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Abstract. As the basis of vehicle ad hoc networks, the method of for-
warding data is one of the most important parts which ensures the sta-
bility and efficiency of network communication. However, the high-speed
mobile vehicle nodes cause frequent changes of network topology and dis-
connections of network links, casting a big challenge to the performance
of network data delivery. Data forwarding methods based on the prior
knowledge of vehicle’s trajectory are difficult to adapt to the changing
vehicle trajectory in real world applications, while getting destination
vehicles’ positions in broadcast way are extremely costly. To solve the
above problems, we have proposed an association state based optimized
data forwarding method (ASODF) with the assistance of low loaded
road side units (RSU). The proposed method maps the urban road net-
work into a directed graph, utilizes the carry-forward mechanism and
decomposes the data transmission into decision-making data forwarding
at intersections and data delivery on roads. The vehicles carried data
combine the destination nodes locations obtained by low loaded road
side units and their locations into association states, and the association
state optimization problem is formalized as a Reinforcement Learning
problem with Markov Decision Process (MDP). We utilized the value
iteration scheme to figure out the delay-optimal policy, which is further
used to forward data packets to obtain the best delay of data transmis-
sion. Experiments based on a real vehicle trajectory data set demonstrate
the effectiveness of our model ASODF.

1 Introduction

With the improvement of the vehicle information technology and the devel-
opment of the wireless communications technology, Vehicular Ad-hoc Network
(VANET) has developed rapidly. VANET is a self-organizing network which
is specially designed for inter-vehicle communication based on Mobile Ad-hoc
Network (MANET). The communication in VANET can be divided into three
types, including vehicle to vehicle (V2V), vehicle to infrastructure (V2I) and
infrastructure to vehicle (I2V). The core of Vehicular Network is the speed and
efficiency and the security of data transmission in the network which consist
of vehicles and road side units. However, the characteristics of large amount of
nodes and quickly movement of nodes make it difficult to use the effective routing
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protocol algorithms in Internet and wireless sensor networks, e.g., literature [1]
proposed secure cell relay routing protocol, and also including some exists key
management schemes in wireless sensor network [2], e.g, Du et al. proposed some
key management schemes [3,4]. And some other exists work for the problems of
wireless sensor network elaborated in literature [5] and the time synchronization
scheme proposed in literature [6] also can’t be applied in VANETs. Additionally,
network performance is critical to the data transmission mechanism, due to that
the performance of network are influenced by many factors, including instability
and uncertainty of the channel quality. Therefore, some particular methods have
been proposed to solve these problems.

The exists work of data transmission in Vehicular Network can be divided into
three types. First is methods based on topology. This type of methods can also
be divided into two subtype: Proactive and Reactive. Destination Sequenced
Distance Vector (DSDV) [7] and Optimized Link State Routing protocol
(OLSR) [8] are two classical Proactive methods. These type of methods have a
obvious disadvantages is that the node needs to update the routing information
at any time, which consumes a lot of bandwidth. Dynamic Source Routing
(DSR) [9] and Ad hoc on Demand Distance Vector routing (AODV)
are two reactive methods. But due to the use of broadcast mode, DSR has a
poor scalability which is not suitable for such a large-scale mobile network ad
hoc networks. AODV can suitable for large-scale network, but it still has some
problem, e.g., larger network overhead and expired routing problem.

Second, since VANET has the characteristic of frequent changes in its topol-
ogy, it is very difficult for network nodes to set up and maintain a stable rout-
ing table. Therefore, topology-based data transmission schemes are not suitable
for vehicular networking. With the popularization of GPS equipment, the data
transmission method based on geographic location has been proposed. Greedy
Perimeter Stateless Routing (GPSR) [10] and Geographic source rout-
ing (GSR) [11] are two methods based on geographic location. GPSR uses a
greedy model to transmission data which has a locally optimal problem. GSR is
different to these model whose nodes are able to randomly move, it utilizes the
fact that vehicle can only drive on road. So data transmission can only occurs
at a intersection. The GSR does not take into account the real-time traffic con-
ditions in the road network and may result in a lack of connectivity due to too
few vehicles on the road sections selected at the intersection.

