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Abstract. The tremendous growth of WiFi fingerprint-based localiza-
tion techniques has significantly facilitated localization services. The tra-
ditional techniques pose a threat to both client’s and server’s privacies,
because it is likely to reveal sensitive information about the client and the
server during providing localization services. Many existing works have
proposed privacy preserving localization schemes based on homomor-
phic cryptographic systems. However, the state of the art homomorphic
cryptographic systems turn out to bear a time-consuming process for
recourse-constrained devices. Hence, preserving location privacy while
guaranteeing efficiency and usability is still a challenging problem. In
this paper, we propose a privacy preserving indoor localization scheme
employing oblivious transfer, called OTPri, to preserve the privacy of
both clients and server in the process of localization in an efficient way.
Our method enables a client to efficiently compute her location locally at
client side with a small amount of additional overhead compared with the
non-privacy-preserving scheme. Meanwhile, we conduct comprehensive
experiments, including single-floor and multi-floor scenarios in our office
building. The evaluation results demonstrate the efficiency improvement
and overhead reduction of our proposed scheme compared with a classical
privacy-preserving indoor localization scheme.

1 Introduction

The explosive popularity of portable mobile devices such as smartphones and
tablets are fostering the emergence of location-aware applications and services
for mobile users. Exemplary applications [19] include sounding the security alert
when entering dangerous areas, posting location-based advertisements, locating
a friend, etc. Due to the lack of GPS signals for indoor localization, a large body
of research has come up with numerous techniques. A prevalent method is to
measure received signal strength as a fingerprint, and match it with the sampled
fingerprints in the database, including radio frequency [2,5,33], acoustic signals
[12,23,24], infrared ray [28], GSM [21], the combination of ambience features
[1,30], etc. A common idea among all these techniques is to reduce the site survey

c© Springer Nature Singapore Pte Ltd. 2018
L. Zhu and S. Zhong (Eds.): MSN 2017, CCIS 747, pp. 110–132, 2018.
https://doi.org/10.1007/978-981-10-8890-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8890-2_9&domain=pdf


An Efficient Privacy-Preserving Fingerprint-Based Localization Scheme 111

effort and distance error to realize indoor localization. Nevertheless, the majority
of clients are reluctant to disclose their privacy while asking for an accurate
service. Meanwhile, the server has to protect its database from unauthorized
acquisition. Therefore, protecting privacy while guaranteeing the usability of
the WiFi fingerprint-based localization system is an important foundation to
ensure practicability.

Typically, the WiFi fingerprint-based localization system consists of two
phases [29], including offline training and online operating phase. In the offline
training phase, the server acquires the received signal strengths and the corre-
sponding coordinate information of sampled locations and stores them in the
database for future reference. During the online operating phase, a client who
needs a localization service first measures the signal strength at current location
and then submits it to the server for matching. Finally, the server employs an
algorithm to determine client’s location.

Although regarded as a promising approach for indoor localization, there are
still considerable potential privacy leakages in such a paradigm of localization
service. From client’s perspective, the client has to expose its fingerprint and
location directly to the server when requesting services, which will enable the
server to trace client’s location, and give third-party an opportunity to breach the
client’s privacy. Existing works indicate that the adversary can steal the individ-
uals habits, activities, and relationships by location traces [18,25]. Therefore, the
loss of privacy can lead to bad consequences [8], including location-based spams,
damage of reputation or economic and physical violences. From server’s perspec-
tive, although the transmission of complete database to the client may protect
client’s privacy [15], the database may be disclosed and utilized for commercial
profit. Meanwhile, the continuous transmission of massive amounts of data will
consume the device’s resource, extend query process and compromise the network
health. Moreover, the service provider has a strong demand for the protection for
its WiFi fingerprint database from the unauthorized reveal. Hence, a privacy pre-
serving scheme should be carefully designed to ensure confidentiality and usability.

According to the potential privacy leakage and the corresponding require-
ments, there are several challenges in designing a privacy-preserving localization
scheme [7]. First, the scheme should meet both client’s and server’s requirements
for data privacy, which means keeping their data safe from each other and mali-
cious third party while acquiring all necessary information to achieve accurate
localization, thus it makes the design much more complicated than the localiza-
tion itself. Second, considering the resource-constrained characteristic of portable
devices, the scheme should avoid complicated computation and large amount of
communication overhead to ensure quick response and low cost, however, existing
privacy-preserving localization schemes employing homomorphic cryptographic
turn out to be a time-consuming process for portable devices and the perfor-
mance degrades in larger scenarios. Third, since precision is a core objective of
localization system, it directly influences the usability and user experience of the
system. Nevertheless, the introduction of privacy-preserving function certainly
will influence the accuracy of the localization scheme, thus we should improve
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the accuracy to the greatest extent. Therefore, it is a challenging problem to
achieve an overhead-performance balanced system while guaranteeing the data
privacy of both sides.

