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Abstract. As the fast-paced market of smart phones, navigation appli-
cation is becoming more popular especially when traveling to a new
place. As a key function, shortest path recommendation enables a user
routing efficiently in an unfamiliar place. However, the source and desti-
nation are always critical private information. They can be used to infer
a user’s personal life. Sharing such information with an app may raise
severe privacy concerns.

In this paper, we propose a practical navigation system that pre-
serves user’s privacy while achieving practical shortest path recommen-
dation. The proposed system is based on graph encryption schemes that
enable privacy assured approximate shortest path queries on large-scale
encrypted graphs. We first leverage a data structure called a distance ora-
cle to create sketch information, and we further add path information
to the data structure and design three structured encryption schemes.
The first scheme is based on oblivious storage. The second scheme takes
advantage of the latest cryptographic techniques to find the minimal dis-
tance and achieves optimal communication complexity. The third scheme
adopts homomorphic encryption scheme and achieves efficient commu-
nication overhead and computation overhead on the client side. We also
evaluated our construction. The results show that the computation over-
head and communication overhead are reasonable and practical.

Keywords: Private navigation · Distance oracle · Oblivious storage
PIR · Homomorphic computation

1 Introduction

As the prosperity of smart phone, location based services (LBS) are becoming
very common and useful. It makes our life very convenient especially when trav-
eling to a new place. The most obvious reason is that there is always a built-in
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GPS in a smart phone. At the same time, the current smart phone is very pow-
erful in displaying, computation and communication with a powerful processor,
large memory, and storage.

However, LBS application also introduces severe privacy concerns [10,14].
Location information can be used to infer users’ context and analyze users’
movement patterns [8].

Navigation is one of the most popular LBS applications. The client sends
the origin and the destination to the LBS server. The server responds with the
shortest path or the fastest route. The user follows the route and the location
information provided by the GPS to the destination. The origin and the destina-
tion here are more critical. For they introduce same privacy concerns above, may
be associated with the user’s personal plan [19], and more and more users con-
cern their location privacy, privacy preserving navigation services have attracted
much attention. However, there may be many challenges to build up a privacy
preserving navigation system. Firstly, any path query which includes the origin
and destination may disclose users’ privacy. The pair of origin and destination
may be personally identifiable [19]. For example, when the destination is a hospi-
tal, it may be very severe private information for the user. The second challenge is
about how to compute the shortest path privately and efficiently. It is very com-
putation intensive for computing shortest path on large graphs using breadth
first search or Dijkstra’s algorithm directly. Especially when considering both
privacy and users’ experience, the efficiency is very critical. The third challenge
is how to respond privately to the users. Any plaintext information about the
path will disclose the users’ location privacy.

Anonymity and obfuscation techniques are common strategies. And there are
some previous schemes based on anonymity and obfuscation have been proposed
to preserve users’ privacy [14,19]. However they always need a trusted third
party between the user and the server.

In this paper, we propose a new privacy preserving path recommendation sys-
tem for navigation based on private approximate queries. Our work is inspired by
the latest work about graph encryption scheme based on searchable symmetric
encryption (SSE) [9]. Their work is based on distance oracle [4] and SSE. How-
ever, their work may be not suitable for privacy preserving navigation. Firstly,
the scheme only responds the shortest distance and the corresponding path is
not known. In addition, simply adding path information in their structure, their
computation may be not work. Secondly, their schemes don’t protect access pat-
tern. Whereas in privacy preserving navigation, the access pattern may be used
to infer users’ the source, destination, and other personal information and will
cause severe information leakage.

The contributions are summarized as follows:

1. We propose three privacy preserving shortest path query schemes based on
approximate distance/path oracle. To the best of our knowledge, this is the
first navigation system based on approximate shortest path query.

2. The proposed schemes leverage the sketch structure. One is based on oblivious
storage (OS) and the other is based on computational PIR. The third is based
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on PIR and homomorphic encryption which enables computing the shortest
path on the server side and achieving minimum computation cost on the client
side and communication overhead. We leverage these latest crypto techniques
to retrieve the sketches privately.

