
Advances in Intelligent Systems and Computing 731

Software
Engineering

M. N. Hoda
Naresh Chauhan
S. M. K. Quadri
Praveen Ranjan Srivastava Editors

Proceedings of CSI 2015

Advances in Intelligent Systems and Computing

Volume 731

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl

The series “Advances in Intelligent Systems and Computing” contains publications on theory,
applications, and design methods of Intelligent Systems and Intelligent Computing. Virtually all
disciplines such as engineering, natural sciences, computer and information science, ICT, economics,
business, e-commerce, environment, healthcare, life science are covered. The list of topics spans all the
areas of modern intelligent systems and computing such as: computational intelligence, soft computing
including neural networks, fuzzy systems, evolutionary computing and the fusion of these paradigms,
social intelligence, ambient intelligence, computational neuroscience, artificial life, virtual worlds and
society, cognitive science and systems, Perception and Vision, DNA and immune based systems,
self-organizing and adaptive systems, e-Learning and teaching, human-centered and human-centric
computing, recommender systems, intelligent control, robotics and mechatronics including
human-machine teaming, knowledge-based paradigms, learning paradigms, machine ethics, intelligent
data analysis, knowledge management, intelligent agents, intelligent decision making and support,
intelligent network security, trust management, interactive entertainment, Web intelligence andmultimedia.

The publications within “Advances in Intelligent Systems and Computing” are primarily proceedings
of important conferences, symposia and congresses. They cover significant recent developments in the
field, both of a foundational and applicable character. An important characteristic feature of the series is
the short publication time and world-wide distribution. This permits a rapid and broad dissemination of
research results.

Advisory Board

Chairman

Nikhil R. Pal, Indian Statistical Institute, Kolkata, India
e-mail: nikhil@isical.ac.in

Members

Rafael Bello Perez, Universidad Central “Marta Abreu” de Las Villas, Santa Clara, Cuba
e-mail: rbellop@uclv.edu.cu

Emilio S. Corchado, University of Salamanca, Salamanca, Spain
e-mail: escorchado@usal.es

Hani Hagras, University of Essex, Colchester, UK
e-mail: hani@essex.ac.uk

László T. Kóczy, Széchenyi István University, Győr, Hungary
e-mail: koczy@sze.hu

Vladik Kreinovich, University of Texas at El Paso, El Paso, USA
e-mail: vladik@utep.edu

Chin-Teng Lin, National Chiao Tung University, Hsinchu, Taiwan
e-mail: ctlin@mail.nctu.edu.tw

Jie Lu, University of Technology, Sydney, Australia
e-mail: Jie.Lu@uts.edu.au

Patricia Melin, Tijuana Institute of Technology, Tijuana, Mexico
e-mail: epmelin@hafsamx.org

Nadia Nedjah, State University of Rio de Janeiro, Rio de Janeiro, Brazil
e-mail: nadia@eng.uerj.br

Ngoc Thanh Nguyen, Wroclaw University of Technology, Wroclaw, Poland
e-mail: Ngoc-Thanh.Nguyen@pwr.edu.pl

Jun Wang, The Chinese University of Hong Kong, Shatin, Hong Kong
e-mail: jwang@mae.cuhk.edu.hk

More information about this series at http://www.springer.com/series/11156

http://www.springer.com/series/11156

M. N. Hoda • Naresh Chauhan
S. M. K. Quadri • Praveen Ranjan Srivastava
Editors

Software Engineering
Proceedings of CSI 2015

123

Editors
M. N. Hoda
Bharati Vidyapeeth’s Institute of Computer
Applications and Management
(BVICAM)

New Delhi, Delhi
India

Naresh Chauhan
Department of Computer Engineering
YMCAUST
Faridabad, Haryana
India

S. M. K. Quadri
Department of Computer Science
University of Kashmir
Srinagar, Jammu and Kashmir
India

Praveen Ranjan Srivastava
Department of Information Technology
and Systems

Indian Institute of Management Rohtak
Rohtak, Haryana
India

ISSN 2194-5357 ISSN 2194-5365 (electronic)
Advances in Intelligent Systems and Computing
ISBN 978-981-10-8847-6 ISBN 978-981-10-8848-3 (eBook)
https://doi.org/10.1007/978-981-10-8848-3

Library of Congress Control Number: 2018940631

© Springer Nature Singapore Pte Ltd. 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
part of Springer Nature
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

Preface

The last decade has witnessed remarkable changes in IT industry, virtually in all
domains. The 50th Annual Convention, CSI-2015, on the theme “Digital Life” was
organized as a part of CSI@50, by CSI at Delhi, the national capital of the country,
during December 2–5, 2015. Its concept was formed with an objective to keep ICT
community abreast of emerging paradigms in the areas of computing technologies
and more importantly looking at its impact on the society.

Information and Communication Technology (ICT) comprises of three main
components: infrastructure, services, and product. These components include the
Internet, infrastructure-based/infrastructure-less wireless networks, mobile termi-
nals, and other communication mediums. ICT is gaining popularity due to rapid
growth in communication capabilities for real-time-based applications. New user
requirements and services entail mechanisms for enabling systems to intelligently
process speech- and language-based input from human users. CSI-2015 attracted
over 1500 papers from researchers and practitioners from academia, industry, and
government agencies, from all over the world, thereby making the job of the
Programme Committee extremely difficult. After a series of tough review exercises
by a team of over 700 experts, 565 papers were accepted for presentation in
CSI-2015 during the 3 days of the convention under ten parallel tracks. The
Programme Committee, in consultation with Springer, the world’s largest publisher
of scientific documents, decided to publish the proceedings of the presented papers,
after the convention, in ten topical volumes, under ASIC series of the Springer, as
detailed hereunder:

1. Volume # 1: ICT Based Innovations
2. Volume # 2: Next Generation Networks
3. Volume # 3: Nature Inspired Computing
4. Volume # 4: Speech and Language Processing for Human-Machine

Communications
5. Volume # 5: Sensors and Image Processing
6. Volume # 6: Big Data Analytics

v

7. Volume # 7: Systems and Architecture
8. Volume # 8: Cyber Security
9. Volume # 9: Software Engineering

10. Volume # 10: Silicon Photonics & High Performance Computing

We are pleased to present before you the proceedings of Volume # 9 on
“Software Engineering.” The title on “Software Engineering” aims at informing the
readers about state of the art of software engineering by publishing high-quality
papers that represent results of consolidated research and innovations in software
engineering and related areas. It helps the practitioners, researchers, and academi-
cians understand the issues involved in designing, developing, evolving, and val-
idating complex software systems. It provides excellent coverage for developing
professional careers in software engineering.

The title “Software Engineering” also provides insights into various research
issues such as software reliability, verification and validation, security, extensibil-
ity, model and component-based development, software process models and
process-driven systems, and human–computer collaborative systems.

By taking above point of view, this volume is published, which would be
beneficial for researchers of this domain.

The volume includes scientific, original, and high-quality papers presenting novel
research, ideas, and explorations of new vistas in domains like component-based
software engineering, knowledge-based software engineering, agile methodologies,
CASE tools. The aim of this volume is to provide a stimulating forum for sharing
knowledge and results in model, methodology, and implementations of speech and
language processing tools. Its authors are researchers and experts of these domains.
This volume is designed to bring together researchers and practitioners from aca-
demia and industry to focus on extending the understanding and establishing new
collaborations in these areas. It is the outcome of the hard work of the editorial team,
who have relentlessly worked with the authors and steered up the same to compile
this volume. It will be useful source of reference for the future researchers in this
domain. Under the CSI-2015 umbrella, we received over 300 papers for this volume,
out of which 70 papers are being published, after a rigorous review processes, carried
out in multiple cycles.

On behalf of organizing team, it is a matter of great pleasure that CSI-2015 has
received an overwhelming response from various professionals from across the
country. The organizers of CSI-2015 are thankful to the members of Advisory
Committee, Programme Committee, and Organizing Committee for their all-round
guidance, encouragement, and continuous support. We express our sincere grati-
tude to the learned Keynote Speakers for support and help extended to make this
event a grand success. Our sincere thanks are also due to our Review Committee
Members and the Editorial Board for their untiring efforts in reviewing the
manuscripts, giving suggestions and valuable inputs for shaping this volume. We
hope that all the participated delegates will be benefitted academically and wish
them for their future endeavors.

vi Preface

We also take the opportunity to thank the entire team from Springer, who have
worked tirelessly and made the publication of the volume a reality. Last but not
least, we thank the team from Bharati Vidyapeeth’s Institute of Computer
Applications and Management (BVICAM), New Delhi, for their untiring support,
without which the compilation of this huge volume would not have been possible.

New Delhi, India M. N. Hoda
Faridabad, India Naresh Chauhan
Srinagar, India S. M. K. Quadri
Rohtak, India Praveen Ranjan Srivastava
December 2017

Preface vii

The Organization of CSI-2015

Chief Patron

Padmashree Dr. R. Chidambaram, Principal Scientific Advisor, Government of
India

Patrons

Prof. S. V. Raghavan, Department of Computer Science, IIT Madras, Chennai
Prof. Ashutosh Sharma, Secretary, Department of Science and Technology,
Ministry of Science of Technology, Government of India

Chair, Programme Committee

Prof. K. K. Aggarwal, Founder Vice Chancellor, GGSIP University, New Delhi

Secretary, Programme Committee

Prof. M. N. Hoda, Director, Bharati Vidyapeeth’s Institute of Computer Applications
and Management (BVICAM), New Delhi

Advisory Committee

Padma Bhushan Dr. F. C. Kohli, Co-Founder, TCS
Mr. Ravindra Nath, CMD, National Small Industries Corporation, New Delhi
Dr. Omkar Rai, Director General, Software Technological Parks of India (STPI),
New Delhi

ix

Adv. Pavan Duggal, Noted Cyber Law Advocate, Supreme Courts of India
Prof. Bipin Mehta, President, CSI
Prof. Anirban Basu, Vice President-cum-President Elect, CSI
Shri Sanjay Mohapatra, Secretary, CSI
Prof. Yogesh Singh, Vice Chancellor, Delhi Technological University, Delhi
Prof. S. K. Gupta, Department of Computer Science and Engineering, IIT Delhi
Prof. P. B. Sharma, Founder Vice Chancellor, Delhi Technological University,
Delhi
Mr. Prakash Kumar, IAS, Chief Executive Officer, Goods and Services Tax
Network (GSTN)
Mr. R. S. Mani, Group Head, National Knowledge Networks (NKN), NIC,
Government of India, New Delhi

Editorial Board

A. K. Nayak, CSI
A. K. Saini, GGSIPU, New Delhi
R. K. Vyas, University of Delhi, Delhi
Shiv Kumar, CSI
Anukiran Jain, BVICAM, New Delhi
Parul Arora, BVICAM, New Delhi
Vishal Jain, BVICAM, New Delhi
Ritika Wason, BVICAM, New Delhi
Anupam Baliyan, BVICAM, New Delhi
Nitish Pathak, BVICAM, New Delhi
Shivendra Goel, BVICAM, New Delhi
Shalini Singh Jaspal, BVICAM, New Delhi
Vaishali Joshi, BVICAM, New Delhi

x The Organization of CSI-2015

Contents

A Multi-agent Framework for Context-Aware Dynamic User
Profiling for Web Personalization . 1
Aarti Singh and Anu Sharma

Implementation of Equivalence of Deterministic Finite-State
Automation and Non-deterministic Finite-State Automaton in
Acceptance of Type 3 Languages Using Programming Code 17
Rinku, Chetan Sharma, Ajay Kumar Rangra, Manish Kumar
and Aman Madaan

A Multi-factored Cost- and Code Coverage-Based Test Case
Prioritization Technique for Object-Oriented Software 27
Vedpal and Naresh Chauhan

A Novel Page Ranking Mechanism Based on User
Browsing Patterns . 37
Shilpa Sethi and Ashutosh Dixit

Indexing of Semantic Web for Efficient Question
Answering System . 51
Rosy Madaan, A. K. Sharma, Ashutosh Dixit and Poonam Bhatia

A Sprint Point Based Tool for Agile Estimation 63
Rashmi Popli and Naresh Chauhan

Improving Search Results Based on Users’ Browsing Behavior
Using Apriori Algorithm . 73
Deepika, Shilpa Juneja and Ashutosh Dixit

Performance Efficiency Assessment for Software Systems 83
Amandeep Kaur, P. S. Grover and Ashutosh Dixit

Impact of Programming Languages on Energy Consumption
for Sorting Algorithms . 93
Tej Bahadur Chandra, Pushpak Verma and Anuj Kumar Dwivedi

xi

Crawling Social Web with Cluster Coverage Sampling 103
Atul Srivastava, Anuradha and Dimple Juneja Gupta

Efficient Management of Web Data by Applying Web Mining
Pre-processing Methodologies . 115
Jaswinder Kaur and Kanwal Garg

A Soft Computing Approach to Identify Multiple Paths
in a Network . 123
Shalini Aggarwal, Pardeep Kumar and Shuchita Upadhyaya

An Efficient Focused Web Crawling Approach 131
Kompal Aggarwal

A New Log Kernel-Based Possibilistic Clustering 139
Meena Tushir and Jyotsna Nigam

Fuzzy c-Means Clustering Strategies: A Review
of Distance Measures . 153
Jyoti Arora, Kiran Khatter and Meena Tushir

Noise Reduction from ECG Signal Using Error Normalized Step Size
Least Mean Square Algorithm (ENSS) with Wavelet Transform 163
Rachana Nagal, Pradeep Kumar and Poonam Bansal

A Novel Approach for Extracting Pertinent Keywords for Web Image
Annotation Using Semantic Distance and Euclidean Distance 173
Payal Gulati and Manisha Yadav

Classification of Breast Tissue Density Patterns Using SVM-Based
Hierarchical Classifier . 185
Jitendra Virmani, Kriti and Shruti Thakur

Advances in EDM: A State of the Art . 193
Manu Anand

Proposing Pattern Growth Methods for Frequent Pattern Mining
on Account of Its Comparison Made with the Candidate Generation
and Test Approach for a Given Data Set . 203
Vaibhav Kant Singh

A Study on Initial Centroids Selection for Partitional Clustering
Algorithms . 211
Mahesh Motwani, Neeti Arora and Amit Gupta

A Novel Rare Itemset Mining Algorithm Based on Recursive
Elimination . 221
Mohak Kataria, C. Oswald and B. Sivaselvan

xii Contents

Computation of Various Entropy Measures for Anticipating
Bugs in Open-Source Software . 235
H. D. Arora and Talat Parveen

Design of Cyber Warfare Testbed . 249
Yogesh Chandra and Pallaw Kumar Mishra

Performance Evaluation of Features Extracted
from DWT Domain . 257
Manisha Saini and Rita Chhikara

Control Flow Graph Matching for Detecting
Obfuscated Programs . 267
Chandan Kumar Behera, Genius Sanjog and D. Lalitha Bhaskari

A Novel Framework for Predicting Performance of Keyword
Queries Over Database . 277
Mujaffar Husain and Udai Shanker

Predicting and Accessing Security Features into Component-Based
Software Development: A Critical Survey . 287
Shambhu Kr. Jha and R. K. Mishra

Traditional Software Reliability Models Are Based on Brute Force
and Reject Hoare’s Rule . 295
Ritika Wason, A. K. Soni and M. Qasim Rafiq

Object-Oriented Metrics for Defect Prediction . 305
Satwinder Singh and Rozy Singla

A Comparative Analysis of Static and Dynamic Java Bytecode
Watermarking Algorithms . 319
Krishan Kumar and Prabhpreet Kaur

Software Architecture Evaluation in Agile Environment 335
Chandni Ahuja, Parminder Kaur and Hardeep Singh

Mutation Testing-Based Test Suite Reduction Inspired
from Warshall’s Algorithm . 357
Nishtha Jatana, Bharti Suri and Prateek Kumar

Software Component Retrieval Using Rough Sets 365
Salman Abdul Moiz

Search-Based Secure Software Testing: A Survey 375
Manju Khari, Vaishali and Manoj Kumar

Limitations of Function Point Analysis in Multimedia
Software/Application Estimation . 383
Sushil Kumar, Ravi Rastogi and Rajiv Nag

Contents xiii

Maintainability Analysis of Component-Based
Software Architecture . 393
Nitin Upadhyay

An Assessment of Vulnerable Detection Source Code Tools 403
Anoop Kumar Verma and Aman Kumar Sharma

Devising a New Method for Economic Dispatch Solution and Making
Use of Soft Computing Techniques to Calculate Loss Function 413
Ravindra Kumar Chahar and Aasha Chuahan

Trusted Operating System-Based Model-Driven Development
of Secure Web Applications . 421
Nitish Pathak, Girish Sharma and B. M. Singh

Navigational Complexity Metrics of a Website . 433
Divyam Pandey, Renuka Nagpal and Deepti Mehrotra

Evaluation and Comparison of Security Mechanisms In–Place
in Various Web Server Systems . 441
Syed Mutahar Aaqib and Lalitsen Sharma

Component-Based Quality Prediction via Component Reliability
Using Optimal Fuzzy Classifier and Evolutionary Algorithm 449
Kavita Sheoran and Om Prakash Sangwan

Applying Statistical Usage Testing Along with White Box
Testing Techniques . 457
Sunil Kumar Khatri, Kamaldeep Kaur and Rattan Datta

A Review on Application Security Management Using Web
Application Security Standards . 477
A. Rakesh Phanindra, V. B. Narasimha and Ch. V. PhaniKrishna

A Review of Software Testing Approaches in Object-Oriented
and Aspect-Oriented Systems . 487
Vasundhara Bhatia, Abhishek Singhal, Abhay Bansal and Neha Prabhakar

A Literature Survey of Applications of Meta-heuristic Techniques
in Software Testing . 497
Neha Prabhakar, Abhishek Singhal, Abhay Bansal
and Vasundhara Bhatia

A Review of Test Case Prioritization and
Optimization Techniques . 507
Pavi Saraswat, Abhishek Singhal and Abhay Bansal

Software Development Activities Metric to Improve Maintainability
of Application Software . 517
Adesh Kumar pandey and C. P. Agrawal

xiv Contents

Label Count Algorithm for Web Crawler-Label Count 525
Laxmi Ahuja

Vulnerability Discovery in Open- and Closed-Source Software:
A New Paradigm . 533
Ruchi Sharma and R. K. Singh

Complexity Assessment for Autonomic Systems by Using
Neuro-Fuzzy Approach . 541
Pooja Dehraj and Arun Sharma

Proposal for Measurement of Agent-Based Systems 551
Sangeeta Arora and P. Sasikala

Optimal Software Warranty Under Fuzzy Environment 563
A. K. Shrivastava and Ruchi Sharma

Automation Framework for Test Script Generation for Android
Mobile . 571
R. Anbunathan and Anirban Basu

Optimizing the Defect Prioritization in Enterprise Application
Integration . 585
Viral Gupta, Deepak Kumar and P. K. Kapur

Desktop Virtualization—Desktop as a Service and Formulation
of TCO with Return on Investment . 599
Nitin Chawla and Deepak Kumar

An Assessment of Some Entropy Measures in Predicting Bugs
of Open-Source Software . 609
Vijay Kumar, H. D. Arora and Ramita Sahni

A Path Coverage-Based Reduction of Test Cases and Execution
Time Using Parallel Execution . 623
Leena Singh and Shailendra Narayan Singh

iCop: A System for Mitigation of Felonious Encroachment
Using GCM Push Notification . 631
Saurabh Mishra, Madhurima Hooda, Saru Dhir and Alisha Sharma

Clustering the Patent Data Using K-Means Approach 639
Anuranjana, Nisha Mittas and Deepti Mehrotra

Success and Failure Factors that Impact on Project Implementation
Using Agile Software Development Methodology 647
Saru Dhir, Deepak Kumar and V. B. Singh

Fuzzy Software Release Problem with Learning Functions
for Fault Detection and Correction Processes . 655
Deepak Kumar and Pankaj Gupta

Contents xv

Reliability Assessment of Component-Based Software System
Using Fuzzy-AHP . 663
Bhat Jasra and Sanjay Kumar Dubey

Ranking Usability Metrics Using Intuitionistic Preference
Relations and Group Decision Making . 671
Ritu Shrivastava

Research Challenges of Web Service Composition 681
Ali A. Alwasouf and Deepak Kumar

Automation Software Testing on Web-Based Application 691
Saru Dhir and Deepak Kumar

Automated Test Data Generation Applying Heuristic
Approaches—A Survey . 699
Neetu Jain and Rabins Porwal

Comparison of Optimization Strategies
for Numerical Optimization . 709
Gopal Narayanam, Kartikay Ranjan and Sumit Kumar

Sentiment Analysis on Tweets . 717
Mehjabin Khatoon, W. Aisha Banu, A. Ayesha Zohra and S. Chinthamani

xvi Contents

About the Editors

Prof. M. N. Hoda is a Professor of Computer Science and Director of BVICAM,
New Delhi. He has over 22 years of academic experience in different capacities.
Prior to joining the academic world, he initially worked in the corporate sector as a
Software Engineer. He is an expert member of several board-level committees of
DST, CSIR and MHRD, and various universities. His current areas of research are
Information System Audits, Software Engineering, Computer Networks, Artificial
Intelligence, ICTs and Innovative Pedagogies for 21st Century Teaching Learning
Systems. He is a Senior Member of IEEE, CSI, IE(I), ISTE, ISCA and ACM, and a
fellow of IETE.

Prof. Naresh Chauhan is a Professor and Chairman in the Department of
Computer Engineering at YMCA University of Science and Technology, Faridabad
(India). He received his Ph.D. (Computer Engineering) from MD University,
Rohtak; his M.Tech. (Information Technology) from GGSIP University, New
Delhi; and his B.Tech. (Computer Engineering) from NIT, Kurukshetra. He has 23
years of experience in education and the industry. Previously, he served at Bharat
Electronics Ltd and Motorola India Ltd. His research interests include Internet
Technologies, Software Engineering, Software Testing, and Real-Time Systems.
He has published two books on Software Testing and Operating Systems from
Oxford University Press, India.

Prof. S. M. K. Quadri is a Professor and Head of the Department of Computer
Science, University of Kashmir, Srinagar. He received his master's degree from
Aligarh Muslim University (AMU) and his M.Tech. in Computer Applications
from the Indian School of Mines (ISM), Dhanbad. He completed his doctorate in
Computer Science at the University of Kashmir, Srinagar. He is a widely travelled
researcher and a member of many prestigious national-level committees of India,
e.g., NAAC, AICTE, and CSI. He has published many research papers in Elsevier
and Emerald journals and for IEEE conferences. His main research interests are
Software Testing and Reliability Engineering.

xvii

Dr. Praveen Ranjan Srivastava is an Assistant Professor and Head of the
Department (Area Chair) in the Information Technology and Systems Group at the
Indian Institute of Management (IIM), Rohtak, India. He is currently pursuing
research in the area of Software Engineering and Management using novel
nature-inspired techniques. His primary research areas are Software Testing, Data
Analytics, Quality Management, Expert Systems, and Decision Science. He has
published more than 120 research papers in various leading international journals.

xviii About the Editors

A Multi-agent Framework
for Context-Aware Dynamic User
Profiling for Web Personalization

Aarti Singh and Anu Sharma

Abstract Growing volume of information on World Wide Web has made relevant
information retrieval a difficult task. Customizing the information according to the
user interest has become a need of the hour. Personalization aims to solve many
associated problems in current Web. However, keeping an eye on user’s behavior
manually is a difficult task. Moreover, user interests change with the passage of
time. So, it is necessary to create a user profile accurately and dynamically for better
personalization solutions. Further, the automation of various tasks in user profiling
is highly desirable considering large size and high intensity of users involved. This
work presents an agent-based framework for dynamic user profiling for personal-
ized Web experience. Our contribution in this work is the development of a novel
agent-based technique for maintaining long-term and short-term user interests along
with context identification. A novel agent-based approach for dynamic user pro-
filing for Web personalization has also been proposed. The proposed work is
expected to provide an automated solution for dynamic user profile creation.

Keywords Context aware � Dynamic � Multi-agents � User profiling
Web personalization

1 Introduction

Recent years have seen an exponential increase in size of World Wide Web and
thereby led to many bottlenecks in accessing the required and relevant material from
the pool of available information. Web personalization (WP) offers a solution to the
information overload problem in current Web by providing the users with a person-
alized experience considering their interest, behavior, and context [1]. Thus, there is

A. Singh � A. Sharma (&)
MMICT&BM, MMU, Ambala, India
e-mail: anu@iasri.res.in

A. Singh
e-mail: Singh2208@gmail.com

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_1&domain=pdf

an increasing demand to devise adaptive techniques of Web personalization which
may analyze user interests from his/her Web Surfing Behavior (WSB). However,
considering the size ofWWWand number of users accessing Internet, it is really hard
to keep an eye on every user’s behavior on Internet manually. Moreover, an indi-
vidual’s interests and requirements aremajor contributing factors toward his/herWSB
and both these factors keep on changing with difference of time span.

An individual’s interests may be classified as long-term interests (LTIs) and
short-term interests (STIs). LTI reflects user’s personality or may be a part of his/
her professional profile and do not change rapidly, e.g., interest of a person in a
particular sport, particular type of art, or research interest in a particular field. STIs
are generated from dynamic requirements or may result from changing moods of a
person such as watching movie, tour and travel plans, shopping for goods or
accessory. Thus, any WP technique must focus on dynamic mechanism to capture
user behavior so as to generate a digital user profile accurately. Some other
important issues related to user profiling are accuracy, inference/reasoning of user
interest, scalability, privacy, and user model interoperability [2].

User modeling (UM) is referred to as gathering and exploiting the information
about the individual user. UM consists of various tasks described in detail in
Sect. 2. Further, the automation of these tasks is highly desired considering large
size and high intensity of users involved. Intelligent agents may be deployed for this
purpose, since they may work autonomously, can monitor their environment con-
tinuously without being tired, and can learn user behavior. A multi-agent-based
approach Web content mining based on semantic technology has been applied by
Singh [3]. Further, a study to identify the scope of agents in Web usage mining has
been undertaken by Singh and Mishra [4]. This provided us the motivation for the
present work. This work presents an agent-based framework for dynamic user
profiling for personalized Web experience. This paper is structured as follows:
Sect. 2 elaborates user modeling techniques along with its inherent challenges.
Section 3 presents the literature review with problem identification. Section 4
presents proposed framework, and Sect. 5 elaborates detailed working of frame-
work along with detailed algorithmic procedure for each agent. Section 6 describes
the flow diagram, and Sect. 7 concludes the work and presents future research
directions.

2 User Modeling Techniques

UM is referred to as gathering and exploiting the information about the individual
user. Information for creating user profile may be collected explicitly by asking the
user to provide information or implicitly by observing the user behavior [5]. User
profiles that may adapt themselves to change in user interests and preferences are
called as dynamic user profile, whereas a static profile contains information that
does not change with the time. There are three phases of user profile construction as
given below.

2 A. Singh and A. Sharma

2.1 Information Gathering

This phase consists of mainly gathering the information about the Web user. Two
methods for collecting information about the user are explicit and implicit.

Explicit Information Collection
This deals with asking for user input and feedback for gathering knowledge about
the user. This is an accurate method for identifying the user interest items. This
method requires the explicit user intervention for specifying the complete interest
and preferences. Another shortcoming of explicit user profile is that after some time
the profile becomes outdated. Yahoo Personalized Portal explicitly asks the user for
specifying his preferences and then customizes the home page layout as per
interests of the user.

Implicit Information Collection
This deals with observing the user activities to identify the user information without
explicitly asking for it. Thus, it removes the burden from user to enter the infor-
mation. Various implicit information collection techniques are browsing cache,
proxy server, browser agents, desktop agents, Web logs, and search logs. Most of
these techniques are client-side based, except Web and search logs which are based
on server side [6].

2.2 User Profile Representation

Some of the important techniques for representing user profiles are sets of weighted
keywords, semantic networks, or weighted concepts, or association rules:

Keyword-Based Profile
User profiles are most commonly represented as sets of keywords. These can be
automatically extracted from Web documents or directly provided by the user.
Numeric weights are assigned to each keyword which shows the degree of user’s
interests in that topic [7, 8].

Semantic Network Profiles
Keyword-based profiles suffer from polysemy problem. This problem is solved by
using weighted semantic network in which each node represents a concept [9].

Concept Profiles
Concept-based profiles are similar to semantic network-based profile. However, in
concept-based profiles, the nodes represent abstract topics considered interesting to
the user, rather than specific words or sets of related words. Concept profiles are
also similar to keyword profiles in that often they are represented as vectors of
weighted features, but the features represent concepts rather than words or sets of
words. Mechanisms have been developed to express user’s interest in each topic,
e.g., assigning a numerical value, or weight, associated with each topic [10].

A Multi-agent Framework for Context-Aware Dynamic User … 3

2.3 User Profile Construction

Various machine learning techniques are applied on collected information to build
user profile [11]. Keyword-based profiles are constructed by extracting the key-
words from the Web pages in search histories. Each extracted word is also assigned
a weight which shows its relative importance with respect to interest. A vector of
extracted keyword thus represents the user interest. Moukas [8] have extracted the
top few keywords implicitly from WSB and used single keyword for each of user
interest. But this approach could not represent the true user behavior as multiple
user interests are represented as single vector. So, in another approach, a user profile
is represented as multiple vectors with each vector corresponding to a separate user
interest category. Number of user’s interests to be included in the profile are either
specified as fixed number or by using a similarity threshold. One keyword vector
per interest instead of single keyword is represented by Chen and Sycara [7]. This is
a more accurate method of user profile construction.

Semantic net user profiles are created by adding the keywords to a network of
nodes. This profile is more accurate than keyword-based as it eliminates the
ambiguity and synonymy in natural language. Concept-based profiles use available
taxonomies to represent weighted concept hierarchies. These profiles are con-
structed by mapping the extracted keywords to the existing concepts in taxonomy.
If the same concept is shown again, then its weight is increased by one.

3 Related Work

An extensive study for identifying scope, applicability, and state of the art in
applying semantics to WP is undertaken by Singh and Anand [12]. Semantically
enhanced and ontological profiles are found [13–15] more appropriate for repre-
senting the user profile. Ontological profile allows powerful representational
medium along with associated inference mechanism for user profile creation.
A brief review of work on semantically enhanced and ontological dynamic user
profiles is given below.

A generic ontology-based user modeling architecture (OntobUM) for knowledge
management had been proposed by Razmerita et al. [16]. Ontology-based user
modeling architecture has three different ontologies namely user, domain, and log
ontologies. User ontology structures the different characteristics of users and their
relationships. Domain ontology defines the domain and application-specific con-
cepts and their relationships. Log ontology defines the semantics of the user
interaction with the system.

An ontology-based user profile creation by unobtrusively monitoring user
behavior and relevance feedback has been proposed by Middleton et al. [14]. The
cold start problem is addressed by using external ontology to bootstrap the rec-
ommendation system. This work considers only is-a type relationship in ontology

4 A. Singh and A. Sharma

and may be further extended to include other types of relationships in ontology.
Further, there is scope for using external software agents and adding contextual
information in task modeling. The techniques for the improvement of ontological
user profile have been investigated by Trajkova and Gauch [17]. The authors
investigated that ranking the concepts in the profiles by number of documents
assigned to them rather than by accumulated weights provides better profile
accuracy. The ordering of the concepts was also considered along with detecting
non-relevant concepts and pruning them from the profile. But, this work does not
include user’s contextual and temporal information in user profile. In an approach,
user context is modeled by using ontological profiles in Web search. The existing
concepts in domain ontology are assigned implicitly derived interest scores [18].
A spreading activation algorithm has been used for maintaining and incrementally
updating the weights based on the user’s ongoing behavior. This approach may be
further improved by observing the ontological profile over time for ensuring the
true requirements of user as seen from interest scores. A dynamic model for user
modeling by applying clustering techniques on Web usage data off-line has been
proposed by Saeed et al. [19]. This model is adjusted periodically through new
transaction and thus solves the problem of maintaining the accuracy of user model.
But this does not use software agents and ontology.

A hybrid approach is adopted by Bhowmick et al. [13] by considering the
features of static and dynamic user profiling techniques. Static user profile specifies
the user’s interest in a much focused manner, and dynamic user profiling adds the
feature of adaptability into it. But this approach is limited to the school
curriculum-related topics and also does not consider context and location while
generating recommendations. Sosnovsky and Dicheva [15] had combined together
research from two different fields—user modeling and Web ontology—to demon-
strate how recent semantic trends in Web development can be combined with the
modern technologies of user modeling. They have also highlighted the use of
software agents and ontology. Users’ behavior and characterization of users’ needs
for context-aware applications had been analyzed by Skillen et al. [20]. The cre-
ation of a user profile ontology for context-aware application personalization within
mobile environments was described. An approach for personalizing the Web using
user profile ontology has been proposed by Vigneshwari and Aramudhan [21].
These ontologies are created dynamically using the server log file through classi-
fication and clustering techniques. A global ontology is also created by identifying
the word pairs that have occurred in most of the documents. An automatic mech-
anism for ontology creation which is found useful in WP was proposed by Singh
and Anand [12]. A multi-agent-based knowledge-oriented personalized search
engine framework was suggested by Middleton [14].

Some other works on generating user profile dynamically are given by Hawalah
and Fasli [18], Li et al. [22], Vigneshwari and Aramudhan [21]. A strategy for
maintaining the LTI and STI of the user through user topic tree and Page-History
Buffer (PHB) had been proposed by Li et al. [22]. Although the study considers the
dynamic adaption of user profile, it does not use software agents to automate the
tasks in user modeling. A multi-agent approach to solve this has been proposed by

A Multi-agent Framework for Context-Aware Dynamic User … 5

Hawalah and Fasli [18] for building a dynamic user profile that is capable of
learning and adapting to user behavior. But, it does not consider the contextual
information in recommendations. An agent-based Web search personalization
approach using dynamic user profile has been proposed by Li et al. [22]. The user
query is optimized using user’s profile preferences and the query-related synonyms
from the WordNet ontology. The search results obtained from a set of syntactic
search engines are combined to produce the final personalized results. However,
this approach is limited to Web search personalization. In another work, Woerndl
and Groh [23] has proposed a framework for multi-agent-based personalized
context-aware information retrieval from distributed sources considering the pri-
vacy and access control. An agent-based interface is proposed which optimizes the
user query using WordNet and user profile preferences and fetches the personalized
search results from various search engines like Google, Yahoo. Although it includes
the contextual information, it does not describe the detailed implementation of
various agents and also does not include temporal aspects in context.

A critical analysis of the literature reveals that many research attempts have been
made in using software agents and ontology for dynamic profile creation consid-
ering contextual information. Some of these studies are oriented toward search
results personalization, while generic UM approaches do not consider contextual
information. So, there is a need to consider some issues like adding the contextual
information for creating dynamic user profile efficiently. This work aims to propose
a framework for agent-oriented context-aware dynamic user profiling for person-
alized recommendations for the user. Our contribution in this work may be sum-
marized as follows:

1. A novel agent-based technique has been developed for maintaining LTI and STI
at client-side layer. User activities at his desktop are monitored by an agent and
then incorporated in STI.

2. A novel agent-based approach has been developed for user context identification
at client-side layer.

3. A novel agent-based approach has been developed for dynamic user profiling
for WP.

The next section describes the proposed framework in detail.

4 Proposed Framework for Multi-agent-Based Dynamic
User Profiling

The core idea for user profiling is based on the assumption that some characteristics
of individual user affect the usefulness of recommendations. This framework
considers three main dimensions of user modeling as given below:

6 A. Singh and A. Sharma

• Background: This includes the basic information about the user.
• Interest directed user information: Information about multiple sites browsed and

search queries by user helps in determining user’s interest dynamically.
• Context: Spatial and temporal context plays an important role in generating

useful recommendations to users. A user may choose different recommendations
at different locations at different points of time in a day.

Various components of this approach are distributed and autonomous, which is
the motivation behind using intelligent agents in it. These agents can communicate
asynchronously and work simultaneously without interfering with other agents.
This framework comprises of two layers namely client-side layer and server-side
layer for collecting various types of data useful for profile creation. These layers
work on client side and server side, respectively. These help in the automation of
complex and tedious processes involved in user profiling and in efficient execution
of the various tasks with reduced computation time. The high-level architecture of
the proposed work is given in Fig. 1.

Three agents, at client side, gather the information about user namely user
context identification agent (UCIA), user behavior tracking agent (UBTA), and user
desktop agent (UDA). Detailed working of these agents is given in Sect. 5. These
agents collect the data, and this information is sent to the agents working at server
side.

Fig. 1 High-level architecture of proposed framework

A Multi-agent Framework for Context-Aware Dynamic User … 7

There are three agents working at server side namely user query analyzer agent
(UQAA), profile manager agent (PMA), and cluster agent (CA). Detailed working
and description of these agents are given in Sect. 5. These agents process the
explicit and implicit information about the user and apply text processing and
clustering techniques for generating and storing user profile. They also apply the
semantic technologies for user profiling and generating better recommendations.

The next section explains in detail the flow of information, purpose of each
agent, and their algorithms.

5 Detailed Description of Framework

The proposed multi-agent framework comprises of three agents at client side and
three agents at server side as shown in Fig. 2

Fig. 2 Detailed view of architecture of proposed framework

8 A. Singh and A. Sharma

5.1 Client-Side Agents

Various agents operating at client side are as follows:

– UCIA: Temporal information about the user is collected from system date and
time settings. It receives the location data of the user from current Wi-fi/IP
addresses utilizing the available location databases. Whenever the user enters a
query in browser and selects the context, this agent copies this query for later
analysis. It maintains a table containing keywords searched, context of search
along with date and time of search.

– UDA: This agent is responsible for monitoring the user activities on desktop. It
monitors the applications and files opened and used by user. It maintains a list of
this usage along with time spent on them by the user, in a specified folder to
maintain user privacy. This helps in observing the potential interest areas of the
user.

– UBTA: This agent is responsible for summarizing user behavior and creating
user profile based on short-term and long-term interests of the user. For this, it
analyzes and processes tables maintained by UCIA and UDA. This agent also
estimates the user’s interest in Web pages by considering the five parameters
namely text selection, text tracking, link clicking, link pointing, and scrolling.
Detailed procedure can be seen from [24]. Filtered Web pages are then classified
as STI and LTI based on their usage occasionally or daily. This agent is also
responsible for communicating user’s STI and LTI to server-side agent for their
incorporation in user profile.

5.2 Server-Side Agents

– PMA: This agent is responsible for managing dynamic profile of the user by
collaborating with UBTA of particular user. It receives LT and ST interests of a
user from UBTA and maintains it in its database. Further, it also analyzes online
WSB of the user, recorded on server side by UQAA, and keeps user profile
updated.

– UQAA: This agent analyzes keywords of queries received from a particular user
or IP address. It also saves the Web pages scrolled by the user using search
engine or by requesting particular URL, along with time spent on each page. It
also records hyperlinks accessed from one page to the other.

– CA: This agent is responsible for clustering the users based on similar interest
areas so that similar recommendations may be provided to them. It works on the
user profile database maintained by the PMA.

The algorithms for various agents involved in the framework are given in
Figs. 3, 4, 5, 6, 7 and 8.

A Multi-agent Framework for Context-Aware Dynamic User … 9

Fig. 3 User context identification agent

Fig. 4 User desktop agent

10 A. Singh and A. Sharma

Fig. 5 User behavior tracking agent

A Multi-agent Framework for Context-Aware Dynamic User … 11

Fig. 6 Algorithm for checking user’s degree of interest on Web page

Fig. 7 User query analyzer agent

Fig. 8 Profile manager agent

12 A. Singh and A. Sharma

6 Flow Diagram of the Proposed Work

The flow diagram given in Fig. 9 illustrates the working of the proposed frame-
work. UCIA, UDA, and UBTA work simultaneously on client side to gather the
information about user’s contexts and interests periodically.

1. UCIA accesses the client machine and is responsible for performing two tasks:

1:1 It extracts the time, location, and searched keywords and stores them in
table.

1:2 It passes this information to PMA which stores the contextual information in
user profile database.

2. UBTA accesses the client machine to collect the browsing history of user. It
performs the following tasks:

2:1 It extracts the various parameters from browser cache and stores them into
USER_INTEREST table.

2:2 It accesses the USER_INTEREST table and identifies the user degree of
interest in Web page/file by using isInteresting() function. It also identifies
the STI and LTI from USER_INTEREST table and prepares a database
WSB for storing short-term and long-term interests.

Fig. 9 Flow diagram of the
proposed framework

A Multi-agent Framework for Context-Aware Dynamic User … 13

2:3 It sends the database WSB to PMA after receiving a request from PMA to
access WSB.

3. UDA accesses the files in a specified folder in client machine and extracts
various parameters.

3:1 It stores this information in USER_INTEREST table.

4. PMA sends a request to UBTA to access WSB.

4:1 PMA sends a request to UQAA to access the information from
USERY_QUERY table.

4:2 PMA sends the USER_PROFILE database to CA after receiving a request
from CA.

4:3 PMA creates and updates a database named USER_PROFILE for storing
user profile.

5. UQAA accesses server-side machine to access Web server logs. It parses the
information contained in the log files.

5:1 It stores this information in a table named USER_QUERY.
5:2 It sends the USER_QUERY to PMA.

6. CA sends a request to PMA for accessing the USER_PROFILE database.

6:1 After its request is authenticated, it is given access to USER_PROFILE
database.

6:2 Using USER_PROFILE database, CA creates the clusters of users on var-
ious parameters like time, location, and interests.

7. Recommendations are given from server side to client considering STI, LTI, and
other contextual parameters.

7 Conclusion and Future Work

This study proposes a framework for multi-agent-based dynamic user profile
generation considering contextual information. The proposed framework uses a
number of autonomous software agents for automating the various tasks in profile
generation. Detailed algorithms for working of each of the agents have been
described along with flow of information between system components. Use of
automated agents makes the proposed system more efficient than other available
methods. The current work may be further extended by comparing and specifying
various mechanisms for detailed representation of the user profile. Further, the
actual implementation of the framework can be undertaken in future research.

14 A. Singh and A. Sharma

References

1. Singh, A.: Wisdom web: the WWW generation next. Int J. Advancements Technol. 3(3),
123–126 (2012)

2. Jammalamadaka, K., Srinivas, I.V.: A survey on ontology based web personalization. Int.
J. Res. Eng. Technol. 2(10), 163–167 (2013)

3. Singh, A.: Agent based framework for semantic web content mining. Int. J. Advancements
Technol. 3(2), 108–113 (2012)

4. Singh, A., Mishra, R.: Exploring web usage mining with scope of agent technology. Int.
J. Eng. Sci. Technol. 4(10), 4283–4289 (2012)

5. Carmagnola, F., Cena, F., Gena, C.: User model interoperability: a survey. User Model.
User-Adap. Inter. 21(3), 285–331 (2011)

6. Kelly, D., Teevan, J.: Implicit feedback for inferring user preference: a bibliography.
ACM SIGIR Forum 37(2), 18–28 (2003)

7. Chen, L., Sycara, K.: WebMate: a personal agent for browsing and searching. In: Proceedings
of the 2nd International Conference on Autonomous Agents, Minneapolis/St. Paul, 9–13
May, pp. 132–139. ACM Press, New York (1998)

8. Moukas, A.: Amalthaea: information discovery and filtering using a multiagent evolving
ecosystem. Appl. Artif. Intel. 11(5), 437–457 (1997)

9. Minio, M., Tasso, C.: User modeling for information filtering on INTERNET services:
exploiting an extended version of the UMT shell. In: UM96 Workshop on User Modeling for
Information Filtering on the WWW; Kailua-Kona, Hawaii, 2–5 Jan 1996

10. Bloedorn, E., Mani, I., MacMillan, T.R.: Machine learning of user profiles: representational
issues. In: Proceedings of AAAI 96 from Portland, 4–8 Aug, Oregon, vol. 1, pp. 433–438
(1996)

11. Gauch, S., Speretta, M., Chandramouli, A., Micarelli, A.: User profiles for personalized
information access. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web.
LNCS 4321, pp. 54–89. Springer, Berlin, Heidelberg (2007)

12. Singh, A., Anand, P.: Automatic domain ontology construction mechanism. In: Proceedings
of IEEE International Conference on Recent Advances in Intelligent Computing Systems
(RAICS) from 19–21 Dec, pp. 304–309. IEEE Press, Trivandrum, Kerala, India (2013)

13. Bhowmick, P.K., Sarkar, S., Basu, A.: Ontology based user modeling for personalized
information access. Int. J. Comput. Sci. Appl. 7(1), 1–22 (2010)

14. Middleton, S.E., Shadbolt, N.R., Roure, D.C.D.: Ontological user profiling in recommender
systems. ACM Trans. Inf. Syst. 22(1), 54–88 (2004)

15. Sosnovsky, S., Dicheva, D.: Ontological technologies for user modelling. Int. J. Metadata
Semant. Ontol. 5(1), 32–71 (2010)

16. Razmerita, L., Angehrn, A., Maedche, A.: Ontology based user modeling for knowledge
management systems. In: Brusilovsky, P., Corbett, A., Rosis, F.D. (eds.) User Modeling
2003. LNCS, vol. 2702, pp. 213–217. Springer, Berlin, Heidelberg (2003)

17. Trajkova, J., Gauch, S.: Improving ontology-based user profiles. In: Proceedings of RIAO
2004 on 26–28 Apr, pp. 380–389, France (2004)

18. Hawalah, A., Fasli, M.: A multi-agent system using ontological user profiles for dynamic user
modelling, In: Proceedings of International Conferences on Web Intelligence and Intelligent
Agent Technology, pp. 430–437, IEEE Press, Washington (2011)

19. Aghabozorgi, S.R., Wah, T.Y.: Dynamic modeling by usage data for personalization systems,
In: Proceedings of 13th International Conference on Information Visualization, pp. 450–455.
IEEE Press, Barcelona (2009)

20. Skillen, K.L., Chen, L., Nugent, C.D., Donnelly, M.P., Burns, W., Solheim, I.: Ontological
user profile modeling for context-aware application personalization. In: Bravo, J.,
López-de-Ipiña, D., Moya, F. (eds.) Ubiquitous Computing and Ambient Intelligence.
LNCS, vol. 7656, pp. 261–268. Springer, Berlin, Heidelberg (2012)

A Multi-agent Framework for Context-Aware Dynamic User … 15

21. Vigneshwari, S., Aramudhan, M.: A novel approach for personalizing the web using user
profiling ontologies. In: IEEE Fourth International Conference on Advanced Computing
ICoAC, pp. 1–4. IEEE Press, Chennai (2012)

22. Li, L., Yang, Z., Wang, B., Kitsuregawa, M.: Dynamic adaptation strategies for long-term and
short-term user profile to personalize search. In: Dong, G., Lin, X., Wang, W., Yang, Y., Yu,
J.X. (eds.) Advances in Data and Web Management. LNCS, vol. 4505, pp. 228–240. Springer
Berlin, Heidelberg (2007)

23. Woerndl, W., Groh, G.: A proposal for an agent-based architecture for context-aware
personalization in the semantic web. In: Proceeding of IJCAI Workshop Multi-agent
information retrieval and recommender systems, Edinburg, UK-IJCAI (2005)

24. Hijikata, Y.: Estimating a user’s degree of interest in a page during web browsing. In:
Proceedings of IEEE SMC ‘99 Conference, vol. 4, pp. 105–110. IEEE Press, Tokyo (1999)

25. Moawad, I.F., Talha, H., Hosny, E., Hashim, M.: Agent-based web search personalization
approach using dynamic user profile. Egypt. Inf. J. 13, 191–198 (2012)

26. Sieg, A., Mobasher, B., Burke, R.: Learning ontology-based user profiles: a semantic
approach to personalized web search. IEEE Intel. Inf. Bull. 8(1), 7–18 (2007)

27. Singh, A., Alhadidi, B.: Knowledge oriented personalized search engine: a step towards
wisdom web. Int. J. Comput. Appl. 76(8), 1–9 (2013)

28. Singh, A., Sharma, A., Dey, N.: Semantics and agents oriented web personalization: state of
the art. Int. J. Serv. Sci. Manag. Eng. Technol. 6(2), 35–49 (2015)

29. Yahoo Personalized Portal. http://my.yahoo.com/

16 A. Singh and A. Sharma

http://my.yahoo.com/

Implementation of Equivalence
of Deterministic Finite-State Automation
and Non-deterministic Finite-State
Automaton in Acceptance of Type 3
Languages Using Programming Code

Rinku, Chetan Sharma, Ajay Kumar Rangra, Manish Kumar
and Aman Madaan

Abstract An automaton is used where information and materials are transformed,
transmitted, and utilized for performing some processes without direct involvement
of human. A finite automaton (both deterministic and non-deterministic) is used to
recognize a formal regular language. In this paper, we will represent the acceptance
of a formal regular language (Type 3 according to Noam Chomsky) by both
deterministic and non-deterministic automaton. We are using a simple algorithm to
implement finite-state automaton in a middle-level language and demonstrate that
deterministic finite-state automation provides a best and unique solution in com-
parison to non-deterministic finite-state automaton. More important that if a prob-
lem solved by Non-deterministic finite state automation can be easily solved using
equivalent deterministic finite state automaton.

Keywords Finite-state automaton � Formal regular language � Deterministic
Non-deterministic � Equivalence

Rinku (&) � C. Sharma � A. K. Rangra � M. Kumar � A. Madaan
Chitkara University, Kalujhinda, Himachal Pradesh, India
e-mail: rinku.cse@chitkarauniversity.edu.in

C. Sharma
e-mail: chetan.sharma@chitkarauniversity.edu.in

A. K. Rangra
e-mail: ajay.rangra@gmail.com

M. Kumar
e-mail: manish.kumar@chitkarauniversity.edu.in

A. Madaan
e-mail: amanmadaan90@gmail.com

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_2

17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_2&domain=pdf

1 Introduction

The word ‘formal’ means that all the rules for the language are explicitly stated in
terms of what string of symbols can occur, and a formal language can be viewed as
a set of all strings permitted by the rules of formation. Finite automatons are the
simplest model of an automatic machine. If we see the history of designing of the
automatic machines, the first calculating device was the abacus first time used in
China. Abacus was used to perform some arithmetic operations like addition,
multiplication on positive integers. This was the first initiation toward the designing
of calculating devices. Further, we found several enhancements, and presently, we
have numerous calculating devices. Today, all automatic machines are designed
based on some kind of models. One great example of this machine is the computer
system and finite automation are its abstract model.

Finite automaton is mainly used for modeling the reactive systems. System
which changes its actions, outputs, and conditions/status in reply to reactions from
within/outside it is known as reactive system. A reactive system is a
situation-driven/control-driven system continuously having to react to external and/
or internal reaction. In general, finite automatons are useful models to explain
dynamic behaviors of reactive systems.

Automaton (finite) consists of a finite memory called input tape, a read-only
head, and a finite control. The input is written on tape, and head reads one symbol at
a time on the tape and moves forward into next state and goes on until the last
symbol of input string. The movement of head and transition into next state are
decided by finite control. When input is read, the finite automaton decided the
validity or acceptability of the input by acceptance or rejection. It does not write its
output on the tape, which is a limitation of this model.

The input tape is divided into compartments, and each compartment contains 1
symbol from the input alphabets. The symbol ‘$’ is used at the leftmost cell, and the
symbol ‘W’ is used at the rightmost cell to indicate the beginning and end of the
input tape. It is similar to read-only file in a computer system, which has both
beginning and end.

2 Finite Acceptors

Inputs are transformed into outputs with help of an information processing device.
With a device, only two alphabets are associated: A is taken as input for com-
municating, and alphabet B is taken as output for receiving answers. Let us consider
a device that accepts input as English sentence and outputs the corresponding

18 Rinku et al.

sentence in French language. Once whole input is read out, then each input alphabet
is processed step by step, and if after reading last alphabet of input string we reach
to final state, then the output is yes and we can say A* is accepted else rejected. By
the above procedure, A* is divided into two subparts: The ‘true’ subset is called as
machine accepted language, and the ‘no’ subset is called as machine rejected
language. The device that operates such thing is called as acceptor. The mathe-
matical model is described below:

Finite automaton is of two types:

• DFA
• NDFA.

Deterministic finite acceptor A is explained with five tuples of information:
A = (R, Q, S, d, F), R consists of a finite alphabet, a finite set Q of states, and a

function: Q � R ! Q, defined as the transition function and a set F of acceptance
states. The set Q contains an element s and a subset F, and the set of acceptance
states.

3 Algorithm to Implement DFA

Implementation of Equivalence of Deterministic Finite-State … 19

4 Programming Code to Implement DFA and NFA

20 Rinku et al.

5 Regular Languages or Type 3 Grammars

Type 3 languages are described by Type 3 grammars. The LHS of a Type 3
grammar is a single non-terminal. The RHS is empty or consists of a single ter-
minal, or it can have a single terminal which is followed by a non-terminal. Type 3
grammars are represented by the productions A ! aB or A ! a. Type 3 languages
are recognized using finite-state automata (FA). The following is an example of a
regular grammar:

A ! aA A ! e A ! bB B ! bB B ! e A ! c

Implementation of Equivalence of Deterministic Finite-State … 21

6 Equivalence of NFA to DFA on Acceptance of Regular
Language

The given above code shows the logical programming implementation of
deterministic as well as non-deterministic automaton along with its equivalence.

Now there is some example executed based on the above-given algorithm and
code with some test cases.

22 Rinku et al.

7 Example of NFA to DFA with Test Cases

Consider an NFA with few states along with some inputs
shown in figure

Equivalent DFA for above NFA can be created easily as
per the algorithm

8 Algorithm for Conversion of NFA to DFA

Let Mn = (Q, R, d, q0, F) be NFA which identifies any language L then equivalent
DFA Md = (Q, R, d′, q′0, F′) which satisfies the respective conditions recognizes L.
Q = 2Q i.e. the set of all subsets of Q.

To obtain equivalent DFA, we follow the following procedure.

Step 1: Initially Q = Ø.
Step 2: {q0} is the initial state of the DFA M and Put q0 into Q.
Step 3: For each state q in Q following steps are needed: add this new state, add

d (q,a) = U p ε q d(p, a) to d, where d on the right-hand side (R.H.S) is
that of NFA Mn.

Step 4: Repeat step 3 till new state are there to add in Q; if there is new state
found to add in Q, then process is terminated. All the states of Q which
contain accepting state of Mn are accepting state of M.

Important: Not reachable states are not included in Q (Not reachable means
states which are not reached from initial state).

Implementation of Equivalence of Deterministic Finite-State … 23

8.1 Test Case 1 for NFA and Its Equivalent DFA

NFA
Input : aaabbaab
Standard Output : Final State (i.e q2, q3)
Output : q2,q3

DFA
Input : aaabbaab
Standard Output : Final State (i.e C, D, E)
Output : D

Test case 2:
Input : baabab
Standard Output : Final State (i.e q2, q3)
Output : q3
NFA

DFA
Input : baabab
Standard Output : Final State (i.e C, D, E)
Output : D

9 Result and Conclusion

In this paper, we have discussed distinction between deterministic and
non-deterministic finite-state automaton. Using a simple algorithm, we can imple-
ment a deterministic as well as non-deterministic finite-state automaton in an
executable format to find the solution of various problems. Here, we have also
discussed the equivalence of deterministic and non-deterministic finite-state
automaton with the use of various examples. This example shows the concern of
non-deterministic finite-state automaton and gives equivalent deterministic
finite-state automaton along with some suitable test cases to be measured. This
concluded that non-deterministic finite-state automation may have different solution
of given problems, but deterministic finite-state automaton provides the best unique
solution to find the solution to a problem.

24 Rinku et al.

References

1. Goldsmith, J.A.: Towards a new empiricism, vol. 36. 2007
2. Bátfai, N.: Recombinations of busy beaver machines. http:arxiv.org/pdf/0908.4013 (2009)
3. Žilinskas, A., Žilinskas, J.: Interval arithmetic based optimization in nonlinear regression.

Informatica (2010)
4. Sergeyev, Y.D.: Numerical point of view on Calculus for functions assuming finite, infinite,

and infinitesimal values over finite, infinite, and infinitesimal domains. Nonlinear Analysis
Series A: Theory, Methods & Applications (2009)

5. Sharma, C., Shakya, R.: Computational complexity in language string processing and theory of
halting problem in deterministic turing machine accepting context sensitive language, context
free language or regular language, 2015. In: 2nd International Conference on Computing for
Sustainable Global Development (INDIACom), New Delhi, pp. 2091–2096 (2015).

6. Nagpal, C.K.: Formal Languages and Automata Theory. April 2011
7. Pandey, A.K.: An Introduction To Automata Theory & Formal Languages (2013)
8. Prof. Kamala Krithivasan, Theory of Computation, 2011

Implementation of Equivalence of Deterministic Finite-State … 25

A Multi-factored Cost- and Code
Coverage-Based Test Case Prioritization
Technique for Object-Oriented Software

Vedpal and Naresh Chauhan

Abstract Test case prioritization is a process to order the test cases in such a way
that maximum faults are detected as earlier as possible. It is very expensive to
execute the unordered test cases. In the present work, a multi-factored cost- and
code coverage-based test case prioritization technique is presented that prioritizes
the test cases based on the percentage coverage of considered factors and code
covered by the test cases. For validation and analysis, the proposed approach has
been applied on three object-oriented programs and efficiency of the prioritized
suite is analyzed by comparing the APFD of the prioritized and non-prioritized test
cases.

Keywords Object-oriented testing � Test case prioritization � Cost- and code
coverage-based testing � Multi-factors-based test case prioritization

1 Introduction

Testing is one of the important phases of the software development life cycle. The
testing of the software consumes a lot of time and efforts. Presently, the cost of
testing the software is increasing very rapidly. According to finding of the sixth
quality report [1], the share of the testing budget is expected to reach 29% by 2017.
Every software industry mainly concerns the reduction of the testing cost and
detection of the bug by taking the minimum time. For delivering the quality soft-
ware, it is necessary to detect all the possible errors and fix them. There are various
factors that indicate the quality of the software. These factors are functionality,
correctness, completeness, efficiency, portability, usability, reliability, integrity,

Vedpal (&) � N. Chauhan
Department of Computer Engineering, YMCA University of Science and Technology,
Faridabad, India
e-mail: ved_ymca@yahoo.co.in

N. Chauhan
e-mail: nareshchauhan19@gmail.com

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_3

27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_3&domain=pdf

maintainability, etc. Due to the advancement of technology and expectation of the
customer, it is very challenging task to deliver the quality software within allocated
budget.

The quality of the software also depends on the skills and experience of the
developer. Nowadays, various languages are used by the developer. Every language
has various features which provide the different functionalities. Many packages are
also available in the markets which are directly imported in the software. If the
different features of the language and packages are not used efficiently, then
error-prone software may be produced. If the developers are not aware of the
conditions of the software developed, then it will surely produce the bug.
Sometimes, the implemented functionality is error-free, but it may consume more
memory and execution time. High consumption of the memory and execution time
affects the quality of the software. So there should be a technique to identify the
factors which are most capable of introducing the error, increasing the execution
time of software, and consuming more memory. The test case prioritization should
be done in a way that the maximum errors can be detected as earlier as possible.

In this paper, a test case prioritization technique is presented. The proposed
technique prioritizes the test cases on the basis of the cost and code covered by the
test cases. To calculate the cost of the path, various factors are considered. For
experimental validation and analysis, the proposed approach has been applied on
the various examples that were implemented in the C++ language. The results show
effectiveness of the proposed approach.

2 Related Work

The size of the test suits is increased as the software evolves. Test cases are used to
test the existing program. If the software gets modified due to the addition of new
functionality, new test cases may be added to the existing test cases. There are many
constraints on the industry like resource, time, and cost. So, it is important to
prioritize the test cases in a way that probability of error detection is higher and
earlier. In this section, an overview of various researchers is discussed.

Shahid and Ibrahim [2] proposed a new code-based test case prioritization
technique. The presented approach prioritizes the test cases on the basis of the code
covered by the test case. The test cases that covered the maximum methods have the
highest probability to detect the errors earlier. Abdullah et al. [3] presented the
findings of the systemic review conducted to collect evidence testability estimation
of object-oriented design. They concluded that testability is a factor that predicts
that how much effort will be required for testing the software.

Huda et al. [4] proposed an effective quantification model of object-oriented
design. The proposed model uses the technique of multiple linear regressions
between the effective factors and metrics. Structural and functional information of
object-oriented software has been used to validate the assessment of the effec-
tiveness of the factors. The model has been proposed by establishing the correlation

28 Vedpal and N. Chauhan

between effectiveness and object-oriented design constructs. The quantifying ability
of model is empirically validated.

Chhikara and Chhillar [5] presented a set of metrics. The presented metrics are
used to order the programs based on their complexity values. They concluded that
there should be compromise among internal attributes of software to maintain the
higher degree of reusability. Patwa et al. [6] presented the factors of coding phase
that effect the testing of object-oriented software. These factors are programmer and
tester skills, programmer and tester organization, development team size, program
workload (stress), domain knowledge, and human nature (mistake or work omis-
sion). Analysis of factors and place of these factors according to their impact on the
software are identified by using the relative weight method and ANOVA test.

