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Abstract. In smart grid information systems, the electricity usage data
should be audited by data users, such as the market analysts to fin-
ish their tasks. Besides that, electricity company always outsources the
data to the cloud server (CS) to release its data management pressure.
Since the CS is untrusted and the detailed electricity usage data contains
users’ privacy, the privacy concern of the data and data users’ queries
is raised. Although many schemes have been proposed to achieve the
encrypted data query in smart grid, they are not applied well due to
the numeric attributes in electricity usage data and privacy concern in
smart grid application. In this paper, we provide an efficient privacy-
preserving scheme for range query in smart grid. Our scheme achieves
the range query without disclosing the privacy of the data and queries.
And the performance shows that our scheme can reduce the computation
cost for both the data owner and data users, and shorten the response
time of every query, which is great significance for smart grid application.

Keywords: Smart grid · Privacy-preserving · Range query

1 Introduction

With the rapid development of industrial and economic activities, smart grid
has been accepted by more and more people due to its many good features.
However, the electricity usage data of customers in smart grid is surging from
10,780 terabytes (TB) in 2010 to over 75,200 TB in 2015 [1]. That is far beyond
the electricity company’s data management capability. Uploading the electric-
ity usage data into a cloud server is the best way to mitigate this stress. In
this approach, electricity company can store the electricity usage data on cloud
server and execute computation and queries using the server’s computational
capabilities.

However, cloud server is often untrusted. It may share the electricity usage
data with other parties for profit making. But the electricity usage data contains
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user’s private information, e.g., user’s name and family address, bank account
and telephone number. If the cloud server shares these data with attackers, user’s
privacy might be compromised. Therefore, our electricity usage data must be
stored in encrypted form on the cloud server to protect the data confidentiality
and privacy.

In addition, electricity usage data in smart grid information systems should
be periodically audited to ensure that the billing and pricing statements are
presented fairly [2]. Specially, data users, such as market analysts, are endowed
with the task of querying smart grid information systems for auditing, analysis,
accounting or tax-related activities [3]. Thus, there is growing need to achieve
querying on encrypted data in smart grid.

It is not a trivial issue to query on encrypted data in smart grid at the same
time with the following requirements: (1) Confidentiality and privacy of data.
The electricity usage data should be protected from being stolen by the untrusted
cloud server. (2) Privacy of the query. Since the cloud server is untrusted, it might
trace the query results if the query contains sensitive information and make the
user’s privacy disclosure. Thus, guaranteeing query privacy is also important
for smart grid application. (3) Achieving range query. Since the electricity usage
data always has the numeric attributes, range query is a common type of queries
for the smart grid. (4) Being efficient and low cost. Smart grid is a large-scale
system, since the electricity usage data is large and dynamic update in the cloud
server, the protocol should be efficient for the query and low cost for both the
data owner and data users.

Recently, many protocols were proposed to achieve the query on encrypted
data, but they are not suitable to apply for the smart grid. Public key encryption
with keyword search (PEKS) is a widely studied approach to achieve querying
on encrypted data. Nevertheless, most of the existing schemes (such as [4,5])
about PEKS focus only on the keyword search technique, with little attention
to both data and query privacy protection in the scheme. Baek et al. [6] argue
that PEKS and data encryption schemes need to be treated as a single scheme
to securely provide PEKS service. Qin et al. [7] propose an efficient encryption
scheme with one-dimension keyword search (EPPKS) for cloud computing by
combining the ideas of partial decipherment with the PEKS. However, it is not
quite secure because the partial decipherment will leak partial information of
users’ data. The Searchable Encryption Scheme for Auction (SESA) [8] in smart
grid achieved the security, but it only can be applied for the equality checks.

In this paper, we propose a privacy-preserving range query scheme over
encrypted electricity usage data for smart grid, which ensures to secure the
data confidentiality, privacy and query privacy in smart grid. We first proposed
a range query scheme in smart grid by using the modified Paillier homomorphic
cryptosystem. With our scheme, the range query is achieved without disclosing
the privacy of the electricity usage data and query context. We then evaluated
the performance of our scheme. The results show that our scheme can reduce the
computation cost for both the electricity company and data users, and shorten
the response time of every range query, which is great significance for smart grid
application.
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The rest of this paper is organized as follows. Section 2 discusses the related
work. Section 3 describes the system model, data query model, security require-
ments and our design goals. Section 4 introduces the background. Sections 5 and 6
present the modified paillier homomorphic cryptosystem and our scheme respec-
tively. Section 7 discusses how the proposed scheme meets our design goals, and
Sect. 8 shows the experiment results. Finally, concluding the paper in Sect. 9.