3. Our schemes can support large scale datasets. We evaluate our system by
using real road dataset. The results show that our system provides reasonable
latency, computation over head and communication overhead.

The rest of the paper is organized as follows. Section 2 describes the related
work. Section 3 presents the problem statement, the adversary model and some
preliminaries. Section 4 introduces the path oracle, the scheme based on obliv-
ious storage, the scheme based on computational PIR, the scheme based on
PIR and homomorphic computation on the server side, and security analysis.
Section 5 presents our concrete experiments, evaluation, further consideration,
and optimization. Section 6 concludes the whole work.

2 Related Work

Privacy Preserving Shortest Path Computation. Some general work is
about privacy preserving shortest path computation which is based on graph
theory [11,18,20]. For example, Wu et al. [18] proposed to compress the next-
hop routing matrices in networks such as city street maps, use symmetric PIR
for indexes retrieval, and leverage garbled circuits and affine encodings for inner
product evaluation. However, the scheme needs to construct a database with
N2 records which will consume large space when n is too large. Xie et al. [20]
introduced a scheme based on oblivious storage and KD-tree partition. Moura-
tidis et al. [11] leveraged the hardware-aided PIR protocol and proposed two
schemes. However, both of the preprocessing overhead and auxiliary space are
unacceptable.

Privacy Preserving Shortest Distance/Path Query. Besides, there are also
some schemes based on privacy preserving shortest distance/path query [9,16].
Meng et al. [9] presented three schemes based on distance oracle and struc-
tured encryption which are adaptively semantically-secure with reasonable leak-
age functions. Although we leverage the notion of distance oracle to build our sys-
tem, our scheme can return approximate shortest path. And their constructions
return only distance without path information and their constructions can’t be
applied in our construction directly. Simply adding path information may destroy
the computation structure. And the most important is that their scheme can’t
protect the access pattern of the sketches which may reveal the source or the
destination information. And the information is very critical for privacy pre-
serving shortest path query and navigation. Wang et al. [16] proposed SecGDB,
a secure Graph DataBase encryption scheme. SecGDB supports exact shortest
distance/path query. However, the amortized time complexity is based on query
history which is stored on the remote server to act as a caching resource. It
may take several tens of minutes for a query without history. This is due to the



198 Z. Shi

auxiliary computation overhead introduced by implementing a secure Dijkstra’s
algorithm which is based on additively homomorphic encryption and garbled
circuits. In addition, the scheme introduces a third party which doesn’t collude
with the server.

3 Problem Statement and Preliminaries

3.1 Problem Statement

Here, we formulate the main component of the navigation as the shortest path
recommendation problem. Namely, the client holds the origin/source and the
destination. It sends the request to the service provider. The service provider
holds the map information including the topology.

Formally, the client holds the nodes pair (s, d) as the origin/source and des-
tination. The service provider holds the graph information corresponding to the
map G = (V,E). Here, V is the node set of the graph, E is the edge set of the
graph, s ∈ V and d ∈ V . The client sends a shortest path query q = (s, d) to the
service provider and asks for the shortest path between s and d.

3.2 Adversary Model

In this paper, we just need to consider two parties without introducing any
third party, namely, the server and a client. The server holds the data. When a
client has a query for shortest path, it sends the query to the server. The server
responds relevant information such as sketches to the client in our case. The
server honestly follows the protocols we defined. In addition, the server is curious
in learning the source, the destination, the shortest distance, the corresponding
path about the client. Specifically, the client wishes to keep the information
and the access pattern of retrieved sketches private. Because the access pattern
may also leak critical information such as the source and the destination. In
addition, we don’t consider the information leakage through side channel or
timing channel.

3.3 Preliminaries and Notations

G = (V,E) presents a graph where V is the node set and E is the edge set. We
denote q = (u, v) as a shortest distance query and pq = (u, v) as a shortest path
query. pvw is the shortest path from v to w.

