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Abstract. Mobile edge computing (MEC) is a technology that transfers
resource to the edge of network, which spares more attention to giving users
easier access to network and computation resources. Due to the large amount of
data computation needed for devices in Internet of Things, MEC technology is
applied to improve computing efficiency. Though MEC can be applied to the
Internet of Things, it needs further consideration on how to efficiently and
reasonably allocate computing resources, and how to minimize the computing
time of all users. This paper proposes a computing resources allocation scheme
based on hybrid quantum-behaved particle swarm optimization. Simulation
experiments with the network environment based on the Internet of Things is
carried out. The results show that this algorithm can accelerate the whole
computing process and reduce the number of iterations.
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1 Introduction

With the rapid development of information technology and information industry, the
Internet of Things (IoT), supported by big data mining, cloud computing and machine
learning, has been applied to various fields. And the appearances of newly-developing
technology, cloud computing, bid data, AR and other technologies, promote the
industry IoT upgrading. A recent study by NCTA in United States assumes that about
5.01 million Internet of Things will be connected to the Internet by 2020 [1].

The future era will rely on Internet technology to achieve the intelligent life,
covering the fields in home security, environmental testing, energy, car networking,
industrial intelligence manufacturing and other. IoT transforms itself from simple mode
of things to the intelligent mode. IoT typically involve a large number of smart sensors
that sense information from the environment and share it with the cloud service for
processing. IoT application services can be divided into two types: one is a post hoc
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analysis, which collects data through the IoT terminal. And it upload to the cloud
through the IoT private network or public network. Then the information will combine
with bid data to be filtered and analyzed in the cloud. This application is often one-way.
In other words, to capture and analysis do not need feedback data transmission. The
other one is a real-time feedback type, which is making data acquisition and analysis
not only through the IoT terminal, but also through the reverse real-time feedback.
Such applications have higher requirements for latency and reliability.

Currently the IoT architecture is still cloud-centric architecture. Its main feature is
that the communication exists between terminal and the cloud, and the main type of
application services is a post hoc analysis. With the development of IoT, real-time
feedback application requirements will increase more and more. And the IoT current
architecture, cloud-centric architecture, is clearly unable to meet the needs of such
applications. The main problems caused by generate data from IoT are: (1) IoT
application processing time may be limited by the network delay in offloading data to
the cloud. (2) the generation and upload of a large amount of IoT data causes network
congestion resulting in further network delay.

To address the network problems designed in the Internet of Things and similar
applications, researchers have proposed to bring computing closer to data generators
and consumers. One suggestion is the fog computation [2], which enables the device to
run the cloud application on its native architecture. The purpose of the fog is to perform
low latency calculations/aggregations on the data while routing it to the central cloud
for a large amount of calculation [3, 4]. On the other hand, the edge-centric computing
cloud (mobile edge computing) [5] is inspired by projects such as SETI @ Home,
Folding @ Home [6, 7], and the integration of voluntary human resources are pro-
posed, such as desktop PC, Tablet, smartphone, nanometer data center as cloud. Since
the resources in the Edge cloud are usually located near the hop of the Internet of
Things sensors, processing the data at the edges can significantly reduce network
latency [8, 9]. In addition, several papers (e.g., [10–20]) have studied the related
wireless and IoT issues.

The essence of fog calculation/MEC is “near-service” and “segmental intelligence”.
The traditional IoT uses a three-tier architecture, about the perceived layer, the network
layer, and the platform layer. As shown in the figure, through the Internet of Things
gateway equipped with MEC service platform, IoT gateway not only has the router
function, but also obtain the abilities in storage and computing capacity in some actual
application scenarios. Gateway nodes have the full ability to achieve the edge of
intelligent networking. However, due to the wireless network resources provided by the
nodes and the computation resource provided by the MEC server is limited, the
problem of wireless and computation resource allocation problem is appeared.
Therefore, how to choose access devices to provide computation offloading service
under limited resources is a decision-making process.

