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Abstract. This paper focuses on the uncapacitated k-median facility
location problem, which asks to locate k facilities in a network that
minimize the total routing time, taking into account the constraints of
nodes that are able to serve as servers and clients, as well as the level of
demand in each client node. This problem is important in a wide range of
applications from operation research to mobile ad-hoc networks. Existing
algorithms for this problem often lead to high computational costs when
the underlying network is very large, or when the number k of required
facilities is very large. We aim to improve existing algorithms by taking
into considerations of the community structures of the underlying net-
work. More specifically, we extend the strategy of local search with single
swap with a community detection algorithm. As a real-world case study,
we analyze in detail Auckland North Shore spatial networks with varying
distance threshold and compare the algorithms on these networks. The
results show that our algorithm significantly reduces running time while
producing equally optimal results.
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1 Introduction

Facility location problem concerns with the deployment of decentralized service
across a network of interconnected nodes. The goal is to choose a set of nodes
to host facilities which lead to a minimized overall cost. Consider, as an exam-
ple, a wireless sensor network [20], which consists of self-organizing sensors that
communicate through wireless transmission without a pre-designated infrastruc-
ture. It is often more cost-effective to designate nodes in the networks to host
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servers (or “hubs”) that collect and aggregate sensory data [14]. The costs asso-
ciated with this scheme include resources consumed by the servers, as well as the
communication costs between sensors to servers. To minimize costs, a challenge
lies in the selection of server locations so that every sensor reaches a nearby
server while keeping the number of servers reasonable. This would mean an even
distribution of workload carried out by the servers and thus reliable network
performance. One needs to deal with two central questions: how many servers
should there be and on which nodes should servers be placed?

This paper focused on (uncapacitated) k-median facility location problem.
Abstractly, complex networks such as communication, physical or social networks
are characterized by interactions between its nodes; channels of interactions are
represented as edges and are typically weighted to reflect distance or strength of
the connection. Nodes are classified into ones that are resource-rich and resource-
poor, and facilities (or “servers”) may be placed on resource-rich nodes. When
a facility is opened on a node, the node becomes a server nodes and it may
provide services to others. A non-server node is also called a client node, and
it is designated a particular server node to communicate with. As client nodes
may have different levels of demand for service from their designated server,
the communication cost for a client is captured by (1) the distance between the
client and its nearest server; and (2) the demand level of this client. The problem
takes a parameter k and seeks for k nodes to act as server nodes that minimize
total communication costs among all client nodes.

The facility location problem has many potential applications in wireless com-
munication. Apart from the application in sensor networks discussed above, con-
sider, as a second application, an urban cellular network. An important problem
of cellular networks is to reduce energy consumption through the use of base sta-
tions with low transceiver power budget. The main challenge here is to place such
base stations in appropriate locations that meet the QoS requirement of every
user while minimizing energy consumption. This challenge can be rephrased
in terms of facility location problem, where the facilities correspond to base
stations and the costs correspond to energy consumption [16]. A third poten-
tial application involves information-centric networking (ICN), which transmits
data directly between devices without the need for a pre-existing infrastruc-
ture [3]. In particular, opportunistic networks present as an efficient, scalable
and robust scheme to delivery contents. Here, communications are supported
through mobile ad hoc networks (MANETs) and contacts are opportunistically
established between devices [18]. To facilitate reliable delivery of contents, one
may deploy a number of “hub storage” of user contents. These storages can
be selected via a facility location problem: the underlying network in this sce-
nario contains social contact patterns among users, i.e., the frequency of contacts
between people implies the potential to deliver message between their devices.
The facilities correspond to storage hubs, and the cost is associated with how
easy or likely a node may reach a facility via multi-hop paths [28].

This paper’s main aim is three-fold. Firstly, due to the high computational
complexity of facility location problem, attention has mostly been concentrated
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on designing heuristics to approximate optimal solutions of the facility location
problem. Classical solutions, such as the reverse greedy algorithm and the single-
swap algorithm incur a large computation cost when applied to complex networks
or when a lot of facilities are required to be placed on the network [5,10]. Thus the
first goal of the paper is to design more efficient heuristic to solve the problem.
Secondly, community structure is a prevalent property of complex networks in
the real world and has been intensively studied in the context of large and
complex networks. Intuition tells us that facilities should be placed to serve local
communities. However, to the authors’ knowledge, no work has so far emphasized
on the potential that community structure may support the selection of facility
locations within a network; The goal of the research is to explore this potential.
Thirdly, by processing government open-access GIS dataset, we obtain geospatial
networks representing Auckland’s North Shore, a major urban region in New
Zealand. Nodes in the network correspond to land zones and edges represent
geodesic proximity. We investigate the facility location problem in the context
of this region as a real-world case study. The findings would potentially provide
us more insights on the urban topology of the city.