Bruntink et al. [7] analyzed the relation between classes and their JUnit test
cases. They demonstrated a significant correlation between the class-level metrics
and test-level metrics. They also discussed how various metrics can contribute to
testability. They conducted the experiments using the GQM and MEDEA frame-
work. The results are evaluated using Spearman’s rank-order correlation coefficient.

Malviya and Singh [8] presented some observation on maintainability estimation
model for object-oriented software in requirement, design, coding and testing
phases. The presented work is about increasing the maintainability factors of the
MOOD metrics.

Hao et al. [9] presented a unified test case prioritization approach. The presented
approach includes two models. They showed that there is a spectrum of test case
prioritization techniques. The spectrum is generated by the model that resides
between the techniques using purely total or purely additional strategies. They
proposed extensions to enable the use of probabilities that test cases can detect
errors for methods and use the dynamic coverage information in place of static
coverage information.

3 Proposed Work

The presented approach prioritizes the test cases on the basis of the cost and the
coverage of the code covered by the test case. For accurately finding out the cost of
the test case, some factors are considered in Table 1. The proposed approach works
at two levels. At the first level, all the considered factors existed in the source code
are identified. After identification and counting the factors, all independent paths of
the source code are resolute; then, the value of the cost of each path is determined
on the basis of the coverage of the identified factors. Test cases are selected cor-
responding to independent paths. The cost of the test case can be calculated by
using Formula 1. The code coverage of test case is determined by counting lines of
code executed by the test case. At the second level, pairs of cost and code value of
each test case are created. In this way by using the value of the cost and code
coverage, the test cases are prioritized. The following scenario is used for the
prioritization of the test cases:

A Multi-factored Cost- and Code Coverage-Based Test Case … 29

(1) Highest code coverage and cost will have highest priority.
(2) Second priority should be given to test case that has highest cost value.
(3) Third priority should be given to test case that has highest code coverage.
(4) Test cases with the equal code coverage and cost should be ordered.

The overview of the proposed approach is shown in Fig. 1.
The cost covered by the test case can be calculated by applying the Formula 1 as

given below:

CostðTiÞ ¼ SFðTiÞ=TF ð1Þ

where SF is the sum of the factors covered by the ith test case, and TF is the sum of
the all existing factors in source code.

Table 1 Proposed factors S. No. Proposed factor

1 Operators

2 Variables

3 External system call

4 Predicate statement

5 Assignment statement

6 Use of libraries/packages

7 Virtual function

8 Exception handling

Non prioritized test cases

Determine all factors existing in source pro-
gram and factors which are being covered by
individual test cases

Execute the test cases in prioritized order

Prioritize the test cases using calculated value
of cost and code coverage

Calculate the cost and code covered by each
test cases

Fig. 1 Overview of the
proposed approach

30 Vedpal and N. Chauhan

3.1 Considered Factors for Prioritized Test Cases

Table 1 shows the considered factors that are used to prioritize the test cases. The
factors are considered by the structural analysis of the program. The considered
factors may affect the testing process in terms of consumption of memory, exe-
cution time, and the possibility of introducing the error in program.

These are factors related to object-oriented program affecting the prioritization of
test cases. There are a total of eight object-oriented software-related factors included
in this work. The algorithm of the proposed approach is given in Fig. 2.

4 Result and Analysis

For the experimental validation and evaluation, the proposed approach has been
applied on the three programs. The programs are implemented in the C++ lan-
guage. For the experimental analysis, intentionally faults are introduced in the
programs. The program one has 170 lines of code, program [10] two has 361 lines
of code, and program three has 48 lines of code.

Table 2 shows the various factors covered by the test cases, Table 3 shows the
line of code covered by the test cases, Table 4 shows the calculated cost of all test
cases that are used to test the software, and Table 5 shows the various pairs of cost
and code covered by the test cases.

The prioritizing order of test cases as determined by the proposed approach is
TC6, TC2, TC1, TC4, TC8, TC5, TC3, TC7.

4.1 Faults Detected by Test Cases in Non-Prioritized Order

The faults are identified in the non-prioritized order as shown in Table 6.

Let T be is the list of non prioritized test cases and T’ be the list of the prioritized test cases.

While (T not empty)

Begin

Step 1. Identify and Count all the considered factors that are used in the source code.

Step 2. Determine the factors and line of code being covered by the test cases.

Step 3. Calculate the cost by applying the formula on test cases.

Cost (Ti) = SF(Ti) / TF

Where SF is the sum of factors covered by the test case and TF is the sum of the factors in the source code

End

Step 4. Determine the all possible pairs of the code coverage value and cost value of each test cases

Pair = (Cost , Code Coverage)

Step 5. Prioritized the test cases in the following scenarios

(1) Highest the value of cost and code covered by the test case have highest priority

(2) Second priority should be given to test case that has highest cost value.

(2) Third priority should be given to test case that has highest code coverage.

(3) Test cases with the equal value of the code coverage and cost should be prioritized in the random order.

Create T’ the list of prioritize test cases.

Fig. 2 Algorithm of the proposed approach

A Multi-factored Cost- and Code Coverage-Based Test Case … 31

Table 2 Factors covered by test cases

Factors TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8

Operators 4 4 0 0 1 7 0 0

Variable 3 3 1 4 2 3 1 4

Native method 0 0 0 0 0 0 0 00

Control statement 0 1 0 0 0 2 0 0

Assignment 3 2 0 0 1 2 0 0

SF 10 10 1 4 4 12 1 4

Table 3 Line of code covered by test cases

TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8

Line of code 36 42 31 36 34 48 31 36

Table 4 Calculated cost of test cases

TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8

Factor coverage
(TFC)

10 10 1 4 4 12 1 4

Total factors (TF) 35 35 35 35 35 35 35 35

Cost 28.57 28.57 2.85 11.42 11.42 34.28 2.85 11.42

Table 5 Pairs of the cost and
code coverage by test cases

S. No. Test case Pairs

1 TC1 (36, 28.57)

2 TC2 (42, 28.57)

3 TC3 (31, 2.85)

4 TC4 (36, 11.42)

5 TC5 (34, 11.42)

6 TC6 (48, 34.82)

7 TC7 (31, 2.85)

8 TC8 (36, 11.42)

32 Vedpal and N. Chauhan

4.2 Faults Detected by Test Cases in Prioritized Order

Table 7 shows the faults detected by the test cases when they executed in prioritized
order.

For simplicity of the approach, the faults are detected for only one program.

4.3 Comparison of APFD Graphs Prioritized
and Non-prioritized Order of Test Cases for Three
Programs

Figure 3 shows the comparison of APFD graphs for program one, Fig. 4 shows the
comparison of APFD graphs for program two, and Fig. 5 shows the comparison of
APFD graphs for program three. The test cases are executed in prioritized order
obtained after applying the proposed approach and non-prioritized approach [11, 12].

Table 6 Faults detected by test cases in non-prioritized order

TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8

F1 * * * * * * * *

F2 * *

F3 *

F4 *

F5 *

F6 *

F7 *

F8 *

F9 *

F10 *

Table 7 Faults detected by test cases in prioritized order

TC6 TC2 TC1 TC4 TC8 TC5 TC7 TC3

F1 * * * * * * * *

F2 * *

F3 *

F4 *

F5 *

F6 *

F7 *

F8 *

F9 *

F10 *

A Multi-factored Cost- and Code Coverage-Based Test Case … 33

4.4 Effectiveness of the Proposed Approach

Effectiveness of the proposed approach is measured through APFD metric, and its
value is shown in Table 8 [13]. The APFD value of prioritized order of test cases
obtained by applying the proposed approach is better than random ordering of test
cases. Therefore, it can be observed from Table 8 prioritized test cases has higher
fault exposing rate than the non-prioritized test cases.

Fig. 3 Comparison of APFD detected by random and prioritized test cases for program one

Fig. 4 Comparison of APFD detected by random and prioritized test cases for program two

34 Vedpal and N. Chauhan

5 Conclusion

In the proposed approach, a test case prioritization technique for object-oriented
software is presented. The approach prioritizes the test cases based on coverage of
determined cost and lines of code. It works at two levels. At the first level, cost and
code covered by the test cases are determined. Costs are calculated by using the
proposed factors that are covered by the test case. At the second level, test cases are
prioritized on the basis of determined cost and code covered by the test case. For
experimental validation and evaluation, it has been applied on three object-oriented
programs. The experimented results show that the proposed approach leads to
improve the rate of fault detection early in comparison with non-prioritized order of
test cases. The significant characteristic of the proposed approach is that it helps to
reduce the testing cost by detecting the faults in short time.

Fig. 5 Comparison of APFD detected by random and prioritized test cases for program three

Table 8 Compared result of test cases for prioritized and non-prioritized order

Case study Non-prioritized test cases (APFD) (%) Prioritized test cases (APFD) (%)

Program one 57 70

Program two 55 72

Program three 37 62

A Multi-factored Cost- and Code Coverage-Based Test Case … 35

References

1. Decouz Hester.: Capgemini world quality report. (2014) www.worldqualityreport.com
2. Shahid, M., Ibrahim, S.: A new code based test case prioritization technique. Int. J. Softw.

Eng. Appl. 8(6), 31–38 (2014)
3. Abdullah, D., Srivastava, R., Khan, M.H.: Testability estimation of object oriented design: a

revisit. Int. J. Adv. Res. Comput. Commun. Eng. 2(8) (2013)
4. Huda, M., Arya, Y.D.S., Khan, M.H.: Evaluating effectiveness factor of object oriented

design: a testability perspective. Int. J. Softw. Eng. Appl. (IJSEA) 6(1), 41 (2015)
5. Chhikara, A., Chhillar, R.S.: Analyzing complexity of java program using object oriented

software metrics. IJCSI Int. J. Comput. Sci. 9(1), 3 (2012). ISSN:1694-0814
6. Patwa, S., Malviya A.K.: Impact of coding phase on object oriented software testing.

Covenanat J. Inf. Commun. Technol. (CJICT) 2(1) (2014)
7. Bruntink, M., Van Deursen A.: Predicting class testability using object oriented metrics. In:

4th IEEE International Workshop on Source Code Analysis and Manipulation, pp. 136–145.
Chicago, IL, US (2004)

8. Malviya, A.K., Singh V.: Some observation on maintainability estimation model for object
oriented software in requirement, design, coding and testing phases. Int. J. Adv. Res. Comput.
Sci. Softw. Eng. 5 (3) (2015). ISSN: 2277 128X

9. Hao, D., Zhang, L., Zhang, L., Rothermel, G., Mei, H.: A unified test case prioritization
approach. In: ACM Trans. Softw. Eng. Methodol. 9(4) (2010)

10. http://cppprojectcode.blogspot.in/2010/09/income-tax-calculation.html
11. Meyers S.: More effective C++. Addison-Wesley, Professional Computing Series
12. Jain R., Aggarwal N.: Additional fault detection test case prioritization. BIJIT-BVICAM’s Int.

J. Inf. Technol. 5(2) (2013)
13. Chauhan, N.: Software testing principles and practices. Oxford University Press, Oxford

(2010)

36 Vedpal and N. Chauhan

http://cppprojectcode.blogspot.in/2010/09/income-tax-calculation.html

A Novel Page Ranking Mechanism
Based on User Browsing Patterns

Shilpa Sethi and Ashutosh Dixit

Abstract Primary goal of every search engine is to provide the sorted information
according to user’s need. To achieve this goal, it employs ranking techniques to sort
the Web pages based on their importance and relevance to user query. Most of the
ranking techniques till now are either based upon Web content mining or link
structure mining or both. However, they do not consider the user browsing patterns
and interest while sorting the search results. As a result of which, ranked list fails to
cater the user’s information need efficiently. In this paper, a novel page ranking
mechanism based on user browsing patterns and link visits is being proposed. The
simulated results show that the proposed ranking mechanism performs better than
the conventional PageRank mechanism in terms of providing satisfactory results to
the user.

1 Introduction

The World Wide Web is an interlinked collection of trillions of Web documents
accessed via Internet. To retrieve the desired information from such a huge col-
lection, Web search engines can be used [1]. The basic components of every search
engine are: crawler, indexer, user interface, and query processor. The Crawler
browses the Web automatically at a specified interval, downloads the Web page
from different Web servers, and provides the information to indexer. The indexer
further indexes Web documents in search engine database. The query processor
executes the user query on search engine database and finds the documents which
matches with the user query and ranks them according to some relevance factors.
Many ranking algorithms have been proposed in past. Among them, PageRank

S. Sethi (&) � A. Dixit
Department of Computer Science, YMCA University of Science and Technology,
Faridabad, India
e-mail: munjal.shilpa@gmail.com

A. Dixit
e-mail: dixit_ashutosh@rediffmail.com

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_4

37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_4&domain=pdf

(PR) [2, 3], Weighted PageRank (WPR) [4], and Hypertext Induced Topic Search
(HITS) [5], PageRank based on link visit (PRLV) [6] are some of the popular
ranking algorithms. All these algorithms are based on Web mining concept.

Web mining is a branch of data mining techniques that discover the useful
patterns from Web documents. Web content mining (WCM), Web structure mining
(WSM), and Web usages mining (WUM) are three main categories of Web mining.
[7, 8] PR, WPR, and HTTS are purely based on Web structure mining, whereas
PRLV is based on Web structure as well as Web usages mining. Table 1 gives the
overview of these Web mining techniques. The proposed mechanism captures the
user interest in an efficient way by applying the concept of Web usages and Web
structure mining.

The rest of the paper is organized as follows: In next section, Web structure
mining and popular algorithms of this area have been discussed. Section 3
describes the proposed ranking mechanism in detail with example illustrations.
Section 4 depicts the complete working of proposed system. Concluding remarks
are given in Sect. 5.

2 Related Work

This section describes an overview of Web structure mining and some popular
PageRank algorithms with examples illustration. Web structure mining means
generating the link summary of Web pages and Web server in the form of Web
graph by using the concept of hyperlink topology between different documents as
well as within the same document [8]. A Web graph is directed labeled graph where
nodes represent the Web pages and edges represents the hyperlinks between the

Table 1 Overview of web mining techniques

Features WCM WSM WUM

Mining focus Within the document Within as well as
between the
documents

User navigational
patterns

Input data Txt, HTML documents Hyperlinks Query logs,
server log files

Representation
of data

Bags of words for
unstructured data HTML tags
for semistructured data,
ontology

Structured
summary of web
pages in the form
of web graph

Relational tables

View of data Semi- and unstructured structured Event triggers

Method NLP and machine learning Proprietary
algorithms

Personalization
algorithms,
association rules,
NLP

38 S. Sethi and A. Dixit

pages. There are many algorithms based on Web structure mining. Some of them
which form the basis of proposed work are discussed in following sections.

2.1 PageRank

The PageRank algorithm was developed by Google and named after Larry Page,
[3]. The link structure of Web page is used to find out the importance of a Web
page. The importance of a page P can be obtained by evaluating the importance of
pages from which the page P can be accessed. Links from these pages are called as
inbound links. According to this algorithm, if the inbound links of a page are
important, then its outbound links also become important. The PageRank of a page
P is equally divided among its outbound links which further propagated to pages
corresponding to these outbound links. The PageRank of a page X can be calculated
by Eq. (1) as follow

PRðXÞ ¼ ð1� dÞþ d
PRðP1Þ
OðP1Þ þ PRðP2Þ

OðP1Þ � � � PRðPnÞ
OðPnÞ

� �
ð1Þ

where:

• P1, P2, … Pn represent the inbound links of page X
• O(P1), O(P2) … O(Pn) are no. of outbound links of page P1, P2 … Pn,

respectively
• d is the damping factor which is a measure of probability of user following

direct link. Its value is usually set to 0.85.

To explain the working of PR method, Let us take a small Web structure as
shown in Fig. 1a consisting of four pages, namely P1, P2, P3, and P4, where page P1
is inbound link of page P2 and P4, page P2 is inbound ink of page P4 and P3, P3 is
inbound link of P1, P2, and P4, and P4 is inbound link of P1. According to Eq. (1),
PageRank of page P1, P2, P3, and P4 can be computed as follows:

(a) (b)

Fig. 1 a Sample web structure, b sample web structure with link visits and link weight

A Novel Page Ranking Mechanism Based on User Browsing Patterns 39

PR Pið Þ ¼ 1dð Þþ d PR P3ð Þ=3þ PR P4ð Þ=1ð Þ½ � ð1aÞ

PR P2ð Þ ¼ 1� dð Þþ d PR P1ð Þ=2þ PR P3ð Þ=3ð Þ½ � ð1bÞ

PR P3ð Þ ¼ 1� dð Þþ d PR P2ð Þ=2ð Þ½ � ð1cÞ

PR P4ð Þ � 1� dð Þþ d PR P1ð Þ=2PR P2ð Þ=2þ PR P3ð Þ=3ð Þ½ � ð1dÞ

Initially considering the PageRank of each page equal to 1 and taking the value
of d = 0.85, calculating PageRank of each page iteratively until their vales becomes
stable as shown in Table 2.

From Table 2, it may be noted that PR(P1) > PR(P4) > PR(P2) > PR(P3).
These PR values are extracted by crawler while downloading a page from Web
server, and these values will remain constant till the Web link structure will not
change. In order to obtain the overall page score of a page, the query processor adds
the precomputed PageRank (PR) value associated with the page with text matching
score of page with the user query before presenting the results to the user.

2.2 Page Ranking Algorithm Based on Link Visits (PRLV)

Duhan et al. [6] proposed the extension of PageRank method in which the
PageRank of a page is computed on the basis of no. of visits to Web page. They
pointed out that traditional PR method evenly distributes the PageRank of page
among its outgoing links, whereas it may not be always the case that all the
outgoing links of a page hold equal importance. So, they proposed a method which
assigns more rank to an outgoing link that is more visited by the user. For this
purpose, a client side agent is used to send the page visit information to server side
agent. A database of log files is maintained on the server side which store the URLs
of the visited pages, its hyperlinks, and IP addresses of users visiting these
hyperlinks. The visit weight of a hyperlink is calculated by counting the distinct IP
addresses clicking the corresponding page. The PageRank of page ‘X’ based upon
visit of link is computed by the Eq. (2)

Table 2 Calculation of
PageRank by PR method

Steps PR(P1) PR(P2) PR(P3) PR(P4)

1 1.2805 2.1205 0.575 1.2805

2 1.4863 0.9422 1.052 1.8434

3 2.0147 1.0795 0.5504 1.4799

4 1.5639 1.1622 0.6088 1.6209

5 1.7000 0.9871 0.6439 1.4725

40 S. Sethi and A. Dixit

PRðXÞ ¼ ð1� dÞþ d
X

Pi€IðXÞ

PRðPiÞ � LðPi;XÞ
TLðPi;OðPiÞÞ ð2Þ

Where:

• PR(X) is PageRank of page X calculated by Eq. (1).
• I(X) is set of incoming links of page X.
• L(Pi, X) is no. of link visits from Pi to X.
• TL(Pi, O(Pi)) is total no. of user visits on all the outgoing links of page Pi.

Let us consider the same hyperlinked structure as shown in Fig. 2 with no. of
visits and visit weight (written in bracket) shown in Fig. 3. By taking the value of
d = 0.85, the PageRank based on visit of link can be easily obtained by using
Eq. (2) and iteration method as shown in Table 3.

By comparing the results of PR with PRLV, it is found that rank order of pages
has been changed. By using PRVOL, PRVOL(P1) > PRVOL(P2) > PRVOL
(P4) > PRVOL(P3). A critical look at the available literature indicates that although
dividing the PageRank of a page among its outgoing links based on link visit solved
the problem of finding the importance of a page within the Web, it has been
observed that the user who visits on a particular page may not necessarily find the
page useful. Therefore, the time spent and action performed such as print, save may
be considered as vital parameter while determining the relevance of a page with
respect to the user. The proposed ranking mechanism discussed in the next section
overcomes the above shortcomings by incorporating the user page access infor-
mation to the link structure information of a Web page.

Fig. 2 Proposed system

A Novel Page Ranking Mechanism Based on User Browsing Patterns 41

3 Proposed Page Ranking Mechanism

An efficient search model based on user page access information is being proposed
here as shown in Fig. 2. It consists of four main components: search engine
interface, PPF calculator, query processor, and DB builder. The detailed description
of each component is given in subsequent sections.

3.1 Search Engine Interface

The user enters the query at search engine interface. It passes these query words to
query processing module and sends a signal ‘something to record’ to PPF calcu-
lator. At the end of search operation, it receives the sorted list of documents from
query processor to present back to the user. When the user clicks a page in the result
list, it sends the hit(click) information to its corresponding Web server which in turn
stores this information in server log files.

Www

Crawler

Page Extractor

Indexer

Fetched

pages
URL to fetch

Pages

Parsed page

Information

URL Frontier

Database

Page information

Www

Crawler

Page Extractor

Indexer

Fetched

pages
URL to fetch

Pages

Parsed page

Information

URL Frontier

Database

Page information

Fig. 3 DB builder

Table 3 Calculation of
PageRank by PRLV method

Steps PRVOL
(P1)

PRVOL
(P2)

PRVOL
(P3)

PRVOL
(P4)

1 1.141 0.560 0.256 0.569

2 0.669 0.944 0.209 0.622

3 0.708 0.392 0.250 0.822

4 0.884 0.408 0.191 0.352

5 0.476 0.464 0.193 0.333

42 S. Sethi and A. Dixit

3.2 PPF Calculator

After receiving the signal ‘something to record’ from search engine interfaces, it
observes and records certain facts about the activity of user on a particular page. For
this, it assigns the page probability factor (PPF) to each page clicked by the user.
The page probability factor PPF(Pi) can be computed as per the equation given in
(3)

PPF Pið Þ ¼ CLICKwt Pið ÞþTIMEwt Pið ÞþACTIONwt Pið Þ ð3Þ

where:

• CLICKwt(Pi) denotes the importance of page Pi with respect to all the pages
clicked by user ui for query qi in the current search session.

• TIMESCORE(Pi) denotes the time spent by user ‘u’ on the page Pi
• ACTIONwt(Pi) denotes the action performed on the page Pi

The computation of each of these factor used in Eq. (3) is given below.
Calculation of click weight on page Pi: When a user clicks a page, the click

weight of page P increases as if the user votes for this page [9]. For any more
clicking by the same user, the click weight of page will not be affected. To find the
importance of page P with respect to query q, the click weight is defined by Eq. (4)
given below.

CLICKwtðPiÞ ¼ C
CLICKðq; �; uÞj j ð4Þ

where

• click(q, *, u) denotes the total no. of clicks made by user u on all the pages for
query q in current session.

• C is no. of vote for a page. It is set to 1 for clicked pages and 0 otherwise.

Let us consider a user clicked three pages P1, P2 … P10. Click weight of each
clicked page can be computed by Eq. (4) as shown below. The CLICKwt of all
other pages is set to zero as they did not get any click from user.

CLICKwtðP1Þ ¼ 1
1þ 1þ 1

¼ 0:33 ð4aÞ

CLICKwtðP2Þ ¼ 1
1þ 1þ 1

¼ 0:33 ð4bÞ

CLICKwtðP5Þ ¼ 1
1þ 1þ 1

¼ 0:33 ð4cÞ

A Novel Page Ranking Mechanism Based on User Browsing Patterns 43

Calculation of time weight on page P: Time is also an important factor as more
time the user spent on something, more he is interested in it [10]. Time weight of
document Pi is computed by analyzing its relevancy w.r.t document p whose view
time is maximum. For query q in current session as given in Eq. (5). Let us consider
the user spent 3 min, 2 min, and 9 min on page P1, P2, and P5, respectively. The
time weight of page P1, P2, P5 can be computed by Eq. (5).

TIMEwtðPiÞ ¼ Time spentðPiÞ
Highest Time SpentðPÞ ð5Þ

TIMEwtðP1Þ ¼ 3
9
¼ 0:33 ð5aÞ

TIMEwtðP2Þ ¼ 2
9
¼ 0:22 ð5bÞ

TIMEwtðP5Þ ¼ 9
9
¼ 1 ð5cÞ

Calculation of action weight on page Pi: Action that user may carry on any
Web document is listed in Table 4 along with the weights. The weight is assigned
according to the relevancy of the action where relevancy is determined based on
user feedback in response of a survey. It is observed in the survey that if someone is
printing the page means, it has higher utility at present, saving is less scored as the
user will require it later on, bookmark come next, and sending comes at last in
priority list as page is used by some other user. If a user performs more than one
action, then only the higher weight value is considered. For example, if user per-
fume printing as well as saving, then only the printing weight is assigned to the
page.

Let us consider the user takes no action on page P1 and P2 but performs the save
action on page P5. So, ACTIONwt(P5) = 0.3, ACTIONwt(P1) = 0, and
ACTIONwt(P2) = 0. This PPF information related to each clicked page is updated
in search engine database. Initially, PPF of all pages is set to zero. It is computed
and updated every time; a user selects the page in the result list.

Table 4 Action weight Action Weight

Print 0.4

Save 0.3

Bookmark 0.2

Send 0.1

No action 0

44 S. Sethi and A. Dixit

3.3 DB Builder

This component is responsible for extracting the pages from www and storing their
information into search engine database. The main subcomponents are as follows:
page extractor, crawler, and indexer as shown in Fig. 3. The working of each
component is discussed in following subsections.

Crawler: It extracts the URL from the URL frontier and downloads the pages at
specified interval [11] from the different Web server. URL frontier is a queue that
contains URLs of the pages that need to be downloaded. The structure of URL
frontier is shown in Fig. 6. The downloaded pages are passed to page extractor.
Table 5 gives description of different fields of URL frontier.

Page extractor: It parses the fetched page and divides it into no. of terms. All
the nonfunctional terms such as at, on, the are removed. It stores the term infor-
mation related to parsed page in Term_info table. It also extracts the link infor-
mation of page and stores it into Link_info. The structure of Term_info and
Link_info is shown in Fig. 4. The different fields of Term_info and Link_info are
described in Table 6.

Indexer: It first calculates the link weight of a page using Eq. (2) by taking the
link information from Link_info then indexes every term of parsed page in search
engine database. The structure of database is shown in Fig. 6. The page probability

Table 5 URL frontier description

Field Description

URL URL of the page yet to be downloaded by the crawler, e.g., http://www.snapdeal.
com/ domain name system

Priority The numeric value based on revisit interval of a page assigned by the crawler

Depth The numeric value indicates how deep the crawler visits the hyperlinks of a page
and downloads them

Server
name

The web server name of the URL. For example, in the above-mentioned URL,
the server name is snapdeal.com

URL FRONTIER
URL priority depth Server name

PAGE REPOSITORY

DATABASE SCHEMA
Term Doc_ID frequency Term position Link weight PPf

Link_info

URL Doc_ID depth In_lnk Hit_coumt Out _lnk Page address

Term_info
term Doc ID frequency Term posion

Fig. 4 Data structures for used by DB builder

A Novel Page Ranking Mechanism Based on User Browsing Patterns 45

http://www.snapdeal.com/
http://www.snapdeal.com/

factor, PPF, of each new page is initially set to zero and updated by PPF calculator
when ever the page is clicked by user in result list. Let us consider the sample data
shown in Table 7 for understanding the organization of information in search
engine database. The information is stored as vocabulary (terms list) and postings as
shown in Fig. 5.

Table 6 Description of page repository

Field Description

Term The word extracted from page

Doc_ID A unique number or alphanumeric no. is assigned to each page such as D1, D2,
D3

Frequency No. of occurrences of term in page

Position It is a numeric value which tells the position of term in the page; e.g., graphics at
53rd position indicates that it is 53rd term of the parsed page Di

URL The URL of the page being parsed

Depth The depth of URL

In_lnks The URL of incoming link

Hit_count The no. of link visit from incoming URL to parsed page URL

Out_lnks URL of outgoing links

Page
address

It specifies the memory location of page on the server site

Table 7 Organization of data in search engine database

Term Doc ID Frequency Position Link_weight PPF

Prime D3 5 4, 12, 23, 56 7 4.5

Prime D8 3 7, 45, 89 9 7

– – – – – –

Factors D3 6 5, 13, 24, 57, 79, 99 7 4.5

Minister D8 3 8, 46, 90 9 7

Fig. 5 Organization of information in search engine database

46 S. Sethi and A. Dixit

As shown in Table 7, the term ‘Prime’ occurs at four different places: 4, 12, 23,
and 56 in document D3 in row1. The link_weight of D3 is 7, and PPF score is 4.5.
Likewise, the information about the other terms is also stored.

3.4 Query Processor

It executes the user query on search engine database and fetches the pages whose
text matches with the query terms. It calculates the overall_page_score of each
selected page by adding the precomputed Link_weight to PPF and returns the
sorted list of pages to search engine interface. The algorithm of query processor is
shown in Fig. 6.

4 Example

Let us consider the scenario depicted in Fig. 7 to have a complete understanding of
proposed page ranking mechanism.

5 Conclusion

In this paper, an efficient page ranking mechanism based on user browsing pattern
has been presented. These patterns are used to deduce the importance of a page with
respect to other candidate pages for a query. The technique is automatic in nature,

Fig. 6 Algorithm for query processor

A Novel Page Ranking Mechanism Based on User Browsing Patterns 47

and no overhead is involved at the part of user. The technique does not create each
user profile; instead, collective interests are used to find the relevancy of a page. So,
optimized approach is adopted. The technique proves to provide more relevant
results as compared to regular search engine.

References

1. Sethi S., Dixit A.: Design of presonalised search system based on user interest and query
structuring. In: Proceedings of the 9th INDIACom; INDIACom 2nd International Conference
on Computing for Sustainable Global Development, 11–13 March 2015

2. Brin, S., Page, L.: The anatomy of a large scale hypertextual web search engine. Comput.
Netw. ISDN Syst. 30(1–7), 107–117 (1998)

3. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: bringing order
to the web. In: Technical report, Stanford Digital Libraries SIDL-WP-1999-0120 (1999)

Term Doc

id/URL

Freq position Link_wt PPF

prime D4 9 3,12,26,48,66,87,109,129,156 1.08 3.2

prime D2 8 2,15,45,67,80.94.130,197 1.0 4.3

…… ……

triplets D4 9 4,13,27,49,67,88,110,130,157 1.08 3.2

triplets D1 6 5,20,34,56,78 0.678 0

…….

1. en.wikipedia.org/wiki/Prime_triplet

2.Www.artofproblemsolving.com/wiki/index.
php/Prime_triplet

3.mathforum.org/library/drmath/view/56063.
html

4 www.jstor.org/stable/279581

Search

Search engine interface

Query

processor

PPF calculator

Search the clicked URLs and update PPF ←

Extract the PPF of clicked URLs →

DB Builder

URL Inlink UrLs Outlinks Hitcount

.en.wikipedia.org/wiki/Pri

me_triplet

20 http://en.wikipedia.org/wiki/Mathemat

ics

340

10 http://en.wikipedia.org/wiki/Eric_W._

Weisstein

480

7 http://en.wikipedia.org/wiki/Cousin_pr

ime

198

Link log at server site

Download pages with link and access information

Se
nd

 th
e

hi
t i

nf
or

m
at

io
n

to
 w

eb
 s

er
ve

r

Database

Something to record

Fetch clicked URL
from query log and
record time spent and
action performed on
clicked URL

User query→

Sorted search results←

Fe
tc

h
th

e
m

at
ch

ed
 p

ag
es

 w
ith

 P
PF

 s
co

re
 a

nd

lin
k

in
fo

rm
at

io
n

Fig. 7 Example depicting the working of proposed mechanism

48 S. Sethi and A. Dixit

4. Xing W., Ghorbani A.: Weighted pagerank algorithm. In: Proceedings of the Second Annual
Conference on Communication Networks and Services Research (CNSR’04)0-7695-2096-0/
04 $20.00 © 2004

5. Pal, S., Talwar, V., Mitra, P.: Web mining in soft computing framework: relevance, state of
the art and future directions. IEEE Trans. Neural Netw. 13(5), 1163–1177 (2002)

6. Gyanendra, K., Duahn, N., Sharma A.K.: Page ranking based on number of visits of web
pages. In: International Conference on Computer and Communication Technology (ICCCT)-
2011, 978-1-4577-1385-9

7. Markov, Z., Larose, D.T.: Mining the web: uncovering patterns in web content, structure, and
usage data. Wiley, New York (2007)

8. Sethi, S., Dixit, A.: A comparative study of link based pge ranking algorithm. Int. J. Adv.
Technol. Eng. Sci. (IJATES) 3(01) (2015). ISSN: 2348-7550

9. Tyagi, N. et al. Weighted page rank algorithm based on number of visits of web page. Int.
J. Soft Comput. Eng. (IJSCE) 2(3) (2012). ISSN: 2231-2307

10. Mittal, A., Sethi, S.: A novel approach to page ranking mechanism based on user interest. Int.
J. Adv. Technol. Eng. Sci. (IJATES) 3(01) (2015). ISSN: 2348-7550

11. Dixit, A., Sharma, A.: A mathematical model for crawler revisit frequency. In: IEEE 2nd
International Advanced Computing Conference (IACC), pp. 316–319 (2010)

A Novel Page Ranking Mechanism Based on User Browsing Patterns 49

Indexing of Semantic Web for Efficient
Question Answering System

Rosy Madaan, A. K. Sharma, Ashutosh Dixit and Poonam Bhatia

Abstract Search engine is a program that performs a search in the documents for
finding out the response to the user’s query in form of keywords. It then provides a
list of web pages comprising of those keywords. Search engines cannot differentiate
between the variable documents and spams. Some search engine crawler retrieves
only document title not the entire text in the document. The major objective of
Question Answering system is to develop techniques that not only retrieve docu-
ments, but also provide exact answers to natural language questions. Many
Question Answering systems developed are able to carry out the processing needed
for attaining higher accuracy levels. However, there is no major progress on
techniques for quickly finding exact answers. Existing Question Answering system
is unable to handle variety of questions and reasoning-based question. In case of
absence of data sources, QA system fails to answer the query. This paper inves-
tigates a novel technique for indexing the semantic Web for efficient Question
Answering system. Proposed techniques include manual constructed question
classifier based on <Subject, Predicate, Object>, retrieval of documents specifically
for Question Answering, semantic type answer extraction, answer extraction via
manually constructed index for every category of Question.

Keywords Information retrieval � Question Answering � Semantic web

R. Madaan (&)
Department of Computer Science and Engineering, GD Goenka Univeristy, Sohna, Gurgaon,
India
e-mail: madaan.rosy@gmail.com

A. K. Sharma
Department of Computer Science and Engineering, BSAITM, Alampur, Faridabad, India
e-mail: ashokkale2@rediffmail.com

A. Dixit � P. Bhatia
Department of Computer Engineering, YMCA University of Science and Technology,
Faridabad, India
e-mail: dixit_ashutosh@rediffmail.com

P. Bhatia
e-mail: poonambhatia0401@gmail.com

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_5

51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_5&domain=pdf

1 Introduction

Question Answering (QA) is a technology that aims at retrieving the answer to a
question written in natural language from the large collections of documents.
Indexing is a technique of formation of indexes for the fast retrieval of the infor-
mation needed by the Question Answering system to answer the query of the user.
The user in the question categorization module selects the category of the Question
which makes the system understand that it has to search in that particular category
index; we have different index for different category of the Question.

2 Related Work

The evolution of the QA system was through closed domain because of their less
complexity. Previously used QAs were BASEBALL and LUNAR. BASEBALL [1]
QA gives information about the US baseball league for one year. LUNAR QA gives
information about the geographical analysis of rocks given by the Apollo moon
missions. Both QA systems were very powerful in their own domains. LUNAR was
examined at a lunar science, and it was able to answer approximately 90% of the
questions in its domain posed by people who are not trained on this system. The
common feature of all these systems is that they had knowledge database or
knowledge systems that were implemented by experts of the chosen domain.

SHRDLU [2] was a Question Answering system that has been developed by
Terry Winograd. It was basically developed to offer for the user to ask the robot
questions. Its implementation was done using the rules of the physics encoded in
computer programming. The Question Answering systems developed to interface
with these expert systems produced more repeatable and valid responses to ques-
tions within an area of knowledge. The system answered questions related to the
Unix OS. It had a knowledge base of its domain, and its target is to phrase the
answer to accommodate various types of users. LILOG [2] is a closed-domain
Question Answering system and is basically a text understanding system. This
system gives tourism information in a German city. Other system also helps the
system in linguistic and computational processing.

QUALM (story understanding system) [3] works through asking questions about
simple, paragraph length stories. QUALM [3] system includes a question analysis
module that links each question with a question type. This question type guides all
further processing and retrieval of information (see Table 1).

Kupiec (a simple WH question model) [3] Question Answering system performs
similar function but it rather solves simpler who question models to build a QA
system. This QA used the interrogative words for informing the kinds of infor-
mation required by the system. Table 2 lists the Question categories and Answer
type.

52 R. Madaan et al.

AnswerBus Question Answering system [4] is an open-domain Question
Answering system based on sentence-level Web information retrieval. It accepts
users’ natural language questions in English, German, French, Spanish, Italian and
Portuguese and provides answers in English. It can respond to users’ questions
within several seconds. Five search engines and directories (Google, Yahoo,
WiseNut, AltaVista and Yahoo News) are used to retrieve web pages that contain
answers. AnswerBus takes a user question in natural language, i.e. in English.
A simple language recognition module will determine whether the question is in
English, or any other five languages. If the question language is not in English,
AnswerBus will send the original question and language information about the
question to AltaVista’s translation tool and obtain the question that has been
translated into English and accordingly answer is provided to the user.

AskMSR Question Answering system [3] is to take the query as input and
rewrite the query into the form the system can support. The rewrites generated by
the system are simple string-based manipulations. AskMSR does not use a parser or
part-of-speech tagger for query reformulation, but use a lexicon for a small per-
centage of rewrites, in order to determine the possible parts of speech of a word as
well as its semantic variation. It created the rewrite rules and associated weights
manually for the current system, and it may be possible to learn query to answer
reformulations and their weight [4–6].

Query Reformulation in AskMSR is done as follows: Given a question, the
system generates a number of weighted rewrite strings which are likely substrings
of declarative answers to the question. For example, “When was C discovered?” is
rewritten as “C was discovered”. We search through the collection of documents in
search of such patterns. Since many of these string rewrites will result in no
matching documents, we also produce less decisive rewrites that have a much
greater chance of finding matches. For each query, we generate a rewrite which is
not having any stop word in the resultant query [7, 8].

Table 2 Kupiec question
categories

Question type Answer type

Who/whose Person

What/which Thing, Person, location

Where Location

When Time

How many Number

Table 1 QUALM question
categories

Question type Example question

Causal antecedent How did the cloud formed?

Goal orientation Rohan left for what reason?

Causal consequent What happened after John left?

Disjunctive Was Rohan or Mary here?

Verification Did Rohan leave?

Indexing of Semantic Web for Efficient Question Answering System 53

3 Proposed Architecture

This Question Answering system is a system that is developed with an objective to
answer question posed by a user in a natural language [9, 10]. The architecture of
this system is shown in Fig. 1. The following are the functional modules of the
proposed system:

• Query interface,
• Query processing,
• Document retrieval processing,
• Result processing.

The query interface is a dialogue to the Question Answering system that the
user’s natural language can be entered into and the output is given to the user. The
knowledge base of this system consists of a stop words list, a synonym knowledge
base, a Question Answer database (in the form of documents), a question term
(index words), technology information knowledge database.

3.1 Query Interface Module

Query interface in Question Answering system is the module responsible for
executing the query given by the user. It receives input queries in the form of plain
text, parses and optimizes them and completes the execution of the query by
performing different techniques on the query to retrieve the answer to the query
posed by the user [11, 12]. So, the user query is the query posed by the user in plain
text which is considered as a string of words.

3.2 Query Processing Module

Query processing is done in the manner as shown in Fig. 2.

Question processing Question Categorization Indexing Module

Document Answer Reformulation

Query interface

Fig. 1 Proposed architecture

54 R. Madaan et al.

a. Identification of the query: This component is used to identify the type of the
query entered by the user.

b. Tokenization of the query: In the first step, query is tokenized into bag of words
or string of words.

c. Stop word Removal: Removing stop word is necessary to improve the efficiency
of the query. Adjusting the stop word list to the given task can significantly
improve results of the query.

3.3 Question Categorization Module

In this module, user has to select the category of the Question, i.e. who, what, when
so that the system can identify the expected answer to the user query [13].

3.4 Question Analysis Module

Question analysis (see Fig. 3) is also referred to as “Question Focus”. Classifying
the question and knowing its type are not enough for finding answers to all
questions. The “what” questions in particular can be quite ambiguous in terms of
the information asked by the question. It reduces the ambiguity, analyses the
Question and identifies its focus which is necessary [14, 15]. For example, if the
user enters the query “Who is the Founder of C”, focus must be on the “founder”
and “C”.

See Fig. 3 for Question analysis.

3.5 Question Categorization

Question categorization improves the performance of the retrieving the answer by
the Question Answering system. If the category the user selected is “who”, then the

Identify Query
Type

Tokenized
Query

Removal of
Stop Words

Semantic
Mapping

Indexing

Synonym
Matching

Who
index

What
index

When
index

How

Fig. 2 Query processing framework

Indexing of Semantic Web for Efficient Question Answering System 55

expected answer can be name of person or some organization. Table 3 lists the
questions along with their type.

3.6 Semantic Mapping in Question Answering System

Dealing with difficult question involves the identification of semantic mapping of
the query. Firstly, we need to recognize the answer type that is expected which is an
affluent semantic structure. Secondly, we need to identify the Question class and
patterns. Thirdly, we need to model the scenario that what sort of information is
needed by the query.

Three concepts are needed to identify the answer type:

a. Question class.
b. Relationship between the subject and object, i.e. <Subject, Predicate, Object>.
c. Semantic mapping of the Question.

Let us take a question: What is the description of C? For this question, by
knowing only the category of the question it is difficult to judge the answer to the
query; we have to create a semantic relation between the query and the answer type.
Query formulation is done on the basis of <Subject, Predicate, Object> “Subject”
tell what contains the paragraph of the “object” C description judges the relation-
ship between the subject and the object [16].

Fig. 3 Question analysis

Table 3 Question
categorization

Question Type

Who discover C who

Who is the founder of C who

Who found C who

Who develop C who

Who invented C who

What is the history of C what

History of C –

56 R. Madaan et al.

3.7 Indexing Module

Indexing is a technique of formation of indexes for the fast retrieval of the information
needed by the Question Answering system to answer the query of the user [17]. The
user in the question categorization module selects the category of the Question which
makes the system understand that it has to search in that particular category index; we
have different index for different category of theQuestion. The indexingmodule helps
the QA system to locate the terms with the document id for fast processing. The
indexing technique used in the QA system is manually locating the term with the
document id. With the indexing module, the QA system identifies the matched doc-
ument related to the query term for finding the candidate answers. After the identi-
fication of the matched documents, result processing module will process the result
back to the user interface. Table 4 shows a general index.

3.8 Result Processing Module

After the documents are indexed, the documents having the matched query answers
are processed to the query processor and finally the output of the query is given to
the user. Figure 4 shows the process how result processing module works.

The proposed algorithm is shown in Fig. 5.
Algorithm for query processing is shown in Fig. 6.

Table 4 General index Term Document ID

Founder Doc1

C Doc1, Doc2

Dennis Ritchie Doc1

General purpose Doc2

Result processing
Data
Processed

Indexed Documents Finding
Documents

Matched Doc.

Fig. 4 Result processing module

Step 1: Take query as input as entered by the user
Step 2: Identify the category of the question.

Step 3: a) If category=”Who” then check with who-index.
b) If category=”What” then check with what-index.
c) If category=”When” then check with when-index.
d) If category=”Why” then check with why-index.
e) If category=”how” then check with how-index.
f) If category=”Where” then check with where-index.

Step 4: If category=”not found” then check with main-index.
Step 5: Return the candidate answer generated by matching the documents.

Fig. 5 Proposed algorithm of
result processing module

Indexing of Semantic Web for Efficient Question Answering System 57

4 Experimental Evaluation

The approaches taken have given satisfactory results up to a great extent. There are
many types of question for which the answers are relevant and accurate. There is a
scope of improvement in many areas but things have been achieved as per the
proposed work. Whenever you want to know about a question “who is the founder
of C?” you will be expecting the name of the person or an organization as the
category of the Question is who. The answer will contain the name of the person
and some description about the person. Snapshot of the proposed system is shown
in Fig. 7.

This Question Answering system is able to answer a variety of questions
accurately. As can be seen in the snapshots, the answers are formatted according to
the Question requirements. This section calculates the relevancy of various answers.

It is worth noting that the answers follow a true positive result orientation, i.e. all
the relevant results are coming. In some cases, other relevant information that might
be useful is also coming in results. Performance is calculated on the basis of
relevant result given by the system. Formula for calculating the performance is:

Step 1: Query=Input.
Step 2: Split query into Tokens.
Step 3: Check for Stop words

a) If found remove them.
Step 4: Set terms as tokens and return
Step 5: Identify the Subject, Predicate, Object for the query to find the relationship bet ween the subject and object.
Step 6: If term in the query does not match with the index term then find the synonym of the query term and replace the synon ym with the
query term in the index.
Step 7: Identify the number of documents that match the query terms.
Step 8: Processing of result for the match documents is done.
Step 9: Processed Result is given to the query interface.

Fig. 6 Algorithm: query processing

Fig. 7 Snapshot of the proposed system

58 R. Madaan et al.

Performance% ¼ Answer processed by the systemð Þ= Expected relevant answerð Þ
� 100

Let us take examples of some questions in Table 5:
Apart from this Question like:

a. Question: How to become self-educated?

Answers expected are:

1. Stepwise method to perform the task.

Accuracy from answers from this method entirely depends on the user experi-
ence. If those results meet the user expectation, then it is 100% else it cannot be
computed.

b. Question: Convert metre to centimetre?

Answers expected are:

1. Conversion technique comes in the category of “how”.

QA System Accuracy = 1/1*100 = 100%
This method relies on the current conversion data, so accuracy is 100%. See

Fig. 8 for the plot of system accuracy.

Table 5 Example questions, expected answer type(s) and QA system accuracy

Question Expected answer type(s) QA system
accuracy

Who is the founder of C? 1. Name of the person
2. Name of the organization

2/2*100 = 100%

What is description of C? 1. Description about the topic 1/1*100 = 100%

Where is Qutab Minar
situated?

1. Location (i.e. city, state, country)
2. Location compared to other locations

2/2*100 = 100%

When did India got
independence?

1. Date and the place
2. Also some description about the past
3. Information about the condition when the
event takes place

2/3*100 = 66.6%

Which holiday fall on
December 31?

1. All the holidays which fall on that date. 1/1*100 = 100%

When was Mahatma Gandhi
born?

1. Birth date 1/1*100 = 100%

What event happened on 26
January?

1. All the event happened on that date 1/1*100 = 100%

Indexing of Semantic Web for Efficient Question Answering System 59

5 Conclusions and Future Scope

This Question Answering system is above its counterparts in giving relevant
answers to many type of questions. By selecting the category of Question for the
query, the indexing retrieval is done at a fast rate. As seen by the results and the
views of the users, these facts have come out as its bright feature. Information about
a person, word, location, birth date, death date, holidays, event, etc., available to the
user is accurate and relevant to the need of the particular user, and according to the
survey, many users are satisfied by it. The algorithm designed for the retrieval is
fast in most of the cases. It is getting faster day by day. System’s main aim was to
have index retrieval fast so as to improve the complexity of the Question. QA
system mapping of the query into <S,P,O> and creating the relationship between
the subject and object improve the efficiency of the Question Answering system. By
first selecting the category of the question QA system able to know what type of
answer is expected from the user. These things conclude that the proposed Question
Answering system is fast, efficient and relevant up to a great extent. Further work
can be done to improve the quality of the results and on reasoning-type questions.

References

1. Question Answering System Wikipedia
2. Hirschman, L., Gaizauskas, R.: Natural Language Question Answering System (2001)
3. Allam, A.M.N., Haggag, M.H.: The question answering systems: a survey. Int. J. Res. Rev.

Inf. Sci. (IJRRIS) (2012)
4. Zheng, Z.: AnswerBus question answering system. School of Information, University of

Michigan (2001)
5. Greengrass, E.: Information Retrieval: A Survey, DOD Technical Report TR-R52-008-001

(2000)
6. Brin, S., Page, L.: Computer Networking and ISDN System, pp. 107–117 (1998)
7. John, B., Claire, C., Vinay, C., Robert, G., Sanda, H., David, I.: Issues, Tasks and Program

Structuresto Roadmap Research in Question & Answering (Q&A) (2003)
8. Narayana, S., Harabagaiu, S.: Question Answering based on Semantic Structure (2005)
9. Andrenucci, A., Sneiders, E.: Automated Question Answering: Review of the Main

Approaches (2005)
10. Soergel, D.: Indexing and retrieval performance. In: Srihari, R., Li, W. (eds.) A Question

Answering System Supported by Information Extraction (1994)

0
20
40
60
80

100
120

WHO WHAT WHEN WHY WHEREHOW

System Accuracy

System Accuracy

Fig. 8 Bar graph showing
system accuracy of various
QA systems

60 R. Madaan et al.

11. Hammo, B., Abu-Salem, H., Lytinen, S.: QARAB: A Question Answering System to Support
the Arabic Language (2002)

12. Mudgal, R., Madaan, R., Sharma, A.K., Dixit. A.: A Novel Architecture for Question
Classification and Indexing Scheme for Efficient Question Answering (2013)

13. Moldovan, D., Paşca, M., Harabagiu, S., Surdeanu, M.: Performance Issues and Error
Analysis in an Open-Domain Question Answering System (April 2003)

14. Lim, N.R., Saint-Dizier, P.: Some Challenges in the Design of Comparative and Evaluative
Question Answering Systems (2010)

15. Suresh kumar, G., Zayaraz, G.: Concept Relation Extraction Using Naïve Bayes Classifier for
Ontology-Based Question Answering Systems (13 Mar 2014)

16. Kapri, d., Madaan, R., Sharma, A.K., Dixit, A.: A Novel Architecture for Relevant Blog Page
Identification (2013)

17. Balahur, A., Boldrini, E., Montoyo, A., Martínez-Barco, P.: A Comparative Study of Open
Domain and Opinion Question Answering Systems for Factual and Opinionated Queries
(2009)

Indexing of Semantic Web for Efficient Question Answering System 61

A Sprint Point Based Tool for Agile
Estimation

Rashmi Popli and Naresh Chauhan

Abstract In agile environment, the software is developed by self-organizing and
cross-functional teams. Agile promotes ad hoc programming, iterative, and incre-
mental development and a time-boxed delivery approach. Agile is always flexible
to changes. Estimation approaches of agile are very different from traditional ones.
However, research involving estimation in agile methodologies is considerably less
advanced. This paper focuses on the estimation phase of agile software develop-
ment which probably ranks as the crucial first step. Poor decisions related to esti-
mation activity can cause software failures. In agile environment in order to support
estimation, some delay-related factors are proposed that can delay the release date
of the project and also a new Sprint-point based estimation tool (SPBE) is designed
and developed in excel. The proposed tool is based on the Sprint-point based
Estimation Framework and place major emphasis on accurate estimates of effort,
cost, and release date by constructing detailed requirements as accurately as
possible.

Keywords Agile software development � Agile alliance � Sprint-point
Planning poker � Agile estimation

1 Introduction

Agile software development (ASD) methodology is presently considered as the
main methodology for software development in organizations [1]. The word “agile”
means flexible and responsive. The ASD has the ability to survive in rapid changing

R. Popli (&) � N. Chauhan
Department of Computer Engineering, YMCA University of Science and Technology,
Faridabad, India
e-mail: rashmipopli@gmail.com; rashmimukhija@gmail.com

N. Chauhan
e-mail: nareshchauhan19@gmail.com

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_6

63

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_6&domain=pdf

environment. ASD is a lightweight approach to most aspects of software devel-
opment in contrast to traditional methods of producing applications.

1.1 Estimation

Estimation of size, effort, cost, and duration of an agile software project is a
complicated task. Exact estimations of software are critical for software developers
and management. Ignorance of estimation approaches causes dangerous effects like
exceeding budget of project, not delivered on time, poor quality, and not right
product [2, 3]. Popular agile methods are expert opinion, planning poker, analogy
based, top-down approach, and bottom-up approach [1], etc. But these methods are
not so efficient because in expert opinion the result is always based on the obser-
vation of expert and his/her experience. Similarly analogy-based method depends
on the historical data or on previous projects. However in absence of historical data
or in case it is a new project, it becomes difficult to estimate by existing agile
estimation methods. Therefore, there is a need of some estimation tool that cal-
culates estimates in agile environment effectively.

2 Sprint-point based Estimation Framework in SPBE
Tool

2.1 Sprint Estimation

When planning about first sprint, at least 80% of the backlog items are estimated to
build a reasonable project map. These backlog items consist of user stories grouped
in sprints and user stories based on estimation is done using story points. When a
software developer estimates that a given work can be done within 10 h, it never
means that work will be completed in 10 h. Because no one can sit in one place for
the whole day and there can be a number of factors that can affect story points and
hence decrease the velocity. To estimate cost and time, it is a big challenge [4].

To resolve this problem, the concept of Sprint-point is proposed. A Sprint-point
basically calculates the effective story points. Sprint point is an evaluation or
estimation unit of the user story instead of story point. By using Sprint points, more
accurate estimates can be achieved. Thus, the unit of effort is Sprint Point
(SP) which is the amount of effort, completed in a unit time.

In the proposed Sprint-point based Estimation Framework, requirements are first
gathered from client in the form of user stories. After requirement gathering, a user
story-based prioritization algorithm is applied to prioritize the user stories.
Consequently, story points in each user story are calculated and uncertainty in story
points is removed with the help of three types of story points proposed. Then, these

64 R. Popli and N. Chauhan

story points are converted to sprint-points based on the proposed agile estimation
factors. Afterwards, sprint-point based estimation algorithm is applied to calculate
cost, effort, and time in a software project.

If there is requirement of regression testing in agile, then defect data is gathered
based upon the similar kinds of projects, which is used to calculate rework effort
and rework cost of a project. Finally, the sprint-point based estimation algorithm
using regression testing is applied to calculate the total cost, effort, and duration of
the project.

This Sprint-point based Estimation Framework as shown in Fig. 1 performs
estimation in scrum using below steps:

Step 1: User stories are prioritized by using User story-Based Prioritization
Algorithm (will be discussed in Sect. 2.2).
Step 2: Uncertainty in story point is removed (will be discussed in Sect. 2.3).
Step 3: Story points are converted into sprint-points by considering agile delay
factors. Delay factor is being proposed that affects the user stories and thus affects
the cost, effort, and duration of a software project. Sprint-point based estimation is
done by using the proposed Sprint-point based estimation using delay-related
factors (will be discussed in Sect. 2.4).

2.2 User Story-Based Prioritization Algorithm

In agile software development method, the requirements from the customer are
taken in the form of user stories. The proposed prioritization rule is “Prioritize the

Fig. 1 User stories

A Sprint Point Based Tool for Agile Estimation 65

user stories such that the user stories with the highest ratio of importance to actual
effort will be prioritized first and skipping user stories that are “too big” for current
release” [5].

Consider the ratio of importance as desired by client to actual effort done by
project team (I/E) as in Formula 1.

Prioritization of user stories ¼ Importance of user stories
Effort per user stories

ð1Þ

2.3 Managing Uncertainty in Estimating User Stories

The technique of managing uncertainty in estimation reduces uncertainty by fol-
lowing approach of reducing uncertainty in estimating user stories [6].

2.4 Sprint-Point Based Estimation Using Delay-Related
Factors

Looking toward the various unaddressed problems of estimation, a new
Sprint-point based Estimation Framework in agile has been proposed that helps to
estimate the accurate cost, time, and effort [7, 8].

In this project, some delay-related factors have been proposed that can affect the
estimation of cost and effort of the project. These factors are as below:

(1) Complexity
(2) Security
(3) Technical Ability
(4) Expected Ambiguity in Detail
(5) Expected Changes in Environment
(6) Team Members Responsibilities Outside the Project

Algorithm 1 Sprint-point based Estimation Framework Algorithm

• Identify the delay-related factors which effect the effort in scrum environment
where

P ¼ p1; p2; . . .pi; . . .pnf g where 1 < i <= n

• Identify the unadjusted value of story points (UVSP) related to each level in
scrum environment

where UVSP = {p1 + p2 + p3 + ��� + pn}
where Li (1 <= i <= 3)

66 R. Popli and N. Chauhan

• Compute the estimated story points (ESP) as

ESP ¼ BSPþ 0:1 UVSPð Þ
where BSP is baseline story points

• Compute velocity from first iteration as

Velocity = ESP/story point completed in one iteration

• Compute new velocity by considering delay-related factors

V ¼ velocity � d
• Estimated Development Time (EDT) = ESP/Velocity (in Days)
• Release Date = Start date + EDT

In the proposed algorithm, firstly the delay-related factors in agile scrum envi-
ronment are calculated on the basis of which the UVSP is determined. With the help
of UVSP, the story points are estimated. These estimated story points are then used
in the calculation of the development time and the release date of the project.

2.5 Sprint-Point Based Estimation Tool

As agile projects are of small duration, so the team has not so much amount of time
to apply the mathematical algorithms. To resolve this issue, a new sprint-point
based estimation tool (SPBE) is designed and developed in Excel to automate the
Sprint-point based Estimation Framework. The proposed SPBE tool for estimation
place major emphasis on accurate estimates of effort, cost and release date by
constructing detailed requirements as accurately as possible. This tool is used as a
vehicle to validate the feasibility of the project. The proposed tool is a set of
individual spreadsheets with data calculated for each team separately. The esti-
mation tool is created to provide more accuracy in velocity calculations, as well as
better visibility through burn down charts on all stages including planning, tracking,
and forecasting. The proposed estimation tool first decides the priority sequence of
user stories that dictates the implementation order. The priority of user story is
decided based on the importance of user stories to the client and the effort of the
scrum team. After prioritization product, backlog is prepared which is the most
important artifact for gathering the data. After selecting a subset of the user stories,
the sprint backlog is prepared and the period for the next iteration is decided.

A Sprint Point Based Tool for Agile Estimation 67

2.5.1 Contents of SPBE Tool

The SPBE tool contains the components. There is a separate spreadsheet for each
component as in Table 1 like release summary, capacity management, product
backlog, sprint backlog, sprint summary, defect, work log, and metric analysis. The
backlog sheet contains all the user stories. The sprint summary sheet contains the
information about the sprint like release date, start date.

2.6 Case Study

All the proposed approaches have been numerically analyzed on a case study
named as enable quiz. The user stories of case study are in Table 2. As agile
projects are of small duration so the team has not so much amount of time to apply
the mathematical algorithms for estimation of cost, effort, and time. For resolving
this problem, a new Sprint–point based estimation tool (SPBE) has been designed
and developed to automate the Sprint-point based Estimation Framework. The

Table 1 Contents of SPBE tool

S.
No.

Spreadsheet
name

Description

1. Release
summary

This spreadsheet contains the information about the overall planned
and realized size of each release

2. Product
backlog

This spreadsheet lists all the user stories in prioritized order

3. ESP-product
backlog

This spreadsheet lists all the user stories and the story points in each
user story

4. TSP-product
backlog

This spreadsheet lists all the user stories and the sprint-points in
each user story

5. Estimation
summary

This spreadsheet calculates the total estimated effort, cost, and time
for the release

6. Sprint backlog This spreadsheet is a list of tasks identified by the scrum team to be
completed during the particular sprint

7. Sprint
summary

This spreadsheet contains information like start date, end date of
sprint

8. Defect This spreadsheet describes the summary of defects, bug status, bug
assignee, and bug reporter and also the date of bug creation

9. Worklog This spreadsheet involves the various resources involved in the
project and also the type of work allocated to them

10. Metric
analysis

This spreadsheet shows the various metrics like rework effort, defect
density ratio, effort variance

68 R. Popli and N. Chauhan

proposed SPBE tool for estimation places major emphasis on accurate estimates of
effort, cost and release date by constructing detailed requirements as accurately as
possible [9–11]. This tool may be used as a vehicle to validate the feasibility of the
project.

2.7 Results

By using delay-related factors, decelerated velocity is calculated on the basis of
which effort and cost is calculated. For simplicity, only 10 user stories are taken.
The project start date is assumed as January 1, 2014, and initial velocity is 5 SP/day.
The delay-related factors are taken at medium level. By using the Sprint-point based
estimation tool the following results as shown in Table 3 are calculated.

The snapshots of the results in SPBE tool are as in Figs. 1, 2 and 3.

