
Task Offloading with Execution Cost
Minimization in Heterogeneous Mobile

Cloud Computing

Xing Liu1, Songtao Guo1(B), and Yuanyuan Yang2

1 College of Electronic and Information Engineering, Southwest University,
Chongqing 400715, China
songtao guo@163.com

2 Department of Electrical and Computer Engineering, Stony Brook University,

Stony Brook, NY 11794, USA

Abstract. Mobile cloud computing (MCC) can significantly enhance
computation capability and save energy of smart mobile devices (SMDs)
by offloading remoteable tasks from resources-constrained SMDs onto the
resource-rich cloud. However, it remains a challenge issue how to appro-
priately partition applications and select the suitable cloud to offload
the task under the constraints of execution cost including completion
time of the application and energy consumption of SMDs. To address
such a challenge, in this paper, we first formulate the partitioning and
cloud selection problem into execution cost minimization problem. To
solve the optimization problem, we then propose a system framework
for adaptive partitioning and dynamic selective offloading. Based on the
framework, we design an optimal cloud selection algorithm with execu-
tion cost minimization which consists of offloading judgement and cloud
selection. Finally, our experimental results in a real testbed demonstrate
that our framework can effectively reduce the execution cost compared
with other frameworks.

Keywords: Mobile cloud computing · Application partition
Task offloading · Cloud selection · Execution cost minimization

1 Introduction

In recent years, smart mobile devices (SMDs) such as smartphones have become
an indispensable part of modern life. The SMDs have been the preferred comput-
ing device to accommodate most up-to-date mobile applications, like interactive
games, image/video applications and etc [16]. However, due to the physical size
constraint, SMDs are in general resource-constrained [7], with limited energy
supply and computation capacity. In particular, it is still a challenge how to run
computing-intensive applications on resource constrained SMDs.

With the development of communication technology, cloud computing
applied in the mobile industry has formed an emerging and promising method
c© Springer Nature Singapore Pte Ltd. 2018
L. Zhu and S. Zhong (Eds.): MSN 2017, CCIS 747, pp. 509–522, 2018.
https://doi.org/10.1007/978-981-10-8890-2_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8890-2_39&domain=pdf


510 X. Liu et al.

to solve this challenge [7], which is mobile cloud computing (MCC). MCC allows
mobile devices to take advantage of rich resources provided by the clouds. Thus,
MCC not only extends battery lifetime but also utilizes the computation resource
of cloud system. In recent years, a computation offloading [7,14] which migrates
resource-intensive computations from SMDs to the cloud via wireless access, has
been proposed as a way of implementing mobile cloud computing. Moreover, the
suitable computation partition is precondition of computation offloading, which
also is the hot research topic of MCC. The objective of computation partition
and offloading is solving the problem which minimizes the execution cost of
applications including completion time and energy consumption of SMDs.

Previous research works have proposed solutions to address the problem
[5,6,8,12,14–16]. Chun et al. in [14] proposed a CloneCloud that automatically
offloads an application from the mobile device to the smartphone clone in the
cloud at a fine-granularity level while optimizing the execution time for a target
computation. Based on CloneCloud, Yang et al. in [16] optimized the overall
execution time by dynamically offloading a part of Android codes running on
smart mobile device to the cloud. In practice, according to computing resources,
the clouds can be divided into many categories. For different categories of clouds,
the offloading cost of the same application is different. However, how to select an
appropriate category of clouds to minimize the execution cost is not considered
in the previous works.

This paper mainly focuses on how to appropriately partition application and
dynamically select the best cloud to offload. First, we formulate the cloud selec-
tion problem into an optimization problem of minimizing execution cost, which
includes the completion time of application and energy consumption of SMDs.
In order to solve this problem, we then design a novel system framework which
performs the method-level offloading with least transfer package size. This frame-
work provides runtime support for the application partitioning and offloading,
and consists of profiler, solver and communication module. According to the
amount of local computation resource, the SMDs divide each thread of the appli-
cation into some small tasks, named offloading tasks, and migrates the tasks to
the best cloud to execute so as to achieve the minimum execution cost. Based
on the framework, we propose a best cloud selection algorithm assigned into the
solver of framework.

Compared with previous works, the contributions of this paper can be sum-
marized as follows:

– We present an integrated and novel framework of code partitioning and
offloading. The comments of our framework are highly modularized and easily
extended.