Paper organization. Section 2 discusses background and related works.
Section 3 introduces the facility location problem, the reverse greedy and sin-
gle swap algorithm. Section 4 presents our two community-based methods: the
community select and community swap algorithms. Section 5 discusses our case
study on North Shore dataset and experimental results obtained on the spatial
networks. Section 6 concludes with future works.

2 Background and Related Works

2.1 Main Themes and Background

Selecting facility locations to effectively serve a region has been an important
problem in operation research [4,11,17]. There are two main versions of the
problem that are closely related: Firstly, the classical facility location problem
seeks not only to decide on the location but also the number of facilities to be
placed. Secondly, the k-median facility location problem assumes that the number
k of facilities is given as an input, and lifts the restriction on the coverage of
each server. The focus of this paper is on the k-median facility location problem.

Real-world networks are seldom uniformly distributed, but rather, exhibit
distinguishing patterns such as scale-freeness (i.e., power-law degree distribu-
tion) and small-worldness (i.e., short average path length and high clustering
coefficient) [6,25,29,30]. A real-world network is typically composed of a collec-
tion of densely connected regions, which are sparsely connected between them-
selves [23,26]. Detecting these dense regions allows us to develop a macro-level
topology of the network, where each such dense region is called a community.
Intuition tells us that it is reasonable to place servers at the center of communi-
ties so that they dedicate their services towards their own communities.
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Spatial analysis studies geometric and topological properties of physical loca-
tions through geographical information systems [22,24,31]. The field has been
widely applied to urban planning [32], transportation [7], and telecommunication
engineering [19]. Auckland North Shore (formerly North Shore City) comprises
of the 4th largest urban area in New Zealand and it has become an integrated
part of Auckland since 2010. Auckland City Council has published data of North
Shore which contains detailed accounts of geographic information. This allows
us to extract distance-based networks of land areas in the region and perform
analytics over these networks.

2.2 Related Works

Here we briefly survey important algorithms for solving the facility location
problem. Chaudhuri et al. in [9] discussed the k-median facility location problem
by exploiting the notion of distance-d dominating sets [12]. This approach ignores
the varying service requirements from nodes, furthermore, the identification of
dominating sets is, in general, a computationally hard problem.

Chrobak et al. in [10] focuses on greedy approaches to solve the k-median
facility location problem. The naive greedy approach minimizes cost with each
addition of server node but only produces solutions with Ω(n) approximation
ratio. The reverse greedy algorithm, on the other hand, starts with all nodes
being servers and iteratively removes nodes from the solution set. This method
results in a much-improved approximation ratio of between Ω(log n/ log log n)
and O(log n) when the distance is metric. In our experiments, we will use this
method as a benchmark algorithm.

The local search with swap strategy was introduced in [5]. The algorithm
works by choosing an initial set of k facilities. The algorithm then examines
possible ways to swap a current server location with another client node for
possible improvements over the current cost and executes the best swap. The
procedure repeats until when no swap may reduce the cost. In the worst case, the
solution produced will create a cost of (3 + 2/p)-times the optimal cost, where p
is the number swaps that are being done at one time. In this paper, we aim to
improve upon this algorithm by extending swap strategy above with community
structure of the underlying graph.

Liao et al. in [21] explored clustering-based location-allocation methods.
Their method utilizes Euclidean distances between physical locations. The main
difference between this algorithm and our proposed algorithm is that we use
pre-computed clusters and execute a local search to take place within computed
communities, whereas their approach also identifies clusters along with the pro-
cess. Therefore, our algorithm may utilize a wide range of community detection
algorithms to provide community structures of different granularity.

3 Problem Formulation and Existing Solutions

We consider models of wireless networks that consist of undirected links between
nodes. Formally, we define the model as follows:
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Definition 1. A facility location (FL) network is represented by a weighted
graph G = (V,E, Vf , ρ, w) where V is the set of nodes and E is a set of (undi-
rected) edges; no multi-edge nor self-loop is allowed. The subset Vf ⊆ V contains
nodes that are candidate locations of servers while V \ Vf contains client nodes.
The function ρ : V \ Vf → R is the demand function that assigns a demand
level of service to each client node. The weight w : E → R is a distance function
measuring how close two neighboring nodes are.