Table 2 User stories of case study

Story Importance (I) Effort (E) I/E

1. As a manager, I want to browse my
existing quizzes

10 7 10/7 = 1.42

2. As a manager, I can make sure that I am
subscribed to all the necessary topics for my
skills audit

4 3 4/3 = 1.33

3. As a manager, I can add additional
technical topics to my quizzes

1 16 1/16 = 0.0625

4. As a manager, I want to create a custom
quiz bank

8 8 8/8 = 1

5. As a manager, I want to create a quiz so I
can use it with my staff

5 4 5/4 = 1.25

6. As a manager, I want to create a list of
students from an Excel file so I can invite
them to take the quiz

7 5 7/5 = 1.4

7. As a manager, I want to create a list of
students online

6 8 6/8 = 0.75

8. As a manager, I want to invite a set of
students

3 8 3/8 = 0.375

9. As a manager, I want to see which
students have completed the quiz

9 6 9/6 = 1.5

10. As a manager, I want to see how the
students scored on the test so I can put in
place a skills improvement program

2 16 2/16 = 0.125

A Sprint Point Based Tool for Agile Estimation 69

Table 3 Results

Unadjusted value (UV). All the six factors at medium level so
UV = 6

UVSP = 6*6 = 36

Total user stories 10

BSP 300

Project start date 1st January, 2014

Estimated story points (ESP) = BSP + 0.1 (UVSP) 300 + 0.1 (36) = 303.6

Initial velocity 5 SP/Day

AvgVF = Average of VF of all the 6 factors 0.95667

Decelerated velocity (DV) = V * AvgVF 5 * 0.95667 = 4.78330 SP/
Day

Estimated development time (EDT) = ESP/DV 303.6 * 8/
4.78330 = 507.76 h

Project end date 14 Jan 2014

Fig. 2 Capacity planning for release

70 R. Popli and N. Chauhan

3 Conclusion

The main focus of this paper is to propose a new sprint point based estimation tool
which improve accuracy of release planning and monitoring. The estimation tool is
created to provide more accuracy in velocity calculations, as well as better visibility
through burn down charts on all stages including planning, tracking, and fore-
casting. This tool is used as a vehicle to validate the feasibility of the project. The
approach developed is really simple and easy to understand and can be effectively
used for release date calculation in agile environment. By this method, release date
of small and medium size project can be calculated efficiently.

References

1. Cockburn, A.: Agile Software Development, Pearson Education. Asia Low Price Edition
(2007)

2. Stober, T., Hansmann, U.: Agile Software Development Best Practices for Large Software
Development Projects. Springer Publishing, NewYork (2009)

3. Awad, M.A.: A comparison between agile and traditional software development methodolo-
gies. Unpublished doctoral dissertation, The University of Western Australia, Australia (2005)

4. Maurer, F., Martel, S.: extreme programming. rapid development for web-based applications.
IEEE Internet Comput. 6(1), 86–91 (2002)

5. Popli, R., Chauhan, N.: Prioritizing user stories in agile environment. In: International
Conference on Issues and Challenges in Intelligent Computing Techniques, Ghaziabad, India
(2014)

Fig. 3 Priortized product backlog

A Sprint Point Based Tool for Agile Estimation 71

6. Popli, R., Chauhan, N.: Managing uncertainity of story-points in agile software. In:
International Conference on Computing for Sustainable Global Development, BVICAM,
Delhi (2015)

7. Popli, R., Chauhan, N.: Sprint-point based estimation in scrum. In: International Conference
on Information Systems and Computer Networks, GLA University Mathura (2013)

8. Popli, R., Chauhan, N.: Impact of key factors on agile estimation. In: International Conference
on Research and Development Prospects on Engineering and Technology (2013)

9. Cohn, M.: Agile Estimating and Planning. Copyright Addison-Wesley (2005)
10. Popli, R., Chauhan, N.: An agile software estimation technique based on regression testing

efforts. In: 13th Annual International Software Testing Conference in India, Bangalore, India
(2013)

11. Popli, R., Chauhan, N.: Management of time uncertainty in agile environment. Int. J. Softw.
Eng. and Applications 4(4) (2014)

72 R. Popli and N. Chauhan

Improving Search Results Based
on Users’ Browsing Behavior Using
Apriori Algorithm

Deepika, Shilpa Juneja and Ashutosh Dixit

Abstract World Wide Web (WWW) is decentralized, dynamic, and diverse. It is
growing exponentially in size. To improve search results, various ranking methods
are being used. Due to vast information on the Web, there is a need to build an
intelligent technique that automatically evaluates Web pages that are of user
interest. In this paper, interest of a user in a particular Web page can be estimated by
his browsing behavior without incurring additional time and effort by the user. It
can also adapt to changes in user’s interests over time. A page ranking mechanism
is being proposed which takes user’s actions into account. For this, a Web browser
has been developed to store user’s behavior. Apriori algorithm is applied on the
data collected by Web browser which results in most frequent actions out of all
actions. A calculated confidence value has been used to calculate weight of the Web
page. Higher the weight, higher the rank.

Keywords World wide web � Apriori algorithm � Browsing behavior
Actions � Web browser � PageRank

1 Introduction

With the advent increase in information over the Web, people are now more
interested and inclined toward Internet to get their data. Each user has its own
interest and accordingly his expectations from search engine vary. Search engines
play an important role in getting relevant information. Search engines use various

Deepika (&) � S. Juneja � A. Dixit
Department of Computer Engineering, YMCA University of Science and Technology,
Faridabad, India
e-mail: deepikapunj@gmail.com

S. Juneja
e-mail: shilpajuneja1189@gmail.com

A. Dixit
e-mail: dixit_ashutosh@rediffmail.com

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_7

73

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_7&domain=pdf

ranking methods like HITS, PageRank but these ranking methods do not consider
user browsing behaviors on Web. In this paper, a PageRank mechanism is being
devised which considers user’s browsing behavior to provide relevant pages on the
Web. Users perform various actions while browsing. These actions include clicking
scrolling, opening a URL, searching text, refreshing, etc., which can be used to
perform automatic evaluation of a Web page and hence to improve search results.
The actions have been stored in a database; an algorithm named Apriori has been
applied upon these actions stored in database to calculate weight of a particular
Web page. Higher the weight higher will be the rank of that page.

1.1 Introduction to Apriori Algorithm

Apriori algorithm [1] is an algorithm used in mining frequent itemsets for learning
association rules. This algorithm is designed to operate on large databases con-
taining transactions, e.g., collection of items purchased by a customer. The whole
point of an algorithm is to extract useful information from large amount of data.
This can be achieved by finding rules which satisfy both a minimum support
threshold and a minimum confidence threshold.

The support and confidence can be defined as below:

– Support count of an itemset is number of transactions that contain that itemset.
– Confidence value is the measure of certainty associated with discovered pattern.

Formally, the working of Apriori algorithm can be defined by following two
steps:

i. Join Step

– Find the frequent itemsets, i.e., items whose occurrence in database are greater
than or equal to the minimum support threshold;

– Iteratively find frequent itemsets from 1 to k for k-itemsets.

ii. Prune Step

– The results are pruned to find the frequent itemsets.
– Generate association rules from these frequent itemsets which satisfy minimum

support and minimum confidence threshold.

2 Related Work

In order to get relevant results, a search engine has to modify their searching
pattern. Crawlers are the module of search engine which are responsible for
gathering Web pages from the WWW. There are many design issues related to

74 Deepika et al.

designing of crawler [2]. Crawlers search on the basis of content or structure of a
Web page [3]. But here, after getting Web pages from the crawler, now it is
responsibility of search engine to show the users according to his interest. To show
the results to the user, its interest should be taken into consideration. Users’
browsing behavior actions should be involved for showing results. Much work has
been done in this area. Some are discussed below:

Ying [4] classified the users’ browsing behavior into three categories:

(a) Physical Behavior like eye rotation, heart rate changes.
(b) Significant behavior like save page, print page, open.
(c) Indirect behaviors like browsing time, mouse–keyboard operation.

According to this paper, indirect behaviors are most important in analyzing the
user interest.

Morita and Shinoda [5], Konstan [6], and Claypool et al. [7] conclude that user
spend much time on the page which is of his interest. The longer the user spends
time on some page, the more interested he is in the page.

On contrary, Weinreich et al. [8] found that in nearly 50% cases user spend
much time in deciding whether to move to the next page or not rather in reading the
content. It showed that time spent alone cannot be the important action in con-
sidering users’ interest.

Goecks and Shavlik [9] proposed an approach for an intelligent Web browser
that is able to learn a user’s interest without the need for explicitly rating pages.
They measured mouse movement and scrolling activity in addition to user browsing
activity (e.g., navigation history). It shows somewhat better result as compared to
the previous work.

Xing et al. [10] suggested that some actions like scrolling, mouse clicking should
be included in the total browsing time. They worked on user browsing history and
analyze documents which user has visited. On analysis he concludes that browsing
time and printing are important actions in showing users’ interest.

Tan et al. [11] focused on user behavior to optimize the structure of network and
Web site server configuration. By analyzing user browsing behavior, they found
what type of information should broadcast instead of all. Thus, improving Internet
usage and reducing Internet overhead. In this, users’ browsing behavior was used
for utilizing network resources in efficient manner.

Yang et al. [12] proposed personalized teaching software based on students
interest. Students’ interest was calculated by analyzing their browsing behavior. By
knowing their interest, they developed the software and cater the need of students in
efficient way.

From the above literature survey, it may conclude that existing system does not
give relevant results in terms of users’ interest. Many works has been done in this
area. Many researchers worked on users’ interest by analyzing their browsing
behavior on Web pages [13, 14]. Some concluded browsing time has great impact
in showing users’ interest while some take such type of patterns that showed users’
interest. But most of them do not consider enough behavior patterns.

Improving Search Results Based on Users’ Browsing Behavior … 75

3 Working Methodology

The main purpose of proposed approach is to find relevant pages by estimating
user’s interest implicitly. The proposed technique starts by developing a Web
browser to record user’s actions [2]. Actions include duration on Web page, number
of mouse clicks, number of key ups and down, save, print, number of scrollbar
clicks, reload, save, open URL, stop loading, add to favorites, back, forward, copy,
search text, hyperlink, active time duration, etc. The proposed browser also pops up
a window at the time of closing the Web page that asks the user to rate that Web
page. Whenever user performs above-mentioned actions, their details will be stored
in database. Apriori algorithm will then be applied on above-collected data. This
algorithm will result in most frequent actions and confidence values of subsets of
frequent actions. The values satisfying minimum confidence threshold will be used
to calculate weight of the Web page. The flow of proposed work is shown in Fig. 1.

The detailed description of each step is discussed below:

Step 1: Developing User Interface: A Web browser was proposed in first
step. Normally, a Web browser does not store actions performed by a user, whereas
the proposed Web browser automatically stores various actions performed by dif-
ferent users. When a user opens this browser a unique id is provided to him and his
actions get stored in accordance with his id.
Step 2: Storing Actions performed by user in database: All actions performed
by user get stored in database. A user can view summary of all actions by clicking
on “User Stats” on the interface. User stats show the frequency of every action that
is performed by different users.

Storing actions per-
formed by users in data

Applying Apriori algo-
rithm

Calculating page

Applying Rank

Developing user inter-
face (Web Browser)

Fig. 1 Structure of proposed
approach

76 Deepika et al.

Step 3: Applying Apriori: Apriori is applied on stored actions to get most frequent
actions. For each page, most frequent patterns are generated. These patterns are then
used for calculating the page weight.
Step 4: Calculate Page Weight and PageRank: After applying Apriori on actions,
frequent patterns are obtained. Confidence values of each pattern are taken to
calculate page weight. Confidence value can be calculated as per Eq. (1):

Confidence value ¼ support count most frequent actionð Þ=support count ðsub
set of most frequent actionÞ

ð1Þ

where support count of an itemset is number of transactions that contain that
itemset.

Based on the confidence value of each subset, the weight can be calculated by
the following formula:

Pwt ¼ C1 þC2 þC3 þ::þCi ¼
X

Ci ð2Þ

where C1, C2, C3…. are the confidence values of subsets of frequent occurring
actions which satisfy minimum confidence threshold.

Step 5: Apply Rank: Higher the page weight, higher its rank. It means the weight
of the page which is calculated from above step is considered for PageRank. The
page which has highest weight is assigned higher rank.

4 Example

In this section, an example is taken to show the working of proposed work. For this,
actions performed by 40 users on two pages page P1, page P2 were stored in
database. Database also stored number of times users visited those pages at different
times. Users perform actions on those pages according to their needs. Their actions
will be stored in a database. Apriori will be applied on those actions. For applying
Apriori, minimum support of 20% and minimum confidence threshold of 60% were
considered. Result of Apriori shows that most frequent actions on P1 were save as,
add to favorites, number of scrollbar clicks, and most frequent actions on another
page P2 were number of mouse clicks and print. With the help of this, the confi-
dence values of pages were calculated.

Step 1: A Web browser is developed to store the user actions. The interface of
proposed Web browser is shown in Fig. 2.
Step 2: All the actions performed by 40 users get stored in database and screenshot
of which is shown in Fig. 3.

Improving Search Results Based on Users’ Browsing Behavior … 77

Fig. 2 Proposed bowser

Fig. 3 Storing actions in database

78 Deepika et al.

Step 3: After applying Apriori on stored actions, frequency of actions can be
calculated and then find out frequent patterns. The snapshot of this step is shown in
Fig. 4.
Step 4: The confidence value of a page is calculated by putting the values in
Eq. (1): First of all, we will calculate confidence values of most frequent actions of
page P1.
C1 = sc {Save As, Add to Favorites, Number of Scrollbar Clicks}/sc {Save
As} = 2/2 = 100%
C2 = sc {Save As, Add to Favorites, Number of Scrollbar Clicks}/sc {Add to
Favorites} = 2/6 = 33%
C3 = sc {Save As, Add to Favorites, Number of Scrollbar Clicks}/sc {Number of
Scrollbar Clicks} = 2/4 = 50%
C4 = sc {Save As, Add to Favorites, Number of Scrollbar Clicks}/sc {Save As,
Add to Favorites} = 2/3 = 67%
C5 = sc {Save As, Add to Favorites, Number of Scrollbar Clicks}/sc {Save as,
Number of Scrollbar Clicks} = 2/2 = 100%
C6 = sc {Save As, Add to Favorites, Number of Scrollbar Clicks}/sc {Add to
Favorites, Number of Scrollbar Clicks} = 2/3 = 67%

Secondly, we will calculate confidence values of most frequent actions of page P2

C1′ = sc {Number of Mouseclicks, Print, Add to Favorites}/sc {Number of
ouseclicks} = 2/3 = 67%
C2′ = sc {Number of Mouseclicks, Print, Add to Favorites}/sc {Print} =
2/6 = 33%
C3′ = sc {Number of Mouseclicks, Print, Add to Favorites}/sc {Add to Favo
rites} = 2/4 = 50%
C4′ = sc {Number of Mouseclicks, Print, Add to Favorites}/sc {Number of
Mouseclicks, Add to Favorites} = 2/2 = 100%

Fig. 4 Frequency of actions
performed by users

Improving Search Results Based on Users’ Browsing Behavior … 79

C5′ = sc {Number of Mouseclicks, Print, Add to Favorites}/sc {Number of
Mouseclicks, Print} = 2/4 = 50%
C6′ = sc {Number of Mouseclicks, Print, Add to Favorites}/sc {Print, Add to
Favorites} = 2/3 = 67% (Table 1)

Since minimum confidence threshold is 60%, confidence values C2, C3, C2′,
C3′, C5′ will be rejected in page weight calculation.

Therefore, weight of page P1 is calculated as per Eq. (2):
Pwt = C1 + C4 + C5 + C6 = 1+0.67 + 1+0.67 = 3.34
Weight of page P2 is:
Pwt′ = C1′ + C4′ + C6′ = 0.67 + 1+0.67 = 2.34

Step 5: Since page P1 has higher weight than page P2, rank of page P1 will be
higher.

Page weight by Hit Count will be calculated by taking average of frequency of
their visit on a particular page. Table 2 shows page weight of P1, P2 by Apriori,
and Hit Count.

Star rating is calculated by user by explicitly asking while closing the Web page.
By the use of Table 2, we can give a graphical representation in Fig. 5 which

shows the comparison between page weights calculated by both Apriori and Hit
Count.

It is observed that Apriori is performing better than Hit Count as proposed work
calculates higher relevance score. By explicitly asking users’ interest also shows
that proposed method predicts more accurate interest than Hit Count method.

Table 1 Confidence values
of subsets of most frequent
actions

Confidence values Selection

C1 = 1 ✓

C2 = 0.33 ✕

C3 = 0.5 ✕

C4 = 0.67 ✓

C5 = 1 ✓

C6 = 0.67 ✓

C1′ = 0.67 ✓

C2′ = 0.33 ✕

C3′ = 0.5 ✕

C4′ = 1 ✓

C5′ = 0.5 ✕

C6′ = 0.67 ✓

80 Deepika et al.

5 Conclusion

In this proposed approach, users’ browsing behavior is used to find relevant pages.
While past researches consider on user visit history and observing their time spent
on a Web page, whereas above-mentioned mechanism shows that there are other
user browsing behavior can also be consider to find the user’s interest. The pro-
posed mechanism identifies several implicit indicators that can be used to determine
a user’s interest in a Web page. In addition to previously studied implicit indicators,
several new implicit indicators are also taken into consideration. The indicators
examined are complete duration on a Web page, active time duration, search text,
copy, print, save as, reload, number of key up and down, number of mouse clicks,
number of scrollbar clicks, add to favorites, hyperlink, back, and forward. These
implicit indicators prove to be more accurate than any indicator alone. To show that
proposed results are more accurate, explicit indicator is also used to find more
relevant pages. The explicit indicator used here is by asking from user to rate the
page according to its interest, and then comparison is done with proposed work.
The comparison shows that proposed is much closer to explicit indicators and is
more accurate.

References

1. Agrawal, R., Ramakrishan, S.: Fast Algorithms for mining Association Rules. IBM Almaden
Research Center (1994)

2. Deepika, Dixit, A.: Capturing User Browsing Behaviour Indicators. Electr. Comput. Eng. Int.
J. (ECIJ) 4(2), 23–30 (2015)

Table 2 Comparison between page weight by Apriori, Hit Count, and star rating (by user)

Pages Pwt (Apriori) Pwt (Hit Count) Star rating (by user)

Page P1 3.34 1.34 3

Page P2 2.6 2.2 2

0

1

2

3

4

Page 1 Page 2

L
ik

in
gs

(i

n
te

rm
s

of
 P

ag
e

w
ei

gh
t

&

st
ar

 r
at

in
g)

Proposed

Hit Count

Star Rating (By
User)

Fig. 5 Comparison between page weight by Apriori and by Hit Count

Improving Search Results Based on Users’ Browsing Behavior … 81

3. Deepika, Dixit, A.: Web crawler design issues: a review. Int. J. Multidiscip. res. Acad.
(IJMRA) (2012)

4. Ying, X.: The research on user modeling for internet personalized Services. Nat. Univ. Def.
Technol. (2003)

5. Morita, M., Shinoda Y.: Information filtering based on user behavior analysis and best match
text retrieval. In: Proceedings of the 17th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR), pp. 272–281 (1994)

6. Miller, B.N., Ried, J.T., Konstan, J.A.: GroupLens: applying collaborative filtering to usenet
news. Commun. ACM, March (1997)

7. Claypool, M., Le, P., Waseda, M., Brown, D.: Implicit interest indicators. In: Proceedings 6th
International Conference on Intelligent User Interfaces, ACM Press (2001)

8. Weinreich, H., Obendort, H., Herder, E., Mayer, M.: Off the beaten tracks: exploring three
aspects of web navigation. In: WWW Conference 2006, ACM Press (2006)

9. Goecks, J. Shavlik, J.: Learning users’ interests by unobtrusively observing their normal
behavior. In Proceedings 5th International Conference on Intelligent User Interfaces,
pp. 129–132 (2000)

10. Xing, K., Zhang, B., Zhou, B., Liu, Y.: Behavior based user extraction algorithm. In: IEEE
International Conferences on Internet of Things, and Cyber, Physical and Social Computing
(2011)

11. Tan, S.H., Chen, M., Yang, G.H.: User Behavior Mining on Large Scale Web Log Data. In:
Apperceiving Computing and Intelligence Analysis (ICACIA) International Conference
(2010)

12. Yang, Q., Hao, H., Neng, X: The research on user interest model based on quantization
browsing behavior. In: The 7th International Conference on Computer Science and Education
(ICCSE) Melbourne, Australia (2012)

13. Agrawal, R., Faloutsos, C., Swami, A.: Efficient similarity search in sequence databases. In:
Proceedings of the Fourth International Conference on Foundations of Data Organization and
Algorithms, Chicago, October (1993)

14. Kim, H., Chan, K.: Implicit indicators for interesting web pages. In: Web Information System
and Technologies WEBIST 2005 (2005)

82 Deepika et al.

Performance Efficiency Assessment
for Software Systems

Amandeep Kaur, P. S. Grover and Ashutosh Dixit

Abstract Software quality is a complex term. Various researchers have various
different views for defining it. One common point in all is that quality is required
and is indispensable. It should not only be able to meet the customer requirements
but should exceed it. Customers not only mean the external customers but the
internal ones too. Performance efficiency characteristic is one of the vital software
quality characteristics. If we improve the performance efficiency, then it will def-
initely have a positive effect on the software quality. In this paper, we have iden-
tified various sub-characteristics that can affect the performance efficiency of the
software and proposed a performance efficiency model. We assessed the perfor-
mance efficiency of the software systems by using one of the multi-criteria decision
making (MCDM) methods, namely analytical hierarchy process (AHP). Results
suggest that the proposed model is consistent and may be used for comparing the
software system.

Keywords Software quality � Software quality models � Performance efficiency
Optimized code � Analytical hierarchy process

A. Kaur (&)
GTBIT, New Delhi, India
e-mail: amandeep.gtbit@gmail.com

P. S. Grover
KIIT Group of Colleges, Gurgaon, India
e-mail: drpsgrover@gmail.com

A. Dixit
YMCA University of Science and Technology, Faridabad, India
e-mail: dixit_ashutosh@rediffmail.com

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_8

83

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_8&domain=pdf

1 Introduction

As per IEEE Std 610.12-1990, IEEE Standard Glossary of Software Engineering
Terminology, “Software Quality” is defined as the degree to which a system,
component, or process meets specified requirements and customer needs [1]. This
definition was modified in IEEE Std 1633-2008, IEEE Recommended Practice on
Software Reliability. It defines “Software Quality” as

1. The totality of features and characteristics of a software product that bears on its
ability to satisfy given needs, such as conforming to specifications.

2. The degree to which software possesses a desired combination of attributes.
3. The degree to which a customer or user perceives that software meets his or her

composite expectations.
4. The composite characteristics of software that determine the degree to which the

software in use will meet the expectations of the customer.

This definition of software quality not only covers the objective but also the
subjective part of quality. But one thought-provoking question that arises is that
“Who is the Customer?”. First thing that comes to the mind is the external cus-
tomers. That is, those people who are external to the organization and who receive
our product (software) and services. Another category of customers who are often
forgotten or taken for granted are the internal customers. These are the people in the
next phase of the software development life cycle and who are the internal cus-
tomers of our work done.

Quality cannot be added later into the system as an afterthought. Rather, it needs
to be built into the system from the very beginning. For building the software
quality, we need to build an efficient system in terms of not only time and resources
but efficiency of the code should also be a parameter. That is, we need to consider
the expectations of not only external customers but also our internal customers.

2 Related Work

Inadequate quality of the software systems may lead to many problems like difficult
maintenance, low performance efficiency, low reusability or frequent program
change. From time to time, several researchers have proposed various software
quality models in order to measure the quality of the software products. Latest
software quality standard is ISO/IEC 25010 which was prepared by ISO/IEC JTCI
after technically revising the earlier software quality model ISO/IEC 9126-1:2001.
Various amendments were made in order to address the weaknesses of ISO/IEC
9126 in the newly revised quality model division ISO/IEC 2501n [2].

As per this latest International Standard ISO 25010, software product quality
model enumerates eight characteristics. These characteristics are further subdivided

84 A. Kaur et al.

into sub-characteristics which can be measured internally or externally [3]. Briefly,
these quality characteristics are as follows:

1. Functional suitability: “the degree to which the software product provides
functions that meet stated and implied needs when the software is used under
specified conditions.” It consists of functional completeness, functional cor-
rectness, and functional appropriateness as its sub-characteristics.

2. Reliability: “the degree to which software product performs specified functions
under specified conditions for a specified period of time.” It consists of maturity,
fault-tolerance, recoverability, and availability as its sub-characteristics.

3. Usability: “the degree to which software product can be used by specified users
to achieve specified goals with effectiveness, efficiency, and satisfaction in a
specified context of use.” It consists of appropriateness, recognizability, learn-
ability, operability, user error protection, user interface aesthetics, and accessi-
bility as its sub-characteristics.

4. Security: “degree to which a software product protects information and data so
that persons or other products or systems have the degree of data access
appropriate to their types and levels of authorization.” It consists of confiden-
tiality, integrity, non-repudiation, accountability, and authenticity as its
sub-characteristics.

5. Performance Efficiency: “the capability of the software product to provide
appropriate performance, relative to the amount of resources used, under stated
conditions.” It consists of time behavior, resource utilization, and capacity as its
sub-characteristics.

6. Maintainability: “the degree of effectiveness and efficiency with which a soft-
ware product can be modified by the intended modifiers.” It consists of mod-
ularity, reusability, analyzability, modifiability, and testability as its
sub-characteristics.

7. Portability: “the degree of effectiveness and efficiency with which a software
product can be transferred from one environment to another.” It consists of
adaptability, installability, and replaceability as its sub-characteristics.

8. Compatibility: “the degree to which the software product can exchange infor-
mation with other software products and/or perform its required functions, while
sharing the same hardware or software environment.” It consists of co-existence
and interoperability as its sub-characteristics [2].

One major amendment done by ISO 25010 software quality model is in relation
to efficiency characteristic of the software quality.

Earlier in ISO 9126 model, efficiency characteristic was one of the six software
quality characteristics and was defined as “the capability of the software product to
provide appropriate performance, relative to the amount of resources used, under
stated conditions.” It consists of time behavior, resource utilization, and efficiency
compliance as its sub-characteristics.

Later in ISO 25010 model, efficiency was renamed to performance efficiency
and capacity sub-characteristic was added to it along with time behavior and

Performance Efficiency Assessment for Software Systems 85

resource utilization. Capacity as per ISO 25010 is the degree to which the maxi-
mum limits of a product or system parameter meets requirements.

3 Proposed Performance Efficiency Model

Performance is an indication of the responsiveness of a system to execute specified
actions in given time interval. Performance efficiency can be defined as the per-
formance relative to the amount of resources used under the stated conditions.

David Parnas quoted “For much of my life, I have been a software voyeur,
peeking furtively at other people’s dirty code. Occasionally, I find a real jewel, a
well- structured program written in a consistent style, free of kludges, developed so
that each component is simple and organized, and designed so that the product is
easy to change.”

Writing an optimized code has a positive effect on performance in terms of less
response time, increased throughput, reduced memory consumption, and reduced
network bandwidth consumptions.

According to Pressman “More books have been written about programming
(coding) and the principle and concepts that guide it than about any other topic in
the software process.”

Sommerville also identified efficiency as one of the four generalized attributes
which is not concerned with what a program does, but how well the program does it
[4].

3.1 Performance Efficiency in Quality Models

Various software quality models have been reviewed in order to understand the
perspective for taking the performance efficiency as a characteristic for defining the
quality.

In 1977, Jim McCall identified three main perspectives (product revision, pro-
duct transition, and product operations) for characterizing the quality attributes of a
software product and considered efficiency as one of the quality factors under
product operations. It defined one or more quality criteria for each quality factor, in
order to assess the overall quality of software product. According to McCall’s
quality model, the quality criteria for efficiency are execution efficiency and storage
efficiency [5].

In 1978, Barry Boehm proposed a software quality model with seven quality
attributes according to the three fundamental uses (As-is utility, maintainability, and
portability) of the software which may affect the quality of the software product. It
identified efficiency as a quality attribute under As-is utility. According to Boehm’s
quality model, the factors that affect efficiency are accountability, device efficiency,
and accessibility [3].

86 A. Kaur et al.

In 1993, ISO 9126 software quality model was proposed and composed of six
quality characteristics in relation to the internal and external quality. It identified
efficiency as one of the quality characteristics and specifies three quality attributes
that affect the efficiency of software are time behavior, resource behavior, and
efficiency compliance [6].

In 2009, Kumar extended the ISO/IEC 9126 quality model and proposed
aspect-oriented programming-based software quality model, viz aspect-oriented
software quality (AOSQUAMO) model. It added code reducibility as a
sub-characteristic under efficiency quality characteristic. Hence, the quality attri-
butes that affect the efficiency according to AOSQUAMO model are time behavior,
resource behavior, and code reducibility [7].

In 2011, although in ISO/IEC 25010 the problems related to efficiency were
addressed, but still one area is untouched [2].

Use of solid coding techniques and good programming practices while devel-
oping high-quality optimized code plays an important role in software quality and
performance. Code written while consistently applying well coding standard and
proper coding techniques is not only an optimized code in terms of time, effort, cost
(resources) but also is easier to comprehend and maintain. Hence, it will serve the
expectation of our internal customers. The missing point in ISO 25010 model is that
while estimating efficiency of software, no weightage is given to how efficiently
code is written and how much optimized it is.

In this section, we propose a performance efficiency model as performance
efficiency is a vital part for improving the software quality (Fig. 1).

4 Assessment of the Proposed Performance Efficiency
Model

Analytic hierarchy process (AHP) method is one of the multi-criteria decision
making (MCDM) methods that was developed by Dr. Thomas L. Saaty so as to
make decisions in an organized and structured manner. Hence, AHP method works
as a decision support tool that is used to solve various complex decision problems
[8, 9].

Fig. 1 Proposed performance efficiency model

Performance Efficiency Assessment for Software Systems 87

AHP is a four-step process:

Step 1: Define the problem and state the goal or objective.
Step 2: Define the criteria/factors that affect the goal or objective, and structure
them into levels and sub-levels (Fig. 2).
Step 3: Use paired comparisons of each criterion with respect to each other, and
find the matrix with calculated weights, eigenvectors, and consistency measures
(Table 1).

Saaty advised consistency index (CI) and consistency ratio (CR) as two mea-
sures for verifying the consistency of the comparison matrix [10].

CI Consistency Indexð Þ ¼ kmax� nð Þ
n� 1

and CR Consistency Ratioð Þ ¼ CI
RI

As per Saaty, for n � 5, i.e., for 3 � 3 matrix if Consistency Ratio is greater
than 0.05: for 4 � 4 matrix if Consistency Ratio is greater than 0.08 and for all
larger matrixes If Consistency Ratio is greater than 0.1 than our set of judgment is
inconsistent.

Step 4: Synthesize the rank of alternatives until final choice is made.

Fig. 2 Problem
decomposition

Table 1 Comparison matrix C1 C2 *** *** *** Cn

C1 w1/w1 w1/w2 … … … w1/wn

C2 w2/w1 w2/w2 … … … w2/wn

*** … … … … … …

*** … … … … … …

*** … … … … … …

Cn wn/w1 wn/w1 wn/wn

where C1, C2 … Cn denote the criteria and w1, w2 … wn their
calculated weights

88 A. Kaur et al.

5 Case Study

Step 1: Structuring the hierarchy for performance efficiency (Fig. 3).
Step 2: Calculating weights for each criterion.

Next step after decomposing the performing efficiency characteristics into a
hierarchy of sub-characteristics, namely time behavior, optimized code, resource
utilization, and capacity is to calculate the weights corresponding to these
sub-characteristics. For this, a survey was conducted in which ten participants from
software industry background participated [11, 12]. A survey form composed of six
comparisons was provided to each participant. It constituted of pairwise comparison
of the sub-characteristics. The participants were asked to assign a relative value in
the range of 1–9 for every pairwise comparison. After collecting the same input
from the participants, the mean value is calculated and shown in Fig. 4.

Step 3: Eigenvector and eigenvalue calculation.

Eigenvector is calculated by squaring the comparison matrix and then calcu-
lating the row sum which is then normalized.

I Iteration

The iteration is repeated till the time difference between the current eigenvector
and previous eigenvector becomes negligible (Figs. 5 and 6).

Fig. 3 Hierarchy for performance efficiency

Fig. 4 Comparison matrix with calculated weights

Performance Efficiency Assessment for Software Systems 89

II Iteration

See Figs. 7 and 8.

III Iteration

After the third iteration, the difference between the current and the previous
eigenvector is approaching to zero. Hence, these values can be accepted as our final
values (Figs. 9 and 10).

Fig. 6 Row sum matrix and
eigenvector

Fig. 7 Squaring the A2 matrix

Fig. 5 Squaring the A matrix

Fig. 8 Row sum matrix, eigenvector, and difference

Fig. 9 Squaring the A4 matrix

90 A. Kaur et al.

Step 4: Consistency measures calculation

According to Saaty, matrix A is consistent matrix if kmax � n and consistency
ratio (CR), the ratio of consistency index to random matrix, is significantly small,
i.e., less than 10%. If not, then there is still scope of improvement in consistency.
As for our case study, an equal to four hence to be consistent kmax should be greater
than or equal to four (Fig. 11).

Consistency index ðCI) ¼ (kmax n)
n� 1

¼ (4:2125� 4)
4� 1

¼ 0:0708

And

Consistency Ratio ðCR) ¼ CI
RI

¼ 0:070833
0:9

¼ 0:0787

Now as kmax is 4.2125 which is greater than 4 and consistency ratio is 0.0787
which is less than 0.1, hence matrix A is consistent.

6 Conclusion and Future Scope

In this paper, we assess the performance efficiency characteristic of the software
systems. Firstly, we identified the criterion/factors that could affect the performance
efficiency and structured them into levels and proposed the performance efficiency
model. After this, in order to assess the proposed model, we conducted the survey.
Ten participants from software industry background participated in the survey. We
applied AHP method for insuring the consistency of the proposed performance
efficiency model. Result showed that the chosen quality sub-characteristics are
consistent and the relative ranking of the quality attributes for performance efficacy

Fig. 10 Row sum matrix,
eigenvector, and difference

Fig. 11 Eigenvalues, k, and
kmax

Performance Efficiency Assessment for Software Systems 91

is in the order of time behavior, optimized code, resource utilization, and then
capacity. In future, this model may be used for comparing the performance effi-
ciency of different software systems.

References

1. Pressman, R.S.: Software Engineering: A Practitioner’s Approach, 5th edn. Mc Graw Hill,
New York (2005)

2. ISO/IEC 2010; ISO/IEC 25010: Systems & software engineering—system and software
quality requirements and evaluation (SQuaRE)—system and software quality models (2010)

3. Boehm, B., et al.: Quantitative evaluation of software quality. In: IEEE International
Conference on Software Engineering, pp. 592–605 (1976)

4. Sommerville, Ian (2004). Software Engineering (Seventh ed.). Pearson. pp. 12–13. ISBN 0–
321-21026-3

5. McCall, J.A., Richards, P.K., Walters, G.F.: Factors in Software Quality, vols. I, II, and III.
US Rome Air Development Center Reports. US Department of Commerce; USA (1977)

6. ISO 2001; ISO/IEC 9126-1: Software Engineering—Product Quality—Part 1: Quality Model.
International Organisation for Standardisation, Geneva Switzerland (2001)

7. Kumar, A.: Analysis & design of matrices for aspect oriented systems. Ph.D. Thesis, Thapar
University (2010)

8. Saaty, T.L.: Analytic Hierarchy Process. Mc Graw Hill (1980)
9. Kaur, A., Grover, P.S., Dixit, A.: Quantitative evaluation of proposed maintainability model

using AHP method. In: 2nd International Conference on computing for sustainable global
development, pp. 8.159–8.163 (2015)

10. Kaur, A., Grover, P.S., Dixit, A.: An improved model to estimate quality of the software
product. YMCAUST Int. J. Res. 1(2), 01–06 (2013)

11. Kaur, A., Grover, P.S., Dixit, A.: Analysis of quality attribute and metrics of various software
development methodologies. In: International Conference on Advancements in Computer
Applications and Software Engineering, pp. 05–10 (2012)

12. Grady, R., et al.: Software Metrics: Establishing a Company-Wide Program, p. 159. Prentice
Hall (1987)

92 A. Kaur et al.

Impact of Programming Languages
on Energy Consumption for Sorting
Algorithms

Tej Bahadur Chandra, Pushpak Verma and Anuj Kumar Dwivedi

Abstract In today’s scenario, this world is moving rapidly toward the global
warming. Various experiments are performed, to concentrate more on the energy
efficiency. One way to achieve this is by implementing the sorting algorithms in
such a programming language which consumes least amount of energy which is our
current area of research in this paper. In this study, our main goal is to find such a
programming language which consumes least amount of energy and contributes to
green computing. In our experiment, we implemented different sorting algorithms
in different programming languages in order to find the most power-efficient
language.

Keywords Programming language � Sorting algorithms � Power consumption
Joulemeter

1 Introduction

Energy efficiency is a critical aspect in battery-operated devices like sensor nodes,
Internet of things (IoT) devices, and many other devices engaged in space research
operations. As data size grows in battery-operated devices, so does the power
consumption, and it ultimately reduces the device’s uptime. Not only is the hard-
ware blamed for energy consumption, however, the software is equally responsible
for same. We, on this paper, focus on the energy consumption of three standard
programming languages, Visual Basic 6.0, Java, and C#.Net by implementing four

T. B. Chandra (&) � P. Verma
School of Information Technology, MATS University, Raipur, Chhattisgarh, India
e-mail: tejbahadur1990@gmail.com

P. Verma
e-mail: verma.pushpak@gmail.com

A. K. Dwivedi
Govt. Vijay Bhushan Singh Deo Girls Degree College, Jashpur 496331, Chhattisgarh, India
e-mail: Anuj.ku.dwivedi@gmail.com

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_9

93

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_9&domain=pdf

sorting algorithms, bubble sort, insertion sort, selection sort, and Quick sort. We
simulate the energy consumption of sorting algorithms when implemented in dif-
ferent programming languages in order to come up with energy-efficient
programming.

Our interest area in this paper is to promote green computing by coming up with
such programming languages and sorting algorithms into limelight which require
least energy.

2 Related Works

The IT industries have been focusing on energy efficiency of hardware and evolved
their devices for better efficiency [1]. Green computing is the
environmental-friendly use of available computing resources without sacrificing
performance [2]. A very few researches have been performed in this field due to
constrained hardware resources and extensive cost. Researchers had concluded that
the most time and energy-efficient sorting algorithm is Quick sort [3]. It is also
found that the energy consumption greatly depends on time and space complexity
of the algorithms [4]. A programmer can develop application-level energy-efficient
solutions if he uses energy-efficient language [5]. Algorithms also have great impact
on the energy consumption and ultimately on green computing [6]. Several
researches have already been performed on hardware and concluded that home
server hardware together with well-tuned, parallelized sorting algorithms can sort
bulk amounts of data and is noticeably more energy-efficient than older systems [7].
Bunse, C. concluded that, different software has the different energy payload; also,
his studies show that different algorithms have different energy requirements [8].

3 Role of Programming Language in Energy Efficiency

A lot of researches had already been performed to gain the energy efficiency which
mostly focuses on algorithm designs, hardware architectures (VLSI designs),
operating systems, and compilers, etc., but investigations show that the program-
ming language design and good programming practice may be one perspective to
reduce power consumption [9]. Distinct programming languages handle the same
situation differently and require discrete number of operations to accomplish the
same task. In general, compiled language is typical to code but runs faster; on the
other hand, interpreted languages are easier to program but take longer to run. There
is some difference in the energy consumption between different loops (such as For
Loop andWhile Loop) when the number of operations needed in increasing the loop
counter variables and checking termination conditions are significant between the
two alternatives. Energy consumption by an application can be further cut down by
using ‘vector operations’ in a vector register where possible. Code execution time

94 T. B. Chandra et al.

can also be reduced by taking advantage of multiple threads and cores, resulting in
increased idle time that in turn leads to power conservation. The inefficient codes
force the CPU to draw more from the processor and consume more electricity [10].
Performance-to-power relationship can be improved by loop unrolling. Use of
idle-power-friendly programming language implementations and libraries may
improve the power saving [11]. Based on several researches, researchers estimated
that between 30 and 50% energy savings can be achieved by selecting
energy-aware software solutions and even more could be achieved by proper
combination of both software and hardware [12].

4 Sorting Algorithms

It is a very efficient way which helps in performing important task of putting the
element list in order. For example, sorting will arrange the elements in ascending or
descending [13]. When it comes to battery-operated devices, use of energy-efficient
sorting is a prime requirement. The text follows contains the sorting algorithms that
were used in our research. Table 1 shows the complexities of various sorting
algorithms.

4.1 Bubble Sort

It is a simple algorithm, which begins at the start of the data, bubbles the largest
element to the end of the data set on each pass, and in next cycle it repeats the same
with one reduced cycle [14].

Table 1 Sorting algorithm complexity

Sorting name Average case Worst case Best case Stability

Bubble O(n^2) O(n^2) O(n) Yes

Insertion O(n^2) O(n^2) O(n) Yes

Quick sort O(nlog n) O(n^2) O(n log(n)) No

Selection O(n^2) O(n^2) O(n^2) No

Impact of Programming Languages on Energy Consumption … 95

4.2 Selection Sort

It is also referred as comparison sort, is best known for its simplicity, and has pretty
good performance over complicated algorithms. It is not as good as insertion sort
which works in a similar way as the selection sort [15].

4.3 Insertion Sort

Insertion sort separates the data list into two parts: one part which is in sorted
section and the other which is in the unsorted section. When a new element is
inserted, all the existing elements are required to be shifted to right [16].

4.4 Quick Sort

The Quick sort is an advanced form of Quick sort. Some modifications are made in
the internal loops of Quick sort to make it very well optimized and short. It is also
abbreviated as Median Hybrid Quick sort.

5 Programming Language

It is a specially designed instruction set that is used to represent algorithms in
machines’ understandable format and control its behavior. There exist many dif-
ferent programming languages that suit to different environments. Being a pro-
grammer, it is very essential to focus on the latest programming trends that
contribute to power conservation. Following are some computer languages that are
used in our study [17].

5.1 Java [18]

Java is a platform-independent, open-source programming language mainly
designed to operate on the distributed environment of the Internet. It uses all the
best parts of C and C++ by introducing many new things in it. Microsoft version of
Java is known as visual J++.

96 T. B. Chandra et al.

5.2 Visual Basic 6.0

It provides a complete GUI-based high-level integrated programming environment
for developing Windows application. It is based on event-driven programming and
is derived from language called BASIC. Visual Basic provides easy application
development by using structured programming approach and can be easily
debugged and modified [19].

5.3 C#.Net

C# is a modern language which is type-safe and completely object-oriented pro-
gramming language from Microsoft. C# embodies both the power of C++ and
comfort of Visual Basic. C# uses C++ as base while incorporating features that
make it familiar to Java programmers. C# is designed to work on Microsoft plat-
form [20].

6 Experimental Setup

Here in this study, we used a simulator tool named “Joulemeter” [21] from
Microsoft Corporation to simulate power consumption of various sorting algo-
rithms implemented in three languages: Java, C#.NET, and Visual Basic 6.0.

We used Intel Core i5 and 4th generation CPU with Windows 8.1 (Version
6.3.9600) operating system to perform our experiment. Figure 1 shows the model
for experimental setup.

Joulemeter Installed and
Simulated on the system

Integer & Double Data List

Power Consumption ReportAll Sorting Algorithms
Programs Installed

OS: Windows 8.1 Version 6.3.9600
Processor: Intel Core i5, 4th Gen.

Fig. 1 Experimental setup for calculation of power consumption

Impact of Programming Languages on Energy Consumption … 97

– Joulemeter

It is a software tool which was introduced by Microsoft. It is used to view the
overall power consumption by the whole system and also the key components
which are to be monitored. The user has to calibrate the Joulemeter in order to
estimate the power consumption of an idle system. After the calibration, the total
power consumption can be monitored and obtained by adding up values (in watt)
for duration of interest. It can also be converted to other units like kW h/W h by
using the following conversion:

1 kWh ¼ 1000 W� 1 h
¼ 1000 W � 3600 s
¼ 3; 600; 000 J:

i:e: Watt ¼ J/s:
Thus; 1 Joule ¼ 1=3; 600; 000 kWh: 3½ �

– Sorting Algorithm Programs

In our study, we implemented four sorting algorithms in three different lan-
guages: Visual Basic 6.0, C#.Net, and Java. All these sorting programs provide
sorting on both integer and double data sets with sixty thousand elements.

7 Experimental Run

In our experiment, we have compared the four sorting algorithms implemented in
three different languages on the basis of their power consumption over sixty
thousand integer as well as double data elements. We performed four test runs on
same data set and took their average to find average power consumption per second
on each programming language for all sorting algorithms discussed here. To verify
which programming language requires lesser amount of energy for which sorting
algorithm, we plotted a bar graph.

8 Experimental Result and Analysis

After comparing the above sorting algorithms implemented in different program-
ming languages over sixty thousand data for both integer and double data types.
The values are calculated on the basis of power consumption represented in Watt
per second.

98 T. B. Chandra et al.

In Fig. 2a, b, we noted that different programming languages consume different
amount of power for each sorting algorithm and also the power consumption
depends on selection of sorting algorithms.

In Fig. 3a, b, we observed that in case of sorting the elements of double data type
also, Java is most power efficient and Visual Basic consumes more power.

Fig. 2 a Average power consumed for integer data set (in W/s). b Average power consumed for
integer data set (in W/s)

Impact of Programming Languages on Energy Consumption … 99

9 Conclusion

Our research enlightens on such measurements and calculations, which results in
selection of such programming language which consumes least power and leads to
increased uptime of battery-operated devices and ultimately results in green com-
puting. In this paper, we mainly focus on the power efficiency of programming
languages used to implement sorting algorithms. Based on our experiment, we
found that Java is most power-efficient programming language while Visual Basic
6.0 consumes more power than the other two languages which are used in our
study. Also, sorting the data elements of type double consumes more power than
that of data set of integer type.

Fig. 3 a Average power consumed for double data set (in W/s). b Average power consumed for
double data set (in W/s)

100 T. B. Chandra et al.

References

1. Raza, K., Patle, V.K., Arya, S.: A review on green computing for eco-friendly and sustainable
IT. J. Comput. Intell. Electron. Syst. 1(1), 3–16 (2012)

2. Saha, B: Green computing. Int. J. Comput. Trends Technol. 14(2) (2014)
3. Chandra, T.B., Patle, V.K., Kumar, S.: New horizon of energy efficiency in sorting

algorithms: green computing. In: Proceedings of National Conference on Recent Trends in
Green Computing. School of Studies in Computer in Computer Science & IT, Pt. Ravishankar
Shukla University, Raipur, India, 24–26 Oct 2013

4. Bunse, C., Höpfner, H., Roychoudhury, S., Mansour, E.: Choosing the “best” sorting
algorithm for optimal energy consumption. In: ICSOFT (2), pp. 199–206 (2009)

5. Liu, Y. D.: Energy-aware programming in pervasive computing. In: NSF Workshop on
Pervasive Computing at Scale (PeCS) (2011)

6. Narain, B., Kumar, S.: Impact of algorithms on green computing. Int. J. Comput. Appl.
(2013). ISSN No. 0975-8887

7. Beckmann, A., Meyer, U., Sanders, P., Singler, J.: Energy-efficient sorting using solid state
disks. In: Proceedings of IEEE Green Computing Conference (2010)

8. Bunse, C., Hopfner, H., Mansour, E., Roychoudhury, S.: Exploring the energy consumption
of data sorting algorithms in embedded and mobile environments. In: Tenth International
Conference on Mobile Data Management: Systems, Services and Middleware, 2009.
MDM’09, pp. 600–607. IEEE (2009)

9. Liu, Y.D.: Energy-aware programming in pervasive computing. In: NSF Workshop on
Pervasive Computing at Scale (PeCS) (2011)

10. Francis, K., Richardson, P.: Green maturity model for virtualization. Archit. J. 18(1), 9–15
(2009)

11. Energy-Efficient Software Guidelines. https://software.intel.com/en-us/articles/partner-
energy-efficient-software-guidelines

12. Code green: Energy-efficient programming to curb computers power use, http://www.
washington.edu/news/2011/05/31/code-green-energy-efficient-programming-to-curb-
computers-power-use/

13. Sareen, P.: Comparison of sorting algorithms (on the basis of average case). Int. J. Adv. Res.
Comput. Sci. Softw. Eng. 3(3), 522–532 (2013)

14. Research Paper on Sorting Algorithms. http://www.digifii.com/name-jariya-phongsai-class-
mac-286-data-structure_22946/. Accessed on 26 Oct 2009

15. Nagpal, H.: Hit sort: a new generic sorting algorithm
16. Khairullah, M.: Enhancing worst sorting algorithms. Int. J. Adv. Sci. Technol. 56 (2013)
17. Singh, T.: New software development methodology for student of Java programming

language. Int. J. Comput. Commun. Eng. 2(2), 194–196 (2013)
18. Gosling, J.: The Java language specification. Addison-Wesley Professional (2000)
19. Hassan, A.B., Abolarin, M.S., Jimoh, O.H.: The application of Visual Basic computer

programming language to simulate numerical iterations. Leonardo J. Sci. 5(9), 125–136
(2006)

20. Benton, N., Cardelli, L., Fournet, C.: Modern concurrency abstractions for C#. ACM Trans.
Program. Lang. Syst. (TOPLAS) 26(5), 769–804 (2004)

21. Joulemeter. http://research.microsoft.com/en-us/downloads/fe9e10c5-5c5b-450c-a674-
daf55565f794

Impact of Programming Languages on Energy Consumption … 101

https://software.intel.com/en-us/articles/partner-energy-efficient-software-guidelines
https://software.intel.com/en-us/articles/partner-energy-efficient-software-guidelines
http://www.washington.edu/news/2011/05/31/code-green-energy-efficient-programming-to-curb-computers-power-use/
http://www.washington.edu/news/2011/05/31/code-green-energy-efficient-programming-to-curb-computers-power-use/
http://www.washington.edu/news/2011/05/31/code-green-energy-efficient-programming-to-curb-computers-power-use/
http://www.digifii.com/name-jariya-phongsai-class-mac-286-data-structure_22946/
http://www.digifii.com/name-jariya-phongsai-class-mac-286-data-structure_22946/
http://research.microsoft.com/en-us/downloads/fe9e10c5-5c5b-450c-a674-daf55565f794
http://research.microsoft.com/en-us/downloads/fe9e10c5-5c5b-450c-a674-daf55565f794

Crawling Social Web with Cluster
Coverage Sampling

Atul Srivastava, Anuradha and Dimple Juneja Gupta

Abstract Social network can be viewed as a huge container of nodes and rela-
tionship edges between the nodes. Covering every node of social network in the
analysis process faces practical inabilities due to gigantic size of social network.
Solution to this is to take a sample by collecting few nodes and relationship status
of huge network. This sample can be considered as a representative of complete
network, and analysis is carried out on this sample. Resemblance of results derived
by analysis with reality majorly depends on the extent up to which a sample
resembles with its actual network. Sampling, hence, appears to be one of the major
challenges for social network analysis. Most of the social networks are scale-free
networks and can be seen having overlapping clusters. This paper develops a robust
social Web crawler that uses a sampling algorithm which considers clustered view
of social graph. Sample will be a good representative of the network if it has similar
clustered view as actual graph.

Keywords Social graph � Sampling � Social web crawler � OSNs

1 Introduction

Social networks provide an open platform to analyse and understand the behaviour
of users, their interaction patterns and propagation of information. An explosive
growth of Online Social Networks (OSNs) has assured possibility of prominent

A. Srivastava (&) � Anuradha
Department of Computer Engineering, Y.M.C.A. University of Science and Technology,
Faridabad, India
e-mail: atul.nd2@gmail.com

Anuradha
e-mail: anuangra@yahoo.com

D. J. Gupta
Department of Computer Science and Engineering, D. I. M. T, Ambala, India
e-mail: dimplejunejagupta@gmail.com

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_10

103

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_10&domain=pdf

outcomes of social network analysis. Facebook, a social networking site, crossed
1.3 billion monthly active users and Twitter, also called SMS of Internet,
284 million monthly active users putting 500 million tweets per day [1, 2].

Although OSNs provide easily available data for analysis, the size of OSNs is
gigantic that hinders researchers to understand the structure of graphs. Huge size of
OSNs brings two major challenges: first, it is difficult to collect complete graph.
Reasons being, the administrator of the network is not willing to give data or the
users on the site have different restrictions on visibility of their data. Time required
to acquire complete graph makes it impossible. Secondly, if somehow the data of
complete graph is gathered at one place, it requires expensive and well-equipped
computers and large overhead in terms of time, storage and computation [3].
Alternatively, sampling of graph suggests a prominent and inexpensive solution.
A subset of graph is considered representative of the original graph. A good
sampling cuts short the scale of the original graph, yet maintains its characteristics.

While sampling can, in principle, draw accurate results in comparatively very
small observations, the accuracy majorly depends on the representativeness of the
sample. Recent work in the area of sampling focuses on resemblance of statistical
properties a sample holds. Sampling algorithms are based on the facts that nodes are
connected to one another via some relationship in social graph. Hence, a sample of
social graph can be collected easily by crawling. Earlier efforts in sampling were
made with the techniques like BFS/Snowball-type approaches [4]. These algorithms
are fed with seed node (starting point), and then connected nodes are explored
recursively. But these techniques came up with a well-known anomaly called
biasing. Sample collected through these techniques may be biased towards
high-degree nodes due to which the sample exhibits poor statistical properties [5].
Recent work focuses on unbiased sampling techniques mostly based on random
walks [6–11] in the social network.

2 Related Work

Several sampling algorithms have been proposed for social graph sampling. These
algorithms can be put into two categories: first, which focuses on nodes and second,
which focuses on edges. In algorithms in former category, the sampling
decision-making process is executed on nodes, e.g., BFS [4, 12], MHRW [4, 9, 10]
and UGDSG [13]. The latter class of algorithms acquires edges in sample and nodes
as the end points of the edges are selected, e.g., FS [13].

BFS has been used widely to study user behaviour of OSNs [4] and analysing
topological characteristics of social graphs [14]. But BFS suffers from biasing [4,
14]. It visits nodes with higher degree more frequently. Due to which BFS obtains
higher local clustering coefficient than the original ones [paper].

MHRW is based on Markov Chain Monte Carlo (MCMC) model that selects
random nodes’ samples according to degree probability distribution of the nodes [9,
10]. MHRW designs a proposal function based on probability distribution which is

104 A. Srivastava et al.

randomly accepted or rejected. Probabilities are modified during transition by
which sample achieves convergence at probability distribution. Selection of next
node from the current node is made on the basis of another independent event, i.e.,
random number generation, p, from uniform distribution U(0, 1). If p < probability
ratio of current node and proposed node, then proposed node is selected as next
node. So if degree of the proposed node is small (small chance to be selected), there
will be a high probability that the proposal will be accepted. MHRW was originally
designed for undirected graphs. Another method USDSG [] is developed that is
based on MHRW and works with directed graphs. USDSG considers all the uni-
directional edges as bidirectional edges. To apply UGDSG, a directed graph is
changed to symmetric graph. This methodology is also used in Frontier Sampling
(FS) [1]. FS is an edge sampling algorithm based on Random Walk. FS selects one
node v as seed node from set of seed nodes S, with the probability defined as:

P vð Þ ¼ kvP
u2S kv

An edge (v, w) is selected uniformly from node v’s outgoing edges, and v will be
replaced with w in the set of seed nodes. Edge (v, w) is added to the sample. FS
does not perform well if clustering coefficient is small [13].

Corlette et al. [15] proposed event-driven sampling that focuses active part of the
network. Event-driven sampling is similar to the process used by various search
engines to refresh their repository by including new Web pages and eliminating
expired ones. However, multigraph sampling [16] considers social network dis-
tributed in clusters. The sampling is carried out on multiple relations among users in
social network.

3 Problem Description

Generally, social Web crawling has distinct steps; crawler starts with seed node,
explores and collects its directly connected nodes, selects few of explored nodes as
sample for further exploration, and this process is repeated. After fetching any
information of one node completely, crawler needs next node to crawl and that is
selected by sampling algorithm.

Almost every social network is scale-free and can be seen as unevenly formed;
i.e., the network is denser at some places and sparse at others. These denser portions
can be considered as clusters or people/actors in these denser portions exhibit some
kind of similar characteristics, e.g., same workplace, same hometown, same study
place or same country or same continent. Hence, social network is not uniform but
it is collection of overlapping clusters (few clusters can be stand-alone also).

We consider a social graph G ¼ V ;Eð Þ, where V is collection of nodes and E is
collection of edges representing associations among nodes. Due to scale-free per-
sona of social graphs, we can consider the graph has several overlapping clusters

Crawling Social Web with Cluster Coverage Sampling 105

CL1;CL2;CL3. . .CLk such that G ¼ S
1� i� k CLi. There is a possibility that few of

these clusters may not be overlapping of completely disjoints. Here, clusters can be
said former form of communities or less-restricted communities. There is a greater
possibility that each community that is excavated from sample of the graph defi-
nitely has a parent cluster. Let graph Gs ¼ Vs;Esð Þ be the sample of graph
G. Co1;Co2;Co3. . .:Com be the communities detected in Gs, such that
Gs ¼

S
1� j�m Coj. Then, following predicate is always true

8j½Coj ! 9i½CLi is parent of Coj�;where; 1� j�m and 1� i� k

Here, we propose an algorithm that focuses on the above-stated fact with
assumption that there is no disjoint cluster in the social graph. The sample reflects
almost exact overlapping clustered view of original network only if the above
predicate holds.

4 Cluster Coverage Sampling (CCS) Methodology

A crawling framework proposed in this paper uses adaptive sampling which aims at
potential limitations or challenges evident in several existing sampling algorithms
which will be discussed along with the explanation of proposed framework. The
crawling framework is briefly shown in Fig. 1. The framework assumes that the
social graph is undirected, crawler is interested in only publically available infor-
mation, and graph is well connected (graph can be disconnected if it has stand-alone
clusters which will be ignored by the crawler). Social Web is apparently huge and is
in the form of overlapping clusters which is demonstrated by intersecting bubbles in
the social Web cloud.

Social Web is clustered which overlaps by having common actors. The crawler
while digging into the network and collecting sample must ensure that it touches
every cluster. Crawler starts with a seed node and proceeds further by hoping to its
friends (directly connected nodes). In Fig. 1, social Web is shown having clusters
which overlap. Crawler can start at any cluster to which seed node belongs.

Crawling proceeds further with following algorithms:

Algorithm 1
Crawler Snð Þ

Input: Seed_Node Sn.
Start

Perform login with credentials of Sn;
Initialize Sample_Date_Set and Sparse_Data_Set;
Cn½ � Sn;
Crawling Cn½ �ð Þ;

End

106 A. Srivastava et al.

As shown in Algorithm 1, crawler enters in the network via seed node Sn. Most
of the OSNs require username and password, provided to the crawler to login. Two
data sets are maintained by the framework. First, Sparse_Data_Set that contains
every node explored by the crawler and identified links between them. Out of many
explored nodes, few are selected for further exploration. Connectivity among nodes
is known for only those nodes which are visited by the crawler. Thus,
Sparse_Data_Set contains many nodes among which the relationship status is not
known and hence considered unrelated nodes (there may exist connectivity in real
network). Therefore, another data set, Sample_Data_Set is also maintained that
contains only those nodes among which the relationship is known. Cn½ � is the list of
nodes, which will be crawled by the crawler next.

Algorithm 2
Crawling Cn½ �ð Þ

Input: Nodes_To_Crawl_List Cn½ �.
Start

Update (Sample_Date_Set, Cn½ �, Sparse_Data_Set);

Fig. 1 Crawler framework based on CCS

Crawling Social Web with Cluster Coverage Sampling 107

While Cn½ �!emptyð Þ
{

Pn Select_&_Remove Cn½ �ð Þ; //Pn is current node being
processed.

E_Nodes Find_Friends Pnð Þ;
Competing_Nodes Find_Redundency(E_Nodes, id_Table);
Update (Sparse_Data_Set, Competing_Nodes); //nodes explored

and their connections are saved.
Cond_Table Fetch_Attr_Values Pnð Þ;

}
EXP Expression_Generator(Cond_Table);
Cn½ � Sample_Nodes (Competing_Nodes, EXP);
Crawling Cn½ �ð Þ; //Recursive call.

End

Algorithm 2 exploits actual crawling process. List of sampled nodes Cn½ � is fed
to crawling process. Nodes contained in Cn½ � are visited by the crawler one by one
so these nodes are stored in Sample_Data_Set. E_Nodes contains direct friends of
the node currently being visited by the crawler. E_Nodes may contain redundancy
if sampled nodes have common friends or sampled nodes have friends which have
already been sampled. id_Table contains every node sampled by the crawler so far.
Such redundancies are eliminated in Competing_Nodes. Sparse_Data_Set is
updated with every new node their connections explored through current node
being processed, Pn.

Cond_Table contains attributes of user (node) and their possible values which
are refined along with the crawling. For instance, suppose Facebook is being
crawled. Any user in the network has attributes like ‘Lives in’, ‘Work’, ‘Study
Places’. Possible values of such attributes have huge range as it depends on cluster
of the gigantic social graph which the crawler is in. As the crawling process
proceeds and crawler visits nodes, attributes (if found any new) and their possible
values (if found any new) are updated. Selection expression EXP is generated on
attributes and their values in Cond_Table. Nodes which satisfy EXP are sampled
next.

