)

t (tn)

+ cs+2
i Δt s+2

(s − 1)!
∫ 1

0
(1 − z)φ1

(
(1 − z)2V

) ∫ z

0
f̃ (s)
t (tn + σciΔt)(z − σ)s−1dσdz.

(11.46)
Substituting the Taylor formula (11.45) into the right-hand side of the last equations
for i = 1, 2, . . . , s of (11.41) yields

u(tn + ciΔt) = φ0
(
c2i V

)
u(tn) + ciΔtφ1

(
c2i V

)
u′(tn)

+
s∑

k=1

c2i Δt k+1
s∑

j=1

ai j (V )
ck−1
j

(k − 1)! f̃
(k−1)
t (tn)

+ c2i Δt s+2

(s − 1)!
s∑

j=1

ai j (V )

∫ c j

0
f̃ (s)
t (tn + σΔt)(c j − σ)s−1dσ + Δni .

(11.47)
Subtracting (11.46) from (11.47), we obtain

Δni =
s∑

k=1

c2i Δtk+1

⎛
⎝ck−1

i φk+1(c
2
i V ) −

s∑
j=1

ai j (V )
ck−1
j

(k − 1)!

⎞
⎠ f̃ (k−1)

t (tn)

+ cs+2
i Δt s+2

(s − 1)!
∫ 1

0
(1 − z)φ1

(
(1 − z)2V

) ∫ z

0
f̃ (s)
t (tn + σciΔt)(z − σ)s−1dσdz

− c2i Δt s+2

(s − 1)!
s∑

j=1

ai j (V )

∫ c j

0
f̃ (s)
t (tn + σΔt)(c j − σ)s−1dσ.

By the following order conditions:

s∑
j=1

ai j (V )
ck−1
j

(k − 1)! = ck−1
i φk+1(c

2
i V ), k = 1, 2, . . . , s, i = 1, 2, . . . , s,

(11.48)
the residuals Δni can be explicitly expressed as:

Δni =cs+2
i Δt s+2

(s − 1)!
∫ 1

0
(1 − z)φ1

(
(1 − z)2V

) ∫ z

0
f̃ (s)
t (tn + σciΔt)(z − σ)s−1dσdz

− c2i Δt s+2

(s − 1)!
s∑

j=1

ai j (V )

∫ c j

0
f̃ (s)
t (tn + σΔt)(c j − σ)s−1dσ.

(11.49)
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Likewise, we can deduce the following results

‖Δni‖ ≤ c2i Δt s+2

(s − 1)!
(
csi +γ

s∑
i=1

csi
)
max
t0≤t≤T

‖ f (s)
t

(
u(t)

)‖ ≤ C2Δt s+2, i = 1, 2, . . . , s,

(11.50)
where the constant C2 is given by

C2 = 1 + sγ

(s − 1)! max
t0≤t≤T

‖ f (s)
t

(
u(t)

)‖, (11.51)

and γ is the uniform bound on ai j (V ) under the norm ‖ · ‖L2(Ω)←L2(Ω).
Concerning the local error bounds of the Lagrange collocation-type time-stepping

integrators (11.39), we have the following result.

Theorem 11.2 Suppose that f (s)
t ∈ L∞(0, T ; L2(Ω)). Under the local assumptions

of un = u(tn), u′n = u′(tn), the local error bounds of the time integrators (11.39)
satisfy the following inequalities

‖u(tn+1) − un+1‖ ≤ 2Δt2βL
s∑

i=1

‖Δni‖ + ‖δn+1‖,

‖u′(tn+1) − u′n+1‖ ≤ 2ΔtβL
s∑

i=1

‖Δni‖ + ‖δ′n+1‖,
(11.52)

where the residuals δn+1, δ′n+1 and Δni are explicitly represented by (11.42) and
(11.49), respectively.

Proof It follows on subtracting (11.39) from (11.41) that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(tn+1) − un+1 = Δt2
s∑

i=1

bi (V )
(
f̃ (tn + ciΔt) − f (Uni )

)
+ δn+1,

u′(tn+1) − u′n+1 = Δt
s∑

i=1

b̄i (V )
(
f̃ (tn + ciΔt) − f (Uni )

)
+ δ′n+1,

u(tn + ciΔt) −Uni = c2i Δt2
s∑

j=1

ai j (V )
(
f̃ (tn + c jΔt) − f (Unj )

)+ Δni , i = 1, 2, . . . , s.

(11.53)
By taking norms on both sides of the Eq. (11.53) and using Assumption 2, the first
two equations yield

‖u(tn+1) − un+1‖ ≤Δt2
s∑

i=1

‖bi (V )‖L2(Ω)←L2(Ω)‖ f̃ (tn + ciΔt) − f (Uni )‖ + ‖δn+1‖

≤Δt2βL
s∑

i=1

‖u(tn + ciΔt) −Uni‖ + ‖δn+1‖,
(11.54)
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and

‖u′(tn+1) − u′n+1‖ ≤Δt
s∑

i=1

‖b̄i (V )‖L2(Ω)←L2(Ω)‖ f̃ (tn + ciΔt) − f (Uni )‖ + ‖δ′n+1‖

≤ΔtβL
s∑

i=1

‖u(tn + ciΔt) −Uni‖ + ‖δ′n+1‖.
(11.55)

The last equations of (11.53) give

‖u(tn + ciΔt) −Uni‖ ≤c2i Δt2
s∑

j=1

‖āi j (V )‖L2(Ω)←L2(Ω)‖ f̃ (tn + c jΔt) − f (Unj )‖ + ‖Δni‖

≤c2i Δt2γ L
s∑

j=1

‖u(tn + c jΔt) −Unj‖ + ‖Δni‖, i = 1, 2, . . . , s,

(11.56)
where γ is the uniform bound on ai j (V ) under the norm ‖ · ‖L2(Ω)←L2(Ω). Summing
up the results of (11.56) for i from 1 to s, we obtain

s∑
i=1

‖u(tn + ciΔt) −Uni‖ ≤ Δt2γ L
s∑

i=1

c2i

s∑
j=1

‖u(tn + c jΔt) −Unj‖ +
s∑

i=1

‖Δni‖.
(11.57)

If the sufficiently small time stepsize Δt satisfies Δt2γ L
s∑

i=1
c2i ≤ 1

2 , namely,

Δt ≤
√√√√√ 1

2γ L
s∑

i=1
c2i

, (11.58)

then we have
s∑

i=1

‖u(tn + ciΔt) −Uni‖ ≤ 2
s∑

i=1

‖Δni‖. (11.59)

Inserting (11.59) into the right-hand sides of inequalities (11.54) and (11.55) yields
the following results

‖u(tn+1) − un+1‖ ≤2Δt2βL
s∑

i=1

‖Δni‖ + ‖δn+1‖, (11.60)

and

‖u′(tn+1) − u′n+1‖ ≤2ΔtβL
s∑

i=1

‖Δni‖ + ‖δ′n+1‖. (11.61)

The statement of the theorem is proved. �
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Using the estimate of the residuals δn+1, δ′n+1 andΔni in (11.43) and (11.50), and
inserting them into (11.52), the following corollary clarifies the local error bounds
of the Lagrange collocation-type time integrators (11.39).

Corollary 11.1 Under the condition of Theorem 11.2, the local error bounds of the
time integrators (11.39) can be explicitly presented as

‖u(tn+1) − un+1‖ ≤ C̃1Δt s+2 and ‖u′(tn+1) − u′n+1‖ ≤ C̃1Δt s+1, (11.62)

where C̃1 = (C1 + 2C2sβLΔt2), and C1,C2 are defined as (11.44) and (11.51),
respectively.

Remark 11.3 The weights bi (V ), b̄i (V ) and ai j (V ) of the time integrators (11.39)
are determined by (11.34), (11.35) and the order conditions (11.48) with appropriate
nodes ci for i = 1, 2, . . . , s, respectively.

Remark 11.4 Furthermore, from the analysis of the local error bounds for the time
integrators (11.39), it can be observed that there is a term max

0≤z≤1
|ws(z)| appearing in

the constant C1. In order to minimise the constant C1, it is wise to choose the nodes
{ci }si=1 as the Gauss-Legendre nodes in this chapter.

Remark 11.5 Here, we should point out that the limitation on the time stepsize
(11.58) is only a sufficient condition for our theoretical analysis. It is also important
for the analysis of the stability and convergence for the proposed fully discrete
schemes.

11.4 Spatial Discretisation

The proposed arbitrarily high-order Lagrange collocation-type time-stepping inte-
grators (11.39) are expressed in terms of operator in the infinite dimensional Hilbert
space L2(Ω). In order to obtain proper numerical schemes, it remains to approxi-
mate the differential operatorA with an appropriate differentiation matrix A acting
on an M-dimensional space. Furthermore, it is our ideal choice to approximate the
differential operator A by a positive semi-definite matrix A, in such a way that we
can achieve a reasonable and rigorous nonlinear stability and convergence analysis.
Fortunately, much research has been done on the spatial derivatives of nonlinear sys-
tem (11.1) with periodic boundary conditions (11.2), from which it is easy to choose
a suitable positive semi-definite differential matrix.

In this section, we mainly consider the following two types of spatial discretisa-
tions.

1. Symmetric finite difference (SFD) (see, e.g. R. Bank, R.L. Graham, J. Stoer,
R. Varga, H. Yserentant [5])
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As an option, we use the finite difference approximation to approximate the oper-
ator A by the following 9-diagonal differential matrix:

As f d = −a2

Δx2
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⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

M×M

.

In general, the finite difference method is a local approximation and has limited
accuracy. The accuracy of this approximation for the space derivative is of order
eight with O(Δx8), and the differential matrix As f d is positive semi definite.

2. Fourier spectral collocation (FSC) (see, e.g. J. Shen, T. Tang, L. L. Wang [46]
and J. S. Hesthaven, S. Gottlieb, D. Gottlieb [29])

Spectral methods are global in character, where the computation at any given
point depends not only on the information at neighboring points, but on the infor-
mation from the entire domain. The Fourier spectral collocation method is our other
choice, which can be presented as a limit of local finite difference approximations of
increasing orders of accuracy (see, e.g. J. S. Hesthaven, S. Gottlieb, D. Gottlieb [29]).
The entries of the second-order Fourier differentiation matrix A f sc = (akj )M×M are
given by

akj =

⎧⎪⎨
⎪⎩

(−1)k+ j

2 sin−2
(

(k− j)π
M

)
, k 
= j,

M2

12 + 1
6 , k = j.

(11.63)

The main appeal of spectral methods is that they exhibit spectral convergence to
approximateA : the error decays faster than O(M−α), ∀α > 0 for sufficiently large
M . In terms of classical concepts, the method is of an infinite order. Similarly, the
differential matrix A f sc is also a positive semi-definite matrix.

It has been noted that the energy conservation is a crucial property of the nonlinear
Klein–Gordon equations (11.1)–(11.2). After approximating the operator A by a
positive semi-definite differential matrix A, there is also a corresponding energy
conservation law, which can be characterised in the following form:

Ẽ(t) ≡ Δx

2
‖u′(t)‖2+a2Δx

2
‖Du(t)‖2+Δx

M∑
j=1

V
(
u j (t)

) = · · · = Ẽ(t0), (11.64)
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where the norm ‖ · ‖ is the standard vector 2-norm and Δx = 2π
M is the spatial

stepsize. Actually, this energy can be regarded as an approximate energy (a semi-
discrete energy) of the original continuous system. Therefore, in the part of the
numerical experiments, we will also test the effectiveness of our methods to preserve
the semi-discrete energy (11.64).

11.5 The Analysis of Nonlinear Stability and Convergence
for the Fully Discrete Scheme

The nonlinear stability and error analysis for the fully discrete scheme over a finite
time interval [t0, T ] will be investigated in this section. The main strategy used in
this section is the popular energy analysis method. Here, it is noted that, throughout
this section ‖ · ‖ presents the vector 2-norm or matrix 2-norm (spectral norm).

11.5.1 Analysis of the Nonlinear Stability

In this subsection, we will show the nonlinear stability of our time-steeping integra-
tors (11.39), once the differential operator A is replaced by a differential matrix A.

Suppose that the perturbed problem of (11.13) is

{
v′′(t) + A v(t) = f

(
v(t)
)
, t ∈ [t0, T ],

v(t0) = ϕ1(x) + ϕ̃1(x), v′(t0) = ϕ2(x) + ϕ̃2(x),
(11.65)

where ϕ̃1(x), ϕ̃2(x) are perturbation functions. Letting η(t) = v(t) − u(t) and sub-
tracting (11.13) from (11.65), we obtain

{
η′′(t) + A η(t) = f

(
v(t)
)− f

(
u(t)

)
, t ∈ [t0, T ],

η(t0) = ϕ̃1(x), η′(t0) = ϕ̃2(x).
(11.66)

In general, the operatorA is approximated by a symmetric, positive semi-definite,
differential matrix A in the sense of structure preservation. Then, there exists an
orthogonal matrix P and a positive semi-definite diagonal matrix � such that

A = Pᵀ�P.

By defining the matrix D = Pᵀ�
1
2 P , we obtain the decomposition of matrix A

as A = D2. The bounded operator functions φ j (t2A ) are replaced by the matrix
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functions φ j (t2A). Similarly to the boundedness of the operator functions, we also
have

‖φ j (t
2A)‖ =

√
λmax

(
φ2
j (t

2A)
)

≤ γ j , j = 0, 1, 2 . . . . (11.67)

Applying our time-stepping integrators (11.39) to (11.66), we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ηn+1 = φ0
(
V
)
ηn + Δtφ1

(
V
)
η′n + Δt2

s∑
i=1

bi (V )
(
f (V ni ) − f (Uni )

)
,

η′n+1 = −Δt Aφ1
(
V
)
ηn + φ0

(
V
)
η′n + Δt

s∑
i=1

b̄i (V )
(
f (V ni ) − f (Uni )

)
,

V ni −Uni = φ0
(
c2i V

)
ηn + ciΔtφ1

(
c2i V

)
η′n + c2i Δt2

s∑
j=1

ai j (V )
(
f (V nj ) − f (Unj )

)
,

i = 1, 2, . . . , s,
(11.68)

where V = Δt2A and bi (V ) and b̄i (V ) are defined by (11.34) and (11.35), respec-
tively. Likewise, we have

‖bi (V )‖ ≤ max
0≤z≤1

|li (z)| ≤ β and ‖b̄i (V )‖ ≤ max
0≤z≤1

|li (z)| ≤ β,

which are uniformly bounded.
We rewrite the first two formulae of (11.68) in the following matrix form:

(
Dηn+1

η′n+1

)
=Ω

(
Dηn

η′n

)
+

s∑
i=1

Δt
∫ 1

0
Ωi (z)dz

(
0

f (Uni ) − f (V ni )

)
,

(11.69)
where

Ω =
(

φ0(V ) Δt Dφ1(V )

−Δt Dφ1(V ) φ0(V )

)
(11.70)

and

Ωi (z) = li (z)

(
φ0((1 − z)2V ) Δt (1 − z)Dφ1((1 − z)2V )

−Δt (1 − z)Dφ1((1 − z)2V ) φ0((1 − z)2V )

)
,

(11.71)

for i = 1, . . . , s. Before the stability analysis, we state a property of the operator-
argument functions φ0 and φ1, and bound the spectral norm of matricesΩ andΩi (z)
for i = 1, 2, . . . , s.
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Lemma 11.1 The bounded operator-argument functions φ0(A) and φ1(A) defined
by (11.5) satisfy

φ2
0(A) + Aφ2

1(A) = I, (11.72)

where A is any positive semi-definite operator or matrix.

