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Abstract. Traffic flow often contains massive amounts of information that is
related to location and shows some regularity. And the traffic flow analysis based
on trajectory data has become one of the most popular research topics in recent
years. With the wide application of deep learning and for its higher accuracy than
other approaches, methods such as convolution neural network and deep residual
network have been introduced in traffic flow research and achieve good results.
However, these methods usually require the training of a large number of param‐
eters, which leads to some problems. For example, frequent manual adjustment
is needed, and some parameters cannot be dynamically adjusted with the training
process. We find that learning rate plays a crucial role in all parameters, which
has important influence on the training speed of the residual network. In other
words, the soundness of traffic flow predication results depends on the learning
rate. Hence, we propose G4 algorithm to automatically determine the learning
rate. It can be adjusted automatically in the process of trajectory data mining, and
therefore solve the traffic flow prediction problem. Experiments on real data sets
show that our method is effective and superior over some traditional optimizing
methods of traffic flow analysis.
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1 Introduction

Trajectory data contains large amounts of information, has close relations with
geographic location or point of interest (POI), and can reflect general regularity. There‐
fore, analyzing traffic flow based on trajectory data has become a hot research direction
in recent years. For example, Masahiro et al. found that the frequency of car travel will
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not change with the season through the analysis of the GPS data of Hakodate city, while
the frequency of the cycling and hiking is severely affected by the change of season [1].
Through the analysis of MIT trajectory data set of vehicles and pedestrians, Dheeraj
et al. successfully found out the representatively abnormal phenomena [2]. At the same
time, some deep learning methods are introduced in the field of trajectory data mining
and achieve high accuracy and small error. For example, for the same topic of traffic
flow and pedestrian flow analysis in the center of the city, Stefan et al. managed to use
the convolutional neural network to largely accelerated the speed of training [3]. Xiao
et al. even proposed the concept of ensemble learning to better study hybrid transpor‐
tation modes [4].

However, despite their good performance in the field of trajectory data mining,
existing deep learning methods still face some problems, especially a large number of
parameters and hyper parameters relying heavily on manual adjustment. Zheng et al.
used three convolution neural networks to analyze the GPS data in Beijing, predicted
the traffic and pedestrian flow at a certain spot, and achieved good results, but there were
over a dozen parameters relying on manual adjustment such as smoothness, periodicity
and trend which had a direct bearing on the final results [5]. In addition, certain param‐
eters may need to change with the learning process. Song et al. proposed the model of
DeepMob to analyze GPS data to help humans avoid natural disasters [6]. According to
our research, whether parameters such as learning rate change with the process will
greatly influence traffic flow analysis results, in this case, i.e., will affect the final
outcome of disaster analysis. The reason is that the prediction of any flow is indispen‐
sable to the learning of the existing data, and the learning rate affects the learning speed,
thus affecting the final effect.

To solve these problems, our goal is to develop methods that allow the parameters
of some deep learning methods to adapt to the learning process automatically and reduce
human intervention. To achieve this goal, we consider the following aspects. First, the
parameters we study should be applicable to many different methods, rather than indi‐
vidual, specific parameters in certain methods so that a greater variety of traffic flows
can be analyzed. Second, our method should be able to adjust parameters spontaneously,
thus reducing human intervention and improving analysis performance. Third, our
method should be superior to some un-optimized methods and achieve the task without
compromising the effect. Therefore, we propose G4 (Gradient FOURier series) algo‐
rithm to automatically determine the learning rate so that it can be adjusted automatically
in the process of trajectory data mining and solve traffic flow prediction problems. We
were first inspired by the Fourier series of signal processing, then built connections
between learning rate adjustment and some parameters in the model through Fourier
series, and applied it in the deep residual network, finally to address practical problems
such as traffic flow. Our main contributions are as follows:

• We proposed G4 algorithm to automatically determine the learning rate of a series
of deep learning methods.

• We integrated the algorithm into the deep residual network model, and reduced
human intervention in the process of trajectory data analysis.

• According to experiments on real data sets, our method outperforms some traditional
analysis methods.
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The respect of this paper is organized as follows. Section 2 describes the related
work. The third section gives the definition of problem and its mathematical description.
The fourth section presents the framework and detailed implementation of the method.
Section 5 evaluates our method through experiments. Section 6 concludes the paper.