To protect clients’ location privacy in location-based services, some approaches
including k-anonymity [17,31] and mix zones [4]) have been proposed. However,
WiFi fingerprint-based localization lacks trusted third parties to apply them. Fur-
thermore, these works submit the users’ location information with the requests to
protect the location privacy of the users requesting location-based services, which
assumes that each client has obtained service without any privacy concern.

Considering the challenges as stated, toward this end, we are motivated to
design a privacy-preserving localization system based on oblivious transfer [6]
named OTPri.

To avoid the exposure of client’s fingerprint, the localization scheme should
protect any side information that may lead to a coarse estimate of the location
in addition to the protection of the exact location of the client, meanwhile, the
client has to provide as few information as possible to acquire the information
that meets the requirement of accurate localization. Therefore, whenever a client
needs to be localized, she sends an AP id from her vicinity to the server, then
the server will choose the corresponding data entries which are stored at its side.
Even though the id of the vicinity AP is exposed, the server can only confirm
a wider area of the client’s location, which meets the demand for client privacy.
Moreover, due to the characteristic of oblivious transfer, the server cannot figure
out which data entries the client has chosen, and the client cannot get any other
information except her choices, besides, the server can put constraint on the
number of data entries that the client can obtain during one localization process
and the total number of requests a single client can achieve, thus preserving the
server’s data security to the greatest extent (Fig. 1).

The major contributions of this paper are summarized as two-fold:

– We present and formulate a privacy-preserving indoor localization scheme
employing oblivious transfer to achieve a privacy-overhead-balanced construc-
tion to solve the privacy issues during the localization process. Meanwhile, we
reduce the computation and communication overhead to the utmost extent,
which has a decrease of nearly 40% considering the computation and com-
munication overhead. And the localization process is conducted locally at the
client side.

– We elaborate the privacy property for the proposed scheme and evaluate its per-
formance by comprehensive experiments in both single-floor and multiple-floor
scenarios in our office buildings. By comparing with existing privacy-preserving
localization solutions, we verify the efficiency improvement and overhead reduc-
tion of the proposed scheme compared with PriWFL algorithm [6].

The remainder of this paper is organized as follows. In Sect. 2, we define the
system model and present the threat model and technical preliminaries. In Sect. 3,
we present the design motivation of the proposed privacy-preserving localization
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Fig. 1. OTPri system design

scheme, its details and privacy analysis. Section 4 reports our extensive exper-
iments on this scheme. Section 5 briefly discusses the related work. Finally, in
Sect. 6, we conclude our work.

2 Background and Attack Model

2.1 Overview of WiFi Fingerprint-Based Localization

WiFi fingerprint-based localization uses the WiFi signal strength to infer the
location of a user. WiFi fingerprint-based localization is mainly composed of
two phases [2], including offline phase and online phase. In the offline phase, the
server selects N WiFi access points to represent fingerprints, then the service
provider measures the average WiFi signal strength of the WiFi access points
at M locations in the interested area, denoted as Vi = {v1, v2, ..., vj , ..., vN},
i ∈ [1,M ], where vj is the average WiFi signal strength at (xi, yi) from the
jth access point APj , and N is the totality of access points. Then the service
provider stores the sampled fingerprints and their corresponding coordinates
(i, (xi, yi), Vi) in the WiFi fingerprint database D.

In the online phase, a client who intends to locate herself first measures the sig-
nal strengths from N access points, indicated as V ′ = (v′

1, v
′
2, ..., v

′
j , ..., v

′
N ), and
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sends its fingerprint to the server. Then, the server computes the Euclidean dis-
tancesbetweenV ′ andall theM sampledfingerprints asdi = ||V ′−Vi||2, i ∈ [1,M ].

di =‖ V ′ − Vi ‖2=
N∑

j=1

(vi,j − v′
j)

2

=
N∑

j=1

v2
i,j +

N∑

j=1

(−2vi,j ∗ v′
j) +

N∑

j=1

v′2
j

(1)

In the last step, the server selects k smallest values of di and finds out the
corresponding coordinates of these dis, then estimates the client’s location by
computing the centroid of these locations.

2.2 Threat Model

The clients and service providers act in a semi-honest manner [10], in which
they independently follow the protocol during localization process, but will try to
extract useful information from the communication. Besides, we also assume that
the third-party cannot steal privacy through eavesdropping the communication
because of the encryption of the message sent between the client and server.
Thus, in this paper, the prevention of privacy leakage in a normal localization
operation is considered.

Our study considers both the client’s location privacy and the service
provider’s data privacy. From the client’s perspective, the client intends to
acquire the localization service without compromising its location privacy. The
location information can be theft by a curious service provider who collects the
locations of the customers to make marketing and sales strategies or sells them
for profit, namely client privacy attack. Therefore, the proposed scheme should
prevent the attackers from stealing client’s information, including the client’s
location and her sampled WiFi RSS signals, while providing accurate localiza-
tion service.

From the service provider’s perspective, the fingerprint database should be
protected from unauthorized reveal. The database of the server may be down-
loaded or simulated by a malicious client to make profit, namely database
privacy attack. Consequently, the server needs to protect its collected fingerprint
database from learning or simulating by others in the process of localization.