2 Related Work

Querying encrypted data in smart grid is an important issue that attracts great
attention from research communities. But the most existing schemes only can be
applied for equality checks. Since the encrypted electricity usage data has many
numeric attributes, it is much significant to achieve range query in smart grid.

For the encrypted data query, there are generally four categories of solu-
tions that have been developed for range query: (1) Order preserving encryption
(OPE)-based schemes; (2) Predicate encryption-based schemes; (3) Asymmetric
scalar-product preserving encryption (ASPE)-based schemes; (4) Bucketization-
based schemes.

Order preserving encryption (OPE)-based schemes [9–11] that preserve the
relative ordering of data items even after encryption. Agrawal et al. [9] describe
the first order preserving encryption scheme for numeric data, followed by [10]
which gives a formal security analysis and proposes the Order Preserving Sym-
metric Encryption (OSPE). Boldyreva et al. [11] revise and improve the security
of OPE. The OPE scheme allows direct translation of range predicate from the
original domain to the domain of the ciphertext. However, OPE encryption is
deterministic and thus it reveals the frequency of each distinct value and is
susceptible to statistic attacks.

In predicate encryption-based schemes [12–15] secret keys correspond to pred-
icates and ciphertexts are associated with attributes. The secret key correspond-
ing to a predicate can be used to decrypt a ciphertext only if the attribute
satisfies the predicate. Boneh and Waters [12] propose a predicate encryption,
named Hidden Vector Encryption (HVE), which can be used for range queries.
To improve the search efficiency, tree-based index structures [15,16] were pro-
posed to support multi-dimensional range query [13]. But in those schemes, the
cost to compute exponentiation and pairing in group is too high.

Asymmetric scalar-product preserving encryption (ASPE)-based schemes
[17,18] that allow the relative distance comparison between two data points
under encryption. Given two data points p1, p2 and a query point Q, all
encrypted, ASPE can determine whether Q is closer to p1 or p2. Wang et al.
[17] create a hierarchical encrypted index, which first constructs a regular R-tree
for a given set of data points and then applies the ASPE to encrypt the mini-
mum bounding box range (MBR) in the R-tree. This tree-based ASPE solution
reduces the leakage of sorted information, but it can cause false positives.

The bucketization technique is firstly designed in [19] for query processing in
an untrusted environment. In this bucketization-based scheme [19–21], the data
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owner partitions the whole attribute domain into multiple buckets of varying
sizes and assigns a unique bucket tag to each bucket using a collision-free hash
function. Pairs of a bucket tag and the encrypted tuples constitute the index,
which is maintained on the untrusted server. When a range query is issued by
the data owner, it needs to be first determined which tags of buckets intersect
the query and then all the tuples indexed by these tags will be returned by the
server. Although this scheme is more efficient than the three schemes mentioned
before, it always contains some false positives, the data users need to filter the
mismatch after decrypting all the results, which is not suitable for application
of the smart grid.

Since the schemes presented above all have some shortcomings. In this paper,
we aim at providing a privacy-preserving range query scheme for encrypted elec-
tricity usage data in smart grid based on the modified paillier homomorphic
cryptosystem.

3 System Model

In this section we introduce the system model, data query model, security
requirements and our design goals.

3.1 System Model

In the system model, our focus is on how to outsource the users’ electricity
usage data from the electricity company to cloud server (CS) in encrypted form
and how to operate a query over the encrypted electricity usage data in CS by
data users. Our system is composed of three components, as shown in Fig. 1:
electricity company, data users (such as the market analysts, auditors) and a
cloud server (CS).

The electricity company is the data owner, who encrypts the electricity usage
data of customers by using cryptosystem before outsourcing the data to CS. And
the data user always need to query the electricity usage data for their tasks. CS
is honest but curious, it might be interested in users’ electricity usage data and
data users’ queries.