A path in the network is a sequence of edges {v0, v1}, . . . , {vk−1, vk} in E; k
is the length of the path. The distance between two nodes u, v is the minimum
length of a path connecting u and v and is denoted dist(u, v). The dist function
is a metric as for all nodes u, v, w ∈ V , dist(u,w) ≤ dist(u, v) + dist(v, w). We
also assume that dist(u, v) < ∞ for any pairs of nodes u, v (i.e., G is connected).

We are interested in ways to place servers on nodes in G. Since we are going
to focus on uncapacitated version of the facility location problem, each client
node will implicitly connect to the server node that has the least distance.

Definition 2. Given FL network G = (V,E, Vf , ρ, w), and k ∈ N, a k-facility
location (FL) instance on G is a set S ⊆ Vf containing k server nodes. The cost
of a k-FL instance S is cost(S) =

∑
v∈V min{dist(v, u) | u ∈ S} · ρ(v).

The k-means facility location problem seeks a k-FL instance with minimum
cost. Hence the problem is formally defined as

INPUT An FL network G = (V,E, Vf , ρ, w), k ∈ N.
OUTPUT A k-FL instance with minimum cost.

The problem has long been known to be NP-hard [10] through a reduction
from dominating set problem. Next, we review two important approximation
algorithms with known approximation ratios.

Reverse Greedy Algorithm [10]. Reverse greedy algorithm is a simple greedy
algorithm that starts with setting the solution set S = Vf and iteratively reduces
the set by removing server nodes that leads to the least cost. The procedure
repeats until |S| = k. More precisely, the algorithm is described in Algorithm 1.
The algorithm repeats n−k iterations where each iteration i computes costs for
n− i sets S′, each taking O(n(n− i)) in a naive implementation, where n = |V |.
Assuming that computing all-pair shortest path distance takes time O(g(n)).
The total running time of the algorithm is thus O

(
g(n) + (n − k)

∑n
j=k j2

)
=

O(g(n) + (n − k)n3).

Single-Swap Algorithm [5]. The algorithm starts with a set of k randomly
selected facility locations. It then loops over pairs of nodes (u, v) where u is a
currently selected location and v is not, and compares the costs of the k-FL
instances before and after when u is swapped with v. After identifying the pair
(u, v) which will result in maximum improvement in the cost, the algorithm
performs the swap. This action will guarantee that the cost goes down with each
iteration. The algorithm terminates when no pair (u, v) is found that reduces
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Algorithm 1. RevGreedy(G, k)
[INPUT] FL network G = (V, E, Vf , ρ, w), integer k
[OUTPUT] FL instance S ⊆ Vf

S ← Vf

while |S| > k do
m ← ∞
for u ∈ S do

S′ ← S \ {u}
if cost(S′) < m then

v ← u
S ← S \ {v}

return S

the cost any further, at which point we are sure to reach a local optimum. The
algorithm is named single-swap algorithm. Note that as each facility can only
be swapped-in at most once, the algorithm will always terminate. Each iteration
of the algorithm runs in time O(k(n − k)n) and there may be at most O(n)
iterations. Assuming an O(g(n)) algorithm to compute all-pair shortest path,
the algorithm runs in time O(g(n) + kn3).

Algorithm 2. SingleSwap(G, k)
[INPUT] FL network G = (V, E, Vf , ρ, w), integer k
[OUTPUT] FL instance S ⊆ Vf

S ← Initialize(G, k); c ← cost(S); swap ← true
while swap do

T ← S
for every pair (u, v) ∈ Vf × (V \ Vf ) do

S′ ← (S \ {u}) ∪ {v}; swap ← false
if cost(S′) < c then

T ← S′; swap ← true; c ← cost(S′)

S ← T
return S

4 Community-Based Algorithms

Community structure refers to a notable property of a network where nodes are
typically clustered into several subgraphs, i.e., communities, which are densely
connected on the inside, and sparsely connected on the outside [15]. The property
naturally arises from small-world networks and gives rise to a modular view of
the overall network structure that enabled a wide range of applications. Over
the last 10–15 years, a vast literature has been devoted to the description and
detection of communities in a network [13,27], which has lead to a number of well-
established methods. In particular, modularity maximization has been a widely-
used approach that maximizes the concentration of edges within communities
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compared with a random null model. In particular, given a partition of nodes
into clusters C1, C2, . . . , Ck, the modularity is defined as