2.3 Security Model

In privacy-preserving indoor localization scheme, we use the standard security
model [9,11] in presence of semi-honest participants, in which the client and the
server will follow the scheduled protocol, but might try to compute additional
information by received messages. We use simulation argument to define security
in this setting: if no additional information is revealed to the participants dur-
ing protocol execution, which means no party can compute the view of protocol



An Efficient Privacy-Preserving Fingerprint-Based Localization Scheme 115

execution using that party’s input and output only, the protocol is uncondi-
tionally secure. The notion of privacy-preserving for semi-honest participants is
formalized using the definition below:

Definition 1. The client and the server engage in a protocol t, in which they
cooperatively compute function f(in1, in2) = (out1, out2), where ini and outi
respectively represent input and output of client and server. During the exe-
cution of protocol t, we use V IEWt(Pi) to denote the view of a participant.
More precisely, the participants’ input, random coin tosses ri and messages
m1, ...,mt passed between the parties during protocol execution form P ′

is view:
V IEWt(Pi) = (ini, ri,m1, ...,mt). We define time simulator Si such that:

Si(ini, f(in1, in2)) ≡ V IEWp(Pi), outi (2)

where “≡” denotes computational indistinguishability. If for each party Pi, such
a probabilistic polynomial time simulator exists, the protocol t is unconditionally
secure.

Indistinguishability. Two probability ensembles Xi and Yi, indexed by i, are
(computationally) indistinguishable if for any PPTM D, polynomial p(n) and
sufficiently large i, it holds that

|Pr[D(Xi) = 1] − Pr[D(Yi) = 1]| ≤ 1/p(i) (3)

2.4 Security Assumptions

For our privacy-preserving scheme against semi-honest client, we assume the
hardness of Decisional Diffie-Hellman (DDH) problem [6].

Decisional Diffie-Hellman (DDH). Let p = 2q +1 where p, q are two primes, and
Gq be the subgroup of Z∗

p with order q. The following two distribution ensembles
are computationally indistinguishable:

– Y1 = (g, ga, gb, gab)Gq
, where g is a generator of Gq, and a, b ∈ RZq.

– Y2 = (g, ga, gb, gc)Gq
, where g is a generator of Gq, and a, b, c ∈ RZq.

2.5 k-out-of-n Oblivious Transfer

In this paper, we adopt k-out-of-n Oblivious Transfer [6] to protect both the
client’s privacy and the server’s fingerprint database. Therefore, we briefly review
the fundamental of k-out-of-n oblivious transfer.

Oblivious transfer (OT) is an important primitive used in many crypto-
graphic protocols. An oblivious transfer protocol involves two parties, the sender
S and the receiver R. S has some messages and R wants to obtain some of them
via interaction with S. The security requirement is that S wants R to obtain the
message of her choice only and R does not want S to know what she chooses. A
k-out-of-n OT (OT k

n ) scheme is an OT scheme in which R chooses k messages
at the same time, where k < n.
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The sender S has n secret messages m1,m2, ...,mn from message space Gq,
and the semi-honest receiver R wants to get k of them.

In our scheme, there is no need for trapdoor specification or initialization,which
means the system parameters can be repeatedly used by all senders and receivers,
and each pair of sender and receiver does not need to hold any secret key.

3 Design of OTPri

In this section, we propose the construction of our privacy preserving indoor
localization scheme employing oblivious transfer (OTPri), a WiFi fingerprint-
based indoor localization employing oblivious transfer to preserve privacy.

3.1 Preliminary Design

Our proposed scheme protects both client’s and server’s information, and
achieves high efficiency in the process of indoor localization. The key idea of
our scheme is to mask the query by oblivious transfer [6], thus the server cannot
know the client’s choice. Meanwhile, the client only obtains the information of
her choice. We demonstrate the challenges and our corresponding solutions in
this subsection.

Privacy Preservation in Indoor Localization. To avoid the exposure of
client’s fingerprint, the localization scheme should protect any side information
that may lead to a coarse estimate of the location in addition to the protection
of the exact location of the client. In the query process of other fingerprint-
based localization methods, the server has access to client’s fingerprint and esti-
mated location. Therefore, the privacy of client’s location is leaked to the server.
To avoid this kind of threats, we integrate oblivious transfer with traditional
fingerprint-based localization scheme, which allows the client to choose the nec-
essary information for localization on her own and keep her choices from the
others. Meanwhile, due to the characteristic of oblivious transfer, the client can-
not learn anything other than her choices. And the server can put constraint on
the number of data entries that the client can obtain during one localization pro-
cess and the total number of requests a single client can achieve, thus preserving
the server’s data security to the greatest extent.