Third, due to the frequent disconnection of network links in vehicular ad
hoc networks and the inability to establish end-to-end routing of source nodes
to destination nodes, researchers creatively introduced the mechanism of tol-
erates time-delay networks and opportunistic networks into vehicular network,
proposed a data transmission scheme based on store-and-forward and carry-
forward mechanism. Static Node Assisted Adaptive Routing (SADV) [12]
and Vehicle Assisted Data Delivery (VADD) [13] are two methods based on
Store and Forward mechanism. SADV deploys static nodes at intersections, i.e.,
roadside units (RSU), to aid in the transmission of data. SADV draws on the
VADD’s section delay model and the optimal path selection. SADV utilizes the
store-and-forward and carry-forward mechanism, which make it be a efficient
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data routing solution. However, The need to deploy infrastructure at each inter-
section makes SADV unsuitable for large-scale network environments. VADD is
a method that proposed for sparse environment. First, VADD extracts a delay
model from real vehicle trajectory data. Then VADD calculates the total delay
of packets from the current intersection to the destination node through the
adjacent crossroads according to the delay model. Finally VADD ranks the total
delay to select the optimal routing.

Fourth, the model based on store-and-forward and carry-forward mechanism
is a good solution to the problem of link disconnection caused by sparse vehi-
cles. But they are still do not take the road restrictions and human behavior
patterns caused by a certain trajectory of the vehicle into consideration. There-
fore, the models based on vehicle trajectory are proposed. These models can
be divided into two types. One is the models in which the vehicles’ trajectory
is fixed in advance. Another is models based on trajectory prediction. Anchor
based Street and Traffic Aware Routing (A-STAR) [14], Geographical
Opportunistic Routing (GeOpps) [15] and Mobile Gateway based For-
warding (MGF) [16] are several models with fixed trajectory. The vehicle nodes
in A-STAR model will choose the route with high connectivity, which will cause
too heavy or even congestion. GeOpps can obtain the fixed trajectory of the
vehicle node through the navigation system, and utilize the trajectory informa-
tion to send packets to vehicles close to the destination node selectively. But due
to too much dependency of trajectory, it is limited to the navigation system and
driver’s driving habits. MGF only use bus to transmission data which makes
it only available on buses. Different to the above model, Trajectory-Based
Data Forwarding (TBD) [17], Trajectory-based Statistical Forwarding
(TSF) [18], Shared-Trajectory-based Data Forwarding Scheme (STDFS)
[19], Trajectory Improves Data Delivery in Vehicular Networks (Tra-
jectory) [20] and Delay-Optimal Data Forwarding (OVDF) [21] are several
models with trajectory prediction. However, TBD and TSF only suitable for
some certain situations. STDFS is not very reliable due to overdependence on
the trajectory. OVDF also assists data transmission with the aid of bus fixed
tracks. The Trajectory model adopt Markov Chain to do trajectory prediction,
it is a efficient model.

Last, the models based on road side units (RSU) are another type of scheme
of data transmission in vehicular network, including the above models of TBD,
TSF, MGF, SADV, STDFS, OVDF. ROAMER [22] further used RSU to trans-
mit data with the dependence of wired backbone network which is contrary to
the concept of VANET transmit data from vehicle node, and this model has high
requirements to RSU.

In summary, there are two problems: (1) data forwarding models based on
the prior knowledge of vehicle trajectory assumptions are difficult to adapt to
changing vehicle trajectories in real-world applications, (2) whereas broadcast
network based approaches has a large network overhead when obtaining destina-
tion vehicle’s positions. Inspired by the exists work, we proposed an association
state based optimal data forwarding model (ASODF) to solve the above problem.
Our model is a mixed model which include V2I and V2V data transmission.
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2 Background

In this section, we give a brief review of Markov Decision Process and it’s value
based methods.