Proof Lemma 11.1 can be obtained by a direct calculation based on (11.12). We
omit the details of the proof. �

Lemma 11.2 Assume that A is a symmetric positive semi-definite matrix and that
V = Δt2A. Let the matrices Ω and Ωi (z) for i = 1, 2, . . . , s be defined by (11.70)
and (11.71), respectively. Then, the spectral norms of matrices Ω and Ωi (z) satisfy

‖Ω‖ = 1 and ‖Ωi (z)‖ = |li (z)| ≤ β, ∀z ∈ [0, 1], i = 1, 2, . . . , s, (11.73)

where β is the uniform bound for the Lagrange basis |li (z)|.
Proof It is straightforward to verify that

ΩᵀΩ =
(

φ2
0(V ) + Vφ2

1(V ) 0
0 φ2

0(V ) + Vφ2
1(V )

)
,

and

Ω
ᵀ
i (z)Ωi (z) =l2i (z)

(
Ω11

i 0
0 Ω22

i

)
,

where
Ω11

i = φ2
0((1 − z)2V ) + (1 − z)2Vφ2

1((1 − z)2V ),

Ω22
i = φ2

0((1 − z)2V ) + (1 − z)2Vφ2
1((1 − z)2V ).

It follows from Lemma 11.1 that

ΩᵀΩ = I2M×2M , and Ωi (z)
ᵀΩi (z) = l2i (z)I2M×2M . (11.74)

We then have

‖Ω‖ = 1 and ‖Ωi (z)‖ = |li (z)| ≤ β, ∀z ∈ [0, 1], i = 1, 2, . . . , s.

The conclusion of the lemma is proved. �

Theorem 11.3 Supposing that the nonlinear function f satisfies Assumption 2 and
that the operatorA is approximated by a symmetric positive semi-definite differential
matrix A. Then, if the sufficiently small time stepsize Δt satisfies (11.58), we have
the following nonlinear stability results
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‖ηn‖ ≤ exp
(
(1 + 4sβL)T

)(‖ϕ̃1‖ +
√

‖Dϕ̃1‖2 + ‖ϕ̃2‖2
)
,

‖η′n‖ ≤ exp
(
(1 + 4sβL)T

)(‖ϕ̃1‖ +
√

‖Dϕ̃1‖2 + ‖ϕ̃2‖2
)
,

(11.75)

where γ is a uniform bound for ‖ai j (V )‖.
Proof It follows from taking the l2 norm on both sides of the first formula (11.68)
and (11.69) that

‖ηn+1‖ ≤ ‖ηn‖ + Δt‖η′n‖ + Δt2β
s∑

i=1

(‖ f (V ni ) − f (Uni )‖),
(11.76)

√
‖Dηn+1‖2 + ‖η′n+1‖2 ≤

√
‖Dηn‖2 + ‖η′n‖2 + Δtβ

s∑
i=1

(‖ f (V ni ) − f (Uni )‖).
(11.77)

Then summing up the results, we obtain

‖ηn+1‖ +
√

‖Dηn+1‖2 + ‖η′n+1‖2 ≤‖ηn‖ +
√

‖Dηn‖2 + ‖η′n‖2 + Δt‖η′n‖

+ Δt (1 + Δt)β
s∑

i=1

(‖ f (V ni ) − f (Uni )‖).
(11.78)

Applying Assumption 2 to the right-hand side of the inequality (11.78), we obtain

‖ηn+1‖ +
√

‖Dηn+1‖2 + ‖η′n+1‖2 ≤‖ηn‖ +
√

‖Dηn‖2 + ‖η′n‖2 + Δt‖η′n‖

+ Δt (1 + Δt)βL
s∑

i=1

(‖V ni −Uni‖).
(11.79)

Likewise, it follows from the last equations in (11.68) that

‖V ni −Uni‖ ≤‖ηn‖ + ciΔt‖η′n‖ + c2i Δt2
s∑

j=1

‖ai j (V )‖ · ‖ f (V nj ) − f (Unj )‖

≤‖ηn‖ + ciΔt‖η′n‖ + c2i Δt2γ L
s∑

j=1

‖V nj −Unj‖, i = 1, . . . , s.

(11.80)
Then, summing up the results of (11.80) between i from 1 to s, we obtain

s∑
i=1

‖V ni −Uni‖ ≤
s∑

i=1

(‖ηn‖ + ciΔt‖η′n‖)+ Δt2γ L
s∑

i=1

c2i

s∑
j=1

‖V nj −Unj‖.
(11.81)

This gives
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(
1 − Δt2γ L

s∑
i=1

c2i
) s∑
i=1

‖V ni −Uni‖ ≤
s∑

i=1

(‖ηn‖ + ciΔt‖η′n‖). (11.82)

If the sufficiently small time stepsize Δt satisfies (11.58), then we have

s∑
i=1

‖V ni −Uni‖ ≤ 2
s∑

i=1

(‖ηn‖ + ciΔt‖η′n‖). (11.83)

Inserting (11.83) into (11.79) yields

‖ηn+1‖ +
√

‖Dηn+1‖2 + ‖η′n+1‖2

≤‖ηn‖ +
√

‖Dηn‖2 + ‖η′n‖2 + Δt‖η′n‖ + 2Δt (1 + Δt)βL
s∑

i=1

(‖ηn‖ + ciΔt‖η′n‖).
(11.84)

An argument by induction leads to the following result

‖ηn+1‖ +
√

‖Dηn+1‖2 + ‖η′n+1‖2 ≤(1 + Δt (1 + 4sβL)
)n(‖η0‖ +

√
‖Dη0‖2 + ‖η′0‖2)

≤ exp
(
T (1 + 4sβL)

)(‖ϕ̃1‖ +
√

‖Dϕ̃1‖2 + ‖ϕ̃2‖2
)
.

(11.85)
Thus, the following inequalities are derived

‖ηn‖ ≤ exp
(
(1 + 4sβL)T

)(‖ϕ̃1‖ +
√

‖Dϕ̃1‖2 + ‖ϕ̃2‖2
)
,

‖η′n‖ ≤ exp
(
(1 + 4sβL)T

)(‖ϕ̃1‖ +
√

‖Dϕ̃1‖2 + ‖ϕ̃2‖2
)
.

(11.86)

The conclusions of the theorem are proved. �

11.5.2 Convergence of the Fully Discrete Scheme

As is known, the convergence of the classical methods for linear partial differential
equations is governed by the Lax equivalence theorem: convergence equals consis-
tency plus stability [33]. However, the Lax equivalence theorem does not directly
apply to nonlinear problems.

In this subsection, the error analysis of the fully discrete scheme for nonlinear
problems will be discussed. Based on some suitable assumptions of smoothness and
spatial discretisation strategies, the original continuous system (11.1) or (11.13) can
be discretised as follows:{

U ′′(t) + AU (t) = f
(
U (t)

)+ δ(Δx), t ∈ [t0, T ],
U (t0) = ϕ1, U ′(t0) = ϕ2,

(11.87)
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where A is a positive semi-definite differential matrix,

U (t) = (u(x1, t), u(x2, t), . . . , u(xM , t)
)ᵀ

and
ϕl = (ϕl(x1), ϕl(x2), . . . , ϕl(xM)

)ᵀ
,

for l = 1, 2.
Here, it should be noted that δ(Δx) is the truncation error produced by approxi-

mating the spatial differential operator A by a positive semi-definite matrix A. For
example, if wewere to approximate the spatial derivative by the classical fourth-order
finite difference method (see, e.g. [5, 39]), then the truncation error δ(Δx) would be
‖δ(Δx)‖ = O(Δx4).

Applying a time-stepping integrator (11.39) to the semi-discrete system (11.87)
yields the following results

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U (tn+1) = φ0
(
V
)
U (tn) + Δtφ1

(
V
)
U ′(tn) + Δt2

s∑
i=1

bi (V ) f (U (tn + ciΔt)) + Rn+1,

U ′(tn+1) = −Δt Aφ1
(
V
)
U (tn) + φ0

(
V
)
U ′(tn) + Δt

s∑
i=1

b̄i (V ) f (U (tn + ciΔt)) + R′n+1,

U (tn + ciΔt) = φ0
(
c2i V

)
U (tn) + ciΔtφ1

(
c2i V

)
U ′(tn) + c2i Δt2

s∑
j=1

ai j (V ) f (U (tn + c jΔt)) + Rni ,

i = 1, 2, . . . , s,
(11.88)

where the truncation errors Rn+1, R′n+1 and Rni can be explicitly represented as

Rn+1 = Δt s+2

s!
∫ 1

0
(1 − z)φ1

(
(1 − z)2V

)
ws(z)dz f

(s)
t
(
U (tn + ξnΔt)

)
(11.89)

+ Δt2
∫ 1

0
(1 − z)φ1

(
(1 − z)2V

)
δ(Δx)dz, (11.90)

R′n+1 = Δt s+1

s!
∫ 1

0
φ0
(
(1 − z)2V

)
ws(z)dz f

(s)
t
(
U (tn + ξnΔt)

)
(11.91)

+ Δt
∫ 1

0
φ0
(
(1 − z)2V

)
δ(Δx)dz, (11.92)

and

Rni = cs+2
i Δt s+2

(s − 1)!
∫ 1

0
(1 − z)φ1

(
(1 − z)2V

) ∫ z

0
f (s)
t
(
U (tn + σciΔt)

)
(z − σ)s−1dσdz

− c2i Δt s+2

(s − 1)!
s∑

j=1

ai j (V )

∫ c j

0
f (s)
t
(
U (tn + σΔt)

)
(c j − σ)s−1dσ

+ c2i Δt2
∫ 1

0
(1 − z)φ1

(
(1 − z)2c2i V

)
δ(Δx)dz − c2i Δt2

s∑
j=1

ai j (V )δ(Δx).

(11.93)
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Under some suitable assumptions of smoothness, the truncation errors Rn+1, R′n+1

and Rni satisfy

‖Rn+1‖ ≤ C1Δt s+2 + 1

2
Δt2‖δ(Δx)‖, ‖R′n+1‖ ≤ C1Δt s+1 + Δt‖δ(Δx)‖,

(11.94)
and

‖Rni‖ ≤ C2Δt s+2 + Δt2(1 + sγ )‖δ(Δx)‖, i = 1, 2, . . . , s, (11.95)

where the constants C1 and C2 are determined by (11.44) and (11.51), respectively.
Omitting the small terms Rn+1, R′n+1 and Rni in (11.88) and using unj ≈ u(x j , tn),

we obtain the following fully discrete scheme⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un+1 = φ0(V )un + Δtφ1(V )u′n + Δt2
s∑

i=1

bi (V ) f (Uni ),

u′n+1 = −Δt Aφ1(V )un + φ0(V )u′n + Δt
s∑

i=1

b̄i (V ) f (Uni ),

Uni = φ0(c
2
i V )un + ciΔtφ1(c

2
i V )u′n + c2i Δt2

s∑
j=1

ai j (V ) f (Unj ), i = 1, 2, . . . , s.

(11.96)

We next consider the convergence of the fully discrete scheme (11.96) for non-
linear problems. To this end, we denote enj = u(x j , tn) − unj , e

′n
j = ut (x j , tn) − u′n

j

and Eni
j = u(x j , tn + ciΔt) −Uni

j for j = 1, 2, . . . , M , i.e., en = U (tn) − un, e′n =
U ′(tn) − u′n and Eni = U (tn + ciΔt) −Uni . Subtracting (11.96) from (11.88), and
on noticing the exact initial conditions, we get a system of error equations expressed
in the form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

en+1 = φ0(V )en + Δtφ1(V )e′n + Δt2
s∑

i=1

bi (V )
(
f
(
U (tn + ciΔt)

)− f (Uni )
)

+ Rn+1,

e′n+1 = −Δt Aφ1(V )en + φ0(V )e′n + Δt
s∑

i=1

b̄i (V )
(
f
(
U (tn + ciΔt)

)− f (Uni )
)

+ Rn+1,

Eni = φ0(c
2
i V )en + ciΔtφ1(c

2
i V )e′n + c2i Δt2

s∑
j=1

ai j (V )
(
f
(
U (tn + ciΔt)

)− f (Uni )
)

+ Rni ,

i = 1, 2, . . . , s,
(11.97)

with the initial conditions e0 = 0, e′0 = 0.
In what follows, we quote the following discrete Gronwall inequality, which plays

an important role in the convergence analysis for the fully discrete scheme.

Lemma 11.3 (See, e.g. [48]) Let μ be positive and ak, bk (k = 0, 1, 2, · · · ) be
nonnegative and satisfy
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ak ≤ (1 + μΔt)ak−1 + Δtbk, k = 1, 2, 3, . . . ,

then

ak ≤ exp(μkΔt)
(
a0 + Δt

k∑
m=1

bm
)
, k = 1, 2, 3, . . . .

Theorem 11.4 Under the Assumptions1 and 2, and suppose that u(x, t) satisfies
some suitable assumptions on smoothness. If the time stepsizeΔt is sufficiently small
and satisfies (11.58), then there exists a constant C such that

‖en‖ ≤ CT exp
(
(1 + 4sβL)T

)(
Δt s + ‖δ(Δx)‖),

‖e′n‖ ≤ CT exp
(
(1 + 4sβL)T

)(
Δt s + ‖δ(Δx)‖), (11.98)

where C is a constant independent of n,Δt and Δx.

Proof The first two equations of the error system (11.97) can be rewritten in the
compact form

(
Den+1

e′n+1

)
=Ω

(
Den

e′n
)

+ Δt
s∑

i=1

∫ 1

0
Ωi (z)dz

(
0

f
(
U (tn + ciΔt)

)− f (Uni )

)
+
(
DRn+1

Rn+1

)
,

(11.99)
where Ω and Ωi (z) are defined by (11.70) and (11.71), respectively.

It follows from taking the l2 norm on both sides of the first formula (11.97) and
(11.99) that

‖en+1‖ ≤ ‖en‖ + Δt‖e′n‖ + Δt2β
s∑

i=1

‖ f
(
U (tn + ciΔt)

)− f (Uni )‖ + ‖Rn+1‖,

√
‖Den+1‖2 + ‖e′n+1‖2 ≤

√
‖Den‖2 + ‖e′n‖2 + Δtβ

s∑
i=1

‖ f
(
U (tn + ciΔt)

)− f (Uni )‖

+
√

‖DRn+1‖2 + ‖R′n+1‖2.
(11.100)

Then, summing up the results of (11.100) and using the Assumption 2, we obtain

‖en+1‖ +
√

‖Den+1‖2 + ‖e′n+1‖2 ≤ ‖en‖ + Δt‖e′n‖ +
√

‖Den‖2 + ‖e′n‖2

+ Δt (1 + Δt)βL
s∑

i=1

‖Eni‖ + ‖Rn+1‖ +
√

‖DRn+1‖2 + ‖R′n+1‖2.
(11.101)

Likewise, taking the l2 norm on both sides of the last equations of the error system
(11.97) yields

‖Eni‖ ≤ ‖en‖ + ciΔt‖e′n‖ + c2i Δt2γ L
s∑

i=1

‖Eni‖ + ‖Rni‖, i = 1, 2, . . . , s.