2 Related Work

In this section, we explain some other work related to our research, including a brief
introduction to Fourier series and some improvements achieved by other scholars in
traffic flow analysis.

2.1 Fourier Series

In electronic technology, Fourier series is used for signal transformation, so that it can
be restored with some simple signals. The single entry form of the Fourier series is:

f (x) = cne
i
n𝜋x

l (1)

where cn, x, l, i represent coefficient, time (signal changes over time), half period, and
imaginary unit, respectively. Note that if a certain time and a certain semi-cycle are
given, the size of a signal can be determined. In practice, signals produced by electronic
devices are often very complicated and cannot be described with simple mathematical
laws. The Fourier series describes a way that can transform any form of signal into a
summary of several simple periodic functions.

2.2 Other Work

Many scholars have analyzed traffic flow by improving the learning rate. For example,
Sun et al. learnt human walking trajectories using RMSProp, and then predicted human
trajectory [7]. Gang et al. even made clear that the deep learning model has greatly
improved the analysis of group movement behaviors with the use of RMSProp.
However, although methods such as RMSProp and Adam have performed very well,
yet they require manual adjustment of the decay rate. When using Adam, the user must
adjust two different decay rates. These parameters must be configured manually. In other
words, this type of methods actually replaces the adjustment of learning rate with the
adjustment other parameters, and has not solved the problem fundamentally. Even the
number of parameters that need to be adjusted may increase rather than decrease. On
the other hand, although some approaches used by researchers do not increase the
number of parameters requiring manual adjustment, these methods often achieve general
improvements for learning rate, rather than for the unique model or approach for the
analysis of traffic flow. In other words, these methods may fail to take into account the
characteristics of trajectory itself. For example, Tong et al. used Adagrad to optimize
the simple linear model, and then directly realized the prediction of taxi route [8].
However, this optimization ignored some features of trajectory. For example, will the
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number of taxis on this route between adjacent intervals (for example, half an hour or
an hour) affect the number of current intervals? Could there be a time interval yesterday
affect the same interval today? None of these questions can be answered by such an
optimization. Therefore, our approach should strive to avoid these problems.

3 Proposed Method

In this section, we give relevant definitions and mathematical descriptions of our
methods, and then explain some of the concepts applied to traffic flow analysis.

3.1 Gradient Fourier Series

Considering the time of the signal, as each neutral unit can exist independently, and
almost all properties of the unit in the learning process keep changing, we set up a
parameter as time in Fourier transformation. For a single unit, the gradient of its weight
plays a key role in its learning process, and it changes with the number of iterations,
which is similar to the structure of time. Therefore, we have the following definitions:

Definition 1 (Gradient Instant). The gradient of the weight which connecting two
neural units at any instant is called a gradient instant.

Definition 2 (Gradient Time). For each individual neural unit, the summary of the
gradient of the weight connecting it to any other unit is called gradient time. Each
gradient time consists of multiple gradient instants.

Considering the half period. The half period describes the time degree of harmonic
transformation. In other words, this parameter determines the duration of the change. It
is obvious that the number of iterations in the trajectory data mining determines the
length of learning time. (We normally do not consider the scenario where the iteration
is terminated when the loss function is lower than the threshold). Therefore, we have
the following definition:

Definition 3 (Period). The number of iterations is the period of the current harmonic
transformation.

Considering the coefficient. As the initial learning rate never changes, and the change
only happens in the process of learning, so the initial learning rate can be seen as a
coefficient which remains the same despite the change of gradient instant and gradient
time. We have the following definition:

Definition 4 (Coefficient). Initial learning rate is the coefficient.
Assume that the initial learning rate, the weight matrix, the loss function and the

current iteration are 𝛼, w, E(w), t respectively. According to the definition, gradient
instant is 𝜕E(w), therefore gradient time is 

t∑
i=1

𝜕E(w), and period is t. In addition, because
i is an imaginary unit, in trajectory data mining we convert it back to the real unit.
Therefore, we get the equation of harmonic transformation of learning rate:
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𝛼: = 𝛼e

√√√√√√√√√

t∑
i=1

𝜕E(w)

t

(2)

where 𝛼, 
∑t

i=1 𝜕E(w), t are cn, x and l, respectively. The reason of introducing the square
is to make the transformation smoother. The harmonic transformation of learning rate
is applied to the learning process of the deep residual network to optimize learning rate.