2.1 Markov Decision Process

Markov Decision Process (MDP) is an optimal decision process based on
the Markov process theory for stochastic dynamical systems. It is widely used
to solve the sequential problems that need to make the best decisions at all
stages [23]. A sequential decision problem with known environment dynamics is
usually formalized as a MDP, which is characterized by a 5-tuple 〈S,A, T,R, γ〉,
where S is the set of states and is non-empty, A is the set of actions and is also
non-empty, T : S × A → Π(S) is the transition function, it gives the probability
of the next state when an agent execute a action a ∈ A at state s ∈ S, where
Π(S) represent the set of probability distribution on S, R represent the Reward
function, it give the immediate reward when an agent execute a action at ∈ A
at state st ∈ S and the state transit to state st+1 ∈ S, then the reward is
Rt = R(st, at, st+1), γ is the discount factor to calculate the expected reward.
MDP based on Markov Property, i.e., no post-efficiency. That means that the
transition function T (st, at, st+1) is depends only upon the present state, whereas
has no relate with past other state, i.e., T (st, at, st+1) = P (st+1|st, at). The goal
to solve a MDP question is obtain a optimal policy π, which gives the best
decision of all state when an agent is making a decision, so that the agent can
get most rewards finally.

When the original state is s0 of an agent1, agent will select and execute an
action a0, then the environment will transit to next state s1, and agent will select
and execute an action again, until it arrive terminal state. And the model will
gives a optimal policy π when it converged through iteration. The policy give
the optimal action of a state, i.e., a = π(s).

Value function is always used to evaluate a policy. Value function also been
called cumulative discount rewards, it gives a estimation of an agent will get
finally from current state st, i.e.,

V π(st) = Eπ[R(st) + γR(st+1) + γ2R(st + 2) + · · · ] (1)

We can easily transform it to a simple form according to Bellman Equation,

V π(st) = R(st, at, st+1) + γ
∑

p(st+1|st, at)V π(st+1) (2)

The optimal policy should be the policy which can gives the decisions to get
most cumulative reward from each state. So, the most reward of each state si is:

V ∗(si) = R(si, ai, sj) + max
π

∑

j∈S

p(sj |si, ai)V ∗(sj) (3)

1 MDP assume that agent can get true state of environment, i.e., sagent = senv.
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So the optimal policy from state si to terminal state is:

π∗(si) = arg max
ai

∑
p(sj |si, ai)V (sj) (4)

The methods of solve MDP to get a optimal solution including value iteration
and policy iteration and other linear programming methods. In this paper, we
will use value iteration methods to solve MDP problem. The process of Value
Iteration shows in literature [24].

2.2 Data Delivery on Road

Carry-forward mechanism over is a good way to overcome the shortcomings of
frequent disconnection of VANET links, which are widely used in data transmis-
sion research of vehicular network. The carry-forward mechanism of data delivery
model on road is shown in Fig. 1. When there are vehicles in the communication
of the vehicle carried data and the vehicle is closer to next intersection than
current vehicle, then select and delivery these data to the vehicle closest to next
intersection. If no vehicle, then the vehicle will continue carry the data. This
is a greedy model, i.e., select the best vehicle of current situation, so that data
package can be delivery to next intersection with fastest speed and the minimum
number of forward. Since the transmission process is composed with vehicle store
and wireless forward, the delay of data transmission is affected by two factors,
one is the vehicle density, and another is vehicle wireless device communication
range. Learn from literature [13], we use ρij represent the density of road eij , R
represent the radius of wireless communication range. VADD assume that the
distribution of distance of two vehicle meet the exponential distribution with
parameter 1/ρij . So, the delay dij on the road eij is:

Fig. 1. Data delivery on road

dij = (1 − e−R·ρij )
lijc

R
+ e−R·ρij

lij
vij

(5)

Where lij represent the distance of road eij , c indicate the time needed to
delivery data to next hop, vij represent the average speed on the road eij . These
parameters can be obtained through the use of GPS devices by road traffic
statistics or analysis of historical trajectory data.
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2.3 Association State of Tag Game

Different to the exists application of MDP in data transmission, the state in
MDP used in our paper is association state learn from Tag Game [25]. There are
two roles in Tag Game, robot and opponent, The process is that the robot keeps
chasing opponent until the robot catches up with opponent, which is shown in
Fig. 2.