(11.102)
Summing the results of (11.102) for i from 1 to s gives
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s∑
i=1

‖Eni‖ ≤
s∑

i=1

(‖en‖+ciΔt‖e′n‖+‖Rni‖)+Δt2γ L
s∑

i=1

c2i

s∑
j=1

‖Enj‖. (11.103)

Under the condition (11.58), we obtain

s∑
i=1

‖Eni‖ ≤ 2
s∑

i=1

(‖en‖ + ciΔt‖e′n‖) + 2
s∑

i=1

‖Rni‖. (11.104)

Inserting (11.104) into (11.101) yields

‖en+1‖ +
√

‖Den+1‖2 + ‖e′n+1‖2 ≤ ‖en‖ + Δt‖e′n‖ +
√

‖Den‖2 + ‖e′n‖2

+ 2Δt (1 + Δt)βL
s∑

i=1

(‖en‖ + ciΔt‖e′n‖) + ‖Rn+1‖ +
√

‖DRn+1‖2 + ‖R′n+1‖2

+ 2Δt (1 + Δt)βL
s∑

i=1

‖Rni‖.
(11.105)

It follows from the inequality (11.105) that

‖en+1‖ +
√

‖Den+1‖2 + ‖e′n+1‖2 ≤ (1 + Δt (1 + 4sβL)
)(‖en‖ +

√
‖Den‖2 + ‖e′n‖2)

+ ‖Rn+1‖ +
√

‖DRn+1‖2 + ‖R′n+1‖2 + 2Δt (1 + Δt)βL
s∑

i=1

‖Rni‖.
(11.106)

We note that the truncation errors Rn+1, R′n+1 and Rni satisfy (11.94) and (11.95),
respectively. Then, there exists a constant C satisfying

‖Rn+1‖ +
√

‖DRn+1‖2 + ‖R′n+1‖2 + 2Δt (1 + Δt)βL
s∑

i=1

‖Rni‖ ≤ CΔt
(
Δt s + ‖δ(Δx)‖).

(11.107)
Applying the discrete Gronwall inequality (Lemma 11.3) to (11.106) yields

‖en‖ +
√

‖Den‖2 + ‖e′n‖2 ≤ exp
(
nΔt (1 + 4sβL)

)(‖e0‖ +
√

‖De0‖2 + ‖e′0‖2

+ CnΔt
(
Δt s + ‖δ(Δx)‖)).

(11.108)
Therefore, we obtain the following estimates:

‖en‖ ≤ CT exp
(
(1 + 4sβL)T

)(
Δt s + ‖δ(Δx)‖),

‖e′n‖ ≤ CT exp
(
(1 + 4sβL)T

)(
Δt s + ‖δ(Δx)‖). (11.109)

The conclusions of the theorem are confirmed. �
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11.5.3 The Convergence of the Fixed-Point Iteration

The previous subsections derived and analysed the fully discrete scheme. However,
the scheme (11.96) is implicit in general. Therefore, iteration is required in practical
computations. Fortunately, a wide range of iterative methods (see, e.g. [34, 42, 52])
can be chosen for (11.96). Here, we will use the fixed-point iteration for the implicit
scheme and analyse its convergence.

Actually, the iteration is needed only for the computation of the internal stages.
The iterative procedure of the fixed-point iteration for (11.96) can be read as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Uni
[0] = φ0(c

2
i V )un + ciΔtφ1(c

2
i V )u′n,

Uni
[m+1] = φ0(c

2
i V )un + ciΔtφ1(c

2
i V )u′n + c2i Δt2

s∑
j=1

ai j (V ) f (Unj
[m]),

i = 1, 2, . . . , s, m = 0, 1, 2, . . . ,
(11.110)

and

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
un+1 = φ0(V )un + Δtφ1(V )u′n + Δt2

s∑
i=1

bi (V ) f (Uni ),

u′n+1 = −Δt Aφ1(V )un + φ0(V )u′n + Δt
s∑

i=1

b̄i (V ) f (Uni ).

(11.111)

Theorem 11.5 Let the nonlinear function f satisfy the Assumption 2. If the time
stepsize Δt satisfies the condition (11.58), the iteration procedure determined by
(11.110) and (11.111) is convergent.

Proof According to Assumption 2 and (11.110), the following inequalities can be
obtained

‖Uni
[m+1] −Uni

[m]‖ ≤c2i Δt2
s∑

j=1

‖ai j (V )‖ · ‖ f (Unj
[m]) − f (Unj

[m−1])‖

≤Δt2γ Lc2i

s∑
j=1

‖Unj
[m] −Unj

[m−1]‖, i = 1, 2, . . . , s.

(11.112)

Then, summing over i in (11.112) yields

s∑
i=1

‖Uni
[m] −Uni

[m−1]‖ ≤ Δt2γ L
s∑

i=1

c2i

s∑
j=1

‖Unj
[m] −Unj

[m−1]‖. (11.113)
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An argument by induction then gives the following result:

s∑
i=1

‖Uni
[m] −Uni

[m−1]‖ ≤
(
Δt2γ L

s∑
i=1

c2i
)m s∑

i=1

‖Uni
[1] −Uni

[0]‖. (11.114)

The limitation of the time stepsize (11.58) leads to

lim
m→+∞

( s∑
i=1

‖Uni
[m] −Uni

[m−1]‖
)

≤ lim
m→+∞

1

2m

s∑
i=1

‖Uni
[1] −Uni

[0]‖ = 0. (11.115)

Therefore, the iterative procedure (11.110)–(11.111) is convergent.

11.6 The Application to Two-dimensional Dirichlet
or Neumann Boundary Problems

The problem considered in (11.1) is the one-dimensional case, and is equipped
with the special periodic boundary conditions (11.2). However, our approach can
be extended to the considerably more important high-dimensional Klein–Gordon
equations. The computational methodology developed in this chapter is very use-
ful and has potential applications in solving more sophisticated multi-dimensional
solitary wave equations. In this section, we mainly concentrate on discussing the
application of our time-stepping schemes (11.39) to the two-dimensional nonlinear
Klein–Gordon equations equipped with Dirichlet or Neumann boundary conditions.
There has been a considerable amount of recent discussions on the computation of
2D sine–Gordon type solitons, in particular via different finite difference and finite
element methods, splitting algorithms and predictor–corrector schemes (see, e.g. [2,
4, 11, 12, 19, 45]).

The two-dimensional nonlinear Klein–Gordon equation under consideration is
expressed by

{
utt − a2(uxx + uyy) = f (u), (x, y) ∈ Ω, t0 < t ≤ T,

u(x, y, t0) = ϕ0(x, y), ut (x, y, t0) = ϕ1(x, y), (x, y) ∈ Ω̄,
(11.116)

where f (u) is a nonlinear function of u chosen as the negative derivative of a potential
energy V (u). Here, we suppose that the 2D problem (11.116) is defined on the spatial
domainΩ = (0, π)×(0, π) and supplementedwith homogenousDirichlet boundary
conditions:

u(0, y, t) = u(π, y, t) = 0, u(x, 0, t) = u(x, π, t) = 0, ∀t ∈ [t0, T ],
(11.117)

and homogenous Neumann boundary conditions:
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∂u

∂x

∣∣∣
x=0,π

= 0,
∂u

∂y

∣∣∣
y=0,π

= 0, ∀t ∈ [t0, T ]. (11.118)

For an abstract formulation of the problem (11.116), the linear differential operator
A now should be defined as

(A v)(x, y) = −a2
(
∂2
x + ∂2

y

)
v(x, y). (11.119)

Likewise,A is an unbounded symmetric and positive semi-definite operator but not
defined for every v ∈ L2(Ω). For our further analysis, the inner product of the space
L2(Ω) is defined as

(u, v) =
∫ π

0

∫ π

0
u(x, y)v(x, y)dxdy. (11.120)

In order to model the homogenous Dirichlet and Neumann boundary conditions,
the operator A should be defined on different function spaces respectively. In what
follows, we will analyse the the two-dimensional case.

11.6.1 2D Klein–Gordon Equation with Dirichlet Boundary
Conditions

The operator A is defined on the following domain

D(A ) = H 2(Ω) ∩ H 1
0 (Ω). (11.121)

In this case, the functions sin(mx+ny) are orthogonal eigenfunctions of the operator
A corresponding to the eigenvalues a2(m2 + n2), m, n = 1, 2, . . . . The functions
of the operator A can be defined as:

φ j (tA )v(x, y) =
∞∑

m=1

∞∑
n=1

v̂m,nφ j
(
a2(m2 + n2)t

)
sin(mx + ny) (11.122)

for v(x, y) =
∞∑

m=1

∞∑
n=1

v̂m,n sin(mx + ny) ∈ L2(Ω), where all v̂m,n are the Fourier

coefficients of v(x, y). In order to show the operator functions φ j (tA ) for any ∀t ∈
[t0, T ] are bounded, we will characterise the L2 norm in the frequency space as

‖v‖2 =
∫ π

0

∫ π

0
|v(x, y)|2dxdy = π2

4

∞∑
m=1

∞∑
n=1

|v̂m,n|2. (11.123)
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Lemma 11.4 The functions of the operator A defined by (11.122) are bounded
operator under the norm ‖ · ‖L2(Ω)←L2(Ω), i.e.,

‖φ j (tA )‖L2(Ω)←L2(Ω) ≤ γ j , (11.124)

where γ j are the bounds of the functions φ j (x) for j = 0, 1, 2, ... for x ≥ 0,
respectively.

Proof For any function u(x, y) ∈ L2(Ω), its Fourier series can be expressed as

u(x, y) =
∞∑

m=1

∞∑
n=1

ûm,n sin(mx + ny).

Considering the definition of the norm, we obtain

‖φ j (tA )u‖2 = π2

4

∞∑
m=1

∞∑
n=1

|ûm,n |2|φ j
(
a2(m2+n2)t

)|2 ≤ sup
t≥0

|φ j
(
a2(m2+n2)t |2 ·‖u‖2 ≤ γ 2

j ‖u‖2.

Thus, we deduce the following inequality

‖φ j
(
tA
)‖2L2(Ω)←L2(Ω) = sup

‖u‖
=t0

‖φ j
(
tA
)
u‖2

‖u‖2 ≤ γ 2
j , j = 0, 1, 2, . . . .

The conclusion of the lemma is proved. �

The following lemma shows that the operator functions φ j (tA ) for j = 0, 1,
2, . . . are symmetric.

Lemma 11.5 The bounded operator functions φ j (tA ) for j = 0, 1, 2, . . . are sym-
metric operators with respect to the inner product (11.120).

Proof For any functions u(x, y), v(x, y) ∈ L2(Ω), we have

(φ j
(
tA
)
u, v) =

∫ π

0

∫ π

0
φ j
(
tA
)
u(x, y)v(x, y)dxdy

=π2

4

∞∑
m=1

∞∑
n=1

ûm,nv̂m,nφ j
(
a2(m2 + n2)t

)
,

and

(u, φ j
(
tA
)
v) =

∫ π

0

∫ π

0
u(x, y)φ j

(
tA
)
v(x, y)dxdy

=π2

4

∞∑
m=1

∞∑
n=1

ûm,nv̂m,nφ j
(
a2(m2 + n2)t

)
.



11.6 The Application to Two-dimensional Dirichlet … 299

Hence, we have

(φ j
(
tA
)
u, v) = (u, φ j

(
tA
)
v), j = 0, 1, 2, . . . .

The symmetry of the bounded operator functions is proved. �

11.6.2 2D Klein–Gordon Equation with Neumann Boundary
Conditions

In this case, we define the operator A on the domain

D(A ) = {v ∈ H 2(Ω) : vx = 0, vy = 0, (x, y) ∈ ∂Ω}. (11.125)

The orthogonal eigenfunctions of the operator A are cos(mx + ny), and the cor-
responding eigenvalues are a2(m2 + n2) for m, n = 0, 1, 2, . . . . We define the
operator functions of A as:

φ j (tA )v(x, y) =
∞∑

m=0

∞∑
n=0

v̂m,nφ j
(
a2(m2 + n2)t

)
cos(mx + ny), (11.126)

for v(x, y) =
∞∑

m=0

∞∑
n=0

v̂m,n cos(mx + ny) ∈ L2(Ω), where v̂m,n are the Fourier

coefficients of v(x, y). Similarly, the L2 norm can be characterized in the frequency
space by

‖v‖2 =
∫ π

0

∫ π

0
|v(x, y)|2dxdy = π2

4

∞∑
m=0

∞∑
n=0

|v̂m,n|2. (11.127)

In what follows, we show the boundedness of the operator functions φ j (tA ) for
j = 0, 1, 2, . . . by the following Lemma.

Lemma 11.6 The functions of the operator A defined by (11.126) are bounded
operator under the norm ‖ · ‖L2(Ω)←L2(Ω), i.e.,

‖φ j (tA )‖L2(Ω)←L2(Ω) ≤ γ j , (11.128)

whereγ j are the bounds of the functionsφ j (x), j = 0, 1, 2, ... for x ≥ 0, respectively.

Proof For any function u(x, y) ∈ L2(Ω), its Fourier series can be expressed by

u(x, y) =
∞∑

m=0

∞∑
n=0

ûm,n cos(mx + ny).
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Considering the definition of the norm, we obtain

‖φ j (tA )u‖2 = π2

4

∞∑
m=0

∞∑
n=0

|ûm,n |2|φ j
(
a2(m2+n2)t

)|2 ≤ sup
t≥0

|φ j
(
a2(m2+n2)t

)|2 ·‖u‖2 ≤ γ 2
j ‖u‖2.

Hence, we deduce the following inequality

‖φ j
(
tA
)‖2L2(Ω)←L2(Ω) = sup

‖u‖
=0

‖φ j
(
tA
)
u‖2

‖u‖2 ≤ γ 2
j , j = 0, 1, 2, . . . .

The conclusion of the lemma is proved. �

Similarly, the following lemma shows that the operator functions φ j (tA ) are
symmetric for j = 0, 1, 2, . . . .

Lemma 11.7 The bounded operator functions φ j (tA ) for j = 0, 1, 2, . . . are sym-
metric operators with respect to the inner product (11.120).

Proof For any functions u(x, y), v(x, y) ∈ L2(Ω), we have

(φ j
(
tA
)
u, v) =

∫ π

0

∫ π

0
φ j
(
tA
)
u(x, y)v(x, y)dxdy

=π2

4

∞∑
m=0

∞∑
n=0

ûm,nv̂m,nφ j
(
a2(m2 + n2)t

)
,

and

(u, φ j
(
tA
)
v) =

∫ π

0

∫ π

0
u(x, y)φ j

(
tA
)
v(x, y)dxdy

=π2

4

∞∑
m=0

∞∑
n=0

ûm,nv̂m,nφ j
(
a2(m2 + n2)t

)
.