– We propose an optimization model for the local execution time and energy
consumption of SMDs by taking into account the execution time of the cloud.

– Based on the proposed optimization model, we provide a cloud selection algo-
rithm to achieve the minimum execution cost.

The rest of this paper is organized as follows. In Sect. 2, we introduce the
related work. In Sect. 3, we present the MCC system and optimization model.



Task Offloading with Execution Cost Minimization 511

Section 4 outlines the proposed framework and Sect. 5 presents the algorithms for
optimal cloud selection. In Sect. 6, we evaluate the performance of the proposed
algorithm. Section 7 concludes the paper.

2 Related Work

MCC focuses on solving the problems of what to offload and how to offload
[10,11]. The primary objective of offloading and partitioning policies is to
enhance the performance of mobile device in terms of execution/completion time
and throughput by utilizing cloud resource [4,7,13–16]. Guo et al. in [7] proposed
an energy-efficient dynamic offloading strategy that optimizes the performance
of mobile devices through the dynamic voltage and frequency scaling (DVFS)
in local computing. Yang et al. in [15] studied the computation partitioning in
order to optimize the partition between the mobile devices and cloud such that
the application has maximum throughput.

In addition, in [14], the Multi-User Computation Partitioning Problem
(MCPP) was designed to achieve minimum average completion time for all
the users. Compared with these works, we not only consider the cost of thread
offloading, but also take into account the price of thread partition. On the basis
of the partition technique in [16], we study how to judge whether an application
thread is necessary to offloading. After that, we develop heterogeneous selection
scheme for diverse remote cloud resources with the optimal size of the transmis-
sion packet.

There are a few works on the design of application frameworks in cloud com-
puting [5,6,8,12,13,15]. The most popular one is MAUI [6], which describes
a system which offloads fine-grained code to the cloud, while maximizing the
potential of energy saving. However, it can’t guarantee to satisfy the requirement
of completion time. Actually, either completion time or energy consumption was
only considered in previous works. Our work aims to develop systematic method
to improve the time and energy efficiency of task offloading. Thus we utilize an
online profiler to monitor the completion time of the application, and dynami-
cally decide whether and where to offload tasks based on user requirements.

3 Network Architecture and Problem Formulation

3.1 Network Architecture

Our cloud system consists of a specific SMD and multiple types of mobile cloud
systems that can provide different services, as shown in Fig. 1. The SMD accesses
the Internet via base station or wireless access point, and then visits the cloud
resources over the network.

In this paper, two kinds of cloud system would be considered, i.e., central cloud
c1 and cloudlets c2. Furthermore, ck = {c1k, c2k, · · ·, cm

k }, k = 1, 2 denotes the cloud
ck has m cloud severs. However, the CPU frequencies of different servers in a cloud
system are different. Thus, the CPU frequency of each sever in cloud ck is f j

ck
,



512 X. Liu et al.

Fig. 1. Overview of mobile cloud computing system

where j ∈ {1, 2, · · ·,m} represents the sever j of cloud ck. Note that f0 denotes
the local CPU frequency of SMDs. In addition, we denote when the SMD accesses
to cloud ck via network access, the corresponding channel data transmission rate
is Rck , k = 1, 2.

3.2 Problem Formulation

MCC aims to solve the problem of energy consumption and execution time of
SMDs, which is the main research content of this paper.

In our system, a process is an Android application running on the Dalvik vir-
tual machine (VM). An application process may comprise multiple threads, part
of which are called as remoteable threads, which may contain multiple remotely
executable methods (REMs) while others will be called as un-remoteable threads,
which do not have REMs. MCC mainly focuses on the remoteable threads. Thus
unless otherwise specified, the thread in this paper is considered as the migrat-
able thread.

Next, we consider the execution cost of an application under the diversity
condition. When the SMD runs an application, the solver in our framework
will partition the application as primary heap objects (PHOs), which will be
described in Sect. 4.2.1 in detail. We define the set of PHOs as N = {i|i =
1, 2, ..., n}. Moreover we leverage an indicator xi,ck , k = 1, 2,∀i ∈ N , to represent
the task allocation, i.e.,

xi,ck =

{
1, if task i is assigned to cloud ck,

0, otherwise.

where xi,ck is either 0 or 1, thus we can take X = {(xi,ck)|i ∈ N, k = 1, 2} as
task allocation matrix.