3.2 Data Query Model

Before we discuss the security requirements and our design goals, let us first
introduce how the encrypted data is stored at the CS and how data users make
queries.

We consider relational databases, where data are represented in the form
of tables. Let R(A1, A2 · · · An) be a relational table, where A1, A2 · · · An are
attributes of the table. The encrypted form of the table is as following:

Rs(As
1,A

s
2 · · ·As

n),
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Electricity Company Data Users

Cloud Server

Fig. 1. System model in our scheme.

Table 1. User information table (UIT )

ID Name Address Consumption

23 Tom Maple 40

860 Mary Main 80

320 John River 50

875 Jerry Hopewell 110

where As
1, A

s
2 · · · As

n are encrypted attributes. For example, consider the UIT
table below that stores the information of customers (Table 1).

The UIT table is mapped to a corresponding UIT s table at the CS:

Rs(IDs, Names, Addresss, Consumptions)

where IDs, Names, Addresss, Consumptions denote encrypted strings of the
ID, Name, Address and Consumption respectively. For instance, the following is
the encrypted table UIT s stored on the CS (Table 2):

Table 2. UIT s

IDs Names Addresss Consumptions

1100... 0111... 0001... 0100...

0110... 0011... 0101... 0111...

0010... 1111... 0100... 1000...

1110... 0000... 1001... 1101...

The colunm strings contain the vaules corresponding to the encrypted values
in UIT. For instance, the first vaule is encrypted to “1100...” that is equal to
encrypt (23), the second vaule is encrypted to “0111...” that is equal to encrypt
(Tom).
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In this model, data users use the SQL statements to query the encrypted
data. For example, data users use:

SELECT Name, Address, Consumption
FROM UIT table
WHERE Consumption>100;

and the client software at userside will translate this SQL query Q into an
encrypted form Qs:

SELECT Names, Addresss, Consumptions

FROM UIT s table
WHERE Consumptions>100s;

where Names, Addresss, Consumptions, 100s are the ciphertext of the respec-
tive strings. It is then submitted to CS for excution. CS will return encrypted
data that satisfy the SQL conditions to the user.

The conditions of the SQL statements can be classified to two categories:
(1) Attribute = Value. Such condition is equality query, like consumption = 80;
(2) Attribute > Value or Attribute < Value. Such condition is range query. For
instance, consumption > 70 or consumption < 60.

Since extensive research has been done on equality condition on encrypted
data, we focus on range query in this paper.

3.3 Security Requirements

As mentioned before, in system model, CS might be interested in the electricity
usage data. It has the motivation to steal the individual data for its own purpose.
In addition, it might trace or analyze the query results, if the query contains
sensitive information. Therefore, our scheme should satisfy the following security
requirements.

Data Confidentiality: The electricity company should encrypt the electricity
usage data before uploading it to the CS, and successfully prevents the CS from
stealing the data.

Data privacy: The encrypted electricity usage data should be accessed only
by authenticated data users. It means that only the authorized data users can
decrypt the encrypted data.

Query privacy: Data users usually prefer to keep their queries from being
exposed to others. Thus, the biggest concern is to encrypt the query to protect
the query privacy. Otherwise, if the query includes some sensitive information,
the CS might trace or analyze the results.

3.4 Design Goals

In this model, our design goal is to develop a privacy-preserving range query
scheme over encrypted electricity usage data for smart grid application, and
achieves the security and efficiency as follows.
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(1) Since the CS is untrusted and the electricity usage data contains the privacy
of the user, our scheme should achieve the data confidentiality and data
privacy, as well as the query privacy.

(2) In smart grid application, the electricity usage data is large and dynamic
update in the cloud. As range query are operated over encrypted electricity
usage data, comparing with the existing range query schemes in smart grid,
our scheme should reduce the response time of every range query and reduce
the computation cost for both the data owner and data users.

4 Background

In this section, we will first introduce the Paillier Homomorphic Cryptosystem
which are the based of our scheme.