We then have

(φ j
(
tA
)
u, v) = (u, φ j

(
tA
)
v), j = 0, 1, 2, . . . .

The statement of the theorem is confirmed. �

11.6.3 Abstract ODE Formulation and Spatial Discretisation

Similarly to the one dimensional periodic boundary problem (11.1)–(11.2), by defin-
ing u(t) as the function that maps (x, y) to u(x, y, t):

u(t) = [(x, y) �→ u(x, y, t)],
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we can formulate the two-dimensional problem (11.116) equipped with the Dirich-
let boundary conditions (11.121) or Neumann boundary conditions (11.125) as the
following abstract ODE on the Hilbert space L2(Ω):

{
u′′(t) + A u(t) = f

(
u(t)

)
,

u(t0) = ϕ1(x, y), u′(t0) = ϕ2(x, y).
(11.129)

Theorem 11.6 The solution of the abstract ODE (11.129) and its derivative satisfy

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(t) = φ0
(
(t − t0)

2A
)
u(t0) + (t − t0)φ1

(
(t − t0)

2A
)
u′(t0)

+
∫ t

t0

(t − ζ )φ1
(
(t − ζ )2A

)
f
(
u(ζ )

)
dζ,

u′(t) = − (t − t0)A φ1
(
(t − t0)

2A
)
u(t0) + φ0

(
(t − t0)

2A
)
u′(t0)

+
∫ t

t0

φ0
(
(t − ζ )2A

)
f
(
u(ζ )

)
dζ,

(11.130)

where φ0
(
(t − t0)2A

)
, φ1

(
(t − t0)2A

)
are bounded functions of the operatorA for

∀t ∈ [t0, T ].
Based on the above analysis, it is straightforward to extend our time-stepping inte-

grators (11.39) to two-dimensional nonlinear Klein–Gordon equations with Dirichlet
or Neumann boundary conditions. Moreover, we note that the orthogonal eigen-
functions of the operator A for Dirichlet and Neumann boundary problems are
sin(mx) sin(ny) and cos(mx) cos(ny), respectively. In order to reduce the computa-
tion caused by the spatial discretisation, we focus much more on choosing Fourier
spectral methods. The numerous related researches on the discrete Fast Cosine / Sine
Transformation have been widely studied in the literature (see, e.g. [14–16, 43]). The
corresponding spatial discretisation methods are the discrete Fast Sine Transforma-
tion for the underlying Dirichlet boundary problem, and the discrete Fast Cosine
Transformation for the underlying Neumann boundary case.

11.7 Numerical Experiments

In this section, we derive three practical time integrators and illustrate the numerical
results for one dimensional Klein–Gordon equation with periodic boundary condi-
tions and two-dimensional sine–Gordon with homogenous Dirichlet or Neumann
boundary conditions. It is clear that our time integrators (11.39) are determined by
(11.34), (11.35) and (11.48) with appropriate nodes ci for i = 1, 2, . . . , s. More-
over, we note from our error analysis that there is a term max

0≤z≤1
|ws(z)| involved in
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the constant C1. In order to minimise the constant C1, here and in the following, we
choose Gauss-Legendre nodes.

In the first example, we choose the two-point Gauss-Legendre nodes,

c1 = 3 − √
3

6
, c2 = 3 + √

3

6
, (11.131)

and the corresponding time integrator determined by (11.34), (11.35) and (11.48) is
denoted by GLC2.

For the second example, the following three-point Gauss-Legendre nodes

c1 = 5 − √
15

10
, c2 = 1

2
, c3 = 5 + √

15

10
, (11.132)

together with (11.34), (11.35) and (11.48) determine the three-point time integrator
which is denoted by GLC3.

For the third example, we take the four-point Gauss-Legendre nodes

c1 = 1 −
√

15+2
√
30

35

2
, c2 = 1 −

√
15−2

√
30

35

2
,

c3 = 1 +
√

15−2
√
30

35

2
, c4 = 1 +

√
15+2

√
30

35

2
,

(11.133)

and denote the corresponding time integrator determined by (11.34), (11.35) and
(11.48) by GLC4.

For comparison, in what follows, we briefly describe a collection of classical finite
difference and the method-of-lines approximations of the nonlinear Klein–Gordon
equation. The methods are listed below:

1. The standard finite difference schemes (see, e.g. [9, 25, 48])

Let unj be the approximation of u(x j , tn) ( j = 0, 1, . . . , M, n = 0, 1, . . . , N ) and
introduce the finite difference discretisation operators

δ2t u
n
j = un+1

j − 2unj + un−1
j

Δt2
and δ2xu

n
j = unj+1 − 2unj + unj−1

Δx2
.

Here, we consider three frequently used finite difference schemes to discretise the
problem (11.1)–(11.2) as follows:

• Explicit finite difference (Expt-FD) scheme

δ2t u
n
j − a2δ2xu

n
j = f (unj );
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• Semi-implicit finite difference (Simpt-FD) scheme

δ2t u
n
j − a2

2

(
δ2xu

n+1
j + δ2xu

n−1
j

) = f (unj );

• Compact finite difference (Compt-FD) scheme

(
I + Δx2

12
δ2x
)
δ2t u

n
j − a2

2

(
δ2xu

n+1
j + δ2xu

n−1
j

) = (I + Δx2

12
δ2x
)
f (unj ).

2. The method-of-lines schemes

Firstly, we approximate the spatial differential operator A to obtain a semi-
discrete system of the form

u′′(t) + Au(t) = f
(
u(t)

)
, (11.134)

where A is a symmetric and positive semi-definite matrix. Then, we use an ODE
solver to deal with the semi-discrete system. There are many different ODE solvers
for the semi-discrete system (11.134). Here, the time integrators selected for com-
parisons are:

• GAS2s4: the two-stage Gauss time integration method of order four presented
in [28];

• LIIIB4s6: the Labatto IIIB method of order six presented in [28];
• IRKN2s4: the two-stage implicit symplectic Runge-Kutta-Nyström (IRKN)

method of order four derived in [51];
• IRKN3s6: the three-stage implicit symplectic Runge-Kutta-Nyström (IRKN)

method of order six derived in [51];
• ERKN3s4: the three-stage extended Runge-Kutta-Nyström (ERKN) time inte-

gration method of order four for second order ODEs proposed in [54];
• SMMERKN5s5: the five-stage explicit symplectic multi-frequency and multi-

dimensional extended Runge–Kutta–Nyström (ERKN) method of order five with
some small residuals for second order ODEs proposed in [55].

It is noted that we use fixed-point iteration for all of the implicit time integration
methods in our numerical experiments. We set the error tolerance as 10−15, and
put the maximum iteration number m = 1000 in each iteration procedure. Here, it
should be pointed out that, if the error produced by a method is too large for some
time stepsize Δt , then the corresponding point will not be plotted in the figure.

All computations in the numerical experiments are carried out by usingMATLAB
2011b on the the computer Lenovo ThinkCentre M8300t (CPU: Intel (R) Core (TM)
i5-2400 CPU @ 3.10 GHz, Memory: 8 GB, Os: Microsoft Windows 7 with 64 bit).
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11.7.1 One-dimensional Problem with Periodic Boundary
Conditions

Problem 11.1 We consider the sine–Gordon equation

∂2u

∂t2
(x, t) − ∂2u

∂x2
(x, t) = − sin(u(x, t)), (11.135)

on the region −20 ≤ x ≤ 20 and 0 ≤ t ≤ T , subject to the initial conditions

u(x, 0) = 0, ut (x, 0) = 4sech
(
x/
√
1 + c2

)
/
√
1 + c2,

where κ = 1/
√
1 + c2. The exact solution of this problem is given by

u(x, t) = 4 arctan
(
c−1 sin(ct/

√
1 + c2)sech(x/

√
1 + c2)

)
.

This problem is known as the breather solution of the sine–Gordon equation (see,
e.g. [39]), and represents a pulse-type structure of a soliton. The parameter c is the
velocity and we choose c = 0.5. The potential function is V (u) = 1 − cos(u).

In Figs. 11.1 and 11.2, we integrate the sine–Gordon equation (11.135) over the
region (x, t) ∈ [−20, 20] × [0, 100] using the time integrator GLC4 coupled with
the eighth-order symmetric finite difference (SFD) method and the Fourier spectral
collocation (FSC) method. The graphs of the errors are shown in Figs. 11.1 and 11.2
with the time stepsize Δt = 0.01 and several different values of M . The numerical
results demonstrate the accuracy of the spatial discretisation, and also indicate that the
Fourier spectral collocation method is much better to discretise the spatial derivative
than the eighth-order finite differencemethod. Therefore, it is evident that the Fourier
spectral collocation method is the best choice to discretise the spatial variable for
this problem.

Fig. 11.1 The graphs of errors for the sine–Gorden equation obtained by combining the time
integrator GLC4 with eighth-order finite difference spatial discretisation for the time stepsize Δt =
0.01 and several values of M = 100 (left), 200 (middle), and 400 (right)
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Fig. 11.2 The errors produced by combining the time integrator GLC4 with spatial discretisation
by the Fourier spectral method for the time stepsizeΔt = 0.01 and several values ofM = 100 (left),
120 (middle), and 200 (right)
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Fig. 11.3 The logarithms of the global error (GE) obtained by comparing our new schemes with
the standard finite difference schemes (a) and the method-of-lines schemes (b) against different
time integration stepsizes. c The conservation results of the GLCs with spatial discretisation by
Fourier spectral collocation method (M=400). The time stepsize Δt = 0.1 for T = 1000

In Fig. 11.3a and b, the problem is integrated over the region (x, t) ∈ [−20, 20]×
[0, 100]with different time stepsizesΔt and the spatial nodal values M . We compare
our methods with the standard finite difference schemes in Fig. 11.3a. We choose
M = 1000 for the finite difference schemes Expt-FD, SImpt-FD and Compt-FD and
M = 200 for the time integrators GLCs coupled with the Fourier spectral collocation
method (GLC-FSC). The logarithms of the global errors GE = ‖u(tn) − un‖∞
against different time stepsizes Δt = 0.1/2 j−1 for j = 1, 2, 3, 4 are displayed
in Fig. 11.3a. In comparison with the method-of-lines schemes, we first discretise
the spatial derivative by the Fourier spectral collocation method with fixed M =
200, and then integrate the semi-discrete system with different time stepsizes Δt =
0.4, 0.3, 0.2 and 0.1. The efficiency curves are shown in Fig. 11.3b.

Besides, in Fig. 11.3c, the problem is discretised by theFourier spectral collocation
method with the fixed M = 400. We then integrate the semi-discrete system over
the time interval t ∈ [0, 1000] by the derived time integrators GLCs with the time
stepsize Δt = 0.1. The numerical results in Fig. 11.3c present the error of the semi-
discrete energy conservation law as a function of the time stepsize calculated by
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Table 11.1 The total numbers of iterations for different error tolerances with M = 400 and
Δt = 0.1 for T = 100.

IRKN2s4 IRKN3s6 GAS2s4 LIIIB4s6 GLC2 GLC3 GLC4

10−6 2038 1996 4161 9309 1988 1988 1992

10−8 2056 7967 7732 5745 2000 2000 2000

10−10 2063 7579 8587 13519 2993 2993 2999

10−12 2063 9508 45739 21820 3000 3000 3000

Ẽ(t), where log10(EH) = log10(|Ẽ(tn)− Ẽ(t0)|). We also display the total numbers
of iterations in Table11.1 when applying the different methods with different error
tolerances to this problem for showing the efficiency of the fixed-point iteration in
actual computations.

In conclusion, the numerical results demonstrate that the time-stepping integrators
derived in this chapter have much better accuracy and energy conservation. They are
more practical and efficient than existing methods in the literature.

Problem 11.2 We consider the nonlinear Klein–Gordon equation

∂2u

∂t2
(x, t) − a2

∂2u

∂x2
(x, t) + au(x, t) − bu3(x, t) = 0, (11.136)

on the region (x, t) ∈ [−20, 20] × [0, T ], subject to the initial conditions

u(x, 0) =
√
2a

b
sech(λx), ut (x, 0) = cλ

√
2a

b
sech(λx) tanh(λx),

with λ =
√

a
a2−c2 and a, b, a2 − c2 > 0. The exact solution of Problem 11.2 is

given by

u(x, t) =
√
2a

b
sech(λ(x − ct)). (11.137)

The real parameter
√
2a/b represents the amplitude of a soliton which travels with

the velocity c. The potential function is V (u) = a
2u

2 − b
4u

4. The problem can be
found in [39]. We consider the parameters a = 0.3, b = 1 and c = 0.25 which are
similar to those in [39].

The Klein–Gordon equation 11.2 is solved by using the time integrator GLC4
coupled with the eighth-order symmetric finite difference method and the Fourier
spectral collocation method. The graphs of errors are shown in Figs. 11.4 and 11.5
with the fixed time stepsize Δt = 0.01 and several values of M . The numerical
results in Figs. 11.4 and 11.5 indicate that the Fourier spectral collocation method
as a spatial discretisation method is much more accurate than the eighth-order finite
difference method.
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Fig. 11.4 The graphs of errors for theKlein-Gorden equation obtained by combing the time integra-
torGLC4with the eighth-order finite difference spatial discretisation for the time stepsizeΔt = 0.01
and several values of M = 500 (left), 1000 (middle) and 2000 (right)

Fig. 11.5 The errors produced by combining the time integrator GLC4 with spatial discretisation
by the Fourier spectral collocation method for the Klein-Gorden equation with the time stepsize
Δt = 0.01 and M = 200 (left), 400 (middle) and 800 (right)
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Fig. 11.6 The logarithms of the global error (GE) obtained by comparing our new schemes with
a standard finite difference schemes and b the method-of-lines schemes against different time
integration stepsizes. c The energy conservation results for the GLCs with spatial discretisation by
the Fourier spectral collocation method (M=200). The time stepsize Δt = 0.05 for T = 100

In order to compare our methods with the classical finite difference schemes and
the method-of-lines methods, we integrate the problem over the region [−20, 20] ×
[0, 10] with different time stepsizes Δt and spatial nodal values M . In Fig. 11.6a, we
compare our methods with the classical finite difference schemes against different
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Table 11.2 The total numbers of iterations for different error tolerances with M = 800 and
Δt = 0.1 for T = 100

Tolerance IRKN2s4 IRKN3s6 GAS2s4 LIIIB4s6 GLC2 GLC3 GLC4

10−6 2396 2000 5207 5566 686 686 975

10−8 3871 3000 8585 7551 707 707 994

10−10 6460 4568 12600 10659 1038 1038 1464

10−12 9462 6139 16327 13800 1085 1085 1491

time stepsizes Δt = 0.08/2 j−1 for j = 1, 2, 3, 4. We use M = 1000 for the finite
difference schemes Expt-FD, SImpt-FD and Compt-FD and M = 600 for the time
integrators GLCs coupled with the Fourier spectral collocation method. We plot
the logarithms of the global error in Fig. 11.6a. We discretise the spatial variable
of the problem by the Fourier spectral collocation method with fixed M = 800 and
integrate the semi-discretised systemwith the different time stepsizesΔt = 0.4/2 j−1

for j = 1, 2, 3, 4. The efficiency curves are depicted in Fig. 11.6b. The errors of the
semi-discrete energy conservation law as a function of the time-step calculated by
Ẽ(t) are presented in Fig. 11.6c. Furthermore, the total numbers of iterations for
different error tolerances are listed in Table11.2.