In this paper, theMECcalculation offloading decision algorithm is studied. Firstly, the
scene of wireless communication system with MEC calculation offloading technology
under microcell is introduced. Then the content of the scene was mathematical modeling.
It sums up the correspondingmathematical expression and establishes the problemmodel.
Then the quantum-behaved particle swarm optimization algorithm is introduced to
optimize the MEC calculation offloading decision, and the water injection algorithm is
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mixed into the above optimization algorithm. Based on this, a quantum-behaved particle
swarm optimization algorithm with water injection algorithm is proposed to solve the
above problems. And the algorithm is simulated. The simulation results show that the
result of the algorithmapproximates the optimal solution,which can effectively reduce the
task’s completion time.

The remainder of the paper is organized as follows. In Sect. 2, we describe the
Edge-computation architecture and we propose our approach for deploying compute
application tasks on the Edge-computation in efficient manner. In Sect. 3 we evaluate
the effectiveness of our HQPSO algorithm by some simulation. Section 4 concludes the
paper.

2 System Model

2.1 Systems Background

As shown in the Fig. 1, the IoT devices connect to the MEC server through a wireless
network access node(AN). The AN is responsible for scheduling the time-frequency
resourcewhen the device communicateswith theANand is responsible for forwarding the
data and related information of the device’s calculation task to the Edge-Computation
server. And the Edge-Computation server is responsible for scheduling the corresponding
computing resources and storage resources for the device tasks to be evaluated. And it
helps the devices to completes the calculation task and returns the calculated result to the
AN. The AN then returns the result to the device via the wireless access network.

Based on the above scenario, wemodel the radio access network as anOFDMsystem.
And theminimum scheduling unit is a subcarrier (each subcarrier width is 15 kHz).When
the device has a calculating task to upload, theANschedules some subcarrier resources for
the device. Edge-computation server, the cloud computing virtualization management
server, managesmany computing resources and storage resources. And in our simulation,

Fig. 1. The architecture of mobile edge computation offloading
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We simplify the Edge-computation server. At a random point, multiple device’s calcu-
lation task requests are uploaded to the AN. AN and Edge-computation server make joint
decision, which is to assign all or many tasks to some computing resource. The order of
assigning is following the principle named first-come-first-served (FCFS).

In our paper, we propose an algorithm to optimal the time for completing all
calculation task by reasonably assigning computing resource.

2.2 System Parameters and Model

As mentioned in the previous section, we consider that the AN has a total of N
subcarriers scheduled to M devices. The CPU of the computing resource, which is
single-core single-threaded, execute by the principle of the first-come-first-served
(FCFS).

Each device has only one calculation task to perform. They could choose to calculate
locally or offloading to MEC for calculation. Some arguments are introduced in Table 1.

The time of computational tasks performed locally is defined as:

Tm
C ¼ KIm

fm
ð1Þ

Define 9!m : g m; nð Þ ¼ 1; 8m�U; 8n�C; which indicates whether the n-th carrier is
assigned to the m-th device or not. gðm; nÞ¼ 1 indicates that the n-th carrier is assigned
to the m-th device, and vice versa.

Define g m; nð Þ ¼ 0; 1f g; 8m�U; 8n�C; represents the power value on the n-th
carrier of m-th device.

Table 1. The arguments of system

Arguments Significance

f The frequency of the CPU
C ¼ 1; 2; . . .;Nð Þ The set of scheduled carriers
U ¼ 1; 2; . . .;Mf g The device
B The bandwidth of each carrier

taskm ¼ Im; Tm
max

� �
;m�U The m-th device’s calculation task

Im The number of m-th device’s data bits
Tm
max The maximum completion time allowed by the m-th calculation

task
f mL The CPU frequency of each device
Pmax The maximum transmit power
j The number of CPU clock cycles required to process each bit of

data
Rm The m-th device can upload rate
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The total power of the device is limited, so we define:

Pm ¼
XN
n¼1

g m; nð ÞP m; nð Þ�Pmax; 8m�U ð2Þ

which constrains the power of m-th device on all subcarriers. It is meant that the power
of m-th device on all subcarriers shall not exceed the maximum transmit power of the
device.

