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Abstract. With the availability of Smart Grid, disaggregation, i.e.
decomposing a whole electricity signal into its component appliances
has gotten more and more attentions. Now the solutions based on the
sparse coding, i.e. the supervised learning algorithm that belongs to Non-
Intrusive Load Monitoring (NILM) have developed a lot. But the accu-
racy and efficiency of these solutions are not very high, we propose a new
efficient sparse coding-based data-mining (ESCD) scheme in this paper
to achieve higher accuracy and efficiency. First, we propose a new cluster-
ing algorithm – Probability Based Double Clustering (PDBC) based on
Fast Search and Find of Density Peaks Clustering (FSFDP) algorithm,
which can cluster the device consumption features fast and efficiently.
Second, we propose a feature matching optimization algorithm – Max-
Min Pruning Matching (MMPM) algorithm which can make the feature
matching process to be real-time. Third, real experiments on a pub-
licly available energy data set REDD [1] demonstrate that our proposed
scheme achieves a for energy disaggregation. The average disaggregation
accuracy reaches 77% and the disaggregation time for every 20 data is
about 10 s.
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1 Introduction

Data mining is an efficient technique that shows the interesting patterns or
knowledge from huge amount of data. These patterns play an important role
in marketing, business, medical analysis, intrusion detection, and other applica-
tions where these patterns are of paramount importance for strategic decision
making [21].

In Smart Grid, Energy disaggregation, the task of separating the whole
energy signal of a residential, commercial, or industrial building into the energy
signals of individual appliances, is a kind of important data mining method for
energy-saving and by Energy disaggregation, we can disaggregate electricity con-
sumptions to infer what device is used, how often this device is used. If this data
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is used by the supplier, amount of advertising fees may be saved and they can
make a precise advertising for each family. They can even know which device
needs to be fixed [24,25].

Studies on energy disaggregation date back to about thirty years ago. The
early approaches look for sharp edges (corresponding to device on/off events)
in both the real and reactive power signals, and cluster devices according to
these changes in consumption [2–6]. A number of different directions has been
explored, [22,23] computing harmonics of steady-state power to determine more
complex device signatures, [24] analyzed the transient noise of a device circuit
when the device changes state. But now for costs and convenience more and more
researches focus on disaggregate electricity using low-frequency-resolution [7–9].
In this paper, we use a novel clustering algorithm based on sparse coding to
disaggregate electricity in low frequency data set.

In this paper, we propose a new scheme–ESCD to make Energy disaggrega-
tion. The main contributions are as follows:

1. In the scheme we first proposes a new clustering algorithm–Probability Based
Double Clustering (PBDC) based on Fast Search and Find of Density Peaks
Clustering (FSFDP) algorithm in energy disaggregation, which can cluster
the device consumption features fast and efficiently.

2. Our scheme proposes a feature matching optimization algorithm – Max-Min
Pruning Matching (MMPM) algorithm, without any constraint condition, our
algorithm can make the feature matching process to be real-time.

3. Experiments show that our scheme (ESCD) has a better Energy disaggre-
gation accuracy and real-time performance than the sparse-coding based
schemes before.