EXP is a Boolean expression. It contains several attributes with their one pos-
sible value ANDed or ORed, thereby forming a nested Boolean expression. One
combination of attribute and its value is considered as an ‘Atom’ (Atomk can be
defined as ATTRk ¼¼ Valuej ATTRkð Þ� �

; 1� j� total num of possible values
of ATTRk). AND and OR (Between_Atom_Op_List) are binary operators, used
between atoms, and NOT (On_Atom_Op_List) is unary operator used on any Atom
optionally. Values of attributes Between_Atom_Operator and On_Atom_Operator
are selected randomly. Algorithm 3 is used to generate (first time) and update EXP.

108 A. Srivastava et al.

Algorithm 3
Expression_Generator(Cond_Table)
Start

k = 0;
while(k < Num_Of_Attributes(Cond_Table))
{

Atomk Select Value ATTRkð Þ;
On Atom Opk Select Op On Atom Op Listð Þ;
Between Atom Opk Select Op Between Atom Op Listð Þ;
Update(EXP, On Atom Opk , Atomk, Between Atom Opk);

}
Return EXP;

End

Algorithm 4 represents how next nodes are selected from Competing_Nodes.
Number of nodes to be sampled is limited by a threshold value which is decided by
the size of Competing_Nodes. Nodes are selected randomly from
Competing_Nodes but only those nodes which satisfy EXP are sampled. If the
algorithm fails to find desired number of nodes which satisfy EXP, it completes
requirement by randomly selecting remaining number of nodes from
Competing_Nodes.

Algorithm 4
Sample_Nodes (Competing_Nodes, EXP)
Start-

s_count = 0; r_count = 0; //To count number of sampled nodes and
randomly selected nodes

while(s_count < Threshold(Competing_Nodes) & r_count < SizeOf
(Competing_Nodes))

{
r_count ++;
Pn RandomSelect_&_Remove (Competing_Nodes); //Pn is

current node being processed
If(Pn holds EXP)
{

s_count ++;
add(Node_List, Pn);

Crawling Social Web with Cluster Coverage Sampling 109

}
}
while(s_count < Threshold(Competing_Nodes))
{

Add(Node_List, RandomSelect_&_Remove(Competing_Nodes));
s_count ++;

}
Append(id_Table, Node_List);
Return Node_List;

End

Let us assume that the crawler has sampled nodes of cluster 2 of social graph
shown in Fig. 1. Nodes lying in the area of cluster 2 that is not overlapped by any
other cluster have similar characteristics and probably can satisfy the current
EXP. If EXP is altered at few Atoms, there might be a possibility that nodes lying in
the area of cluster 2 overlapped by any other cluster (1, 3, 4, 7 or 8). By sampling
nodes lying in overlapping area of clusters, crawler migrates from one cluster to
other cluster. Hence, the sample will have nodes covering almost every cluster of
the social network rather than having nodes of just few adjacent clusters.

5 Experiments and Result Analysis

The proposed model in this paper has been tested on a synthetic social network
created on local server. The synthetic network has identical characteristics as any
other social network in terms of power law of degree distribution, clustering
coefficient, etc. The synthetic social network is created using logs of e-mail con-
versations of students and faculty members in YMCA UST, Faridabad, India. The
nodes in synthetic social network exhibit some inherent attributes such as place of
birth, place of work, education, political orientation, birthday. These attributes of
each user and their values are used for creating Boolean expression EXP. The
description of the data set is shown in Table 1.

The attributes of each node in the network are created anonymously. The
algorithm is executed on the network in two phases. In first phase, the algorithm is
executed for some time and paused. First sample is gathered that is called sample 1.
Then algorithm is resumed again and another sample is gathered as sample 2.
Table 2 shows statistics of sample 1 and sample 2.

Table 1 Data set statistics Data set statistics

Nodes 1539

Edges 20,234

110 A. Srivastava et al.

The collected samples are analysed against degree distribution and compared
with the original network to ensure if the samples collected represent the original
network. Degrees of nodes in the networks are normalized by the median of the
degrees; therefore, complete degree distribution falls in range of 0–2.

Normalized Degreej ¼
Degreej

M

where M is median of degrees in the network and 1� j� total number of nodes.
Degree distribution is shown in Fig. 2. X-axis denotes degree distribution and y-

axis denotes fraction of nodes. The graph clearly represents that the original net-
work as well as the two samples follows power law of degree distribution that is
first evidence of correctness of the algorithm.

Figure 3 shows original network. Figures 4 and 5 represent sample 1 and sample 2,
respectively. It is clearly evident the original network is clustered which overlaps.
Similar overlapping clustered view can be seen in sample 1 and sample 2.

In Fig. 6, the Normalized Mean Square Error (NMSE) for a node degree has
been taken as a metric to demonstrate the behaviour of the sampling algorithms on a
bar graph. For the estimation of node degree distribution, we need to first calculate
the NMSE of node degree k, using the below-given formula [13]

Fig. 2 Degree distribution of samples and original network

Table 2 Samples statistics Sample Nodes Edges

Sample 1 257 1332

Sample 2 513 4442

Crawling Social Web with Cluster Coverage Sampling 111

NMSE kð Þ ¼

ffi
E ĥk � hk

� �2
� �s

hk

where ĥk is the estimation of hk based on the sampled graph. NMSE kð Þ metric is
defined in order to show the difference between the degree distribution of the

Fig. 3 Original social network

Fig. 4 Sample 1

112 A. Srivastava et al.

sampled graphs and the original one. The lower the NMSE value of an algorithm,
the better is the performance of the sampling algorithm in the social network graph.

Above analysis clearly shows that algorithm proposed in this paper tends to
migrate from one cluster to another. Therefore, we had taken two clusters at dif-
ferent intervals to make sure if the algorithm is leaving one cluster and getting into
other. It also implies that the representation extent of cluster is directly proportional
to the time for which the algorithm is run if the size of the graph is finite. But
evidently, we have gigantic online social network whose size is near to infinite. In
that case, we can set a threshold on the number of nodes crawled. When sufficient
number of nodes and their relationship edges has been gathered, the algorithm can
be stopped. The collected sample will have clustered view similar to the original
network, thereby giving maximum possible representation of the network.

Fig. 5 Sample 2

Fig. 6 NMSE comparison graph

Crawling Social Web with Cluster Coverage Sampling 113

6 Conclusion and Future Scope

This paper presents a crawler that works on cluster coverage sampling algorithm for
selection of next node. The algorithm benefits clustered structure of most of the
social networks. The algorithm is tested on a synthetic network that has clustered
structure like many social networks and scale-free distribution of nodes. The results
are promising. As future prospect, the algorithm is to be tested on some online
social network like Facebook. Social graph dynamism is also a burning area in the
field of social network analysis. Cluster coverage sampling algorithm also shows
promising possibilities of its application in tackling social graph dynamism.

References

1. http://www.socialbakers.com/statistics/facebook/
2. http://www.socialbakers.com/statistics/twitter/
3. Srivastava, A., Anuradha, Gupta, D.J.: Social network analysis: hardly easy. IEEE Int. Conf.

Reliab. Optim. Inf. Technol. 6, 128–135 (2014)
4. Gjoka, M., Kurant, M., Butts, C.T., Markopoulou, A.: Practical recommendations on crawling

online social networks. IEEE J. Sel. Areas Commun. 29(9), 1872–1892 (2011)
5. Lee, S.H., Kim, P.-J., Jeong, H.: Statistical properties of sampled networks. Phy. Rev. E 73,

016102 (2006)
6. Gjoka, M., Kurant, M., Butts, C.T., Markopoulou, A.: Walking in facebook: a case study of

unbiased sampling of OSNs. In: Proceedings of IEEE INFOCOM (2010)
7. Ribeiro, B., Towsley, D.: Estimating and sampling graphs with multidimensional random

walks. In: Proceedings of ACM IMC (2010)
8. Cho, M., Lee, J., Lee, K.M.: Reweighted random walks for graph matching. ECCV 2010,

Part V, LNCS 6315, pp. 492–505 (2010)
9. Lee, C.H., Xu, X., Eun, D.Y.: Beyond random walk and metropolis-hastings samplers: why

you should not backtrack for unbiased graph sampling. ACM (2013)
10. Li, R.H., Yu, J.X., Qin, L., Mao, R., Jin, T.: On random walk based graph sampling.

IEEE ICDE Conference (2015)
11. Ribeiro, B., Wang, P., Murai, F., Towsley, D.: Sampling directed graphs with random walks.

In: Ribeiro, B., Wang, P., Murai, F., Towsley, D. (eds.) UMass CMPSCI Technical
Report UMCS (2011)

12. Wilson, C., Boe, B., Sala, A., Puttaswamy, K.P.N., Zhao, B.Y.: User interactions in social
networks and their implications. In: Proceedings of ACM EuroSys (2009)

13. Wang, T., Chen, Y., Zhang, Z., Xu, T., Jin, L., Hui, P., Deng, B., Li, X.: Understanding graph
sampling algorithms for social network analysis. In: 2011 31st International Conference on
Distributed Computing Systems Workshops (ICDCSW), pp. 123, 128, 20–24 June 2011

14. Ahn, Y., Han, S., Kwak, H., Moon, S., Jeong, H.: Analysis of topological characteristics of
huge online social networking services. In: Proceedings of WWW (2007)

15. Corlette, D., Shipman, F.: Capturing on-line social network link dynamics using event-driven
sampling. In: IEEE International Conference on Computational Science and Engineering
(2009)

16. Gjoka, M., Butts, C.T., Kurant, M., Markopoulou, A.: Multigraph sampling of online social
networks. IEEE J. Sel. Areas Commun. 29(9), 1893–1905 (2011)

114 A. Srivastava et al.

http://www.socialbakers.com/statistics/facebook/
http://www.socialbakers.com/statistics/twitter/

Efficient Management of Web Data
by Applying Web Mining Pre-processing
Methodologies

Jaswinder Kaur and Kanwal Garg

Abstract Web usage mining is defined as the application of data mining tech-
niques to extract interesting usage patterns from Web data. Web data provides the
information about Web user’s behavior. Pre-processing of Web data is an essential
process in Web usage mining. This is used to convert the raw data into processed
data which is necessary for Web mining task. In this research paper, author pro-
posed the effective Pre-processing methodology which involves field extraction,
significant attributes selection, data selection, and data cleaning. The efficient
proposed methodology improves the quality of Web data by managing missing
values, noise, inconsistency, and incompleteness which is usually found attached
with data. Moreover, obtained results of pre-processing will be further used in
frequent pattern discovery.

Keywords Web log file � Web server � Web usage mining � Pre-processing
Data cleaning

1 Introduction

Data mining is a process of discovering interesting and useful pattern from raw
data, also known as knowledge discovery in databases. This technology analyzes
the data and helps to extract useful information. It is used in various areas such as
retail industry, intrusion detection, and financial data analysis. Generally, Web
mining is used in World Wide Web that continues to grow both in the huge volume
of traffic and the size and complexity of Web sites, where it is difficult to identify
the relevant information present in the Web [1]. In the proposed model, researcher

J. Kaur (&) � K. Garg
Department of Computer Science & Applications, Kurukshetra University,
Kurukshetra, Haryana, India
e-mail: kaurjazz84@gmail.com

K. Garg
e-mail: gargkanwal@yahoo.com

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_11

115

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_11&domain=pdf

used Microsoft Excel and SQL Developer software to perform the pre-processing
process. Through this process, raw Web log data is transformed to processed data.
The main objective of this model is to remove irrelevant data and improve data
quality.

Author has organized this paper in following sections: In Sect. 2, researcher
reviewed the pre-processing related work. Section 3 gives a description of the
proposed model of pre-processing technique. Section 4 shows experimental results
of the effective proposed system. Section 5 concludes the discussion.

2 Literature Review

Web usage mining provides useful information in abundance which makes this area
interesting for research organizations and researchers in academics. Rathod [2]
focuses on the pre-processing tasks that are data extraction and data filtering which
were performed on combined log file; in this, one of the popular platform ASP.NET
2010 is used to implement the above tasks. Priyanka and Ujwala [3] proposed two
algorithms for field extraction and data cleansing; latter is used in removing the
errors and inconsistencies and improves the quality of data. Ramya et al. [4]
explored the concept of merging of log files from different servers and is used in
data pre-processing process, after which, data cleaning removes request concerning
non-analyzed resources. Prince Mary et al. [5] clarified that people are more
interested in analyzing log files which can offer more useful insight into Web site
usage, thus data cleaning process is used in data analysis and mining. Data cleaning
involved the following steps such as robot cleaning, elimination of failed status
code, elimination of graphics records, videos. Chintan and Kirit [6] proposed novel
technique that was more effective as compared to existing techniques, data
extraction, data storage, and data cleaning technique included in data pre-processing
to convert the Web log file in database. During data cleaning, only noise is removed
from log file. Ramesh et al. [7] stated that data pre-processing is a significant
process of Terror Tracking using Web Usage Mining (TTUM), which was effec-
tively done by field extraction, data cleaning, and data storage tasks. Pooja et al. [8]
explored the records which are not suitable for identifying the user’s navigational
behavior, such as access from the Web robot, e.g., Googlebot, access for images
and access for audio files. These records are removed during data cleaning module.

3 Data Pre-processing on Web Log File

Web usage mining is a significant part of Web mining. It is used to extract user’s
access patterns from Web data over WWW in order to understand the user’s
browsing behavior, and it helps in building of Web-based applications. Web usage
mining depends on different source of data such as Web Server Side, Proxy Side,

116 J. Kaur and K. Garg

and Client Side. Generally, raw Web log contains irrelevant, noisy, incomplete,
duplicate, and missing data. Data pre-processing is the most important phase of
Web usage mining in order to clean Web log data for discovering patterns.

The log files are stored in the Web server and may suffer from various data
anomalies such data may be irrelevant, inconsistent, and noisy in nature. In the
present research work, the researcher removes the said anomalies by following data
pre-processing steps as shown in Fig. 1.

3.1 Field Extraction

The server’s log entry contains different fields like IP address, date and time,
request and user agent that should be separated out before applying data cleaning
process. Field extraction is the process to separate the fields from single entry of the
log file.

Fig. 1 Proposed system for pre-processing

Efficient Management of Web Data by Applying Web Mining … 117

Researcher performed field extraction process on log file using Microsoft Excel
which is explained as follows.

Open Microsoft Excel, using open option select the log file, use characters such
as space or comma as delimiter to separate each field. These separated attributes are
stored in different heading according to the input Web log file such as IP address,
username, date, request, status code, referrer. Now, this file can be saved with .xls
extension, this concludes the field extraction process.

3.2 Significant Attributes Selection

Researcher had analyzed the Apache Web server log file and obtained the important
attributes of Web log files which were IP address, date, time, request line, or URI
stem, status code, referrer, and user agent [9]. These attributes provide valuable
information about visitor’s behavior, traffic pattern, navigation paths, Web browser,
errors, etc.

Using the above analysis, only significant attributes which were identified are
selected for further processing.

3.3 Data Selection

When a Web server receives a HTTP Request, it returns back a HTTP Response
code to the client. These HTTP status codes are three-digit numbers such as 1xx,
2xx, 3xx. All these records with the status code below 200 and above 299 are not
used for analysis.

Filtering of records is done in Microsoft Excel sheet which was obtained after
significant attributes, by keeping records with status code >=200 and status code
<=299.

3.4 Data Cleaning

Data cleaning is the fourth step of pre-processing to remove irrelevant records.
Following three kinds of records are required to be removed.

a. Records having duplication.
b. Records with missing value.
c. Access for images, audio files, video files, and css files; they are identified by

checking extensions in request field such as .gif, .mp3, .avi. In addition to this,
the records with irrelevant information created by spiders, crawlers, Web robots
like Googlebot, can be found in request or user agent field.

118 J. Kaur and K. Garg

3.4.1 Remove Duplicacy

In Microsoft Excel file, select range of the cell then select Data tab and perform
‘Remove Duplicates’ in Data Tools Group to remove the duplicate records.

3.4.2 Missing Value

Find out the blank cell with the help of Find and Replace dialog box. Remove these
tuples.

3.4.3 Noise

After removing missing value, obtained Microsoft Excel file is imported in
Oracle SQL Developer remove noise from log file.

Proposed procedure:

Step 1: Create new database connection in Oracle SQL Developer.
Step 2: Under this new database connection, using SQL command create a database
table.
Step 3: Import obtained Microsoft Excel file after removing missing value into this
newly created database table.
Step 4: Using SQL command, remove noise present in the request field and user
agent field such as images, audio files, video files, page style files, and robots.
Completion of this will create a database table having processed data.
Step 5: Save and close the SQL Developer.

After performing all the above steps, processed data will be used for further
analysis and interpretation of frequent pattern.

4 Results and Interpretation

In this section, effectiveness and efficiency of the proposed model mentioned above
are proved, and researcher has applied several experiments with the Web log file.
Apache Web log file is used and is from April 08, 2012, to July 08, 2012, with a file
size of 958 kB at the beginning.

Researcher performed experiments on a 2.40 GHz Intel Core processor,
4.00 GB RAM, 64-bit Windows 2007 Home Premium Operating System, SQL
Developer 4.1.0, and Java SE Development Kit JDK 8. Oracle SQL Developer
4.1.0 is a free Oracle database integrated development environment (IDE). SQL
Developer provides GUI to help the DBA and database; user saves time while
performing the database task. Oracle database 10g, 11g, 12c is supported by SQL
Developer and requires Java-supported platforms (OS) for operation.

Efficient Management of Web Data by Applying Web Mining … 119

Figure 2 shows Web log file imported in Microsoft Excel. Each field is separated
by using space character as delimiter. As explained different attributes are stored in
separate headings. Initial Web log file entries were 6000.

According to the analysis, only six attributes are significant out of nine attributes
those are IP address, date and time, request, status code, referrer, and user agent
attributes. These six attributes help in identifying the user navigational behavior and
are of at most importance for Web usage mining. Outcomes from Web usage
mining are implemented to enhance the characteristics of Web-based applications.
After performing the data selection step, only 3674 rows were left.

First step in data cleaning removes duplicate records from log file. Thus, 11
duplicates values were identified and 3663 unique values remain. During second
step, the fields with missing values were deleted as this does not provide any useful
information for Web mining. Total 23 cells containing missing value in this log file
were deleted. 3640 tuples are left on completion of this step.

In addition to above, researcher found noise in log file such as .gif, robot, and
Web spider, example of which is ‘GET/icons/compressed.gif.’

In Fig. 3, Microsoft Excel file is imported in SQL Developer to perform further
action; SQL Query is executed to remove noise from Web log file such as .gif, .rm, .
mp4, robot, and spider. Result obtained contains only 2458 rows.

Finally, pre-processed Web log file is obtained. Furthermore, this processed file
will be used in analysis and interpretation of frequent pattern of log file.

According to Table 1, this clearly indicates that the application of pre-processing
on the Web log file helps in removing irrelevant data and improves the quality of
data.

Fig. 2 Imported Web log file in Microsoft Excel

120 J. Kaur and K. Garg

5 Conclusion

In the present research work, the researcher has taken raw Web log file for its
empirical analysis and concludes that data pre-processing is an essential step to
remove anomalies; lies in data for the purpose. The researcher has proposed data
pre-processing methodology which improved the quality of data. After applying the
said methodology, the procedure proves that only six attributes are significant out of
nine available attributes and similarly out of 6000 original instances only 2458 are
meaningful. The resultant itemset surely will be useful for the discovery of frequent
pattern.

References

1. Jayalatchumy, D., Thambidurai, P.: Web mining research issue and future directions—a
survey. IOSR J. Comput. Eng. (IOSR-JCE) 14, 20–27 (2013)

2. Rathod, D.B.: Customizable web log mining from web server log. Int. J. Eng. Dev. Res.
(IJEDR), 96–100 (2011)

3. Priyanka, P., Ujwala, P.: Preprocessing of web server log file for web mining. World J. Sci.
Technol. 2, 14–18 (2012)

4. Ramya, C., Shreedhara, K.S., Kavitha, G.: Preprocessing: a prerequisite for discovering
patterns in web usage mining process. Int. J. Inf. Electron. Eng. 3, 196–199 (2013)

Fig. 3 Processed database table after pre-processing

Table 1 Resultant data set size after data pre-processing

Raw Web log
file

Significant attribute
selection

Data
selection

Data
cleaning

Result

No. of tuples 6000 NA 3674 2458 2458

No. of
attributes

09 06 NA NA 06

Efficient Management of Web Data by Applying Web Mining … 121

5. Prince Mary, S., Baburaj, E.: An efficient approach to perform pre-processing.
Indian J. Comput. Sci. Eng. (IJCSE) 4, 404–410 (2013)

6. Chintan, H.M., Kirit, R.R.: An efficient technique for web log preprocessing using microsoft
excel. Int. J. Comput. Appl. 90, 25–28 (2014)

7. Ramesh, Y., Mayuri, D., Tejali, N., Trupti, K.: Unauthorized terror attack tracking using web
usage mining. Int. J. Comput. Sci. Inf. Technol. (IJCSIT) 5, 1210–1212 (2014)

8. Pooja, K., Jyotsna, N.: Data preprocessing: a milestone of web usage mining. Int. J. Eng. Sci.
Innovative Technol. (IJESIT) 4 (2015)

9. Kaur, J., Garg, K.: Analyzing the different attributes of web log files to have an effective web
mining. Int. J. Adv. Sci. Tech. Res. 3, 127–134 (2015)

122 J. Kaur and K. Garg

A Soft Computing Approach to Identify
Multiple Paths in a Network

Shalini Aggarwal, Pardeep Kumar and Shuchita Upadhyaya

Abstract This paper presents a modified technique to generate the probability table
(routing table) for the selection of path for an ant in AntNet algorithm. This paper
also uses the concept of probe ant along with clone ant. The probe ant identifies the
multiple paths which can be stored at destination. Overall purpose of this paper is to
get an insight into the ant-based algorithms and identifying multiple optimal paths.

Keywords AntNet � ACO � ABC � Probe ant � Clone ant � Link goodness

1 Introduction

Routing is an important aspect in computer networks as it controls the traffic
between one node to another depending on various parameters. Routing is the basic
process for determining the performance of a network in terms of quality and
quantity. For performing routing, routers are required. The basic purpose of routers
is to update the routing table via an algorithm. Most of the traditional routing
algorithms transmit the data by minimizing the cost function which may be dis-
tance, delay, jitter, etc. They find the shortest path which may become congested
over time and/or may become expensive later on. Sometimes, a path which is better
on the basis of more than one metric such as distance, delay, bandwidth, jitter is
required. Then sometimes, there is a trade-off between those metrics. Therefore, it is
necessary to get an optimal solution based on more than one metric.

S. Aggarwal (&) � P. Kumar � S. Upadhyaya
Department of Computer Science and Applications, Kurukshetra University,
Kurukshetra, India
e-mail: shaliniagg07@gmail.com

P. Kumar
e-mail: mittalkuk@gmail.com

S. Upadhyaya
e-mail: shuchita_bhasin@yahoo.com

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_12

123

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_12&domain=pdf

For getting such optimal solution, nowadays a number of studies are going on to
identify routing alternatives using heuristic techniques. One of such techniques is
Ant Colony Optimization (ACO). In ant-based routing, the artificial ants, while
moving from source to destination, deposit some artificial pheromone in terms of
numeric value and store some information in the form of routing table at the
intermediate nodes. This information is used by newly generated ants for accepting
or rejecting a path. Another important aspect of routing is increasing need of
multi-path routing. The main reason for the need of multi-path routing is the data
transmission in Internet. When a video or audio streaming is required, very high
bandwidth is required. With single path routing, it might not be possible, hence
arise the need of multi-path routing. When multi-path routing is combined with
multi-metric routing, it becomes a perfect candidate for use of heuristic techniques.
Therefore, ACO can prove to be a very effective technique for this type of routing.

2 Related Work

According to [1], an ant not only finds the shortest path for searching its food
source but also conveys this shortest path to other ants. In the ACO, this intelli-
gence of ants is intermixed with various optimization techniques to identify opti-
mum routes in a computer network. In this paper, various mechanisms to solve the
problem to identify optimum path using ACO were explained and compared with
different traditional algorithms of routing.

This paper throws light on a critical review in four different groups for applying
ACO in routing, which are (i) Ant-Based Control (ABC) Systems, (ii) AntNet
System, (iii) Ant System with other variations, and (iv) Multiple Ant Colony
Systems.

Schoonderwoerd et al. [2, 3] applied ACO to routing in telecommunication
networks based on circuit-switching. The algorithm was termed as Ant-Based
Control (ABC). In the ABC algorithm, all the nodes in a network follow various
features [2] such as capacity, probability of being a destination, pheromone table,
and routing table, on the basis of which criteria for choosing next node is decided.
But the main problem of Schoonderwoerd et al. approach is that it can only be
applied when the network is symmetric in nature.

For packet-switched networks routing, Caro and Dorigo’s [4–6] designed
AntNet Routing. Although it is inspired by ACO meta-heuristic, yet have additional
changes as desired for a network.

In [7], a new version of AntNet was generated and was named as AntNet-FA or
AntNet-CO. In this version, backward ants performed a number of tasks such as,
(a) estimating the trip time using various metrics, (b) updating local traffic statistics,
and (c) determining and depositing the pheromone for estimating the probability of
reinforcement. As backward ants are using real-time statistics for determining the
amount of reinforcement, the information for routing was found to be more correct

124 S. Aggarwal et al.

and up-to-date. The results of this version are found to be better than
AntNet algorithm which are proved by experiment performed in this paper.

Oida and Sekido [8] proposed Agent-based Routing system (ARS) in which they
suggested for supporting various types of bandwidth requirement, the forward ants
move in a network, which is based on bandwidth constrained. The probability of
selection of outgoing link depends on routing table as well as bandwidth
constraints.

Although adaption has been proved to be one of the better techniques for
identifying the optimum paths, but one of the major problems that can be attached
with AntNet is stagnation [9]. Due to this problem, local optimum solution might be
obtained and diversity of the population might also be lost. In this paper, the
concept of multiple ant colonies was applied to the packet-switched networks.
Upon comparison with AntNet algorithm with evaporation, it was found that by
using multiple ant colonies throughput can be increased. No improvement was
found in delay. But the basic problem was the need of large resources for multiple
ant colonies.

3 AntNet Routing Algorithm

In an AntNet algorithm [1], an ant explores the path and updates the routing and
probability tables, so that other ants can use the tables to know which path is better
than others. Some statistical traffic model is also used to help the ants to identify the
better path.

A routing table is maintained which is a local database. The routing table
contains information about all possible destinations along with probabilities to
reach these destinations via each of the neighbours of the node.

Another data structure that each node carries is termed as local traffic statistics.
This structure follows the traffic fluctuations as viewed by the local node.

The AntNet algorithm as proposed by Di Caro and Dorigo is dependent on two
types of ants named as forward ant and backward ant. The forward ant collects the
information regarding the network, while the backward ant uses this information to
update the routing tables on their path.

Working of the algorithm is given as follows:

(i) Initially to generate a routing table, a forward ant is initiated from every node
towards the destination node after a fixed time interval to find low-cost path
to that node and load status of the network is also explored, and accordingly,
priorities of the paths are set. These priorities are used by the forward ants to
transmit the data.

(ii) The forward ants store the information about their paths in a stack.
(iii) At each node, decision is made to select a node for reaching towards des-

tination with the help of probabilities using pheromone values. The nodes

A Soft Computing Approach to Identify Multiple Paths in a Network 125

which are unvisited are only considered for selection or from all the
neighbours in case all of them have found to be previously visited.

(iv) When the forward ant moves towards destination, if at any time any cycle is
detected, all the nodes in that cycle’s path are popped. Also all of the
information about them is also deleted.

(v) When the forward ant reaches its destination, then it generates another ant
named as backward ant. It transfers all of its memory to it and dies.

(vi) The backward ant as its name indicates will travel to the opposite direction
that of forward ant. The backward ant uses stack formed by forward ant and
pops the element in the stack to reach the source node. The backward ant use
high-priority queues to reach source so that information can be quickly
transmitted to the source node. The information collected by forward ant is
stored in the routing table by the backward ants.

(vii) The backward ant basically updates the two data structure, i.e. routing table
and the local traffic model for all the node in its path for all entries starting
from the destination node.

Limitations of AntNet Routing
AntNet has performed very well as compared to the traditional routing algorithms
as visible from various experiments performed by different researchers. But still
there are problems associated with the algorithm. This algorithm takes into account
the probabilities to identify the path for destination. As more and more pheromone
will be deposited on that path, most or all of the traffic will travel through the same
path, and hence making that path congested. Also as probability of that path is very
high, other path may never be explored, and hence, the diversity of solution may be
lost. This basically is the problem of stagnation [1]. Although some work has been
done on stagnation, but still a lot of effort is required to make this algorithm better.

4 Proposed AntNet Modifications

In this work, a new type of forward ant named as probe ant [10] along with its clone
is proposed. The probe ants are generated to replace the forward ants from source
node to explore the path. The probe and clone probe ants are generated depending
on the paths selected at a particular node. Only a little additional overhead is
required for generating clone ants. The multiple paths are selected according to the
probabilities in the pheromone table and a threshold value of bandwidth. These
probe and clone ants [11] will reach to the destination according to proposed
strategy. The advantage will be that instead of one optimal path more than one
optimal path are identified. The paths will be identified only with the help of a
single ant, other ants being the clone ant. The major advantage of this technique is
saving of the overhead taken by number of forward ants in AntNet algorithm.

126 S. Aggarwal et al.

The proposed modifications are briefly explained below:
The structure of probe ant is defined as follows:

S D I Aid PT MB TD HC

Structure of Probe Ant

Here,

S Source node,
D Destination node,
I Intermediate node from which ant has arrived recently,
Aid Ant Identification Number
PT Path Traversed so far
MB Minimum Bandwidth of the path traversed
TD Total Delay of the path
HC Hop Count

In this work, a threshold bandwidth is considered. Any link having bandwidth
less than that threshold value is discarded. The remaining links are considered for
the purpose of identifying the multiple paths. The process works in a similar
manner to AntNet algorithm, except that queue length is taken into account for
selecting a path in case of AntNet algorithm, while in the proposed work, two
metrics, i.e. delay and bandwidth, are considered for selecting a path. Another
important difference in this case is that instead of selecting a single path, multiple
(quite similar) paths are being selected for data transmission. Various paths are
identified at the destination and stored in an array and from these paths some
optimal paths are chosen using some intelligent approach. For selecting the paths
based on two metrics, a new metric named as link goodness is proposed and is
denoted by GL. The value of GL can be calculated with the help of following
formula:

GL ¼ a
DL þ 1

þ 1� að Þ � BL

where

DL Delay of a Link,
BL Bandwidth of a Link

a is a constant having value between 0 and 1, i.e. 0 < a < 1.
At each node, two tables named as pheromone table and routing table will be

maintained. The pheromone table will be initialized with equal pheromone value
distributed to each link from a node except the discarded link. The second table is
the routing table consisting of probabilities for selecting the next node in the path.
The structure of both the tables is as shown below:

A Soft Computing Approach to Identify Multiple Paths in a Network 127

Destination nodes

Neighbouring nodes s11 s12 … s1n
s21 s22 … s2n
.
.
.

.

.

.

.

.

.

.

.

.

sl1 sl2 … sln
Pheromone table

In the above table, snd is the pheromone value of link from node n when des-
tination node is d. The snd value lies in the interval [0, 1] and sums up to 1 (as the
probabilities can not exceed 1) along each destination column:

X

n2Nk
snd ¼ 1; d 2 1;N½ �;Nk ¼ neighbours kð Þf g

The routing table can be represented as follows:

Destination node

Neighbour nodes 1 2 … n

1 p11 … p1n
2 p21 p22 …

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

l pl1 … pln
Routing table

In the above table, blank cells indicate that particular neighbour node is dis-
carded for a particular destination.

Psd = probability of creating a probe ant at node s with node d as destination.
At each node i, a probe ant computes probability Pijd of selecting neighbour node

j for moving towards its destination d by adding sijd * Gij to the pheromone value
sijd and then subtracting this value dividing equally from each of the remaining
valid neighbours. This process must be followed for each of the neighbours in
parallel.

Using these probabilities, multiple paths from source to destination can be
identified, and the information about paths will be stored in probe ants. At desti-
nation, paths can be stored in an array of paths. From this array, some of the better
paths on the basis of various metrics can be found using some intelligent approach.

128 S. Aggarwal et al.

5 Conclusion

In this paper, a modified approach for generating the probabilities for routing table
has been proposed. In this approach, the probabilities have been calculated of the
basis on two metrics instead of a single metric. Another important feature that has
been used in this paper is the use of a threshold value of bandwidth. Only one ant
will be generated at the source, while other ants will be the clone ants with a little
additional overhead. With the help of this technique, multiple paths can be gen-
erated which can be stored at destination via probe ants. These paths can be further
refined using some intelligent approach, and multiple paths for a better transmission
of data packets can be identified.

References

1. Sim, K.M., Sun, W.H.: Ant colony optimization for routing and load-balancing: survey and
new directions. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 33(5) (2003)

2. Schoonderwoerd, R., Holland, O., Bruten, J., Rothkrantz, L.: Ants for Load Balancing in
Telecommunication Networks. Hewlett Packard Lab., Bristol, U.K., Tech., pp. 96–35 (1996)

3. Schoonderwoerd, R., Holland, O., Bruten, J., Rothkrantz, L.: Ant-based load balancing in
telecommunications networks. Adapt. Behav. 5(2) (1996)

4. Caro, G.D., Dorigo, M.: AntNet: distributed stigmergetic control for communications
networks. J. Artif. Intell. Res. 9, 317–365 (1998)

5. Caro, G.D., Dorigo, M.: Ant colonies for adaptive routing in packet-switched communica-
tions networks. In: Proceedings of 5th International Conference on Parallel Problem Solving
from Nature, Amsterdam, The Netherlands, 27–30 Sept 1998

6. Caro, G.D., Dorigo, M.: An adaptive multi-agent routing algorithm inspired by ants behavior.
In: Proceedings of 5th Annual Australasian Conference on Parallel Real-Time Systems,
pp. 261–272 (1998)

7. Caro, G.D., Dorigo, M.: Two ant colony algorithms for best-effort routing in datagram
networks. In: Proceedings of 10th IASTED International Conference on Parallel Distributed
Computing Systems, pp. 541–546 (1998)

8. Oida, K., Sekido, M.: An agent-based routing system for QoS guarantees. In: IEEE
International Conference on Systems, Man, and Cybernetics, pp. 833–838 (1999)

9. Tekiner, F., Ghassemlooy, Z., Al-khayatt, S.: Investigation of Antnet Routing Algorithm by
Employing Multiple Ant Colonies for Packet Switched Networks to Overcome the Stagnation
Problem

10. Devi, G., Upadhyaya S.: Path identification in multipath routing. JGRCS J. Glob. Res.
Comput. Sci. 2(9) (2011)

11. Richa, S., Upadhyaya, S.: Identifying multiple optimal paths in Antnet routing algorithm with
negligible overhead. Int. J. Comput. Sci. Netw. Secur. 9(2), 314–320 (2009)

A Soft Computing Approach to Identify Multiple Paths in a Network 129

An Efficient Focused Web Crawling
Approach

Kompal Aggarwal

Abstract The amount of data and its dynamicity makes it very difficult to crawl the
World Wide Web (WWW) completely. It is a challenge in front of researchers to
crawl only the relevant pages from this huge Web. Thus, a focused crawler resolves
this issue of relevancy to a certain level, by focusing on Web pages for some given
topic or a set of topics. This paper deals with survey of various focused crawling
techniques which are based on different parameters to find the advantages and
drawbacks for relevance prediction of URLs. This paper formulates the problem
after analysing the existing work on focused crawlers and proposes a solution to
improve the existing focused crawler.

Keywords Focused crawler � Page relevance � Web crawler

1 Introduction

World Wide Web (WWW) contains a large amount of information, and every
second, new information is added such that the Web size is of order tens of billions
of pages. Web crawler is the most important component of search engine. It con-
tinuously downloads pages, and these pages are indexed and stored in database. So,
it becomes very difficult for a crawler to crawl entire Web and keep its index fresh.
Because of limitation of various computing resources and time constraints, focused
crawlers are developed. A focused crawler is web crawler that downloads only
those Web pages which are considered to be relevant for specific topic or set of
topics.

A focused crawler can be implemented in various ways [1]. Some of the
approaches are shown below.

K. Aggarwal (&)
Department of Computer Science, Government College, Chhachhrauli, India
e-mail: kompalagg@gmail.com

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_13

131

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_13&domain=pdf

Priority-Based Focused Crawler In a priority-based focused crawler, the priority
queue is used for storing retrieved pages instead of a normal queue. The priority is
assigned to each page based on a function which uses various factors to score a
page. Thus, in every iteration, a more relevant page is returned.

Structure-Based Focused Crawler In structure-based focused crawlers, to eval-
uate the page relevance, we have to take into account the Web page structure. The
strategy used is predefined formula for computation of page relevance score. After
that, link relevance score can be predicted, and then from the queue of URLs to be
crawled, the authority score is determined. The priority is determined from rele-
vance score and authority sore.

Context-Based Focused Crawler To avoid filtering out unwanted data,
context-based focused crawler tries to understand the context of the user’s needs by
interacting with user and comprehending the user profile. The crawler then gets
adapted to such contexts and uses them for future search requests.

Learning-Based Focused Crawler Learning-based focused crawler is a new
approach based on learning. It is used for improving relevance prediction in focused
Web crawler. First of all, a training set is built. The purpose of training set is to train
the system, and it contains four relevance attribute values: URL, parent page,
anchor text, and surrounding text relevancy. Secondly, classifier (NB) is trained by
using training set. The trained classifier is used for predicting the relevancy of URL
which is still unvisited [2, 3].

The architecture of focused Web crawler is shown in Fig. 1. URL queue is
initialized with a list which is not visited and maintained by a crawler and starts off
with seed URLs. The module Web page downloader extracts URLs from the queue
which is used for storing URLs and retrieves the pages as specified by retrieved

Web page
downloader

Parser &
Extractor

Relevance
Calculator

Topic filter

Topic Specific
Weight Table

Irrelevant
table

URL
Queue

Relevant
Page DB

Web

Relevan Irrelevant

Seed URL’sFig. 1 Architecture of
focussed web crawler

132 K. Aggarwal

URL from the Internet [4]. The parser module retrieves various information such as
the text, terms, and the out links URLs from the page which is being downloaded.
The relevance calculator module calculates relevance of the parsed page with
respect to topic, and relevance score is assigned to URLs. Topic filter module
determines whether the page content which is being parsed is related to topic
specified or not. If the parsed page is found to be relevant, the URLs retrieved from
it will then be updated in the queue which is used for storing URLs; otherwise, page
will be discarded and added to the irrelevant matrix.

2 Related Work

De Bra et al. [5] proposed “fish search” for predicting page relevance in which the
system takes as input a set consisting of seed pages and search query, and it
considers only those Web pages whose content matches a given search query and
their neighbourhoods (pages pointed to by these matched pages). Fish-search
algorithm treats Web as a directed graph where Web page is considered as node,
and hyperlink can be taken as edge, so the way of searching is similar to the search
operation in directed graph. For each node, we have to judge whether the node is
relative or irrelative (1 represents relevant, and 0 represents irrelevant). In the
fish-search algorithm, for storing URL of page to be searched, a list is maintained. If
the fish finds a relevant page based on query, it continues to look for more links
from the same page. If the page is not found to be relevant, then his child receives a
low score. The various URLs have different priority; the higher priority URL will
be stored at the front of the list and will be searched earlier in comparison with
others. It associates a relevance score in a discrete manner (1 stands for relevant; 0
or 0.5 stands for irrelevant). The drawback of the fish-search algorithm is that the
differentiation among priority that exists among the pages in the list is very low.

Michael et al. [6] proposed shark search which is the modification made to fish
search. In this algorithm, a child derives a discounted score from its parent. The
inherited discounted score is combined with a value which is based on anchor text
that exists around the link in the Web page. One improvement is that it replaces
binary with fuzzy score. Binary value of document relevance can be relevant or
irrelevant. “Fuzzy” score is a score lying between 0 (no similarity) and 1 (perfect
“conceptual” match). It uses a vector space model [7] for calculating the relevance
score in which the similarity between a search string and a document is a function
of the distance existing among the vectors. The cosine similarity measure is
commonly used measure for this purpose. But this algorithm neglects information
of link structure.

Batra [1] proposes a method based on link scoring in which the crawler also
checks and crawls the unvisited links up to a certain threshold that is included in
irrelevant pages. The various approaches have been suggested by many researchers
which are based on link analysis; for example, one of effective focused crawling
which is based on both content and link structures has been proposed. This crawling

An Efficient Focused Web Crawling Approach 133

method is based on URL score, links, and anchor scores. The link scores can be
calculated by the crawler using the following equation and a decision is made
regarding fetching of pages as specified by links or not. The link score can be
calculated as [1, 8]:

LinkScore ið Þ ¼ URLScore ið ÞþAnchorscore ið Þþ LinksFromRelevantPageDBðiÞ
þ Relevance p1ð Þ½ þRelevance p2ð Þþ � � � þRelevance pnð Þ�:

LinkScore (i) represents score of link i, URLScore(i) is the relevance that exists
between the HREF information of i and the topic keywords, and AnchorScore(i) is
the relevance that exists between the anchor text of i and the topic keywords.

LinksFromRelevantPageDB(i) is the number of links from relevant crawled
pages to i; Pn is the ith parent page of URL n. Parent page is a page from which a
link was extracted. Thus crawler spends some time on crawling relevant pages and
also crawl relevant pages, those are children of an irrelevant page.

In a crawling process, the effectiveness of the focused crawler [8] can be
determined from the speed of the crawling process and not only from the maximum
amount of fetched relevant pages. The speed of a crawler is determined from the
number of inserted URLs which are considered to be relevant.

Therefore, URL optimization mechanism is used by the crawler to select relevant
links which helps for the removal of certain links whose link scores lie below a
predefined threshold. For URL optimization, two methods used for evaluating
relevant pages link score are used.

• Same as above equation which is used for irrelevant pages.
• Naive Bayes (NB) classifier which is used to compute link scores [2, 8].

Diligenti et al. [9] proposes a method based on link analysis of forward links and
backward links of the page. In this method, priority value is assigned to Web page
based on Pvalue which is the difference between FwdLnk and BkLnk. The priority
is directly proportional to the page having the highest Pvalue.

Pvalue ¼ FwdLnk � BkLnk

The URLs had been classified in the above categories by using the parameters
backward link count (BkLnk) and the forward link count (FwdLnk). The values of
forward link count (FwdLnk) can be calculated by the server after returning the
number of links in the page after parsing it and without downloading it. The values
of BkLnk can be calculated by the server after calculation of how many pages are
referring to this page by using the existing database which is built by various
crawler machines. After that, the crawler will sort the list of URLs according to
descending order of Pvalue of URLs received from the repository. This sorted list of
URLs will be sent to maintain quality of crawling. This method gives weightage to
current database and helps in building a database of higher-quality indexed Web

134 K. Aggarwal

pages even when the focus is on crawling the entire Web. This method would also
be used for broken links, growing and matured stage of databases. A URL having
zero value for FwdLnk and nonzero value of BKLnk is assigned low priority as
Pvalue will always be negative [9].

Kaur and Gupta [10] proposed weighted page rank method, in which weight of
Web page is calculated on the basis of the number of incoming and outgoing links,
and the importance of page is dependent on the weight. The relevancy comes out by
using this technique is less as page rank is calculated on the basis of weight of the
Web page calculated at the time of indexing [2].

This algorithm is an updated version of page rank as important pages have been
assigned more value instead of dividing the page rank value commonly among all
outgoing links of that page [11].

The weighted page rank is thus given by:

PR uð Þ¼ 1� dÞ= Dj j þ d PR V1ð ÞWin V1; uð ÞWout V1; uð Þþ � � � þPR Vnð ÞWin Vn; uð ÞWout Vn; uð Þð Þ

where Win(v, u) = weight of link(v, u) can be calculated on the basis of number of
inlinks of page u and the number of inlinks of all reference pages of page v Wout(v,
u) = weight of link(v, u) can be calculated on the basis of number of outlinks of
page u and the number of outlinks of all reference pages of page v PR(u) = page
rank of page u.

Pal et al. [4] proposed a method for construction of topic-specific weight table.
The topic name had been given to GoogleWeb search engine, and based on the topic,
first few results are retrieved. Each word had been assigned weight by wi = tf * df,
where tf is term frequency and df is document frequency After assigning weights to
each word, their weights had been normalized by using the following equation

Wiþ 1 ¼ Wi=Wmax

where Wmax stands for the maximum weight that can be assigned to any keyword
and Wi + 1 stands for the new weight assigned to every keyword. The page rele-
vancy is calculated with the help of topic specific weight table and by using cosine
similarity measure.

Kleinberg [12] proposes a method called Hyperlink-Induced Topic Search
(HITS). It calculates the hubs as well as authority values of the relevant pages. The
result given is the relevant as well as important page.

HIT is a link analysis algorithm for rating Web pages. The page which is pointed
to many other pages is represented as good hub, and the page that was linked by
many different hubs represented a good authority.

Selecting seed URL set is based on authority of Web pages. The rank is cal-
culated by computing hub and authorities score. Authority score determines the
value of the page content. Hub score determines the value of page links to other
pages.

An Efficient Focused Web Crawling Approach 135

When comparing two pages having approximately the same number of citations,
if one of these has received more citations from P1 and P2, which are counted as
important or prestigious pages, then that page relevance becomes higher. In other
words, having citations from an important page is better than from an unimportant
one [13, 14].

Fujimura et al. [15] proposes Eigen Rumor Algorithm to solve the problem of
increasing number of blogs on the Web. It is a challenge to the service providers to
display quality blogs to users [13].

• The page rank algorithm decides very low page rank scores for blog entries so
rank score cannot be assigned to blog entries according to their importance.

• The rank score can be provided to every blog by weighting the hub scores, and
authority of the bloggers is dependent on the calculation of eigenvector.

• It is mostly used for blog ranking not for ranking the web pages.

3 Proposed Method

The proposed focused crawler starts with a seed URL. It does not download the
page, instead it parses the page to extract the URLs and words of interest into that
page [16].

To determine the importance of the page being parsed, the weight of keywords/
search string in whole Web page is calculated corresponding to the every keyword
in the topics specific weight table. As occurrence of same words at various locations
of a page has different importance and representing different information [17]. So,
relevance of the page being parsed can be decided by considering its each com-
ponent. For example, the title text is more informative for expressing the topic
covered in a page as compared to the common text.

Here, we are computing the weight of oulinks/hyperlinks by the same procedure,
i.e. to crawl an relevant page which is children of an irrelevant page [18, 19]. If the
level of relevance crosses predefined threshold, only then the page will be down-
loaded and will be extracted and repository is updated with the page. The page will
be discarded otherwise.

In this way, we save the bandwidth after discarding an irrelevant page and
network load is reduced.

To obtain the overall weight (wkp) of keyword k in page p, the weights of
keyword in different locations of page p can be added as shown below:

wkp = wkurl + wkt + wkb

wkp = l weight of keyword k in page p
wkurl = weight assigned to keyword k based on page URL
wkt = weight assigned to keyword k based on page title

136 K. Aggarwal

wkb = weight assigned to keyword k based on page body
wko = weight assigned to keyword k based on page outlinks

furl = frequency of search string in url
fb = frequency of search string in body
ft = frequency of search string in title

Wurl = predefined weight of URL
Wb = predefined weight of body text
Wt = predefined weight of title text

Proposed Algorithm

1. Start
2. Add Seed URL to Queue
3. Pick URL from queue
4. Fetch the page
5. Parse the page
6. while (queue is not empty)
{
If (search string or keyword present in URL)
wkurl = furl*wurl
else
Return 0
If (search string or keyword present in title)
wkt = ft*wt
Else
Return 0
If (search string or keyword present in the body)
wkb = fb* wb
Else
Return 0
wkp = wkurl + wkt + wkb
If (wkp > threshold_value)
{
Add to output.
}
Insert all outlinks into the queue
}
7. Stop

An Efficient Focused Web Crawling Approach 137

4 Conclusion

Hence, by using the concept of page weight, we completely scan Web pages and
compute the page weight. In this way, we can improve the efficiency of Web
crawler, as URL list produced as output by this method is of great importance than
traditional Web crawling method.

References

1. Batra, M.R.: A review of focused crawler approaches. Int. J. 4(7), (2014)
2. Pant, G., Srinivasan, P.: Link contexts in classifier-guided topical crawlers. IEEE Trans.

Knowl. Data Eng. 18(1), 107–122 (2006)
3. www.wikipedia.org/web_crawler. Accessed 12 May 2010
4. Pal, A., Tomar, D.S., Shrivastava, S.C.: Effective focused crawling based on content and link

structure analysis. 2(1), (2009)
5. De Bra, P., Houben, G.-J., Kornatzky, Y., Post, R.: Information retrieval in distributed

hypertexts. In: Proceedings of RIAO-94, Intelligent Multimedia, Information Retrieval
Systems and Management, pp. 481–492 (1994)

6. Michael, H., Michal, J., Yoelle, M., Dan, P., Menachem, S., Sigalit, U.: The Shark-search
algorithm—an application: tailored web site mapping. Comput. Netw. ISDN Syst. 30(1–7),
317–326 (1998)

7. Hao, H.W., Mu, C.X., Yin, X.C., Lim, S., Wang, Z.B.: An improved topic relevance
algorithm for focused crawling. In: IEEE (2011)

8. Mali, S., Meshram, B.B.: Focused web crawler with page change detection policy. In: 2nd
International Conference and workshop on Emerging Trends in Technology (ICWET)
Proceedings, International Journal of Computer Applications® (IJCA) 2011

9. Diligenti, M., Coetzee, F., Lawrence, S., Giles, C., Gori, M.: Focused crawling using context
graphs. In: Proceedings of 26th International Conference on Very Large Databases (2000)

10. Kaur, S., Gupta, A.: A survey on web focused Information extraction Algorithms. Int. J. Res.
Comput. Appl. Robot. 3(4), 19–23 (2015)

11. Xing, W., Ghorbani, A.: Weighted pagerank algorithm, In: Proceeding of the Second Annual
Conference on Communication Networks and Services Research (CSNR’ 04), IEEE (2004)

12. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM-SIAM
Symp. Discrete Algorithm 46(5), 604–632 (1999)

13. Sharma, D.K., Sharma, A.K.: A comparative analysis of web page ranking algorithms. Int.
J. Comput. Sci. Eng. 02(08), 2670–2676 (2010)

14. http://en.wikipedia.org/wiki/HITS_algorithm
15. Fujimura, K., Inoue, T., Sugisaki, M.: The EigenRumor algorithm for ranking blogs. In:

WWW 2005 2nd Annual Workshop on the Web logging Ecosystem (2005)
16. Chain, X., Zhang, X.: HAWK: a focused crawler with content and link analysis. In: IEEE

International Conference on e-Business Engineering (2008)
17. Avraam, I., Anagnostopoulos, I.: A comparison over focused web crawling strategies. In:

2011 IEEE Conference on Panhellenic Conference on Informatics, IEEE (2011)
18. Porter, M. F.: An algorithm for suffix stripping. Readings in information retrieval, pp. 313–

316. Morgan Kaufmann Publishers Inc, San Francisco (1997)
19. Avraam, I., Anagnostopoulos, I.: A comparison over focused web crawling strategies. In:

IEEE 15th Panhellenic Conferewnce Informatics, pp. 245–249 (2011)

138 K. Aggarwal

http://www.wikipedia.org/web_crawler
http://en.wikipedia.org/wiki/HITS_algorithm

A New Log Kernel-Based Possibilistic
Clustering

Meena Tushir and Jyotsna Nigam

Abstract An unsupervised possibilistic (UPC) algorithm with the use of validity
indexes has already been proposed. Although UPC works well, it does not show a
good accuracy for non-convex cluster structure. To overcome this limitation, we
have proposed a kernel version of UPC with a conditionally positive-definite kernel
function. It has the ability to detect clusters with different shapes and convex
structures because it transforms data into high-dimensional space. Our proposed
algorithm, the kernelized UPC-Log(UKPC-L), is an extension of UPC, by intro-
ducing log kernel function, which is only conditionally positive-definite function.
This makes the performance of our proposed algorithm better than UPC in case of
non-convex cluster structures. This has been demonstrated by the results obtained
on several real and synthetic datasets. We have compared the performance of UPC
and our proposed algorithm using the concept of misclassification, accuracy and
error rate to show its efficiency and accuracy.

Keywords Fuzzy c-means � Kernel functions � Possibilistic c-means
Conditionally positive-definite function

1 Introduction

Clustering [1, 2] is commonly used as one of the analytical techniques in the fields
of pattern recognition, modelling of system, image segmentation and analysis,
communication, data mining and so on. It sorts out the group of N observations or

M. Tushir (&)
Department of Electrical and Electronics Engineering, Maharaja Surajmal
Institute of Technology, C-4, Janakpuri, New Delhi, India
e-mail: meenatushir@yahoo.com

J. Nigam
Department of Information Technology, Maharaja Surajmal Institute
of Technology, C-4, Janakpuri, New Delhi, India
e-mail: jyotsnaroy81@gmail.com

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_14

139

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_14&domain=pdf

data points into C groups or data clusters (number of clusters), and the objects in
each group are more identical to one another than those in other groups. Data
clusters on which clustering is to be performed can be well separated, continuous or
overlapping. On the basis of cluster type, there are predominantly two types of
clustering: hard and fuzzy. Traditional (hard) clustering has a constraint to it that
each point of the dataset is restricted to only one cluster. The conception of fuzzy
clusters was proposed by Zadeh [3]. It included the notion of partial membership
where a data point in a dataset can simultaneously belong to more than one cluster.
It gave rise to the thought of probabilistic theory in clustering. Clusters, which are
well separated or continuous, give suitable results when processed with hard
clustering techniques but sometimes objects in a cluster overlap each other and
belong simultaneously to several clusters. Compared with hard clustering, fuzzy
clustering has a superior clustering performances and capabilities. The membership
degree of a vector xk to the ith cluster (uik) is a value in the interval [0, 1] in fuzzy
clustering. This idea was first introduced by Ruspini [4] and used by Dunn [5] to
construct a fuzzy clustering method based on the criterion function minimization.
This approach was generalized by Bezdek to fuzzy c-means algorithm by using a
weighted exponent on the fuzzy memberships. Although FCM is a very competent
clustering method, its membership does not always correspond well to the degrees
of belonging of the data, and it carries certain constraints. The results of FCM may
tend to be inaccurate in a noisy environment. Many spurious minima are generated
due to the presence of noise in the datasets, which further aggravate the situation.
FCM does not provide any method to handle this complication. To reduce this
weakness to some extent, Krishnapuram and Keller [6] proposed possibilistic c-
means algorithm. PCM uses a possibilistic approach, which uses a possibilistic
membership function to describe the degree of belonging. It determines a possi-
bilistic partition matrix, in which a possibilistic membership function measures their
absolute degree of typicality of a point in a cluster. In contrast to FCM, possibilistic
approach appeared to be more resilient to noise and outliers. PCM has a necessity to
predefine the number of clusters and is sensitive to initializations, which sometimes
generates coincident clusters. The condition to define the optimal c is termed as
cluster validity. To overcome the limitations imposed by FCM and PCM, many
new algorithms have been proposed which comprise of the ability to generate both
membership and typicality for unlabelled data [7, 8]. However, it is inferred from
the observations that these algorithms tend to give not so good results for
unequal-sized clusters. In 2006, a novel fuzzy clustering algorithm called unsu-
pervised possibilistic clustering algorithm (UPC) was put forward by Yang and Wu
[9]. Unsupervised clustering can determine the number of clusters with the help of
their proposed validity indexes. The objective function of UPC integrates the FCM
objective function with two cluster validity indexes. The parameters used in UPC
are easy to manoeuvre. UPC has many credits, like most enhanced visions, it only
works for the convex cluster structure of the dataset. UPC fails to give desirable
results when processed on non-convex structures of datasets. The kernel-based
unsupervised algorithm proposed in this paper is an extension to the UPC. The data
points in the proposed method (UKPC-L) are mapped to a higher dimensional space

140 M. Tushir and J. Nigam

by kernel function, and the culminating clustering partition is obtained by opti-
mizing the objective function of UKPC-L. The experimental results exhibit better
results when compiled with the proposed kernel-based unsupervised algorithm.

The remainder of this paper is organized as follows. Section 2 provides back-
ground information on the fuzzy c-means, possibilistic c-means and unsupervised
possibilistic clustering. In Sect. 3, the kernel-based approach and kernel trick are
highlighted. In Sect. 4, the proposed kernelized version of UPC clustering model is
formulated. Section 5 highlights the potential of the proposed approach through
various synthetic and real datasets. Concluding remarks are presented in Sect. 6.

2 Literature Work

2.1 Fuzzy C-Means Clustering (FCM)

Most methodical clustering algorithms for clustering analysis are based on the
optimization of basic c-means function. In datasets clustering the similarity norm
used to group the object, which are identical in nature, is defined by the distance
norm. A large family of clustering algorithms and techniques complies with the
fuzzy c-means functional formulation by Bezdek and Dunn:

J U;Vð Þ ¼
Xc
i¼1

Xn
k¼1

umik xk � vik k2 ð1Þ

It is applicable to wide variety of data analysis problems and works well with
them. FCM algorithm assigns membership values to the data points, and it is
inversely related to the relative distance of a point to the cluster centres in the FCM
model. Each data point in FCM is represented by xk and vi represents the centre of
the cluster. Closeness of each data point to the centre of the cluster is defined as
membership value uik. m is the weighting exponent who determines the fuzziness of
the resulting clusters and it ranges from [1, ∞].

The cluster centres and membership values are computed as

vi ¼
Pn

k¼1 u
m
ikxkPn

k¼1 u
m
ik

ð2Þ

uik ¼ 1Pc
j¼1

xk�vi
xk�vj

� � 2
m�1

ð3Þ

For a given dataset X = {x,…, xn}, the fuzzy c-means algorithm partitions X into
C fuzzy subsets by minimizing the objective function given above. It satisfies the
condition:

A New Log Kernel-Based Possibilistic Clustering 141

Xc
i¼1

uik ¼ 1

There are some limitations to the fuzzy c-means clustering method. Firstly, since
it is based on fixed distance norm, it has a limitation that this norm forces the
objective function to prefer clusters of certain shape even if they are not present in
the data. Secondly, it is sensitive to noise and there is a requirement to predefine the
number of clusters.

2.2 Possibilistic C-Means Clustering (PCM)

PCM works with the viewpoint of possibility theory. According to possibility
theory, the membership values can be interpreted as the degree of compatibility or
possibility of the points belonging to the classes. In variance to PCM, fuzzy pos-
sibilistic c-means clustering simultaneously produces both typicality and mem-
bership values. Due to low typicality, outliers are eliminated from the algorithm.

The objective function of PCM is [9]

Pm T ;V ;X; cð Þ ¼
Xn
i¼1

Xc
k¼1

tmikd
2
ik þ

Xc
i¼1

ci
Xn
k¼1

1� tkið Þm ð4Þ

where tik is the typicality value for data point xk whose cluster centre is vi, dki is the
distance measured between xk and ci, and c denotes a user-defined constant. c is
greater than zero with the value of i lying in the range of 1 to c. PCM uses
approximate optimization for additional conditions. The typicality of data point xk
and the centre of cluster vi can be obtained by the following equations

tki ¼ 1

1þ dki
ci

� � 1
m�1

; 8i ð5Þ

vi ¼
Pn

k¼1 t
m
ikxkPn

k¼1 u
m
ik

ð6Þ

PCM does not hold the probabilistic constraint that the membership values of the
data point across classes sum to one. It overcomes sensitivity to noise and over-
comes the need to specify number of clusters. However, there are still some dis-
advantages in the PCM, i.e. it depends highly on a good initialization and it tends to
produce coincidental clusters which are undesirable. The KPCM uses the KFCM to
initialize the membership and avoids the above-mentioned weakness of the PCM.

142 M. Tushir and J. Nigam

2.3 Unsupervised Possibilistic C-Means Clustering (UPC)

In 2006, Yang and Wu proposed a new possibilistic clustering algorithm called
unsupervised possibilistic clustering (UPC) [9]. The objective function of UPC is an
extension to FCM objective function with partition coefficient (PC) and partition
entropy (PE) validity indexes to make it robust to noise and outliers.

The objective function of UPC is

Jupc U;Vð Þ ¼
Xc
i¼1

Xn
j¼1

umij d
2
ij þ

b
m2

ffiffiffi
c

p
Xc
i¼1

Xn
j¼1

umij log u
m
ij � umij

� �
ð7Þ

where m is the fuzzy factor and c is the cluster numbers. The first term is identical to
FCM objective function. The second term is constructed by analogue of PE and PC
validity indexes.