We use a tuple {αi, ωi} to denote task i, for i ∈ N , in which αi is the
input data size (in bits) from SMDs to cloud, and ωi is the number of CPU
cycles that is required by task processing, respectively. For a task i, we consider
whether offloading it or not from the aspect of completion time and energy
consumption. Similar to the existing work [4], we ignore the download time and
downlink energy consumption of the task. Therefore, the completion time of task



Task Offloading with Execution Cost Minimization 513

Ti includes the computing time T comp
i and transmission time T trans

i , formulated
as (1).

Ti = T comp
i + T trans

i =
ωi

f j
ck

+
αi

Rck
(1)

where k = 1, 2, and T loc
i = ωi

f0
denotes the local execution time of task i.

The energy consumption of task i, denoted as Ei, consists of two parts,
which are the energy consumption of waiting for remote execution Ewait

i , and
the energy consumption of transferring task to clouds Etrans

i , described as

Ei = Ewait
i + Etrans

i = Pidle × ωi

f j
ck

+ Ps
αi

Rck
(2)

where k = 1, 2, and Pidle indicates the waiting power of SMDs when task i is
migrated to clouds. Ps denotes transfer power of SMDs. We let Eloc

i = Pc × ωi

f0
denote the local computing energy consumption when task i is executed locally,
where Pc represents computation power of SMDs.

Furthermore, the execution time T (X) of an application can be expressed as
Eq. (3).

T (X) =
∑
i∈N

xi,ck × Ti

=
∑
i∈N

xi,ck ×
(

ωi

f j
ck

+
αi

Rck

)
=

∑
i∈N

xi,ckΘi,ck

(3)

where k = 1, 2. The energy consumption (E(X)) can be given by Eq. (4)

E(X) =
∑
i∈N

xi,ck × Ei =
∑
i∈N

xi,ck ×
(

Pidle
ωi

f j
ck

+ Ps
αi

Rck

)

=
∑
i∈N

xi,ckΦi,ck

(4)

In particular, the local execution time and energy consumption of application
are given by respectively

T loc(X, f0) =
∑
i∈N

xi,0
ωi

f0
(5)

Eloc(X, f0) =
∑
i∈N

xi,0Pc × ωi

f0
(6)

We use the execution cost as the metric to measure whether to migrate to
the cloud. Hence, execution cost Cost(X) can be defined by the summation
of makespan T (X) and the energy consumption E(X) of the application, for
k = 1, 2, i.e.,

Cost(X) = λtT (X) + λeE(X)

= λt

∑
i∈N

xi,ckΘi,ck + λe

∑
i∈N

xi,ckΦi,ck
(7)



514 X. Liu et al.

where λt, λe ∈ [0, 1] are scalar weights, and λt + λe = 1. These weights can be
adjusted by the preference related with energy and delay deadline of users.

Overall, the optimization problem formulated is how to select the cloud to
offload for minimizing the execution cost of the task. The optimization frame-
work can be formulated as follows:

min
X,C,S

Cost(X) (8)

s.t

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
i∈N

T (X) ≤ tdelay (9a)

∑
i∈N

E(X) ≤ ethreshold (9b)

∑
k=1,2

xi,ck = 1, ∀i ∈ N (9c)

X = {(xi,ck)|i ∈ N, k = 1, 2} (9d)

The constraint (9a) denotes the completion time constraint which ensures
that the total completion time of all the tasks in an application executed on
SMDs is bounded by the required maximum finish time (i.e., delay deadline),
tdelay. Similarly, (9b) specifies that the total energy consumption is less than or
equal to the maximum energy consumption ethreshold. Constraint (9c) demon-
strates that a task can only be assigned to one device. (9d) represents the task
allocation.

4 System Framework Design

To address the optimization problem (8), a system framework is proposed,
which consists of three components: Profiler, Solver and Communication Mod-
ule, shown in Fig. 2. First, the profiler is mainly responsible for analyzing and

Fig. 2. The overview of system framework



Task Offloading with Execution Cost Minimization 515

detecting the network conditions, cloud conditions and mobile device perfor-
mance, as well as transmitting correlative data to the solver. Then, based on
the data provided by the profiler, the solver makes decision on partitioning and
offloading. Finally, the communication module sends the task packages to the
cloud, and receives the results returned from the cloud. In the following, we
introduce the three components in details.