Fig. 2. Tag Game

Tag Game can be see as a Partially Observable MDP task, in which state
are composed of the positions of robot and opponent, i.e., association state.
The set of state of robot is {s0, · · · , s29}, the set of state of opponent is
{s0, · · · , s29, stagged}, the association state is s = {Robot,Opponent}. The robot
will execute one action of the set North, South,West, East, Tag, and then robot
will get a immediate reward. When robot and opponent are in the same box,
i.e., Opponent = stagged, then robot will catch up opponent and get the highest
reward and game over.

3 Association State Based Data Forwarding Model

MDP has widely used to solve sequential decision-making tasks. Since the vehi-
cle carrying data will meet other vehicles with different probabilities, the data
forward in VANET can be formed to a Sequential decision making problem. We
can consider the process of transmitting a data from source node to destination
vehicle as the robot chasing the opponent in Tag Game, i.e., the data package
chasing the destination vehicle and the vehicle carrying data are keep changing.
In this section, we will form this problem to a MDP task.

3.1 Association State

Association State is the core of getting the position of destination vehicle dynam-
ically and forwarding data optimally. With the use of association state, we can
add the position information of destination vehicle to the MDP model and opti-
mize the network delay of data transmission dynamically.
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In our model, we use the current intersection as the current vehicle’s state.
So the association state consists of the intersection of source vehicle and the
intersection of destination vehicle. When the source vehicle node obtains the
intersection information of the destination vehicle node, the low-load roadside
unit and its wired backbone-assisted communication are utilized. We assume
that each vehicle will register information on the roadside unit when it enter the
coverage area of roadside unit of a intersection. Once the roadside unit detects
the destination vehicle node, the intersection information will be transmitted to
the roadside unit closest to the source vehicle node through the roadside unit
backbone network. Then, the position information of destination vehicle node
will be transmitted to the source vehicle node so that it can get the current
association state. Due to the use of the roadside unit backbone network, the time
delay can be ignored. The next state is also a necessary condition for solving a
MDP problem.

In our model, the information of destination vehicle including speed, position,
direction and etc. We can also obtain the next intersection of the current vehicle
when it has not enter the coverage of the next intersection yet through the this
information. Therefore, we can get the next association state.

3.2 Decision-Making of Association State

As we has described the transmission on road section, we will show the process
of data transmission at a intersection. We will give priorities on the directions
which is shown in Fig. 3 according to a fixed policy like VADD [13], where 1
represent the best direction to transmit data, 2 represent the second optimal
direction, etc. We will select the optimal direction, i.e., priority is 1. It will
transmission data when there is a vehicle in that direction, or will check if it is
driving in this direction, if so then don’t forward to another vehicle, if not then
will select vehicle in the second optimal direction, and etc.

At intersection i, decisions (actions) can be formed as a vector set U(i), where
π1

i π2
i π3

i · · · πmi
i ∈ E is all mi road sections connected with intersection i and the

order indicates the priority. Our goals is to select the best decision (action) from
set U(i) to transmit data at current intersection.

Fig. 3. The decision making of a intersection
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3.3 Transition Probability

We use P (s, πi, s
′
) represent the transition probability, where state s consist of

the intersections of source vehicle and destination vehicle. So P (s, πi, s
′
) is consist

of two parts, the transition probability of source vehicle P (srct, πi, srct+1) and
the transition probability of destination vehicle turn to the next intersection
P (dest, dest+1).