Parameter b is the sample covariance defined as:

b ¼
Pn

j¼1 xj � �x
�� ��
n

where �x ¼
Xn
j¼1

xj
n

ð8Þ

Minimizing the objective function with respect to uij and setting it to zero, we get
equation for membership value, i.e.

uij ¼ exp �m
ffiffiffi
c

p
xj�vi
�� ��2
b

 !
; i ¼ 1; . . .; c; j ¼ 1; . . .; n ð9Þ

Minimizing the objective function with respect to vi, we get equation for
membership value cluster centres, i.e.

vi ¼
Pn

j¼1 l
m
ij xjPn

j¼1 l
m
ij

ð10Þ

3 Kernel-Based Algorithm

3.1 Kernel-Based Approach

A kernel function is generalization of the distance matrix that measures the distance
between two data points as the data points are mapped into high-dimensional space
in which they are more clearly separable [10, 11]. We can increase the accuracy of
algorithm by exploiting a kernel function in calculating the distance of data points
from the prototypes.

A New Log Kernel-Based Possibilistic Clustering 143

Kernel trick:
The kernel trick is a very interesting and powerful tool. It provides a bridge from

linearity to nonlinearity to any algorithm that can express solely on terms of dot
products between two vectors.

Kernel trick is interesting because that mapping does not need to be ever
computed. The “trick” is wherever a dot product is used, it is replaced with a kernel
function. The kernel function denotes an inner product in feature space and is
usually denoted as:

K x; yð Þ ¼ U xð Þ;U yð Þh i

Given an unlabelled dataset X ¼ x1; . . .; xnf g in p-dimensional space Rp, let U
be nonlinear mapping function from this input space to high-dimensional feature
space H:

U : Rp ! H; x ! U xð Þ

The dot product in high-dimensional feature space can be calculated through
kernel function K xi; xj

� �
, in the input space Rp

K xi; xj
� � ¼ U xið ÞU xj

� � ð11Þ

Some examples of kernel function are as follows:

Example 1 (Linear kernel): k x; yð Þ ¼ xTyþ c

Example 2 (Polynomial kernel): K xi; xj
� � ¼ xi:xj þ c

� �d where c � 0; d 2 N

Example 3 (Gaussian basis kernel):

K xi; xj
� �

: exp � xi � xj
�� ��2

2r2

 !
where r[0

Example 4 (Hyperbolic tangent (sigmoid) kernel):

K x; yð Þ ¼ tanh axT þ c
� �

:

4 Proposed kernelized UPC-Log Algorithm

To further improve UPC, we have used a log kernel function. Log kernel function is
conditionally positive-definite function, i.e. it is positive for all values of greater
than 0. We named our proposed algorithm as UKPC-L.

144 M. Tushir and J. Nigam

Conditionally positive definite function:
Let X be a non-empty set. A kernel K is called conditionally positive definite if

and only if it is symmetric and

Xn
j;k¼1

cjckK xj; xk
� �� 0 ð12Þ

For n � 1; c1,…, cn 2 R with
Pn

j¼1 cj ¼ 0 and

x1; . . .; xn 2 X

The log kernel function that we have proposed for our algorithm is:

K x; yð Þ ¼ log 1þ axj � vi
�� ��2� �

ð13Þ

Using our log kernel function, the objective function and the distance for
UKPC-L clustering is as follows:

JUKPC�L ¼
Xc
i¼1

Xn
j¼1

umij D
2
ij þ

b
m2

ffiffiffi
c

p
Xc
i¼1

Xn
j¼1

umij
�

log umij � umij
�

ð14Þ

where

D2
ij ¼ U xið Þ � U við Þk k2¼ �2 log 1þ a xj � vi

�� ��2� �
ð15Þ

b ¼ �2
Pn

j¼1 logð1þ a xj � vi
�� ��2Þ

n
ð16Þ

Minimizing the objective function with respect to vi, we get equation for cluster
centres

vi ¼
Pn

j¼1 u
m
ij xj

1

1þ a xj�vik k2
� �� 	

Pn
j¼1

umij

1þ a xj�vik k2
� � ð17Þ

Minimizing the objective function with respect to uij and setting it to zero, we get
equation for membership value

uij ¼ exp
2m

ffiffiffi
c

p
b

log 1þ a xj�vi
�� ��2� �� 	

ð18Þ

A New Log Kernel-Based Possibilistic Clustering 145

The general form of our proposed algorithm is as follows:

*Fix the number of clusters C; fix(m) > 1; set the learning rate a;
*Execute a FCM clustering algorithm to find initial U and V;
*Set iteration count k = 1;
Repeat
Calculate objective function J(u, v) using (14).
Compute b using (16).
Update vi using (17).
Update uik using (18).
Until a given stopping criterion, i.e. convergence precision e is satisfied.

5 Experimental Results

To demonstrate the efficiency and performance of our proposed algorithm, we
applied the kernelized UPC-L and UPC to a number of widely used datasets. We
used datasets with varying shapes, orientation and number of data points. The
real-life datasets used in the experiments are Iris dataset and Seed dataset. For our
experiments, we have chosen: m = 2, a = 2, e = 0.00001 and max_iter = 100.

5.1 Synthetic Datasets

1. Gaussian Random Data with Noise: The dataset generated is spherical with
unequal radii. There are four clusters and, the data points in each cluster are
normally distributed over two-dimensional space. Analysing the Fig. 1 closely,
our proposed algorithm gives desired results with cluster centres located at their
prototypical locations, while in the cases of UPC the cluster centres are slightly
shifted from the ideal locations.

The respective covariance matrices are:

0:40
00:8

 �
,

0:40
00:8

 �
,

0:40
00:8

 �
and

10
01

 �
The respective means for each cluster using the UPC clustering technique and

our proposed algorithm are given as:

146 M. Tushir and J. Nigam

(i)Clustering by UPC

(ii) Clustering by UKPC-L

0 2 4 6 8 10 12 14
2

4

6

8

10

12

14

16

18

x1

x2

0 2 4 6 8 10 12 14
2

4

6

8

10

12

14

16

18

x1

x2

Fig. 1 Clustering by a UPC.
b UKPC-L

A New Log Kernel-Based Possibilistic Clustering 147

VIDEAL ¼
2 5
2 14
7 8

10 14

2
664

3
775

VUPC ¼
1:9947 5:0186
2:0138 13:9765
6:7874 8:1653
9:9408 13:8123

2
664

3
775VUKPC�L ¼

2:0146 4:9913
2:0007 13:9779
6:9814 8:0660
9:9735 14:0319

2
664

3
775

To show the effectiveness of our proposed algorithm, we also compute the error
using:

E� ¼ Videal � V�j jj j2

where * is UPC/UKPC-L.EUPC = 0.00126 and EUKPC-L = 0.00029. Clearly we can
see from error results that our proposed algorithm is better than UPC.

2. R15 spherical dataset: The next dataset consists of identical-sized spherical
dataset with 15 clusters. UPC has misplaced all the inner cluster prototypes. Our
proposed algorithm clusters the data points in the best way with all cluster
centres at the required positions.

The shift in the centres is clearly visible in Fig. 2.

3. Random Gaussian dataset without noise: The next dataset is a typical convex
cluster dataset. In this dataset, the UPC algorithm detects only four clusters
taking all as convex shapes, whereas our proposed algorithm detects five
clusters and hence proves to work well all shapes as well (Fig. 3).

5.2 High-Dimensional Real Datasets

We now study the performance quality and efficiency of our proposed clustering
algorithm on a few real datasets, namely Iris dataset and Seed dataset. The clus-
tering results were concluded using Huang’s accuracy measure [12] with the fol-
lowing formula:

r ¼
Pk

i¼1 ni
n

ð19Þ

148 M. Tushir and J. Nigam

where ni is the number of data occurring in both the ith cluster and its corre-
sponding true cluster, and n is the number of data points in the dataset. According to
this measure, a higher value of r indicates a better clustering result with perfect
clustering yielding a value r = 1. Error has been calculated by using the measure:
E = 1 − r

(i) Clustering by UPC

(ii) Clustering by UKPC-L

2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

14

16

18

x1

x2

2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

14

16

18

x1

x2

Fig. 2 Clustering by a UPC.
b UKPC-L using R15 dataset

A New Log Kernel-Based Possibilistic Clustering 149

(i) Clustering by UPC

(ii) Clustering by UKPC-L

-20 -10 0 10 20 30 40 50 60
-30

-25

-20

-15

-10

-5

0

5

10

15

x1

x2

-20 -10 0 10 20 30 40 50 60
-30

-25

-20

-15

-10

-5

0

5

10

15

x1

x2

Fig. 3 Clustering by a UPC.
b UKPC-L

150 M. Tushir and J. Nigam

1. Iris dataset: This is a four-dimensional dataset containing 50 samples each of
three types of Iris flowers. One of the three clusters (class 1) is well separated
from the other two, while classes 2 and 3 have some overlap. We made several
runs of UPC and our proposed method when these algorithms are initialized
with FCM terminal prototypes. Table 1 compares the algorithms based on the
optimization efficiency as judged by the above equation.

As can be seen in the Table 1, UPC has the higher error value with 12 samples
assigned to incorrect labels. Comparing it with our proposed method, our algorithm
shows better accuracy of 93.33% making only ten errors.

2. Seed dataset: This is a multivariate dataset with 7 attributes (dimensions) and
210 instances. The examined dataset comprised kernels belonging to three
different varieties of wheat with 70 elements each.

As seen clearly from the Table 2, our proposed algorithm misclassifies only 23
elements into incorrect classes with 89.04% accuracy, which is slightly more effi-
cient compared to UPC which misclassifies 25 elements.

6 Conclusions

In this paper, we have proposed a conditionally positive-definite log kernel-based
possibilistic clustering. It performs well for different-shaped datasets, thereby
overcoming the limitation of previously proposed unsupervised algorithm in terms
of efficiency. Compared to UPC, our proposed method selects more desirable
cluster centroids, thereby increasing the clustering accuracy. To check the accuracy
of our algorithm, we have applied it on various real and synthetic datasets, and our
proposed algorithm gives better performance results on various performance criteria
like misclassification, accuracy and error rate.

Table 2 Number of misclassified data, elapsed time, accuracy and error using UPC and UKPC-L

Clustering algorithm Misclassifications Elapsed time Accuracy (%) Error (%)

UPC 25 0.28 88.57 11.42

UKPC-L 23 0.29 89.04 10.95

Table 1 Number of misclassified data, elapsed time, accuracy and error using UPC and UKPC-L

Clustering algorithm Misclassifications Elapsed time Accuracy (%) Error (%)

UPC 12 1.50 92.0 8.0

UKPC-L 10 0.71 93.3 6.6

A New Log Kernel-Based Possibilistic Clustering 151

References

1. Anderberg, M.R.: Cluster Analysis for Application. Academic Press, New York (1973)
2. Backer, E., Jain, A.K.: A clustering performance measure based on fuzzy set decomposition.

IEEE Trans. Pattern Anal. Mach. Intell. 3(1), 66–74 (1981)
3. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)
4. Ruspini, E.H.: A new approach to clustering. Inform. Control 15(1), 22–32 (1969)
5. Dunn, J.C.: A fuzzy relative of the ISODATA process and its use in detecting compact

well-separated cluster. J. Cybern. 3(3), 32–57 (1973)
6. Krishnapuram, R., Keller, J.M.: A possibilistic approach to clustering. IEEE Trans. Fuzzy

Syst. 1, 98–110 (1993)
7. Dave, R.: Characterization and detection of noise in clustering. Pattern Rec. Lett. 12(11),

657–664 (1991)
8. Pal, N.R., Pal, K., Bezdek, J.C.: A mixed c-means clustering model. In: Proceedings of the

IEEE International Conference on Fuzzy Systems, Spain, pp. 11–21 (1997)
9. Yang, M.S., Wu, K.L.: Unsupervised possibilistic clustering. Pattern Recogn. 39(1), 5–21

(2006)
10. Christianini, N., Taylor, J.S.: An Introduction to SVMs and Other Kernel-Based Learning

Methods. Cambridge University Press, Cambridge (2000)
11. Girolami, M.: Mercer kernel-based clustering in feature space. IEEE Trans. Neural Netw. 13

(3), 780–784 (2002)
12. Huang, Z., Ng, M.K.: A fuzzy k-modes algorithm for clustering categorical data. IEEE Trans.

Fuzzy Syst. 7(4), 446–452 (1999)

152 M. Tushir and J. Nigam

Fuzzy c-Means Clustering Strategies:
A Review of Distance Measures

Jyoti Arora, Kiran Khatter and Meena Tushir

Abstract In the process of clustering, our attention is to find out basic procedures
that measures the degree of association between the variables. Many clustering
methods use distance measures to find similarity or dissimilarity between any pair
of objects. The fuzzy c-means clustering algorithm is one of the most widely used
clustering techniques which uses Euclidean distance metrics as a similarity mea-
surement. The choice of distance metrics should differ with the data and how the
measure of their comparison is done. The main objective of this paper is to present
mathematical description of different distance metrics which can be acquired with
different clustering algorithm and comparing their performance using the number of
iterations used in computing the objective function, the misclassification of the
datum in the cluster, and error between ideal cluster center location and observed
center location.

Keywords FCM clustering � Euclidean distance � Standard euclidean distance
Mahalanobis distance � Minkowski distance � Chebyshev distance

J. Arora (&)
Department of Information Technology, Maharaja Surajmal Institute of Technology,
C-4, Janakpuri, New Delhi, India
e-mail: joy.arora@gmail.com

K. Khatter
Department of Computer Science, Ansal University, Gurgaon, India
e-mail: kirankhatter@ansaluniversity.edu.in

M. Tushir
Department of Electrical & Electronics Engineering, Maharaja Surajmal Institute
of Technology, C-4, Janakpuri, New Delhi, India
e-mail: meenatushir@yahoo.com

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_15

153

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_15&domain=pdf

1 Introduction

Clustering is a technique of finding similar characteristic data among the given set
of data through association rules and classification rules resulting into separation of
classes and frequent pattern recognition. Clustering is basically knowledge dis-
covery process whose result can be used for future use, in various applications.
A good cluster definition involves low interclass similarity and high intra-class
similarity. In order to categorize the data, we have to apply different similarity
measure techniques to establish a relation between the patterns which will group the
data into different clusters with a degree of membership. In clustering, we have to
evaluate a good distance metrics, in order to have high intra-class similarity. Several
clustering algorithms with the different distance metrics have been developed in the
past, some of them are used in detecting different shapes of clusters such as
spherical [1], elliptical [2], some of them are used to detect the straight lines [3, 4],
algorithms focusing on the compactness of the clusters [2, 5]. Clustering is a
challenging field of research as it can be used as a separate tool to gain insight into
the allocation of data, to observe the characteristic feature of each cluster, and to
spotlight on a particular set of clusters for more analysis. Focusing on the proximity
measures, we can find some work that compares a set of distance metrics; therefore,
these could be used as guidelines. However, most of the work includes basic
distance metrics as Grabusts [6] compared Euclidean distance, Manhattan distance,
and Correlation distance with k-means on Iris dataset, similarly Hathaway [7]
compared distance with different values of p, Liu et al. [8] proposed a new algo-
rithm while changing the Euclidean distance with Standard Mahalanobis distance.

In this paper, we are presenting the survey of different distance metrics in order
to acquire proximity measure to be followed by the clustering criterion that results
in the definition of a good clustering scheme for dataset. We have included
Euclidean distance, Standard Euclidean distance, Mahalanobis distance, Standard
Mahalanobis distance, Minkowski distance, and Chebyshev distance and compared
on the criteria of accuracy and misclassification, location of center which to our
knowledge have not been discussed in such detail in any of the surveys till now.

The remainder of this paper is sectioned as follows. Section 2 provides related
work which includes detail of fuzzy c-means algorithm and overview of different
distance metrics, and Sect. 3 includes experimental results on different data types
including synthetic and real datasets. Section 4 concludes the review.

2 Related Work

2.1 Fuzzy c-Means Algorithm

The notion of fuzzy sets was developed by Zadeh [9] is an attempt to modify
exclusive clustering on the basis of their probability of any parameter on which
clusters have been developed, which was further extended by Bezdek et al. [3] as

154 J. Arora et al.

fuzzy c-means algorithm (FCM) is the most widely used algorithm. This approach
partitions a set of data fx1; . . .; xng � Rs into c-clusters based on a similarity
computed by the least square function of Euclidean distance metrics. The objective
function of FCM is

JFCMðX : U;VÞ ¼
Xc
j¼1

XN
i¼1

ðuijÞm xi � vj
�� ��2; 1\m\1 ð1Þ

where m > 1 is a fuzzification parameter, vj 2 RS is a cluster center, uij 2 ½0; 1� is a
degree to which data x belongs to cluster, defines partition matrix. xi � vj

�� ��2 is a
Euclidean distance metrics. The partition matrix uij is a convenient tool for repre-
senting cluster structure in the data, where the fuzzy partition has constraintPc

i¼1 uij ¼ 1. The most effective method of optimization of Eq. (1) is by alternative
optimization method used in conventional FCM. The equation of vj and uij can be
referred from [3].

2.2 Distance Measures

Important component of clustering algorithm is similarity measurement between the
data points. There are different measures which have been used with different
clustering algorithms in order to have clusters with desired properties. Some dis-
tance measures we will discuss are

2.2.1 Euclidean Distance

The Euclidean distance is the most intense similarity measure which is used widely
in FCM. This formula includes two objects and compares each attribute of indi-
vidual item with other to determine strength of relativity with each other. The
smaller the distance is greater the similarity. The equation for Euclidean distance is

dx;v ¼
�
ðx1 � viÞ2 þðx2 � viÞ2. . .ðxn � viÞ2 ð2Þ

Euclidean distance as a measure of similarity, hyperspherical-shaped clusters of
equal size are usually detected [10]. However, Euclidean distance degrades the
performance in the presence of noise in the dataset. This is because the object to
center dissimilarity term in (1) can place considerable membership to the outlying
data and due to membership constraint.

Fuzzy c-Means Clustering Strategies … 155

2.2.2 Standard Euclidean Distance

The Standard Euclidean distance can be squared in order to place progressively
greater weight on objects that are farther apart. In this case, the equation becomes

d2x;v ¼ ðx1 � viÞ2 þðx2 � viÞ2. . .ðxn � viÞ2 ð3Þ

This distance metrics is frequently used in optimization problems in which
distances only have to be compared. Clustering with the Euclidean Squared dis-
tance is faster than clustering with the regular Euclidean distance.

2.2.3 Mahalanobis Distance

Mahalanobis distance is a measure of the distance between a given point and a
distribution. It is a multi-dimensional generalization of the act of determining the
number of standard deviations that a point x is away from the mean of the distri-
bution. The equation of the Mahalanobis distance is given by

dx;v ¼
�
xk � við ÞA�1 xk � við Þ ð4Þ

In (4), A is a covariance matrix of data. The Mahalanobis distance is better
adopted where the cluster required are nonspherical in shape. In [2], Cai has dis-
cussed in clustering algorithm, a modified Mahalanobis distance with preserved
volume was used. It is more particularly useful when multinormal distributions are
involved.

2.2.4 Standard Mahalanobis Distance

In Standard Mahalanobis distance, covariance matrix is replaced by correlation
matrix. The equation of the Standard Mahalanobis distance is represented by

dx;v ¼
�
xk � við ÞR�1 xk � við Þ ð5Þ

In (5) R is a correlation matrix. In [8], Liu et al. has proposed new algorithm
giving FCM-SM, normalizing each feature in the objective function, and all
covariance matrix becomes corresponding correlation matrix.

2.2.5 Minkowski Distance

Minkowski distance termed as Lp is a generalized metric that includes special cases
of p and introduced three distance metrics with p = 1(Manhattan distance), p = 2

156 J. Arora et al.

(Euclidean distance), and p = 1 (Chebyshev distance). The Minkowski distance of
order p between data points and center points is represented by

dx;v ¼
Xn
i¼1

xi � vik kp
 !1=p

ð6Þ

In [1, 2], different function of Minkowski distance with different value of p has
been implemented with FCM showing results on relational and object data types.

2.2.6 Chebyshev Distance

Chebyshev distance (L1) is a distance metric specified on a vector space where the
given two vectors are separated by a distance which is the largest of their differ-
ences measured along any coordinate dimension. Essentially, it is the maximum
distance between two points in any single dimension. The Chebyshev distance
between ant two points is given by (7)

dx;v ¼ max xi � vij j ð7Þ

3 Experiments’ Results

The purpose of the experimental part was to test the operation of the FCM algo-
rithm by applying different distance metrics on synthetic and real dataset. We used
datasets with wide variety in the shape of clusters, numbers of clusters, and count of
features in different data point. FCM is an unsupervised clustering so the number of
clusters to group the data was given by us. We choose m = 2 which is a good
choice for fuzzy clustering. For all parameters, we use e = 0.001, max_iter = 200.

3.1 Synthetic Datasets

3.1.1 X12 Dataset

The first example involves X12 dataset as given in Fig. 1 contains two identical
clusters with one outlier which is equidistant from both the clusters. We know FCM
is very sensitive to noise, so we do not get the desired results. To show the
effectiveness of different distance metrics, we have calculated the error E�, by sum
of the square of the difference between calculated center and the ideal center with
every distance metrics as given in Eq. (8).

Fuzzy c-Means Clustering Strategies … 157

Different Volume Rectangle Dataset
By changing the volume of clusters in a pattern, we observe the effectiveness of

different distance metrics. Figure 2 shows the representation of dataset with two
identical clusters of different volume, ideal cluster center are defined by VRD.

Table 1 shows that for X12 dataset, best results are shown with Euclidean dis-
tance, Minkowski distance, and Chebyshev distance but number of iterations used
by Minkowski distance are more. The Standard Mahalanobis distance and

-6 -4 -2 0 2 4 6
-4

-2

0

2

4

6

8

10

12

x1

x2

X12 DatasetFig. 1 Representation of X12

dataset

4 6 8 10 12 14 16 18 20 22
-6

-4

-2

0

2

4

6

8

10

12

14

x1

x2

Rectangle DatasetFig. 2 Representation of
rectangle dataset

158 J. Arora et al.

T
ab

le
1

C
en
te
rs

pr
od

uc
ed

by
FC

M
w
ith

di
ff
er
en
t
di
st
an
ce

m
et
ri
cs
,e

ff
ec
tiv

en
es
s
an
d
nu

m
be
r
of

ite
ra
tio

n
fo
r
th
e
X
12

da
ta
se
t
an
d
di
ff
er
en
t
vo

lu
m
e
re
ct
an
gl
e

da
ta
se
t

D
is
ta
nc
e

E
uc
lid

ea
n

St
d.

E
uc
lid

ea
n

M
ah
al
an
ob

is
St
d.

m
ah
al
an
ob

is
M
in
ko

w
sk
i

C
he
by

sh
ev

C
en
te
r
(V

12
)

2.
98

−
2.
98

0.
54

0.
54

2.
67

−
1.
51

2.
15

0.
08

2.
97

−
2.
97

0.
55

0.
55

−
2.
98

2.
98

0.
54

0.
54

−
2.
98

2.
98

0.
54

0.
54

−
2.
98

2.
98

0.
54

0.
54

E
*

0.
41

2
4.
21

3
0.
43

8
0.
41

2
0.
41

2
0.
41

2

N
o.

of
It
er
.

10
10

10
9

17
10

C
en
te
r
(V

R
D
)

4.
22

16
.3
0

−
0.
02

−
1.
01

7.
42

16
.2
6

0.
30

−
2.
02

5.
90

16
.4
2

−
0.
10

−
1.
06

4.
86

16
.3
3

0.
54

−
0.
94

4.
92

16
.3
3

−
0.
01

−
0.
94

4.
76

16
.2
6

−
0.
02

−
1.
00

E
*

0.
34

9
3.
53

0.
5

0.
21

1
0.
05

9
0.
06

2

N
o.

of
It
er
.

10
23

27
10

14
13

Fuzzy c-Means Clustering Strategies … 159

Mahalanobis distance also show optimal results but Standard Euclidean distance
shows poor results. Similarly in Different Volume Rectangle dataset, Minkowski
distance and Chebyshev distance perform best as compared to other distance
metrics. The highest number of iterations is used by Mahalanobis distance. The
Standard Euclidean distance shows worst result with this dataset also. Both the
above data comprises of clusters forming compact clouds that are well separated
from one another, thus sum of squared error distance outperforms as compare to
other distance and Standard Euclidean distance shows poor results. Mahalanobis
distance due to calculation of covariance matrix for the data does not show accurate
result.

E� ¼ V12ðidealÞ � V12ðdistÞk k2 ð8Þ

V12ðidealÞ ¼ �3:3400 0
3:3400 0

� �
VRDðidealÞ ¼ 5 0

16 �1

� �

3.2 High-Dimensional DataSets

We now examine the defined evaluation criteria with some well-known real data-
sets, namely Iris dataset, Wine dataset and Wisconsin dataset. We are going to
analyze the clustering results using Huang’ s accuracy measure (r) [11].

r ¼
Pk

i¼1 ni
n

ð9Þ

where ni is the number of data occurring in both the ith cluster and its corre-
sponding true cluster, and n is the number of data points in the dataset. According to
this measure, a higher value of r indicates a better clustering result with perfect
clustering yielding a value of r = 1.

We made several runs of FCM with different distance metrics and calculated the
misclassification, accuracy, number of iterations on all the three high-dimensional
datasets. Here in Table 2, we find that how the algorithm shows different values of
misclassification over the three datasets with the change of distance metrics. In this,
we can see Chebyshev distance is giving good result with Iris and Breast Cancer
dataset with an accuracy of 90 and 96% respectively, Standard Euclidean distance is
giving best result with Wine dataset with an accuracy of 91%, however number of
iterations used is very high.

160 J. Arora et al.

T
ab

le
2

FC
M

w
ith

di
ff
er
en
t
di
st
an
ce

m
et
ri
cs

sh
ow

in
g
m
is
cl
as
si
fi
ca
tio

n,
ac
cu
ra
cy

an
d
nu

m
be
r
of

ite
ra
tio

n
w
ith

Ir
is
,
W
in
e,

B
re
as
t
C
an
ce
r
(B
C
)
da
ta
se
t

D
at
as
et

D
is
ta
nc
e

E
uc
lid

ea
n

St
d.

E
uc
lid

ea
n

M
ah
al
an
ob

is
M
ah
al
an
ob

is
M
in
ko

w
sk
i

C
he
by

sh
ev

M
is
cl
as
si
fi
ca
tio

n I
R
IS

17
27

43
27

17
15

A
cc
ur
ac
y I
R
IS

0.
88

0.
82

0.
71

0.
82

0.
88

0.
9

N
o.

of
It
er
. IR

IS
18

41
67

22
25

20

M
is
cl
as
si
fi
ca
tio

n W
IN

E
56

16
79

55
55

56

A
cc
ur
ac
y W

IN
E

0.
68

0.
91

0.
55

0.
69

0.
69

0.
68

N
o.

of
It
er
. W

IN
E

47
11

3
9

46
86

61

M
is
cl
as
si
fi
ca
tio

n B
C

30
31

22
53

38
22

A
cc
ur
ac
y B

C
0.
95

0.
95

0.
96

0.
92

0.
94

0.
96

N
o.

of
It
er
. B

C
14

22
10

0
25

21
18

Fuzzy c-Means Clustering Strategies … 161

4 Conclusions

We described various distance metrics for FCM and examined the behavior of the
algorithm with different approaches. It has been concluded from results on various
synthetic and real datasets that Euclidean distance works well for most of the
datasets. Chebyshev and Minkowski distances are equally suitable for clustering.
Further exhaustive exploration on distance metrics needs to be done on various
datasets.

References

1. Patrick, J.F., Groenen, U., Kaymak, J.V., Rosmalen: Fuzzy clustering with Minkowski
distance functions. Econometric Institute Report, EI(24), (2006)

2. Cai, J.Y., Xie, F.D., Zhang, Y.: Fuzzy c-means algorithm based on adaptive Mahalanobis
distance. Comput. Eng. Appl. 174–176(2010)

3. Bezdek, J.C., Coray, C., Gunderson, R, Watson, J.: Detection and characterization of cluster
substructure. SIAM J. Appl. Math. 339–372 (1981)

4. Dave, R.N.: Use of the adaptive fuzzy clustering algorithm to detect lines in digital images.
Intell Robots Comput. Vision VIII 1192, pp. 600–661 (1982)

5. Dunn, J.C.: A fuzzy relative of the ISODATA process and its use in detecting compact well
separated clusters. J Cybern, 32–57(1973)

6. Grabusts, P.: The choice of metrics for clustering algorithms. In: International Scientific and
Practical Conference Vol 2(8), pp. 70–76 (2011)

7. Hathaway, R.J., Bezdek, J.C., Hu, Y.: Generalised fuzzy c-means clustering strategies using
LP norm distance. IEEE Trans. Fuzzy Syst. 8(5), (2000)

8. Liu, H.C., Jeng, B.C., Yih, J.M., Yu, Y.K.: Fuzzy c-means clustering algorithm based on
standard mahalanobis distance. In: International Symposium on Information Processing,
pp. 422–427 (2009)

9. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)
10. Su, M.C., Chou, C.H.: A Modified means of K-Means algorithm with a distance based on

cluster symmetry. IEEE Trans. Pattern Anal. Mach. Intell. 23, 674–680 (2001)
11. Tushir, M., Srivastava, S.: A new kernelized hybrid c-mean clustering with optimized

parameters. Appl. Soft Comp. 10, 381–389 (2010)

162 J. Arora et al.

Noise Reduction from ECG Signal Using
Error Normalized Step Size Least Mean
Square Algorithm (ENSS) with Wavelet
Transform

Rachana Nagal, Pradeep Kumar and Poonam Bansal

Abstract This paper presents the reduction of baseline wander noise found in ECG
signals. The reduction has been done using wavelet transform inspired error nor-
malized step size least mean square (ENSS-LMS) algorithm. We are presenting a
wavelet decomposition-based filtering technique to minimize the computational
complexity along with the good quality of output signal. The MATLAB simulation
results validate the good noise rejection in output signal by analyzing parameters,
excess mean square error (EMSE) and misadjustment.

Keywords ECG signal � ENSS algorithm � LMS algorithm � Wavelet transform
EMSE � Misadjustment

1 Introduction

Electrocardiographic (ECG) signals are very low amplitude signals around 1 mV.
ECG signal can be corrupted with either noises named as baseline wander (BW) or
power line interface (PLI) noises. These two noises badly degrade the ECG signal
quality and generate a resembling PQRST waveform and remove some tiny features
which are important for diagnosis. ECG is commonly more affected by Baseline
Wander (BW), which is the reason behind varying electrode skin impudence,
patient’s breath, and movement. This noise is a kind of sinusoid signal with random
frequency and phase. Baseline wander reduction is very important step to process

R. Nagal (&) � P. Kumar
Department of ECE, ASET, Amity University, Noida, Uttar Pradesh, India
e-mail: rnagal@amity.edu

P. Kumar
e-mail: pkumar4@amity.edu

P. Bansal
Department of CSE, MSIT, IP University, New Delhi, India
e-mail: pbansal89@yahoo.co.in

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_16

163

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_16&domain=pdf

ECG signal. Finally, the work presents here with aim to find the clean signal from the
undesired noisy signals so that the out coming signal can be used for easy diagnosis.

There are so many techniques used to enhance the quality of the signal in the
research papers [1–9], those were used both adaptive and non-adaptive models.
There were so many adaptive filters proposed for canceling noise from ECG signal.
These adaptive filters minimize the error between the noisy ECG signal (considered
as the primary input) and a reference signal which is somehow correlated with the
noise present in primary ECG signal. To track the dynamic variations of the ECG
signals, Thakor et al. [1] give the concept of an adaptive recurrent filter structure
which acquired the impulse response of normal QRS. To track the QRS complexes
in ECG signals with few parameters, an adaptive system has been proposed which
is based on the Hermite functions [2]. To update the coefficient of the filter, there is
always a need to have an adaptive algorithm. The task of this adaptive algorithm is
to minimize the error obtained after subtracting the output of the filter and the
addition of main signal and noise. The researcher also analyzed the error conver-
gence when the reference input is deterministic signal. One of that kind works has
been published by Olmos et al. [3], where they had derived the expression for
steady-state misadjustment taking ECG as input signal. Costa et al. [4] proposed
noise resilient variable step size LMS algorithm which is specially designed for
biomedical signals. A software approach has also been developed by Brouse et al.
[5] for detecting noises from ECG signal using wavelet decomposition of signals.
But hardware implementation of this approach becomes costly for biomedical
applications. So there are several adaptive algorithms, and there modification has
been published [10–13].

This paper contributes by implementing error normalized step size least mean
square (ENSS-LMS) algorithm with the help of wavelet transforms. In this paper,
the adaptive structure of ENSS is presented to eliminate the baseline wander noise
from ECG signals. MIT-BIH database is used to implement and analyze the per-
formance of weight updating algorithm (ENSS) to eliminate the baseline wander
noise from ECG signals. MATLAB simulations have been done to indicate sub-
stantial improvements of the quality if ECG signals by obtaining the good value of
EMSE and misadjustment.

This paper is organized as follows: Sect. 2 gives the proposed Implementation of
ENSS algorithm along with wavelet transform. Section 3 shows the simulation
results. Section 4 concludes the work.

2 Proposed Implementation

2.1 ENSS Algorithm-Based ANC System

Adaptive noise cancellation is a technique used to remove the noise from the input
signal. Figure 1 shows the primary input signal x(n) which is basically the addition
of original signal with some noise. If an original signal is say s(n) and noise signal

164 R. Nagal et al.

say N1(n), then primary input x(n) becomes x(n) = s(n) + N1(n). There is also a
reference signal taken which is related to the noise added with the original signal.
The reference noise signal N(n) will pass through a filter whose coefficient will be
updated through ENSS-LMS algorithm.

2.2 1-D Wavelet Transform (Haar Wavelet Transform)

It has been seen that a signal is decomposed in terms of its sinusoids for spectral
analysis, but it has also found that decomposing the signal in terms of its com-
ponents for different frequency band spectrum is very good to reduce the com-
plexity of transform like wavelet transform [14]. So we use discrete wavelet
transform for spectral analysis of signal using a set of basic function defined in both
frequency and time domain. Here we are using ‘Haar’ wavelet [15]. Haar wavelet is
basically a sequence of rescaled square-shaped integral function on the unit interval
represented in terms of an orthonormal function. It is generally used for the analysis
of signals which suddenly changes [16]. The mother wavelet function for Haar
wavelet is defined as:

XW 0; 0ð Þ
X/ 0; 0ð Þ

� �
¼

1ffiffi
2

p 1ffiffi
2

p
1ffiffi
2

p 1ffiffi
2

p

" #
x 0ð Þ
x 1ð Þ

� �
or X ¼ Hn;0x ð1Þ

Its inverse function is defined as

x ¼ HTX ð2Þ

Primary
Signal x

(n)

1-D
Wavelet

1-D
Wavelet

Noise
Signal
N (n)

Weights of
Filter w (n)

±

ENSS
Algorithm

Inverse
1-D

Wavelet

Fig. 1 Block diagram of
proposed ENSS-based ANC
system

Noise Reduction from ECG Signal Using Error Normalized Step … 165

2.3 ENSS-LMS Algorithm

Error normalized step size least mean square (ENSS) is an algorithm where instead
of filter input the step size parameters vary. The step size parameters vary as a
nonlinear function of the error vector. In error normalized step size algorithm, the
variable step size is inversely proportional to the squared of the error vector. Also in
this algorithm, the number of iteration and the length of the error vector are equal.
The equation for updating the weights of ENSS is:

W nþ 1ð Þ ¼ W nð Þþ l

1þ l enk k2 e nð Þx nð Þ ð3Þ

where

enk k2¼
Xn�1

i¼0

e2 n� ið Þ ð4Þ

is the squared of the error e nð Þ, which is used for the estimation of it for its entire
updating. The step size equation is now defined as:

W nþ 1ð Þ ¼ W nð Þþ 1
1
l þ enk k2 e nð Þx nð Þ ð5Þ

As the length of error vector e(n) is equal to the number of iterations say n, the
proposed variable step size µ(n) becomes nonlinear decreasing function of n. So,
enk k2 will be increasing function of n. Also, µ(n) is an increasing function of the

parameter µ [17].

2.4 Implementation Steps

1. Import the ECG signal in the program to workspace which is x(n); we consider
this ECG signal with noise.

2. Following that baseline wander noise file is also imported from workspace, we
call it as reference noise signal and denoted by N(n).

3. A correlated noise is generated by passing the noise signals through a
parameterized filter of some order.

4. Wavelet Transform of principle signal and baseline wander noise both will be
taken. So the output of 1-D wavelet box shown in Fig. 1 is x nð ÞW tð Þ for
primary signal and N1 nð ÞW tð Þ for reference signal.

5. Weights, error, and other variables are initialized.

166 R. Nagal et al.

6. Now the wavelet coefficient obtained from signals will be processed through
the FIR Wiener filter.

7. The step size is determined using its limit equation (3), where the error will be
calculated by Eq. (5).

8. Output of the filter is calculated by multiplying the baseline noise signal with
the computed tap weight. So Eq. (3) becomes

W nþ 1ð Þ ¼ W nð Þ þ
�

l

1þ l enk k2 e nð ÞN1nÞW nð Þ
�
: ð6Þ

9. The output of filter acts as a complementary to the noise present in the signal
which when added to the corrupted signal cancels a part of the noise. This
negative addition gives desired response from the ANC system.

10. The desired signal is a cleaned signal. This cleaned signal which when sub-
tracted from the principal signal gives us an error signal.

11. The error signal is fed back into tap weight computing equation via ENSS-LMS
algorithm using Eq. (3).

12. Finally, the inverse 1-D wavelet transform has been taken to get the final signal
using Eq. (2).

The resulted signal is the clean ECG signal.

3 Simulation Results

The work presented here used database of 3600 samples of the ECG signal. This
has been collected from the benchmark MIT-BIH arrhythmia database [18]
(recording nos 101, 102, 103). The non-stationary real baseline wander noise is
obtained from MIT-BIH Normal Sinus Rhythm Database (NSTDB). The arrhyth-
mia database consists of ECG recordings obtained from 47 subjects (men and
women of different age-groups). The recording has 11-bit resolution over a 10 mV
range with 360 samples per second per channel. The performance of algorithm is
evaluated in terms of EMSE and misadjustment as shown in Table 2.

After getting the database, the ECG recording (records 101, 102, 103), add
baseline wander noise to generate primary signals. As shown in Fig. 1, wavelet
transform of primary signal (addition of normal ECG and baseline wander) has
been taken. Figure 2 shows the wavelet transform of primary signal using ‘Haar’
wavelet with level 1 decomposition. After this export the coefficient of wavelet to
MATLAB workspace.

Now as per Fig. 1, the wavelet transform of reference noise needs to be taken
using ‘Haar’ wavelet with level 1 decomposition. Figure 3 shows the wavelet
decomposition of reference noise signal using wavelet 1-D transform. The coeffi-
cient of wavelet transform can be now export to MATLAB workspace for further
processing.

Noise Reduction from ECG Signal Using Error Normalized Step … 167

The wavelet decomposition allows the temporal addition of the ECG signal and
left the ECG signal with only one-fourth of the input signal size. Now the reference
signal will be passed through a FIR filter designed. The output of the filter will be
subtracted from the primary signal x(n) [after wavelet decomposition it becomes sig
(n)], and an error signal has been generated, which will again fed back to the filter
via ENSS-LMS algorithm [using Eq. (1)] to update the weights of filter. Finally,
inverse wavelet transform is taken to get the cleaned signal shown in Fig. 4.

To validate the clean ECG signal shown in Fig. 4, the parameters EMSE and
misadjustment have been analyzed (refer Table 1). It is clear from Table 2 that
when recording 101 has been taken as input signal with noise, the EMSE reduced to
−30.665 dB which is great reduction as compared to LMS algorithm with value

Fig. 2 Wavelet
decomposition of primary
signal (ECG+ baseline
wander noise)

Fig. 3 Wavelet
decomposition of reference
noise signal (baseline wander
noise)

168 R. Nagal et al.

−7.788 dB for same recording for step size parameter µ = 0.025. Now increasing
the step size parameter with value µ = 0.05, the value of EMSE reduced to
−34.257 dB and to −18.752 dB for LMS algorithm so as misadjustment too. For
step size parameter µ = 0.1, EMSE has value −39.710 (ENSS) against −30.407 in
case of LMS algorithm. To validate the model, the experiment was repeated for
other ECG database recording too named as 101, 102, and many more. But because
of space constraint, only the results of three recordings have been shown in
Tables 1 and 2.

Fig. 4 Final ECG signal output after taking inverse wavelet transform

Table 1 EMSE and misadjustment values for different recorded ECG signals for ENSS-LMS
algorithm

ENSS Record 101 Record 102 Record 103 Average

EMSE
(dB)

M EMSE
(dB)

M EMSE
(dB)

M EMSE
(dB)

M

µ = 0.025 −30.665 0.5142 −31.543 0.5150 −31.658 0.6265 −30.666 0.5519

µ = 0.05 −34.257 0.9337 −35.252 0.9299 −34.743 0.9501 −34.746 0.9379

µ = 0.1 −39.710 0.7555 −41.324 0.8258 −42.101 0.7563 −41.045 0.7792

Table 2 EMSE and misadjustment values for different recorded ECG signals for LMS algorithm

LMS Record 101 Record 102 Record 103 Average

EMSE
(dB)

M EMSE
(dB)

M EMSE
(dB)

M EMSE
(dB)

M

µ = 0.025 −7.788 0.908 −6.952 0.992 −7.129 0.912 −7.289 0.937

µ = 0.05 −18.752 0.846 −17.842 0.878 −18.521 0.855 −18.371 0.859

µ = 0.1 −30.407 −8.919 −29.107 −8.990 −30.203 −8.23 −29.905 −8.890

Noise Reduction from ECG Signal Using Error Normalized Step … 169

4 Conclusion

Wavelet decomposition-based method for improving the quality of ECG signal by
removing baseline wander noise has been proposed in this paper. The simulation
results show the effectiveness of this technique by decreasing the EMSE and
misadjustment. Analyzing the result shown in Tables 1 and 2, we can say that
stablishing the wavelet-based adaptive noise cancellation system with ENSS
algorithm, taking ECG signal as input gives better results than LMS stablished
ANC system. The average value of EMSE from recordings 101, 102, 103 gives
−30.66 dB than −7.289 dB (LMS) for µ = 0.025. Similar for misadjustment, the
average value is 0.5519 (ENSS) than 0.937 (LMS) value for µ = 0.025. Overall
even for other values for µ = 0.025, the proposed method behaves better and can be
used as a performance optimization tool in biomedical signal processing.

References

1. Thakor, N.V., Zhu, Y.S.: Applications of adaptive filtering to ECG analysis: noise
cancellation and arrhythmia detection. IEEE Trans. Biomed. Eng. 38(8), 785–794 (1991)

2. Lagnna, P., Jan, R., Olmos, S., Thakor, N.V., Rix, H., Caminal, P.: Adaptive estimation of
QRS complex by the Hermite model for classification and ectopic beat detection. Med. BioI.
Eng. Comput. 34(1), 58–68 (1996)

3. Olmos, S., Laguna, P.: Steady-state MSE convergence analysis in LMS adaptive filters with
deterministic reference inputs for biomedical signals. IEEE Trans. Signal Process. 48, 2229–
2241 (2000)

4. Costa, M.H., Bermudez, C.M.: A noise resilient variable step-size LMS algorithm. Sig.
Process. 88, 733–748 (2008)

5. Brouse, C., Bumont, G.A., Herrmann, F.J., Ansermino, J.M.: A wavelet approach to detecting
electrocautery noise in the ECG. IEEE Eng. Med. BioI. Mag. 25(4), 76–82 (2006)

6. Leski, J.M., Henzel, N.: ECG baseline wander and power line interference reduction using
nonlinear filter bank. Sig. Process. 85, 781–793 (2005)

7. Meyer, C., Gavela, J.F., Harris, M.: Combining algorithms in automatic detection of QRS
complexes in ECG signals. IEEE Trans. Inf. Technol Biomed. 10(3), 468–475 (2006)

8. Kotas, M.: Application of projection pursuit based robust principal component analysis to
ECG enhancement. Biomed. Signal Process. Control 1, 289–298 (2007)

9. Mihov, G., Dotsinsky, I.: Power-line interference elimination from ECG in case of
non-multiplicity between the sampling rate and the powerline frequency. Biomed. Signal
Process. Control 3, 334–340 (2008)

10. Floris, E., Schlaefer, A., Dieterich, S., Schweikard, A.: A fast lane approach to LMS
prediction of respiratory motion signals. Biomed. Signal Process. Control 3, 291–299 (2008)

11. Li, N., Zhang, Y., Yanling, H., Chambers, J.A.: A new variable step size NLMS algorithm
designed for applications with exponential decay impulse responses. Sig. Process. 88, 2346–
2349 (2008)

12. Xiao, Y.: A new efficient narrowband active noise control system and its performance
analysis. IEEE Trans. Audio Speech Lang. Process. 19(7) (2011)

13. Leigh, G.M.: Fast FIR algorithms for the continuous wavelet transform from constrained least
squares. IEEE Trans. Signal Process. 61(1) (2013)

170 R. Nagal et al.

14. Kozacky, W.J., Ogunfunmi, T.: Convergence analysis of an adaptive algorithm with output
power constraints. IEEE Trans. Circ. Syst. II Express Briefs 61(5) (2014)

15. Das, R.L., Chakraborty, M.: On convergence of proportionate-type normalized least mean
square algorithms. IEEE Trans. Circ. Syst. II 62(5) (2015)

16. Sheetal, Mittal, M.: A Haar wavelet based approach for state analysis of disk drive read
system. Appl. Mech. Mater. 592–594, 2267–2271 (2014)

17. Narula, V. et al.: Assessment of variants of LMS algorithms for noise cancellation in low and
medium frequency signals. In: IEEE Conference on Recent Advancements in Electrical,
Electronics and Control Engineering, pp. 432–437 (2011)

18. http://www.physionet.org/cgibin/atm/ATM?database=mitdb&tool=plot_waveforms(MIT-
BIHdatabase)

Noise Reduction from ECG Signal Using Error Normalized Step … 171

http://www.physionet.org/cgibin/atm/ATM%3fdatabase%3dmitdb%26tool%3dplot_waveforms(MIT-BIHdatabase)
http://www.physionet.org/cgibin/atm/ATM%3fdatabase%3dmitdb%26tool%3dplot_waveforms(MIT-BIHdatabase)

A Novel Approach for Extracting
Pertinent Keywords for Web Image
Annotation Using Semantic Distance
and Euclidean Distance

Payal Gulati and Manisha Yadav

Abstract The World Wide Web today comprises of billions of Web documents
with information on varied topics presented by different types of media such as text,
images, audio, and video. Therefore along with textual information, the number of
images over WWW is exponentially growing. As compared to text, the annotation
of images by its semantics is more complicated as there is a lack of correlation
between user’s semantics and computer system’s low-level features. Moreover, the
Web pages are generally composed of contents containing multiple topics and the
context relevant to the image on the Web page makes only a small portion of the
full text, leading to the challenge for image search engines to annotate and index
Web images. Existing image annotation systems use contextual information from
page title, image src tag, alt tag, meta tag, image surrounding text for annotating
Web image. Nowadays, some intelligent approaches perform a page segmentation
as a preprocessing step. This paper proposes a novel approach for annotating Web
images. In this work, Web pages are divided into Web content blocks based on the
visual structure of page and thereafter the textual data of Web content blocks which
are semantically closer to the blocks containing Web images are extracted. The
relevant keywords from textual information along with contextual information of
images are used for annotation.

Keywords Image search engine � Annotation � Semantic correlation
Semantic distance measure

P. Gulati
YMCA UST, Faridabad, Haryana, India
e-mail: gulatipayal@yahoo.co.in

M. Yadav (&)
RPSGOI, Mahendergarh, Haryana, India
e-mail: manishayadav17@gmail.com

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_17

173

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_17&domain=pdf

1 Introduction

WWW is the largest repository of digital images in the world. The number of
images available over the Web is exponentially growing and will continue to
increase in future. However, as compared to text, the annotation of images by
means of the semantics they depict is much more complicated. Humans can rec-
ognize objects depicted in images, but in computer vision, the automatic under-
standing the semantics of the images is still the perplexing task. Image annotation
can be done either through content-based or text-based approaches. In text-based
approach, different parts of a Web page are considered as possible sources for
contextual information of images, namely image file names (ImgSrc), page title,
anchor texts, alternative text (ALT attribute), image surrounding text. In the
content-based approach, image processing techniques such as texture, shape, and
color are considered to describe the content of a Web image.

Most of the image search engines index images using text information associated
with images, i.e., on the basis of alt tags, image caption. Alternative tags or alt tag
provides a textual alternative to non-textual content in Web pages such as image,
video, media. It basically provides a semantic meaning and description to the
embedded images. However, the Web is still replete with images that have missing,
incorrect, or poor text. In fact in many cases, images are given only empty or null
alt attribute (alt = “ ”) thereby such images remain inaccessible. Image search
engines that annotate Web images based on content-based annotation have problem
of scalability.

In this work, a novel approach for extracting pertinent keywords for Web image
annotation using semantic distance and Euclidean distance is proposed. Further, this
work proposes an algorithm that automatically crawls the Web pages and extracts
the contextual information from the pages containing valid images. The Web pages
are segmented into Web content blocks and thereafter semantic correlation is cal-
culated between Web image and Web content block using semantic distance
measure. The pertinent keywords from contextual information along with semantic
similar content are then used for annotating Web images. Thereafter, the images are
indexed with the associated text it refers to.

This paper is organized as follows: Sect. 2 discusses the related work done in
this domain. Section 3 presents the architecture of the proposed system. Section 4
describes the algorithm for this approach. Finally, Sect. 5 comprises of the
conclusion.

2 Related Work

A number of text-based approaches for Web image annotation have been proposed
in recent years [1]. There are numerous systems [2–6] that use contextual infor-
mation for annotating Web images. Methods for exacting contextual information

174 P. Gulati and M. Yadav

are (i) window-based extraction [7, 8], (ii) structure-based wrappers [9, 10],
(iii) Web page segmentation [11–13].

Window-based extraction is a heuristic approach which extracts image sur-
rounding text; it yields poor results as at times irrelevant data is extracted and
relevant data is discarded. Structure-based wrappers use the structural informa-
tion of Web page to decide the borders of the image context but these are not
adaptive as they are designed for specific design patterns of Web page. Web page
segmentation method is adaptable to different Web page styles and divides the
Web page into segments of common topics, and then each image is associated with
the textual contents of the segment which it belongs to. Moreover, it is difficult to
determine the semantics of text with the image.

In this work, Web page is segmented into Web content blocks using
vision-based page segmentation algorithm [12]. Thereafter, semantic similarity is
calculated between Web image and Web content block using semantic distance
measure. Semantic distance is the inverse of semantic similarity [14] that is the less
distance of the two concepts, the more they are similar. So, semantic similarity and
semantic distance are used interchangeably in this work.

Semantic distance between Web content blocks is calculated by determining a
common representation among them. Generally, text is used for common repre-
sentation. As per the literature review, there are various similarity metrics for texts
[13, 15, 16]. Some simple metrics are based on lexical matching. Prevailing
approaches are successful to some extent, as they do not identify the semantic
similarity of texts. For instance, terms Plant and Tree have a high semantic cor-
relation which remains unnoticed without background knowledge. To overcome
this, WordNet taxonomy as background knowledge is discussed [17, 18].

In this work, the word-to-word similarity metric [19] is used to calculate the
similarity between words and text-to-text similarity is calculated using the metric
introduced by Corley [20].

3 Proposed Architecture

The architecture of proposed system is given in Fig. 1. Components of proposed
system are discussed in following subsequent subsections.

3.1 Crawl Manager

Crawl manager is a computer program that takes the seed URL from the URL
queue and fetches the Web page from WWW.

A Novel Approach for Extracting Pertinent Keywords for Web … 175

3.2 URL Queue

URL queue is a type of repository which stores the list of URLs that are discovered
and extracted by crawler.

3.3 Parser

Parser is used to extract information present on Web pages. Parser downloads the
Web page and extracts the XML file of the same. Thereafter, it convert XML file
into DOM object models. It then checks whether valid images are present on the

Fig. 1 Proposed architecture

176 P. Gulati and M. Yadav

Web page or not. If valid image is present on the Web page, then the page is
segmented using visual Web page segmenter; otherwise, next URL is crawled.
The DOM object models which contain page title of Web page, image source, and
alternative text of valid images present on the Web page are extracted from the set
of object models of the Web page.

3.4 Visual Web Page Segmenter

Visual Web page segmenter is used for the segmentation of Web pages into Web
content blocks. By the term segmentation of Web pages means dividing the page by
certain rules or procedures to obtain multiple semantically different Web content
blocks whose content can be investigated further.

In the proposed approach, VIPS algorithm [12] is used for the segmentation of
Web page into Web content blocks. It extracts the semantic structure of a Web page
based on its visual representation. The segmentation process has basically three
steps: block extraction, separator detection, and content structure construction.
Blocks are extracted from DOM tree structure of the Web page by using the page
layout structure, and then separators are located among these blocks. The
vision-based content structure of a page is obtained by combining the DOM
structure and the visual cues. Therefore, a Web page is a collection of Web content
blocks that have similar DOC. With the permitted DOC (pDOC) set to its maximum
value, a set of Web content blocks that consist of visually indivisible contents is
obtained. This algorithm also provides the two-dimensional Cartesian coordinates
of each visual block present on the Web page based on their locations on the Web
page.

3.5 Block Analyzer

Block analyzer analyses the Web content blocks obtained from segmentation.
Further, it divides the Web content blocks into two categories: image blocks and
text blocks. Web blocks which contain images are considered as image blocks and
rest are considered as text blocks.

3.6 Nearest Text Block Detector

Nearest text block detector detects the nearest text blocks to an image block. For
checking closeness, Euclidean distance between closest edges of two blocks is
calculated. Distance between two line segments is obtained by using Eq. (1):

A Novel Approach for Extracting Pertinent Keywords for Web … 177

Euclidean Distance ¼
ffi
ðx2 � x1Þ2 þðy2 � y1Þ2

q
ð1Þ

After the distance is calculated between each image block pair and text block
pair, the text blocks whose distance from image block is below the threshold are
assigned to that image block. In this way, each image block is assigned with a group
of text blocks which are closer in distance with that image block.

3.7 Tag Text Extractor

In the proposed approach, tag text extractor is used for extracting text from the
HTML tags. Parser provides the DOM object models by parsing a Web page. If the
image present on this Web page is valid, i.e., it is not a button or an icon, which is
checked by valid image checker, are extracted from metadata of image like image
source (Imgsrc), alternative text (Alt). Page title of the Web page which contains
this image is also extracted.

3.8 Keyword Extractor

In this work, keyword extractor is used to extract keywords from the metadata of
images and page title. Keywords are stored into a text file which is further used for
obtaining semantically close text blocks by calculating semantic distance.

3.9 Semantic Distance Calculator

Semantic distance calculator is used to determine the semantic correlation among
the Web content blocks. As lexical matching between words does not provide better
results, here the words are matched with concepts in a knowledge base and concept
to concept matching is computed using WordNet.

Before computing text similarity between image metadata and text blocks,
preprocessing of the text blocks is done. After preprocessing process, sentence
detection is done. Then tokenization is done, and finally, a part of speech tagging is
done for all the words using NLP. At last, stemming of the terms is done and
thereafter, terms are mapped to WordNet concepts.

The similarity of text is calculated using Corley’s approach. In this method, for
every noun (verb) that belongs to image metadata, the noun (verb) in the text of text
blocks with maximum semantic similarity is identified according to Eq. 2.

178 P. Gulati and M. Yadav

simLin ¼ 2:IC LCSð Þ
IC Concept1ð Þþ IC Concept2ð Þ ð2Þ

Here LCS is the least common subsumer of the two concepts in the WordNet
taxonomy, and IC is the information content that measures the specificity for a
concept as follows:

ICðconceptÞ ¼ � logPðconceptÞ ð3Þ

In Eq. 3, P(concept) is the probability of occurrence of an instance of concept in
a large corpus. For the classes other than noun (verb), a lexical matching is per-
formed. The similarity between two texts T1 (text of image metadata), T2 (text of
text blocks) is calculated as:

sim T1; T2ð ÞT1¼
P

wi2T1 maxSim wi; T2ð Þ:idf wið Þ
P

wi2T1 idf wið Þ ð4Þ

where idf(wi) is the inverse document frequency [19] of the word wi in a large
corpus. A directional similarity score is further calculated with respect to T1. The
score from both directions is combined into a bidirectional similarity as given in
Eq. 5:

sim T1; T2ð Þ ¼ sim T1; T2ð ÞT1 :sim T1; T2ð ÞT2 ð5Þ

This similarity score has a value between 0 and 1. From this similarity score,
semantic distance is calculated as follows:

distsem T1; T2ð Þ ¼ 1� sim T1; T2ð Þ ð6Þ

In this way, semantic distance is calculated among image block and its nearest
text blocks. The text block whose semantic distance is less is the semantically
correlated text block to that image block.

3.10 Text Extractor

Text extractor is used to extract text from text blocks present on the Web page. Text
of semantically close text block obtained in the previous step is extracted and
buffered. This text along with the text extracted from image metadata and page title
of Web page is used to extract frequent keywords.

A Novel Approach for Extracting Pertinent Keywords for Web … 179

3.11 Keyword Determiner

In this work, keyword determiner is used to extract keywords from the text stored in
a buffer. Frequent keywords are determined by applying a threshold on the fre-
quency count of keywords. Keywords whose frequency is above the threshold are
extracted and used for annotating images.

3.12 Image Annotation

Page title of Web page, image source of image, alternative text of image, and
frequent keywords extracted in the previous step—all of these describe the image
best.

4 Algorithm

The algorithm for proposed system is automatic image annotation. This algorithm
takes the URL of Webpage as input and provides the description of the Web page as
output.

This algorithm is used here for annotating images present on the Web page.
Firstly, parsing is done to extract page title, Img_Src, Alt Text of image. Secondly,
Web page segmentation is performed using VIPS algorithm. Then validity of image
is checked and for valid images find nearest text blocks using the algorithm given
below. For closer text block list, semantic distance is calculated using bidirectional
similarity between blocks. Then keywords are extracted from the semantically close
text block. These keywords are used for image annotation process.

Automatic_Image_Annotation (Description of image)

Begin

Parse the Web page (URL)

If contain valid image

Text1 = Extract Page_Title, Img_Src(valid image),

alt(valid image)

Web_Page_Segmentation (URL)

For each valid image_block

Text_block_list = Find_Nearest_text_block

(ImageBlock Cartesian Coordinates, Text Blocks

Cartesian Coordinates)

least_distance = some_big_number;

For each text block in Text_block_list

Distance = Find_semantic_distance (Text Block, Text1)

180 P. Gulati and M. Yadav

If (least_distance > distance)

{

Least_distance = Distance

Return idtext ;

}

Extract keywords from text block (idtext)

End

End

Algorithm for obtaining nearest text blocks is find nearest text blocks. It takes
image blocks and text blocks as input and provides a list of nearest blocks as output.
This algorithm collects the nearest text blocks to an image block present on the Web
page using closest edge Euclidean distance between Web content blocks. It uses the
Cartesian coordinates of Web content blocks to calculate Euclidean distance.

Find_Nearest_Text_Block (List of Nearest Text Blocks)

Begin

For each Text Block

{

Distance = calculate Euclidean distance

between image block and text block

If (distance < threshold)

{

Put the id of text block in a list

}

}

End

5 Conclusion

This paper presents algorithm for the novel approach for extracting pertinent
keywords for Web image annotation using semantics. In this work, Web images are
automatically annotated by determining pertinent keywords from contextual
information from Web page and semantic similar content from Web content blocks.
This approach provides better results than method of image indexing using Web
page segmentation and clustering [21], as in existing method context of image, it is
not coordinated with the context of surrounding text. This approach will provide
good results as closeness between image and Web content blocks is computed using
both Euclidean distance and semantic distance.