4.1 Profiler

The profiler is mainly deployed on the mobile device to detect and collect the
parameters and configure resources of SMDs and clouds.

When SMD starts to execute an application, the system would create a tem-
porary buffer (TF ) in SMD’s memory to store the information consisting of the
device performance, such as Pidle, Ps, and Pc of SMDs, the network access, i.e.,
the channel data transmission rate Rck , and the cloud resource, that is, the types
of clouds ck, as well as the CPU frequency f j

ck
. Moreover, this temporary buffer

will be immediately released once the application is completed.
The solver can directly get data from cache TF, when it makes decision.

What’s more, the profiler is detecting the information in real-time, updating the
data of TF at any time to ensure that the values obtained by solver are not
expired.

Furthermore, the profiler also measures and analyzes whether the thread
of the mobile application is remoteable. Here, we define three types of un-
remoteable codes: (1) the codes that implement the application’s user interface;
(2) the codes that interact with I/O devices where such interaction only makes
sense on the mobile device; (3) the codes that interact with any external com-
ponent that would be affected by re-execution [6]. If the thread is remoteable,
which indicates that the thread doesn’t include above three types of codes, the
profiler will mark this thread as attribute [Remoteable], and transfer it to the
solver.

4.2 Solver

The solver is mainly used to solve the problem of minimizing the execution cost
Cost(X) of an application, which consists of two modules in our system: the
partition module and the migration module.

4.2.1 Partition Module
Partition module is used for code partition of application. When the profiler
detects a remoteable thread, the partition module catches this thread. The state
being transferred of remoteable thread includes stack, register and reachable
heap object. Therefore, by using the partitioning technique in [16], the partition
module determines the accessible heap objects (AHOs) by recursively chasing
the reference links. Then the partition module deletes the super classes to make
AHOs become the primary heap objects (PHOs), which is fewer than AOHs.



516 X. Liu et al.

Fig. 3. A example of Java code.

After that, we use the notion of dirty to further partition the PHOs. An
example of code is shown in Fig. 3. Figure 3(a) defines the class TestMethod,
and Fig. 3(b) declares the method foo() and goo() when these methods call
the class TestMethod. The method foo() calls method goo() twice in Fig. 3(b),
where we consider that two call points of the method goo() are migration point
A and migration point B, respectively. When there is the migration point A,
class objects V 0, V 1, V 2 are not invoked. While there is migration point B, class
objects V 0, V 1 have been called, thus we label the objects, V 0, V 1, as dirty that
have been invoked before call points. Other objects like V 2 are un-dirty.

The dirty objects are identified by a famous compiler analysis technique,
called side-effect [16]. For the un-dirty object, we do not migrate it rather than
create a stub, and only migrate the stub. The stub consists of class name, object
ID, and the address of an object which is necessary for the solver on the cloud
to create new instance of un-dirty PHOs. After migrating stub to the cloud, we
would use on-the-fly technique [3] to online instantiate un-dirty PHOs, named
on-cloud-copy. Finally, we migrate the dirty objects and the stubs of un-dirty
objects of PHOs, which is called offloading task.

4.2.2 Migration Module
The migration module mainly performs offloading decision for the task. In this
module, we propose a best cloud selection algorithm (introducing in Sect. 5).
According to transmission delay and energy saving required by the mobile user’s
preference for application execution, the module makes optimal offloading deci-
sion, i.e. selecting a best cloud to execute the migrated tasks, to minimize the
cost Cost(X).

We adopt tdelay to denote the tolerance of execution delay and ethreshold to
represent the tolerance of energy consumption. Different offloading strategies can
be made by users based on their requirements for energy and delay as follows:

– When a mobile device is at low battery energy state, it can choose λt < λe,
where λt, λe ∈ [0, 1]. Meanwhile

∑
i∈N E(X) is bounded by ethreshold, i.e.,∑

i∈N E(X) ≤ ethreshold.



Task Offloading with Execution Cost Minimization 517

– When a mobile device is running delay-sensitive applications (e.g., video
streaming) that require to reduce as much as delay, it can set λt > λe, where
λt, λe ∈ [0, 1]. Simultaneously,

∑
i∈N T (X) ≤ tdelay.

– When a mobile device has low battery energy and runs the delay-sensitive
applications, it can set λt = λe, where λt, λe ∈ [0, 1], so as to jointly optimize
the energy consumption of mobile devices and the application completion
time. Similarly,

∑
i∈N E(X) ≤ ethreshold,

∑
i∈N T (X) ≤ tdelay.