Assume that the current intersection is i and the policy is πi, Pij(πi) =
P (srct, πi, srct+1) represent the probability that the data be transmitted to next
intersection j along the road eij where srct = i, srct+1 = j.

(1) Computation of P(srct, πi, srct+1). We define three probability events:

• A represent the event that a vehicle has not met a vehicle which is heading
to a road section with a higher priority than road segment eij .

• B represent the event that a vehicle met a vehicle which is drive to the road eij

at intersection i and the vehicle itself doesn’t drive to a road whose direction
has a higher priority that eij .

• C represent the event that a vehicle drive to the road eij .

With the above definition, we can derive the probability of Pij(πi):

p(srct, πi, srct+1) = Pij(πi)
= P [A ∩ (B ∪ C)]
= P (A) × P (B ∪ C)
= P (A) × [P (B) + P (C) − P (B|C)P (C)]

= [
∏

eik∈HP eij(πi)

(1 − pik)]

× [pij × (1 −
∑

eik∈HPeij(πi)

p
′
ik) + p

′
ij − pij × p

′
ij ]

(6)

where P (A) indicate the probability that event A occurred, HPeij(πi) represent
the set of roads that have a higher priority that road eij . pij represent the
probability that a vehicle drive from intersection i to intersection j, p

′
ij represent

the probability that a vehicle meet other vehicles which drive from intersection
i to road eij . In our model, we set pij = #num(i → j)

#num(i) , where #num(i → j)
is the number of vehicles drive to intersection j when it is at intersection i,
#num(i) is the number of all vehicles reach intersection i. And we set p

′
ij =

#nummet(i → j)
#nummet(i) , where #nummet(i → j) is the number of vehicles that the vehicle

met at intersection i and drive to intersection j, #nummet(i) is the number of
all vehicles that the vehicle met at intersection i.

(2) Computation of P(dest, dest+1). In our model, we set P (dest, dest+1) =
#num(dest → dest+1)

#num(dest)
, where #num(dest → dest+1) is the number of vehicles

that reach intersection i at time t and reach intersection j at time t + 1, and
#num(dest) is the number of all vehicles reach intersection i at time t.
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So the complete association state transition probability P (s, πi, s
′
) of a carrier

vehicle reached intersection i at time t is:

P (s, πi, s
′
) = P (st+1 = s|at = π, st = s

′
)

= P ((src, des)t+1|πi, (src, des)t)
= P (srct, πi, srct+1) ∗ P (dest, dest+1)
= Pij(πi) ∗ P (dest, dest + 1)

(7)

3.4 Model Derivation

Network time delay is an important indicator of VANET performance. Its value
is the accumulation of time delays on the roads that the data package passed,
which is corresponds to the composition of the value function in MDP. So we
use the time delay as MDP reward.

Fig. 4. The Markov Decision Process at state s

Assume that there are four adjacent state at state s, then the transition
model from state s is shown in Fig. 4. The Ds(π) represent the value function
from state s, i.e., the estimated total time delay from the source vehicle which
is at state s. So Ds(π) can be formed as:

Ds(πs) =
∑

s′∈N(s)

P (s, πs, s
′
) × [R(s, πs, s

′
) + D

′
s(π)] (8)
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= Ps,s1 × (R(s, πs, s1) + Ds1(πs))
+ Ps,s2 × (R(s, πs, s2) + Ds2(πs))
+ Ps,s3 × (R(s, πs, s3) + Ds3(πs))
+ Ps,s4 × (R(s, πs, s4) + Ds4(πs))

(9)

The our goal is to minimize the total time delay, i.e.,

min
π

Ds(π),∀s (10)

And the optimal policy we will get is:

π∗ = 〈π∗
s ,∀s ∈ S〉 (11)

The reward R(s, πi, s
′
) we will get is derived as:

R(s, πi, s
′
) = R((srct, dest), πi, (srct+1, dest+1)) (12)

=
1
2
(dsrct+1,srct

+ ddest+1,dest
) (13)

3.5 Algorithm

Since our model is still a standard MDP model, we can use the standard Value
Iteration to solve this question. The Algorithm is shown in Algorithm1.