Distance Oracles. Typically, a distance oracle is a type of data structure. It
supports approximate shortest distance queries. An obvious construction is that
one can pre-compute and store all the shortest distances of different pairs of
nodes in the graph. In such a solution, the query complexity is O(1). However,
the storage complexity is O(n2). This is not practical for large graphs. Here,
we introduce the sketch-based distance oracle. Das Sarma et al. proposed the
first construction of sketch-based distance oracle in 2010 [4]. And we take the
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Das Sarma’s construction [4] as our study case here. Formally, the sketch-based
distance oracle consists of a pair of algorithms, namely, DO = (Setup,Query).
The Setup algorithm takes three parameters, a graph G, an approximation factor
α and an error bound ε. Finally, it outputs an oracle ΩG = {Skv}v∈V where Skv

is the sketch which includes pairs (w, δ), where w ∈ V and δ = dist(v, w). The
Query algorithm takes two parameters, the oracle ΩG and a shortest distance
query q = (u, v) and d := Query(ΩG, u, v). DO is (α, ε)-correct if for all graphs
G and all queries q, Pr[dist(u, v) < d < αḋist(u, v)]. For the Query(u, v), the
query algorithm firstly finds the common nodes set I between Sku and Skv,
and returns s ∈ I such that dist(u, s) + dist(s, v) is the minimum. If there is no
common node, then it returns ⊥.

4 Our Constructions

In this section, we illustrate our construction for privacy preserving navigation.

4.1 Path Oracle Setup

The sketches created by distance oracles provide our effective data structure for
shortest distance queries. It greatly saves the storage. For it is pre-computed
and can save computation during runtime. However, only providing the shortest
distance is not enough in some cases. In many applications, providing the shortest
path is essential. And navigation is one of the cases.

Definition 1 (Path Oracle). A sketch-based path oracle PO = (Setup,Query).
The Setup algorithm takes three parameters, a graph G, an approximation factor
α and an error bound ε. Finally, it outputs an oracle ΩG = {Skv}v∈V where Skv is
the sketch which includes triples (w, δ, pvw), where w ∈ V , δ = dist(v, w) and pvw

is the shortest path from v to w. The Query algorithm takes two parameters, the
oracleΩG and a shortest path query q = (u, v) and (d, p) := Query(ΩG, u, v)where
the pair (d, p) is the shortest distance and path returned by the Query. PO is (α, ε)-
correct if for all graphsG and all queries q,Pr[dist(u, v) < d < αḋist(u, v)] ≥ 1−ε.

We can take advantage of the data structure and construct our path oracles.
Similarly, we define a path oracle is a type of data structure which supports
approximate shortest path queries. Here, we can construct the path oracle by
adding path information to the sketches created by the distance oracle. Suppose
that ΩG = (Skv1 , Skv2 , ..., Skvn

) is the collection of sketches created by a dis-
tance oracle. Each sketch Skvi

consist of λ pairs of {(wz, δz)}0≤z≤λ−1, where wz

is a node and δz = dist(vi, wz).
Based on the structure, we add path information for each sketch. Without loss

of generality, DO = (Setup,Query) is a sketch-based distance oracle. It creates
a collection of sketches ΩG = (Skv1 , Skv2 , ..., Skvn

). We define a path oracle as
PO = (Setup,Query). It inherits the sketch-based data structure created by
DO. For each sketch Skvi

, it consists of triple {(wz, δz), pviwz
}0≤z≤λ−1, where

wz is a node, δz = dist(vi, wz), and pviwz
is the information about the shortest
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path from vi to wz. pviwz
can be pre-computed through classical shortest path

algorithm such as Dijkstra’s algorithm.
Given a query q = (u, v), it finds the collection common nodes I between Sku

and Skv. Then it find the node s ∈ I such that mind = dist(u, s) + dist(s, v) is
the minimum and return (mind, pi) where p = pus +psv. From the construction,
we can get the following lemma.

Lemma 1 (Path Oracle Construction). The construction of path oracle
above is (α, ε)-correct. For all graphs G and all queries q, Pr[dist(u, v) < d <
αḋist(u, v)] ≥ 1 − ε.