4.3 Communication Module

Communication module is responsible for the communication between local
mobile device and clouds. When the solver has partitioned the thread and
made offloading decision, the communication module serializes and packages
the offloaded states and sent to cloud. When the cloud finishes the execution of
a task, the communication module at cloud serializes the execution result, and
sends it to mobile device. The local communication module receives the results
from the cloud, and then compares it with source codes. The results from the
cloud are merged with the local source codes and the SMD run the merged
program again.

In general, our system framework analyzes an application via profiler to deter-
mine whether each thread of the application can be offloaded. Furthermore, using
the partition module of solver of the framework, these threads that need to be
uploaded are partitioned as a smaller size of tasks, while the migration module
calculates the execution time Ti, the energy consumption Ei, and the execution
cost of each task Costi, according to the user’s different preferences for time and
energy consumption. We propose a best cloud selection algorithm on the migra-
tion module of solver based on the computation result of the partition module
and obtain the cloud category with least cost, which will be given in Sect. 5.
Finally, we offload the task to the selected cloud.

5 Best Cloud Selection Algorithm Design

In this section, we design a best cloud selection algorithm shown in Algorithm
1, which selects a cloud to transfer the task for achieving the minimum exe-
cution cost Cost(X). The algorithm is applied to the migration module of our
framework and consists of two parts: one is to decide whether the task can be
offloaded, and the other is to migrate the remoteable task to which clouds.

In the following, we describe the first part of our algorithm. When the solver
captures a task execution thread, we need to determine whether the thread needs
to be uploaded to the cloud. Except for the previous judgement of profiler, we
also need to decide whether the partitioned task is offloaded or not according to
Ti and Ei. The judgement condition is given as Eq. (10).{

task i is executed remotely, if
T loc
i

Ti
> 1, and

Eloc
i

Ei
> 1

task i is executed locally, otherwise.
(10)



518 X. Liu et al.

For a given task i, if its local computation time T loc
i is greater than the

remote execution time Ti, and the local energy consumption Eloc
i is also larger

than the offloading energy consumption Ei, then the task will be offloaded to the
cloud; otherwise, the task will be executed on local device. If task i is considered
to be migrated, then the algorithm labels the attribute [Remoteable] to the task,
as described in line 2–10 of Algorithm 1.

Besides, we will describe the second part of our algorithm. As described in
line 14–15, the task i is determined to be uploaded to the cloud, and the cost
Costi of the task i for cloud c1 and c2 is calculated, as shown in line 14. Next, we
compare all Costi of task i by line 15, and obtain the minimum cost Costmin

i .
After that, we assign the cloud ck with minimum cost Costi of task i to the best
cloud K. Finally, we select the cloud K as the best offloading cloud, and migrate
the partitioned task to the cloud, as shown in line 16–18.

In addition, we analyze the time complexity of the algorithm. We consider
n tasks and m clouds in the algorithm. For each task, the time complexity of
calculating minimum cost of finding the best cloud among m clouds is O(m),
which is shown in Lines 12–20. Therefore, the time complexity of n tasks to
calculate the minimum cost is denoted as O(n × m), from Lines 2 to 21.

Algorithm 1. Best Cloud Selection Algorithm.
Input: : λt, λe: user’s preference;

i ∈ N : execution tasks that had partitioned;
j = 1, 2, · · ·, m: the number of severs of ck;

Output: : best cloud selection K;
1: set parameters: f j

ck , Rck , Pidle, Ps, Pc

and Ti, T
loc
i , Ei, E

loc
i , Costi, Costmin

i ;
2: for i = 1 to n do
3: compute Ti, T loc

i and Ei, Eloc
i by (1), (2), (5) and (6) respectively;

4: /* offloading judging */

5: if
T loc
i
Ti

> 1 and
Eloc

i
Ei

> 1 then
6: task i will be migrated to clouds;
7: label i as [Remoteable];
8: else
9: execute task i locally;

10: end if
11: /* cloud selection */;
12: if task i is remoteable then
13: for j = 1 to m do
14: Costi = λtTi + λeEi; //Costi is the execution cost of a task i on cloud ck

15: Costmin
i = minck∈C{Costi}

16: if K = ck then
17: migrate task i to cloud ck;
18: end if
19: end for
20: end if
21: end for