Time Efficiency. Privacy-preserving indoor localization has been researched
very extensively in the last few years. Many schemes use homomorphic encryp-
tion. However, it requires computationally expensive public-key operations that
scale very inefficiently for larger security parameters, which is a time-consuming
process for resource-constrained devices such as smartphones. Moreover, the user
has to generate a pair of keys each time when it needs to be localized. To shorten
the process of query, our scheme employs oblivious transfer in which the param-
eters can be used repeatedly by all possible clients and servers without any
initialization.
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3.2 Scheme Details

Our scheme involves three phases, including Pre-Process Phase, Oblivious Trans-
fer Phase and Location Determination Phase.

Pre-process Phase. After collecting the fingerprints from a building
(i, (xi, yi), Vi = ((vij)|Nj=1)

M
i=1), where i is an index, M is the total number of

sampled locations, N is the totality of APs, (xi, yi) is the coordinate of the spe-
cific location, Vi represents the WiFi fingerprint at the specific location (xi, yi),
the server stores the results in a 2-D matrix MATRIX[N ][M ], which records
the RSS value of N APs at M geo-locations. Moreover, the server stores the
table T = (i, (xi, yi))M

i=1 which records the indices and their corresponding coor-
dinates of sampled locations. The Radiomap MATRIX can be of the following
format:

Radiomap(MATRIX)
AP1,1, AP1,2, ..., AP1,M ⇒ x1, y1
AP2,1, AP2,2, ..., AP2,M ⇒ x2, y2
AP3,1, AP3,2, ..., AP3,M ⇒ x3, y3

...
APN,1, APN,2, ..., APN,M ⇒ xN , yN

Each row in this radiomap represents a data entry. This process can be exe-
cuted before a client uses the localization service, and only needs to be performed
once. Whenever a client needs a localization service, she first measures its WiFi
RSS value of each AP at current location, denoted as V ′ = (v′

1, v
′
2, ..., v

′
N ). Then

she chooses one AP-id, named j, from her vicinity and sends this AP-id (j) to
the server. After receiving the port number of the AP, the server searches its
MATRIX and finds out all the data entries that have nonzero signal value at this
AP, where APi,j �= 0, i ∈ (α1, α2, ..., αl), then the server renumbers the indices
of those data entries and forms a map (i, signal)l

i=1 between the renumbered
indices and their corresponding signal values at this AP, after that the server
sends the map to the client. Meanwhile, the server finds out the union set of
APs that have nonzero signal value at these data entries, C = {β1, β2, ..., βn}
where APα1,β1 , APα2, β2, ..., APαl, βn �= 0, and sends the set of port numbers
of these APs (C = {β1, β2, ..., βn}) to the client, which indicates the delivery
order of signal values at Oblivious Transfer Phase. The sever will send these
signal values and their corresponding coordinates by column. For example, if 2
is included in {β1, β2, ..., βn}, then the server will send the signal value at AP2

of these chosen data entries in a transfer process in Oblivious Transfer Phase.

Oblivious Transfer Phase. Considering the map (i, signal)l
i=1 received by

the client, first, the client finds out the k nearest data entries based on their
RSS values, then masks her choices C = {σ1, σ2, ..., σk} by oblivious transfer.
Eventually, the server sends other APs’ signal values in accordance with the
order in C = {β1, β2, ..., βn} and their corresponding coordinates one by one.
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For system parameters, g, h is two generators of Gq, and logg h is not revealed
to any party. (g, h,Gq) are universal parameters, which means they can be used
repeatedly by all possible clients and the server if logg h is not revealed.

During each transfer, the server sends the signal value of l data entries at APj ,
j ∈ {β1, β2, ..., βn}, denoted as m1,m2, ...,ml. The procedure of each transfer of
signal value is as follows:

– System parameters: (g, h,Gq);
– Server has messages: m1,m2, ...,ml;
– Client’s choices: σ1, σ2, ..., σk;

1. Client chooses two polynomials:

f(x) = a0 + a1x + ... + ak−1x
k−1 + xk (4)

f ′(x) = b0 + b1x + ... + bk−1x
k−1 + xk (5)

where a0, a1, ..., ak−1 ∈ Zq and b0 + b1x + ... + bk−1x
k−1 + xk = (x −

σ1)(x − σ2)...(x − σk) mod q.
2. Client to Server:

A0 = ga0hb0

A1 = ga1hb1

...

Ak−1 = gak−1hbk−1

(6)

3. Server computes
di = (gki ,miB

ki
i ) (7)

where ki ∈ Z∗
q and

Bi = gf(i)hf ′(i)

= A0A
i
1...A

ik−1

k−1 (gh)ik

mod p
(8)

for i = 1, 2, ..., l.
4. Server to Client: d1, d2, ..., dl.
5. Let di = (Ui, Vi), the client computes mσi

= Vσi
/U

f(σi)
σi mod p for each

σi.

First, the client constructs a k-degree polynomial f ′(x), which satisfies
f ′(i) = 0 if and only if i ∈ {σ1, σ2, ..., σk}. Next, another random k-degree
polynomial f(x) is selected to mask the chosen polynomial f ′(x). Then, the
client sends the masked choices A0, A1, ..., Ak−1 to the server.