Algorithm 1. ASODF:Association State based Optimal Data Forwarding
model
Input: Initial the Values of all state to D0, max iteration τ and threshold θ.
Output: The optimal policy π∗ = 〈π∗

s , ∀s ∈ S〉 and the corresponding expected time
delay D∗

s (π∗)
1: initial g0 = 0 and d0 = 0; Local: k = 0
2: repeat
3: Dk+1

s =
∑

s
′ ∈N(s) T (s, πs, s

′
) × (ds,s

′ + Dk+1

s
′ )

4: πk+1
s = arg minπs∈∩(s)

∑
s

′ ∈N(s) T (s, πs, s
′
) × (ds,s

′ + Dk
s

′ )
5: k = k + 1
6: until maxs∈S ‖Dk

s − Dk−1
s ‖ < θork > τ

7: π∗
s = π∗

s , π∗ = 〈π∗
s , ∀s ∈ S〉

8: return π∗, D∗
s (π∗)

4 Experiments

In this section, we will describe our experiments in detail.



190 P. Zhu et al.

4.1 DataSet

In order to make the experimental results more real and convincing, we run
experiments on a real vehicle data set of SUVnet of Shanghai [26]. It include
5000 taxis and buses’ trajectories data, and we only use the part of taxis’ data.

We preprocessed the data set, including:

• Clean the data, including remove duplicate data and error data.
• Repair drift data based on road structure.
• Since the taxi data recorded an average of every 30 s, we interpolated the

discontinuous trajectory data and error trajectory data.

4.2 Experiment Settings

We select about 2700 taxis as our object vehicles. In our experiments, we ran-
domly select 200 vehicles as our the source vehicle and the destination vehicles
to transmit data. We assume that each data package is the same size. And some
hyper parameters are shown in Table 1.

Table 1. Parameter setting of experiments

Parameters Values (range)

Wireless transmission range 200 m

The number of experimental vehicles 300 to 2700

θ 0.001

τ 1000

The number of vehicles carried data 200

Time difference to the next intersection 10 s

Time to live (TTL) 1 h, 2 h, 3 h

4.3 Experiment Result Analysis

We compared our model ASODF with OVDF-P, which is one of models of OVDF.
In OVDF, a data package is successfully be transmitted when it is be transmit
to a road side unit and we changed this setting. In our experiments, a data is
transmitted successfully when it is transmitted to a moving vehicles.

The results is of average delivery ratio and average delay is shown in Fig. 5(a)
and (b) respectively.

The results shown in Fig. 5(a) demonstrate that our model has a high delivery
ratio when the number of vehicles are the same, i.e., the density of vehicles is
same. And a obvious conclusion is that both model’s average delivery ratio will
increase with the increase of the number of vehicles. Fig. 5(b) shows that our
model has a low delay when the number of vehicles is small, i.e, our model are
better when the vehicles in network is sparse. and both the model will have a
similar results with the increase of the vehicles.
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(a) Results of average delivery ratio

(b) Results of average delay

Fig. 5. POMDP to MDP generalization performance

Table 2. Comparison of average delivery ratio

Vehicle number ASODF (s) OVDF (s) Improvement

300 0.52 0.47 10.64%

600 0.61 0.56 8.93%

900 0.69 0.63 9.52%

1200 0.78 0.73 6.85%

1500 0.83 0.79 5.06%

1800 0.87 0.85 2.35%

2100 0.90 0.88 2.27%

2400 0.91 0.89 2.25%

2700 0.92 0.90 2.22%
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Table 3. Comparison of average delay