Task Offloading with Execution Cost Minimization 519

6 Performance Evaluation

We implement our system module on the Android 4.1.2. The smart mobile device
is a SAMSUNG Galaxy Nexus with dual-core 1.2 Ghz CPU and 1 GB of RAM.
As for the cloud sever, we consider two categories of clouds, i.e., the central cloud
and cloudlets. The central cloud consists of 3 IBM X3850X6 severs, each of which
has 4 quad-core 3.4 Ghz Xeon CPUs and 128 GB of RAM running Ubuntu 14.0.
Then we use 30 Android 4.1.2 SAMSUNG Nexus S5 smartphones with quad-core
2.5 GHz CPU and 2 GB RAM, as cloudlets. The experimental parameters are
listed in Table 1.

Table 1. Default parameter setup

Parameter Value

ωi 330αi

f j
ck [10, 54.4] GHz

f0 2.4 GHz

RUL
sv,ck [10, 25] Mbps

RDL
sv,ck RUL

sv,ck

Ps 1.5 W

Pc 2.4 W

Pidle 50 mW

Fig. 4. Impact of wireless channel data transmission rate.

Figure 4 shows the effect of data transmission rate on task execution cost
as well as the practicality of our framework. We use the Face Detection [1] as
experimental application, which needs to identify 99 images and access the cloud



520 X. Liu et al.

via 4G. According to the Shanon theorem, we know that the data transmission
rate is limited by channel bandwidth and Signal-Noise Ratio(SNR). Therefore,
for the wireless access, we set the channel bandwidth B = 5 MHz. Theoretically,
when the bandwidth B is fixed, the larger the SNR is, the greater the channel
data transmission rate is. With the increasing of SNR, the execution cost of
the application is decreasing. Compared with other three methods, i.e., all tasks
are executed locally, on the central cloud and on the cloudlets, our proposed
framework of application partition and optimal cloud selection is much shorter
than other methods in term of execution cost. Furthermore, we find that our
framework reduces about 80% compared with local execution, and is less about
60% and 65% than the execution in central cloud and cloudlets.

Figure 5 illustrates that the impact of user’s preferences, λt and λe on the
completion time and energy consumption of application with different number
of tasks. Here, we implement the examination by solving the N-Queens prob-
lem [8], and give the comparison of execution time and energy consumption for
different ratios of λt

λe
. It can be observed from Fig. 5(a) that for a given task, the

completion time decreases as λt increases, however, the changes of the energy
consumption are opposite in Fig. 5(b). This is reasonable since a large λt will lead
to the little tolerance for completion time for the user. Therefore, the proposed
system framework will automatically set the weight value of λt to be larger than
λe, which means that it mainly optimizes the completion time of the application
to meet the needs of the user.

Figure 6 demonstrates the comparison of execution cost of our framework
with the least context migration system in [9] called framework 1, and the mul-
tisite offloading framework using Markov decision process in [13] named frame-
work 2 by the applications of Face Detection [1], N-Queens [8], and Sudoku [2].
We can observe from Fig. 6 that the average overhead in our framework is about
35% less than framework 1, and 30% less than framework 2 in application com-
pletion. The reason is that our framework transfers much less data and selects
adaptively the optimal cloud.

(a) Completion time. (b) Energy consumption.

Fig. 5. The impact of user’s preference λt
λe



Task Offloading with Execution Cost Minimization 521

Fig. 6. Comparison of overhead of three framework for different applications.

7 Conclusion

In this paper, we study the execution cost minimization problem in mobile cloud
computing. We design an application framework including profiler, solver, and
communication module. This framework provides runtime support for adaptive
partitioning and dynamic offloading selection in application execution. Under
this framework, we propose a novel cloud selection algorithm which is composed
of offloading judgement and cloud selection. We implement the framework in a
real testbed and experimental results demonstrate that compared to the existing
frameworks, our framework can effectively reduce the execution time and energy
consumption.

Based on these, the future work will consider the task offloading allocation
problem in the multiple network connection ways and variety mobile cloud sys-
tem scenarios.