2 Related Work

The basic problem in this paper is energy disaggregation (the task of determining
the component appliance contributions from an aggregated electricity signal) [1].
The user’s behavior of electricity consumption can be obtained by energy dis-
aggregation, the solutions of which are varied. According to different types of
basic data sets, the solutions can be divided into two categories. The first is the
scheme based on the high frequency data [10–12], and the second is based on the
low frequency data [7–9,13–18]. The schemes based on the high frequency data
can obtain more accurate analysis results. But the hardware for data sampling is
very expensive. It requires one or more than one sensor per appliance to perform
Appliance Load Monitoring (ALM). Namely Intrusive Load Monitoring (ILM)
that is contrary to the issue studied in this paper. The scheme based on the
low frequency data just requires only a single meter for per house or a build-
ing, the scheme is called Non-Intrusive Load Monitoring (NILM). The NILM
schemes are divided into supervised [15–17] and unsupervised [7–9,18] disaggre-
gation algorithms. Most unsupervised disaggregation algorithms are developed
based on the HMM. They can have good results in estimating the total elec-
tricity consumption per device, while the analysis for the time-sharing of each
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device is not good compared to the supervised ones [26]. Most supervised dis-
aggregation algorithms are based on the sparse coding. For example, [16] uses a
data set provided by Plugwise which contains ten broad categories of electrical
devices from several houses. It models the entire signal of each device over a long
period of time, such as a week, as a sparse linear combination of the atoms of
an unknown dictionary [27]. However, the drawbacks of the algorithm are that
it requires a large training dataset to capture all possible times that the same
device may operate and the classification times cost too long. [15] uses the data
set REDD, it proposes a concept: powerlets – a small period time, the electricity
consumption of device measured by ‘powerlets’ and decoded by Dissimilarity-
based Sparse subset Selection (DS3) [19] algorithm. The scheme can achieve the
energy disaggregation accuracy of 72%, and the energy disaggregation speed is
about 15 s. It is an efficient and accurate scheme, but it requires a lot of con-
straints, which causes the bad effect on the actual effect of this scheme. We
propose a scheme in this paper, which improves the algorithm in [20]. We first
use FSFDP algorithm and propose a feature matching optimization algorithm –
max-min Pruning algorithm.

3 Preliminaries

We make a brief introduction to fast search and find of density peaks clustering
and sparse coding.

3.1 Fast Search and Find of Density Peaks Clustering (FSFDP)

Clustering algorithm is an effective tool for data mining. Specifically, clustering
analysis automatically groups things in the absence of category tag information.
Each packet is self-identifying and differentiated from other groups [28].

Fast search and find of density peaks Clustering is a clustering algorithm, it
is based on the idea that cluster centers are characterized by a higher density
than their neighbors, and by a relatively large distance from points with higher
densities. In FSFDP, the number of clusters arises intuitively, outliers are auto-
matically spotted and excluded from the analysis, and clusters are recognized
regardless of their shape and the dimensionality of the space in which they are
embedded [21].

Assume that the data set S = {xi}N
i=1, IS = {1, 2, . . . , N} to be clustered is

the corresponding set of indices, and dij represents the defined distance between
the data points xi and xj . For any data point xi in S, we can define two quantities
of ρi and δi, which are the two characteristics of the clustering center mentioned
above: local density and distance, respectively.

Local density ρi is calculated by two ways: Cut-off kernel or Gaussian kernel.
Cut-off kernel and Gaussian kernel are calculated by Eqs. 1 and 2:

ρi =
∑

j∈Is\{i}
χ(dij − dc)χ(x) =

{
1, x < 0;
0, x ≥ 0.

(1)
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ρi =
∑

j∈Is\{i}
e−(

dij
dc

)
2

(2)

The parameter dc > 0 is the cutoff distance and must be specified in advance.
ρi represents the number of data points in the S where the distance is less than
dc (regardless of the itself). In Gaussian kernel, the distance between the data
point j and i(dij < dc) is greater, the value of ρi is greater. The only difference is
that the cut-off kernel is a discrete value and the Gaussian kernel is a continuous
value, the probability of the latter is conflicting (i.e., the local density values of
the same data points with the same distance) are smaller.

We calculate the distance δi as follows:
Let {qi}N

i=1 be a descending order of {ρi}N
i=1, ρq1 ≥ ρq2 ≥ · · · ≥ ρqN .

δqi =

⎧
⎨

⎩

min
qj ,j

{dqiqj}, i ≥ 2;

max
j≥2

{dqiqj}, i = 1.
(3)

δi =

⎧
⎨

⎩

min
j∈Ii

s

{dij}, Ii
s �= Φ;

max
j∈Is

{dij}, Ii
s = Φ.

(4)

The set Ii
s = {k ∈ Is : ρk > ρi}, when xi has the maximum local density, δi

represents the distance between the data point and xi with the largest distance
from xi in S, otherwise δi represents the shortest distance that in all data points
with local density greater than xi. We can choose some appropriate value of ρi

and δi as critical value to cluster.