For the path oracle construction, we setup the construction based on the
Das Sarma et al. oracle [4] as our study case. There is sub routine Sketch used
to generate a collection of sketches (Ski

v1
, ..., Ski

vn
) where i is the ith call to

the sub routine. To create the sketch Ski
vj

, the sub routine samples r + 1 sets
of nodes S0, S1, ..., Sr where the size of Si is 2i where r = �logn�. For each
node vj, for all these sets Si, it computes wk, δi, pwk,vj

where wk is the clos-
est node to vj , δi = dis(vj , wk) = dis(vj , Si) and pwk,vj

is the corresponding
shortest path. After calling the sub routine σ times, it collects σ collections of
(Ski

v1
, ..., Ski

vn
)i∈[σ] where σ = ˜θ(n2/(α+1)). The final sketch Skvj

=
⋃σ

i=1 Ski
vj

.
And finally, it outputs the path oracle as ΩG = (Skv1 , ..., Skvn

).

4.2 A Scheme Based on Oblivious Storage

In this section, we illustrate one of our proposed scheme with strong privacy
grantees. The scheme adopts the latest practical techniques, oblivious storage
for privacy preserving sketch retrieval.

The proposed architecture is illustrated in Fig. 1. It consists of a client and
a server. The server provides oblivious storage service.

Oblivious Storage. Oblivious storage (OS) is defined as a related notion to
Oblivious RAM (ORAM). Bonel et al. proposed the notion as a practical imple-
mentation of ORAM in [3]. ORAM can provably hide all access patterns. In
OS model, clients can outsource the data to the cloud or third parties. when
running applications, OS can keep the data from disclose. In our case, we can
private retrieval the sketch privately via OS. OS provides strong access pattern
protection. The origin and the destination can be well protected.

Typically, there are two kinds of solutions for OS: the Square-Root and the
Hierarchical solutions. We adopt the OS scheme based on Path-ORAM [15]. It
has non-trivial online latencies on moderate size datasets and doesn’t involve
any system unavailable time which provides excellent worst-case performance
guarantee on large datasets [20].

As illustrated in Fig. 1, the data is stored as a binary tree in the server. In
our circumstance, there are N sketches and we pad each sketch to the same
length as a block and we call it sketch block. And the hight of the binary tree is
L = �logN�. Each node of the tree is called a bucket and each bucket contains
Z blocks where Z is a small constant (e.g., 3–5). These Z blocks are either real
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Fig. 1. The architecture based on oblivious storage.

data blocks or dummy blocks. There are two data structures stored on the client,
a position map and a stash as illustrated in Fig. 2. The position map maps each
of the N sketch blocks to one of the 2L leaves independently and uniformly,
e.g., i := PosMap[x] means that sketch block x is associated leaf i and block x
resides in some bucket in the path from the root node to the leaf x, or in the
stash. The position map is refreshed as blocks are accessed and remapped.

Oblivious Storage Initialization. The client initializes each sketch as an
encrypted block with the same length and sends all the encrypted blocks to
the server. The blocks are stored in a binary tree on the server.

On the client side, there is a position map and a stash. The functionality
of position map is like an index. Suppose there are N sketches. Each sketch
is assigned with an ID. The position map can be used to map each of the
N sketches to one of the 2L leaves which are independently and uniformly at
random. The stash is used to store sketch blocks during accessing and overflowed
sketch blocks from the binary tree.

On the server side, all the sketch blocks are stored in the binary tree. The
height of the tree is L = �logN�. Each node of the tree is considered as a bucket
which contains Z blocks. Z is independent of N . There are many dummy blocks
to make sure that all the buckets appear full.

Private Sketch Retrieval. When the client needs to query a shortest path
pq = (Src,Dst) where Src is the source node and Dst is the destination node,
the client creates two retrieval requests for the source and the destination respec-
tively. The two requests are in the same form. We take the Src sketch SkSrc

retrieval request as an example.
To retrieval sketch block SkSrc, the client and server should take the following

steps.
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Fig. 2. The data structure on the client side.

1. The client checks the position map and finds the leaf i := PosMap[Src],
remaps the sketch block SkSrc to a new random position. Then, it sends a
read request to the server. The form of the request is like (read, PosMap[Src],
None).

2. The server reads all the buckets along the path from the root node to the leaf
node PosMap[Src] and sends all the buckets including (L + 1) ∗ Z blocks to
the client.