By the Shannon formula, the m-th device can upload the total rate is as:

Rm ¼ B
PN
n¼1

g m; nð Þ log 1þP m; nð ÞH m; nð Þð Þ;
8m�U

ð3Þ

Where H m; nð Þ represents the channel gain for noise on the n-th carrier of device m.
Offloading calculation time includes the task’s upload time, queuing time, execu-

tion time and download time.
Therefore, the device to calculate the task data upload time is:

Tm
U ¼ Im

Rm
ð4Þ

The calculation execution time in MEC is:

Tm
C ¼ KIm

fm
ð5Þ

Since the schedule for assigning CPU of MEC is FCFS, the queuing time of the
device is determined by its upload time and the execution time of the MEC calculation.
Here, it is assumed that the MEC server provides the sufficient memory to store the
upload data. Since the number of carriers per device is not necessarily same and the
channel quality is different, the time for each device uploading and calculate the task
data is different. According to the upload time is not of uniform size, we could get the
order of the task reaching the MEC. Therefore, the tasks should be executed orderly.

Define A ¼ aijai ¼ 1; 2; . . .;M; i 6¼ j; i; j�Uf g; which represents each tasks’ order
of arrival, and the order of each task executing is a unique value.

The work of the preceding article got the task’s upload time, arrival order and
computing resources for the task calculation time. We can define the task’s queuing
time:

Qai
wait ¼

0; ai ¼ 1
max 0; T j

U þ T j
C þQaj

wait � Ti
U ; aj ¼ ai � 1; ai 6¼ 1

� ��
ð6Þ

If the task is the first one arriving, then his waiting time must be equal to 0. If the
task is not the first to arrive, the second formula is calculated. If the value is equal to 0,
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then the previous task has been completed, before the arrival of this task. Otherwise,
the waiting time should be the above time difference.

After the task is executed by the MEC, the calculation result is returned to the
device. The amount of result’s data is very small, and the time to download it to the
device is considered negligible.

Therefore, the completion time of the task for the device performing the calculation
offloading is:

Tm
MEC ¼ Tm

U þQai
wait þ Tm

C ð7Þ

At this point, the minimum time to complete the task is calculated from follow
equation set:

min
g;P;K1;K2

Xk1�K1

k1¼1

Tk1
L þ

Xk2�K2

k2¼1

Tk2
MEC ð8Þ

subject to

9!m : g m; nð Þ ¼ 1; 8m�U; 8n�C ð9Þ

g m; nð Þ ¼ 0; 1f g; 8m�U; 8n�C ð10Þ

XM
m

XN
n

g m; nð Þ ¼ N; 8m�U; 8n�C ð11Þ

P m; nð Þ� 0; 8m�U; 8n�C ð12Þ

Pm ¼
XN
n¼1

g m; nð ÞP m; nð Þ�Pmax; 8m�U ð13Þ

Rm ¼ B
XN
n¼1

g m; nð Þ log 1þP m; nð ÞH m; nð Þð Þ; 8m�U ð14Þ

K1 [K2 ¼ U;K1 \K2 ¼ £ ð15Þ

Tk2
MEC ¼ Tk2

U þQai
wait þ Tk2

C � Tk2
L ; 8k2�K2 ð16Þ

2.3 Hybrid Quantum-Behaved Particle Swarm Optimization

The model with the smallest completion time established by (7)–(16) is a mixed integer
nonlinear programming. The complexity of the problem is very high because its
constraints contain integer terms and the nonlinearity of the objective function. And it
is difficult to find the optimal solution of the objective function. Therefore, a feasible
method is proposed based on the evolutionary algorithm.
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First, we decompose the optimization problem established by (7)–(16) into
sub-problems 1 and sub-problem 2. The mathematical model of Sub-problem 1 consists
of (16)–(18).