It can be seen that the numerical results again indicate that our time-stepping
integrators have higher precision than existing methods in the literature, and the
qualitative property of energy preservation is also quite promising.

11.7.2 Simulation of 2D Sine–Gordon Equation

In this subsection, our time integration method GLC4 coupled with Discrete Fast
Cosine / Sine Transformation is used to simulate the two-dimensional sine–Gordon
equation:

utt − (uxx + uyy) = − sin(u), t > 0, (11.138)

in the spatial region Ω = (−a, a) × (−b, b). The problem is equipped with the
following homogeneous Dirichlet or Neumann boundary conditions, namely,

• Dirichlet boundary conditions:

u(±a, y, t) = u(x,±b, t) = 0; (11.139)

• Neumann boundary conditions:

ux (±a, y, t) = uy(x,±b, t) = 0. (11.140)

The initial conditions are
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u(x, y, 0) = f (x, y), ut (x, y, 0) = g(x, y). (11.141)

It is known that different initial conditions lead to different numerical phenomena.
In what follows, we will use our method to simulate three different types of circular
ring solitons. The initial conditions and parameters are chosen similarly to those in
[12, 45].

Problem 11.3 For the particular case of circular ring solitons (see, e.g. [12, 45]),
we select the following initial conditions:

f (x, y) = 4 arctan
(
exp
(
3 −

√
x2 + y2

))
, g(x, y) = 0, (11.142)

over the two-dimensional domain (x, y) ∈ [−14, 14] × [−14, 14]. The simulation
results and the corresponding contour plots at the times t = 0, 4, 8, 11.5, 13 and 15
are presented in Figs. 11.7 and 11.8 in terms of sin(u/2) for the mesh region size
400× 400 and time stepsize Δt = 0.1. It can be clearly observed from Fig. 11.7 that
the ring soliton shrinks at the initial stage (t = 0), but oscillations and radiations
begin to form and continue until time t = 8.Moreover, it can be seen from the graphs
that a ring soliton is nearly formed again at time t = 11.5. In Fig. 11.8, the contour
maps depict the movement of the soliton very clearly. The CPU time required to
reach t = 15 is 668.056765 seconds.

(a) T=0 T=4 T=8

T=11.5 T=13 T=15

(b) (c)

(d) (e) (f)

Fig. 11.7 Circular ring solitons: the function of sin(u/2) for the initial condition and numerical
solutions at the times t = 0, 4, 8, 11.5, 13 and 15, successively
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Fig. 11.8 Circular ring solitons: contours of sin(u/2) for the initial condition and numerical solu-
tions at the times t = 0, 4, 8, 11.5, 13 and 15, successively

Problem 11.4 Furthermore, if we choose the following standard setting:

f (x, y) = 4 arctan
(
exp
(4 −√(x + 3)2 + (y + 7)2

0.436

))
, −10 ≤ x ≤ 10, −7 ≤ y ≤ 7,

g(x, y) = 4.13sech
(
exp
(4 −√(x + 3)2 + (y + 7)2

0.436

))
, −10 ≤ x ≤ 10, −7 ≤ y ≤ 7,

(11.143)
and extend the solution across the sides x = −10 and y = −7 using the symmetry
properties of the problem, the phenomenon of the collision for two circular soliton
will be occurred (see, e.g. [12, 45]). We compute solutions over the domain (x, y) ∈
[−30, 10] × [−21, 7] with the mesh region 800 × 400 and time step Δt = 0.1.
The simulating results, as the function of sin(u/2), are depicted in Fig. 11.9 and
Fig. 11.10. The numerical results in Fig. 11.9 demonstrate the collision between two
expanding circular ring solitons, in which two smaller oval ring solitons bounding
an annular region emerge into a larger oval ring soliton. The contour maps given in
Fig. 11.10 show the movement of solitons much clearly. The CPU time required to
reach t = 10 is 953.263314 s.
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(a) T=0 T=2 T=4

T=6 T=8 T=10

(b) (c)

(d) (e) (f)

Fig. 11.9 Collision of two ring solitons: the function of sin(u/2) for the initial condition and
numerical solutions at the times t = 0, 2, 4, 6, 8, and 10, successively
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Fig. 11.10 Collision of two ring solitons: contours of sin(u/2) for the initial condition and numer-
ical solutions at the times t = 0, 2, 4, 6, 8, and 10, successively
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Problem 11.5 Finally, for collisions of four circular solitons, we take

f (x, y) = 4 arctan
(
exp
(4 −√(x + 3)2 + (y + 3)2

0.436

))
, −10 ≤ x, y ≤ 10,

g(x, y) = 4.13

cosh
(
exp
((
4 −√(x + 3)2 + (y + 3)2

)
/0.436

)) , −10 ≤ x, y ≤ 10.

(11.144)
The simulation of the problem over the region [−30, 10] × [−30, 10] is based on
an extension across x = −10 and y = −10 due to the symmetry of the problem
(see, e.g. [12, 45]). The size of mesh region used is 800× 800 in space with the time
stepsize Δt = 0.1. The numerical results are presented in Figs. 11.11 and 11.12 in
terms of sin(u/2) at the times t = 0, 2.5, 5, 7.5, 9 and 10. Similarly to the case of
the collisions for two circular solitons, the collision between four expanding circu-
lar ring solitons are precisely demonstrated in Fig. 11.11. The smaller ring solitons
bounding an annular region emerge into a large one. Again, the contour maps plotted
in Fig. 11.12 clearly show the movement of solitons. The CPU time required to reach
t = 10 is 2492.677810 s.

(a) T=0 T=2.5 T=5

T=7.5 T=9 T=10

(b) (c)

(d) (e) (f)

Fig. 11.11 Collision of four ring solitons: the function of sin(u/2) for the initial condition and
numerical solutions at the times t = 0, 2.5, 5, 7.5, 9, and 10, successively



11.8 Conclusions and Discussions 313

x

y
sin(u/2), T=0

−30 −20 −10 0 10
−30

−20

−10

0

10

x
y

sin(u/2), T=2.5

−30 −20 −10 0 10
−30

−20

−10

0

10

x

y

sin(u/2), T=5

−30 −20 −10 0 10
−30

−20

−10

0

10

x

y

sin(u/2), T=7.5

−30 −20 −10 0 10
−30

−20

−10

0

10

x

y

sin(u/2), T=9

−30 −20 −10 0 10
−30

−20

−10

0

10

x
y

sin(u/2), T=10

−30 −20 −10 0 10
−30

−20

−10

0

10

Fig. 11.12 Collision of four ring solitons: contours of sin(u/2) for the initial condition and numer-
ical solutions at the times t = 0, 2.5, 5, 7.5, 9, and 10, successively

11.8 Conclusions and Discussions

In this chapter, the nonlinear Klein–Gordon equation (11.1)–(11.2) was firstly intro-
duced as an abstract ODE on the Hilbert space L2(Ω) on the basis of the opera-
tor spectral theory. Then, the operator-variation-of-constants formula (11.14) was
derived based on the well-known Duhamel Principle, which is in fact an integral
equation of the solution for the nonlinear Klein–Gordon equation. Using the formula
(11.14) and keeping the eventual discretisation inmind, a novel class of time-stepping
methods (11.39) has been derived and analysed. It has been shown that under the
simplified order conditions (11.48) and chosen suitable collocation nodes the derived
time-stepping integrator can have arbitrarily high-order. The spatial discretisation is
implemented, following a Lagrange collocation-type time-stepping integrator. This
allows us to consider a suitable spatial approximation and gives us a great degree
of flexibility when handling nonlinear potentials. The stability and convergence for
the fully discrete scheme were rigorously proved after spatial discretisation. Since
the fully discrete scheme is implicit and iteration is required, we used the fixed-
point iteration (11.110)–(11.111) in practical computation and analysed the conver-
gence of the iteration. Moreover, we also showed that our time-stepping integrators
coupled with discrete Fast Sine / Cosine Transformation can efficiently simulate
the important two-dimensional Klein–Gordon equations, equipped with Dirichlet
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or Neumann boundary conditions. The numerical experiments carried out in this
chapter clearly demonstrate that the time-stepping schemes have excellent numeri-
cal behaviour in comparisonwith existingmethods in the literature. Last but not least,
we again emphasize that all essential features of the methodology are present in the
one-dimensional and two-dimensional cases in this chapter, although the schemes
discussed equally lend themselves to higher-dimensional case.Moreover, remember-
ing the eventual discretisation in space, applying a two–point Hermite interpolation
to the nonlinear integrals that appear in the operator-variation-of-constants formula,
we also can design different time schemes (see [40]).

The material of this chapter is based on the work by Liu and Wu [41].
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Chapter 12
An Essential Extension of the
Finite-Energy Condition for ERKN
Integrators Solving Nonlinear Wave
Equations

This chapter is devoted to an essential extension of the finite-energy condition for
extended Runge–Kutta–Nyström (ERKN) integrators when applied to nonlinear
wave equations. We begin with an error analysis of ERKN integrators for multi-
frequency highly oscillatory systems y′′ + My = f (y), where M is positive semi-
definite, ‖M‖ � max{1, ‖ ∂ f

∂y ‖}. These highly oscillatory problems arise from the
semi-discretisation of conservative or dissipative nonlinear wave equations. The
structure of M and the initial conditions are dependent on the particular spatial dis-
cretisation. A finite-energy condition for the semi-discretisation of nonlinear wave
equations is introduced and analysed.This is similar to the error analysis forGaustchi-
type methods of order two, where a finite-energy condition bounding amplitudes of
high oscillations is satisfied by the solution. These ensure that the error bound for
ERKNmethods is independent of ‖M‖. Since stepsizes are not restricted by frequen-
cies ofM, large stepsizes can be employed by our ERKN integrators whichmay be of
arbitrarily high order. The numerical experiments presented in this chapter demon-
strate that our results are really promising, and consistent with our analysis and
predictions.

12.1 Introduction

The study of numerical methods for highly oscillatory problems has become increas-
ingly important in recent decades. A major source of such problems is the spatial
discretisation of nonlinear wave equations, such as Klein–Gordon equations, which
have received a great deal of attention in both their numerical and analytical aspects.
In this chapter, we pay attention to an essential extension of the finite-energy condi-
tion for ERKN integrators and applications to nonlinear wave equations.

We commence with a system of multi-frequency highly oscillatory second-order
differential equations

© Springer Nature Singapore Pte Ltd. And Science Press 2018
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{
y′′(t) + My(t) = f (y(t)), t ∈ [t0, T ],
y(t0) = y0, y′(t0) = y′

0,
(12.1)

where M ∈ R
d×d is a positive semi-definite matrix (not necessarily diagonal or sym-

metric, in general) with ‖M‖ � max{1, ‖ ∂ f
∂y ‖}. This type of problem occurs in many

aspects of science and engineering, among which the spatial discretisation of non-
linear wave equations by finite difference methods or spectral methods provides a
large number of practical applications. In dealing with these oscillatory problems,
the adapted Runge–Kutta–Nyström (ARKN) methods and ERKN integrators were
respectively proposed by Franco [5] and Yang et al. [43] as developments of clas-
sical Runge–Kutta–Nyström (RKN) methods. As shown in the literature (see e.g.
[5, 7, 22, 41]), based on the internal stages of traditional RKN methods, the ARKN
methods adopt a modified form of updates given by

yn+1 = φ0(V )yn + hφ1(V )y′
n + h2

s∑
i=1

B̄i (V ) f (Yi ),

y′
n+1 = −hMφ1(V )yn + φ0(V )y′

n + h
s∑

i=1

Bi (V ) f (Yi ),

where V = h2M, φ0, φ1, B̄i and Bi are matrix-valued functions of V . However,
as distinct from the ARKN methods, in light of the variation-of-constants formula
for (12.1), the ERKN methods not only have a new form of updates, but also adopt
a new form of internal stages given by

Yi = φ0(C
2
i V )yn + Cihφ1(C

2
i V )y′

n + h2
s∑

j=1

Ai j (V ) f (Y j ),

to achieve a high level of harmony with the oscillatory structure of the problem
(12.1). An ERKN method can be represented compactly in the Butcher tableau of
coefficients

c Ā(V )

b̄(V )

b(V )

=

c1 Ā11(V ) · · · Ā1s(V )

...
...

. . .
...

cs Ās1(V ) · · · Āss(V )

B̄1(V ) · · · B̄s(V )

B1(V ) · · · Bs(V )

. (12.2)

Well-known examples of explicit ERKN integrators are the Gautschi-type methods
of order two [1, 8–12, 14]. As we will show in (12.12) in Sect. 12.2, Gautschi-
type methods can be displayed in a Butcher tableau, which is exactly the form of
ERKN methods. From this observation, ERKN integrators also can be thought of as
generalized Gautschi-type methods.
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Among other effective numerical methods for solving the oscillatory problem are
the exponentially (or functionally) fitted methods, such as the the exponentially fitted
Runge–Kutta (EFRK) method [28], the exponentially fitted Runge–Kutta–Nyström
method (EFRKN) (see, e.g. [6]) and the functionally-fitted energy-preservingmethod
[19]. As stated in the literature, the applications of these methods highly depend on
the choice of a fitted frequency ω. For example, when solving the problem (12.1),
both EFRK methods and EFRKN methods require symmetry of M and the pre-
ferred fitted frequencies may be inferred from the diagonalisation of the matrix M .
Fortunately, however, the symmetry of M is not necessary for ERKN methods as
we have mentioned above. This implies ERKN methods have a broader range of
applications for solving oscillatory problems once M is not symmetric. An essential
relation between ERKNmethods and exponentially fitted methods is that the ERKN
methods are consistent with the exponentially fitted Runge–Kutta–Nyströmmethods
(EFRKN), provided that M is symmetric. This point has been definitely proved by
Wu et al. [36]. It is noted that the energy-preserving methods have also been devel-
oped for solving oscillatory Hamiltonian PDEs (see, e.g. [3, 18, 19, 42]) in recent
years.

As a class of structure-preserving algorithms, ERKN integrators display some
important properties in dealing with the multi-frequency and highly oscillatory sys-
tem (12.1). The most notable one is that the multi-frequency and highly oscillatory
homogeneous equation y′′ + My = 0 can be exactly integrated by both the updates
and the internal stages of ERKN integrators. Another one to merit our attention
is their superiority over the classical RKN methods in numerical behaviour, such
as the local truncation error, the global error, dispersion and dissipation. However,
this superiority in errors for ERKN integrators is usually supported by a variety of
numerical experiments in applications, noting that only a few studies of theoretical
analysis (see, e.g. [9, 11, 14, 17, 32]) have been conducted, in which some further
restrictions are needed on the variable y, y′′, and the right-hand side function f of
the system (12.1).