After the server receives these requests, he first computes Bi = gf(i)hf ′(i) by
computing A0A

i
1...A

ik−1

k−1 (gh)ik

mod p. The server has no idea of which f ′(i) is
equal to zero, for i = 1, 2, ..., n because of the random polynomial f(x). Next,
the server encrypts each message mi by public key Bi. Then, the server sends
the encrypted messages d1, d2, ..., dk to the client.
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For each di, i ∈ {σ1, σ2, ..., σk}, since Bi = gf(i)hf ′(i) = gf(i)h0 = gf(i), the
client can get these messages with secret key f(i). If i /∈ {σ1, σ2, ..., σk}, since
the client cannot compute (gf(i)hf ′(i))ki with the knowledge of gki and f(i), f ′(i)
only, the client gets no access to the message mi.

Correctness. For each message received by the client di = (Ui, Vi), the chosen
messages mσi

, i = 1, 2, ..., k, are computed as

Vσi
/Uf(σi)

σi
= mσi

∗ (gf(σi)hf ′(σi))kσi /gkσi
f(σi)

= mσi
∗ (gf(σi) ∗ 1)kσi /gkσi

f(σi)

= mσi

(9)

Location Determination Phase. In this phase, the user computes the
squared Euclidean distance di between V ′ and Vi, i = 1, 2, ..., k. Then, it sorts the
distances and determines the q smallest distances dI1 , dI2 , ..., dIq

. These q nearest
neighbors form C. Finally, the client estimates her location by computing the
centroid of the q neighbors.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

‖ V ′
h − V1 ‖=

∑N
j=1(v

′
h,j − v1,j)2 = dh,1

‖ V ′
h − V2 ‖=

∑N
j=1(v

′
h,j − v2,j)2 = dh,2

...

‖ V ′
h − Vk ‖=

∑N
j=1(v

′
h,j − vk,j)2 = dh,k

(10)

{
x =

∑
j∈C xj

q

y =
∑

j∈C yj

q

(11)

3.3 Parameter Set

Considering the accuracy-overhead balanced construction and the restriction
of oblivious transfer protocol, we must carefully choose parameters which are
involved in the localization process.

Locations and Access Points. As the previous descriptions have stated, N
access points are selected to measure WiFi signal strengths to represent a specific
indoor location, and these access points should be chosen to efficiently differen-
tiate each location. For example, an AP that has very low RSS values on all
locations should be eliminated due to its neglectable effect on localization pro-
cess. Moreover, the M sampled locations should be distinct from each other and
evenly distributed to represent the building’s floor plan as detailed as possible.

Number of Data Entries in the Map. After receiving the port number of
the AP from the client, the server searches its MATRIX and finds out all the
data entries that have nonzero signal value at this AP, then the server forms a
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map (i, signal), i ∈ [1, l] and sends it to the client. Note that the number of data
entries in the map is the totality of choices in Oblivious Transfer Phase, which
remains as a constant during localization process, denoted as l. Different queries
may have different l because the AP id chosen by the client may vary when her
current location varies, and the number of data entries that have nonzero signal
value at this chosen AP varies as the AP id changes. According to the system
process displayed before, l has a deep influence on system performance.

Size of k. In Oblivious Transfer Phase, the client finds out the k nearest data
entries based on their RSS values, then masks her choices by oblivious transfer.
An oversize k will lead to the unnecessary exposure of server’s database and
extend the process of query. However, if the size of k is too small, the alternative
set will be too small that the client will be unable to compute her location
accurately. Thus, an appropriate k is needed to balance precision, privacy and
overhead.

3.4 Communication Cost

The communication cost in localization scheme mainly centers on Oblivious
Transfer Phase which uses two rounds, O(k) messages are sent in the first round,
where the client asks for k data entries from the server, then O(l) messages are
sent in the second round, where the server responds for the request. As for com-
putation, the client computes 3k + 2 and the server computes (k + 2)l modular
exponentiations. The complexity analysis results are summarized in Table 1.

Table 1. Complexity analysis results

Phases Communication Computation (Exp)

Client to Server O(k) 3k + 2

Server to Client O(l) (k + 2)l

3.5 Security Analysis

In Sect. 2, we presented two attack models related to the privacy of user and
database. The security analysis of these models is represented in this section.

Theorem 1. OTPri is resistent to user privacy attack.

Proof. Pre-process Phase: From the client’s perspective, the client only provides
the server with the id of AP from her vicinity. Therefore, the server can only
confirm a wider area of the client’s location.

Oblivious Transfer Phase: Client’s privacy-indistinguishability-If there is x in C,
but not in C ′, or vice versa, we say two sets C and C ′ are diverse. In obliv-
ious transfer phase, the transcript of the choice C = {σ1, σ2, ..., σk} received
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by the server is indistinguishable from the transcript of C ′ = {σ′
1, σ

′
2, ..., σ

′
k}.

Which means if the received messages of the server for C and C ′ are identically
distributed, the choices of the client are unconditionally secure.