A Novel Approach for Extracting Pertinent Keywords for Web … 181

References

1. Sumathi, T., Devasena, C.L., Hemalatha, M.: An overview of automated image annotation
approaches. Int. J. Res. Rev. Inf. Sci. 1(1) (2011) (Copyright © Science Academy Publisher,
United Kingdom)

2. Swain, M., Frankel, C., Athitsos, V.: Webseer: an image search engine for the World Wide
Web. In: CVPR (1997)

3. Smith, J., Chang, S.: An image and video search engine for the world-wide web. Storage.
Retr. Im. Vid. Datab. 8495 (1997)

4. Ortega-Binderberger, M., Mehrotra, V., Chakrabarti, K., Porkaew, K.: Webmars: a
multimedia search engine. In: SPIE An. Symposium on Electronic Imaging, San Jose,
California. Academy Publisher, United Kingdom (2000)

5. Alexandre, L., Pereira, M., Madeira, S., Cordeiro, J., Dias, G.: Web image indexing:
combining image analysis with text processing. In: Proceedings of the 5th International
Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS04). Publisher,
United Kingdom (2004)

6. Yadav, M., Gulati, P.: A novel approach for extracting relevant keywords for web image
annotation using semantics. In: 9th International Conference on ASEICT (2015)

7. Coelho, T.A.S., Calado, P.P., Souza, L.V., Ribeiro-Neto, B., Muntz, R.: Image retrieval using
multiple evidence ranking. IEEE Trans. Knowl. Data Eng. 16(4), 408–417 (2004)

8. Pan, L.: Image 8: an image search engine for the internet. Honours Year Project Report,
School of Computing, National University of Singapore, April, 2003

9. Liu, B.: Web data mining: exploring hyperlinks, contents, and usage data. Data-Centric Syst.
Appl. Springer 2007 16(4), 408–417 (2004)

10. Fauzi, F., Hong, J., Belkhatir, M.: Webpage segmentation for extracting images and their
surrounding contextual information. In: ACM Multimedia, pp. 649–652 (2009)

11. Chakrabarti, D., Kumar, R., Punera, K.: A graphtheoretic approach to webpage segmentation.
In: Proceeding of the 17th International Conference on World Wide Web, WWW’08,
pp. 377–386, New York, USA (2008)

12. Cai, D., Yu, S., Wen, J.R., Ma, W.Y.: VIPS: a vision based page segmentation algorithm.
Technical Report, Microsoft Research (MSR-TR-2003-79) (2003)

13. Hattori, G., Hoashi, K., Matsumoto, K., Sugaya, F.: Robust web page segmentation for
mobile terminal using content distances and page layout information. In: Proceedings of the
16th International Conference on World Wide Web, WWW’07, pp. 361–370, New York, NY,
USA. ACM (2007)

14. Nguyen, H.A., Eng, B.: New semantic similarity techniques of concepts applied in the
Biomedical domain and wordnet. Master thesis, The University of Houston-Clear Lake
(2006)

15. Voorhees, E.: Using WordNet to disambiguate word senses for text retrieval. In: Proceedings
of the 16th Annual International ACM SIGIR Conference (1993)

16. Landauer, T.K., Foltz, P., Laham, D.: Introduction to latent semantic analysis. Discourse
Processes 25 (1998)

17. Miller, G.A., Beckwith, R., Fellbaum, C., Gross, D., Miller, K.: WordNet: An on-line lexical
database. Int. J. Lexicogr. 3, 235–244 (1990)

18. Patwardhan, S., Banerjee, S., Pedersen, T.: Using measures of semantic relatedness for word
sense disambiguation. In: Proceedings of the 4th International Conference on Computational
Linguistics and Intelligent Text Processing, CICLing’03, pp. 241–257. Springer, Berlin,
Heidelberg (2003)

19. Lin, D.: Automatic retrieval and clustering of similar words. In: Proceedings of the 36th
Annual Meeting of the Association for Computational Linguistics and 17th International
Conference on Computational Linguistics, vol. 2, ACL-36, pp. 768–774, Morristown, NJ,
USA. Association for Computational Linguistics (1998); Sparck Jones, K.: A Statistical

182 P. Gulati and M. Yadav

Interpretation of Term Specificity and Its Application in Retrieval, pp. 132–142. Taylor
Graham Publishing, London, UK (1988)

20. Corley, C., Mihalcea, R.: Measuring the semantic similarity of texts. In: Proceedings of the
ACL Workshop on Empirical Modeling of Semantic Equivalence and Entailment,
EMSEE’05, pp. 13–18, Morristown, NJ, USA, 2005. Association for Computational
Linguistics (1998)

21. Tryfou, G., Tsapatsoulis, N.: Image Indexing Based on Web Page Segmentation and
Clustering (2014)

A Novel Approach for Extracting Pertinent Keywords for Web … 183

Classification of Breast Tissue Density
Patterns Using SVM-Based Hierarchical
Classifier

Jitendra Virmani, Kriti and Shruti Thakur

Abstract In the present work, three-class breast tissue density classification has
been carried out using SVM-based hierarchical classifier. The performance of
Laws’ texture descriptors of various resolutions have been investigated for differ-
entiating between fatty and dense tissues as well as for differentiation between
fatty-glandular and dense-glandular tissues. The overall classification accuracy of
88.2% has been achieved using the proposed SVM-based hierarchical classifier.

Keywords Breast tissue density classification � Texture feature extraction
Hierarchical classifier

1 Introduction

The most commonly diagnosed disease among women nowadays is breast cancer
[1]. It has been shown that high breast tissue density is associated with high risk of
developing breast cancer [2–10]. Mortality rate for breast cancer can be increased if
detection is made at an early stage. Breast tissue is broadly classified into fatty,
fatty-glandular, or dense-glandular based on its density.

Various computer-aided diagnostic (CAD) systems have been developed by
researchers in the past to discriminate between different density patterns, thus
providing the radiologists with a system that can act as a second opinion tool to

J. Virmani (&)
Thapar University, Patiala, Punjab, India
e-mail: jitendra.virmani@gmail.com

Kriti
Jaypee University of Information Technology, Waknaghat, Solan, India
e-mail: kriti.23gm@gmail.com

S. Thakur
Department of Radiology, IGMC, Shimla, Himachal Pradesh, India
e-mail: tshruti878@yahoo.in

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_18

185

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_18&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_18&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_18&domain=pdf

validate their diagnosis. Few studies have been carried out on Mammographic
Image Analysis Society (MIAS) dataset for classification of breast tissue density
patterns into fatty, fatty-glandular, and dense-glandular tissue types [3–10]. Among
these, mostly the studies have been carried on the segmented breast tissue
(SBT) and rarely on fixed-size ROIs [3–10]. Out of these studies, Subashini et al.
[6] report a maximum accuracy of 95.4% using the SBT approach, and Mustra et al.
[9] report a maximum accuracy of 82.0% using the ROI extraction approach.

The experienced participating radiologist (one of the authors of this paper)
graded the fatty, fatty-glandular, and dense-glandular images as belonging to typical
or atypical categories. The sample images of typical and atypical cases depicting
different density patterns are shown in Fig. 1.

In the present work, a hierarchical classifier with two stages for binary classi-
fication has been proposed. This classifier is designed using support vector machine
(SVM) classifier in each stage to differentiate between fatty and dense breast tissues
and then between fatty-glandular and dense-glandular breast tissues using Laws’
texture features.

2 Methodology

2.1 Description of Dataset

The MIAS database consists of total 322 mammographic images out of which 106
are fatty, 104 are fatty-glandular, and 112 are dense-glandular [11]. From each
image, a fixed-size ROI has been extracted for further processing.

2.2 Selecting Regions of Interest

After conducting repeated experiments, it has been asserted that for classification of
breast density, the center area of the tissue is the optimal choice [12]. Accordingly,

Fig. 1 Sample of mammographic images from MIAS database, a typical fatty tissue ‘mdb132,’
b typical fatty-glandular tissue ‘mdb016,’ c typical dense-glandular tissue ‘mdb216,’ d atypical
fatty tissue ‘mdb096,’ e atypical fatty-glandular tissue ‘mdb090,’ f atypical dense-glandular tissue
‘mdb100’

186 J. Virmani et al.

fixed-size ROIs of size 200 � 200 pixels have been extracted from each mam-
mogram as depicted in Fig. 2.

2.3 Proposed Method

Computer-aided diagnostic systems involve analysis of mammograms through
computers which can be used by the radiologists as a second opinion tool for
validating their diagnosis as these systems tend to improve the diagnostic accuracy
by detecting any lesions that might be missed during subjective analysis [1, 3–10,
13, 14]. The block diagram is shown in Fig. 3.

Feature Extraction Module The texture descriptor vectors (TDVs) derived from
Laws’ texture analysis using Laws’ masks of resolutions 3, 5, 7, and 9 have been
used in the present work for design of SVM-based hierarchical classifier.

Feature Classification Module Support vector machine classifier has been
extensively used for classification of texture patterns in medical images [1, 14–19].
In the present work, two binary SVM classifiers arranged in a hierarchical frame-
work have been used for three-class breast tissue density classification. The SVM
classifier is implemented using LibSVM library [20].

Fig. 2 ROI extraction
protocol for mammographic
image ‘mdb216’ with ROI
marked

Classification of Breast Tissue Density … 187

3 Results

Various experiments were conducted to obtain the classification performance of
Laws’ texture features using hierarchical classifier built using two stages of binary
SVM classifiers.

3.1 Classification Performance of Laws’ Texture Features
Using Hierarchical Classifier

In this work, the performance of TDVs derived using Laws’ masks of length 3, 5, 7,
and 9 is evaluated using SVM-based hierarchical classifier. The results obtained are
shown in Table 1.

From Table 1, it can be observed that OCA of 91.3, 93.2, 91.9, and 92.5% is
achieved for TDV1, TDV2, TDV3, and TDV4, respectively, using SVM-1
sub-classifier, and OCA of 92.5, 84.2, 87.0, and 90.7% is obtained for TDV1,
TDV2, TDV3, and TDV4, respectively, using SVM-2 sub-classifier.

The results from Table 1 show that for differentiating between the fatty and
dense breast tissues, SVM-1 sub-classifier gives best performance for features
extracted using Laws’ mask of length 5 (TDV2), and for further classification of
dense tissues into fatty-glandular and dense-glandular classes, SVM-2 sub-classifier
gives best performance using features derived from Laws’ mask of length 3
(TDV1). This analysis of the hierarchical classifier is shown in Table 2. The OCA
for hierarchical classifier is calculated by adding the misclassified cases at each
classification stage.

Fig. 3 Proposed classification system

188 J. Virmani et al.

Table 1 Performance of TDFVs derived from laws’ texture features using hierarchical classifier

TDV (l) Classifier CM OCA (%)

F D

TDV1 (30) SVM-1 F 43 10 91.3

D 4 104

SVM-2 FG DG 92.5

FG 48 4

DG 4 52

TDV2 (75) SVM-1 F D 93.2

F 43 10

D 1 107

SVM-2 FG DG 84.2

FG 39 13

DG 4 52

TDV3 (30) SVM-1 F D 91.9

F 43 10

D 3 105

SVM-2 FG DG 87.0

FG 41 11

DG 3 53

TDV4 (75) SVM-1 F D 92.5

F 44 9

D 3 105

SVM-2 FG DG 90.7

FG 46 6

DG 4 52

Note TDV: texture descriptor vector, l: length of TDV, CM: confusion matrix, F: fatty class, D:
dense class, FG: fatty-glandular class, DG: dense-glandular class, OCA: overall classification
accuracy

Table 2 Performance analysis of hierarchical classifier

Classifier TDV (l) CM CA (%) Misclassified
cases

OCA
(%)

F D

SVM-1 TDV2
(75)

F 43 10 93.2 (11/
161)

19/161 88.2

D 1 107

SVM-2 TDV1
(30)

FG DG 92.5 (8/
108)FG 48 4

DG 4 52

Note TDV: texture descriptor vector, l: length of TDV, CM: confusion matrix, F: fatty class, D:
dense class, FG: fatty-glandular class, DG: dense-glandular class, CA: classification accuracy,
OCA: overall classification accuracy

Classification of Breast Tissue Density … 189

4 Conclusion

From the exhaustive experiments carried out in the present work, it can be con-
cluded that Laws’ masks of length 5 yield the maximum classification accuracy of
93.2% for differential diagnosis between fatty and dense classes and Laws’ masks
of length 3 yield the maximum classification accuracy 92.5% for differential
diagnosis between fatty-glandular and dense-glandular classes. Further, for the
three-class problem, a single multi-class SVM classifier would construct three
different binary SVM sub-classifiers where each binary sub-classifier is trained to
separate a pair of classes and decision is made by using majority voting technique.
In case of hierarchical framework, the classification can be done using only two
binary SVM sub-classifiers.

References

1. Kriti, Virmani, J., Dey, N., Kumar, V.: PCA-PNN and PCA-SVM based CAD systems for
breast density classification. In: Hassanien, A.E., et al. (eds.) Applications of Intelligent
Optimization in Biology and Medicine, vol. 96, pp. 159–180. Springer (2015)

2. Wolfe, J.N.: Breast patterns as an index of risk for developing breast cancer. Am.
J. Roentgenol. 126(6), 1130–1137 (1976)

3. Blot, L., Zwiggelaar, R.: Background texture extraction for the classification of mammo-
graphic parenchymal patterns. In: Proceedings of Conference on Medical Image
Understanding and Analysis, pp. 145–148 (2001)

4. Bosch, A., Munoz, X., Oliver, A., Marti, J.: Modeling and classifying breast tissue density in
mammograms. In: Computer Vision and Pattern Recognition, IEEE Computer Society
Conference, 2, pp. 1552–1558. IEEE Press, New York (2006)

5. Muhimmah, I., Zwiggelaar, R.: Mammographic density classification using multiresolution
histogram information. In: Proceedings of 5th International IEEE Special Topic Conference
on Information Technology in Biomedicine (ITAB), pp. 1–6. IEEE Press, New York (2006)

6. Subashini, T.S., Ramalingam, V., Palanivel, S.: Automated assessment of breast tissue density
in digital mammograms. Comput. Vis. Image Underst. 114(1), 33–43 (2010)

7. Tzikopoulos, S.D., Mavroforakis, M.E., Georgiou, H.V., Dimitropoulos, N., Theodoridis, S.:
A fully automated scheme for mammographic segmentation and classification based on breast
density and asymmetry. Comput. Methods Programs Biomed. 102(1), 47–63 (2011)

8. Li, J.B.: Mammographic image based breast tissue classification with kernel self-optimized
fisher discriminant for breast cancer diagnosis. J. Med. Syst. 36(4), 2235–2244 (2012)

9. Mustra, M., Grgic, M., Delac, K.: Breast density classification using multiple feature
selection. Auotomatika 53(4), 362–372 (2012)

10. Silva, W.R., Menotti, D.: Classification of mammograms by the breast composition. In:
Proceedings of the 2012 International Conference on Image Processing, Computer Vision,
and Pattern Recognition, pp. 1–6 (2012)

11. Suckling, J., Parker, J., Dance, D.R., Astley, S., Hutt, I., Boggis, C.R.M., Ricketts, I.,
Stamatakis, E., Cerneaz, N., Kok, S.L., Taylor, P., Betal, D., Savage, J.: The mammographic
image analysis society digital mammogram database. In: Gale, A.G., et al. (eds.) Digital
Mammography. LNCS, vol. 1069, pp. 375–378. Springer, Heidelberg (1994)

12. Li, H., Giger, M.L., Huo, Z., Olopade, O.I., Lan, L., Weber, B.L., Bonta, I.: Computerized
analysis of mammographic parenchymal patterns for assessing breast cancer risk: effect of
ROI size and location. Med. Phys. 31(3), 549–555 (2004)

190 J. Virmani et al.

13. Kumar, I., Virmani, J., Bhadauria, H.S.: A review of breast density classification methods. In:
Proceedings of 2nd IEEE International Conference on Computing for Sustainable Global
Development (IndiaCom-2015), pp. 1960–1967. IEEE Press, New York (2015)

14. Virmani, J., Kriti.: Breast tissue density classification using wavelet-based texture descriptors.
In: Proceedings of the Second International Conference on Computer and Communication
Technologies (IC3T-2015), vol. 3, pp. 539–546 (2015)

15. Virmani, J., Kumar, V., Kalra, N., Khandelwal, N.: A comparative study of computer-aided
classification systems for focal hepatic lesions from B-mode ultrasound. J. Med. Eng.
Technol. 37(44), 292–306 (2013)

16. Virmani, J., Kumar, V., Kalra, N., Khandelwal, N.: SVM-based characterization of liver
ultrasound images using wavelet packet texture descriptors. J. Digit. Imaging 26(3), 530–543
(2013)

17. Virmani, J., Kumar, V., Kalra, N., Khandelwal, N.: Characterization of primary and
secondary malignant liver lesions from B-mode ultrasound. J. Digit. Imaging 26(6),
1058–1070 (2013)

18. Virmani, J., Kumar, V., Kalra, N., Khandelwal, N.: SVM-based characterization of liver
cirrhosis by singular value decomposition of GLCM matrix. Int. J. Artif. Intel. Soft Comput. 3
(3), 276–296 (2013)

19. Virmani, J., Kumar, V., Kalra, N., Khandelwal, N.: PCA-SVM based CAD system for focal
liver lesions from B-Mode ultrasound. Defence Sci. J. 63(5), 478–486 (2013)

20. Chang, C.C., Lin, C.J.: LIBSVM, a library of support vector machines. ACM Trans. Intell.
Syst. Technol. 2(3), 27–65 (2011)

Classification of Breast Tissue Density … 191

Advances in EDM: A State of the Art

Manu Anand

Abstract Potentials of data mining in academics have been discussed in this paper.
To enhance the Educational Institutional services along with the improvement in
student’s performance by increasing their grades, retention rate, maintain their
attendance, giving prior information about their eligibility whether they can give
examination or not based on attendance, evaluating the result using the marks,
predicting how many students have enrolled in which course and all other aspects
like this can be analyzed using various fields of Data Mining. This paper discusses
one of this aspect in which the distinction has been predicted based on the marks
scored by the MCA students of Bharati Vidyapeeth Institute of Computer
Applications and Management, affiliated to GGSIPU using various machine
learning algorithms, and it has been observed that “Boost Algorithm” outperforms
other machine learning models in the prediction of distinction.

Keywords Distinction prediction � Machine learning � Boost algorithm

1 Introduction

Every sector, every organization maintains large amount of data in their databases
and powerful tools are designed to perform data analysis, as a result mining of data
will result in golden chunks of “Knowledge.” There are many misnomers of data
mining like knowledge mining, knowledge discovery from databases, knowledge
extraction, and pattern analysis that can be achieved using various data mining
algorithms like classification, association, clustering, prediction. Data mining
approach plays a pivot role in decision support system (DSS).

Educational data mining [1] is promising as a research area with a collection of
computational and psychological methods to understand how students learn. EDM

M. Anand (&)
Bharati Vidyapeeth Institute of Computers Application and Management (BVICAM),
New Delhi, India
e-mail: manu9910.anand@gmail.com

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_19

193

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_19&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_19&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_19&domain=pdf

develops methods and applies techniques from statistics, machine learning, and data
mining to analyze data collected during teaching and learning [2–4]. In this paper,
machine learning classification models have been used to predict distinction of
students using marks of nine subjects that a student of MCA third semester scored
in their End term exams of GGSIPU. Various subjects whose marks are considered
in student dataset used for predicting distinction are theory of computation, com-
puter graphics, Java programming, data communication and networking, C# pro-
gramming, computer graphics laboratory, Java programming laboratory, C#
programming laboratory, general proficiency. There are totally 112 records with 15
input variables. Some of the considered features like marks of all subjects, per-
centage, and distinction have higher importance than others like name, roll no. in
predicting distinction. The student dataset is used by various machine learning
models namely decision tree model, AdaBoost model, SVM model, linear model,
neural network model [5].

2 Materials and Methods

2.1 Dataset and Its Features

In total, 112 student records having 15 input variables have been considered for
data analysis. These student records are the original results of MCA students of the
third semester in 2014, at Bharati Vidyapeeth Institute of Computer Applications
and Management from GGSIPU. Table 1 describes the subjects associated with
each code in the student dataset. In Table 2, student dataset sample is shown.
Table 3 shows the correlation between each feature. In this, total marks scored by
every student are calculated and then the percentage has been evaluated. Depending
upon the percentage, the distinction has been set to 0 or 1.

Table 1 Features description Feature Subject title

201 Theory of computation

203 Computer graphics

205 Java programming

207 Data communication and networking

209 C# programming

251 Computer graphics laboratory

253 Java programming laboratory

255 C# programming laboratory

261 General proficiency

194 M. Anand

2.2 Feature Measurement

In this analysis of distinction prediction, some of the basic calculations have been
performed in the student dataset using simple method. First total marks have been
evaluated by the summation of every mark scored by each and every student,
followed by the calculation of percentage for each and every record. Then, the
distinction has been marked as 0 or 1 based on the percentage a student has scored.
If the percentage is greater than or equal to 75%, then the distinction is marked as 1
else it is marked as 0.

3 Methodology

The methodology is described in Fig. 1. In the first step, the result of MCA students
of the third semester has been taken as the primary data for the prediction of
distinction. After this, various features like their total of marks, percentage, and
distinction have been evaluated by considering distinction as target value. The
removal of extra fields was carried out which were not required in distinction
prediction, while different algorithms were applied on the student dataset. There
were totally 15 input variables, out of which 9 variables have been passed as an
input to dataset for evaluation. Then, different algorithms have been applied on
student dataset. In the fifth step, different models were trained and tested on the
dataset with their default parameters. Finally, the evolution of the model is done on
accuracy and sensitivity.

Table 2 Sample dataset

Roll_No. Name 201 203 205 207 209 251 253 255 261

311604413 SANGEETA SINHA 55 60 67 53 66 78 84 80 81

411604413 PAWAN 50 66 62 73 60 80 83 80 78

511604413 GIRISH SHANKAR 33 63 62 72 52 78 86 82 78

611604413 TANU 55 76 75 82 73 78 89 84 70

Table 3 Correlation between
each feature

Roll_No. Total Percentage Distinction

311604413 624 69.33333 0

411604413 632 70.22222 0

511604413 606 67.33333 0

611604413 682 75.77778 1

Advances in EDM: A State of the Art 195

3.1 AdaBoost Algorithm

Adaptive boosting is a machine learning algorithm used in combination with other
learning algorithms to improve their performance that represents final output of the
boosted classifier which is represented by the output of the other learning algo-
rithms (“weak learners”) which is combined into a weighted sum.

Algorithm: Adaptive Boost pseudocode

Set uniform example weights.
for Each base learner do
Train base learner with weighted sample.
Test base learner on all data.
Set learner weight with weighted error.
Set example weights based on ensemble predictions.
end for

3.2 Feature Importance Using AdaBoost Algorithm

The AdaBoost is used to find the importance of each feature. To train a boosted
classifier, AdaBoost algorithm is used. The basic representation of Boost classifier
is as follows:

FTðxÞ ¼
XT

t¼1

ftðxÞ

where each ft is a weak learner that takes an object x as input and returns a
real-valued result indicating the class of the object. Predicted object class is iden-
tified with the sign of the output obtained with the weak learner.

Student Data Collection

Feature Measurement

Distinction Prediction using various Algorithm

Data Cleansing

Train & Test the predictive Model

Result Analysis

Fig. 1 Methodology used

196 M. Anand

For each sample in the training set, an output or hypothesis is produced by weak
learner. While executing this algorithm, the main focus should be on the mini-
mization of the resulting t-stage Boost classifier which is achieved with the
selection of weak learner and by assigning a coefficient at.

Et ¼
X

i

E Ft�1ðxiÞþ athðxiÞ½ �

Here, Ft�1ðxÞ is the boosted classifier that has been built up to the previous stage
of training, EðFÞ is some error function, and ftðxÞ ¼ athðxÞ is the weak learner that
is being considered for the addition to the final classifier.

3.3 Machine Learning Methods

Four machine learning models [5, 6] for distinction prediction have been used.
Rattle has been used where all these models are available. The idea about this
model is discussed below:

(a) Decision tree: It uses a recursive partitioning approach [7].
(b) Support vector machine: SVM searches for so-called support vectors which are

data points that are found to lie at the edge of an area in space which is a
boundary from one class of points to another.

(c) Linear model: Covariance analysis, single stratum analysis of variance, and
regression are evaluated using this model.

(d) Neural net: It is based on the idea of multiple layers of neurons connected to
each other, feeding the numeric data through the network, combining the
numbers, to produce a final answer (Table 4).

Table 4 Parameters used for different algorithms

Model Parameter setting

Decision tree Min split = 30, max depth = 40, min bucket = 7

SVM Kernel radial basis

LM Multinomial

Neural net Hidden layer nodes

Boost Max depth = 30, min split = 20, no. of trees = 50

Advances in EDM: A State of the Art 197

4 Model Evaluation

Classifier’s performance has been measured using various parameters like accuracy,
sensitivity, ROC. Sensitivity Si for the class i can be defined as the number of
patterns correctly predicted to be in class i with respect to the total number of
patterns in class i. Consider p number of classes, and the value Cij of size
p * p represents the number of patterns of class i predicted in class j, then accuracy
and sensitivity can be calculated as follows:

Accuracy ¼
P

i¼1;p CiiP
i¼1;p

P
j¼1;p Cij

Sensitivity ¼ CiiP
j¼1;p Cij

5 Experimental Result

This section deals with the analysis on prediction result of all the four machine
learning classification models on the testing dataset. In Figs. 2 and 4, Precision
parameter has been plotted for ada, SVM and verified for all other models. In

Fig. 2 Precision versus recall
using ada algorithm

198 M. Anand

Figs. 3 and 5, sensitivity has been observed. Another parameter predicted vs
observed also been plotted (Fig. 6).

Fig. 3 Sensitivity versus
specificity using ada
algorithm

Fig. 4 Precision versus recall
using svm algorithm

Advances in EDM: A State of the Art 199

6 Conclusion and Future Scope

In this work, various machine learning classification models are explored with input
variables to predict the distinction of students. The result indicates that Boost
Algorithm outperforms the other classification models.

Fig. 5 Sensitivity versus specificity using svm algorithm

Fig. 6 Predicted versus observed using ada as well as svm

200 M. Anand

This work can be extended by inclusion of more parameters such as combining
the distinction and attendance record of student to predict that “if a student atten-
dance record is good, does it actually enhance the academic performance or not”
and then different categories of student based on these parameters can be made that
can be further used with some classification models. In this paper, individual
models are applied on the dataset to predict the distinction, and we can also use
ensemble approach.

References

1. Ayesha, S., Mustafa, T., Sattar, A., Khan, I.: Data mining model for higher education system.
Eur. J. Sci. Res. 43(1), 24–29 (2010)

2. Shovon, Md.H.I.: Prediction of student academic performance by an application of K-means
clustering algorithm. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 2(7) (2012)

3. Sharma, T.C.: WEKA approach for comparative study of classification algorithm (IJARCCE).
Int. J. Adv. Res. Comput. Commun. Eng. 2(4) (2013)

4. Kumar, V., Chadha, A.: An empirical study of the applications of data mining techniques in
higher education. Int. J. Adv. Comput. Sci. Appl. 2(3), 80–84 (2011)

5. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)
6. Keerthi, S.S., Gilbert, E.G.: Convergence of a generalized SMO algorithm for SVM classifier

design. Mach. Learn. 46(1), 351–360 (2002)
7. Fernandez Caballero, J.C., Martinez, F.J., Hervas, C., Gutierrez, P.A.: Sensitivity versus

accuracy in multiclass problem using Memetic Pareto evolutionary neural networks. IEEE
Trans. Neural Netw. 21, 750–770 (2010)

Advances in EDM: A State of the Art 201

Proposing Pattern Growth Methods
for Frequent Pattern Mining on Account
of Its Comparison Made
with the Candidate Generation and Test
Approach for a Given Data Set

Vaibhav Kant Singh

Abstract Frequent pattern mining is a very important field for mining of associ-
ation rule. Association rule mining is an important technique of data mining that is
meant to extract meaningful information from large data sets accumulated as a
result of various data processing activities. There are several algorithms proposed
for having solution to the problem of frequent pattern mining. In this paper, we have
mathematically compared two most widely used approaches, such as candidate
generation and test and pattern growth approaches to search for the better approach
for a given data set. In this paper, we came to conclusion that the pattern growth
methods are more efficient in maximum cases for the purpose of frequent pattern
mining on account of their cache conscious behavior. In this paper, we have taken a
data set and have implemented both the algorithms on that data set; the experi-
mental result of the working of both the algorithms for the given data set shows that
the pattern growth approach is more efficient than the candidate generation and test
approach.

Keywords Association rule mining � Candidate generation and test
Data mining � Frequent pattern mining � Pattern growth methods

The research work is small part of supplementary work done by the author beside his base work
on RSTDB an AI supported Candidate generation and test algorithm.

V. K. Singh (&)
Department of Computer Science and Engineering, Institute of Technology,
Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
e-mail: vibhu200427@gmail.com

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_20

203

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_20&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_20&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_20&domain=pdf

1 Introduction

With the increase in the use of computer, there is a situation where we are accu-
mulating huge amount of data every day as a result of various data processing
activities. The data that we are gaining can be used for having competitive
advantage in the current scenario where the time to take important decisions has
gone down. Today the need for systems that can help the decision makers to make
valuable decision on the basis of some patterns extracted from historical data in
form of some reports, graphs, etc., has increased. The branch of computer science
that is in concern with the subject is data mining. Data mining is branch of com-
puter science that is developed to combine the human’s power of detecting patterns
along with the computers computation power to generate patterns. The branch is
having its utility in designing of decision support systems that are efficient enough
to help the decision makers to make valuable decisions on time.

Data mining is used for a wide range of applications such as finance, database
marketing, health insurance, medical purpose, bioinformatics, text mining, biode-
fense. There are several data mining tools that help the designer of the system to
simulate such systems such as Intelligent miner, PRW, Enterprise miner, Darwin,
and Clementine. Some of the basic techniques used for the purpose of data mining
are association rule mining, clustering, classification, frequent episode, deviation
detection, neural network, genetic algorithm, rough sets techniques, support vector
machine, etc. For each of the above-mentioned techniques for data mining, there are
algorithms associated which are used for implementation of each paradigm. In this
paper, we are concerned with the association rule mining.

1.1 Association Rule Mining

An association rule is an expression of the form X ! Y, where X and Y are the sets
of items. The intuitive meaning of such a rule is that the transaction of the database
which contains X tends to contain Y. Association depends basically on two things:

• Confidence.
• Support.

Some of the algorithms used for finding of association rules from large data set
include Apriori algorithm, partition algorithm, Pincer-Search algorithm, dynamic
item set counting algorithm, FP-tree growth algorithm. In this paper, we have taken
into account two types of approaches for mining of association rules. First is
candidate generation and test algorithm and second approach is pattern growth
approach. The two approaches are concerned with extraction of frequent patterns
from large data sets. Frequent patterns are patterns that occur frequently in trans-
actions from a given data set. Frequent pattern mining is an important field of
association rule mining.

204 V. K. Singh

2 Literature Survey

In [1], Han et al. proposed the FP-tree as a pattern growth approach. In [2], Agarwal
et al. showed the power of using transaction projection in conjunction with lexi-
cographic tree structure in order to generate frequent item sets required for asso-
ciation rules. In [3], Zaki et al. proposed algorithm that utilizes the structural
properties of frequent item sets to facilitate fast discovery is shown. In [4], Agarwal
and Srikant proposed two algorithms for the purpose of frequent pattern mining
which are fundamentally different. Empirical formula used in the paper showed that
the proposed algorithm proved to be handy as compared to the previously proposed
approaches. In [5], Tiovonen proposed a new algorithm that reduces the database
activity in mining. The proposed algorithm is efficient enough to find association
rules in single database. In [6], Savasere et al. proposed algorithm which showed
improvement in the input–output overhead associated with previous algorithms.
The feature proved to be handy for many real-life database mining scenarios. In [7],
Burdick et al. proposed algorithm showed that the breakdown of the algorithmic
components showed parent equivalence pruning and dynamic reordering were quite
beneficial in reducing the search space while relative compression of vertical bit-
maps increases vertical scalability of the proposed algorithm whereas reduces cost
of counting of supports. In [8], Zaki and Gonda proposed a novel vertical repre-
sentation Diffset. The proposed approach drastically reduces the amount of space
required to store intermediate results. In [9, 10], the author proposed a new algo-
rithm RSTDB which also works on the candidate generation and test mechanism.
The algorithm is having a new module that makes it more efficient than the previous
approach. In [11], a study of some of the pattern growth methods along with
description of the new algorithm RSTDB for frequent pattern mining is shown. In
[12], the algorithm RSTDB is compared from FP-tree growth algorithm. In [13], a
cache conscious approach for frequent pattern mining is given. In [14, 15], can-
didate generation and test approach for frequent pattern mining is given. In [16],
RSTDB is proposed as an application.

3 Experiment

In this paper for comparing the two approaches, we have taken two algorithms
Apriori as a representative of candidate generation and test mechanism and FP-tree
as representatives of pattern growth approach, since these two algorithms are the
base algorithm that explains to the two approaches in best. In this section, we took
Table 1 to explain the difference of the two algorithms. Table 1 is having 15
records and 9 distinct records having lexicographic property.

Proposing Pattern Growth Methods for Frequent Pattern … 205

In this section, we will consider one transaction database of Table 1 capable of
holding 15 records and 9 distinct items A, B, C, D, E, F, G, H, I. We will see the
working of both algorithms for the purpose of evaluation of FP-tree from the side of
pattern growth methods as a more cache conscious effort. The minimum support for
the transaction database is fixed at 20%, i.e., minimum of threshold value of 3 is
required to be frequent. Here, now in Fig. 1, we have shown the working of the two
approaches for the given data set according to Han and Kamber [17].

4 Result and Discussion

The total number of counters required for the finding of frequent item set in Apriori
algorithm which is candidate generation and test approach is more.

If the number of counters is more, this implies that the total amount of space
required will be more in the case of Apriori approach. Also for generation of
candidate set at each step of the Apriori algorithm, the whole transaction database is
to be scanned. Whereas in the case of FP-tree, once f-list is generated only once
each record is to be scanned. Beside the above advantages, FP-tree structure could
be accommodated in the memory and fast referencing is possible. The comparison
we are making is for a small data set which shows difference in efficiency. Think in
real-time scenario where the size is very large. The efficiency of the FP-tree would
be far better than Apriori.

Table 1 Transaction
database consisting of 15
records and 9 distinct items

Transaction ID Item set

T100 BDFG

T101 E

T102 EFG

T103 CEG

T104 BDH

T105 BC

T106 H

T107 DEG

T108 ACEG

T109 CEG

T110 BCI

T111 AEFH

T112 BCD

T113 EFH

T114 BFGI

206 V. K. Singh

5 Conclusion

Considering to the fact that today’s data mining algorithms are keener on having the
data set required for computation in the main memory to have better performance
outcome. From Table 2, it is clear that the amount of space required by the Apriori
algorithm violates to need of the current scenario where time takes the peak
position. From the above example of working of Apriori and FP-tree, it is clear that
execution of Apriori will require considerable large amount of space compared to
FP-tree. Thus, FP-tree employing tree structure easily fitting to the cache can be a
better option despite of the complexity present. Thus, we propose that FP-tree
which is a cache conscious effort as the size of the tree is good enough to reside in
the memory for complete computation. As already discussed that we have taken
FP-tree as a representative of the pattern growth algorithm and Apriori as a rep-
resentative of the candidate generation and test algorithm, the result obtained is

Apriori Algorithm a Candidate
Generation and Test algorithm

FP-Tree Algorithm a Pattern Growth
approach

Fig. 1 Comparison of the working of the two algorithms in terms of space consumed for
evaluation of frequent patterns

Proposing Pattern Growth Methods for Frequent Pattern … 207

meant to give a general idea of the two approaches and also the result guides us that
we should go for pattern growth approach when selecting algorithm for frequent
pattern mining, which is also clear from its working that it is more cache conscious
compared to the other one. Beside the above facts derived from the working of the
two approaches, some positives which are drawn of Apriori algorithm are the
simplicity of implementation which is very important and the approaches which are
similar to candidate generation and test are easily understandable.

References

1. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In:
Proceeding of the 2000 ACM SIGMOID International Conference on Management of Data,
pp. 1–12. ACM Press (2000)

2. Agarwal, R.C., Aggarwal, C.C., Prasad, V.V.V.: A tree projection algorithm for generation of
frequent item sets. J. Parallel Distrib. Comput. 61(3), 350–371 (2001)

3. Zaki, M.J., Parthasarathy, S., Ogihara, M., Li, W.: New algorithms for fast discovery of
association rules. In: Proceeding of the 3rd International Conference on Knowledge
Discovery and Data Mining, pp. 283–296. AAAI Press (1997)

4. Agarwal, R., Srikant, R.: Fast algorithms for mining association rules. In: The International
Conference on Very Large Databases, pp. 207–216 (1993)

5. Toivonen, H.: Sampling large databases for association rules. In: Proceeding of 22nd Very
Large Database Conference (1996)

6. Savasere, A., Omiecinski, E., Navathe, S.: An efficient algorithm for mining association rules
in large databases. In: Proceeding of the 21st Very Large Database Conference (1995)

7. Burdick, D., Calimlim, M., Gehrke, J.: MAFIA: a maximal frequent itemset algorithm for
transaction databases. In: Proceeding of ICDE’01, pp. 443–452 (2001)

8. Zaki, M., Gouda, K.: Fast vertical mining using diffsets. In: Journal of ACM SIGKDD’03,
Washington, D.C. (2003)

9. Singh, V.K., Singh, V.K.: Minimizing space time complexity by RSTDB a new method for
frequent pattern mining. In: Proceeding of the First International Conference on Human
Computer Interaction IHCI’09, Indian Institute of Information Technology, Allahabad,
pp. 361–371. Springer, India (2009). ISBN 978-81-8489-404-2

Table 2 Comparison of apriori and FP-tree

Differentiating
property

Apriori FP-tree

Space required
for processing

More space required for
processing

Less space required for processing

Time required for
operation

More time required for processing Less time required for processing

TDB scanning
required

More scanning of TDB required
for generating final result

Less scanning of TDB required
for generating final result

Complexity of
programming

Less complex More complex

Understandability Simple to understand Compared to Apriori difficult to
understand

208 V. K. Singh

10. Singh, V.K., Shah, V., Jain, Y.K., Shukla, A., Thoke, A.S., Singh, V.K., Dule, C., Parganiha,
V.: Proposing an efficient method for frequent pattern mining. In: Proceeding of International
Conference on Computational and Statistical Sciences, Bangkok, WASET, vol. 36, pp. 1184–
1189 (2009). ISSN 2070-3740

11. Singh, V.K., Shah, V.: Minimizing space time complexity in frequent pattern mining by
reducing database scanning and using pattern growth methods. Chhattisgarh J. Sci. Technol.
ISSN 0973-7219

12. Singh, V.K.: Comparing proposed test algorithm RSTDB with FP-tree growth method for
frequent pattern mining. Aryabhatt J. Math. Inf. 5(1), 137–140 (2013). ISSN 0975-7139

13. Singh, V.K.: RSTDB and cache conscious techniques for frequent pattern mining. In:
CERA-09, Proceeding of Fourth International Conference on Computer applications in
Electrical Engineering, Indian Institute of Technology, Roorkee, India, pp. 433–436, 19–21
Feb 2010

14. Singh, V.K., Singh, V.K.: RSTDB a new candidate generation and test algorithm for frequent
pattern mining. In: CNC-2010, ACEEE and IEEE, IEEE Communication Society,
Washington, D.C., Proceeding of International Conference on Advances in Communication
Network and Computing, Published by ACM DL, Calicut, Kerala, India, pp. 416–418, 4–5
Oct 2010

15. Singh, V.K., Singh, V.K.: RSTDB a candidate generation and test approach. Int. J. Res.
Digest, India 5(4), 41–44 (2010)

16. Singh, V.K.: Solving management problems using RSTDB a frequent pattern mining
technique. In: Int. J. Adv. Res. Comput. Commun. Eng., India 4(8), 285–288 (2015)

17. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann Publisher,
San Francisco, CA (2001)

Proposing Pattern Growth Methods for Frequent Pattern … 209

A Study on Initial Centroids Selection
for Partitional Clustering Algorithms

Mahesh Motwani, Neeti Arora and Amit Gupta

Abstract Data mining tools and techniques allow an organization to make creative
decisions and subsequently do proper planning. Clustering is used to determine the
objects that are similar in characteristics and group them together. K-means clus-
tering method chooses random cluster centres (initial centroid), one for each cen-
troid, and this is the major weakness of K-means. The performance and quality of
K-means strongly depends on the initial guess of centres (centroid). By augmenting
K-means with a technique of selecting centroids, several modifications have been
suggested in research on clustering. The first two main authors of this paper have
also developed three algorithms that unlike K-means do not perform random
generation of the initial centres and actually produce same set of initial centroids for
the same input data. These developed algorithms are sum of distance clustering
(SODC), distance-based clustering algorithm (DBCA) and farthest distributed
centroid clustering (FDCC). We present a brief survey of the algorithms available in
the research on modification of initial centroids for K-means clustering algorithm
and further describe the developed algorithm farthest distributed centroid clustering
in this paper. The experimental results carried out show that farthest distributed
centroid clustering algorithm produces better quality clusters than the partitional
clustering algorithm, agglomerative hierarchical clustering algorithm and the hier-
archical partitioning clustering algorithm.

Keywords Partitional clustering � Initial centroids � Recall � Precision

M. Motwani (&)
Department of Computer Science and Engineering, RGPV, Bhopal, India
e-mail: mahesh.bpl.7@gmail.com

N. Arora � A. Gupta
RGPV, Bhopal, India

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_21

211

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_21&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_21&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_21&domain=pdf

1 Introduction

K-means [1–4] is a famous partition algorithm which clusters the n data points into
k groups. It defines k centroids, one for each cluster. For this k, data points are
selected at random from D as initial centroids.

The K-means algorithm has a drawback that it produces different clusters for
every different set of initial centroids. Thus, the quality of clusters formed depends
on the randomly chosen set of initial k centroids [5]. This drawback of K-means is
removed by augmenting K-means with some technique of selecting initial cen-
troids. We discuss in Sect. 2, the different such modifications published in the
literature on modified K-means algorithm. These proposed algorithms do not per-
form random generation of the initial centres and do not produce different results for
the same input data. In Sect. 3, we discuss the farthest distributed centroid clus-
tering algorithm followed by its experimental results in Sect. 4. Section 5 contains
conclusion, and finally, Sect. 6 has bibliography.

2 Study on Initial Centroid Selection for Clustering
Algorithms

An algorithm proposed in [6] partitions the given set of points to be clustered in a
cell. This cell is divided into two cells with the help of cutting plane. The cells are
divided one at a time till they are equal to the number of clusters to be formed. The
k initial centroids for the K-means algorithm are the centres of these k cells. The
method proposed in [7] analyses the distribution and probability of data density to
find the initial centroids. The given input dataset is divided into smaller parts in
order to minimize the memory requirement needed for storing the given dataset.
This results in superior clustering results from the refined initial centroids in
comparison to randomly chosen initial centroids in K-means algorithm.

A global K-means clustering algorithm in [8] adds the cluster centre incre-
mentally. It also performs several executions of the K-means algorithm which are
equal to the size of the data set. An improved version of K-means proposed in [9]
evaluates the distance between every pair of data points in order to determine the
similar data points. Based on this determination of data points, initial centroids are
finally chosen. This method creates better clusters in comparison to K-means
algorithm.

The method in [10] distributes the initial centroids in order to widen the dis-
tances among them. An efficiently enhanced K-means method proposed in [11] uses
a heuristic function. This function is chosen in a manner to perform less number of
distance calculations. This helps in improving the execution time of the K-means
algorithm. In this method, the determination of initial centroids is similar to that of
the K-means algorithm. Thus, after every execution of the algorithm, it produces
different clusters just like in the K-means algorithm. A smaller time complexity

212 M. Motwani et al.

results in this method in comparison to K-means algorithm. By embedding hier-
archical clustering into K-means clustering, a new algorithm [12] is proposed for
finding the initial cluster centres.

The algorithm proposed in [13] selects the position of initial centroids calculated
from the farthest accumulated distance metric between each data point and all
previous centroids. A data point which has the maximum distance is thus selected
as initial centroid. In the paper [14], the method of selection of the first initial
centroid is from the given set of points which are going to be clustered. The
remaining initial centroids are selected from rest of the points. The probability of
selecting each of this point is proportional to square of the distance between this
point and its nearest initial centroid.

The initialization method proposed in [15] depends on reverse nearest neighbour
(RNN) search and coupling degree. RNN takes a query point p and fetches all
points in a given dataset whose nearest neighbour is p. The coupling degree
between neighbourhoods of nodes is defined as the amount of similarity between
the objects. This method deals with three main sets: candidate set (CS), represen-
tative set (RS) and centroids set. The centroid initialization method proposed in [16]
is based on the graph theory of Kruskal algorithm [17]. This algorithm uses the
Kruskal algorithm to generate the minimum spanning tree of the all clustering
objects at first and then deletes (k − 1) edges according to the order of their
weights. The K-mean values of objects in each connected sub-graph that is obtained
are then taken as the initial clustering centres. Simulation experiment shows that
this method gives better accuracy and clustering quality in comparison with
K-means algorithm.

The method in [18] partitions the dataset into blocks so as to compress the
dataset. The K-means is applied on this compressed dataset, to get the k points that
are used as the initial centroids for the K-means on the full dataset. The method in
[19] constructs a Voronoi diagram from the given data points. For a set of n points
in a m-dimensional space, the Voronoi diagram [20] of these set of points is the
division of the space into n cells in such a way that each point belongs to only one
cell. The initial centroids are chosen from the points which lie on the Voronoi
circles.

Teaching learning-based Optimization algorithm proposed in [21] has two steps.
The first step explores the search space and finds the near-optimal cluster centres
which are then evaluated by a function. The cluster centres with the minimum
function values are taken in the second step as initial centroids for the K-means
algorithm. The algorithm proposed in [22] defines two measures for refining initial
clustering centres, to measure a point’s local density. The clustering centre with
local maximal density for each cluster is produced with the help of these mea-
surements. After refinement, the K-means clustering algorithm converges to a better
local minimum. Experiments demonstrate the efficiency of the proposed algorithm.
The method in [23] takes the data and finds the high-density neighbourhoods from
it. The central points of the neighbourhoods are now chosen as initial centroids for
clustering. The high-density neighbourhoods are found by neighbourhood-based

A Study on Initial Centroids Selection for Partitional … 213

clustering [24]. A filtering method is used to avoid too many clusters from being
formed.

A heuristic method is used in [25] to find a good set of initial centroids. The
method uses a weighted average score of dataset. The rank score is found by
averaging the attribute of each data point. This generates initial centroids that
follow the data distribution of the given set. A sorting algorithm is applied to the
score of each data point and divided into k subsets. The nearest value of mean from
each subset is taken as initial centroid. This algorithm produces the clusters in less
time as compared to K-means. A genetic algorithm for the K-means initialization
(GAKMI) is used in [26] for the selection of initial centroids. The set of initial
centroids is represented by a binary string of length n. Here n is the number of
feature vectors. The GAKMI algorithm uses binary encoding, in which bits set to
one select elements of the learning set as initial centroids. A chromosome repair
algorithm is used before fitness evaluation to convert infeasible chromosomes into
feasible chromosomes. The GAKMI algorithm results in better clusters as compared
to the standard K-means algorithm.

Sum of distance clustering (SODC) [27] algorithm for clustering selects initial
centroids using criteria of finding sum of distances of data objects to all other data
objects. The algorithm uses the concept that good clusters are formed when the
choice of initial k centroids is such that they are as far as possible from each other.
The proposed algorithm results in better clustering on synthetic as well as real
datasets when compared to the K-means technique. Distance-based clustering
algorithm (DBCA) [28] is based on computing the total distance of a node from all
other nodes. The clustering algorithm uses the concept that good clusters are formed
when the choice of initial k centroids is such that they are as far as possible from
each other. Once some point d is selected as initial centroid, the proposed algorithm
computes average of data points to avoid the points near to d from being selected as
next initial centroids.

The farthest distributed centroid clustering (FDCC) algorithm [29] uses the
concept that good clusters are formed when the choice of initial k centroids is such
that they are as far as possible from each other. FDCC algorithm proposed here uses
criteria of sum of distances of data objects to all other data objects. Unlike
K-means, FDCC algorithm does not perform random generation of the initial
centres and produces same results for the same input data. DBCA and FDCC
clustering algorithms produce better quality clusters than the partitional clustering
algorithm, agglomerative hierarchical clustering algorithm and the hierarchical
partitioning clustering algorithm.

214 M. Motwani et al.

3 Developed Farthest Distributed Centroid Clustering
Algorithm

3.1 Basic Concept

The algorithm selects a good set of initial centroids such that the selected initial
centroids are spread out within the data space as far as possible from each other.
Figure 1 illustrates the selection of four initial centroids C1, C2, C3 and C4. As is
evident, there are four clusters in the data space. The proposed technique selects a
point d as the first initial centroid using a distance criteria explained in Sect. 3.2.
Once this point d is selected as initial centroid, the proposed technique avoids the
points near to d from being selected as next initial centroids. This is how C1, C2,
C3 and C4 are distributed as far as possible from each other.

3.2 Farthest Distributed Centroid Clustering Algorithm

Let the clustering of n data points in the given dataset D is to be done into k clusters.
In farthest distributed centroids clustering (FDCC) algorithm, the distance of each
data point di = 1 to n in the given dataset D is calculated from all other data points
and these distances are stored in a distance matrix DM. Total distance of each data
point di = 1 to n with all other data points is calculated. The total distance for a
point di is sum of all elements in the row of the DM corresponding to di. These
sums are stored in a sum of distances vector SD. The vector SD is sorted in
decreasing order of total distance values. Let P-SD is the vector of data points
corresponding to the sorted vector SD; i.e., P-SD [1] will be the data point whose
sum of distances (available in SD [1]) from all other data points is maximum, and

Fig. 1 Illustration of
selecting a good set of initial
centroids

A Study on Initial Centroids Selection for Partitional … 215

P-SD [2] will be the data point whose sum of distances (available in SD [2]) from
all other data points is second highest. In general, P-SD [i] will be the data point
whose sum of distances from all other data points is in SD [i].

The first point d of the vector P-SD is the first initial centroid. Put this initial
centroid point in the set S of initial centroids. To avoid the points near to d from
being selected as next initial centroids, variable x is defined as follows:

x ¼ floor n=kð Þ ð1Þ

Here, the floor (n/k) function maps the real number (n/k) to the largest previous
integer; i.e., it returns the largest integer not greater than (n/k).

Now discard the next x number of points of the vector P-SD and define the next
point left after discarding these x numbers of points from this vector P-SD, as the
second initial centroid. Now discard the next x number of points from this vector
P-SD and define the next point left after discarding these x numbers of points from
this vector P-SD, as the third initial centroid. This process is repeated till k numbers
of initial centroids are defined. These k initial centroids are now used in the
K-means process as substitute for the k random initial centroids. K-means is now
invoked for clustering the dataset D into k number of clusters using the initial
centroids available in set S.

4 Experimental Study

The experiments are performed on core i5 processor with a speed of 2.5 GHz and
4 GB RAM using MATLAB. The comparison of the quality of the clustering
achieved with FDCC algorithm [29] is made with the quality of the clustering
achieved with

1. Partitional clustering technique. The K-means is the partitional technique
available as a built-in function in MATLAB [30].

2. Hierarchical clustering technique. The ClusterData is agglomerative hierarchical
clustering technique available as a built-in function in MATLAB [30]. The
single linkage is the default option used in ClusterData to create hierarchical
cluster tree.

3. Hierarchical partitioning technique. CLUTO [31] is a software package for
clustering datasets. CLUTO contains both partitional and hierarchical clustering
algorithms. The repeated bisections method available in CLUTO is a hierar-
chical partitioning algorithm that initiates a series of k − 1 repeated bisections to
produce the required k clusters. This effectively is the bisect K-means divisive
clustering algorithm and is the default option in CLUTO named as Cluto-rb.

Recall and precision [32] are used to evaluate the quality of clustering achieved.
Recall is the percentage of data points that have been correctly put into a cluster
among all the relevant points that should have been in that cluster. Precision is the

216 M. Motwani et al.

percentage of data points that have been correctly put into a cluster among all the
points put into that cluster.

Three real datasets, namely Corel5K, Corel (Wang) and Wine, are used in the
experiments [33]. Corel5K is a collection of 5000 images downloaded from
Website [34]. We have formed ten clusters of these images using K-means,
ClusterData, Cluto-rb and FDCC algorithm. Corel (Wang) database consists of 700
images of the Corel stock photo and is downloaded from Website [35] and contains
1025 features per image. We have formed ten clusters of these images using
K-means, ClusterData, Cluto-rb and FDCC algorithm. The wine recognition dataset
[36] consists of quantities of 13 constituents found in three types of classes of wines
of Italy. The dataset consists of 178 instances. The number of instances in class 1,
class 2 and class 3 are 59, 71 and 48, respectively. We have formed three clusters of
these images using K-means, ClusterData, Cluto-rb and FDCC algorithm.

Table 1 Average recall and average precision for real datasets

Algorithm Corel5K Corel (Wang) Wine

Recall
(%)

Precision
(%)

Recall
(%)

Precision
(%)

Recall
(%)

Precision
(%)

FDCC 30.02 38.2 100 100 41.67 72

K-means 20.02 33.3 60.7 86.71 33.67 61

ClusterData 10.08 41 100 100 25.37 47

Cluto-rb 23.02 30.32 33.29 27.91 39.67 69

0
20
40
60
80

100
120

K-Means

ClusterData

Cluto-rb

FDCC

Fig. 2 Average recall for real
datasets

0
20
40
60
80

100
120

K-Means

ClusterData

Cluto-rb

FDCC

Fig. 3 Average precision for
real datasets

A Study on Initial Centroids Selection for Partitional … 217

The average recall and precision using these algorithms is shown in Table 1. The
graphs plotted for average recall and average precision in percentage using these
techniques is shown in Figs. 2 and 3, respectively. The results show that the recall
and precision of FDCC are better than that of K-means, ClusterData and Cluto-rb.
Hence, the FDCC algorithm produces better quality clusters.

5 Conclusion

The initialization of k data points determines quality of clustering of K-means. The
random selection of k initial centroids is the weakness of K-means. Several algo-
rithms are developed to overcome this weakness of K-means algorithm. These
algorithms select a good set of initial centroids to be used by K-means. We have
discussed several such algorithms available in the literature. We have also discussed
farthest distributed centroid clustering algorithm developed by the first two authors
of this paper. The experimental results show that farthest distributed centroid
clustering algorithm produces better quality clusters than the partitional clustering
algorithm, agglomerative hierarchical clustering algorithm and the hierarchical
partitioning clustering algorithm.

References

1. Han, J., Kamber, H.: Data Mining Concepts and Techniques. Morgan Kaufmann Publishers,
Burlington (2002)

2. MacQueen, J.B.: Some methods for classification and analysis of multivariate observations.
In: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability,
Berkeley, University of California Press, pp. 281–297 (1967)

3. Dunham, M.: Data Mining: Introductory and Advanced Concepts. Pearson Education,
London (2006)

4. Llyod, S.: Least Squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137
(1982)

5. Khan, S.S., Ahmed, A.: Cluster center initialization algorithm for k-means algorithm. Pattern
Recogn. Lett. 25(11), 1293–1302 (2004)

6. Deelers, S., Auwatanamongkol, S.: Engineering k-means algorithm with initial cluster centers
derived from data partitioning along the data axis with the highest variance. In: Proceedings of
World Academy of Science, Engineering and Technology, vol. 26, pp. 323–328 (2007)

7. Bradley, P.S., Fayyad, U.M.: Refining initial points for K-Means clustering. In: Proceedings
of the 15th International Conference on Machine Learning, Morgan Kaufmann, San
Francisco, CA, pp. 91–99 (1998)

8. Likas, A., Vlassis, N., Verbeek, J.J.: The global k-means clustering algorithm. Pattern
Recogn. 36, 451–461 (2003)

9. Yuan, F., Meng, Z.H., Zhang, H.X., Dong, C.R.: A new algorithm to get the initial centroids.
In: Proceedings of the 3rd International Conference on Machine Learning and Cybernetics,
Shanghai, pp. 26–29 (2004)

218 M. Motwani et al.

10. Barakbah, A.R., Helen, A.: Optimized K-means: an algorithm of initial centroids optimization
for K-means. In: Proceedings of Soft Computing, Intelligent Systems and Information
Technology (SIIT), pp. 63–66 (2005)

11. Fahim, A.M., Salem, A.M., Torkey, F.A., Ramadan, M.A.: An efficient enhanced k-means
clustering algorithm. J. Zhejiang Univ. Sci. 7(10), 1626–1633 (2006)

12. Barakbah, A.R., Arai, K.: Hierarchical K-means: an algorithm for centroids initialization for
K-means. Rep. Fac. Sci. Eng. 36(1) (2007) (Saga University, Japan)

13. Barakbah, A.R, Kiyoki, Y.: A pillar algorithm for K-means optimization by distance
maximization for initial centroid designation. In: IEEE Symposium on Computational
Intelligence and Data Mining (IDM), Nashville-Tennessee, pp. 61–68 (2009)

14. Arthur, D., Vassilvitskii, S.: K-means++: the advantages of careful seeding. In: Proceedings
of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, Philadelphia, PA, USA,
Society for Industrial and Applied Mathematics, pp. 1027–1035 (2007)

15. Ahmed, A.H., Ashour, W.: An initialization method for the K-means algorithm using RNN
and coupling degree. Int. J. Comput. Appl. (0975–8887) 25(1) (2011)

16. Huang, L., Du, S., Zhang, Y., Ju, Y., Li, Z.: K-means initial clustering center optimal
algorithm based on Kruskal. J. Inf. Comput. Sci. 9(9), 2387–2392 (2012)

17. Kruskal, J.: On the shortest spanning subtree and the travelling salesman problem. Proc. Am.
Math. Soc, 48–50 (1956)

18. Fahim, A.M., Salem, A.M., Torkey, F.A., Ramadan,M.A, Saake, G.: An efficient K-means with
good initial starting points. Georgian Electron. Sci. J. Comput. Sci. Telecommun. 19(2) (2009)

19. Reddy, D., Jana, P.K.: Initialization for K-mean clustering Voronoi diagram. In: International
Conference on C3IT-2012, Hooghly, Procedia Technology (Elsevier) vol. 4, pp. 395–400,
Feb 2012

20. Preparata, F.P., Shamos, M.I.: Computational Geometry—An Introduction. Springer, Berlin,
Heidelberg, Tokyo (1985)

21. Naik, A., Satapathy, S.C., Parvathi, K.: Improvement of initial cluster center of c-means using
teaching learning based optimization. Procedia Technol. 6, 428–435 (2012)

22. Yang, S.Z., Luo, S.W.: A novel algorithm for initializing clustering centers. In: Proceedings
of International Conference on IEEE Machine Learning and Cybernetics, China, vol. 9,
pp. 5579–5583 (2005)

23. Ye, Y., Huang, J., Chen, X., Zhou, S., Williams, G., Xu, X.: Neighborhood density method
for selecting initial cluster centers in K-means clustering. In: Advances in Knowledge
Discovery and Data Mining. Lecture Notes in Computer Science, vol. 3918, pp. 189–198
(2006)

24. Zhou, S., Zhao, J.: A neighborhood-based clustering algorithm. In: PAKD 2005. LNAI 3518,
pp. 361–371 (1982)

25. Mahmud, M.S., Rahman, M., Akhtar, N.: Improvement of K-means clustering algorithm with
better initial centroids based on weighted average. In: 7th International Conference on
Electrical and Computer Engineering, Dhaka, Bangladesh, Dec 2012

26. Kwedlo, W., Iwanowicz, P.: Using genetic algorithm for selection of initial cluster centers for
the K-means method. In: International Conference on Artificial Intelligence and Soft
Computing. Springer Notes on Artificial Intelligence, pp. 165–172 (2010)

27. Arora, N., Motwani, M.: Sum of distance based algorithm for clustering web data. Int.
J. Comput. Appl. 87(7), 26–30 (2014)

28. Arora, N., Motwani, M.: A distance based clustering algorithm. Int. J. Comput. Eng. Technol.
5(5), 109–119 (2014)

29. Arora, N., Motwani, M.: Optimizing K-Means by fixing initial cluster centers. Int. J. Curr.
Eng. Technol. 4(3), 2101–2107 (2014)

30. MathWorks MatLab: The Language of Technical Computing (2009)
31. Karypis, G.: CLUTO: A Clustering Toolkit. Release 2.1.1, Tech. Rep. No. 02-017. University

of Minnesota, Department of Computer Science, Minneapolis, MN 55455 (2003)
32. Kowalski, G.: Information Retrieval Systems—Theory and Implementation. Kluwer

Academic Publishers (1997)

A Study on Initial Centroids Selection for Partitional … 219

33. Veenman, C.J., Reinders, M.J.T., Backer, E.: A maximum variance cluster algorithm. IEEE
Trans. Pattern Anal. Mach. Intell. 24(9), 1273–1280 (2002)

34. Duygulu, P., et al.: Object recognition as machine translation: learning a lexicon for a fixed
image vocabulary. In: Proceedings of the 7th European Conference on Computer Vision,
pp. 97–112 (2002)

35. Wang, J.Z., Li, J., Wiederhold, G.: SIMPLIcity: semantics-sensitive integrated matching for
picture libraries. IEEE Trans. Pattern Anal. Mach. Intell. 23(9), 947–963 (2001)

36. Forina, M., Aeberhard, S.: UCI Machine Learning Repository (1991)

220 M. Motwani et al.

A Novel Rare Itemset Mining Algorithm
Based on Recursive Elimination

Mohak Kataria, C. Oswald and B. Sivaselvan

Abstract Pattern mining in large databases is the fundamental and a non-trivial
task in data mining. Most of the current research focuses on frequently occurring
patterns, even though less frequently/rarely occurring patterns benefit us with useful
information in many real-time applications (e.g., in medical diagnosis, genetics). In
this paper, we propose a novel algorithm for mining rare itemsets using recursive
elimination (RELIM)-based method. Simulation results indicate that our approach
performs efficiently than existing solution in time taken to mine the rare itemsets.