Vehicle number ASODF OVDF Improvement

300 250 290 13.79%

600 230 250 8.71%

900 200 220 9.09%

1200 140 170 17.65%

1500 120 145 17.24%

1800 100 110 9.10%

2100 90 95 5.26%

2400 88 90 2.52%

2700 86 89 3.37%

The result of comparing two models is shown in Tables 2 and 3. Table 2
shows that with the increase of vehicles, the improvement of our model compare
to OVDF tend to a small value of 2.22%. The reason is that with the increase of
vehicle density, fewer and fewer vehicle communication links are disconnected,
and more and more data packets are transmitted by wireless, the improvement
is gradually reduced. And Table 3 shows that the average delay improvement is
13.79% at a low vehicle density. In summary, that our model are better that
OVDF, particularly at a low vehicle density.

5 Conclusion

In this paper, we proposed an association state based optimal data forwarding
model (ASODF) to improve the data delivery ratio and decrease the delivery
delay in VANET. Our model formed the data forwarding to a reinforcement
learning tasks and use standard value iteration method to solve it. And Exper-
iments show that our model can get a high delivery ratio and a lower delay,
particularly, our model can do better in deal with sparse environment in VANET.

References

1. Du, X., Xiao, Y., Chen, H.-H., Wu, Q.: Secure cell relay routing protocol for sensor
networks. Wirel. Commun. Mob. Comput. 6(3), 375–391 (2006)

2. Xiao, Y., Rayi, V.K., Sun, B., Du, X., Hu, F., Galloway, M.: A survey of key man-
agement schemes in wireless sensor networks. Comput. Commun. 30(11), 2314–
2341 (2007)

3. Du, X., Xiao, Y., Guizani, M., Chen, H.-H.: An effective key management scheme
for heterogeneous sensor networks. Ad Hoc Netw. 5(1), 24–34 (2007)

4. Du, X., Guizani, M., Xiao, Y., Chen, H.: Transactions papers a routing-driven
elliptic curve cryptography based key management scheme for heterogeneous sensor
networks. IEEE Trans. Wirel. Commun. 8(3), 1223–1229 (2009). https://doi.org/
10.1109/TWC.2009.060598

https://doi.org/10.1109/TWC.2009.060598
https://doi.org/10.1109/TWC.2009.060598


A Reinforcement Learning Approach of Data Forwarding 193

5. Du, X., Chen, H.-H.: Security in wireless sensor networks. IEEE Wirel. Commun.
15(4) (2008)

6. Du, X., Guizani, M., Xiao, Y., Chen, H.-H.: Secure and efficient time synchroniza-
tion in heterogeneous sensor networks. IEEE Trans. Veh. Technol. 57(4), 2387–2394
(2008)

7. Perkins, C.E., Bhagwat, P.: Highly dynamic destination-sequenced distance-vector
routing (DSDV) for mobile computers. ACM SIGCOMM Comput. Commun. Rev.
24(4), 234–244 (1994)

8. Clausen, T., Jacquet, P.: Optimized link state routing protocol (OLSR). Technical
report (2003)

9. Lee, S.-J., Gerla, M., Chiang, C.-C.: The dynamic source routing protocol for
multi-hop wireless adhoc networks

10. Karp, B., Kung, H.-T.: GPSR: greedy perimeter stateless routing for wireless net-
works. In: Proceedings of the 6th Annual International Conference on Mobile Com-
puting and Networking, pp. 243–254. ACM (2000)

11. Lochert, C., Hartenstein, H., Tian, J., Fussler, H., Hermann, D., Mauve, M.: A
routing strategy for vehicular ad hoc networks in city environments. In: Proceedings
of the Intelligent Vehicles Symposium, pp. 156–161. IEEE (2003)

12. Ding, Y., Xiao, L.: SADV: static-node-assisted adaptive data dissemination in
vehicular networks. IEEE Trans. Veh. Technol. 59(5), 2445–2455 (2010)