The Paillier homomorphic cryptosystem is a public key cryptosystem by
Paillier [22] based on the “Composite Residuosity Assumption (CRA)”. The
Paillier cryptosystem is homomorphic, by using a public key, the encryption
of the sum m1 + m2 of two messages m1 and m2 can be computed from the
encryption of m1 and m2. Our scheme is inspired by the Paillier cryptosystem.
Hence, we give some preliminaries of the Paillier homomorphic cryptosystem,
which consists of three phases as follows.

Key Generation. Set n = pq, where p and q are two large prime numbers. Set
λ = lcm(p − 1, q − 1), i.e., the least common multiple of p − 1 and q − 1. Define
L(μ) = μ+1

n , and randomly choose gp, then compute

μ = (L(gλ
p (mod n2)))−1(mod n).

The public encryption key is a pair (n, gp). The private decryption key is
(λ, μ).
Encryption E(m, r). Given plaintext m ∈ {0, 1, . . . ,n − 1}, select a random
r ∈ {0, 1, . . . ,n − 1}, and encrypt the plaintext m as ciphertext c:

c = E(m, r) = gm
p · rn (mod n2).

Decryption D(c)

D(c) = L(cλ (mod n2)) · μ (mod n) = m.

5 Modified Paillier Cryptosystem

In our scheme, we use the Paillier homomorphic cryptosystem so that CS can
perform matching operation without decrypting the electricity usage data and
query contexts. In this section, we provide the details of our modified Paillier
cryptosystem.
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5.1 Making µ Public

Recall that in the Paillier cryptosystem, (λ, μ) is the private key. However, μ
can be made public, because it is hard to decrypt an encrypted message by
only knowing μ. Hence, we can make μ public while achieving the same security
guaranty as the unmodified Paillier cryptosystem.

We take advantage of this operation in order to shift the computation towards
encryption and make decryption lightweight.

5.2 Shifting the Computation

With the modification above, the new public key is (n, gp, μ) and the private
key is λ. First, we modify the Paillier homomorphic cryptosystem so that anyone
can decrypt using the new public key, but only those holding the private key can
encrypt. This is similar to the digital signatures. And the following equations
show the modification to the encryption and decryption algorithms:

Encryption:

E′(m, r, λ) =E(m, r)λ

= gmλ
p · rnλ (mod n2)

= c.

Decryption:

D(c) = L(c (mod n2)) · μ (mod n) = m.

We can realize that one can perform all the homomorphic operations on our
modified Paillier cryptosystem similar to the Paillier cryptosystem.

Note that as we shift the computation towards encryption, the decryption is
computationally more efficient than the Paillier decryption. And we also allow
the CS to perform certain operations without knowing the private key. Such
shifting improves the performance of the range query model, since the Paillier
decryption become more efficient.

5.3 Secret Comparisons

With the shift of computation described above, CS can find the difference by
simply decrypting each value, which does not assure the privacy of individual
values. Therefore, we introduce an additional parameter to the encryption oper-
ation in order to allow CS to compute the difference without knowing individual
values.

Assume that there are two values x1 and x2. We perform the following oper-
ation to the encryption so that CS can find the difference (x1−x2) without
learning either x1 or x2:
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y1 = gt · E′(x1, r1) (mod n2),

y2 = g−t · E′(−x2, r2) (mod n2).

Note that even though μ is known, it can decrypt neither x1 nor x2 as they
are multiplied with gt and g−t respectively. Due to the homomorphic property,
we can have:

y1 · y2 = E′(x1 − x2, r3).

Anyone can compute the difference as follows using the public key of the
modified Paillier cryptosystem:

D(y1 · y2) = x1 − x2.

The results D(y1 ·y2) > 0,D(y1 ·y2) < 0 and D(y1 ·y2) = 0, indicate the cases
of x1 > x2, x1 < x2 and x1 = x2, respectively.

For example, if the data user wants to query the users whose electricity
consumption is greater than 100, then the x2 is 100. The CS will return the
encrypted data to the user. As we can see, with this method, CS can compare
two numeric values, but is unable to know the exact values of them.

6 Privacy Preserving Range Query Scheme

There is three entities in the range query model in smart grid: electricity com-
pany, data users and a CS. For each query, the scheme works in the following
steps, as shown in Fig. 2:

Fig. 2. The steps of range query in our system.