The restriction condition is that the total number of subcarriers is limited and
whether the condition for the device offloading calculation satisfies that the total time of
the MEC calculation is less than the local calculation time or not. The optimization goal
is to maximize the time saved.

max
g;K2

Xk2�K2

k2¼1

Tk2
L � Tk2

MEC ð16Þ

subject to

XM
m

XN
n

g m; nð Þ ¼ N; 8m�U; 8n�C ð17Þ

Tk2
MEC ¼ Tk2

U þQai
wait þ Tk2

C � Tk2
L ; 8k2�K2 ð18Þ

The mathematical model of sub-problem 2 consists of (19)–(24), which mainly
solves the calculation of subcarrier and power allocation and the total uploading rate.

max
g;P2

Rm ð19Þ

subject to

9!m : g m; nð Þ ¼ 1; 8m�U; 8n�C ð20Þ

g m; nð Þ ¼ 0; 1f g; 8m�U; 8n�C ð21Þ

P m; nð Þ� 0; 8m�U; 8n�C ð22Þ

Pm ¼
XN
n¼1

g m; nð ÞP m; nð Þ�Pmax; 8m�U ð23Þ

Rm ¼ B
PN
n¼1

g m; nð Þ log 1þP m; nð ÞH m; nð Þð Þ;
8m�U

ð24Þ

It is not difficult to find that the device waiting time in sub-problem 1 needs to be
solved by the device upload rate obtained from sub-problem 2. Therefore, solving
sub-problem 1 needs to solve sub-problem 2 first, and then solve sub-problem 1 to get
the solution of modeling problem. However, it is necessary to determine the allocation
of the K2 carriers in sub-problem 1 to solve sub-problem 2. For the above analysis, we
propose a quantum behavior particle swarm optimization algorithm that combines the
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water-filling algorithm to solve the sub-problem 1 and the sub-problem 2, so that the
optimization problem established by (7)–(15) is also solved.

First, we apply the quantum-behaved particle swarm algorithm to solve
sub-problem 1 and initialize K particles to represent the initialization of M devices in
sub-problem 1. The k-th particles are initialized as Xk ¼ X1

k ;X
2
k ; . . .;X

m
k ; . . .;X

M
k

� �
.

Unlike the previous section, where Xm
k represents only the subcarrier allocation of the

m-th device, but no more parameters on the allocation of power on the subcarriers are
involved. Thus, the dimensions of the solution are reduced.

Xm
k ¼ g m; 1ð Þ; . . .; g m; nð Þ; . . .; g m;Nð Þð Þ ð25Þ

Similarly, g m; nð Þ is 0 or 1, indicating whether the n-th carrier is allocated to the m-
th device or not.

When the particle swarm is initialized, it means that the initial subcarrier allocation
has been determined. In this case, sub-problem 2 can be simplified as shown in
Eqs. (26)–(28). By solving sub-problem 2, the maximum uplink transmission rate of
the device can be calculated. Where Cm is the set of subcarriers in each column of Xm

k
equal to 1, and J is the total number of elements equal to 1 in row vector Xm

k , which is
the total number of subcarriers allocated to device m.

max
P

Rm ¼ B
PJ
j¼1

log 1þP m; jð ÞH m; jð Þð Þ;
8j�Cm

ð26Þ

subject to

P m; jð Þ� 0; 8j�Cm ð27Þ

XJ
j¼1

P m; jð Þ�Pmax ð28Þ

At this point, solving sub-problem 2 can be understood as the maximum uplink
transmission rate of the device when the total power of the device equipment trans-
mitted is invariable.

To solve sub-problem 2, we establish the Lagrangian equation for (26)–(28)
according to the Karush-Kuhn-Tucker (KKT) condition as (28):

L P; lð Þ ¼ B
PJ
j¼1

log 1 þ P m; jð ÞH m; jð Þð Þ

�l
PJ
j¼1

P m; jð Þ � Pmax

 ! ð29Þ

Where l is the Lagrangian multiplier, which is a constant.
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Next, to solve the optimal transmission power of the device m on each carrier, the
transmission power of the m-th device in the Eq. (29) is subjected to calculate its partial
derivative:

@L P;uð Þ
@P m;1ð Þ ¼ 0
@L P;uð Þ
@P m;2ð Þ ¼ 0

:
:

@L P;uð Þ
@P m;Jð Þ ¼ 0

8>>>>><
>>>>>:

ð30Þ

Solve Eq. (30), and we could get the equation J shown equation.