3. The client decrypts all the (L + 1) ∗ Z blocks, recovers the real sketch blocks,
stores in the stash, identifies the sketch block SkSrc and initializes to the
sketch format. The dummy blocks are discarded.

4. The client re-encrypts the sketch blocks in the stash with fresh ran-
domness and sends a writing request to the server. The writing path
is the same as the read path. The form of the writing request is like
(writing, PosMap[Src], data∗). The sketch blocks in data∗ are put as close
to the leaves as possible while the buckets where they are must be in the same
path as their assigned leaves. If buckets including the root bucket are full of
sketch blocks, the remaining sketch blocks will stay in the stash.

5. The server writes the data along the path from the root node to the leaf node
PosMap[Src].

In the phase of private sketch retrieval, the client should send two pairs of
reading/writing requests to the server and the server completes 2 pairs of reading
access and writing access operations, one for the source’s sketch and one for the
destination’s sketch.
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Algorithm 1. ComputeShortestPath: compute shortest path
Require: Private key SK; source sketch block ssb; destination sketch block dsb.
Ensure: shortest distance and path {sdis, spath}.
1: ssk ← InitializeSketch(SK, ssb);
2: dsk ← InitializeSketch(SK, dsb);
3: std ← ssk + dsk;
4: sdis =⊥;
5: for vj ∈ {v1, · · · , vm} do
6: if std[vj ].dis < sdis then
7: sdis ← std[vj ].dis;
8: spath ← std[vj ].path;
9: end if

10: end for
11: return sdis, spath;

Shortest Path Computation. After retrieving both the origin’s sketch and
destination’s sketch, the client can compute the shortest path locally. The algo-
rithm is illustrated as Algorithm 1. The client firstly initializes the source sketch
and the destination sketch as step 1–2. Then the step 3 will add the distances if
the nodes are both in the source sketch and the destination sketch. We say these
nodes are common nodes and form a set v1, v2, ..., vm. Then the step 4–10 of
the algorithm find the minimal distance the corresponding common node where
std[vj ].dis is the joint distance of the distance from the source to vj and the
distance from vj to the destination. And the shortest path std[vj ]. path is joint
of the two paths. If there is no common node, then the algorithm return ⊥.

4.3 A Scheme Based on PIR

In this section, we illustrate the privacy preserving scheme based on computa-
tional PIR. And PIR can provide robust privacy preserving which is equivalent to
oblivious RAM storage. The scheme is inspired by the latest privacy preserving
techniques XPIR [2] and its application about private media consumption [6].
Although previous work argued that traditional PIR protocols involve consid-
erable computation and/or communication overheads on sizable datasets. Also,
some practical PIR scheme may introduce an off-the-shelf hardware secured co-
processor and raise a hardware-aided PIR protocol [17]. By leveraging the usable
PIR, [11] proposed two schemes for shortest path queries. But they need unac-
ceptable preprocessing and auxiliary space.

PIR for Private Sketch Retrieval. There are two typical PIR protocols,
namely, computational PIR [2] and information theoretic PIR [6]. Due to the
fact that the information theoretic PIR protocol needs at least k servers where
k ≥ 1. And any of the servers should not collude. This is a strict setting. Whereas
the model for computation PIR is simple and there is only one computationally
bound server in computational PIR protocol. And the current crypto scheme for
computational PIR is efficient enough [2]. We can realize the privacy preserving
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Query Construction to retrieve sketch Skvj (the client):

1. For i from 1 to n,
-if i �= j, create a random encryption of zero
-if i = j, create a random encryption of one

2. Send the q = (pk, q1, ..., qn) to the server;

Reply Construction (the server): The server performs following
computations

1. For i from 1 to n,
- R = Sumn

i=1qi ∗ Skvi
2. Return R

Sketch Extraction (the client):

1. Client decrypts the reply R and recover the sketch Skvj .

Fig. 3. The workflow for computational PIR based sketch retrieval.

sketches retrieval through the computational PIR. In our design based on com-
putational PIR, all the sketches form a library as a database. Then the library is
L = {Skv1 , Skv2 , ..., SkvN