Meanwhile, it should be noted that Gautschi-type methods of order two have been
successfully applied to oscillatory second-order differential equations [8, 14], among
which the Ferm–Pasta–Ulam problem [13] is the most notable one. An observation
from the Ferm–Pasta–Ulamproblem leads to the finite-energy condition, which plays
a very important role in effectively solving oscillatory second-order differential equa-
tions (see, e.g. [14]). For example, it is shown that a large time-step can be used for
these explicit methods when applied to oscillatory differential equations (see e.g.
[8]). Long-time energy conservation for these methods also can be achieved with
this condition (see e.g. [12]). The most important result is that, under the finite-
energy condition, the error bounds of Gautschi-type exponential methods of order
two are proved to be independent of ‖M‖ (see, e.g. [9, 11]). This point is crucial to
the underlying multi-frequency highly oscillatory problem. The so-called Gautschi-
type exponential integrators also have been applied to the Klein-Gordon equation in
the nonrelativistic limit regime (see, e.g. [1]) and the references therein.

With this observation, and the fact that Gautschi-type methods are special ERKN
methods of order two, we further investigate an extension of the finite-energy condi-
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tion in this chapter. Using an analogical methodology, we pay attention to nonlinear
wave equations, for which the appropriate spatial discretisation plays a similar role to
the finite-energy condition for ERKN methods. Furthermore, the finite-energy con-
dition for ERKN integrators could be naturally derived for nonlinear wave equations
by a suitable spatial discretisation, whose differentiation matrix M is symmetric and
positive semi-definite. We then prove that the error bounds for ERKN methods are
entirely independent of ‖M‖, when applied to the semi-discrete wave equations.
This result is completely consistent with those stated in [9, 11]. Moreover, another
promising result is that large stepsizes are allowed for explicit ERKN methods. This
point is supported by the numerical experiments in this chapter, where corresponding
classical RKN methods could hardly be employed with the same stepsizes.

This chapter is organised as follows. In Sect. 12.2,we briefly summarise theERKN
integrators in dealingwith themulti-frequency highly oscillatory problems, and some
results on error analysis are included as well. In Sect. 12.3, we obtain error bounds
independent of ‖M‖ for ERKN integrators when applied to conservative or dissipa-
tive nonlinear wave equations. We conduct numerical experiments in Sect. 12.4, and
the numerical results support our theoretical analysis presented in this chapter. The
last section is concerned with conclusions and discussions.

Throughout this chapter, the dimension of the system (12.1) is d, i.e., y, y′ ∈ R
d .

12.2 Preliminaries

In this section, we first summarise the results on ERKN integrators for the second-
order oscillatory autonomous system (12.1). To this end, we introduce the following
unconditionally convergent matrix-valued functions

φ j (V ) :=
∞∑
k=0

(−1)kV k

(2k + j)! , j = 0, 1, . . . . (12.3)

The definition of ERKN integrators is given below.

Definition 12.1 (See, e.g. [39])AnERKN integrator for the second-order oscillatory
initial value problem (12.1) is defined by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yi = φ0(C
2
i V )yn + Cihφ1(C

2
i V )y′

n + h2
s∑

j=1

Ai j (V ) f (Y j ), i = 1, ..., s,

yn+1 = φ0(V )yn + hφ1(V )y′
n + h2

s∑
i=1

B̄i (V ) f (Yi ),

y′
n+1 = −hMφ1(V )yn + φ0(V )y′

n + h
s∑

i=1

Bi (V ) f (Yi ),

(12.4)
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where C1, ...,Cs are real constants, Bi (V ), B̄i (V ) for i = 1, ..., s, and Ai j (V ) for
i, j = 1, ..., s are matrix-valued functions of V ≡ h2M .

ERKN integrators can be expressed in Butcher tableaux (12.2). However, for con-
venience, in the remainder of this chapter, we denote the coefficients of an ERKN
integrator in upper-case (C, B, B̄, A). Some useful properties related to the uncondi-
tionally convergent matrix-valued functions φ j (V ) for j = 0, 1, . . . are established
in [39], and summarised below.

Proposition 12.1 (See [39]) The matrix-valued functions φ j (M) defined by (12.3)
satisfy:

1. lim
M→0

φ j (M) = 1
j ! I for j = 0, 1, . . . , where I is the identity matrix;

2. All φ j (M) for j = 0, 1, . . . , are bounded when M is positive semi-definite, i.e.
‖φ j (M)‖ ≤ c̃, where c̃ is a constant depending on ‖M‖ in general. However,
an important and special case is that c̃ is independent of ‖M‖ provided M is
symmetric and positive semi-definite;

3. ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ 1

0

(1 − ζ )φ1
(
x2(1 − ζ )2M

)
ζ j

j ! dζ = φ j+2(x
2M), x ∈ R,

∫ 1

0

φ0
(
x2(1 − ζ )2M

)
ζ j

j ! dζ = φ j+1(x
2M), x ∈ R,

(12.5)

for j=0,1,….

We then quote the following theorem, which is related to the order conditions for
ERKN integrators.

Theorem 12.1 (See [44]) An s-stage ERKN integrator (12.4) is of order p if and
only if the conditions

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

s∑
i=1

B̄iΦi (τ ) = ρ(τ)!
γ (τ)s(τ )

φρ(τ)+1 + O(h p−ρ(τ)), ∀τ ∈ SSENTm , m ≤ p − 1,

s∑
i=1

BiΦi (τ ) = ρ(τ)!
γ (τ)s(τ )

φρ(τ) + O(h p−ρ(τ)+1), ∀τ ∈ SSENTm , m ≤ p,

(12.6)
are satisfied.

Here, the definitions and properties associated with the order ρ(τ), the sign s(τ ), the
density γ (τ), and the weight Φi (τ ) can be found in [44].

As stated in [15, 32], we also admit the following two assumptions throughout
the error analysis in this chapter, but restrict them to a more relaxed setting.

Assumption 3 It is assumed that the solution y(t) of (12.1) and its derivative y′(t)
are sufficiently smooth and uniformly bounded with respect to t .
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Assumption 4 It is assumed that all the occurring derivatives f (k)(y) (with respect
to y) of f (y) are uniformly bounded.

Remark 12.1 We note that the uniform bound is established with a particular norm.
For the vectors y(t), y′(t) and the vector-valued function f (y), we naturally use the
Euclidean norm ‖ · ‖2. Remember that each derivative f (k)(y) can be regarded as a
k-linear mapping [13]

f (k)(y) : R
d × · · · × R

d︸ ︷︷ ︸
k− f old

−→ R
d , (12.7)

where d is the dimension of the problem (12.1). In this sense, we can take the induced
norm ‖| · ‖|:

‖| f (k)(y)‖| = sup
{
‖ f (k)(y)(v1, . . . , vk)‖2 : ‖vi‖2 = 1, i = 1, . . . , k

}
, (12.8)

subordinated to the Euclidean norm ‖ · ‖2 for f (k)(y). In the special case that f ′(y)
is a negative semi-definite matrix, it is known that the induced norm ‖| · ‖| is just
the spectral norm. In the remainder of this chapter, we will denote all norms by the
uniform symbol ‖ · ‖ for convenience, if there is no confusion.

An earlier error analysis has been made in part by Wang et al. [32] for explicit
ERKN methods. We briefly summarise the results below.

Theorem 12.2 (See [32]) Under suitable assumptions, the explicit ERKN methods
converge for 0 ≤ nh ≤ T − t0 when applied to the problem (12.1). In particular, the
numerical solution and its derivative satisfy the following error bounds

‖en‖ ≤ Ĉ1h
p,

‖e′
n‖ ≤ Ĉ2h

p,

where Ĉ1 and Ĉ2 depend on T and ‖M‖, and they are independent of h and n.
However, if M is symmetric and positive semi-definite, then Ĉ1 is also independent
of ‖M‖.

Even though this result seems promising, a stronger restriction on the function
f has been implicitly used. That is, all occurring derivatives of f (especially the
total derivatives of f (y(t)) with respect to t) are assumed to be uniformly bounded.
This stronger restriction assumption exactly leads to the conclusion that the norms of
the high-order derivatives (with respective to t) of the exact solution y(y) are inde-
pendent of ‖M‖. Hence, the global error bounds are independent of ‖M‖. Another
consequence of the result is that the s-stage explicit ERKN integrators of order p are
restricted to those with s ≤ 3 and p ≤ 3, and hence the accuracy of the numerical
methods is limited.

If them-th derivatives of the exact solution y(t) to the problem (12.1) are bounded
by
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y(m)(t) = O(‖M‖k), m, k ∈ N
+, (12.9)

then both the local truncation error bound and the global error bound must be depen-
dent on ‖M‖. In the case of multi-frequency highly oscillatory ODEs, (12.9) always
holds with the given initial conditions (y0, y′

0). In this sense, the global error bound
for ERKN integrators depends on ‖M‖ since the derivatives of f (y) are involvedwith
M . Fortunately, however, when M is symmetric positive semi-definite, the earlier
seminal work on error analysis had discussed the so-called finite-energy condition
(see, e.g. [8, 9, 11, 12, 14]):

1

2
‖y′(t)‖2 + 1

2
‖Ωy(t)‖2 ≤ 1

2
K 2, (Ω2 = M). (12.10)

With the condition (12.10), it has been proved that the global error bound for the
Gaustchi-type exponential integrators of order two is independent of ‖M‖. The next
theorem confirms this point.

Theorem 12.3 (See [9]) In (12.1), let M = Ω2 be an arbitrary symmetric positive
semi-definite matrix. Suppose that f , fy and fyy are bounded in the Euclidean norm
or the norms induced by the operator Euclidean norm, respectively. Moreover, it
is assumed that the solution y(t) satisfies the finite-energy condition (12.10). Then,
under suitable assumptions for the even analytic functions Ψ , Ψ0 and Ψ1, we have
the following estimation of global errors

‖y(tn) − yn‖ ≤ Ch2, tn ∈ [t0, T ], (12.11)

for the Gaustchi-type exponential integrators, where the constant C only depends on
T , K , C̃, ‖ f ‖, ‖ fy‖ and ‖ fyy‖, and C̃ is a small constant independent of ‖M‖.
Since theGaustchi-type integrators of order two described therein are exactly explicit
ERKN integrators of order two with the Butcher tableau

c A(V )

b̄(V )

b(V )

=

0 0 0

1 1
2 Ψ (V ) 0

1
2 Ψ (V ) 0

1
2 Ψ0(V ) 1

2 Ψ1(V )

, (12.12)

where Ψ , Ψ0 and Ψ1 are matrix-valued functions respectively fixed for different
Gaustchi-type integrators, we also make an attempt to find suitable conditions such
that the error bound for ERKN integrators is independent of ‖M‖, when applied to
nonlinear wave equations. With this idea and observation, in what follows we will
concentrate our attention on nonlinear wave equations, which can be converted to
the form of (12.1) by an appropriate spatial discretisation.



324 12 An Essential Extension of the Finite-Energy Condition…

12.3 Error Analysis for ERKN Integrators Applied
to Nonlinear Wave Equations

We now consider the wave equation

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂2u(x, t)

∂t2
− a2Δu(x, t) = f (u), x ∈ D, t0 ≤ t ≤ T,

u(x, t0) = ϕ(x), ut (x, t0) = ψ(x), x ∈ D,

B(x)u(x, t) = 0, x ∈ ∂D,

(12.13)

where a means the horizontal propagation speed of the wave motion, D is a spatial
domain with boundary ∂D,Δ is the Laplacian operator and B(x) is a linear boundary
operator. Here, we suppose that the problem (12.13) is well-posed and satisfies the
conditions described in the recent papers [34, 35]. As shown in [34, 35], the exact
solution u(x, t) and its derivative ut (x, t) satisfy⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(x, t) = φ0
(
(t − t0)

2a2Δ
)
ϕ(x) + (t − t0)φ1

(
(t − t0)

2a2Δ
)
ψ(x)

+
∫ t

t0

(t − ζ )φ1
(
(t − ζ )2a2Δ

)
f̃ (ζ )dζ,

ut (x, t) = (t − t0)a
2Δφ1

(
(t − t0)

2a2Δ
)
ϕ(x) + φ0

(
(t − t0)

2a2Δ
)
ψ(x)

+
∫ t

t0

φ0
(
(t − ζ )2a2Δ

)
f̃ (ζ )dζ,

(12.14)
under some regularity conditions, where f̃ (ζ ) = f (u(x, ζ )), and the operator deter-
mined by the Laplacian-argument functions φ j (Δ) are defined by

φ j (Δ) :=
∞∑
k=0

Δk

(2k + j)! , j = 0, 1, . . . . (12.15)

It can be seen that (12.15) is obtained from replacing z by Δ in the functions

φ j (z) =
∞∑
k=0

zk

(2k + j)! , j = 0, 1, 2, . . . , (12.16)

and all φ j (z) for j = 0, 1, 2, . . . are bounded for any z ≤ 0 (note that, here, the
definition of φ j (z) for (12.14) is different from (12.3) for (12.4) and there are minus
signs in (12.3)).

It is known that Δ is not defined for every v ∈ L2(D). In order to model the
boundary conditions, we restrict ourselves to the case where Δ is defined on the
domain Ω(Δ) ⊂ L2(D), and the underlying boundary condition is satisfied. We
then consider the linear differential operator A defined by (A v)(x) = a2Δv(x).
The operator has a complete system of orthogonal eigenfunctions in the Hilbert
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space L2(D). The operator on L2(D) induces a corresponding operator on �2 due to
the isomorphism between L2 and �2. An elementary analysis which is similar to that
for the exponential operator presented by Hochbruck and Ostermann [16], implies
that the Laplacian-argument functions φ j (Δ) are bounded operators with respect to
the norm ‖ · ‖L2(D)←L2(D).

In general, the domain Ω(Δ), the eigenvalues and the eigenfunctions of the oper-
ator Δ will depend on the specified boundary conditions. As an example, we prove
that the operators φ j (Δ) for j = 0, 1, . . . defined by (12.15) are bounded for peri-
odic boundary problems with D = [0, 2π ]. In this case, the operator Δ is defined on
the domain

Ω(Δ) = {v ∈ H 2(D) : v(x) = v(x + 2π)
}
.

The operator has a complete systemof orthogonal eigenfunctions {eikx : k ∈ Z} in the
complex Hilbert space L2(D), and the corresponding eigenvalues are −k2, k ∈ Z.
The functions φ j (z) for j = 0, 1, . . . , defined by (12.16) allow us to define the
operators:

φ j (tΔ) : L2(D) → L2(D) (12.17)

given by

φ j (tΔ)v(x) =
∞∑

k=−∞
v̂kφ j (−k2t)eikx for v(x) =

∞∑
k=−∞

v̂ke
ikx .

Clearly, the functionsφ j (z) for j = 0, 1, . . . are bounded for any z ≤ 0, i.e. |φ j (z)| ≤
1 for j = 0, 1, . . .. We then show that the functions φ j (z) define the bounded oper-
ators φ j (tΔ) for any t ≥ 0.

Theorem 12.4 The operators φ j (Δ) defined by (12.15) and (12.3) are bounded
operators under the norm ‖ · ‖L2(D)←L2(D), i.e.,

‖φ j (tΔ)‖L2(D)←L2(D) ≤ γ j , t ≥ 0, (12.18)

where γ j are the bounds of the functions φ j (x)with x ≤ 0 for j = 0, 1, 2, ..., respec-
tively.