3.2 Trajectory Deep Residual Networks

Considering other features of traffic flow, we need to handle some other settings. Refer‐
ring to the settings used by Zheng et al. on their research of traffic flow [5], we have
following definitions.

Definition 5 (Interval). Trajectory data may undergo a very long time. The basic unit
we study is called an interval. Usually, the interval can be one hour, half an hour, etc.

Definition 6 (Closeness). If the adjacent n intervals (n ≥ 1, similarly hereinafter) have
an effect on the current interval of the trajectory, then this effect is called closeness.

Definition 7 (Cycle). If the same intervals in the adjacent n days have an effect on the
current interval, then the effect is called cycle.

Definition 8 (Trend). If the same intervals in the same week m,
(m = Mon., Tue.,… , Sun.) among the adjacent n weeks have an effect on the current
interval, then the effect is called trend.

With these characteristics, we can better analyze trajectory data by catering to trajec‐
tory patterns.

4 Harmonic Transformation

The framework of our method is shown in Fig. 1. Firstly, we initialize the learning rate
which can be set manually or randomly. Randomly generate the weight matrix of the
deep residual network (DRN). Then, set the characteristics associated with traffic flow
data. After the initialization is completed, the flow data is taken into the DRN, and the
learning rate is adjusted dynamically during the training process. Then, train the flow
data and their residual according the learning rate, and feed return the learning results
back to the DRN for iterative training. When the training is complete, the test set is
brought into the network for further adjustment. Finally, the results are compared against
other methods. We emphasize that we analyze traffic flow model for the DRN, which
combines the weights during activation function of neural units with flow itself to learn
flow rules and separate from other network methods.
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Fig. 1. Framework of G4.

The algorithm is show in Algorithm 1. The calculation of the time complexity of the
algorithm is very simple. Assume through m iterations end training, through n iterations
end testing. Because of harmonic transformation occurred and only occurred once in
each iteration, in terms of G4 algorithm, the time complexity must be O(m + n). Note
here that the time complexity we’re talking about is only for our algorithms, not include
the time complexity for the structures of convolutional neural network and deep residual
network respectively.
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5 Experiments

In this section, we conduct some experiments based on real data sets to evaluate our
method. First, we describe the data sets, then explain the parameters settings of some
models, and finally present the results.

5.1 Datasets

We use AIS data to validate our approach. The AIS data records the location infor‐
mation and other information of the ship over time. We select the AIS data recorded
from March 2, 2015 to June 30, 2015 in Zhoushan port, China. Since we are fore‐
casting regional activities or traffic flow of ships, we adopt the following methods
to carry out the experiment. We divide the research area into 16*8 grids and use
interval as the basic unit to count the number of signals emitted by ships in each
region as the basis for predicting traffic flow. The schematic diagram is shown in
Fig. 2. For a specific grid, the existence of ship signal in a grid in an interval indi‐
cates that the ship is located in this grid in that interval. If in the next interval this
ship signal is not in the grid, but in an adjacent grid, it means that the ship has moved
to the next grid from the current grid, so that the AIS trajectory data can be converted
to the grid’s data format, which can be imported to the DRN.
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Fig. 2. Trajectory data can be transformed into the grid’s data format, which can be imported to
the DRN.

5.2 Parameters Settings

Next, we describe some parameter settings. The number of iterations for the validation
set and the test set are set to 50 and 100, respectively. The number of iterations for the
validation set can be set to be smaller, because the validation set comes from the training
set. Therefore, its training speed will be faster than the test set which is not from the
training set. Interval is set to half an hour, i.e. 48 intervals a day. Closeness is set to 3,
that is, considering a total of three intervals from (interval – 3) to (interval – 1) have an
impact on the current interval. Both cycle and trend are set to 1, which means that the
same interval yesterday and the same interval last week have an impact on the current
interval. The residual units are set to 2, that is, two DRNs analyze the flow simultane‐
ously. Special emphasis, there are two identical matrices of flow, but the data of them
are different, meaning that one of them saves how much flow for each grid in each
interval more than the former interval, and vice versa.