Keywords Apriori � Frequent pattern mining � Rare itemset mining
RELIM � Maximum support

1 Introduction

With huge influx of data in every real-world application, data analysis becomes
important and data mining helps in effective, efficient, and scalable analysis by
uncovering many hidden associations among data which otherwise cannot be
interpreted and is useful at the same time. Data mining is the non-trivial process of
extraction of hidden, previously unknown and potentially useful information from
large databases [1, 2]. It differs from retrieval tasks in the fact that knowledge
(patterns) can be discovered through data mining. Pattern mining being a basic data
mining task enables to extract hidden patterns from set of data records called

M. Kataria (&)
Department of Computer Science and Engineering, Thapar University, Patiala, Punjab, India
e-mail: mohakkataria@outlook.com

C. Oswald � B. Sivaselvan
Department of Computer Engineering, Design and Manufacturing Kancheepuram,
Indian Institute of Information Technology, Chennai, India
e-mail: coe13d003@iiitdm.ac.in

B. Sivaselvan
e-mail: sivaselvanb@iiitdm.ac.in

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_22

221

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_22&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_22&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_22&domain=pdf

transactions. The various data mining techniques involve association rule mining
(ARM), classification, clustering, and outlier analysis. ARM is the process of
finding frequent itemsets/patterns, associations, correlations among sets of items or
objects in transactional databases, relational databases, and other information
repositories [1].

The motivation for ARM emerged from market basket analysis, which is a
collection of items purchased by a customer in an individual customer transaction
[2], for example a customer’s visit to a grocery store or an online purchase from
Amazon.com. Huge collections of transactions are received from them. An analysis
of the transaction database is done to find frequently occurring sets of items, or
itemsets, that appear together. Frequent pattern (itemset) mining (FPM) is an
important and non-trivial phase in ARM followed by rule generation [1]. Let I ¼
fi1; i2; i3; . . .; img be a set of items, and a transaction database
TD ¼ T1; T2; T3; . . .; Tnh i, where Ti i 2 1. . .n½ �ð Þ is a transaction containing a set of
items in I. The support of a pattern X, where X is a set of items, is the number of
transactions containing X in TD. A pattern (itemset) X is frequent if its support is not
less than a user-defined minimum support(min supp = a). FPM algorithms con-
centrate on mining all possible frequent patterns in the transactional database.

The second phase is relatively straightforward compared to the first phase.
Algorithms for ARM have primarily focused on the first phase as a result of the
potential number of frequent itemsets being exponential in the number of different
items, although the actual number of frequent itemsets can be much smaller. Thus,
there is a need for algorithms that are scalable. Many efficient algorithms have been
designed to address these criteria first of which was Apriori [2]. It uses prior
knowledge which is “all non-empty subsets of a frequent itemset must also be
frequent.” A rule is defined as an implication of the form X) Y where X, Y � I
and X \ Y = ∅. The sets of items (for short itemsets) X and Y are called antecedent
and consequent transactions containing only X of the rule, respectively. A rule
which satisfies a minimum confidence threshold is said be an interesting rule. The
rule X) Y satisfy confidence c, where

c ¼ Number of transactions containing both X and Y
Transactions containing only X

:

The paper is organized as follows. Related studies are presented in Sect. 2.
Section 3 presents the proposed algorithm. Section 4 explains the proof of cor-
rectness of our algorithm. Details of the datasets, results, and performance dis-
cussion are given in Sect. 5. Section 6 concludes with further research directions.

1.1 Rare Itemset Mining

The current literature on mining is focused primarily on frequent itemsets only. But
rare itemsets too find their place of high interest sometimes, especially in cases of

222 M. Kataria et al.

biomedical databases. The above description applies to a vast range of mining
situations where biomedical data are involved [3]. For instance, in pharmacovigi-
lance, one is interested in associating the drugs taken by patients to the adverse
effects the latter may present as a result (safety signals or drug interactions in the
technical language of the field). A nice motivation given by Szathmary et al. is
given below [4]. Given a database of drug effects on patients, rare itemset mining
helps us in decoding the adverse effects of drugs on patients which may be rare but
drastic. Mining on such data for frequent itemsets provides us with associations
such as “{drug} [{A},” where {A} is an itemset describing a kind of desirable
effect. These frequent associations mean that a drug is working in the expected right
way, whereas in case if it is a rare association, it represents an effect of drug which
is abnormal, possibly undesirable. Discovering rare itemsets and rare association
rules deriving from rare itemsets is particularly useful in the field of biology and
medicine. Rare events deserve special attention because they have their own
importance in a database full of hidden knowledge. In these examples, there lies the
motivation of extracting the hidden rare itemsets within a database.

An itemset X� x1; . . .; xnf g is a rare itemset (RI) if 0 < support(X) � maximum
support(max supp). An itemset X is non-present itemset (NPIs) if support (X) = 0.
Moreover, all rare itemsets are infrequent but not all infrequent itemsets (IFI) are
rare, i.e., RI � I F I. min supp differentiates between frequent itemsets (FIs) and
infrequent itemsets(IFIs). So, max supp used for finding RIs will be less than min
supp used for finding FIs, in fact 0 < max supp < max supp. If max supp = 0, set of
RIs will be ∅ and if max supp = min supp − 1, then RI = IFI. If we take a rela-
tively higher value for max supp, then the cardinality of RIs will be more compared
to smaller value of max supp. Mining all possible rare itemsets is termed as rare
itemset mining.

If X is a RI, then X 0 � X 2 RI;NPIf g and the subsets of X may or may not be
RI. For example, if X ={a, b, c} is an RI with a support of 1 and {a, b, c, d} is
present in the database, then {a, b, c, e} is not present in the database. So it is
evident that {a, b, c, d} � X and is a RI and its support will also be 1, and {a, b, c,
e} � X is not present in database, so its support will be 0. {a, b} is a subset of X,
but it may or may not be a RI, i.e., support({a, b}) � support(X). The proposed
work employs efficient strategies to mine rare itemsets in a time-efficient manner
using RELIM algorithm, designed for FIM by Borgelt et al. [5]. The paper focuses
on exhaustive listing of all the RIs present in the database subject to a value of max
supp.

2 Related Work

The scarce literature on the subject of rare itemset mining exclusively adapts the
general levelwise framework of pattern mining around the seminal Apriori algo-
rithm to various forms of the frequent pattern algorithms like FP-growth, ECLAT,
H-mine, Counting Inference, RELIM [2, 5–8]. A detailed survey of seminal

A Novel Rare Itemset Mining Algorithm Based on Recursive … 223

FP-based algorithms can be seen in [9]. These methods provide with a large itemset
search space and associations, which are not frequent. But these associations will be
incomplete either due to restrictive definitions or high computational cost. Hence,
as argued by [10], these methods will not be able to collect a huge number of
potentially interesting rare patterns. As a remedy, we put forward a novel and
simple approach toward efficient and complete extraction of RIs. Mining for RIs has
received enhanced focus of researchers, and in the recent past, few algorithms have
been proposed.

Apriori-inverse algorithm by Y. S. Koh et al. uses the basic Apriori approach for
mining sporadic rules (rules having itemsets with low support value and high
confidence) [11]. This algorithm was the seminal work for RI mining. Laszlo
Szathmary et al. proposed two algorithms, namely MRG-Exp, which finds minimal
rare itemsets (mRIs) with a naive Apriori approach and a rare itemset miner
algorithm (ARIMA) which retrieves all RIs from mRIs [3]. Rarity algorithm by
Luigi Troiano et al. implements a variant Apriori strategy [12]. It first identifies the
longest rare itemsets on the top of the power set lattice and moves downward the
lattice pruning frequent itemsets and tracks only those that are confirmed to be rare.
Laszlo Szathmary et al. have proposed Walky-G algorithm which finds mRIs using
a vertical mining approach [3]. The major limitation of the existing algorithms is
that they work with the assumption that all itemsets having support <min supp form
the set of RIs. This notion states that all IFIs are RIs, while this is not the case. All
IFIs may or may not be RIs, but all RIs are IFIs. RIs are those IFIs which are
relatively rare.

The other limitation with the present algorithms is that they propose to find mRIs
only; none of the algorithms except ARIMA and take into consideration the
exhaustive generation of set of RIs. As these algorithms use Apriori levelwise
approach, so generating the exhaustive set of RIs would be a very space and time
expensive approach as is evident from the paper by Luigi Troiano et al., in which
the authors took subsets of the benchmark datasets to analyze results of ARIMA
and rarity algorithms [12]. Since the number of RIs produced is very large, the
memory usage and execution time are high for such exhaustive RI generation. The
proposed algorithm overcomes the repeated scan limitation of Apriori-based
approaches based on the recursive elimination (RELIM) algorithm.

3 Proposed Rare Itemset Mining Algorithm

We introduce the RELIM algorithm for exhaustive generation of rare itemsets from
given database. Like RELIM for frequent itemsets, this algorithm follows the same
representation for transactions. In the first scan of the database, the frequencies of
each unique item present in each transaction of database are calculated. The items
are sorted in ascending order according to their frequencies. Items having same
frequencies can be in any order. The relim prefix list for each item is initialized with
their support value taken to be 0 and suffix-set list to ∅. The next step is to reorder

224 M. Kataria et al.

the items in each transaction according to the ascending order got in the previous
step. This step takes one more pass over the database. After sorting the transaction,
P = prefix[T′]; i.e., first item of the transaction is taken as the prefix for the sorted
transaction T and the remaining items are taken as suffix-set for the transaction.
Then the, suffix-set to suffix-set list of prefix P is inserted in relim prefix list for
each transaction.

After populating the relim prefix list with all of the sorted transactions, iteration
through the relim prefix list in the order of ascending order of frequencies of each
unique item found in step 1 is done. For each prefix P in relim prefix list, and for
each suffix-set S(i) in the suffix-set list S of P, generate all of the possible subsets
except empty set and store the subsets prefixed with P in a hashmap along with its
support value. If a generated subset already exists in hashmap, its associated value
is incremented. Now let P′ = suffix-set(S(i)) is the prefix item of the suffix-set S(i).
The suffix-set from the suffix-set list of prefix P is removed. Let S(i) = suffix-set(S
(i)). S(i) to prefix P is added in the relim prefix list, and its corresponding support is
incremented by 1. Once iteration through the suffix-set list of prefix P is over, all the
candidate rare itemsets in a hashmap are obtained and on pruning the hashmap, and
the rare itemsets prefixed with P are generated. Subset generation is done based on
an iterative approach, and a hashmap data structure is used in the process of pruning
itemsets to optimize on implementation.

3.1 Illustration

After scanning database and counting frequencies of unique items, seven unique
items in sorted order remain, as shown in Fig. 1. Then, a prefix list of seven items is
generated with initial support of 0. Now in next pass, the transactions in the order of
frequencies of prefixes are sorted, and for each sorted transaction T and its prefix,
suffix-set[T] is inserted into the suffix-set list of prefix[T] in the relim prefix list. In
this case, the first transaction {a, d, f} is converted to {f, a, d} and {a, d} being the
suffix-set of the transaction is stored in suffix-set list of prefix f. The relim prefix list
is populated with all the transactions and the recursive.

Algorithm 1 RELIM-based RI Efficient Pruning-based RELIM
based-Mining of Rare Patterns.

Input: D, max supp

Output: RI’s with support � max supp.

Method:

Scan D once and retrieve all frequent 1-length itemsets in Fi .

Sort Fi in ascending order to get F’ .

A Novel Rare Itemset Mining Algorithm Based on Recursive … 225

for f 2 F’ do

P ← prefix(f); P .support ← 0

P .suffixsetlist

Fig. 1 Illustration for RELIM-based RI mining

226 M. Kataria et al.

end for

call sort transaction and addto prefixlist();

for each prefix P 2 P REFI X LI ST do

candidate [P] ← P .support

for each suffixset.SS 2 P .suffixsetlist do

call calc support candidate subsets(SS, P);

P’ ← prefix(SS)

P .suffixsetlist ← P .suffixsetlist – SS

P .support–; SSʹ ← suffix(SS)

if SSʹ = ∅ then

Pʹ .suffixsetlist ← P .suffixsetlist [SSʹ
Pʹ.support ++;

end if

end for

Rp ← prune candidatelist() //Set of RI’s with prefix P

end for

Procedure sort transaction and add to prefixlist(): Find the sorted transac-
tion and add it to the prefix list

Method:

for each transaction T 2 D do

T’ ← ∅

for each item I 2 F’ do

if (I 2 T) then

T 0 [I
end if

end for

P’ ← prefix (T’); SSʹ ← suffix(T’)

P .suffixlist ← P .suffixsetlist [SSʹ
P .support ++;

end for

Elimination of each prefix is carried out. The first prefix is g with support
(number of suffix-sets in the suffix-set list) of 1 and the only suffix-set being {e, c,
b}. Now all possible subsets of this suffix-set are generated except empty set which
are {b}, {c}, {e}, {e, b}, {e, c}, {b, c}, {e, c, b}, and their supports are calculated
and are inserted in the candidate list. Candidate list is pruned, and RIs are retained.
In this case, all the subsets generated of prefix g are rare.

A Novel Rare Itemset Mining Algorithm Based on Recursive … 227

After generating RIs, an extension for prefix g is created and all the suffix-sets of
g as transactions are listed, and the same is inserted into extended relim prefix list
for prefix g. The only suffix-set of g is {e, c, b}.

Procedure calc support candidate subsets(SS, P): Find the support of can-
didate subsets

Method:

sub ← ∅

sub ← generate subsets(SS); //

Generate subsets of all items in suffixset and add it to a set of subsets

sub.

for each set S 2 sub do

Candidate[P [S] ++;

end for

Procedure prune candlist(): prune the candidate list of rare itemsets

Method:

R ← ∅

m ← count of RI’s

for i ← 0 to candidate.end do

if value [candidate.at(i)] � max supp 	 # transactions then

m + + ; R ← R [candidate.at(i)

end if

end for

Return R

So prefix[{e, c, b}] = e, and suffix-set[{e, c, b}] is {c, b}. Hence, suffix-set {c,
b} is added to prefix e suffix-set list, and support for e is incremented to 1 in the
extended relim prefix list for prefix g. After populating this extended relim prefix
list, the suffix-sets in the extended prefix list are added to the corresponding relim
prefix list and the support values are added from the extended prefix list to the relim
prefix list. So {c, b} is added to the suffix-set list of e, and support for e is
incremented. This process happens for every prefix in the main relim prefix list.

228 M. Kataria et al.

4 Proof of Correctness

Lemma 1 The ascending order sorting of transactions leads to the generation of
RIs with prefix tp collectively.

Proof After sorting transactions in an ascending order of frequencies of unique
itemsets, we ensure in relim data structure that all transactions with prefix P are in
the suffix-set list of P. So generating all subsets of each suffix-set of P will generate
candidate itemsets with prefix P only and the sorting ensure that P will not be a part
of any suffix-sets of subsequent prefixes.

Lemma 2 Let X� x1; . . .; xnf g is a rare itemset, then X 0 � X is also a rare itemset
or a non-present, where X 0� x1; . . .; xnf g.
Proof If support (X) = s and Y superset of X, then support (y) � s. The range for
support (y) is 0 � support(y) � s. So either superset of RI is rare or its support is
0 and is non-present. This is the monotonicity property of Apriori lattice.

5 Simulation Results and Discussion

Simulation experiments are performed on an Intel Core i5-3230 M CPU 2.26 GHz
with 4 GB main memory and 500 GB hard disk on Ubuntu 13.04 OS Platform and
are implemented using C++ 11 standard. The standard frequent itemset mining
(FIMI) dataset is taken for simulation [13]. Results presented in this section are over
Mushroom dataset which contains 8124 transactions with varying number of items
per transaction (maximum 119). The detailed results are tabulated in Table 1. In the
simulation for this algorithm, various combinations of number of items per trans-
actions and number of transactions of mushroom data set were used and the portion
of data used from mushroom dataset was truncated using the first item and first
transaction as pivot. There is a general trend, which we see that as we increase the
dimension of the portion we use for getting RIs out of the mushroom dataset, the
time taken to mine the RI increases.

Figure 2 highlights the comparison of natural logarithm of time taken to mine
RIs with varying number of items per transaction by keeping number of transac-
tions constant with RareRELIM and rarity algorithm approach. It can be clearly
seen that time taken to mine RIs increases when we increase items per transaction
keeping number of transactions constant. This is because of the fact that a larger
data set leads to more candidate item sets and hence more time taken to prune RI’s
from candidate sets. For example, for 60 items per transaction, log(time taken)
increases from 39.64 to 227.81 as we increase number of transaction from 1000 to
8124 for our approach.

Figure 3 showcases the comparison of natural logarithm of time taken to mine
RIs with varying number of items per transaction by keeping number of transac-
tions constant with RareRELIM and rarity algorithm approach. It can be clearly

A Novel Rare Itemset Mining Algorithm Based on Recursive … 229

seen that in this case also, time taken to mine RIs increases when we increase
number of transactions keeping items per transaction constant because of the same
reason that as data set increases, more candidates are generated and hence more

Table 1 Detailed results for mushroom dataset for various max supp

max_supp
(%)

Time taken_RELIM-based
RI (s)

Time
taken_Rarity (s)

Candidate RI # RI

#Items per transaction: 40 and no. of transactions: 5000

20 7.02 9.5472 23,549 23,286

10 6.957 9.46152 23,549 22,578

5 6.91 9.3976 23,549 20,382

2.5 6.864 9.33504 23,549 17,128

1 6.848 9.31328 23,549 14,162

#Items per transaction: 40 and no. of transactions: 8124

20 27.699 38.22462 785,887 785,847

10 27.409 37.82442 785,887 785,847

5 27.393 37.80234 785,887 785,575

2.5 30.701 42.36738 785,887 785,073

1 31.87 43.9806 785,887 781,829

#Items per transaction: 50 and no. of transactions: 5000

20 17.004 23.46552 101,283 101,016

10 17.05 23.529 101,283 100,176

5 17.035 23.5083 101,283 97,258

2.5 19.422 26.80236 101,283 90,828

1 16.77 23.1426 101,283 78,158

#Items per transaction: 50 and no. of transactions: 8124

20 28.938 40.80258 138,079 137,875

10 27.627 38.95407 138,079 137,109

5 28.065 39.57165 138,079 134,891

2.5 29.031 40.93371 138,079 128,895

1 28.314 39.92274 138,079 113,663

#Items per transaction: 60 and no. of transactions: 5000

20 150.4 212.064 851,839 850,662

10 147.108 207.42228 851,839 845,550

5 147.862 208.48542 851,839 826,958

2.5 147.489 207.95949 851,839 782,490

1 145.018 204.47538 851,839 692,178

#Items per transaction: 60 and no. of transactions: 8124

20 228.072 328.423.68 1,203,575 1,202,659

10 227.807 328.04208 1,203,575 1,198,659

5 232.191 334.35504 1,203,575 1,185,813

2.5 230.1 331.344 1,203,575 1,148,930

1 227.854 328.10976 1,203,575 1,050,463

230 M. Kataria et al.

time is taken to prune RIs. For example, for 8124 transactions, log(time taken)
increases from 0.7 to 230.1 as we increase number of items per transaction from 25
to 60 for our approach. But in general, RareRELIM algorithm takes less time than
rarity algorithm because rarity approach takes into consideration candidate set and
veto list, and it generates both of them and uses both of them to classify an itemset
as rare or not. It takes more time to generate both candidate itemsets and veto lists.

Figure 4 highlights the comparison of number of RIs with varying support for a
fixed portion of mushroom data set, i.e., 60/8124 (items per transaction/number of
transactions). We see a general rise in trend of the graph because of the reason that,
as we keep on increasing the maximum support value used to filter out the RIs from
the database, the rarity of an itemset tends to increase and itemsets tend to be less
frequent. As can be seen from the graph, as we increase max supp value from 1 to

lo
g

tim
e

ta
ke

n(
s)

1
0

350

300

250

200

3000 RELIM
5000 RELIM
8124 RELIM
3000 Rarity
5000 Rarity
8124 Rarity

150

100

50

0
25 30 35 40 45 50 55 60

Number of items per transaction

Fig. 2 Number of items per
transaction versus log time
taken for mushroom

lo
g

tim

e
ta

ke
n(

s)
1

0

350

300

250

200

40 RELIM
50 RELIM
60 RELIM
40 Rarity
50 Rarity
60 Rarity

150

100

50

0
1000 2000 3000 4000 5000 6000 7000 8000 9000

Number of transactions

Fig. 3 Number of
transactions versus log time
taken for mushroom

A Novel Rare Itemset Mining Algorithm Based on Recursive … 231

20%, the value of log10 #RIs increases from 1,050,463 to 1,202,659, an increase of
14%, leading to the conclusion that we got more number of RIs at higher max supp
value.

6 Conclusion

The paper has presented a novel approach to mine rare itemsets, employing RELIM
strategy. Efficient pruning strategies along with a simple data structure have been
employed, and results indicate the significant decline in time taken to mine the rare
itemsets. Future work shall focus on reducing the storage space taken for generating
the RIs. Moreover, efforts shall be put in using the mined rare itemsets in other data
mining strategies.

References

1. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann, Los Altos
(2000)

2. Agarwal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In:
Bocca, J.B., Jarke, M., Zaniolo, C. (eds.) VLDB’94, Proceedings of 20th International
Conference on Very Large Data Bases, pp. 487–499. 12–15 September 1994, Morgan
Kaufmann, Santiago de Chile, Chile (1994)

3. Szathmary, L., Valtchev, P., Napoli, A., Godin, R.: Efficient vertical mining of minimal rare
itemsets. In: CLA, pp. 269–280. Citeseer (2012)

4. Szathmary, L., Napoli, A., Valtchev, P.: Towards rare itemset mining. In: 19th IEEE
International Conference on Tools with Artificial Intelligence, 2007, ICTAI 2007, vol. 1,
pp. 305–312. IEEE (2007)

lo
g

nu

m
be

r
of

 R
I

1
0

1.22
6

x 10

1.2

1.18

1.16
60 X 8124 mushroom data

1.14

1.12

1.1

1.08

1.06

1.04
0 5 10 15 20

Maximum Support(%)

Fig. 4 Maximum support
versus number of rare
itemsets for mushroom
dataset

232 M. Kataria et al.

5. Borgelt, C.: Keeping things simple: finding frequent item sets by recursive elimination. In:
Proceedings of the 1st International Workshop on Open Source Data Mining: Frequent
Pattern Mining Implementations, pp. 66–70. ACM (2005)

6. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate generation: a
frequent-pattern tree approach. Data Min. Knowl. Discov. 8(1), 53–87 (2004)

7. Goethals, B.: Survey on frequent pattern mining (2003)
8. Bastide, Y., Taouil, R., Pasquier, N., Stumme, G., Lakhal, L.: Mining frequent patterns with

counting inference. ACM SIGKDD Explor. Newsl 2(2), 66–75 (2000)
9. Han, J., Cheng, H., Xin, D., Yan, X.: Frequent pattern mining: current status and future

directions. Data Min. Knowl. Disc. 15(1), 55–86 (2007)
10. Weiss, G.M.: Mining with rarity: a unifying framework. ACM SIGKDD Explor. Newsl 6(1),

7–19 (2004)
11. Koh, Y.S., Rountree, N.: Finding sporadic rules using apriori-inverse. In: Advances in

Knowledge Discovery and Data Mining, pp. 97–106. Springer (2005)
12. Troiano, L., Scibelli, G., Birtolo, C.: A fast algorithm for mining rare itemsets. In: 2009 Ninth

International Conference on Intelligent Systems Design and Applications, pp. 1149–1155.
IEEE (2009)

13. Dataset, F.: Frequent itemset mining implementation (fimi) dataset

A Novel Rare Itemset Mining Algorithm Based on Recursive … 233

Computation of Various Entropy
Measures for Anticipating Bugs
in Open-Source Software

H. D. Arora and Talat Parveen

Abstract Bugs could be introduced at any phase of software development process.
Bugs are recorded in repositories, which occur due to frequent changes in source
code of software to meet the requirements of organizations or users. Open-source
software is frequently updated and source codes are changed continuously due to
which source code becomes complicated and hence bugs appear frequently. Bug
repair process includes addition of new feature, enhancement of existing feature,
some faults or other maintenance task. Entropy measures the uncertainty, thus
helpful in studying code change process. In this paper, bugs reported in various
subcomponents of Bugzilla open-source software are considered; changes are
quantified in terms of entropies using Renyi, Havrda–Charvat, and Arimoto entropy
measures of each component for all changes in components. A linear regression
model using SPSS is applied to detect the expected bugs in the Bugzilla sub-
components. Performance has been measured using goodness-of-fit curve and other
R-square residuals.

Keywords Entropy measure � Bug detection � Bugzilla � Open-source software

1 Introduction

Software goes under regular maintenance and updation with introduction of new
features, enhancement of existing features, and bug repair. Software use and
dependency has increased over a time it required almost everywhere in current time.
Ever-increasing user demand leads to tremendous changes in software, making it
complex over time. The process of maintenance is crucial phase in software

H. D. Arora (&) � T. Parveen
Department of Applied Mathematics, Amity Institute of Applied Sciences,
Amity University, Sector-125, Noida, Uttar Pradesh, India
e-mail: hdarora@amity.edu

T. Parveen
e-mail: talat.tyagi@gmail.com

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_23

235

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_23&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_23&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_23&domain=pdf

development cycle. When software undergoes maintenance, main changes occurred
in source code are due to the introduction of new features, bug repair, and feature
enhancement. It is necessary to record to all the changes in source code in a
repository to access it in future for further study and understanding of code change
process. Frequent source code change makes it complex and thus faulty and
sometimes causes a failure. Software reliability and quality are affected by bugs
lying dormant or introduced at any phase in the software development cycle. Bugs
are introduced in the system by increased complexity of source code, advanced
release pressure, no communication, or miscommunication among active devel-
opers and bugs introduced during software development process. Bugzilla [1] is
most widely used bug-tracking system. It is the most commonly used bug reporting
system which assists in bug-fix process. It was released by ‘Netscape
Communications’ in 1998. Entropy is an important concept of information theory
which is defined as the measure of randomness/uncertainty/complexity of code
change. It tells us how much information is present in an event.

In this paper, we have developed an approach for predicting bugs in an
open-source software system using entropy measures. We have applied the simple
linear regression for predicting future bugs using entropy changes calculated using
bug-tracking data from Bugzilla [1]. We have predicted the bugs using three dif-
ferent generalizations of Shannon’s entropy [2], namely Renyi [3], Havrda–Charvat
[4], and Arimoto [5]. Further, we analysed our results with the R-square measure
calculated for each entropy measure. To do this work, we have taken our data from
the Bugzilla bug-tracking system and we considered the bug report in the Bugzilla
subsystem, arranged the data on yearly basis, and then applied simple linear
regression using SPSS. This paper is organized as follows:

2 Literature Review

Hassan [6] applied information theoretic approach of measuring the amount of
entropy as a measure of complexity of code change in a system, and he proposed to
quantify the code change process in terms of entropy. Six open-source software
systems FreeBSD, NetBSD, OpenBSD, KDE, KOffice, and PostgreSQL were
considered for evaluating entropy-based metrics. Entropy-based measures proved to
be better in prediction than the methods using number of changes and previous
bugs. Singh et al. [7] used Hassan’s [6] approach and applied entropy-based metrics
to predict the bugs using simple linear regression (SLR) and support vector
regression (SVR). Nagappan et al. [8] studied the effect of number of modified lines
on the defect density in windows vista. It is concluded that code churn is better
predictor than absolute churn. Ihara et al. [9] proposed bug prediction model which
studies base and state metrics using the eclipse project gives improved performance
than standard model. Maszczyk et al. [10], Shannon entropy in standard top-down
decision trees, and Tsallis and Renyi entropies for modified C4.5 decision trees are
compared for several data sets. They presented that this approach may be used in

236 H. D. Arora and T. Parveen

any decision tree and information selection algorithm. Menzies et al. [11] used
NASA Metrics Data Program (MDP) for his study and concluded that learning
algorithm used is more relevant than static source code metric. The effect of using
metrics such as McCabe, LOC, and Halstead is compared with algorithms such as
J48, OneR, and Naïve Bayes. Chaturvedi et al. [12] proposed a method of pre-
dicting the potential complexity of code changes in subcomponents of Bugzilla
project using bass model. This approach helps in predicting the source code
changes yet to be diffused in a system. D’Ambros et al. [13] have done extensive
bug prediction along with releasing data set on their website consisting of many
software systems. They have set a benchmark by comparing the approach devel-
oped by them with the performance of several existing bug prediction approaches.
Giger et al. [14] introduced in a bug prediction a metric with number of modified
lines using fine-grained source code changes (SCCs). Shihab et al. [15] proposed a
statistical regression model to study the eclipse open-source software. This
approach can predict post-release defects using the number of defects in previous
version, and the proposed model is better over existing PCA-based models.

3 Information Theoretic Approach

Information theory has become a keyword in current era which is characterized by a
quantitative approach to the notion of information. It is collection of statistics- and
probability-based mathematical theories. Information theory is a probabilistic
approach dealing with assessing and defining the amount of information contained
in a message. The concept of entropy in information theory was developed by
Shannon [16]. A measure of entropy known as Shannon’s entropy was defined in
Shannon [16]; in his research paper entitled ‘A mathematical theory of communi-
cation’, Shannon [16] proposed and investigated a mathematical model for com-
munication system. He suggested a quantitative measure of average amount of
information supplied by a probabilistic experiment. A systematic attempt to develop
a generalization of Shannon [2] entropy was carried out by Renyi [2] who char-
acterized a nonnegative and additive entropy of order a defined as follows:

H/ðPÞ ¼ 1
1� a

log
Xn
i¼1

pai

 !
ð1Þ

where a 6¼ 1; a[0;Pi � 0;
Pn

i¼1 Pi ¼ 1, a is a real parameter, n is the number of
files, and value of n varies from 1 to n. Pi is the probability of change in a file, and
the entropy is maximum when all files have same probability change, i.e. when
pi ¼ 1

n ; 8i 2 1; 2; . . .n. The entropy would be minimum when element k has prob-
ability say, Pi ¼ 1 and 8i 6¼ k;Pi ¼ 0. Havrda and Charvat [4] gave the first
non-additive measure of entropy called structural b-entropy. This quantity permits

Computation of Various Entropy Measures for Anticipating Bugs … 237

simpler axiomatic characterizations too. It reduced to Shannon [16] when b ! 1.
It lacks the additive property but satisfies the sum property and generalized
recursive property.

HbðPÞ ¼ 21�b � 1
� ��1 Xn

k¼1

pbk � 1

" #
ð2Þ

where b 6¼ 1; b[0—b is a real parameter.
Arimoto [5] defined generalized parametric entropy referred as c-entropy. It is

neither additive, nor satisfies recursive or sum property.

HcðPÞ ¼ 2c�1 � 1
� ��1 Xn

k¼1

p
1
c

k

 !c

�1

" #
ð3Þ

where c 6¼ 1; c[0—c is a real parameter. Many generalizations of Shannon’s
entropy [2] had been developed so far by researchers such as Renyi [3], Aczel and
Daroczy [17], Havrada and Charvat [4], Kapur [18], Arimoto [5], Sharma and
Taneja [19], and Tsallis [2]. We have limited ourselves to three generalization of
Shannon’s entropy measure for our study which are Renyi [3], Havrda and Charvat
[4], and Arimoto [5] entropy measure.

4 Basic Model for Entropy Measurement

In open-source software, source code changes frequently with the increasing
demand of new feature addition and bug repair process. Changes are recorded in a
repository, and complexity of source code increases with code change process.
Shannon’s entropy is used for studying code change process. Probability changes
for a specific file are calculated, and thus, entropy is calculated. Time period could
be considered in terms of year, half year, month, or a week [6].

For example, in a system let 14 changes be occurred in three different files over a
different time period. If File1 has two changes, File2 and File3 have one change in
time t1. Table 1 represents the total changes in each file for respective time period
t1, t2, and t3. For time period t1, total files in t1 = 4. Thus, probability of File1 for

Table 1 Changes in File1, File2, and File3 with respect to time period t1, t2, and t3

File1

File2

File3

t1 t2 t3

238 H. D. Arora and T. Parveen

t1 = 2/5 = 0.4, probability of File2 for t1 = 1/5 = 0.2, and probability of File3 for
t1 = 1/5 = 0.2. Similarly, probabilities for time periods t2 and t3 could be calcu-
lated. Using the probabilities found by above-mentioned method, entropies for all
time periods could be calculated. In this study, Renyi [3], Havrda–Charvat [4], and
Arimoto [5] entropies are calculated using Eqs. (1)–(3). When there would be
changes in all files, then the entropy would be maximum, while it would be min-
imum for most changes occurring in a single file.

5 Data Collection and Preprocessing

Bugzilla renders bug-tracking service to large number of organizations and projects.
It is open-source software. Apache Project, Code Magus, Eclipse, GCC, KDE,
NetBeans, Red Hat, W3C, and many other organization use public Bugzilla
installation. In this paper, components from the Mozilla subsystem are selected.
Bugzilla [1] is a bug-tracking system, and bug reports of few subcomponents are
considered for the study. Bugs are extracted from the CVS repository: http://
bugzilla.mozilla.org. We have considered subcomponents of Bugzilla project for
our study. Data extracted is arranged considering changes in files of subsystem on
yearly basis. In this paper, a fixed period as one year is taken from 2007 to July
2015. The number of files in each of these subsystems varied in the range of 21–157
files. Following subcomponents are selected, and a number of files in each com-
ponent [1] are mentioned along with them (Table 2):

The data is available in the repository, and the data is collected from the
repository and processed using following steps:

Step1 Select the project
Step2 Select the subsystem
Step3 Browse Bugzilla repository for tracking the bug reports
Step4 Collect the reported bug data from the repository for selected

subcomponents
Step5 Arrange the data year-wise and calculate entropy using Eqs. (1)–(3)
Step6 Apply simple linear regression model with bugs mðtÞ observed as

dependent and entropy HðtÞ calculated as independent variables.
Step7 Predict the future bugs using regression coefficients
Step8 Performance of the model is assessed through R2 and other statistical

performance measure

All changes in the subcomponents have been extracted by browsing the con-
current version repository of Bugzilla. Simple linear regression model is fitted for
predicting the future bugs using the entropy measure of the historical changes.

Computation of Various Entropy Measures for Anticipating Bugs … 239

http://bugzilla.mozilla.org
http://bugzilla.mozilla.org

T
ab

le
2

B
ug

zi
lla

co
m
po

ne
nt
s
an
d
ch
an
ge
s
in

fi
le
s

X
SL

T
R
ep
or
te
r

X
Fo

rm
s

G
en
er
al

T
el
em

et
ry

D
as
hb

oa
rd

V
er
ba
tim

G
eo
lo
ca
tio

n
M
FB

T
M
at
hM

L
X
-R
em

ot
e

W
id
ge
t

A
nd

ro
id

X
B
L

13
1

27
87

19
31

57
66

12
6

91
21

58
15

7

240 H. D. Arora and T. Parveen

6 Calculation of Arimoto, Havrda–Charvat, and Renyi
Entropy

In this paper, subcomponents of Bugzilla software are considered and entropy
variation in the system over a period of time ranging from 2007 to 2015 based on
number of bugs calculated is studied Renyi [3]. Havrda–Charvat [4], and Arimoto
[5] entropies are calculated based on data extracted for different subcomponents for
a, b, c ranging from 0.1 to 0.9, respectively. After collecting data for time period
varying from 2007 to 2015 for different files as discussed above, Renyi, Havrda–
Charvat, and Arimoto entropies are calculated using the calculated probabilities as
depicted in Eqs. (1)–(3), respectively, following the method as described in Sect. 4.
For Renyi, Havrda–Charvat, and Arimoto a, b, and c are ranging from 0.1 to 0.9,
respectively, as by the definition of these entropy measures the value parameter in
Eq. (1)–(3) must be greater than 0 and not equal to 1.

Figures 1, 2 and 3 depict the entropy change in various subsystems over the time
period ranging from 2007 to 2015 calculated using Renyi, Havrda–Charvat, and
Arimoto entropy measures, respectively. Renyi, Havrda–Charvat, and Arimoto
entropy decrease as we increase the value of a; b; c from 0.1 to 0.9.

0

1

2

2007 2008 2009 2010 2011 2012 2013 2014 2015

E
nt

ro
py

Renyi Entropy
α=0.1
α=0.2
α=0.3
α=0.4
α=0.5
α=0.6
α=0.7
α=0.8
α=0.9

Fig. 1 Renyi entropy for a ranging from 0.1 to 0.9

0

10

2007 2008 2009 2010 2011 2012 2013 2014 2015

E
nt

ro
py

Havrda Charvat Entropy β=0.1
β=0.2
β=0.3
β=0.4
β=0.5
β=0.6
β=0.7
β=0.8
β=0.9

Fig. 2 Havrda–Charvat entropy for b ranging from 0.1 to 0.9

Computation of Various Entropy Measures for Anticipating Bugs … 241

7 Analysis and Bug Prediction Approach

The simple linear regression [19] is a statistical approach which enables predicting
the dependent variable on the basis of independent variable which has been used to
fit the entropy measure as independent variable HðtÞ and bugs observed as
dependent variable mðtÞ using Eq. (4)

mðtÞ ¼ r0 þ r1 � HðtÞ ð4Þ

where r0 and r1 are regression coefficients. Once getting the regression coefficients
r0 and r1 value, we predict the future bugs by putting the value of regression
coefficients in Eq. (4). The simple linear regression model is used to study the code
change process [20]. SLR is fitted for independent variable HðtÞ and dependent
variable mðtÞ using Eq. (4). Here, mðtÞ represents the number of bugs recorded for
specified in the Bugzilla [1] subcomponent, namely XSLT, Reporter, XForms,
General, Telemetry Dashboard, Verbatim, Geolocation, MFBT, MathML,
X-Remote, Widget Android, and XBL. The regression coefficients r0 and r1 are
calculated by varying the value of a; b; c parameters in Eqs. (1)–(3) taking entropy
as independent variable and number of recorded bugs as dependent variable. We
varied the value of a; b; c from 0.1 to 0.9, respectively, for each entropy measure
and studied the effect of different entropy measure on bug prediction technique [21].
The values of R, R2, adjusted R2 standard error of estimate, and regression coef-
ficients for the entropy measures, namely Renyi [3], Havrda–Charvat [4], and
Arimoto [5] have been calculated by varying the parameter value in each entropy
measure from 0.1 to 0.9 from year 2007 to 2015 and illustrated in Table 3.

R value determines the correlation between set of observed and predicted data,
and its value lies between −1 and 1. R2 also known as coefficients of determination
determines the closeness of data to the fitted regression line, and it lies between 0
and 1. R-square estimates the percentage of total variation about mean, and its value
close to 1 explains that data fits the model appropriately. Adjusted R2 represents the
percentage of variation based only on the independent variables which are affecting
the dependent variable. The results of the simple linear regression are represented in
Table 3, the table represents the value of R, R2, adjusted R2, standard error of
estimate, and regression coefficients. The value of parameter a in Renyi’s entropy
[11] measure in Eq. (1) is varied from 0.1 to 0.9, and entropy is calculated for the

0

5

2007 2008 2009 2010 2011 2012 2013 2014 2015

E
nt

ro
py

Arimoto Entropy γ=0.1
γ=0.2
γ=0.3
γ=0.4
γ=0.5
γ=0.6
γ=0.7
γ=0.8
γ=0.9

Fig. 3 Arimoto entropy for c ranging from 0.1 to 0.9

242 H. D. Arora and T. Parveen

time period varying from year 2007 to 2015. The entropy calculated is used to
predict the bugs using simple linear regression model in SPSS. The regression
coefficients and hence the predicted value for the future bugs are evaluated. It is
observed that as the value of a progresses from 0.1 to 0.9, a decline in the value of
R2 is observed, which reduces from 0.993 for a = 0.1 to 0.998 for a = 0.9. The
value of parameter b in Havrda–Charvat [4]’s entropy measure in Eq. (2) is varied
from 0.1 to 0.9 and entropy for the period varying from year 2007 to 2008 is
calculated. Then, the regression coefficients evaluated through SLR are used to
predict the bugs to be appeared in system. A decline in the value of R2 is observed
as the b progresses from 0.1 to 0.9. It is seen that for b = 0.1 the value of R2 is
0.991, while following continuous degradation as b value increases at b = 0.9, the

Table 3 Statistics and regression coefficients

Model Parameter R R2 Adjusted
R2

Std. error of the
estimate

Regression
coefficients

r0 r1
Equation 1
(a)

0.1 0.996 0.993 0.992 26.50367 −65.497 114.985

0.2 0.996 0.992 0.991 26.91679 −62.751 117.442

0.3 0.996 0.992 0.991 27.49703 −59.943 119.870

0.4 0.996 0.992 0.991 28.21549 −57.126 122.240

0.5 0.996 0.991 0.99 29.03881 −54.346 124.528

0.6 0.995 0.991 0.989 29.93830 −51.639 126.705

0.7 0.995 0.99 0.989 30.90207 −49.015 128.734

0.8 0.995 0.989 0.988 31.96744 −46.437 130.525

0.9 0.994 0.988 0.987 33.43824 −43.611 131.648

Equation 2
(b)

0.1 0.995 0.991 0.989 30.09957 −8.091 15.512

0.2 0.995 0.99 0.988 31.54890 −10.639 17.875

0.3 0.994 0.989 0.987 32.63041 −13.668 20.392

0.4 0.994 0.988 0.987 33.38173 −17.109 23.041

0.5 0.994 0.988 0.986 33.85169 −20.884 25.800

0.6 0.994 0.988 0.986 34.09773 −24.905 28.642

0.7 0.994 0.988 0.986 34.18984 −29.076 31.535

0.8 0.994 0.988 0.986 34.23875 −33.263 34.429

0.9 0.994 0.988 0.986 34.61405 −37.092 37.174

Equation 3
(c)

0.1 0.994 0.989 0.987 32.80168 −58.873 72.152

0.2 0.994 0.989 0.987 33.00622 −59.372 67.935

0.3 0.994 0.989 0.987 32.90916 −59.629 64.082

0.4 0.994 0.989 0.987 32.66821 −59.262 60.425

0.5 0.995 0.989 0.987 32.42818 −58.201 56.908

0.6 0.995 0.989 0.988 32.24788 −56.447 53.514

0.7 0.995 0.989 0.988 32.12785 −54.053 50.238

0.8 0.995 0.989 0.988 32.01330 −51.131 47.099

0.9 0.995 0.99 0.988 31.61755 −48.045 44.227

Computation of Various Entropy Measures for Anticipating Bugs … 243

R-square value is found to be 0.988. Similarly, for Arimoto [5] entropy in Eq. (3)
similar to SLR approach is applied as is mentioned above, and hence, the regression
coefficients are calculated. The predicted value is calculated, and hence, R2 value is
analysed. It is found that unlikely of Renyi [11] and Havrda–Charvat [4] entropy
measure analysis with SLR in Arimoto [5] as we increased the value of c from 0.1
to 0.9, the value of R2 improved at c = 0.9. The value of R2 was similar for c = 0.1
to 0.8, and it increased significantly at c = 0.9.

A graph of R-square against the parameter value ranging from 0.1 to 0.9 in
Eqs. (1)–(3) is plotted, and it is observed that the R-square value for the where
R-square value for bugs predicted by Renyi [3] entropy measure is close to 1. It is
observed that the simple linear regression approach predicts the future bugs with
precision. The value of R-square indicates that the Renyi [3] entropymeasure diffused
in simple linear regression approach as independent variable provides the best pre-
dicted value of future bugs.While best R-square values for bugs predicted byHavrda–
Charvat [4] and Arimoto [5] entropy are 99 and 99.1%, respectively. (Figure 4)

8 Result and Discussion

Goodness-of-fit curve has been plotted between observed and predicted values.
Goodness of fit for simple linear regression depicts the fitting of the observed bug
value with the predicted bug’s value. Simple linear regression method significantly
anticipates the future bugs using the number of bugs recorded from the subsystem
of open-source software and entropy measure in Eqs. (1)–(3) by determining the
regression coefficients. Figures 5, 6, and 7 represent this goodness-of-fit curve for
each entropy measure considered for our study, i.e. Renyi [3], Havrda–Charvat [4],

0.98

0.99

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R
 S

qu
ar

e

Parameter in equation(1), (2) and (3)

R square Renyi R square Havrda Charvat R square Arimoto

Fig. 4 Performance of simple linear regression model in bug prediction

10

210

410

610

810

B
U

G
S

Fig. 5 Goodness-of-fit curve
for Renyi entropy

244 H. D. Arora and T. Parveen

and Arimoto [5]. The predicted value is calculated, and hence, R-square value is
analysed. It is found that in Renyi [3] and Havrda–Charvat [4] entropy measure
analysis, the value of R-square degraded from 99.3 to 98.9 and 99.1 to 98.8% with
the increase in value of parameter a and b from 0.1 to 0.9, respectively.

While in case of Arimoto [5] as we increased the value of c from 0.1 to 0.9, the
value of R-square improved at c = 0.9 from 98.7 to 98.8%. The value of R-square
was similar for c = 0.1 to 0.8, i.e. shows 98.7% variability, and it increased sig-
nificantly at c = 0.9 to 98.8% variability.

9 Conclusion

Software is affected by code change process which leads to increased code com-
plexity. Based on the data set statistics, Renyi [3], Havrda–Charvat [4], and
Arimoto [5] entropies are calculated for different values of parameter a, b, and c,
respectively, ranging from 0.1 to 0.9 in Eq. (1)–(3) for 12 subcomponents of
Mozilla open-source software (OSS). It is observed that Renyi [3], Havrda–Charvat
[4], and Arimoto [5] entropies lie between 0.4 and 1, 1.8 and 9, 0.7 and 3,
respectively. It could be analysed through Figs. 1, 2 and 3 that all entropy values
decrease as we increase the value of a from 0.1 to 0.9. We have considered a bug
prediction approach to predict the appearance of bugs in the OSS subsystem in
coming years; hence, through comparative analysis of the R2 value for each entropy
measure, it is observed that Renyi [3] entropy measure provides the best R2 value
99.3% for a = 0.1. Goodness-of-fit curve has been plotted and represented in
Figs. 1, 2, and 3. This study based on entropy measures is useful in learning the
code change process in a system. In the future, entropy measures could be used to

10

210

410

610

810

B
U

G
S

Fig. 6 Goodness-of-fit curve
for Havrda–Charvat entropy

10

210

410

610

810

B
U

G
S

Fig. 7 Goodness-of-fit curve
for Arimoto entropy

Computation of Various Entropy Measures for Anticipating Bugs … 245

predict bug occurrence in the software and thus complexity of code changes that
software has during a long maintenance period. In the future, our study could be
extended to predict the potential complexity/entropy of code changes that the
software will have during a long maintenance period.

References

1. The Bugzilla. http://bugzilla.mozilla.org
2. Tsallis, C.: Possible generalization of Bolzmann-Gibbs statistics. J. Stat. Phys. 52, 479–487

(1988)
3. Renyi A.: On Measures of entropy and information. In: Proceedings of the Fourth Berkeley

Symposium on Mathematical Statistics and Probability, pp. 547–561. University of California
Press, Berkeley-Los Angeles (1961)

4. Havrada, J.H., Charvat, F.: Quantification method of classification process: concept of
structural a -entropy. Kybernetika 3, 30–35 (1967)

5. Arimoto, S.: Information-theoretical considerations on estimaton problems. Inf. Control 19,
181–194 (1971)

6. Hassan A.E.: Predicting faults based on complexity of code change. In: The proceedings of
31st International Conference on Software Engineering, pp 78–88 (2009)

7. Singh, V.B., Chaturvedi, K.K.: Improving the quality of software by quantifying the code
change metric and predicting the bugs. In: Murgante, B., et al. (eds.) ICCSA 2013, Part II,
LNCS 7972, pp. 408–426. Springer, Berlin (2013)

8. Nagappan, N., Ball T.: Using software dependencies and churn metrics to predict field
failures: an empirical case study. In: ESEM ’07: Proceedings of the First International
Symposium on Empirical Software Engineering and Measurement, pp. 364–373. Washington,
DC, USA. IEEE Computer Society (2007)

9. Ihara, A., Kamei, Y., Monden, A., Ohira, M., Keung, J.W., Ubayashi, N., Matsumoto, K.: An
investigation on software bug-fix prediction for open source software projects—a case study
on the eclipse project. In: Software Engineering Conference (APSEC), 2012 19th
Asia-Pacific, pp. 112–119. vol. 2 (2012)

10. Maszczk and Duch: Comparison of Shannon, Renyi and Tsallis entropy used in decision
trees. Lect. Notes Comput. Sci. 5097, 643–651 (2008)

11. Menzies, Tim, Greenwald, Jeremy, Frank, Art: Data mining static code attributes to learn
defect predictors. IEEE Trans. Softw. Eng. 33(1), 2–13 (2007)

12. Chaturvedi, K.K., Kapur, P.K., Anand, S.: Singh VB (2014) Predicting the complexity of
code changes using entropy based measures. Int. J. Syst. Assur. Eng. Manag. 5(2), 155–164
(2014)

13. D’Ambros M., Robbes R.: An extensive comparison of bug prediction approaches. In:
MSR’10: Proceedings of the 7th International Working Conference on Mining Software
Repositories, pp. 31–41 (2010)

14. Giger, E., Pinzger, M., Gall H.C.: Comparing fine-grained source code changes and code
churn for bug prediction. In: Proceedings of the 8th Working Conference on Mining Software
Repositories, pp. 83–92. MSR ’11, New York, NY, USA. ACM (2011)

15. Shihab, E., Jiang, Z.M., Ibrahim, W.M., Adams, B., Hassan A.E.: Understanding the impact
of code and process metrics on post-release defects: a case study on the eclipse project. In:
ESEM ’10: Proceedings of the 2010 ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement, pp. 1–10. New York, NY, USA. ACM (2010)

16. Shannon, C.E.: A mathematical theory of communication. Bell’s Syst. Tech. J. 27, 379–423
(1948)

246 H. D. Arora and T. Parveen

http://bugzilla.mozilla.org

17. Aczel, J., Daroczy, Z.: Charakterisierung Der Entrpien Positiver Ordung under Shannibscen
Entropie; Acta Math. Acad. Sci. Hunger. 14, 95–121 (1963)

18. Kapur, J.N.: Generalization entropy of order a and type b. Math. Semin. 4, 78–84 (1967)
19. Weisberg, S.: Applied linear regression. Wiley, New York (1980)
20. Sharma, B.D., Taneja, I.J.: Three generalized additive measures of entropy. ETK 13, 419–433

(1977)
21. IBM SPSS statistics for windows, Version 20.0. Armonk, NY: IBM Corp

Computation of Various Entropy Measures for Anticipating Bugs … 247

Design of Cyber Warfare Testbed

Yogesh Chandra and Pallaw Kumar Mishra

Abstract Innovations doing fine in a predictable, controlled environment may be
much less effective, dependable or manageable in a production environment, more
so in cyber systems, where every day there is new technology in malware detection,
zero-day vulnerabilities are coming up. Considering NCSP-2013, authors propose a
realistic cyber warfare testbed using XenServer hypervisor, commodity servers and
open-source tools. Testbed supports cyber-attack and defence scenarios, malware
containment, exercise logs and analysis to develop tactics and strategies. Further,
authors provide ways and means to train cyber warriors, honing their skills as well
as maturing attack and defence technologies on this testbed.

Keywords Virtualization � Hypervisor � Metasploit � Malware
Container

1 Introduction

National Cyber Security Policy (NCSP) was announced in July 2013 with a mission
to protect information and IT infrastructure in cyberspace, build capabilities to
prevent and respond to cyber threats, reduce vulnerabilities and hence damage from
cyber incidents through an arrangement of institutional structures, people, pro-
cesses, technology and their collaboration. One of the objectives is to generate
workforce of five lakhs cyber security professionals in coming five years through
capacity building, skill development, training and use of open standards for cyber
security [1]. National Institute of Standards and Technology (NIST) developed the
framework for improving critical IT infrastructure cyber security in Feb 2014.

Y. Chandra (&) � P. K. Mishra
Institute for Systems Studies and Analyses, Defence Research and Development
Organisation, Metcalfe House, Civil Lines, New Delhi, Delhi 110054, India
e-mail: yogeshchandra.drdo@gmail.com

P. K. Mishra
e-mail: pallaw.mishra@gmail.com

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_24

249

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_24&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_24&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_24&domain=pdf

While NCSP addresses the high-level perspective, the NIST framework helps
organizations addressing actual cyber security risks.

The gap between threat and defence continues to expand as opponents use
increasingly sophisticated attack technologies. Cyber Defense Technology
Experimental Research (DETER) is an attempt to fill that gap by hosting an
advanced testbed facility where top researchers and academicians conduct critical
cyber security experiments and educational exercises. It emulates real-world
complexity and scale essential to evolve advance solutions to help protect against
sophisticated cyber-attacks and network design vulnerabilities [2] using Emulab
software [3].

Cyber Exercise and Research Platform (KYPO) project aims to create an
environment for R&D of new methods to protect critical IT infrastructure against
cyber-attacks. A virtualized environment is used for emulation of complex
cyber-attacks and analyse their behaviour and impact on the IT infrastructure [4].
Malware is a powerful, free and independent malware analysis service to the
security community [5]. DARPA is setting up a virtual testbed named National
Cyber Range to carry out virtual cyber warfare games for testing different scenarios
and technologies in response to cyber-attacks.

2 Testbed Requirements

Cyber security experiments involve two or more contestants, due to the adversarial
nature of the problem. Safe and isolated virtual network environment is needed to
be attacked and penetrated as a means of learning and improving penetration testing
skills. In conventional environment, investigator constructing the experiment is
fully aware of both sides of the scenario and all components of the experiment are
equally visible. This affects scenario realism and may foster experimental bias and
may not be able to handle present-day attacks.

Testbed should support on-demand creation of experimental scenarios and
advanced attack emulation. Scenarios generated are to be based on real-world
exploitations. The requirements are network-related, hosts-related, monitoring,
testbed control and deployment. The host monitoring set-up needs to get infor-
mation about the node performance. It is to monitor processor and memory uti-
lization, open connections, interface statistics and other characteristics of hosts.

3 Testbed Design

The testbed consists of four major systems, i.e. cluster of nodes and networks,
attack system, defence system and data logger and report generation.

250 Y. Chandra and P. K. Mishra

3.1 Design of Cluster

Testbed cluster comprises of many nodes in a laboratory connected using a pro-
grammable switch to construct any arbitrary topology. Some nodes may be used to
emulate required link characteristics using network emulator (Netem).

Citrix XenServer serves the objective regarding setting up of underlying
infrastructure for cyber warfare. Though the console is provided by XenCenter, but
it is limited in use and functionality. More sophistication and high fidelity in
creation of nodes and controlling them can be achieved through commercially
available tools such as Cloudstack. Using these tools, a number of virtual nodes are
created for both attack and defence system and testing them in requisite environ-
ment [6] (Fig. 1).

3.2 Composing Attack System

Based on the attacker objective, a number of sequences of attack in the form of
attack graphs may be generated. Each attack graph will be evaluated based on the
extent of objective achieved, time and resources used, the deception achieved and
ease of launch. Though open-source software OpenVAS can be explored, authors
have used Nessus framework for this and have found quite useful aid in generation
of attack graph. The best attack sequence may be executed by the specifically built

Fig. 1 Cyber warfare testbed

Design of Cyber Warfare Testbed 251

actuator which will pick next node in the graph and launch particular attack on the
node. Individual attack tools such as LOIC for DDOS or hping for scanning can be
utilized by starters. For the attack system, Metasploit Community Edition [7] in
conjugation with Nmap and Wireshark may be used. Kali Linux (formerly
Backtrack) by Offensive Security contains several tools aimed at numerous infor-
mation security tasks, such as penetration testing, forensics and reverse engineering
[8]. Using these tools, a number of attack techniques may be tried and matured on
the cyber warfare testbed. Malware and malware generation tools can be sourced
from Websites like vxheaven.org [9].

3.3 Composing Defence System

Intrusion detection systems (IDSs) and system logs may be used to detect several
types of malicious behaviours that can compromise the security and trust of a
computer system. This includes network attacks against vulnerable services,
data-driven attacks on applications, host-based attacks such as privilege escalation,
unauthorized logins and access to sensitive files, and malware (viruses, Trojan
horses and worms). Provisions are given in IDS to configure rules according to the
experiment. Authors used Snort for network-based intrusion detection and OSSEC
for host-based intrusion detection. These will report various security-related system
activities and logs to central console, e.g. insertion/removal of external media,
changes in specified software. These alerts then can be correlated to have better
awareness of cyber situation.

Formulation of proper response in case of such attack based on situation
response technologies includes response recommenders that evaluate alternatives
and recommend responses in light of the mission and response managers and
actuators that implement the responses [10].

3.4 Data Logger and Report Generation

The data logger collects data in passive mode. There are no external linkages from
the data logger during a live experiment. Interactive access is allowed to this only
from report generation and post analyses modules. Depending on the experiment’s
risk rating, data collected by this module may have to be cleaned for malware
before it can to be used by others.

Data logger retrieves information about the performance. Several tools are
available under the various nomenclature, most popular being security information
and event management (SIEM). Authors have used system information gatherer and
reporter (SIGAR) for data logging and reporting. SIGAR API provides a portable
code for collecting system information such as processor and memory utilization,
open connections, interface statistics and other characteristics of hosts.

252 Y. Chandra and P. K. Mishra

4 Operational Configuration

4.1 Scenarios

The testbed will facilitate a scenario-driven exercise designed to emulate expected
player actions required to meet certain objectives. The exercise scenario may be
built using adversaries with credible capabilities. The scenario will be built around a
series of cyber-attack vectors that fall within the technical capabilities of the
adversary (Fig. 2).

4.2 Attack Emulation

Bandwidth amplification attack, phishing, malware propagation and infection sce-
narios may be enacted to understand emerging mobile worms, viruses and other
malware. Application layer DoS attacks such as Slowloris and Slow HTTP POST
rely on the fact that the HTTP protocol requires requests to be completely received
by the server before processing them. If an HTTP request is not complete, or if there
is a very low transfer rate, the server keeps its resources busy waiting for the rest of
the data. If the server keeps too many resources busy, this leads to denial of service.
These attacks can easily be emulated in the proposed testbed using SlowHTTPTest
tool. Malware containment may be achieved through virtualization, encryption and
zone-based security segmentations (VLANs). Initially, malware analysis could be
done in sandbox environment, before deploying it to the testbed.

Fig. 2 Operational diagram

Design of Cyber Warfare Testbed 253

5 Analysis

A large number of exercises need to be conducted for various scenarios and their
objectives to generate volume of data. This data are then analysed for specific
objectives afterwards.

5.1 Identification of Measures of Effectiveness (MOEs)

Firstly, MOEs are identified, and the MOEs determine the attack strength, particular
to a specific node on specific network configuration. MOEs for attack may be
number of computers affected, data losses in terms of time and volume, target
identification, number of targets engaged, number of attempts/mechanisms used to
breach, targets missed, DOS induced in terms of time frame, number of routers
attacked/compromised, number of antivirus/antimalware defeated, number of OS
breached, number of Websites attacked, number of applications breached.
Similarly, MOEs for defence may be time delay in detection of attack, value of
asset before and after attack, data losses in terms of time and volume.

5.2 Vulnerability Analysis

Vulnerability analysis may be carried out using Common Vulnerability Scoring
Scheme (CVSS). CVSS provides open framework for communicating the charac-
teristics and severity of software vulnerabilities [11]. Authors have used this model
to define slightly modified base, temporal and environmental metric groups.

Cyber security prediction models may be developed using history and nature of
attack and models for assessment of system vulnerability, most probable attack,
most probable target system, attack strength and evaluation of defence techniques
for such attack [10].

5.3 Development of Strategy and Tactics

Statistical methods or data mining tools may be applied on data collected during
exercises to evolve better defence techniques and attack-resilient network topolo-
gies. Added to it is behaviour analysis, which will help prevention against advanced
persistent threat (APT), polymorphic malware, zero-day attacks, which otherwise
are almost impossible to detect. It includes behaviour of both, malware as well as
attacker. A good analysis of polymorphic malware from behavioural perspective

254 Y. Chandra and P. K. Mishra

has been carried out by Vinod et al. [12]. These analyses will help produce tactical
rule book for senior IT managers and chief information security officers (CISOs).

6 Conclusion

The main tools of cyber defence are not the switches, routers or operating systems,
but rather the cyber defenders themselves. The key benefits derived from the testbed
would be enhancement of skills on cyber warfare, formulation of cyber warfare
strategies and tactics, a training platform for the cyber warfare and analysis of
vulnerability of the existing network system.