(1) Initialization of the electricity company and the data user.
(2) Electricity company uploads the encrypted electricity usage data to CS.
(3) Data users make queries to CS and get the results.

In the proposed scheme, we aim at providing a privacy-preserving range query
scheme in smart grid based on modified Paillier cryptosystem. We will explain
each step in details in the following subsections.
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6.1 Initialization of Electricity Company and Data Users

When the electricity company initializes, it generates the following values: E ’(ri),
E ’(1), and gt· E ’(ri), which are used by the electricity company to encrypt the
data before uploading them to the CS.

Besides that, during the initialization, the company checks the identify of the
data user. If it is a legal user, electricity company will send the following values
to it: −ri,E′(−1), and g−t· E ’(−ri).

Note that these parameters are used by the data user to encrypt the queries
and decrypt the results. The electricity company may provide E′(−1) and −ri,
and allow the data user to compute E ’(−ri) homomorphically, instead of pro-
viding the value directly. In this case, data user can recover neither g−t nor -t
from g−t· E ’(−ri).

6.2 Upload the encrypted data to CS by electricity company

When the electricity company wants to upload the data, it frist encrypts the
electricity usage data. We illustrate our ideas using examples. Consider the UIT
table before, we encrypt one of the columns in the data table as an example. Let
one of the consumption values as v1. It is encrypted to y1 as following:

y1 =gt · E′(ri) · E′(ri(v1 − 1))

=gt · E′(riv1).

The encryption of other attribute values is similar to this example.
Note that E ’(ri(v1 − 1)) is homomorphically computed using E ’(ri). This

value can be computed efficiently by using fast multiplication.
After the electricity company encrypts the electricity usage data, it uploads

the encrypted data to the CS.
Note that CS cannot decrypt the encrypted data, but our scheme allows the

CS to perform privacy preserving matching.

6.3 Secure Data Query by Data Users

When the data user makes a SQL query, the query is encrypted and the encrypted
query is sent to the CS.

Considering the following query as an example:
SELECT Name, Address, Consumption

FROM UIT table
WHERE Consumption>100;

The value 100 is encrypted into the form 100s in the example. We use x1 to
express the value 100 and w1 expresses the encrypted form 100s. The operation
is as follows:

w1 = g−t · E′(−ri) · E′(ri(1 − x1))

= g−t · E′(−rix1),

When the CS receives the encrypted SQL query:
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SELECT Names, Addresss, Consumptions

FROM UIT s table
WHERE Consumptions>100s;

It searches data table UIT (encrypted) and compares each attribute values
(encrypted) in consumption column with 100s. It computes the difference d
between each consumption value in the table with 100s as follows:

d =D′(y1 · w1)
= ri(v1 − x1).

Since the ri is greater than 0, CS will return the encrypted data to the data
user, which makes the d > 0.

Note that, the electricity usage data always contains more than one attribute.
If the data user queries the data more than one attribute, CS has to match for
a composite range query after evaluating each rang query value.

And after successfully receiving the result, the valid data user can decrypt
the encrypted data using the secrets.

7 Security Analysis

In this section, we will explain how our scheme achieves the goals of the data
confidentiality, data privacy and query privacy.

7.1 Data Confidentiality

The data confidentiality in our scheme requires that the electricity usage data
should be encrypted when it is uploaded to the CS, and prevents the CS from
stealing. In our scheme, the electricity usage data is encrypted by Paillier cryp-
tosystem. And as for CS, since it only does homomorphic computing on two
encrypted values, it cannot access the electricity usage data. Therefore, the pro-
posed scheme can achieve the data confidentiality.

7.2 Data Privacy

Data privacy in our scheme means that only the authorized data user can decrypt
the electricity usage data. Data in our proposed scheme are encrypted by Paillier
cryptosystem, so the adversary cannot identify them. But if the adversary fab-
ricates a message and sends it to some entities, it cannot be detected. Hence, we
also use the protocol in our scheme, only the data user who is authenticated by
the electricity company can get the secrets to decrypt. Therefore, our proposed
scheme can achieve the data privacy.
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7.3 Query Privacy

The query privacy in our scheme means that the query should be encrypted to
keep from being exposed to the CS. In our scheme, queries are also encrypted by
the Paillier cryptosystem. When CS wants to do the matching for the electricity
usage data, it does not need to know the exact value of the query. It only does
homomorphic computing on two encrypted values. Thus, our proposed scheme
satisfies the goal of query privacy.