5.3 Results

For the ease of comparison, we use the traditional stochastic gradient descent (SGD)
and our methods to predict the traffic flow. Figure 3 demonstrates a comparative experi‐
ment, where the initial learning rate of best-SGD is set to the best, i.e. the learning rate
has the best performance after we choose from manual debugging, and the initial learning
rate of rand-SGD method and our method are randomly set. The x-coordinate shows the
number of iterations, and the y-coordinate represents the loss function, which is set to
mean squared error (MSE). It can be seen that even for an appropriate learning rate that
has been fixed for a long time, our method still outperforms best-SGD from the beginning

Automatic Prediction of Traffic Flow 335



to the end. On the other hand, in terms of prediction accuracy, we set up multiple initial
learning rates to start together, but all the RMSE of G4 is lower than SGD,. In other
words, the accuracy of flow prediction is higher. Some comparisons are shown in
Fig. 4. The horizontal coordinate represents different initial learning rates, and the
vertical coordinate represents RMSE.

Fig. 3. The loss function changes with the iterations.
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Fig. 4. The loss function changes with the iterations.
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6 Conclusions

In this paper, G4 algorithm is proposed to automatically determine the learning rate and
predict the traffic flow. Experiments on real data sets show that our algorithm reduces
the tedious manual adjustment of parameters, and outperforms some traditional
methods. Even the classic method with the optimal parameter settings is still slower than
our approach in training. Future work will also include automation research and appli‐
cations in the field of trajectory data for other parameters of DRN or other deep learning
methods.

References

1. Araki, M., Kanamori, R., Gong, L., Morikawa, T.: Impacts of seasonal factors on travel
behavior: basic analysis of GPS trajectory data for 8 months. In: Sawatani, Y., Spohrer, J.,
Kwan, S., Takenaka, T. (eds.) Serviceology for Smart Service System, pp. 377–384. Springer,
Tokyo (2017). https://doi.org/10.1007/978-4-431-56074-6_41

2. Kumar, D., et al.: A visual-numeric approach to clustering and anomaly detection for trajectory
data. Vis. Comput. 33(3), 265–281 (2017)

3. Hoermann, S., Bach, M., Dietmayer, K.: Dynamic Occupancy Grid Prediction for Urban
Autonomous Driving: A Deep Learning Approach with Fully Automatic Labeling. arXiv
preprint arXiv:1705.08781 (2017)

4. Xiao, Z., et al.: Identifying different transportation modes from trajectory data using tree-based
ensemble classifiers. ISPRS Int. J. Geo-Inf. 6(2), 57 (2017)

5. Zhang, J., Zheng, Y., Qi, D.: Deep spatio-temporal residual networks for citywide crowd flows
prediction. In: AAAI (2017)

6. Song, X., et al.: DeepMob: learning deep knowledge of human emergency behavior and
mobility from big and heterogeneous data. ACM Trans. Inf. Syst. (TOIS) 35(4), 41 (2017)

7. Sun, L., et al.: 3DOF Pedestrian Trajectory Prediction Learned from Long-Term Autonomous
Mobile Robot Deployment Data. arXiv preprint arXiv:1710.00126 (2017)

8. Tong, Y., et al.: The simpler the better: a unified approach to predicting original taxi demands
based on large-scale online platforms. In: Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM (2017)

Automatic Prediction of Traffic Flow 337

http://dx.doi.org/10.1007/978-4-431-56074-6_41
http://arxiv.org/abs/1705.08781
http://arxiv.org/abs/1710.00126

	Automatic Prediction of Traffic Flow Based on Deep Residual Networks
	Abstract
	1 Introduction
	2 Related Work
	2.1 Fourier Series
	2.2 Other Work

	3 Proposed Method
	3.1 Gradient Fourier Series
	3.2 Trajectory Deep Residual Networks

	4 Harmonic Transformation
	5 Experiments
	5.1 Datasets
	5.2 Parameters Settings
	5.3 Results

	6 Conclusions
	References