For choices C = {σ′
1, σ

′
2, ..., σ

′
k}, every tuple (b′

0, b
′
1, ..., b

′
k−1) that represents

the choices corresponds to a tuple (a′
0, a

′
1, ..., a

′
k−1) that satisfies Ai = ga′

ihb′
i for

i = 0, 1, ..., k − 1. Therefore, the client’s choices are unconditionally secure.

Location Determination Phase: Since Location Determination Phase is con-
ducted locally at the client’s side, neither server nor any other third party can
acquire the client’s location or her sampled WiFi RSS signals, thus the client’s
location privacy is naturally preserved.

Theorem 2. OTPri is resistent to database privacy attack.

Proof. Pre-Process Phase: Since the index of map (i, signal), i ∈ [1, l] sent from
the server to the client is renumbered before sending it to the client, the client
is unable to realize the original mapping between index and RSS signal value of
the MATRIX.

Oblivious Transfer Phase: Server’s security-indistinguishability-For any choices
that don’t belong to set C = {σ1, σ2, ..., σk}, they should be indistinguishable
from the random ones. Which means the client gets no information about mes-
sages mi if she is semi-honest, i /∈ {σ1, σ2, ..., σk}.

We prove that mis look random if the DDH assumption holds, i /∈
{σ1, σ2, ..., σk}. First, the random variable for the unchosen messages is defined
below:

C = (g, h, (gki1 ,mi1(g
f(i1)hf ′(i1))ki1 ), ...,

(gkii−k ,min−k
(gf(in−k)hf ′(in−k))kin−k ))

where ki1 , ki2 , ..., kin−k
∈ RZ∗

q . Since the polynomial f(x) and f ′(x) are selected
by the client, besides, f ′(i1), ..., f ′(in−k) �= 0, C can be simplified as below:

C ′ = (g, h, (gki1 , hki1 ), ..., (gkin−k , hkin−k ))

In multiple samples, the indistinguishability is preserved. Therefore, the
prove of the following two distributions

– C = (g, h, gr, hr), where h �= 1, r ∈ RZ∗
q

– X = (g, h, x1, x2), where h �= 1, x1, x2 ∈ RGq

are distinguishable by a polynomial-time distinguisher D is necessary. To solve
the DDH problem, we can construct another polynomial-time machine D′, whose
sub-routine is D.

Machine D′

Input : (g, u, v, w) (eitherfrom Y1 or Y2 in DDH)
Output : D(g, u, v, w)
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If D distinguishes C and X with non-negligible advantage ε, D′ distinguishes
Y1, Y2 in the DDH problem with at least non-negligible advantage ε−2/q, where
dist(C, Y1) = 1/q and dist(X,Y2) = 1/q.

Therefore, the indistinguishability is naturally proved.
Even if the communication between the server and client is intercepted by a

third-party, due to the characteristic of oblivious transfer, the third-party cannot
obtain the data because the message between the server and client is encrypted in
Oblivious Transfer Phase, and the decryption requires the knowledge of client’s
choices, which are only grasped by the client.

4 Experiment Results

In this section, several experiments are conducted to demonstrate the perfor-
mance of OTPri scheme. And We compare the performance of OTPri system with
another privacy-preserving fingerprint-based localization system PriWFL [15].

4.1 Experiment Setup

To simulate the real circumstances to the greatest extent and thoroughly evaluate
the performance of OTPri, we employ two scenarios in our experiment. One is a
single-floor scenario, and the other one is a two-floor scenario. The experiment is
carried out in our department’s compound buildings, consisting of five buildings
connected by two corridors, including laboratory rooms with different sizes, long
narrow corridors and arc spaces. Its purpose is to evaluate the performance of
our scheme in the context of a large and complicated scenario.

In the data collection process of our experiment, at each sampled location,
we measure the values of received signal strength of 425 WiFi APs and sustain
the measurement for 30 s to record the change of the RSS values during this
period, then take the average as the averaged RSS values. We use DELL Vostro
2420 Laptop with Linux system and an IEEE 802.11 Atheros Communications
AR9485 Wireless Network Adapter to receive signals from each access point.
Here we regard the various APs as the same because the type of them cannot
be controlled.

4.2 Performance in a Single Floor

First, our experiment is conducted in the first floor of our office building. We
choose 111 points to build the database and 40 points as queries. The queries are
selected to represent as many typical places as possible. This data set contains
353 APs. Our experiments in this section mainly discuss how variables influence
the precision and time performance of our proposed scheme. We use localization
precision and time cost for a query as two metrics to evaluate the performance
of our scheme.
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Fig. 2. Floor plan of department building

Precision vs. k. In this section, we vary k to explore the relationship between
the precision of our scheme and the variable k. As analyzed before, an appro-
priate k is needed to balance precision, privacy and overhead. Figure 3 shows
the cumulative distribution function (CDF) of localization errors both in the
baseline algorithm PriWFL and the proposed scheme OTPri in this paper. As
depicted in the figure, OTPri provides a 40% error of 3.6 m and a 80% error of
6.6 m when k = 5, then the precision remains almost the same when k continues
to grow, which achieves a similar accuracy with PriWFL. In order to obtain
the best performance, at least 5 candidates are needed to determine the client’s
location (Fig. 2).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10  12