3.2 Sparse Coding

Sparse coding is a class of unsupervised methods for learning sets of over-
complete bases to represent data efficiently. The aim of sparse coding is to find
a set of basis vectors φi such that we can represent an input vector X as a linear
combination of these basis vectors [21]:

X =
k∑

i=1

aiφi (5)

We define sparsity as having few non-zero components or having few com-
ponents not close to zero. The requirement that our coefficients ai be sparse
means that given a input vector, we would like as few of our coefficients to be
far from zero as possible. The choice of sparsity as a desired characteristic of our
representation of the input data can be motivated by the observation that most
sensory data such as natural images may be described as the superposition of a
small number of atomic elements such as surfaces or edges. Other justifications
such as comparisons to the properties of the primary visual cortex have also
been advanced [22].



An Efficient Sparse Coding-Based Data-Mining Scheme in Smart Grid 137

We define the sparse coding cost function on a set of m input vectors as [23]:

min
a
(j)
i

φi

m∑

j=1

∥∥∥∥∥X(j) −
k∑

i=1

a(j)i φi

∥∥∥∥∥

2

+ λ
k∑

i=1

S(a(j)i ) (6)

where S(.) is a sparsity cost function which penalizes ai for being far from zero.
We can interpret the first term of the sparse coding objective as a reconstruction
term which tries to force the algorithm to provide a good representation of X
and the second term as a sparsity penalty which forces our representation of
X to be sparse. The constant λ is a scaling constant to determine the relative
importance of these two contributions [29].

Although the most direct measure of sparsity is the ‘L0’ norm (S(ai) =
1(|ai| > 0)), it is non-differentiable and difficult to optimize in general. In prac-
tice, common choices for the sparsity cost S(.) are the L1 penalty S(ai) = |ai|1
and the log penalty S(ai) = log(1 + a2

i ).
In addition, it is also possible to make the sparsity penalty arbitrarily small

by scaling down ai and scaling φi up by some large constant. To prevent this
from happening, we will constrain

∥∥φ2
∥∥ to be less than some constant C. The

full sparse coding cost function including our constraint on φ is

min
a
(j)
i

φi

m∑
j=1

∥∥∥∥X(j) −
k∑

i=1

a(j)i φi

∥∥∥∥
2

+ λ
k∑

i=1

S(a(j)i )

subject to ‖φ‖2 ≤ C,∀i = 1, . . . , k

(7)

4 Efficient Sparse Coding-Based Data-Mining (ESCD)
Scheme

In this section we propose a novel energy disaggregation scheme, ESCD Scheme.
Based on sparse coding, this is an efficient and fast scheme for energy disag-
gregation. First, we carry out a detailed description of the problem. We assume
that there are n electrical devices in a building, where xi(t) denotes the energy
signal of device i at time t. y(t) denotes the aggregate energy signal, recorded
by a smart meter, at time t. We can write

y (t) =
n∑

i=1

xi (t) (8)

Given only the whole power consumption y (t), the goal of energy disaggre-
gation is to recover the power signal of each of the appliances, i.e., to estimate
xi (t) for i ∈ {1, 2, 3, . . . ,n}. It is very difficult to solve the formula (8) because
xi (t) represents the i − th electricity consumption of the device at the time t,
and the electrical device is operated by the person. We can not judge the human
behaviour at time t that we can’t get xi (t).

In this paper, we model each electrical device with sparse coding. For every
i = 1, 2, 3, . . . , n, n, we learn a feature matrix from training set whose frequency



138 D. Wang et al.

is q Hz, Xi ∈ Rmi×Tw , Tw we call sliding window time represents a continuous
period of time from training time Ttr and Tw � Ttr. mi represents the number
of features in the i − th electrical device. If we have got enough features from
the i − th electrical device, we can use the approximation

Tw (xi (t)) ≈ Xiai (t) , Tw (xi (t))
=

(
xi (t) , xi

(
t + 1

q

)
, xi

(
t + 2 × 1

q

)
, . . . , xi (t + Tw)

) (9)

We call the vector Tw (xi (t)) sliding window, ai (t) is the activations of fea-
ture matrix Xi, ai (t) is sparse that contain mostly zero elements and only a
1 elements. We propose a matching algorithm to get the ai (t) so that we can
calculate Xiai (t) to get an approximate solution for each device. Our scheme
based on sparse coding is consist of two stages, learning feature matrix and
energy matching.