} where N is the number of all nodes in the road net-
work. Suppose that l is the bit length of sketch Skvi

and l0 is the bit length that
can be used for homomorphic operations. If l > l0, then the sketch should be
split into chunks of l0 bits as Skvi

= {Skvi,0, Skvi,1, ..., Skvi,l/l0}. If l ≤ l0, each
sketch can be padded as one element entry in the database. The padding scheme
just makes sure that one sketch should be contained in only one element entry
in the database. This rule guarantees that the client can get the right sketch
through one query. And the client should know the mapping of the sketches and
the corresponding entries. There are three steps in the traditional computational
PIR protocol. For simplicity, we consider each sketch as one element entry. And
the workflow can be illustrated in Fig. 3.

Shortest Path Computation. In our scheme, the shortest path computation
is on the local side of the client. It shares the same process with the scheme
based on oblivious storage as Algorithm 1.

4.4 A Communication Efficient Scheme Based on PIR

In this sub section, we describe a communication efficient scheme. In this scheme,
we leverage the PIR to retrieve the source sketch and the destination sketch.
However, the server doesn’t send the sketch to the client directly. The server
computes the shortest path locally and return the result to the client. The scheme
includes the following steps.

Setup. Compared with the previous schemes, we need a more structured data
structure. We set up a data structure illustrated in Fig. 4. To make the later
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Fig. 4. The sketch hash table for a sketch.

computation effective, we adopt the same homomorphic encryption scheme
HE = (Gen,Enc,Dec,Eval) with the following PIR protocol and (pk, sk) is
the public/secret key pair. In addition, it makes use of a family of universal hash
function H. Given ΩG, ε, let D be the maximum distance over all the sketches
and S be the maximum sketch size. It samples a hash function h

$← H with
domain V and co-domain [t], where t = 2 · S2 · ε−1.

For each node v ∈ V , it creates a sketch hash table Tv as Fig. 4. Each table
has t cells. Each cell stores two parts, one for the shortest distance and the other
for the shortest path. For example, {(wz, δz), pviwz

} ∈ SKv, Tv[h(wz)].dis ←
Encpk(δz), and Tv[h(wz)].path ← Encpk(pviwz

). For all the remaining locations,
Tv[h(wz)].dis ← Encpk(2D) and Tv[h(wz)].path ← Encpk(NP ) where NP is
randomized path information.

Private Sketch Hash Table Identification. This phase is very similar with
the scheme based on PIR. We leverage the idea of PIR to identify the source
sketch hash table and the destination sketch hash table obliviously. First, the
client construct two queries for the source and the destination respectively. The
process is same with the PIR protocol. After receiving the queries, the server
does the similar computation as PIR protocol. However, it just does the compu-
tation and doesn’t return the result. After the computation, the server gets the
encrypted versions of the source sketch hash table Ts and the destination sketch
hash table Td.

Private Shortest Path Computation. Now the server get the encrypted
sketch hash tables Ts and Td. Then, the server computes the homomor-
phic additions over each cell and creates the new hash table Tr, where
Tr[i].dis = Ts[i].dis + Td[i].dis and Tr[i].path is the concatenation of Ts[i].path
and Td[i].path. Then, the server needs to find the minimum distance and the
corresponding path from the new encrypted hash table Tr.

Without loss of generality, we assume that 0 ≤ Tr[i].dis, Tr[j].dis < 2l where
i, j ∈ {0, ..., t−1}. Then, let Ti,j = 2l +Tr[i].dis−Tr[j].dis. Let ˜Ti,j be the most
significant bit of Ti,j . And ˜Ti,j can be computed through the following equation

˜Ti,j = 2−l · [Ti,j − (Ti,j mod 2l)]. (1)

In the equation, the subtraction sets the least significant bits to zero, and
the multiplication shifts the most significant bit down. Through ˜Ti,j , we can
compute the minimum distance Ti,j .dis and the corresponding path Ti,j .path as
follows:

Ti,j .dis = ˜Ti,j · [Tr[i].dis − Tr[j].dis] + Tr[j].dis. (2)