Acknowledgement. This work was supported by the National Natural Science Foun-
dation of China (No. 61373178, 61373179, 61402381), Natural Science Key Foundation
of Chongqing (cstc2015jcyjBX0094), the Fundamental Research Funds for the Central
Universities (XDJK2013A018, XDJK2015C010, XDJK2015D023), and Natural Science
Foundation of Chongqing (CSTC2016JCYJA0449), China Postdoctoral Science Foun-
dation (2016M592619) and Chongqing Postdoctoral Science Foundation (XM2016002).

References

1. Face detection.https://facedetection.com/
2. Sudoku. https://play.google.com/store/apps/details?id=com.icenta.sudoku.ui
3. Chabrier, T., Tisserand, A.: On-the-fly multi-base recoding for ECC scalar multi-

plication without pre-computations. In: 2013 IEEE 21st Symposium on Computer
Arithmetic, pp. 219–228 (2013)

4. Chen, X.: Decentralized computation offloading game for mobile cloud computing.
IEEE Trans. Parallel Distrib. Syst. 26, 974–983 (2015)

https://facedetection.com/
https://play.google.com/store/apps/details?id=com.icenta.sudoku.ui


522 X. Liu et al.

5. Chun, B.G., Ihm, S., Maniatis, P., Naik, M., Patti, A.: CloneCloud: elastic execu-
tion between mobile device and cloud. In: Conference on Computer Systems, pp.
301–314 (2011)

6. Cuervo, E., Balasubramanian, A., Cho, D.K., Wolman, A., Saroiu, S., Chandra,
R., Bahl, P.: MAUI: making smartphones last longer with code offload. In: Interna-
tional Conference on Mobile Systems, Applications, and Services, pp. 49–62 (2010)

7. Guo, S., Xiao, B., Yang, Y., Yang, Y.: Energy-efficient dynamic offloading and
resource scheduling in mobile cloud computing. In: IEEE INFOCOM 2016 - The
35th Annual IEEE International Conference on Computer Communications, pp.
1–9 (2016)

8. Kosta, S., Aucinas, A., Hui, P., Mortier, R., Zhang, X.: Thinkair: dynamic resource
allocation and parallel execution in the cloud for mobile code offloading. In: 2012
Proceedings IEEE INFOCOM, pp. 945–953 (2012)

9. Li, Y., Gao, W.: Code offload with least context migration in the mobile cloud. In:
2015 IEEE Conference on Computer Communications (INFOCOM), pp. 1876–1884
(2015)

10. Liu, J., Ahmed, E., Shiraz, M., Gani, A., Buyya, R., Qureshi, A.: Application
partitioning algorithms in mobile cloud computing: taxonomy, review and future
directions. J. Netw. Comput. Appl. 48(C), 99–117 (2015)

11. Khan, A.R., Othman, M., Madani, S.A., Khan, S.U.: A survey of mobile cloud
computing application models. IEEE Commun. Surv. Tutor. 16(1), 393–413 (2014)

12. Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N.: The case for VM-based
cloudlets in mobile computing. IEEE Pervasive Comput. 8(4), 14–23 (2009)

13. Terefe, M.B., Lee, H., Heo, N., Fox, G.C., Oh, S.: Energy-efficient multisite offload-
ing policy using Markov decision process for mobile cloud computing. Pervasive
Mob. Comput. 27(C), 75–89 (2016)

14. Yang, L., Cao, J., Cheng, H., Ji, Y.: Multi-user computation partitioning for latency
sensitive mobile cloud applications. IEEE Trans. Comput. 64(8), 2253–2266 (2015)

15. Yang, L., Cao, J., Tang, S., Li, T., Chan, A.T.S.: A framework for partitioning and
execution of data stream applications in mobile cloud computing. In: 2012 IEEE
Fifth International Conference on Cloud Computing, pp. 794–802 (2012)

16. Yang, S., Kwon, D., Yi, H., Cho, Y., Kwon, Y., Paek, Y.: Techniques to minimize
state transfer costs for dynamic execution offloading in mobile cloud computing.
IEEE Trans. Mob. Comput. 13(11), 2648–2660 (2014)


	Task Offloading with Execution Cost Minimization in Heterogeneous Mobile Cloud Computing
	1 Introduction
	2 Related Work
	3 Network Architecture and Problem Formulation
	3.1 Network Architecture
	3.2 Problem Formulation

	4 System Framework Design
	4.1 Profiler
	4.2 Solver
	4.3 Communication Module

	5 Best Cloud Selection Algorithm Design
	6 Performance Evaluation
	7 Conclusion
	References