P m; jð Þ ¼ max 0; B
ln 2�l � H m; jð Þ�1

n o
;

8jεCm

ð31Þ

From the Eq. (31) we can see that if the sub-carrier’s gain-to-noise ratio is bigger,
which means that the better channel quality of the subcarrier, the assigned transmit
power of the subcarrier should be larger. The idea of power allocation above is the
principle of water-filling algorithm.

In the following, we use the water-filling algorithm proposed in [22] to solve the
sub-problem 2 that the subcarrier transmit power is allocated under the condition that
the total transmit power is limited to maximize the total rate of the device. Compared
with the classical binary search water-filling algorithm, the water-level algorithm
reduces the complexity of the algorithm because it does not solve the Lagrangian factor
directly by iterative method, but by using the iterative factors for the inconvenient
adjustment of the iterative adjustment until all the power distribution is completed in
power limited and initial water-filling line assumed conditions.

Then, back to the analysis of sub-problem 1, after get the device’s upload rate, we
can calculate the time of task uploading and calculating. According to the upload time,
we could get the order of the tasks reach the AN for getting the execution order and the
waiting time of tasks.

In Sub-problem 1, the goal of solving the problem is to maximize the difference
between the completion time of the offloading task calculation task and the completion
time of the local task calculation. Previously, by initializing the M particles repre-
senting the subcarrier assignment of K devices in sub-problem 1, there is a certain
degree of randomness. Because the device’s subcarrier allocation determines whether
the device can perform the offloading calculation. And we can get all the possible
distribution and device uninstall calculation.

Due to adopting the method of split solution, we need to modify penalty coefficient
function of the fitness function. In the sub-problem 2, the water-filling algorithm has
been applied to solve the power-related constraints, so the penalty function is the
function (32) term.
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XN
n¼1

XM
m¼1

g m; nð Þ � 1

 !2

ð32Þ

Thus, the final fitness function is shown in (33), where a is the penalty factor.

f Xð Þ ¼
Xk2�K2

k2¼1

ðTk2
L � Tk2

MECÞ � a �
XN
n¼1

XM
m¼1

g m; nð Þ � 1

 !2

ð33Þ

In addition, the device needs the data size of the computing task, the calculation
rate of their own equipment and other information reported to the AN. these all are a
priori information. In the premise of obtaining these information, the AN solve the
decision problem to get the final subcarrier allocation results through the proposed
algorithm, and reply to the device. And the device will decide to choose the offloading
calculation or local calculation according to the results of the answer.

3 Simulation Setting and Result

3.1 Simulation Parameter Setting

Table 1 shows the simulation parameters of the MEC calculation unloading decision
algorithm based on the hybrid quantum-behaved particle swarm optimization algorithm
proposed in the mobile communication macro cellular network.

The simulation scene is a hexagonal area (500 * 500 m), and the user’s cellular
terminal equipment evenly distributed in the network. The simulation scene is shown in
Fig. 2. The small red dots represent devices, and the blue point represents the macro
base station, the devices’ location in the figure is randomly generated. To ensure the

Fig. 2. The paper’s simulation scene
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generalization of the simulated devices’ position, we compare the average of the
solution obtained by solving the algorithm with 100 devices randomly generated and
the average of the 100 optimal solutions Values. The path loss mainly considers
large-scale fading. The channel model refers to the LTE COST231-HaTa propagation
model proposed by 3GPP [23]. And the MEC calculation speed reference to [21]. And
the rest of the simulation parameters are shown in Table 2. Through repeated experi-
ments, the value of the penalty factor a of the penalty function in the fitness function is
set to be 0.05, can get the better simulation result.