13. Zhao, J., Cao, G.: VADD: vehicle-assisted data delivery in vehicular ad hoc net-
works. IEEE Trans. Veh. Technol. 57(3), 1910–1922 (2008)

14. Costa, P., Frey, D., Migliavacca, M., Mottola, L.: Towards lightweight information
dissemination in inter-vehicular networks. In: Proceedings of the 3rd International
Workshop on Vehicular Ad Hoc Networks, pp. 20–29. ACM (2006)

15. Leontiadis, I., Mascolo, C.: GEOPPS: geographical opportunistic routing for vehic-
ular networks. In: IEEE International Symposium on World of Wireless, Mobile
and Multimedia Networks: WoWMoM 2007, pp. 1–6. IEEE (2007)

16. Chen, L., Li, Z.-J., Jiang, S.-X., Feng, C.: MGF: mobile gateway based forwarding
for infrastructure-to-vehicle data delivery in vehicular ad hoc networks. Jisuanji
Xuebao (Chin. J. Comput.) 35(3), 454–463 (2012)

17. Jeong, J., Guo, S., Gu, Y., He, T., Du, D. TBD: trajectory-based data forwarding
for light-traffic vehicular networks. In: 29th IEEE International Conference on
Distributed Computing Systems, ICDCS 2009, pp. 231–238. IEEE (2009)

18. Jeong, J., Guo, S., Gu, Y., He, T., Du, D.H.: TSF: trajectory-based statistical for-
warding for infrastructure-to-vehicle data delivery in vehicular networks. In: 2010
IEEE 30th International Conference on Distributed Computing Systems (ICDCS),
pp. 557–566. IEEE (2010)

19. Xu, F., Guo, S., Jeong, J., Gu, Y., Cao, Q., Liu, M., He, T.: Utilizing shared
vehicle trajectories for data forwarding in vehicular networks. In: 2011 Proceedings
of IEEE INFOCOM, pp. 441–445. IEEE (2011)

20. Wu, Y., Zhu, Y., Li, B.: Trajectory improves data delivery in vehicular networks.
In: 2011 Proceedings of IEEE INFOCOM, pp. 2183–2191. IEEE (2011)

21. Choi, O., Kim, S., Jeong, J., Lee, H.-W., Chong, S.: Delay-optimal data forwarding
in vehicular sensor networks. IEEE Trans. Veh. Technol. 65(8), 6389–6402 (2016)

22. Mershad, K., Artail, H.: Performance analysis of routing in VANETs using the
RSU network. In: 2011 IEEE 7th International Conference on Wireless and Mobile
Computing, Networking and Communications (WiMob), pp. 89–96. IEEE (2011)

23. Bellman, R.: A Markovian decision process. J. Math. Mech. 6, 679–684 (1957)
24. Sutton, R.S., Barto, A.G., Reinforcement Learning: An Introduction, vol. 1, no. 1.

MIT Press, Cambridge (1998)



194 P. Zhu et al.

25. Pineau, J., Gordon, G., Thrun, S., et al.: Point-based value iteration: an anytime
algorithm for POMDPs. In: IJCAI, vol. 3, pp. 1025–1032 (2003)

26. Huang, H.-Y., Luo, P.-E., Li, M., Li, D., Li, X., Shu, W., Wu, M.-Y.: Performance
evaluation of SUVnet with real-time traffic data. IEEE Trans. Veh. Technol. 56(6),
3381–3396 (2007)


	A Reinforcement Learning Approach of Data Forwarding in Vehicular Networks
	1 Introduction
	2 Background
	2.1 Markov Decision Process
	2.2 Data Delivery on Road
	2.3 Association State of Tag Game

	3 Association State Based Data Forwarding Model
	3.1 Association State
	3.2 Decision-Making of Association State
	3.3 Transition Probability
	3.4 Model Derivation
	3.5 Algorithm

	4 Experiments
	4.1 DataSet
	4.2 Experiment Settings
	4.3 Experiment Result Analysis

	5 Conclusion
	References