8 Experiment Result

In this section, we evaluate the performance of the proposed scheme in terms of
response time of a range query and the computation cost of the data owner and
data users.

8.1 Response Time

In smart grid, it is important for data users to know the response time of a
range query, which can benefit for them to efficiently schedule their tasks. We
analyze the response time of our scheme and compare our scheme with the
Bucketization-based scheme.

We implement the proposed scheme and the Bucketization-based scheme
respectively in JRE 1.7, eclipse and run it in the computer in Windows 7 OS
with the CPU i5 and 4 cores. We test the response time of a range query by
those two schemes respectively.

From the Fig. 3, we can see that: when the data records increase in database,
the response time of a range query in our scheme changes little. But the change
in the Bucketization-based scheme is obvious. We can see from the Fig. 4, which
is more precise: when the data records increase, the response time of a rang
query in Bucketization-based scheme increases nonlinearly but fast. This is a
huge pressure for the data user, because the data uses have a lot of data to be
audited in reality.

Therefore, we can conclude that our scheme is efficient enough to meet
the requirement of smart grid application. Even the data records are large in
database, the response time of our scheme will be small, which is significant for
smart grid application.

8.2 Computation Cost

For the computation cost, we give the comparison between our scheme and
Bucketization-based scheme too. The experimental environment is the same as
the previous subsection and we choose 5000 data records. The computation cost
of the data owner and data users will be introduced respectively in following.
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Fig. 3. Response time of our scheme and bucket system.

Fig. 4. Response time of the bucketization system when the data records increase.

Computation Cost of the Data Owner. We compare the computation
time of the electricity company when the number of users and query dimen-
sion changes.

Figure 5 shows the computation time when the number of users in electricity
company changes. From the two figures, it can illustrate the linear relationship
when the users’ size increases no matter what the query dimension is. And from
the results, we can see that our scheme incurs less computation cost than the
Bucketization-based scheme when coping with large number of users.

In smart grid application, the number of users is very large. From the
simulation results, we can estimate that our scheme operates well than the
Bucketization-based scheme in smart grid. Therefore, our scheme is very suitable
for large-scale smart grid systems.

Figure 6 describes the computation cost of the electricity company with fixed
users versus the number of changing query dimension. It is easy to find that our
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(a) Single dimension (b) Multi-dimensional

Fig. 5. The computation time of the electricity company when the number of users
changes.

Fig. 6. The computation cost of the electricity company with fixed users versus the
number of changing dimensions.

scheme incurs less computation cost than Bucketization-based scheme, especially
when the query dimension is large in smart grid.

Computation Cost of Data Users. We compare the computation cost of the
data users versus the users’ size in Fig. 7 and the number of query dimension in
Fig. 8. From the figures, we can see that our scheme is always in lower compu-
tation cost no matter what the users’ size or the dimension is. Our scheme can
greatly reduce the computation cost of data users, which is more important for
data users in smart grid.

From the aforementioned analysis, We thus conclude that: (1) Our scheme
can shorten the response time for a range query, which is significant for smart
grid application. (2) As the users’ size and the query dimension increase, the
computation cost of the electricity company in our scheme changes little, which
is suitable for large-scale smart grid systems. (3) The computation cost in data
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(a) Single dimension

(b) Multi-dimensional

Fig. 7. The computation time of the data users when the users connected to electricity
company change.

users’ size in our scheme always keep little. This is very important for the data
user who need to audit much electricity usage data in real. Therefore, our scheme
is efficient enough and suitable for smart grid application.
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Fig. 8. The computation cost of the data user with fixed users versus the number of
changing dimensions.

9 Conclusion

In this paper, we provide an efficient privacy-preserving scheme for range query
in smart grid based on the modified Paillier cryptosystem. We achieved the range
query in smart grid without disclosing the privacy of the electricity usage data
and queries. The performance shows that our scheme can reduce the computation
cost for both the data owner and data users, and shorten the response time of
every range query, which is great significance for smart grid application.
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