Q =
1

2m

∑

i,j∈V

[

Ai,j − didj

2m

]

δ(i, j)

where m is the sum of edge weights, Ai,j is the edge weight between nodes i and
j, dx is the sum of edge weights adjacent to node x ∈ {i, j}, and δ(i, j) is 1 if
i, j are in the same cluster and is 0 otherwise. An ideal community structure is
a partition that maximizes Q. Finding a partition with maximum modularity is
NP-hard in general. In our experiments, we use Louvain method that uses an
agglomerative greedy heuristic to approximate communities [8].

Past works which bring network clustering and facility location problem
together normally select server nodes in hope to find communities in networks.
The logic flow goes as follows: An algorithm picks a set of server nodes in the
network and at the same time, decides on which client nodes would be assigned
to a server. Thus the process identifies clusters of nodes that are within close
proximity to each server node, giving rise to a community structure. In this work,
we adopt a different perspective: Assuming an extraneous mechanism truthfully
identifies communities in the network. The ideal selection of server nodes in the
network would then rely on this identified community structure. Namely, when
picking server nodes, it would be sufficient to identify one or a few server nodes
within single communities, hence more efficiently identify k-FL instances with
low costs. In this line of thoughts, we propose two algorithms: community select
and community swap.

4.1 Community Select Algorithm

The community select algorithm takes the identified community structure and
selects a server node in each community that leads to minimum cost within this
community. See Algorithm 3. The algorithm is simply implemented with running
time O(f(n) + g(ñ) + kñ2) where f(n) is the running time of the extraneous
community detection algorithm, ñ is the largest size of a community, g(ñ) is the
running time to compute all-pair shortest path on a graph with ñ nodes.

Algorithm 3. CommunitySelect(G, k)
[INPUT] FL network G = (V, E, Vf , ρ, w), integer k
[OUTPUT] FL instance S ⊆ Vf

Set C = (C1, C2, . . . , Ck) ← CommunityDetect(G, k)
� Apply a community detection algorithm on G

for Ci ∈ C do
Vf,i = Ci ∩ Vf

vi ← arg minu

{∑
v∈Ci\Vf

dist(v, u) · ρ(v) | u ∈ Vf,i

}

Return S ← {v1, v2, . . . , vk}
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4.2 Community Swap Algorithm

The community swap algorithm extends from the single swap algorithm by
incorporating the community structure. As opposed to the community select
algorithm, it does not just pick the single optimal server node in each commu-
nity, but rather, it applies local search and swaps to reach optimize costs. The
difference between the classical single swap algorithm is that, when identifying
possible pairs (u, v) to swap, the algorithm only looks at pairs (u, v) where u and
v belong to the same community. In this way, the algorithm drastically reduces
the running time. See Algorithm4 for a detailed description.

Algorithm 4. CommunitySwap(G, k)
[INPUT] FL network G = (V, E, Vf , ρ, w), integer k
[OUTPUT] FL instance S ⊆ Vf

Set C = (C1, C2, . . . , Ck) ← CommunityDetect(G, k)
� Apply a community detection algorithm on G

for 1 ≤ i ≤ k do
vi ← Select(Ci, Vf ) � Initialize a server node in Vf

S ← S ∪ {v}
c ← cost(S)
for 1 ≤ i ≤ k do

swap ← true
while swap do

T ← S
for every u ∈ (Ci \ Vf ) do

S′ ← (S \ {vi}) ∪ {u}; swap ← false
if cost(S′) < c then

T ← S′; swap ← true; c ← cost(S′)

S ← T
return S

This algorithm repeats the swapping process for each community C1, . . . , Ck;
every community Ci may run in O

(
ñ2n

)
where ñ is the size of the largest

community. Thus the total running time of the swapping process is O
(
kñ2n

)
.

The algorithm runs in time O
(
f(n) + g(n) + kñ2n

)
where g(n) is the time of

computing all-pair distance and f(n) is the time of community detection.