Proof Before presenting the proof for the boundedness of the operators φ j (tΔ) for
j = 0, 1, 2, ..., we first clarify the inner product of the space L2(D) expressed by

(u, v) =
∫
D
u(x)v(x)dx, ∀u, v ∈ L2(D). (12.19)

For any function v(x) ∈ L2(D), its Fourier series can be represented as

v(x) =
∞∑

k=−∞
v̂ke

ikx .
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The norm of the function in L2(D) can be characterized in the frequency space by

‖v‖2 =
∫
D

|v(x)|2dx =
∞∑

k=−∞
|v̂k |2. (12.20)

Therefore, we have

‖φ j (tΔ)v‖2 =
∞∑

k=−∞
|v̂kφ j (−k2t)|2 ≤ sup

t≥0
|φ j (−k2t)|2 · ‖v‖2 ≤ γ 2

j ‖v‖2, (12.21)

where γ j are the bounds of the functionsφ j (z)with z ≤ 0 for j = 0, 1, 2, . . . . Hence,
it follows from the definition of operator norm and (12.21) that

‖φ j (tΔ)‖L2(D)←L2(D) = sup
‖v‖�=0

‖φ j (tΔ)v‖
‖v‖ ≤ sup

t≥0
|φ j (−k2t)| ≤ γ j , j = 0, 1, 2, . . . , t ≥ 0.

(12.22)
The conclusion of the theorem is proved. �

The boundness of φ j (Δ) for other boundary conditions can be proved in a similar
way.

Remark 12.2 Here it should be noted that the operators φ j (Δ) for j = 0, 1, . . . are
well-defined and bounded on theHilbert space L2(D). Each bounded operatorφ j (Δ)

is an indivisible whole and on no account can one think that it can be thought of as
any finite sum of the Laplacian Δ successively operated one by one. In fact, all the
operators defined by (12.15) are bounded operators, and completely different from
the Laplacian. Therefore, it is of great importance to keep it inmind that each operator
φ j (Δ) defined by (12.15) is well-defined and bounded on the space L2(D).

On the basis of the above analysis, we define u(t) as the function that maps x to
u(x, t):

u(t) := [x �→ u(x, t)].

Then the system (12.13) can be formulated by an abstract second-order ordinary
differential equation on the infinity-dimensional function space L2(D),

{
u′′(t) − A u(t) = f

(
u(t)

)
, t0 < t ≤ T,

u(t0) = ϕ(x), u′(t0) = ψ(x).
(12.23)

Approximating the operator −A in (12.23) by the differentiation matrix M (with
some manipulation if necessary), we obtain an initial value problem of ODEs:

{
U ′′(t) + MU = f (U ), t ∈ [t0, T ],

U (t0) = U0, U ′(t0) = U ′
0.

(12.24)
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For the applications of ERKN integrators to (12.24), it is required that the differen-
tiation matrix M is positive semi-definite. It is easy to fulfill this requirment, since
the suitable difference discretisation (see, e.g. [21]) and the well-known Fourier
or Chebyshev pseudospectral spatial discretisation yield positive semi-definite dif-
ferentiation matrices M . In what follows, we assume that the spatial approxima-
tion used here is consistent with the original PDEs, and that U (t) is convergent to
u(t) ≡ u(x, t). Note that the matrix M and the initial values (U0,U ′

0) of (12.24) are
simultaneously generated by the underlying spatial discretisation.

Another point which should be especially emphasized is that if we replace the
operator −A by the differentiation matrix M in (12.14), then the solution U (t) of
(12.24) and its derivative Ut (t) can be exactly expressed as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

U (t) = φ0
(
(t − t0)

2M
)
U0 + (t − t0)φ1

(
(t − t0)

2M
)
U ′

0

+
∫ t

t0

(t − ζ )φ1
(
(t − ζ )2M

)
f̃ (ζ )dζ,

Ut (t) = −(t − t0)Mφ1
(
(t − t0)

2M
)
U0 + φ0

(
(t − t0)

2M
)
U ′

0

+
∫ t

t0

φ0
(
(t − ζ )2M

)
f̃ (ζ )dζ,

(12.25)

where f̃ (ζ ) = f (U (x, ζ )).
We now turn to an important property of the nonlinear wave equations (12.23).

By denoting

H(u) = −
∫ u

0
f (s)ds

(the function H(u) is assumed to be positive since H(u) is only used through its
gradient here), we obtain that

E = E(t) = 1

2

∫
D

(
(ut )

2 + a2(ux )
2 + 2H(u)

)
dx, (12.26)

is conserved during the evolution of the wave equation, when suitable boundary con-
ditions, such as periodic or homogeneous Dirichlet or Neumann boundary conditions
are prescribed. For the case where f explicitly depends on t , i.e., f = f (t, u), it is
noted that E(t) is no longer conserved and the wave equation is then dissipative.
Thus, after a suitable spatial discretisation for (12.13) we can give an approximate
relation between the continuous energy and the discrete energy for (12.24):

1

2
‖U ′(t)‖2 + 1

2
‖ΩU (t)‖2 ≈ 1

2

∫
D

(
(ut )

2 + a2(ux )
2
)
dx, (Ω2 = M). (12.27)

Then, the finite-energy condition (12.10) is easily satisfied, since the constant K in
(12.10) can now be roughly chosen as
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K =
√
2
(|E(t0)| + ∣∣ ∫

D
H(u(t0))dx

∣∣),
for both the conservative and dissipative nonlinear wave equations. Here, it should be
noted that, though the constant K depends also on the boundary condition according
to its formula, this could be neglected by virtue of Assumption 3. This point is the
essential idea behind our fundamental error analysis of ERKNmethods for efficiently
solving conservative or dissipative nonlinear wave equations. The fact that the finite-
energy condition (12.10) can be satisfied by our ERKNmethods motivates the study
of global errors for ERKN methods. This implies that we are hopeful of obtaining
the same results of global errors for ERKN methods of arbitrary order as those for
Gaustchi-type exponential integrators of order two.

Theorem 12.5 Under Assumptions3 and 4, if the matrix M in (12.24) is symmetric
positive semi-definite and the spatial discretisation is consistent with the original
equation and convergent to the exact solution, then the spatial discretisation error
satisfies

‖U (t) − u(t)‖ ≤ C2τ
k, (12.28)

where τ is the maximal spatial stepsize, C2 is a constant depending on T but inde-
pendent of ‖M‖, and k is a positive integer number depending on the spatial dis-
cretisation.

Proof Let rτ be the natural restriction operator on the space grids and ρ(τ) stand for
the maximal distance in the grids. We denote uτ (t) = rτu(x, t). By denoting

u′′
τ (t) = d2uτ (t)

dt2
= rτutt (x, t),

we introduce the space truncation error

δ(t) = −Muτ (t) + f (uτ (t)) − u′′
τ (t) = a2rτΔu(x, t) − Muτ (t). (12.29)

It is trivial to obtain that ‖δ(t)‖ → 0 as �(τ) → 0 uniformly in t due to the consis-
tency of the spatial discretisation with the wave equation. It follows from (12.29)
that δ(t) is only involved with the spatial discretisation. Hence it can be estimated
by

‖δ(τ )‖ ≤ Cτ k, (12.30)

where k is some positive integer depending on the spatial discretisation, and C is a
constant independent of ‖M‖.

If we denote
η(t) = U (t) − uτ (t),

then the spatial discretisation error η(t) is the solution of the system
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η′′(t) = −MU (t) + f (U ) + Muτ (t) − f (uτ (t)) + δ(t),

i.e.,
η′′(t) + Mη(t) = G(t)η(t) + δ(t), (12.31)

where

G(t) =
∫ 1

0
F ′(uτ (t) + θη(t))dθ

and F ′(·) is the Jacobian of f (·). The application of the variation-of-constants for-
mula to (12.31) yields

η(t) = φ0
(
(t − t0)

2M
)
η0 + (t − t0)φ1

(
(t − t0)

2M
)
η′
0

+
∫ t

t0

(t − ζ )φ1
(
(t − ζ )2M

)
G̃(ζ )dζ,

(12.32)

where η0 = η(t0), η′
0 = η′(t0) and G̃(ζ ) = G(ζ )η(ζ ) + δ(ζ ).

It follows fromAssumption 4 that ‖F ′‖ ≤ L , where L is a constant independent of
‖M‖. On noting that η(t0) = U (t0) − uτ (t0) = 0 and η′(t0) = U ′(t0) − u′

τ (t0) = 0,
we then obtain

‖η(t)‖ = ‖
∫ t

t0

(t − ζ )φ1
(
(t − ζ )2M

)
G̃(ζ )dζ‖

≤ L‖η(t)‖ · ∥∥(t − t0)
2 ·
∫ 1

0
(1 − ζ )φ1

(
(1 − ζ )2(t − t0)

2M
)
dζ
∥∥

+ ‖δ(t)‖ · ∥∥(t − t0)
2 ·
∫ 1

0
(1 − ζ )φ1

(
(1 − ζ )2(t − t0)

2M
)
dζ
∥∥

≤ L|T − t0|2 · ‖η(t)‖ · ‖φ2((t − t0)
2M)‖

+ C |T − t0|2 · ‖φ2((t − t0)
2M)‖τ k .

(12.33)

The last inequality follows from Proposition 12.1 (4) and (12.30). Since M is
symmetric and positive semi-definite, ‖φ2((t − t0)2M)‖ is uniformly bounded and
independent of ‖M‖ on the basis of Proposition 12.1. Consequently, (12.33) gives
‖η(t)‖ ≤ C2τ

k , whereC2 is dependent on T but independent of ‖M‖. This completes
the proof. �

As the mesh partition in the space discretisation increases for (12.23), ‖M‖ will
increase in (12.24). The larger ‖M‖ is, the higher the accuracy will be in the spatial
approximations. This argument implies that

U (t) → uτ (t) as ‖M‖ → ∞. (12.34)

Since the derivatives of uτ (t) are entirely independent of ‖M‖, the exact solution
U (t) to (12.24) and its high-order derivatives (with respect to t) are also independent
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of ‖M‖ due to the convergence stated by (12.34). This leads to the uniform boundness
and the independence of ‖M‖ for all occurring derivatives of f̃ (t) = f (U ), which
has been stated byAssumption 1 in [32].With this insight into the underlying problem,
and following the analysis in [32], we present the following important result on the
global error bounds for ERKN integrators when applied to nonlinear wave equations
(12.13).

Theorem 12.6 Let M be real symmetric and positive semi-definite. Suppose that
initial-boundary value problems (12.13) are well-posed and conservative (or dis-
sipative), and a suitable spatial discretisation for (12.13) leads to (12.24). Then,
applying a p-th order ERKN integrator to the semi-discrete problem (12.24), we
have the global error bound

‖Un − u(tn)‖ ≤ ‖Un −U (tn)‖ + ‖U (tn) − u(tn)‖ ≤ C1h
p + C2τ

k, (12.35)

where C1 and C2 are dependent on T but independent of ‖M‖, h and τ are time and
spatial stepsizes respectively, and k is a positive integer determined by the spatial
discretisation.

Proof We begin with the fact that the high-order derivatives ofU (t) are independent
of ‖M‖, as (12.34) claims. We denote f̃ (t) = f (U (t)). Since the high-order total
derivatives f̃ ( j)(t) = d j

dt j f (U (t)) are the combinations of f (i)(U ) = ∂ i

∂Ui f (U ) and

U (i)(t), it can be deduced that all f̃ ( j)(t) are bounded and independent of ‖M‖ based
on Assumption 4. From the variation-of-constants formula (12.25) for (12.24) and
the definition of the ERKN integrator (12.4), under the local assumptionsUn = U (tn)
and U ′

n = U ′(tn), the local truncation error T 1
ERK N satisfies

T 1
ERK N = U (tn + h) −Un+1

= h2
∫ 1

0
(1 − ζ )φ1

(
(1 − ζ )V

)
f̃ (ζ )dζ − h2

s∑
i=1

B̄i (V ) f (Ui )

=
∞∑
j=0

h j+2
(
φ j+2(V ) −

s∑
k=1

B̄k(V )
c j
k

j !
)
f̃ ( j)(tn)

= C̃h p+1 +
∞∑
j=p

h j+2
(
φ j+2(V ) −

s∑
k=1

B̄k(V )
c j
k

j !
)
f̃ ( j)(tn),

(12.36)

where C̃ is independent of ‖M‖. The second identity of (12.36) follows from [32]
and third identity holds because the ERKN integrator is of order p. Thus, (12.36)
gives

‖T 1
ERK N‖ ≤ K1h

p+1,

where K1 is independent of ‖M‖. Likewise, we can obtain

‖T 2
ERK N‖ = ‖U ′(tn + h) −U ′

n+1‖ ≤ K2h
p+1,
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where K2 is independent of ‖M‖.
We next analyse the global error of ERKNmethods when applied to the nonlinear

wave equation (12.13). To this end, we denote

Ei = u(tn + ci h) −Ui , en = u(tn) −Un, e′
n = u′(tn) −U ′

n.

It follows from a Taylor expansion in time at tn that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

en+1 =φ0(V )en + hφ1(V )e′
n + h2

s∑
i=1

B̄i (V )
(
f
(
u(tn + ci h)

)− f (Ui )
)

+ K1h
p+1 + Ĉh2

∫ 1

0
(1 − z)φ1

(
(1 − z)2V

)
dzτ q ,

e′
n+1 = − hMφ1(V )en + φ0(V )e′

n + h
s∑

i=1

Bi (V )
(
f
(
u(tn + ci h)

)− f (Ui )
)

+ K2h
p+1 + Ĉh

∫ 1

0
φ0
(
(1 − z)2V

)
dzτ q ,

Ei = φ0(c
2
i V )en + ci hφ1(c

2
i V )e′

n + h2
s∑

j=1

Ai j (V )
(
f
(
u(tn + c j h)

)− f (U j )
)

+ K̃1h
p+1 + Ĉc2i h

2
∫ 1

0
(1 − z)φ1

(
(1 − z)2c2i V

)
dzτ q ,

i = 1, 2. . . . , s.
(12.37)

Furthermore, we rewrite the first two equations in (12.37) as the matrix-vector form:

[
Ωen+1

e′
n+1

]
=
[

φ0(V ) hΩφ1(V )

−hΩφ1(V ) φ0(V )

][
Ωen
e′
n

]

+ h
s∑

i=1

⎡
⎣ hΩ B̄i (V )

(
f
(
u(tn + ci h)

)− f
(
Ui
))

Bi (V )
(
f
(
u(tn + ci h)

)− f
(
Ui
))

⎤
⎦

+ Ĉh
∫ 1

0

[
h(1 − z)Ωφ1

(
(1 − z)2V

)
φ0
(
(1 − z)2V

)
]
dz · τ q + Khp+1.

(12.38)

Due to the finite-energy condition (12.10), taking the l2-norm of both sides of (12.38)
and the first equation in (12.37) and summing up the results leads to
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‖en+1‖ +
√

‖e′
n+1‖2 + ‖Ωen+1‖2 ≤ ‖en‖ +

√
‖e′

n‖2 + ‖Ωen‖2 + h‖e′
n‖

+ hL(B̄ + B̂ + B)

s∑
i=1

‖Ei‖ + C1h
(
h p + τ q

)
.