3.2 Simulation Result

In the simulation, we compare the performance of the proposed algorithm with the
average calculation completion time of the optimal solution introduced. Figure 3 shows
the average time of completing the calculation and obtaining the optimal solution by
the offloading decision algorithm in different situations with the different number of
subcarriers. As is shown in the figure, with the increasing of the total number of
subcarriers, the average time at which the user completes the computational task is
reduced. In addition, it can be seen from the figure that the performance of proposed
HQPSO algorithm is close to the one of optimal solution. In the hybrid
quantum-behaved particle swarm optimization algorithm, the allocation of subcarriers
is randomly initialized firstly, and the penalty function is introduced to modify the
fitness function to solves the optimization target problem. This not only considers the
sub-carrier resources that may be wasted due to the long offload time, but also the
situation in which the user’s task is queued after offloading. It effectively allocate all
available subcarriers to the devices who uploaded the calculation. It can be seen from
Fig. 3 that the solution result based on the hybrid quantum-behaved particle swarm
optimization algorithm is very small and the difference is less than 5%.

Figure 4 shows the number of different users, by selecting some devices to
offloading the calculation, we can optimize the calculation of the completion of the time
value. It can be seen from the figure that the performance of the random allocation
algorithm is very poor because it does not consider the devices’ situation. However, the

Table 2. Simulation parameters

Parameters Values

Area of simulation Scene Regular hexagon (length of side: 600 m)
Working frequency 2.4 GHz
MEC rate of computing 8� 108 cycle/s
The amount of task data (5–20) KB
Value of j 200
Subcarrier bandwidth 15 kHz
BS coverage 500 m
Maximum transmit power 24 dBm
Thermal noise power density −174 dBm/Hz
Number of iterations 300
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results of the HQPSO algorithm we proposed and the optimal solution increase with the
increase in the number of devices. And the calculation time is also increasing. This is
because that the greater the number of selectable devices, the greater the likelihood of a
better allocation scheme in the case of allocating the same number of subcarriers. It can
be seen from Fig. 3 that the results of the proposed HQPSO algorithm are still close to
those of the optimal solution.

Figure 4 shows the reduction in the completion time of the unloading calculation
with the total transmission power of the different devices. As is seen from the figure,
with the increase of the total transmission power of the device terminal equipment, the
optimization of the equipment offloading computation time is increased, which is meant
that the user can complete the task calculation in a shorter time. This is mainly due to
the increase in allocable power resulting in an increase in user upload rates. So, the
calculation time for each task is decreasing

Fig. 3. The average time for computational task

Fig. 4. The total time saved by each algorithm
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Figure 5 is the calculated time reduction for HQPSO in the case of 6 devices
assigned 30 carriers. The result is averaged by 100 iterations of randomly generated
device simulations. The optimal solution value is the value of the fitness function
obtained when the optimal subcarrier is allocated. The final value of HQPSO is the
global optimal value of the fitness function obtained by iterative convergence. It can be
observed from the figure that the proposed algorithm can quickly reach the conver-
gence of the iteration. In addition, the accuracy of the algorithm is relatively high, it
usually could be achieved with the optimal value of less than 10% within 50 iterations.
This is because we have incorporated the water-filling algorithm into the iterative
solution of the quantum-behaved particle swarm optimization, which reduces the
dimension of the feasible solution, accelerates the speed of the iterative convergence
and improves the accuracy of the solution.

4 Conclusion

This paper first introduces the research progress of Internet of Things (IoT) and mobile
edge computing. And the mathematical modeling is carried out on this basis, and the
corresponding optimization problem model is put forward. Then, to reduce the com-
plexity of iterative computation, this paper proposes a hybrid quantum behavior particle
swarm optimization algorithm to solve the optimization problem. Finally, we verify the
performance of the proposed algorithm, and analyze the performance of the proposed
algorithm. And experimental results prove that this algorithm can accelerate the whole
computing process and lessening the iterations.

Acknowledgment. The work presented in this paper was partially supported by the 2015
National Natural Science Foundation of China (Grant number 61401381).

Fig. 5. The calculated time reduction for HQPSO in the case of 6 devices assigned 30 carriers
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