Pr
ob

ab
ilit

y

Error(m)

k=3
PriWFL

k=4
k=5
k=6

Fig. 3. Precision in a single floor when k varies



124 M. Sun et al.

Time vs. l. As analyzed in Sect. 3, the major time cost is from Oblivious Trans-
fer Phase. Since it is k-out-of-l oblivious transfer, the scheme performance will
be influenced as l varies. As experiment setup, we set k as 3 and configure l as 6,
8, 10, 12 and 14 to evaluate the average run time of the scheme. Figure 4 depicts
the relationship between the time cost and l. From this figure we can observe
that the time cost increases from 3.003 s to 7.018 s as l increases. Compared
with other privacy-preserving scheme that costs at least 12 s each query when
15 access points are considered [15], our scheme is more practical and efficient,
thus showing enormous potential in practical utility.
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Time vs. k. In this section, we evaluate the time performance of the scheme
when k varies, we set l as 8 by default and configure k as 2, 3, 4, 5 and 6, then
measure the time cost under different k settings. As depicted in Fig. 5, the time
cost increases from 3.153 s to 7.250 s as k increases.

4.3 Performance in Multiple Floors

We test the performance of our scheme in a multi-floor scenario. In this scenario,
there are as many as 425 APs. The fingerprint database consists of 222 locations
and 84 queries, separately 40 and 44 for the first and second floor. The arrange-
ment of fingerprint database locations and queries are mostly symmetric in the
two floors. Apart from (x, y) coordinates to locate the points, we add the third
dimension z to form a 3D scenario. Separately we assume the points in the first
and second floor have z = 8 and 12. When the estimated z for each query is less
than 10, we believe it is in the first floor and when z is larger than 10, it is in
the second floor. We analyze the precision achieve and time cost reduction by
our scheme in this section.
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Precision in Multiple Floors. First we calculate the cumulative distribution
function (CDF) of the error. The default configuration is k = 5. As shown in
Fig. 6, our OTPri scheme performs with a 25% error of 1.9 m and 60% error
of 4.7 m, while PriWFL has a 25% error of 2.3 m and 60% error of 5.0m. It is
obvious that our scheme works better in this case. We can see from this result
that turning the 2D floor plan into 3D does not influence much of the precision.
In fact, of all queries, 100% of them are located correctly to their own floors. The
maximum estimated height of the first-floor points is 8.8 m and the minimum
estimated height of the second-floor points is 10.7 m.
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To further look into how floors are identified for the queries, we record the top
5, 10, 20, 50 and 100 candidates with the nearest signal values at a specific AP
and count their occurrences. The histogram is shown in Fig. 7. Averagely 92.5%
of the top 5 candidates for queries in floor 1 are in the same floor. For queries in
floor 2, the number is 90.9%. This is enough to identify a query’s floor since most
choices of the client are within 5. Naturally, as c grows, there’s a tendency that
this percentage decreases because more candidates that have a near distance in
other floors are added. As c increases, the percentage of candidates being in the
same floor with queries approximates 0.5.
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Time Cost in Multiple Floors

Time vs. l. As experiment setup, we set k as 5 and configure l as 6, 8, 10, 12
and 14 to evaluate the average run time of the scheme. Figure 8 depicts the
relationship between the time cost and l. From this figure we can observe that
the time cost increases from 3.013 s to 6.961 s as l increases. Comparatively,
our scheme shows a great advantage in practical uses even in larger scenario.
Moreover, the query time grows linearly with l, showing a predictable upper
bound for any l.

Time vs. k. We evaluate the time performance of the scheme in multi-floor
scenario when k varies, we set l as 8 by default and configure k as 2, 3, 4, 5 and
6, then measure the time cost under different k settings. As depicted in Fig. 9,
the time cost increases from 3.253 s to 7.321 s as k increases.

Analysis on Wi-Fi Access Point Number and Database Size. So far in
all of our experiments, the full database is used, consisting of 425 Wi-Fi access
points and 222 database locations in the two floors. However, in this section, we
perform a sensitivity analysis to see how many APs and locations in the database
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Fig. 8. Time for query in multi floors when l varies

Fig. 9. Time for query in multi floors when k varies

are actually needed to calculate an accurate coordinate of a query. We keep certain
portion of APs and database points, and run our OTPri scheme to see the median
value of errors. Specifically, the APs and points are chosen evenly with a certain
stride. For instance, we select APs with order number 1, 4, 7, 10, ... .