Ti,j .path = ˜Ti,j · [Tr[i].path − Tr[j].path] + Tr[j].path. (3)
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Algorithm 2. ComputeShortestPath: compute shortest path on the server side
Require: Private key SK; the hash table Tr.
Ensure: shortest distance and path {sdis, spath}.
1: sdis ← Tr[0].dis;
2: spath ← Tr[0].path;
3: for n = {1 : t − 1} do
4: sdisi ← sdis;
5: spathi ← spath;
6: sdisj ← Tr[n].dis;
7: spathj ← Tr[n].path;

8: follow the secure two-party computation protocol and compute ˜Ti,j using equa-
tion1;

9: compute sdis using equation 2;
10: compute spath using equation 3;
11: end for
12: return (sdis, spath);

However, there is only one challenge to compute these values over encrypted
domain. There is no effective homomorphic operation to compute (Ti,j mod 2l)
over encrypted domain. Here, we try to minimize the computation overhead of
the client and introduce a third party, cryptographic service provider (CSP).
This similar architecture is widely applied in many scenario [7,12]. Our adver-
sary model follows the similar setting, namely, the server doesn’t collude with
the CSP. Then, the server and the CSP follow an secure interactive two-party
computation protocol to compute (Ti,j mod 2l) [5,13].

In this architecture, the client and the server uses the homomorphic scheme
provided by the CSP. The queries is created by the client through the public
key of the CSP. The server runs the PIR protocol under the same homomor-
phic scheme. Then, the server and the CSP follow the same secure two-party
computation protocol as [5].

After that, we can apply a recursive algorithm to compute the shortest dis-
tance and the corresponding path. The algorithm is illustrated as Algorithm 2.

After the server computing sdis and spath, the server generates two ran-
dom masks smask and pmask, computes (sdis + smask) and (spath + pmask),
encrypts smask and pmask using the public key of the client and sends (sdis +
smask) and (spath+pmask) to the CSP. The CSP decrypts (sdis+smask) and
(spath + pmask), encrypts using the public key of the client, and sends the new
encrypted (sdis + smask) and (spath + pmask) to the server. The server sends
encrypted (sdis+smask), (spath+pmask), smask and pmask to the client. The
client decrypts them and gets the final results through the path information.

5 Evaluation

In this section, we present our experiment and evaluation of our schemes on
several real road networks. We implemented the path oracle based on the Das
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Sarma et al. distance oracle algorithm [4] and leverage existing building block
such oblivious storage scheme based on path ORAM and XPIR [2]. We eval-
uate the schemes on Microsoft Azure. For simplicity and efficiency, we use the
Microsoft Azure virtual machines to simulate the server and the client. We select
the standard D4s V3 with 4 cores 16 GB RAM and 30 GB SSD as the server and
select the standard D4s V2 with 4 cores 14 GB RAM and 30 GB SSD as the
client.

5.1 Evaluation of Path Oracle

We leverage the boost graph library and implement the path oracle in C++11.
We also take the real road datasets from [1] as our study case. To evaluate our
scheme, we consider the real road network as Table 1. The sketch size is very
critical in path oracle. It will affect the communication overhead in both of our
schemes and computation overhead in the scheme based on computation PIR.
The parameter σ defines the times to call the sub routine to create sketches. We
set σ = 3 as the base [9]. For each node, the oracle program will create a sketch
file named with the node ID in a local directory. In the sketch file, a line is an
element in the sketch. The format of the file is illustrated as Fig. 5. Suppose that
the file is the sketch file of node vs. Fields like (vi, dist(vs, vi), Path(vs, vi)) are
separated by a comma.

And we run our program to create all the sketch files for different road net-
work. Besides, we also change the times to call the sub routine and check the
sizes changing over the times. For the max size of sketch files will affect later
processing such as the block size of oblivious storage. We present the max size
of sketch files as Fig. 6. In the figure, CA(21048, 21693) means California Road
Network which has 21048 nodes and 21693 edges. Through the figure, we can
see that the max size is about 6 KB when calling the subroutine 3 times. Even
calling the subroutine 18 times, the max size is about 24 KB. In the scheme
based on oblivious storage, the size will affect the stash size on the client side
and communication overhead. The result shows that the growth rate of max size
is all linear or sub linear over times to call the sub routine and the scale of the
graph such as the number of nodes and the number of edges.