5 Case Study: Auckland North Shore Networks

5.1 Data Set and Network Definition

With an area of 130 km2 and 141 km coastline, the former North Shore City
was the fourth largest urban area in New Zealand prior to its merge with other
local councils to form the current Auckland City Council. We take Auckland
Open Data offered by Auckland City Council with geographical information of
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North Shore zoning [2]. The data set (Auckland Council District Plan Operative
North Shore Section 2002) contains maps and descriptions of all land and sea
zones in the region, each labeled by length, area, and zone types. Zone types
include residential (7 classes), recreational (4 classes), rural (4 classes), business
(12 classes), sea, road, and other. For clarification, zone types specify how the
zone can be used and possible developments. For example, only a business can be
placed in a business zone, and housing can only be placed in a residential zone.
The zone class determines further restrictions on how buildings in that zone can
be placed. For example, a Residential 6 zone is classified as an intensive housing
zone where high-density housing is placed near specific commercial sites. The
dataset can be processed and visualized using GIS applications such as ArcGIS1,
from which we are able to extract location (vectorization) of each zone, and the
centroid of each zone. Further details and usage of the data set can be found
in [1].

Our goal is to draw up simulated wireless mesh networks of North Shore
given the zoning data set. Here, each land zone is going to be a node in our
network (e.g., assume a device is placed at the centroid of the zone). The data
set contains 3986 land zones. We calculate distances between centroids of each
pair of zones, which become the edge weight. Thus the data set would result in
a complete graph. To further reveal topological structures, we set a threshold θ
so that the network only contains edges {u, v} when the distance between u and
v is no more than θ meters. Such edges represent simulated wireless connections
based on proximity. We set all business zones on this network as potential facility
locations. From Auckland City Council, we also obtain policies on allowable
housing densities on residential zones of different classes. By combining density
with zone area, we obtain estimates on the population of each residential zone.
This allows us to assign a service demand to each residential zone. Here is the
formal definition of the FL network NSθ = (V,Eθ, w, Vf , ρ):

– V contains all land zones from North Shore.
– The set Eθ of edges contains pairs of nodes {u, v} whose are within θ meters.
– w(u, v) ∈ [0, θ] represents the distance between u and v.
– The set Vf consists of all business zones.
– The service demand ρ(v) of a node v ∈ V \ Vf equals to the estimated popu-

lation of v if v is residential, and 0 if v is of other types.

For our experiment, we set θ ∈ {200, 300, 400}; the corresponding networks are
called NS200, NS300, and NS400 networks, respectively. Figure 1 illustrates a
map of North Shore with all land zones and illustrates the Fruchterman-Reingold
visualization of the three networks. The network structures all exhibit strong
community structures. Table 1 lists various properties of the networks including
average clustering coefficient (ACC), density and average degree. It is clear that
the networks are all sparse networks with very low density, however, with high
clustering coefficients, meaning that they exhibit small-world property.

1 www.arcgis.com.

www.arcgis.com
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Fig. 1. Above: Auckland North Shore map and land zones. Below: Fruchtermar-
Reingold layout of the networks NS200, NS300, and NS400.

Table 1. Properties of the graphs used

Graph #Node #Edge ACC Density Avg deg

NS200 3986 12001 0.507 0.00151 6.02

NS300 3986 25544 0.593 0.00322 12.8

NS400 3986 42936 0.625 0.00541 21.5

Applying Louvain method, we identify the following community structure
of the NS400 network. The NS400 network exhibits 18 non-trivial communities
as shown in Fig. 2(a). The result is remarkably consistent with the real-world
administrative divisions. For example, community 0 (in red) aligns very well
with the suburb of Northcote, while community 14 (in violet) and 17 (in blue)
align closely to the suburbs of Albany and Devonport, resp. Also noticeable is
that the communities are clearly divided by State Highway 1 which divides North
Shore vertically into eastern and western regions.

It is important to point out that, due to stochastic nature of the Louvain
method, different runs of the algorithm will result in different communities. In
our experiments, we need to set a parameter k indicating the number of commu-
nities identified from the data set. This results in different communities being
found. In particular, we choose k largest communities in the process whenever
these communities cover an area that is at least 75% of the overall area.

Below we illustrate our facility location algorithms when applied on the
NS300 network. Fig. 2(b) shows the result of the community select algorithm
with k = 4. The four identified communities roughly overlap with the four dis-
trict boards: Devenport-Takapuna (green), Kaipatiki (brown), Upper Harbour
(purple), and Hibiscus And Bays (blue).
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Fig. 2. Left (a): The 18 found communities of North Shore; Right (b): The result of
CommunitySelect with k = 4 on NS300. Stars indicate the locations of the selected
server nodes. (Color figure online)

Fig. 3. The result of CommunitySwap with k = 4 on NS300. Left: the selected server
nodes before swapping. Right: server nodes after swapping.