4.1 Learning Feature Matrix

We propose a Probability Based Double Clustering (PBDC) algorithm to learn-
ing each of the electrical devices feature matrix. As described above, the time
length of training data is Ttr, frequency is q Hz, there are (Ttr − Tw + 1) × q
sliding windows, for each sliding window, we have Tw ×q elements. Assume that
every sliding window is a data point Pi ∈ (1, (Ttr − Tw + 1) × q), after removing
the repeated points we get k unique points set Puniq and a vector representing
the repeat times of data points R = (r1, r2, r3, . . . , rk), we define the distance
between two point dij = ‖Pi − Pj‖ 2, the distance matrix D is a k × k scale
symmetric matrix with a diagonal of 0, D = {dij , i, j ∈ {1, 2, 3, . . . , k}}, PBDC
algorithm is based on FSFDP, the FSFDP algorithm needs to manually specify
the minimum value of ρ and δ to determine the boundary of the cluster that
to determine the number of clustering centres, this operation will lead to the
instability of the number of clustering centres and can not get the scheme to be
automated.

In this paper, the algorithm is improved by setting a upper limit of the
number m, when clustering we will compare the difference of m and the number
of clusters, and make a automatically correct until the number of clusters is
similar to m. In this improved algorithm, it is only necessary to specify the
upper limit of the number m of clustering centres before clustering instead of
manually specify the minimum value of ρ and δ during clustering. Therefore,
we can have an efficient clustering and the number of clustering centres can be
stabilized at a certain controllable value. Every clustering centre is an electrical
device feature, a controllable number of electrical device feature is necessary for
reduce the algorithm complexity of energy matching.

After first clustering, we find some problem, the clustering result is not what
we really want. According to the power consumption of electrical equipment and
the relationship between time, as shown in Fig. 1.
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Fig. 1. (a) and (b) are the electricity consumption of refrigerator and lighting.

Algorithm 1. Learning Feature Matrix
Input: Device training data set Dtr,

Sliding window size w,
The number of feature vector m.

Output: Device feature matrix X.
1. Compute Puniq and R from Dtr

2. Compute distance matrix D:
3. for i = 1, ..., size(R) do
4. for j = i, ..., size(R) do
5. dij = ‖Pi − Pj‖ 2

6. end for
7. end for
8. First Clustering: improved FSFDP(D,m/10)
9. Second Clustering:
10. for k = 1, ..., size(clusters) do
11. Ci = num(clusteri)/‖R‖1

12. improved FSFDP(Di,m ∗ Ci)
13. clustering result is collected to X
14.end for
15.retrun X

It is clear that after the first clustering, the centre point represents the larger
distance from the data points, and the result is just judged by the data value
difference, this will lead a result that some data points with small value is buried
in large. In fact, we need a more comprehensive clustering to make a second
clustering for improving this result.

In the second clustering, we need to do cluster for every clusters calculated
in the first clustering. And we set the number of cluster by the probability set C
that includes the probability Ci of each cluster. Considering the repeated points,
the probability Ci of each cluster can be calculated by formula 10 and 11.
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Ci =
num (Clusteri)∑k

i=1 ri

(10)

num (Clusteri) =
∑

ri, ri ∈ {Clusteri} (11)

Assume that we need about m features in each electrical device, we can set
the upper limit m × Ci for each cluster and clustering again. The algorithm
details describe in Algorithm 1.

4.2 Energy Matching

According to the first stage, we obtain the feature matrix of each device Xi, as
seen in formula (9), in this stage, we need to calculate ai (t). Considering the
constraint of ai (t) that ai (t) has only one element is 1 and other is 0.

Algorithm 2. MMPM algorithm
Input: Device feature matrix X1X2 . . . Xn

Test data Y .
Pruning threshold u

Output: Disaggregation result Ỹ1Ỹ2 . . . Ỹn

1. get the windows size w and each device feature numbers mi

2. while X1 �= NULL
3. get one feature vector form X1

4. compute the remainder energy Tw (y (t)) and argmax

5. if(argmax > µ||min(Tw (y (t))) + µ < 0)
6. break;
7. end if

8. overlay record the feature vector into Ỹ1

9. ...
10. while Xn �= NULL
11. get one feature vector form Xn

12. compute the remainder energy Tw (y (t)) and argmax

13. if(argmax > µ||min(Tw (y (t))) + µ < 0)
14. break;
15. end if

16. overlay record the feature vector into Ỹn

17. end while
18. ...
19.end while

In general, in order to get a globally optimal solution with n electrical devices,
if the number of feature matrix in each electrical device Xi is mi, the algorithm

complexity is O
(

n∏
i=1

mi

)
. We can find that the complexity of the algorithm

increases exponentially with each additional device, and the complexity of this
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algorithm is unacceptable. We need to do some algorithm optimization, consider
that n is a constant determined by the number of equipment and mi is the
number of electrical device feature, it will lead to a poor accuracy if we reduce
the mi. We propose a Max-Min Pruning Matching (MMPM) algorithm.