(12.39)

Likewise, by taking the l2-norm of both sides of the last equations in (12.37)
yields

‖Ei‖ ≤ ‖en‖ + ci h‖e′
n‖ + h2L A

s∑
j=1

‖E j‖ + C2h
(
h p + τ q

)
, (12.40)

If the time stepsize h satisfies h ≤
√

1
2L A , the inequality (12.40) implies

s∑
i=1

‖Ei‖ ≤ 2s
(‖en‖ + h‖e′

n‖) + 2C2sh
(
h p + τ q

)
. (12.41)

Inserting (12.41) into (12.39), we obtain

‖en+1‖ +
√

‖e′
n+1‖2 + ‖Ωen+1‖2 ≤ (1 + C4h

) (‖en‖ +
√

‖e′
n‖2 + ‖Ωen‖2

)

+ C3h
(
h p + τ q

)
.

(12.42)
It then follows from the well-known discrete Gronwall inequality that

‖en‖ +
√

‖e′
n‖2 + ‖Ωen‖2

≤ exp (C4nh)

(
‖e0‖ +

√
‖e′

0‖2 + ‖Ωe0‖2 + C3nh
(
h p + τ q

))

≤C3T exp (C4T )
(
h p + τ q

)
.

(12.43)

This means that ⎧⎪⎨
⎪⎩

‖en‖ ≤C
(
h p + τ q

)
,

‖e′
n‖ ≤C

(
h p + τ q

)
.

(12.44)

The constantC is only involvedwith the spatial discretisation, and hence independent
of ‖M‖.

This completes the proof. �
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The discussion about the convergence of the discretisation in space for (12.34)
and that of the full discretisation for (12.35) can be found in [29], in which the authors
discussed the convergence of Method of Lines (MOL) when applied to PDEs. Here
we assume the convergence and give our main attention to the analysis of global error
bounds. This theorem reveals that the bound of the global error is independent of
‖M‖ when the semi-discrete wave equation (12.24) is numerically solved by ERKN
integrators. It is noted that (12.24) is a multi-frequency oscillatory system. The result
is a natural extension of that for Gaustchi-type exponential integrators of order two
[9, 11], though the analysis for Gaustchi-type exponential integrators is carried out
by a different approach. Furthermore, it gives a physical description of the finite-
energy condition, namely, this condition essentially originates from an appropriate
spatial discretisation for the conservative or dissipative wave equation. Another point
which should be noted is that although one has a similar result for classical RKN
methods when applied to (12.24), it is not recommended to use them in practice
because of the larger global error bound for RKN methods compared with ERKN
integrators. Moreover, totally different from Gaustchi-type exponential integrators
and the generalized Gaustchi-type exponential integrators, i.e., ERKN integrators,
classical RKNmethods are not designed specially for solvingmulti-frequency highly
oscillatory problems, and the original idea of classicalRKNmethods takes no account
of the oscillatory structure introduced by the term MU in (12.24). Finally, as stated
in [39], ERKN methods always have a larger stability region than the corresponding
RKNmethods in dealing with the oscillatory problem (12.24). Hence, large stepsizes
are also allowed by ERKNmethodswhen solving nonlinear wave equations, whereas
the corresponding RKNmethods may behave badly with the same stepsizes as those
for ERKN methods. This point will be demonstrated by the numerical experiments
in the next section.

12.4 Numerical Experiments

In our numerical simulations, we prefer to use explicit ERKN methods rather than
implicit ones due to the easy manipulation of the former, even though both of them
have the same properties as stated in Theorem 12.6. Here, the key point is that
implicit ERKN integrators require iterative solutions, whereas explicit ERKN inte-
grators avoid the complexity brought by the iterative procedure. The explicit ERKN
integrators are selected as follows:

• ERKN3s4: the three-stage ERKN method of order four given in [40];
• ERKN7s6: the seven-stage symplectic ERKN method of order six given in [23].

It is known that an ERKN method reduces to an RKN method when M → 0. Thus,
the degenerate ERKN methods are assigned as the corresponding RKN methods,
which are denoted by RKN3s4 and RKN7s6, respectively. It will be observed from
the numerical experiments that the numerical behaviour of ERKN methods is much
better than that of the corresponding RKN methods. Although the Gaustchi-type
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exponential methods of order two mentioned in previous section are well known, we
do not consider them in the numerical comparison due to their limited accuracy.

Problem 12.1 Consider the Duffing equation (see e.g., [20])

{
q̈ + ω2q = k2(2q3 − q),

q(0) = 0, q̇(0) = ω,

with 0 ≤ k < ω. It is a Hamiltonian system with the Hamiltonian

H(p, q) = 1

2
p2 + 1

2
ω2q2 + k2

2
(q2 − q4).

The analytic solution is given by

q(t) = sn(ωt, k/ω),

where sn is the Jacobian elliptic function.

The problem is solved on the interval [0,1000] with k = 0.03. In this problem, we
investigate the influence of ‖M‖ on the global errors for ERKN integrators in the case
of traditional ODEs. Figure12.1 gives the numerical results obtained by ERKN3s4
and ERKN7s6 with the different stepsizes when applied to Problem 12.1. As shown
in Fig. 12.1, the larger ‖M‖ (= ω2) becomes, the larger the global errors are for both
the two ERKN integrators. It is very much in accordance with the conclusion that the
global error bounds of ERKNmethods are usually dependent on ‖M‖, when applied
to the general oscillatory problem (12.1), where M is independent of the initial
conditions y0, y′

0. A similar result is given in Fig. 12.2, where the same stepsizes
are respectively used for the corresponding RKN methods. Note that the case of
ω = 20 is not plotted in Fig. 12.2b for RKN7s6, since the scheme is unstable with the
stepsize h = 1/10. It is shown that the RKN methods give disappointing numerical
solutions in the high-frequency case (ω = 20),whereas theERKNmethods are robust
and give satisfactory numerical solutions of high accuracy with the same stepsizes.
Moreover, the results of ERKN methods are also much more accurate than those
of classical RKN methods in the low-frequency case of ω = 5. Finally, we plot the
efficiency curves in Fig. 12.3a for all the four methods, where the ERKN methods
showhigher efficiency than the correspondingRKNmethods.As shown inFig. 12.3b,
the numerical convergence orders of the selected numerical methods are 4.00, 5.99,
4.21 and 5.93 respectively for RKN3s4, RKN7s6, ERKN3s4 and ERKN7s6, which
demonstrate the high consistency of their numerical convergence order with the
theoretical convergence order.

Problem 12.2 (Breather soliton) We consider the well-known sine–Gordon equa-
tion (see e.g. [25])

∂2u

∂t2
= ∂2u

∂x2
− sin u, (12.45)
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Fig. 12.1 The log–log plot of maximum global error GE against t with different ω for Problem
12.1: a the result for ERKN3s4 with the stepsize h = 1/40 (left); b the result for ERKN7s6 with
the stepsize h = 1/10 (right)
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Fig. 12.2 The log–log plot of maximum global error GE against t with different ω for Problem
12.1: a the result for RKN3s4 with the stepsize h = 1/40 (left); b the result for RKN7s6 with the
stepsize h = 1/10 (right)

on the region −10 ≤ x ≤ 10 and −20 ≤ t ≤ 20, with the initial conditions

u(x,−20) = −4 arctan
(
c−1sech(κx) sin(20cκ)

)
,

ut (x,−20) = 4κ cos(20cκ)sech(κx)

1 + c−2sech2(κx) sin2(20cκ)
,
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Fig. 12.3 Numerical results for Problem 12.1 with ω = 5: a The efficiency curves, i.e., the log–
log plot of maximum global error GE against the consumed CPU time (left); b The numerical
convergence order, i.e., the log–log plot of maximum global error GE against the stepsize h (right)

and the boundary conditions

u(−10, t) = u(10, t) = −4 arctan
(
c−1sech(10κ) sin(cκt)

)
,

where κ = 1/
√
1 + c2. The exact solution is given by

u(x, t) = −4 arctan
(
c−1sech(κx) sin(cκt)

)
,

which is known as the breather solution of the sine-Gordon equation.

For the spatial discretisation of Problem 12.2, we use the Chebyshev pseudospec-
tral discretisation [27]. The parameter c is selected as c = 0.5, and the total number
of spatial mesh grids is denoted by N . During the experiment, we choose various
values of N for the two ERKN integrators, and hence the value of ‖M‖ varies with
N . As shown in Fig. 12.4, the larger N is, the larger ‖M‖ becomes. Fortunately,
however, the large ‖M‖ is, the better accuracy becomes for the global error. This
result strongly supports our analysis in Sect. 12.3, which shows that the global error
bounds of ERKN integrators are independent of ‖M‖ when applied to the under-
lying nonlinear wave equations. For the stepsize h = 1/64, the global errors of the
two RKN methods are too large to plot here. This means that the two correspond-
ing RKN methods are unstable with the stepsize h = 1/64. To exclude the possible
influence of spatial discretisation on the accuracy of numerical solutions, we select
N = 200 and plot the efficiency curves in Fig. 12.5a by varying the stepsize h, where
the higher order ERKNmethod gives higher efficiency. Note that only the numerical
results of the two ERKN methods are plotted in Fig. 12.5a, since the corresponding
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Fig. 12.4 The log–log plot of maximum global error GE against t with the time stepsize h =
1/64 for Problem 12.2: a the results for ERKN3s4 for different pairs (N , ‖M‖): (40, 1.4677 ×
103), (60, 7.4169 × 103), (80, 2.3426 × 104) (left); b the results for ERKN7s6 for different pairs
(N , ‖M‖): (50, 3.5791 × 103), (70, 1.3736 × 104), (90, 3.7519 × 104) (right)
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Fig. 12.5 Numerical results for for Problem 12.2 with N = 200: a The efficiency curves, i.e., the
log–log plot of maximum global error GE against the consumed CPU time (left); b The numerical
convergence order, i.e., the log–log plot of maximum global error GE against the stepsize h (right)

RKN methods give unstable numerical solutions for such large N . The numerical
convergence orders of the two ERKN methods are respectively 4.01 and 5.89 for
ERKN3s4 and ERKN7s6, as shown in Fig. 12.5b.
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Problem 12.3 (Single soliton) We consider the nonlinear Klein–Gordon equation
(see e.g., [2])

∂2u

∂t2
− a2

∂2u

∂x2
= −au + bu3, (12.46)

on the region −10 ≤ x ≤ 10 and 0 ≤ t ≤ 10, with the initial conditions

u(x, 0) =
√
2a

b
sech(λx),

ut (x, 0) = cλ

√
2a

b
sech(λx) tanh(λx),

and the boundary conditions

u(−10, t) =
√
2a

b
sech(λ(−10 − ct)),

u(10, t) =
√
2a

b
sech(λ(10 − ct)),

where λ =
√

a
a2−c2 . The exact solution is given by

u(x, t) =
√
2a

b
sech(λ(x − ct)).
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Fig. 12.6 The log–log plot of maximum global error GE against t for Problem 12.3 with different
pairs (N , ‖M‖): (180, 5.4002 × 104), (240, 1.7066 × 105), (300, 4.1664 × 105), (360, 8.6392 ×
105). a The result for ERKN3s4 with the stepsizeh = 1/24 (left). b The result for ERKN7s6 with
the stepsize h = 1/12 (right)
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Fig. 12.7 Numerical results for for Problem 12.3 with N = 400: a the log–log plot of maximum
global error GE against the consumed CPU time (left); b the log–log plot of maximum global error
GE against the stepsize h (right)

With regard to the spatial discretisation of this problem, we use the Chebyshev
pseudospectral discretisation. In this experiment, we take the parameters a = 0.3,
b = 1 and c = 0.25, as in [2]. Various values of N are selected for the two ERKN
methods. As shown in Fig. 12.6, a large value of ‖M‖ always implies higher accu-
racy for the global error, which is entirely similar to the result obtained in Problem
12.2. The result obtained here also supports our analysis in Sect. 12.3 that the global
error bounds of ERKN integrators are independent of ‖M‖ when applied to wave
equations. Similarly to the case in Problem 12.2, the global errors for RKN3s4 and
RKN7s6 are not plotted here, since instability and nonconvergence occur for the two
RKN methods with the corresponding stepsizes h = 1/12 and h = 1/24, respec-
tively. Similarly to Problem. 12.2, we also plot the efficiency curves in Fig. 12.7a
for the fixed N = 400, from which it can be observed that ERKN3s4 gives better
performance when the accuracy is lower than 10−4, while the higher order method
ERKN7s6 is preferred for the high accuracy case. The two correspondingRKNmeth-
ods are omitted in this figure due to their instability for N = 400. Fig. 12.7b shows
the numerical convergence order of the two ERKN methods, which are respectively
3.91 and 5.86 for ERKN3s4 and ERKN7s6.

12.5 Conclusions and Discussions

Highly oscillatory problems have a very wide range of applications such as celestial
mechanics, nonlinear dynamical systems, quantum chemistry and molecular mod-
elling. The computation of highly oscillatory problems has generated a large num-
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ber of different numerical approaches and algorithms. High accuracy and structure
preservation for numericalmethods are very importantwhen applied to highly oscilla-
toryHamiltonian systems. In this chapter, in order to gain an insight into the extension
of the finite-energy condition for ERKN integrators we further discussed the error
estimation for ERKN methods when applied to nonlinear wave equations. Since the
solutions of (12.1) are high-frequency oscillators, due to the existence of the linear
term My, the error bounds for numerical methods depend on ‖M‖ in general. How-
ever, we have shown the error bounds for ERKN integrators are independent of ‖M‖
when applied to conservative or dissipative wave equations. This result is of great
importance for ERKN integrators, i.e., the so-called generalised Gautschi-typemeth-
ods. Furthermore, we conducted numerical experiments which clearly demonstrate
this point. These numerical simulations firmly support our theoretical analysis.

To sumup,motivated by the seminalwork on the error bound based on the analysis
of the finite-energy condition (see, e.g. [8, 9, 11, 12, 14]), the intensive study of
this chapter has successfully achieved the extension of the finite-energy condition
for ERKN integrators when applied to nonlinear wave equations. Meanwhile we
have obtained a new result on the error analysis of ERKN integrators. It is believed
that the new investigation of error analysis has led to further insight into ERKN
integrators when applied to the initial-boundary value problems of nonlinear wave
equations (12.13). In particular, it is noted that the multi-frequency highly oscillatory
Hamiltonian system with the Hamiltonian

H(q, p) = 1

2
p p + 1

2
qMq +U (q)

has been efficiently solved by the ERKN integrators in the literature (see, e.g. [4,
11–14, 23, 26, 30, 31, 33, 36–39]) from the accuracy to the qualitative behaviour
of the symplecticity preservation, energy preservation, symmetry preservation etc.
in long-term numerical simulation of nonlinear wave equations (12.13).

To conclude, we emphasise that all essential features of the analysis of this chapter
were presented in the case of one-dimensional nonlinear wave equations, but the
arguments naturally extend to the higher-dimensional case.

The material of this chapter is based on the work by Mei et al. [24].
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