Figure 3 shows the result of the community swap algorithm. The algorithm
identifies four different communities and initialized a random location in each
community, which are visibly not optimal. Through local search and swapping,
the algorithm is able to adjust the server nodes so that eventually produce a
reasonable 4-FL instance.

5.2 Experiments

Our experiments aim to compare the performance of our community-based algo-
rithm against the reverse greedy and single swap algorithms. The metrics that
we use in our comparison include the cost of the resulting FL instance com-
puted by each algorithm as well as the running time. The running time of the
algorithms take into account also the time for computing shortest path distance
between nodes as well as the time for detecting communities. To measure the
performance of algorithms as k changes, we set k ∈ {1, 3, 5, 7, 9, 11}. In imple-
menting the community select and community swap algorithms, we used Louvain



66 R. Xu et al.

method to compute k communities. Due to the inherent randomness of the Lou-
vain method, for each network and each value of k, we run each algorithm 5
times and calculate the average outcome.

Fig. 4. Costs and running time of different algorithms ran on NS200 (top), NS300
(middle), NS400 (bottom) Network.

As illustrated in Fig. 4, results on all three networks are consistent: all four
algorithm result in expected downwards trend in the cost as k increases. Despite
its logarithmic theoretical approximation ratio, the reverse greedy produces sig-
nificantly worse results than the other algorithms in terms of both cost and
running speed by several magnitudes. We omit it in the NS200 network. In
particular, the running time of the reverse greedy algorithm is about 30–100
times longer than community select algorithm (e.g. choosing 3 server nodes in
NS300 network using community swap takes roughly 30 s, while using reverse
greedy takes more than 30 min), so including it in the plot will trivialize the
running time of all other algorithms. Thus we omit reverse greedy algorithm in
all running time plots. On the other hand, the single swap algorithm in general
produces FL instances with the lowest cost, however, in all three networks, the
costs resulted from the community select and community swap algorithms are
very close to single swap. Moreover, single swap algorithm results in much longer
running time as compared with the community-based algorithm as k > 3.
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Another remarkable point of the experimental result is regarding the running
time comparisons between single swap with the community-based algorithms.
While the single swap algorithm takes longer running time as k increases (this is
consistent with the theoretical worst-case running time analysis in this paper),
both community-based algorithms exhibit a flat or even downward trend in run-
ning time as k increases. This may be due to the fact that with a higher value
of k, we divide the region into a larger number of communities, each having a
smaller size. As the crucial factor in the running time depends on the largest
size ñ of a community, the running time of the community-based algorithm does
not increase, resulting in almost constant-time algorithms.

Fig. 5. Results from all four algorithms on NS300 Network where k = 4

The maps in Fig. 5 contain four server nodes picked from the NS300 network.
The maps are to give an indication of why the cost of each algorithm within
the network is displayed in that order, i.e. reverse greedy having the highest
cost, community select having a somewhat evenly spaced facility locations and
community swap and single swap having very similar results. In particular, when
comparing with the real-world situation, the results produced by single swap
and community swap are the most intuitive as all four facilities fall into well-
recognized industrial areas that are also close to dense residential areas.

6 Conclusion and Future Work

This work focuses on the k-median facility location problem and proposes algo-
rithms that incorporate a pre-determined community structure of the network.
We analyze the performance of the algorithms on a real-world case study, i.e.,
spatial networks generated from Auckland North Shore. The experimental results
reveal that the community swap algorithm produces outputs that are very close
to the single swap algorithm while achieving almost constant time due to small
search space. As a result, the community-based algorithms demonstrate a high
potential to be used in real-world network data to solve this problem.

Our future work will be focused on adding more parameters to community
swap so that it gives results that are useful for real-life networks. For example,
it would be interesting to investigate the performance of the algorithm on road
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networks of land adjacency networks. Another future work concerns with more
sophisticated application scenarios of the facility location problem. E.g., intro-
ducing competing and existing facilities in the problem domain. When compet-
ing facilities are considered we must take into account whether the algorithm
is trying to take away as many customers away from the existing facilities or
whether we are trying to avoid the existing algorithms so that it is connected
to as customers as possible. A third direction to extend this work is to intro-
duce capacity to server nodes. Our work only deals with uncapacitated facility
location algorithms and therefore the next goal is to extend all our implemented
facility location algorithms so that facilities have capacities in them.
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