The purpose of the algorithm is to perform the pruning optimization of the
matching algorithm under the condition of guaranteeing the global optimum.
This optimization can be divided into two operations: minimum pruning and
maximum pruning, set the maximum pruning parameters for argmax, the prun-
ing threshold for μ. We first discuss the minimum pruning.

The goal of maximum pruning can make sure that we can get the global
optimal solution and end the loop as soon as possible when we get the global
optimal solution. To do this option, we should get the order j of the maximum
element in Tw (y (t)). And then sort in each feature matrix Xi, i ∈ {1, 2, 3 . . . , n}
by the j-th element in descending order, we set the maximum element of feature
matrix Xi in j-th column maxi. We calculate the maximum pruning parameters
as below

argmax = y (t + (j − 1) q) −
n∑

i=n−i

maxi (12)

When argmax > μ, it means that the argmax in remaining loop will large
than the pruning threshold, the remaining loop should be cutoff.

The goal of minimum pruning aids to cut the invalid loop when the sliding
windows vector is to small. In each loop, we get a remainder energy Tw (r (t))
which is the difference between total energy Tw (y (t)) and the upper loop, we
make a minimum pruning judgement condition

min (Tw (r (t))) + μ < 0 (13)

If this judgement condition is set up, that proves it the remaining loop will
make the min (Tw (r (t))) more and more small, we should cut off the remaining
invalid loop. The algorithm details describe in Algorithm 2.

5 Experiment Analysis

In this section, we evaluate our propose scheme on the real-world REDD data
set [1], a publicly available data set for electricity disaggregation. The data set
consists of power consumption signals from six different houses, where for each
house, the whole electricity consumption as well as electricity consumptions of
about twenty different devices are recorded. The signals from each house are
collected over a period of two weeks with a low frequency sampling rate of 1/3 Hz.
The House 5 data set is excluded because of its data contains very few fluctuation
that we could not extract enough features to do energy disaggregation.

In the experiment, in every house we use a month of recorded electricity
signals that include 5 important household appliances, one week for learning
feature matrix and the rest for energy matching. We set the size of feature matrix
as 20 × m that means the size of a feature vector is set to 20 and the numbers
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Fig. 2. (a) and (b) are the relationship of disaggregation accuracy and time with feature
vector numbers.

of feature vector is set to m. The size of feature vector too small or to large may
lead to a low performance because that a small size could cause excessive training
and a large size could confusion the features. In order to make a real-time energy
matching the numbers of feature vector m must be less than 100. With these
settings, we can get five feature matrix for five household appliances, it takes
about 10 s to perform energy matching on a temporal window. We compute the
disaggregation accuracy, similar to [1]:

accenergy matching = 1 −

∑
t∈ψ

M∑
i=1

∥∥∥Tw(xi(t)) − T̃w(xi(t))
∥∥∥
1

2
∑
t∈ψ

‖Tw(xi(t))‖1
(14)

where ψ = {1, Tw + 1, 2Tw + 1, . . .} and the 2 factor in the denominator comes
from the that the absolute value results in double counting errors. We compare
our method with the PED algorithm [15], FHMM algorithm (in its supervised
setting) [1] and a Simple Mean prediction algorithm, which estimates the total
consumption percentage of each device and predicts that the whole electricity
signal breaks down according to this percentage at all time.