Table 1. Real road dataset

Name of road network Number of nodes Number of edges

California Road Network (CA) 21048 21693

City of San Joaquin County Road Network (TG) 18263 23873

City of Oldenburg Road Network (OL) 6105 7035
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5.2 Evaluation of the Scheme Based on OS

To evaluate the scheme based on OS, we focus on the metrics about the query
time and communication overhead. It depends mainly on the blocks to transfer
and levels to process. We should consider the level of the binary tree L = �logN�
and the parameter of OS Z. The level is associated with the number of nodes N .
For security reason, we consider the cases when Z = 4 [15]. On the client side,
we set the security parameter λ = 128 which means that the failure probability
less than 2−λ. And the persistent local storage sizes for the max stash are 147
when Z = 4. In addition, the client also requires transient storage used to cache
the fetched data from a path on the server. The storage size is Z ∗ log2N blocks.

Fig. 5. The file format of sketch file.

Fig. 6. The max size of sketch files changes over times to call the subroutine.

The time cost is illustrated in Fig. 7. Through the figure, we can see that
there is little computation overhead on the server side. The query time is almost
for the communication overhead. This is consistent with the oblivious storage
protocol. Through the Fig. 7(a), the growth rate of the query time and the time
of the server processing is almost linear with the growth rate of the block size.
Through the Fig. 7(b), the fluctuation including the server processing time and
the whole query time is sub linear over the number of nodes. It can be presented
as f(x) = α �logN� where N is the number of nodes and α is a coefficient. This
makes the scheme more scalable. And the total time cost is reasonable.

The communication overhead is about Z ∗ �logN�. Both the computation
overhead and latency are practical.
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5.3 Evaluation of the Scheme Based on Computational PIR

To evaluate the scheme based on computational PIR, we focus on the metrics
about the query time, computation overhead including the time cost to decrypt
results, etc. We pad all the sketches and evaluate different scales of databases.
We set the security parameter as 120 for the Ring-LWE encryption. We eval-
uate the datasets when the number of Nodes N = 6105, 18263, 21048, 42096,
and the file size f = 4 KB, 8 KB, 12 KB, 24 KB respectively. The evaluation
result is presented in Table 2. Our result focuses on the decrypting time and the
query round-trip time (RTT). The RTT grows to 18.6123 s as the number of
files increased to 42096 and the file size increased to 24 KB. The client side also
should take more time to decrypt the result file.

(a) Time cost over block size (b) Time cost over node number

Fig. 7. Time cost for server and query respectively

Table 2. Evaluation of private sketch retrieval based on computational PIR

Number of files Max file size of sketch files Decrypting time (S) Query RTT (S)

6105 4 KB 0.337939 0.400975

18263 8 KB 1.47355 1.60825

21048 12 KB 2.70837 2.813172

42096 24 KB 18.4685 18.6123

To further investigate the relation ship between the max file size, the query
RTT, and computation cost, we fix the number of files, increase the max file sizes
and evaluate the metrics. This is due to that the times to call the sub routine
also affect the max file size and query correctness. We fix the file number as
N = 21048. The evaluation result is shown as Fig. 8. Through the results, we
can see that both the decrypting time and query RTT grow over the max file
size increasing. The query RTT is from 1.8 s to 8.8 s when the max file is from
8 KB to 28 KB respectively.
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Fig. 8. The time cost of PIR changes over the max file sizes when the number of files
is 21048.

6 Conclusion

In this paper, we propose three schemes for approximate shortest path query
which aims to protect users’ privacy and achieve shortest path query. Our designs
provide robust privacy guarantees by leveraging the latest cryptographic progress
on oblivious storage and PIR respectively. The first two schemes don’t need
any third party. In the third scheme, most of the computation is on the server
side and can achieve efficient communication overhead. Security and evaluation
are conducted to show our design can achieve strong security guarantees with
practical performance.
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