Figures 10 and 11 shows the median error when different number of Wi-Fi
access points n and location points m are used. It is obvious that larger m and
n both lead to smaller errors. In order to obtain the best performance, at least
50 Wi-Fi APs and 80% of the fingerprint database are needed. In the case of
Wi-Fi APs, the median error decreases sharply from around 20 m to 3 m until AP
number reaches 50, then it remains almost the same when AP number continues
to grow. So we can safely use an AP number of 50 in this scenario. As for the
points in the fingerprint database, though the median error also declines very
fast till 60% of the database is used, it continues to decline at a much lower rate
when more than 60% is used, indicating that a larger data set still leads to a
better performance.
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Bandwidth Cost in Oblivious Transfer Phase. In this section, we configure
k as 5 and the number of WiFi access points as 425, then investigate the impact of
database size M on the bandwidth cost of Oblivious Transfer Phase and compare
the results with PriWFL [15]. We observe from Fig. 12 that as M increases from
50 to 400, the bandwidth cost increases from 6.018 KB to 50.009 KB, which is
much less than PriWFL [15].

Discussion. The experimental results show that our scheme achieves a sim-
ilar performance approach in terms of precision but significantly lower online
computation overhead and thus total protocol execution latency and energy
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consumption compared with PriWFL, making it more practical than PriWFL
to realize privacy-preserving indoor localization.

Two directions need to be investigated to further reduce the execution time
delay of our scheme. First, we can employ advanced network with higher trans-
mission speed to reduce the transmission time [32]. Since a growing number of
existing mobile devices support advanced network, the transmission time will be
substantially reduced. Second, we can further optimize the Java implementation
of Oblivious Transfer [13] to reduce the online operation time.

5 Related Work

In this section, we discuss two related research works, including indoor localiza-
tion based on signal-fingerprint and privacy-preserving indoor localization.

5.1 Fingerprint-Based Indoor Localization

Among all of the fingerprint-based localization schemes, there are other methods
apart from harnessing WiFi signal strengths as fingerprints for locating. Classical
works including the famous RADAR [2,3], Horus [33], OIL [22], PlaceLab [14],
LANDMARC [20] employ RF signals as identification for each location. And
other sources of signatures have also been explored, including geo-magnetism,
FM radio [5], background acoustic noise, etc. SurroundSense [1] uses ambience
features like sound, light, color as fingerprints, thus the options for fingerprint-
ing techniques are largely diversified. Through abstracting these signatures into
fingerprints, a location in indoor area can be represented by these fingerprints,
and a nearer fingerprint usually indicates a nearer location, thus we can utilize
these fingerprints to estimate user’s location. However, these approaches demand
a thorough site survey to build up the fingerprint database. If these fingerprints
can be abstracted into numbers, our proposed scheme can be applied.
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5.2 Privacy-Preserving Indoor Localization

To protect the client’s location privacy and the server’s data security during
localization process, several techniques have been proposed to achieve privacy-
preserving indoor localization. A common approach is to encrypt the com-
munication between users and servers with cryptosystems. Li et al. proposed
Pri-WFL scheme [15] to encrypt the localization process with Paillier cryptosys-
tem. Though secure enough, the performance decreases in larger scenarios. Li
and Jung [16] designed a suite of privacy-preserving location query protocols to
balance the required privacy guarantee and computation overhead. In another
similar work, Shu et al. [26] employed information hiding and homomorphic
encryption techniques to design multi-lateral privacy-preserving localization pro-
tocols for three privacy levels. Other schemes, including k-anonymity [11,17,31]
and mix zones [4], employ pseudonyms to prevent server from tracking of user’s
real location or its long-term movements. Vu et al. [27] used locality-sensitive
hashing to partition the users into k-anonymous groups. There are four categories
in protection strategy of location privacy: (1) regulatory approaches, (2) privacy
policy based approaches, (3) anonymity based approaches, and (4) obfuscation
based approaches.

Most of these techniques require communication through a trusted third
intermediary, which may not be not practical in some real-life settings.

6 Conclusion and Future Work

In this work, we have proposed a privacy-preserving WiFi fingerprint-based local-
ization scheme employing oblivious transfer called OTPri. By employing obliv-
ious transfer in this scheme, the client can locally compute her location with
no need for transmission of the whole database. Meanwhile, the client only has
to expose a single AP id from its vicinity, moreover, the client cannot learn
anything other than her choices, thus preserving the client’s and server’s data
privacy. Through analysis, we have proved that this scheme guarantees fast local-
ization and small overhead while preserving both the privacy of server and clients
via oblivious transfer. Finally, experiments based on comprehensive dataset are
conducted to prove the effectiveness of the scheme, and the results show that
OTPri achieves a much better time performance and much less overhead com-
pared with PriWFL approach. Meanwhile, the experimental studies have shown
that OTPri achieves a similar performance compared with the PriWFL approach
in terms of precision.

We can investigate a few directions for our future work. First, there are other
efficient schemes for privacy-preserving indoor localization. Second, it would be
interesting if we expand the experiments to additional public facilities with WiFi
coverage, such as coffee shops, libraries, or grocery stores, to characterize and
measure the performance of the proposed scheme, and use different measure-
ments for location privacy, such as the one in [25].
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