Figure 2 shows the disaggregation accuracy and time of our algorithm for
different houses as a function of feature vector numbers m when size of a feature
vector is set to 20. Table 1 shows the disaggregation results for all the six houses
(exclude the House 5) in the REDD data set. Our algorithm performs better
than PED, FHMM and the naive Simple Mean on the data set, achieving about
5.4% higher accuracy overall. Figure 3 shows the actual and estimated energy
consumption obtained by our method for refrigerator and lighting in the House
1. Our scheme captures transients and different steady states in each device.
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Fig. 3. (a) and (b) the actual and estimated energy consumption obtained by ESCD
scheme for refrigerator and lighting in the House 1

Table 1. Energy disaggregation accuracies (%)

House 1 House 2 House 3 House 4 House 6 Average

Simple 41.4% 39.0% 46.7% 52.7% 33.7% 42.7%

FHMM 71.5% 59.6% 59.6% 69.0% 62.9% 64.5%

PED 81.6% 79.0% 61.8% 58.5% 79.1% 72.0%

ESCD 84.3% 82.7% 70.2% 71.0% 78.9% 77.4%

6 Conclusion

In this paper, we propose a new algorithm for energy disaggregation which con-
sists of the two steps of learning feature matrix of power consumption signatures
and a energy matching for disaggregation. To learn feature matrix, based on
FSFDP algorithm we propose the Probability Based Double Clustering (PBDC)
algorithm to learning each of the electrical devices feature matrix, the PBDC
algorithm can make a second clustering according to the first clustering points
distribution probability and ensure that the clustering can extract sufficient
feature vector and avoid excessive training. After we calculate feature matrix
of each devices, we propose a Max-Min Pruning Matching (MMPM) energy
matching algorithm for disaggregation. The MMPM algorithm can minimize
computational complexity make the disaggregation be a real-time calculation.
Our experiments are based on a real energy data set, we show that our scheme
provides promising results for energy disaggregation.
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and Development Program No. 2016YFB0800301.



144 D. Wang et al.

References

1. Kolter, J.Z., Johnson, M.J.: REDD: a public data set for energy disaggregation
research. In: Workshop on Data Mining Applications in Sustainability (SIGKDD),
San Diego, CA, vol. 25, pp. 59–62 (2011)

2. Pinkas, B.: Cryptographic techniques for privacy-preserving data mining. SIGKDD
Explor. Newsl. 4(2), 12–19 (2002)

3. Hart, G.W.: Nonintrusive appliance load monitoring. Proc. IEEE 80(12), 1870–
1891 (1992)

4. Berges, M., Goldman, E., Matthews, H.S., Soibelman, L.: Learning systems for
electric comsumption of buildings. In: ASCI International Workshop on Computing
in Civil Engineering (2009)

5. Shaw, S.R., Abler, C.B., Lepard, R.F., et al.: Instrumentation for high performance
nonintrusive electrical load monitoring. J. Sol. Energy Eng. 120(3), 224–230 (1998)

6. Patel, S.N., Robertson, T., Kientz, J.A., Reynolds, M.S., Abowd, G.D.: At the flick
of a switch: detecting and classifying unique electrical events on the residential
power line. In: 9th International Conference on Ubiquitous Computing (UbiComp
2007) (2007)

7. Shao, H., Marwah, M., Ramakrishnan, N.: A temporal motif mining approach
to unsupervised energy disaggregation. In: Proceedings of the 1st International
Workshop on Non-Intrusive Load Monitoring, Pittsburgh, PA, USA, 7 May 2012

8. Zhong, M., Goddard, N., Sutton, C.: Interleaved factorial non-homogeneous hidden
Markov models for energy disaggregation (2014). arXiv preprint: arXiv:1406.7665

9. Lange, H., Bergs, M.: Efficient inference in dual-emission FHMM for energy dis-
aggregation. In: AAAI Workshop: AI for Smart Grids and Smart Buildings (2016)

10. Norford, L.K., Leeb, S.B.: Non-intrusive electrical load monitoring in commercial
buildings based on steady-state and transient load-detection algorithms. Energ.
Build. 24, 51–64 (1996)

11. Shaw, S.R., Leeb, S.B., Norford, L.K., Cox, R.W.: Nonintrusive load monitoring
and diagnostics in power systems. IEEE Trans. Instrum. Meas. 57, 1445–1454
(2008)

12. Gupta, S., Reynolds, M.S., Patel, S.N.: ElectriSense: single-point sensing using
EMI for electrical event detection and classification in the home. In: Proceedings
of the 12th ACM International Conference on Ubiquitous Computing, Copenhagen,
Denmark, pp. 139–148, 26–29 September 2010

13. Srinivasan, D., Ng, W., Liew, A.: Neural-network-based signature recognition for
harmonic source identification. IEEE Trans. Power Del. 21, 398–405 (2006)

14. Kim, H., Marwah, M., Arlitt, M., Lyon, G., Han, J.: Unsupervised disaggregation
of low frequency power measurements. In: Proceedings of the 11th SIAM Interna-
tional Conference on Data Mining, Mesa, AZ, USA, 28–30 April 2011

15. Elhamifar, E., Sastry, S.: Energy disaggregation via learning powerlets and sparse
coding. In: AAAI, pp. 629–635 (2015)

16. Kolter, J.Z., Batra, S., Ng, A.Y.: Energy disaggregation via discriminative sparse
coding. In: Advances in Neural Information Processing Systems, pp. 1153–1161
(2010)

17. Gupta, M., Majumdar, A.: Nuclear norm regularized robust dictionary learning
for energy disaggregation. In: 2016 24th European Signal Processing Conference
(EUSIPCO), pp. 677–681. IEEE (2016)

18. Kolter, J.Z., Jaakkola, T.: Approximate inference in additive factorial HMMs with
application to energy disaggregation. J. Mach. Learn. Res. 22, 1472–1482 (2012)

http://arxiv.org/abs/1406.7665


An Efficient Sparse Coding-Based Data-Mining Scheme in Smart Grid 145

19. Elhamifar, E., Sapiro, G., Sastry, S.S.: Dissimilarity-based sparse subset selection.
IEEE Trans. Pattern Anal. Mach. Intell. 38(11), 2182–2197 (2016)

20. Rodriguez, A., Laio, A.: Clustering by fast search and find of density peaks. Science
344(6191), 1492–1496 (2014)

21. Lee, H., Battle, A., Raina, R., et al.: Efficient sparse coding algorithms. In:
Advances in Neural Information Processing Systems, pp. 801–808 (2007)

22. Hoyer, P.O.: Non-negative sparse coding. In: Proceedings of the 2002 12th IEEE
Workshop on Neural Networks for Signal Processing, pp. 557–565. IEEE (2002)

23. Bao, C., Ji, H., Quan, Y., et al.: Dictionary learning for sparse coding: algorithms
and convergence analysis. IEEE Trans. Pattern Anal. Mach. Intell. 38(7), 1356–
1369 (2016)

24. Du, X., Guizani, M., Xiao, Y., Chen, H.H.: Secure and efficient time synchroniza-
tion in heterogeneous sensor networks. IEEE Trans. Veh. Technol. 57(4), 2387–2394
(2008)

25. Hei, X., Du, X., Wu, J., Hu, F.: Defending resource depletion attacks on
implantable medical devices. In: Proceedings of IEEE GLOBECOM 2010, Miami,
Florida, USA, December 2010

26. Yao, X., Han, X., Du, X., Zhou, X.: A lightweight multicast authentication mech-
anism for small scale IoT applications. IEEE Sens. J. 13(10), 3693–3701 (2013)

27. Xiao, Y., Rayi, V., Sun, B., Du, X., Hu, F., Galloway, M.: A survey of key man-
agement schemes in wireless sensor networks. J. Comput. Commun. 30(11–12),
2314–2341 (2007)

28. Du, X., Xiao, Y., Chen, H.H., Wu, Q.: Secure cell relay routing protocol for sensor
networks. Wirel. Commun. Mob. Comput. 6(3), 375–391 (2006)

29. Du, X., Guizani, M., Xiao, Y., Chen, H.H.: A routing-driven elliptic curve cryp-
tography based key management scheme for heterogeneous sensor networks. IEEE
Trans. Wirel. Commun. 8(3), 1223–1229 (2009)


	An Efficient Sparse Coding-Based Data-Mining Scheme in Smart Grid
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Fast Search and Find of Density Peaks Clustering (FSFDP)
	3.2 Sparse Coding

	4 Efficient Sparse Coding-Based Data-Mining (ESCD) Scheme
	4.1 Learning Feature Matrix
	4.2 Energy Matching

	5 Experiment Analysis
	6 Conclusion
	References