Innovations doing fine in a predictable and controlled environment may be less
effective, dependable or manageable in a production environment. Without realistic,
large-scale resources and research environments, results are unpredictable. The
testbed as a mini-Internet emulates real-world complexity and scale.

The testbed can also host capture the flag (CTF) and attack–defence competi-
tions, where every team has own network with vulnerable services. Every team has
time for patching services and developing exploits. Each team protects own services
for scoring defence points and hack opponents for scoring attack points. Exercise
can take place on WAN and can be extended to multiple team configuration.

7 Future Scope

US military has indicated that it considers cyber-attack as an “Act of War” and will
include cyber warfare for future conflicts engaging its Cyber Command. In future, a
move from device-based to cloud-based botnets, hijacking distributed processing
power may be witnessed. Highly distributed denial-of-service attacks using cloud
processing may be launched. To counter such massive attacks, the testbed needs to
be realized at much larger scale. Hence, the testbed also needs to be migrated to
cloud platform [13]. Hybrid cloud solutions, e.g. OpenStack may be used as
infrastructure-as-a-service (IaaS). Further efficiency may be achieved by harnessing
operating system container technology. OS designed to run containers, such as Red
Hat Atomic Host, Ubuntu Snappy, CoreOS and Windows Nano, can complement
hypervisors, where containers (VMs without hypervisor) are lightweight virtual
machines which are realized by OS kernel.

There is scope for simulating human behaviour related to cyber security using
agent-based simulation toolkit. It will support for agent modelling of human
security behaviour to capture perceived differences from standard decision making.

Design of Cyber Warfare Testbed 255

References

1. National Cyber Security Policy (NCSP-2013). http://deity.gov.in/content/national-cyber-
security-policy-2013-1

2. The DETER Project. http://deter-project.org/
3. Emulab Software. https://www.emulab.net/
4. KYPO Project. http://www.muni.cz/ics/research/projects/23884/web/
5. Malware Analysis Service. https://malwr.com/
6. Citrix Xenserver. http://xenserver.org/overview-xenserver-open-source-virtualization/

download.html
7. Metasploit Community Edition. http://www.metasploit.com/
8. Kali Linux. https://www.kali.org/downloads/
9. Source of Malware and Malware Generation Tools. http://vxheaven.org/

10. Mishra, P.K.: Cyber defence: an approach to defend cyber assets. In: Proceedings of 1st
National Conference on Cyber Security 2012, DIAT Pune (2012)

11. Common Vulnerabilities Scoring Scheme. https://www.first.org/cvss
12. Vinod P., Laxmi, V., Gaur, M.S., Chauhan, G.: Malware analysis using non-signature based

method. In: Proceedings of IEEE International Conference on Network Communication and
Computer, ICNCC (2011)

13. Kouril, D., et al.: Cloud-based testbed for simulation of cyber attacks. In: Proceedings of the
2014 IEEE Network Operations and Management Symposium (2014)

256 Y. Chandra and P. K. Mishra

http://deity.gov.in/content/national-cyber-security-policy-2013-1
http://deity.gov.in/content/national-cyber-security-policy-2013-1
http://deter-project.org/
https://www.emulab.net/
http://www.muni.cz/ics/research/projects/23884/web/
https://malwr.com/
http://xenserver.org/overview-xenserver-open-source-virtualization/download.html
http://xenserver.org/overview-xenserver-open-source-virtualization/download.html
http://www.metasploit.com/
https://www.kali.org/downloads/
http://vxheaven.org/
https://www.first.org/cvss

Performance Evaluation of Features
Extracted from DWT Domain

Manisha Saini and Rita Chhikara

Abstract The key task of Steganalyzer is to identify if a carrier is carrying hidden
information or not. Blind Steganalysis can be tackled as two-class pattern recog-
nition problem. In this paper, we have extracted two sets of feature vectors from
discrete wavelet transformation domain of images to improve performance of a
Steganalyzer. The features extracted are histogram features with three bins 5, 10,
and 15 and Markov features with five threshold values 2, 3, 4, 5, 6, respectively.
The performance of two feature sets is compared among themselves and with
existing Farid discrete wavelet transformation features based on parameter classi-
fication accuracy using neural network back-propagation classifier. In this paper, we
are using three Steganography algorithms outguess, nsF5 and PQ with various
embedding capacities.

Keywords Discrete wavelet transformation � Neural network � Steganography
Steganalysis � Histogram � Markov

1 Introduction

Steganography is a technique of information hiding in digital medium in such a way
that it is imperceptible to human eyes. According to the survey [1], it is found that
terrorists have been using Steganography techniques to pass information over Web
sites and auction sites over a period of time. Most widely used digital medium over
the Internet is image file in comparison with other digital objects. Steganography
hides information in spatial domain and transform domain. Main difference among
spatial and transform domain is that in spatial domain data embedding in pixels is

M. Saini (&)
G D Goenka University, Gurgaon, India
e-mail: manisha.saini@gdgoenka.ac.in

R. Chhikara
The NorthCap University, Gurgaon, India
e-mail: ritachhikara@ncuindia.edu

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_25

257

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_25&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_25&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_25&domain=pdf

done directly, whereas in transform domain images are first transformed [2, 3] to
discrete cosine transform (DCT) or discrete wavelet transform (DWT) domain and
then the message is embedded inside the image. So advantage of transform method
over spatial method is that it is more protected against statistical attacks.

The misuse of Steganography has led to development of countermeasures known
as Steganalysis [4]. The aim of forensic Steganalysis is to recognize the existence of
embedded message and to finally retrieve the secret message. Based on the way
methods are detected from a carrier, Steganalysis is classified into two categories:
target and blind Steganalysis. (i) Target/specific Steganalysis where particular kind
of Steganography algorithm which is used to hide the message is known and
(ii) blind/universal Steganalysis where the particular kind of Steganography tool
used to hide the message is not known.

In this paper, two sets of feature vectors are extracted from discrete wavelet
domain of images to enhance performance of a steganalyzer. The features extracted
are histogram features with three bins 5, 10, and 15 and Markov features with five
different threshold values 2, 3, 4, 5, 6, respectively. The performance of two feature
sets is compared with existing DWT features given by Farid [5] and with different
parameters among themselves.

The rest of the paper is divided in the following sections. Section 2 discusses
three Steganography algorithms outguess, nsF5, and PQ used in the experiment. In
Sect. 3, proposed DWT feature extraction method is explained. Section 4 discusses
neural network classifier used for classification. In Sects. 5 and 6, experimental
results and analysis is described in detail. Finally, the paper is concluded in Sect. 7.

2 Steganography Algorithms

Our experiment employs three steganography algorithms: Outguess, nsF5, and PQ.
Outguess [6] is an enhanced variant of Jsteg. It uses pseudorandom number gen-
erator (PRNG)-based scattering to obscure Steganalysis. Seed is required as addi-
tional parameter to initialize the pseudorandom number generator. nsF5 (no
shrinkage F5 [7]) is enhanced version of F5, proposed in 2007. This algorithm was
developed to improve the problem of shrinkage which exists in F5 algorithm by
combining F5 algorithm with wet paper codes (WPCs). In perturbed quantization
(PQ) algorithm [8], quantization is perturbed according to a random key for data
embedding. In this procedure, prior to embedding the data, on the cover–medium,
an information-reducing process is applied that includes quantization such as lossy
compression, resizing, or A/D conversion. PQ does not leave any traces in the form
that the existing Steganalysis method can grab.

258 M. Saini and R. Chhikara

3 Proposed DWT Feature Extraction

On applying discrete wavelet transformation (DWT) [9] on each image from image
dataset, we obtain four different subbands at each level (up to level 3 decomposition
is done), and we have obtained 12 sub-bands (cA1, cH1, cV1, cD1 at Level 1; cA2,
cH2, cV2, cD2 at Level 2, and cA3, cH3, cV3, cD3 at Level 3, respectively) where
CA is approximation coefficients and rest three subbands (cH, cV, cD) are detailed
coefficients. Histogram and Markov features are extracted from the complete image,
and 12 subbands are obtained after applying DWT.

3.1 Histogram

Histogram [10] is an approach of summarizing data that are calculated on an
interval scale (either discrete or continuous). It partitions the range of feasible
values in a dataset into groups. Features of histogram are extracted by binning the
elements of all subbands into evenly spaced containers [11] and returning the
number of elements in each container. The values are thereafter normalized by
dividing each element by sum of all the elements.

H O ¼ H O=sum H Oð Þ ð1Þ

We have extracted features calculated from original image +12 subbands (13
subbands) by using three different bins 5, 10, and 15.

3.2 Markov

Markov features show the difference between absolute values of neighboring
coefficients. These features have been extracted in DCT domain by Pevný [12], but
we have extracted Markov features in DWT domain [11]. We have calculated four
difference arrays along horizontal, vertical, minor diagonal, and major diagonal
direction using formula:

Nh u; vð Þ ¼ N u; vð Þ � N uþ 1; vð Þ ð2Þ

Nv u; vð Þ ¼ N u; vð Þ � N u; vþ 1ð Þ ð3Þ

Nd u; vð Þ ¼ N u; vð Þ � N uþ 1; vþ 1ð Þ ð4Þ

Performance Evaluation of Features Extracted from DWT Domain 259

Nm u; vð Þ ¼ N uþ 1; vð Þ � Nðu; vþ 1Þ ð5Þ

From difference array, we have calculated four transition probability matrices
(TPMs) in horizontal, vertical, diagonal direction. We have extracted features from
HL and LH subbands and averaged the four transition probability matrices (TPMs)
to obtain features. We have applied different threshold values 2, 3, 4, 5, and 6,
respectively.

3.3 Existing DWT Farid Features

Farid proposed 72 feature set [5]; four features that are extracted from subbands are
mean, variance, skewness, and kurtosis formula which are shown below.

E xð Þ ¼ 1
n

Xn

k¼1

xk ð6Þ

Var xð Þ ¼ 1
n� 1

Xn

i¼1

xi � E xð Þð Þ2 ð7Þ

S xð Þ ¼ E
x� E xð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var xð Þp

 !3
2
4

3
5 ð8Þ

K xð Þ ¼ E
x� E xð Þffiffiffiffiffiffiffiffiffiffiffiffiffi

var xð Þp
 !4
2
4

3
5 ð9Þ

The image decomposition used in Farid paper is based on separable quadrature
mirror filters (QMFs) which contain vertical, horizontal, and diagonal subbands.
A total of 72 features are extracted from level 3 decomposition.

4 Neural Network Classifier

We have used neural network back-propagation classifier to classify images into
stego images and cover images [13]. Features extracted are given as input to input
layer, and then, input propagates through network to output layer. Output is cal-
culated and compared with target output. If actual output does not match with the
target output, then error is generated and propagated back. Weights are adjusted till
neural network classifier correctly classifies images.

260 M. Saini and R. Chhikara

5 Experimental Results

We have created dataset of images consisting of 2,000 cover and 2,000 stego
images of various sizes which are resized into 640 � 480. Stego images are
obtained by applying three Steganography tools, Outguess, nsF5, and PQ. These
4000 images have been divided into training (2,800 samples), validation (600
samples), and testing (600 samples) sets. Features are extracted from image using
DWT transform domain. Then, features are fed to neural network back-propagation
classifier for detecting whether image is stego or clean image. The performance of
classifier is compared on the basis of parameter classification accuracy. Various
embedding capacities have been used to generate the dataset as shown in Table 1.

Accuracy of classifier is the fraction of test samples that are correctly classified.
Firstly, we have compared the performance of proposed features extracted from
wavelet domain among themselves and with existing DWT features. Next, exper-
iment evaluates histogram features with different bins and finally Markov features
with different threshold values.

Histogram features are extracted by binning the elements of all subbands into 5,
10, and 15 evenly spaced containers. Markov features are calculated after applying
different threshold values 2, 3, 4, 5, and 6, respectively, as shown in Table 2.

6 Analysis

Comparison between various histogram features on the basis of parameter classi-
fication accuracy with 20 hidden neurons in Outguess, nsF5, and PQ
Steganography algorithm is listed in Table 3. We can observe the following from
Table 3. (i) In Outguess Steganography algorithm, accuracy obtained with 5 bins

Table 1 Embedding
capacities

Images Outguess nsF5 (%) PQ (%)

1–500 16 � 16 10 10

501–1000 32 � 32 25 25

1001–2000 48 � 48 50 50

Table 2 Proposed histogram
features and Markov features

Histogram Markov

Bins [B] Features Threshold [T] Features

5 65 T = 2 25

10 130 T = 3 49

15 195 T = 4 81

– – T = 5 121

– – T = 6 169

Performance Evaluation of Features Extracted from DWT Domain 261

(65 features) is much higher than obtained with 10 bins (130 features) and 15 bins
(195 features). (ii) In nsF5 and PQ Steganography algorithm, we obtain equivalent
results with 5 bin, 10 bin, and 15 bin, respectively.

From the experimental results of Table 4, we found that accuracy obtained after
applying threshold value 5 is best in comparison with other threshold values in case
of Outguess, but in nsF5 and PQ Steganography algorithm threshold value 6 gives
more accuracy in comparison with others. Next, we evaluate the performance of the
proposed features with existing DWT features based on parameter classification
accuracy.

As shown in Fig. 1, we conclude that proposed histogram 65 features in DWT
domain give best accuracy in comparison with Markov 121 features and existing
Farid 72 DWT features for Outguess. This proves that this algorithm is more
sensitive to histogram features and with reduced number of features we are able to
obtain better accuracy.

We conclude from Figs. 2 and 3, that Markov 121 features are able to detect
nsF5 and PQ Steganography algorithm more efficiently. However, the limitation is
that histogram features (65) do not improve the accuracy much for these two
algorithms.

Table 3 Comparison of accuracy in % of histogram features with 20 hidden neurons

Outguess nsF5 PQ

5 bin 10 bin 15 bin 5 bin 10 bin 15 bin 5 bin 10 bin 15 bin

Training 99.78 98.89 98.28 51.32 52.5 51.17 87.53 91.03 90.8

Validation 99.66 98.66 97.16 48.33 52 52.33 89 90 89.6

Testing 99.3 97.8 97.83 50.33 49.6 49.33 89.66 89.16 89.5

Table 4 Comparison of
accuracy in % of various
threshold values with 20
hidden neurons

T = 2 T = 3 T = 4 T = 5 T = 6

Outguess

Training 61.142 64.214 72.107 71.75 71.35

Validation 63 62 66.667 70.166 71.66

Testing 59.166 60.666 69.334 70.667 70

nsF5

Training 87.5 92.142 93.214 95.785 96.714

Validation 87.166 90.166 92 92.833 93.667

Testing 87.166 89.166 90.667 93 94.667

PQ

Training 86.892 92.464 95.5 99 98.5

Validation 86.166 91.667 95 98 98.166

Testing 88.833 91.334 94.666 97 97.5

262 M. Saini and R. Chhikara

7 Conclusion

We have created image dataset consisting of 2000 cover images downloaded from
various Web sites and digital photographs. Three Steganography algorithms
(1) Outguess (2) nsF5 (3) PQ have been applied to obtain three sets of 2,000 stego

70.66

99.83

69.1

121

65 72

0

50

100

150

Markov(DWT) Histogram(DWT) Farid(DWT)

Outguess

Accuracy in %

Number of Features

Fig. 1 Comparison of accuracy in % of proposed features with existing features for Outguess

93

50.3 59.3

121

65 72

0

50

100

150

Markov(DWT) Histogram(DWT) Farid(DWT)

nsF5

Accuracy in %

Number of Features

Fig. 2 Comparison of accuracy in % of proposed features with existing features for nsF5

97 89.66 89.83

121

65 72

0

50

100

150

Markov(DWT) Histogram(DWT) Farid(DWT)

PQ

Accuracy in %

Number of Features

Fig. 3 Comparison of accuracy in % of proposed features with existing features for PQ

Performance Evaluation of Features Extracted from DWT Domain 263

images. Various embedding capacities have been used to generate the datasets.
Three kinds of images with sizes of 16 � 16, 32 � 32, and 48 � 48 were
embedded in image using Outguess Steganography algorithm. Different embedding
ratio taken in nsF5 and PQ methods are 10, 25, and 50%. The reason for embedding
diverse % of information is to test the performance with different percentage of
information embedded. So total 4,000 images (cover plus stego) have been gen-
erated in each case. These 4000 images have been divided into training (2,800
samples), validation (600 samples), and testing (600 samples) by neural network
classifier. After dividing the dataset into training, validation, and testing, the pro-
posed DWT features (i) histogram, (ii) Markov are compared with existing
Farid DWT features. We have compared the histogram features with different bins
5, 10, and 15, respectively, and Markov features with different threshold values 2,
3, 4, and 5, respectively. All the experiments are performed with neural network
classifier. The results show 5 bins histogram features give best performance for
Outguess, and in nsF5 and PQ Steganography algorithm, we obtain equivalent
results with 5 bin, 10 bin, and 15 bin. Markov features with threshold value 5 gives
best performance for Outguess; in nsF5 and PQ Steganography algorithm, we get
better performance with Markov features with threshold value 6. Experimental
results indicate that outguess algorithm is more sensitive to histogram statistical
features and nsF5 and PQ can be detected with Markov statistical features. From the
experimental result, we can also conclude that proposed set of features gives better
performance in comparison with existing DWT features. Future work involves
(a) applying proposed features on different embedding algorithms. (b) Finding the
size of information hidden in a stego image.

References

1. Choudhary, K.: Image steganography and global terrorism. Glob. Secur. Stud. 3(4), 115–135
(2012)

2. Cheddad, A., Condell, J., Curran, K., Mc Kevitt, P.: Digital image steganography: survey and
analysis of current methods. Signal Processing 90, pp. 727–752 (2010)

3. Johnson, N.F., Jajodia, S.: Steganalysis the investigation of hidden information. In:
Proceedings of the IEEE Information Technology Conference, Syracuse, NY, pp. 113–116
(1998)

4. Nissar, A., Mir, A.H.: Classification of steganalysis techniques: a study. In: Digital Signal
Processing, vol. 20, pp. 1758–1770 (2010)

5. Farid, H.: Detecting hidden messages using higher-order statistical models. In: Proceedings of
the IEEE International Conference on Image Processing (ICIP), vol. 2, pp. 905–908 (2002)

6. Niels Provos. www.outguess.org
7. Fridrich, J., Pevný, T., Kodovský, J.: Statistically undetectable JPEG steganography: dead

ends, challenges, and opportunities. In: Proceedings of the ACM Workshop on Multimedia &
Security, pp. 3–14 (2007)

8. Fridrich, J., Gojan, M., Soukal, D.: Perturbed quantization steganography. J. Multimedia Syst.
11, 98–107 (2005)

264 M. Saini and R. Chhikara

9. Ali, S.K., Beijie, Z.: Analysis and classification of remote sensing by using wavelet transform
and neural network. In: IEEE 2008 International Conference on Computer Science and
Software Engineering, pp. 963–966 (2008)

10. Shimazaki, H., Shinomoto, S.: A method for selecting the bin size of a time histogram. Neural
Comput. 19(6), 1503–1527 (2007)

11. Saini, M., Chhikara, R.: DWT feature based blind image steganalysis using neural network
classifier. Int. J. Eng. Res. Technol. 4(04), 776–782 (2015)

12. Pevný, T., Fridrich, J.: Merging Markov and DCT features for multi-class JPEG steganalysis.
In: Proceedings of the SPIE, pp. 03–04 (2007)

13. Bakhshandeh, S., Bakhshande, F., Aliyar, M.: Steganalysis algorithm based on cellular
automata transform and neural network. In: Proceedings of the IEEE International Conference
on Information Security and Cryptology (ISCISC), pp. 1–5 (2013)

Performance Evaluation of Features Extracted from DWT Domain 265

Control Flow Graph Matching
for Detecting Obfuscated Programs

Chandan Kumar Behera, Genius Sanjog and D. Lalitha Bhaskari

Abstract Malicious programs like the viruses, worms, Trojan horses, and back-
doors infect host computers by taking advantage of flaws of the software and
thereby introducing some kind of secret functionalities. The authors of these
malicious programs attempt to find new methods to get avoided from detection
engines. They use different obfuscation techniques such as dead code insertion,
instruction substitution to make the malicious programs more complex. Initially,
obfuscation techniques those are used by software developers to protect their
software from piracy are now misused by these malware authors. This paper intends
to detect such obfuscated programs or malware using control flow graph
(CFG) matching technique, using VF2 algorithm. If the original CFG of the exe-
cutable is found to be isomorphic to subgraph of obfuscated CFG (under exami-
nation), then it can be classified as an obfuscated one.

Keywords Obfuscation � Decompilation � Optimization � Graph isomorphism
Control flow graph

1 Introduction

The obfuscation is a technique to convert a program to a new different version,
while making their functionalities equal to each other [1]. Using this technique, the
malware writers make their code harder to understand. A lot of malware is being
designed every day and no full proof technique exists that can combat all of them.

C. K. Behera (&) � G. Sanjog � D. Lalitha Bhaskari
Department of Computer Science & Systems Engineering, Andhra University,
Visakhapatnam, India
e-mail: ckb.iitkgp@gmail.com

G. Sanjog
e-mail: genius.sanjog@gmail.com

D. Lalitha Bhaskari
e-mail: lalithabhaskari@yahoo.co.in

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_26

267

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_26&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_26&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_26&domain=pdf

These malware authors try to find innovative techniques all the way for prevention
of their codes from malware detection engines or delaying the analysis process of
the malware, etc., by transforming their malicious programs into another format,
which will be much for reverse engineer [2], i.e., by changing the syntax and
making it more complex by using different obfuscation techniques.

Earlier, malware detectors were designed by using simple pattern-matching
techniques. Some malware was then easily detected and removed through these
antivirus software. These antivirus software maintain a repository of virus signa-
tures, i.e., binary pattern characteristics of the malicious codes, and is used to scan
the program for the presence of these fixed patterns. If the matches were found by
the detectors, they used to alert them as malwares. But, eventually the malware
writers learnt the weakness of these detectors, which is the presence of a particular
pattern (the virus signature) and then the writers started changing the syntax or
semantics of these malwares in such a way that, it would not get detected easily, but
the basic behavior and functionality of such malwares remained the same [3, 4].

Section 2 discusses disassembling. In Sect. 3, some obfuscation techniques are
listed out. Section 4 explains about control flow graphs. Finally, Sect. 5 proposes a
framework, followed by the explanation with an example, which includes disas-
sembly of suspected malware, its CFG generation, and matching. The last section is
about the conclusion of the paper with future targets.

2 Disassembly of Executables

The disassembling process aims at achieving a program as identical as to the
original program [5, 6]. Compilation process consists of translation process which
converts any high-level language (HLL) code to machine code [7]. Then, with the
help of linkers and loaders, executable code will be created. As we have the
executable of any malware, the next process will be disassembling the executable.
During this process, all the details regarding registers, individual instructions will
be trimmed away. Finally, the intermediate representation will be prepared by
replacing the jump instructions with loops and conditional statements, if available
[8, 9]. The automatically generated assembly code from the executable will be
lacking from significant comments, variable names, and function names used by the
code writer. Because, after a series of transformations, the machine-specific
metadata attached with the program semantics will be removed.

3 Obfuscation Techniques

Obfuscation was originally aimed at protecting programs against reverse engi-
neering, illegal modifications, and protecting software from illegal usage at the
stage of distribution (with the help of watermarks), but it has been broadly used by

268 C. K. Behera et al.

malware authors to defeat detection [2]. Some of the simple techniques are men-
tioned below, which can be used for obfuscating the code generally.

(a) Replacement of instructions with equivalent instructions: A technique in which
instructions in the original code are replaced by some other equivalent
instructions.

(b) By introducing dead code instructions: A technique in which a dead code is
inserted into the original code.

(c) Insert semantically NOP code: By this technique, a NO operation code will be
inserted in the original code to make the code lengthier as well as complex.

(d) Insert unreachable code: Some code will be inserted in the program, which is
never going to be executed. In some cases, jumping is introduced to bypass it
directly.

(e) Reorder the instructions: Technique which uses reordering of mutually
exclusive statements such that the syntax changes from the original code but the
output remains same.

(f) Reorder the loops: This technique reorders mutually exclusive loop statements
in the program.

(g) Loop unrolling: This technique uses by moving the loop, and the statements
written inside the loop body are rewritten as many number of times as the
counter value.

(h) Cloning methods: This technique uses in different parts of the program in
different ways, but for the same task.

(i) Inline methods: In this technique, the body of the method is placed into the
body of its callers and the method will be removed.

4 Control Flow Graph

The control flow is driven by the execution of instructions with having various
sequential instructions, conditional/unconditional jumps, function calls, returning
statements, etc., of the program. The control flow graph (CFG) corresponds to all the
possible paths, which must be covered during its execution of the program [10, 11].

4.1 Control Flow Graph Reduction

If the program is an obfuscated one, then various optimization techniques will be
used on the CFG to reduce the number of basic blocks (if possible) [11]. The
reduction of CFG can be done by concatenating consecutive instruction nodes, by
removing the loops and jumps to handle possible permutation of the code or by
merging consecutive conditional jumps.

Control Flow Graph Matching for Detecting Obfuscated Programs 269

4.2 Control Flow Graph Matching

The aim is to develop a detection strategy based on control flow graphs. In this
paper, VF2 algorithm is used to find the subgraphs isomorphism [12]. For two
graphs G and G′, the algorithm goes down as a traversal of a tree data structure, and
at each step, we try to match the next node of G with one of the nodes of G′ and
stop after traversal of all the nodes of G′ (i.e., after finding a leaf). The matching is
done for all the possible combinations, and if it does not end completely, then the
graphs taken would not be isomorphic [13, 14].

5 Proposed Framework

To prove this framework, we perform the following steps:

Step 1. Get code of a simple program in high-level language, (in our case C
language). Obfuscate it several times in that particular high-level language
only, using one or more obfuscating transformations.

Step 2. Generate executables for both of these programs using C language
compiler.

Step 3. Decompile both of these executables to produce assembly language pro-
grams using any decompiler.

Step 4. Make basic block of codes from both of the assembly language programs.
Step 5. Construct control flow graph from the basic blocks for both of these

programs.
Step 6. Compare both of the CFGs for subgraph isomorphism using VF2

algorithm.

Since the obfuscated program is also derived from the original program, so both
the CFGs of the original and obfuscated programs should match. For justifying
correctness of the proposed framework, a simple C program has been taken for
experiment, which finds the factorial of a number.

5.1 Explanation

A simple factorial calculation program in C language as shown in Fig. 1 is taken
into consideration.

Thereafter, the above-mentioned program will be obfuscated, using various
obfuscation techniques, and after that the original code can be transformed as
Fig. 2.

270 C. K. Behera et al.

As, we can have the executable file of the malicious program, the executable
code of both the programs is taken for this testing. Next, with the help of disas-
semblers, the assembly codes will be generated, from the machine codes of both the
original and obfuscated programs (Fig. 3).

Then, the codes will be optimized by using by simply eliminating dead codes,
removal of global common sub-expression, removal of loop invariant codes,
eliminating induction variables, etc. Then, the control flow graph will be generated
from the assembly codes. The structure of the CFGs is shown below, to understand
the difference between both the CFGs, pictorially (Fig. 4).

By looking to all basic blocks and the jump, conditions, loops, and return
statements, the graphs are prepared from both CFGs (Fig. 5).

Both of these CFGs are matched for subgraph isomorphism using the VF2
algorithm. As a result, the following steps are performed while comparing both of
the graphs (Fig. 6).

Fig. 1 Snapshot of the
original HLL program

Fig. 2 Snapshot of obfuscated HLL program

Control Flow Graph Matching for Detecting Obfuscated Programs 271

Fig. 3 Assembly code after disassembling the executable of ‘fact.c’ program

Fig. 4 Assembly code after disassembling the executable of ‘obfuscated fact.c’ program

272 C. K. Behera et al.

Fig. 5 Snapshots of the structures of the CFGs of the original and obfuscated program

Fig. 6 Optimized CFGs G and G′ of the original and the obfuscated program

Control Flow Graph Matching for Detecting Obfuscated Programs 273

(a) Both of the empty graphs G and G′ match
(b) Node A of G matches with A′ of G′
(c) Node B of G matches with B′ of G′
(d) Node C of G matches with C′ of G′
(e) Node D of G matches with D′ of G′
(f) Node E of G matches with E′ of G′

After reaching the leaf node of graph G, no more nodes are left in it and so it can
be declared that the graph G is isomorphic to a subgraph of graph G′. Thus,
according to the observation, the CFG of the original program comes out to be
isomorphic with a subgraph of the CFG of the obfuscated program. The result is as
per our expectations.

The above exercise establishes the fact that our proposed framework works well
as per its design and proved as it can be used for detection of advanced malware or
any other software, over which obfuscation techniques have been performed. On
the contrary, in existing systems only a comparison of the binary signature of both
the programs will be done. Due to application of several obfuscation techniques on
the original program, the binary pattern of the obfuscated program will vary hugely
with that of original program. So the obfuscated program will not be alerted as a
malware by existing antivirus engines.

6 Conclusion

In this paper, a framework has been proposed to detect the obfuscated programs or
malware using control flow graph matching technique. This framework is verified,
and its functionality has been proved through an example. After generating exe-
cutables from both original and obfuscated programs, disassembling has been done
on both the executables (as it is known that only malware executables were
available, not their source code). Next, both the assembly codes and constructed
CFGs of both executables have been optimized. Then, matching has been done
between these CFGs for subgraph isomorphism using VF2 algorithm and found to
be matched. This means, after obfuscating also, the proposed framework is able to
detect the program. The future expectations are to maintain a database of CFGs of
known malware and study matching issues (such as matching CFG of any new
suspected program with a huge database of CFGs). For this, better graph storage
and graph comparison techniques are to be implemented as continuation of this
paper.

274 C. K. Behera et al.

References

1. You, I., Yim, K.: Malware obfuscation techniques: a brief survey. In: International
Conference on Broadband, Wireless Computing, Communication and Applications, IEEE
Computer Society, pp. 297–300 (2010)

2. Sharif, M., et al.: Impeding malware analysis using conditional code obfuscation. In: Network
and Distributed System Security Symposium (2008)

3. Walenstein, A., Lakhotia, A.: A transformation-based model of malware derivation. In: 7th
IEEE International Conference on Malicious and Unwanted Software, pp. 17–25 (2012)

4. Durfina, L., Kroustek, J., Zemek, P.: Psyb0t malware: a step-by-step decompilation—case
study. In: Working Conference on Reverse Engineering (WCRE), pp. 449–456. IEEE
Computer Society (2013)

5. Ernst, M., et al.: Quickly detecting relevant program invariants. In: 22nd International
Conference on Software Engineering, pp. 449–458 (2000)

6. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: Evaluating performance of the VF graph
matching algorithm. In: Proceedings of the 10th International Conference on Image Analysis
and Processing, pp. 1172–1177. IEEE Computer Society Press (1999)

7. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: An improved algorithm for matching large
graphs. In: 3rd International Workshop on Graph-based Representations, Italy (2001)

8. McKay, B.D.: Practical graph isomorphism. Congressus Numerantium 30, 45–87 (1981)
9. Messmer, B.T., Bunke, H.: A decision tree approach to graph and subgraph isomorphism

detection. J. Pattern Recog. 32, 1979–1998 (1999)
10. Gold, R.: Reductions of control flow graphs. Int. J. Comput., Electr. Autom. Control Inf. Eng.

8(3), (2014)
11. Sadiq, W., Orlowska, M.E.: Analyzing process models using graph reduction techniques. Inf.

Syst. 25(2), 117–134 (2000)
12. Bondy, J.A., Murty. U.S.R.: Graph Theory. Springer, Berlin (2008)
13. Abadi, M., Budiu, M., Erlingsson, U’., Ligatti, J.: Control flow integrity principles,

implementations, and applications. ACM Trans. Inf. Syst. Secur. 13(1), 4:1–4:40 (2009)
14. Brunel, J., Doligez, D., Hansen, R.R., Lawall, J.L., Muller, G.: A foundation for flow-based

program matching, using temporal logic and model checking POPL. ACM (2009)

Control Flow Graph Matching for Detecting Obfuscated Programs 275

A Novel Framework for Predicting
Performance of Keyword Queries Over
Database

Mujaffar Husain and Udai Shanker

Abstract In fast-growing information era, business or commercial RDBMS pro-
vides huge data access in the form of distributed database, and this data can be
accessed by keyword queries very easily, because no need to know structured query
languages which is problem for almost end user, and they do not know SQL but
needs efficient result; with the help of keyword query interface (KQI), it is possible
but often has problem like low ranking quality, i.e., low precision values or recall
values, as shown in recent benchmarks. Because of ambiguity in keyword-based
search, query result needs improvement. Effectiveness of keyword query should be
decided based on query result. It attracts more improvement because huge data
creates more complication, and for efficient results, query should be appropriate.
Commercial database must support efficient approach to deal with such issues like
low precision value of result; by existing methods, precision value is low because of
ambiguous interpretation of queries, so in this paper, we try to rank the result
according to similarity score based on mathematical model to find proper ranking of
result to give efficient result of keyword-based queries.

Keywords Keyword query interface � Query effectiveness � Keyword query
Similarity score � Precision

1 Introduction

Keyword-based search was popularly useful for unstructured data but now going
popular day by day for RDBNS because of end user requirement, so this field has
attracted much efficient way to tackle problem related to keyword-based search.
So many researchers have suggested different approaches for such papers [1–5]

M. Husain (&) � U. Shanker
Department of Computer Science, MMMUT, Gorakhpur, India
e-mail: Mujaffarhn786@gmail.com

U. Shanker
e-mail: udaigkp@gmail.com

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_27

277

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_27&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_27&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_27&domain=pdf

have different methods to deal with Keyword based search. Keyword query inter-
face tries to find most appropriate and efficient result for each query. Each Keyword
query may have different result because of which exact prediction is not possible in
this scenario. We know day to day more users want to access data in all the forms
available on the network, so they need their desired result by just typing simple
keyword-based search because almost user does not aware about database lan-
guages. Different papers suggested different approach to deal with it like in papers
[6–9] suggested how to get efficient result by using keyword queries like selecting
top k result, semsearch- and index search-based results which is efficient to filter the
efficient result for given query. Some related introductory information given for the
different terminologies used in this paper is:

Structured Data: When data is stored in form of relational database and can
easily retrieve by structured query language (SQL), it is called structured data.
Unstructured data is some sort of data which is stored without any preimplemen-
tation logic in form of file, Web, etc., and cannot be retrieved easily [10]. Data
mining is organized for application in the business community because it is sup-
ported by three technologies that are now sufficiently nature.

• Huge data collection added millions pages everyday;
• Powerful supercomputers with great computation power;
• Efficient data mining algorithms for efficient computation.

Business databases are developing at huge rate. According to Google, daily,
millions of pages are added. Huge data creates complexity problems, so it needs
more efficient strategies to manage and access. Today, a great many pages included
in one day. In as indicated by a study, Internet every day included data of amount as
about from today 2000 years before information is accessible throughout the day.
The extra requirement for enhanced computational systems can now be met in a
savvy way with parallel multiprocessor PC innovation. Information mining calcu-
lations embody systems that have existed for at smallest 10 years, however have
1 min prior have been actualized as settled, trustworthy, intelligible apparatus that
always surpass more established factual techniques.

How much query is effective? “For any query, we can calculate how much query
is efficient and we can suggest other query instead of hard query if precision value is
low.”

2 Related Work

Today, many application works on both structured data and unstructured data
means where lots of users try to find answer to their queries with keyword search
only. Commercial relational database management systems (RDBMSs) are nowa-
days providing way for keyword queries execution, so for this type of query it is not
as simple as in SQL execution to get appropriate answer to the query, and so

278 M. Husain and U. Shanker

different approach like [1–9, 11, 12] is suggested by different researchers to get
appropriate answer by just executing keyword queries in structured database. As we
know, with the keyword queries, it is not possible to get exact answer, so ambiguity
creates more answer for same queries, and so researchers suggested the different
approach to rank the result according to relevance of result and also rank the
performance of the queries performing on particular databases.

2.1 Post-retrieval Methods

These are the methods that work after each executed keyword query and help to get
the efficient result.

2.2 Clarity Score Based

The strategies in view of the idea of clarity score accept that clients are occupied
with a not very many points, so they figure a question simple in the event that its
aftermath fit in with not very many topic(s) and along these lines, adequately
recognize capable from different archives in the combination [7].

2.3 Popularity Based

The basic idea of popularity raking is to find the pages that are popular and rank
them higher than other pages that contain specified keywords. This is mostly
working in unstructured like Web-based keyword search. Example for this imple-
mentation is that most search engine uses this strategy like Google, Bing, etc.

2.4 Challenges in Information Retrieve in Structured
Database with Keyword Query

Information retrieval is as much important as information because if we cannot get
required information from database, there is no need of storing data. We have
surveyed and have found the following big challenges:

• Proper interpretation of what a particular keyword query is hard.
• Ambiguity due to a Keyword Query, which type of information we want to

search it’s difficult to exactly find this.
• Information needed behind each keyword query may be different, but query may

be same.

A Novel Framework for Predicting Performance … 279

3 Proposed System

3.1 Objective

We study many methods used to get efficient result with the help of keyword query,
but each method has some certain problem in our work we try to improve the
performance of Keyword Query.

• Improve the performance of the keyword query on the basis of information
needed behind keyword query.

• We try to find the similarity score between document and keyword query and
rank the query as according to its performance which we calculate by precision
value and recall value.

• We can suggest a user if he wants some certain information, then which key-
word query will be useful.

In our proposed method, we create vector to map effectiveness of the query on
database or structured data. This based on terms in particular document.

Vector space model is very useful in calculating distance between query and
data. This model is used to deal with first unstructured data to get the appropriate
result by executing keyword queries. This model provides just talk with the doc-
ument set with the help of term present in the queries (Table 1).

With the help of this model, it is easy and effective to get ranking of the result as
relevance of the result for particular query. So this model provides some mathe-
matical calculation to get the efficient result in case of ambiguity in the interpre-
tation of the query.

By and by, it is less demanding to ascertain the cosine of the point between the
vectors, rather than the edge itself (Fig. 1):

cos h ¼ d2 � q
d2k k qk k ð1Þ

Table 1 Hierarchy of different model

280 M. Husain and U. Shanker

In above equation, (d2�q) is calculated as documents, d2k k is the norm of vector
d2, and qk k is the norm of vector q. The norm of a vector is calculated as such:

qk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

q2i

s
ð2Þ

In this model, documents and queries are represented as vectors.

dj ¼ w1;j;w2;j; . . .;wt;j
� �

q ¼ w1;q;w2;q; . . .;wn;q
� � ð3Þ

In the given mathematical model, we try to calculate the weight of each
matching text or word, and each document is represented in the form of algebraic
terms, and query is also represented in same manner. The model is known as term
recurrence backward record recurrence model. The weight vector for this particular
example is calculated as in this report d is

vd ¼ w1;d ;w2;d; . . .;wN;d
� �T

wt;d ¼ tft;d � log Dj j
fd0 2 Djt 2 d0gj j

where wt;d ¼ tft;d � log Dj j
fd02Djt2d0gj j.

And tft;d is frequency of term t in document d

log
Dj j

fd0 2 Djt 2 d0gj j

Fig. 1 Vector representation
of query and documents

A Novel Framework for Predicting Performance … 281

The above ratio gives inverse document frequency

Dj j

The term represents the total number of documents in document set;

fd0 2 Djt 2 d0gj j

The above parameter represents the total number documents in which term
t present.

Using the similarity based on cosine model for calculation of similarity score
between document dj and query q can be calculated as:

simðdj; qÞ ¼ dj � q
dj

�� �� qk k ¼
PN

i¼1 wi;jwi;qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 w

2
i;j

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 w

2
i;q

q ð4Þ

This is the method which is used to implement the keyword query ranking for
database. When we see this method compared to other method which is already
implemented, this method is performing very well and precision value is good.

This method is based on similarity-based score to get the efficient result (Fig. 2).

Step to get ranking module:

Example for method implementation by algebraic calculation:
Here is an improved case of the vector space recovery model. Consider a little

accumulation C that comprises in the accompanying three records:

d1: “tom cruise MIB”
d2: “tom hunk future”
d3: “cameroon diaz MIB”

Fig. 2 Ranking schema

282 M. Husain and U. Shanker

A few terms show up in two reports, some seem just in one archive. The
aggregate number of records is N = 3. Consequently, the idf values for the terms
are:

“cameroon log2 (3/1) = 1.584”
“diaz log2 (3/1) = 1.584”
“tom log2 (3/2) = 0.584”
“future log2 (3/1) = 1.584”
“MIB log2 (3/2) = 0.584”
“cruise log2 (3/1) = 1.584”
“hunk log2 (3/1) = 1.584”

In above document, we calculate the values of documents weight according to
the term frequency in each document based on log2 of the ratio of document terms
and whole document.

Presently, we reproduce the tf scores by the idf estimations of every term,
acquiring the accompanying grid of reports by terms: (All the terms seemed just
once in every report in our little accumulation, so the greatest quality for stan-
dardization is 1.)

For the all above document set, we execute query “tom cruise MIB”, and we
compute the tf–idf vector for the query and store the value for further calculation to
compute the final ranking list of the result (Tables 2 and 3).

Given the going with inquiry: “tom tom MIB”, we figure the tf–idf vector for the
query and calculate the term frequency to get the value get similarity score which is
helpful to get ranking of result. These query terms are now matched with document
set, and distance between query and document set is calculated.

For “q” 0 (2/2) * 0.584 = 0.584 0 (1/2) * 0.584 = 0.292 0 0
We compute the length of every report and of the inquiry (Table 4):
At that point the likeness qualities are:
As per the similarity values, the last request in which the reports are exhibited as

result of the inquiry will be: d1, d2, d3 (Table 5).

Table 2 Value for keyword in documents

Tom Cruise MIB Hunk Future Cameroon Diaz

d1 1 1 1 0 0 0 0

d2 1 0 0 1 1 0 0

d3 0 0 1 0 0 1 1

Table 3 Value for further calculation

Tom Cruise MIB Hunk Future Cameroon Diaz

d1 0.584 1.584 0.584 0 0 0 0

d2 0.584 0 0 1.584 1.584 0 0

d3 0 0 0.584 0 0 1.584 1.584

A Novel Framework for Predicting Performance … 283

4 Implementation and Discussion

The framework is implementing with the help of java, and query raking is effi-
ciently calculated by this implementation. We use the database MySQL to store the
data. We use two table name movie and actor. We access the data with the help of
java programming language. For example, we store data in actor table

insert into actor values (‘tom cruise’, ‘titanic’, ‘2000’);
insert into actor values(‘tom cruise’, ‘mission impossible’, ‘2002’);

After the execution of the queries, we can get ranking of the queries based on the
result (Fig. 3).

The method is performing very well, and precision is considerable (Fig. 4).
From this figure, we can conclude that our proposed scenario produces maxi-

mum precision values rather than our existing scenario. By using our method
proposed system achieves high precision values compared than base paper method
in existing system. For number of data values, it generates the higher precision
values in current scenario. Thus, we achieve the higher precision value for proposed
system rather than the existing system.

If we follow the keyword query suggestions, then we can get efficient result with
precision values near 0.8–0.9.

Table 4 Calculation of length of documents and query

Length of d1 = “sqrt((0.584)2 + (1.584)2 + (0.584)2) = 1.786”

Length of d2 = “sqrt((0.584)2 + (1.584)2 + (1.584)2) = 2.316”

Length of d3 = “sqrt((1.584)2 + (1.584)2 + (0.584)2) = 2.316”

Length of q = “sqrt((0.584)2 + (0.292)2) = 0.652”

Table 5 Final ranking

cosSim(d1, q) = (0 * 0 + 0 * 0 + 0.584 * 0.584 + 0 * 0 + 0.584 * 0.292 + 0.5
84 * 0 + 0 * 0/(1.011 * 0.652) = 0.776

cosSim(d2, q) = (0 * 0 + 0 * 0 + 0.584 * 0.584 + 1.584 * 0 + 0 * 0.292 + 0.8
4 * 0 + 0 * 0)/(1.786 * 0.652) = 0.292

cosSim(d3, q) = (1.584 * 0 + 1.584 * 0 + 0 * 0.584 + 0 * 0 + 0.584 * 0.292
+ 0 * 0 + 0 * 0)/(2.316 * 0.652) = 0.112

284 M. Husain and U. Shanker

5 Conclusion

In our work, we try to find the efficient result for the given keyword query based on
the ranking of the result calculated with our suggested mathematical model which
gives high precision value result as according to user needs. They are: Seeking

Fig. 4 Similarity score
calculation based on model

Fig. 3 Software for
predicting performance of
keyword queries over
databases

A Novel Framework for Predicting Performance … 285

quality is lower than the other framework, and dependability rate of the framework
is most minimal. Keeping in mind the end goal to defeat these downsides, we are
proposing the enhanced ranking calculation which is utilized to improve the
exactness rate of the framework. Moreover, we proposed the idea of
philosophy-based algebraic model apparatus for enhancing the top k efficient results
productivity. It is utilized for giving comparable words as well as semantic
importance for the given keyword query. From the efficient result, we are acquiring
the proposed framework is well powerful than the current framework by method for
exactness rated, nature of result, and effectiveness of our model. This model tries to
predict the effectiveness of the query on the database.

References

1. Kurland, O., Shtok, A., Carmel, D., Hummel, S.: A unified framework for post-retrieval
query-performance prediction. In: Proceedings of 3rd International ICTIR, Bertinoro, Italy,
pp. 15–26 (2011)

2. Lam, K.-Y., Ulusoy, O., Lee, T.S.H., Chan, E., Li, G.: An efficient method for generating
location updates for processing of location-dependent continuous queries. 0-7695-0996-7/01,
IEEE (2001)

3. Hauff, C., Azzopardi, L., Hiemstra, D., Jong, F.: Query performance prediction: evaluation
contrasted with effectiveness. In: Proceedings of 32nd ECIR, Milton Keynes, U.K.,
pp. 204–216 (2010)

4. Kurland, O., Shtok, A., Hummel, S., Raiber, F., Carmel, D., Rom, O.: Back to the roots: a
probabilistic framework for query performance prediction. In: Proceedings of 21st
International CIKM, Maui, HI, USA, pp. 823–832 (2012)

5. Hristidis, V., Gravano, L., Papakonstantinou, Y.: Efficient IR style keyword search over
relational databases. In: Proceedings of 29th VLDB Conference, Berlin, Germany,
pp. 850–861 (2003)

6. Luo, Y., Lin, X., Wang, W., Zhou, X.: SPARK: top-k keyword query in relational databases.
In: Proceedings of 2007 ACM SIGMOD, Beijing, China, pp. 115–126 (2007)

7. Trotman, A., Wang, Q.: Overview of the INEX 2010 data centric track. In: 9th International
Workshop INEX 2010, Vugh, The Netherlands, pp. 1–32 (2010)

8. Tran, T., Mika, P., Wang, H., Grobelnik, M.: Semsearch ‘S10. In: Proceedings of 3rd
International WWW Conference, Raleigh, NC, USA (2010)

9. Demidova, E., Fankhauser, P., Zhou, X., Nejdl, W.: DivQ: diversification for keyword search
over structured databases. In: Proceedings of SIGIR’ 10, Geneva, Switzerland, pp. 331–338
(2010)

10. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Commun.
ACM 18(11), 613–620 (1975). http://www.cs.uiuc.edu/class/fa05/cs511/Spring05/other_
papers/p613-salton.pdf

11. Finin, T., Mayfield, J., Joshi, A., Cost, R.S., Fink, C.: Information retrieval and the semantic
web. In: Proceedings of 11th International Conference on Information and Knowledge
Management, pp. 461–468, ACM (2002)

12. Ganti, V., He, Y., Xin, D.: Keyword++: a framework to improve keyword search over entity
databases. Proc. VLDB Endow. 3(1), 711–722 (2010)

13. Manning, C., Raghavan, P., Schütze, H.: An Introduction to Information Retrieval.
Cambridge University Press, New York (2008)

286 M. Husain and U. Shanker

http://www.cs.uiuc.edu/class/fa05/cs511/Spring05/other_papers/p613-salton.pdf
http://www.cs.uiuc.edu/class/fa05/cs511/Spring05/other_papers/p613-salton.pdf

Predicting and Accessing Security
Features into Component-Based
Software Development: A Critical
Survey

Shambhu Kr. Jha and R. K. Mishra

Abstract Software development communities have made the true venture to
software development through the concept of component-based software approach
and commercial off-the-shelf (COTS). Majority of the present software applications
have software components as the basic elements, and component-based software
development (CBSD) has been successful in building applications and systems.
However, the security of CBS for the software component is still not properly
noticed. Developing secure software is the accountability of all the stakeholders
involved with component-based software development model. The main challenge
is to access how much security we have achieved or how can we predict and
evaluate the security at the early stage of software development? Software security
has a very constructive impact on software productivity, maintainability, cost, and
quality. Therefore, more early we introduce and evaluate security into component-
based software more productivity and quality we can achieve. In this paper, efforts
are done to provide some suitable guiding principle to the software engineers in the
development of secure component-based software products. This paper also dis-
cusses the overview of requirement specification and analyzes the software archi-
tectures and design for developing secure component-based software products.

Keywords Commercial off-the-shelf (COTS) � Component-based software
development (CBSD) � Component integrator � Intrusion detection
System resilience

S. Kr. Jha (&)
Mewar University, Chittorgarh, India
e-mail: skjha2@amity.edu

R. K. Mishra
National Informatics Centre, New Delhi, India
e-mail: r.k.mishra@nic.in

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_28

287

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_28&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_28&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_28&domain=pdf

1 Introduction

Components-based software is considered as a significant justification to many of the
challenges among software community [1]. It is accredited with improving the effi-
ciency, maintainability and reducing the development time and cost. Majority of
software development organizations have claimed significant benefits from it. Some
of the software developing organizations have implemented systematic reuse pro-
grams which have resulted in-house libraries of reusable components off-the-shelf
(COTS) [2, 3]. Other software developing organizations have supported their reuse
with component-based technologies and tools. Explosive popularity of the Internet
has resulted in a new situation for reusable software components. Consequently,many
organizations are spending much time in reusable component selection and its
retrieval since the choice of the appropriate components has a major impact on the
software project and finally the resulting products. Despite its never-ending potential,
both in terms of cost and in terms of quality of the product, the technology of software
reuse has not become as popular as expected. Regular survey has been conducted on
the component-based software development, and it was found that more than more
than 50% software companies around the world are using component-based approach
in its development. Current literature for CBSD approach mainly concerns on inte-
grating and reusability by acquiring existing component from the repository with
unknown security properties [3–5]. In most of the component-based development
approach, security is given the last priority, whereas functionality is given as top
priority. Therefore, the current component-based development process is miserably
lacking to develop secure software systems. Themain reason behind security lapses is
due to lack of trusted software components and producing software in a secure
manner. It is very important because individuals and organizations mostly depend on
software. Despite huge popularity of CBSD in the industry and the large number of
research publications about it in academia, CBSD still lacks fundamental formal
foundations for the requirement, composition, and verification of security require-
ments [6]. Current CBSD practices do not provide the essential requirements for
developing secure systems [7, 8]. Various surveys have been conducted, and it was
reported about various hurdles involved in the use of CBSD. Since the
component-based development approach is mainly based on interdependencies
among reusable software components which create troubles at the time of integrating
it, therefore, security characteristics of software components must be measured and
evaluated earlier in the CBSD life cycle.

2 Security Specification for Software Component

Software security requirements must be considered as basic fundamental steps for
the development of secure system [9]. It must be integrated into the development
process at very early requirement phase. Unfortunately, in most of the software

288 S. Kr. Jha and R. K. Mishra

development process including component-based approach, security features are
always given as a second choice. Functional manager of the software is always
concern about meeting the functional goals and objectives considering the com-
plexity, time, and budget constraints of the software projects. People from software
community including academicians, researchers, software developers specifically
component integrators, and other practitioners working in domain of component-
based development were contacted to express their views on security requirements
of component-based software [10]. Most of them have said that security goals
which are specified at the early development phase are unclear and given least
priority. During the early requirement specification of software development, only
very few selected component users are contacted and rest are simply ignored. We
can conclude the above observations as follow (Table 1).

Early requirement plans are most likely to change as the development process
proceeds, but early planning must help to ensure that major security requirements
are not ignored. If we can estimate and quantify the security requirement at the early
stage of development, we can have better control in managing and implementing it
at its highest level. The reason behind the difficulty in security requirement spec-
ification at the time of development of component-based software is the specific
security need of different component-based applications and the complex nature of
different operating environment under which same software components operate. In
component-based approach where same component has different level of security
requirement as it is used under different operating environment, component inte-
grators or users have to implement security requirements while designing appli-
cation program interface (API) at the time of integrating different software
component in different ways as component, in its entire lifetime, may go underuse
of different applications running in many types of environments and perform dif-
ferent task (Fig. 1).

Software component vendors are also playing major role in fulfilling the security
requirements of component-based software development. Component vendors
should apply various security mechanisms such as component certification, user
verification, access control, component encryption, and intrusion detection systems.
Each software component should thoroughly document before its actual use.
A software component might authenticate various security measures in particular

Table 1 General software security requirements

I Totally ignored about security goals due to various other project constraints like
development time, budget, and complexity in business process

II Specify vague security goals at early development phase of the software as they are
unclear about it

III Functional manager gives least priority to the security issues as he is more concern about
it

IV Specify commonly used security mechanisms as architectural constraints

V Many of the users who are playing major role with the software are not contacted about
security goals

Predicting and Accessing Security … 289

application in a specific operating environment, but that same component security
might not give the same performance in a completely different operating environ-
ment. The ability to produce highly secure and quality software applications within
the fixed time and budget remains a big challenge to most software development
companies. Any faults in the software or delay in its delivery will cause problems
for many stakeholders involved.

3 Architecture and Design for Secure Software
Component

Embedment of security attributes in component-based development is remaining a
huge challenge at the architectural design level. In the process of exploring the
architecture and early design aspects of software components to obtain awareness of
the embedding of security features in the CBSD process, we have met with various
experts from different industry and academia. An online survey was also conducted
through e-mail and other social media like LinkedIn, Twitter, Whatsapp, and
Facebook in form of questionnaires to all potential candidates. The potential can-
didates involved in the survey mainly included experts from industry including
software component vendors, component integrators, project managers of
component-based projects, academician from computer science and applications,
and Ph.D. research scholars who are conducting research in software quality
assessments. The questionnaires contain questions on the basis of component-based
software design processes and its software security features. Participants were
needed to share their professional view on the specified statements in the form of
question. Questionnaires were mainly of following types as presented in Table 2.

Evaluation

High Level
Design

Integration
and Operation

Selection

Common criteria for Security
Assessment and Evaluation

Component
search

Requirement
Definition

Fig. 1 Requirement centric security attributes

290 S. Kr. Jha and R. K. Mishra

After spending lots of time for compilation of data, it was observed that security
assessment for component-based software development must occur at the three
different levels as shown in Fig. 2.

Once all the functional or non-functional security requirements are precisely
identified and estimated, available COTS components must be evaluated to deter-
mine their suitability for use in the application being developed. Accessibility of a
component repository is advantageous for component integrator to select most
suitable component for development of specific application. While interpreting the
respondent’s feedback for category A questionnaires, it was observed that the
majority of the component integrators do not use a proper CBSD process for
developing software application. For category B, component documentation and
vendor reputation play more important role than any other factors. For category C,
majority of the participants have the same opinion on the concept of embedding
security activities at the component level rather than system level. High-risk factors
were associated with use of external component while developing in house appli-
cation. For category D, access control and applying encryption technique were
preferred by majority of the respondent.

Table 2 Category of questionnaires

Category Description

A Life cycle models used during development of software component repository and
component-based software

B Selection criteria used by CBS developer for selecting individual software
component

C Desired attributes of functional and non-functional security requirements by the
various stakeholders at application level

D Security feature incorporated by component integrator during design of application
program interface required to integrate various software component

Security Level
For

Component Based Software Development

Application Level

Interface Level

Component Level

Fig. 2 Level of security
needed in CBSD

Predicting and Accessing Security … 291

4 Proposed Framework for Security of Component-Based
Software

Development of secure and trustworthy component-based systems needs to address
the problem of security evaluation and prediction at the individual component level
and application level too. This research paper proposes a component security
framework for development of secure and trustworthy component-based applica-
tions. In the proposed framework, CBSD security criteria are broadly classified into
two categories which are named as

(i) functional security criteria, (ii) non-functional security criteria.
Functional security criteria evaluate and predict security mechanisms by con-

firming all valid user of the component before its actual use. Controlled navigation
of the component by the component user plays very important role, whereas
encryption of data at the time of intercomponent communication adds extra security
at application level. It also ensures data integrity at component level as well as
application level (Fig. 3).

The goal of these mechanisms is to help in estimating and predicting security
level of the proposed component-based software application to fulfill high-level
system’s non-functional security requirements. Similarly, non-functional security
criteria identify a system’s resilience and level of immunity to attack from outside

V. Conclusion Security Criteria for CBSD
Non Functional
Security
Criteria

Functional
Security Criteria

User
Authentication

Access Control

Encryption and
Data Integrity

System
Resilence

Intrusion
Detection

Level of
Immunity to
Attack

Product
Documentation

Fig. 3 Security framework for CBSD

292 S. Kr. Jha and R. K. Mishra

agency. Outside agency may be hackers, crackers, or any so-called cyber terrorist
intending to perform some fraud or manipulation. We are considering majority of
the component as black box in nature; however, software components may be white
box and gray box in nature also. Encryption mechanism of the proposed framework
is more suitable for components which are white box in nature at the component
level, whereas same encryption mechanism can be applied at the level of inter-
component communication for the component which is black box in nature at the
application level. Access control methods provide guidelines to the component
integrators while selecting most suitable software components which can produce
high-quality component-based application. Component certification and docu-
mentation also play major role while establishing various security issues. While
proposing this framework, a survey was also conducted among the various com-
ponent user working at different level about component certification and docu-
mentation. It was observed that very few component vendors are properly working
on the issue of component documentation. Even the component certification issue is
unexplored. Out of 150 components selected as sample, less than 5% of compo-
nents were found thoroughly documented.

5 Conclusion and Future Scope

This paper is mainly discussing about challenges faced by software component
integrator while implementing various functional and non-functional security issues
at the time of component-based software development. It also talks about impact of
early security requirements specification during the development process of
component-based application. This paper certainly provides some guidelines to
component-based software developer about incorporating various security mecha-
nisms through prescribed security framework. It also discusses about security issues
at three different levels which include component level security, application level
security, and security applied at time of intercomponent communications.

Improvement of component documentation and standardization of component
certification is area of concern which can be considered as future scope for pre-
dicting and accessing security for component-based software development. More
accurate validation of proposed framework can also improve both functional and
non-functional security of component-based software development.

References

1. Agrawal, J.R.D.V.K.: Study of perfective maintainability for component-based software
systems using aspect-oriented-programming techniques. In: Proceedings of the International
Conference on Intelligent Computational Systems, Dubai, 7–8 Jan 2012

2. Jha, S.K., Mishra, R.K.: Accessing software quality for component based software through
trustworthiness and dependability analysis. Int. J. Develop. Res. 5(4) (2015)

Predicting and Accessing Security … 293

3. Gill, N.S.: Importance of software component characterization for better software reusability.
ACM SIGSOFT SEN 31 (2000)

4. Sharma, A., Grover, P.S., Kumar, R.: Investigation of reusability, complexity and
customizability for component based systems. ICFAI J. IT 2 (2006)

5. Mir, I.A., Quadri, S.M.: Analysis and evaluating security of component-based software
development: a security metrics framework. Int. J. Comput. Netw. Inf. Secur. (2012)

6. Kahtan, H., Bakar, N.A., Nordin, R.: Dependability attributes for increased security in CBSD.
J. Comput. Sci. 8(10) (2014)

7. Alberts, C., Allenm, J., Stoddard, R.: Risk-based measurement and analysis: application to
software security. Software Engineering Institute, Carnegie Mellon University (2012)

8. Soni, N., Jha, S.K.: Component based software development: a new paradigm. Int. J. Sci. Res.
Educ. 2(6) (2014)

9. Zurich, E.T.H.: A common criteria based approach for COTS component selection. Chair of
software engineering ©JOT, 2005 special issue: 6th GPCE Young Researchers Workshop
(2004)

10. Bertoa, M.F., Vallecillo, A.: Quality attributes for COTS components. In: Proceeding of the
6th ECOOP Workshop on Quantitative Approaches in Object-Oriented Software Engineering
(QAOOSE 2002). Malaga, Spain (2002)

294 S. Kr. Jha and R. K. Mishra

Traditional Software Reliability Models
Are Based on Brute Force and Reject
Hoare’s Rule

Ritika Wason, A. K. Soni and M. Qasim Rafiq

Abstract This research analyses the causes for the inaccurate estimations and
ineffective assessments of the varied traditional software reliability growth models.
It attempts to expand the logical foundations of software reliability by amalga-
mating techniques first applied in geometry, other branches of mathematics and
later in computer programming. The paper further proposes a framework for a
generic reliability growth model that can be applied during all phases of software
development for accurate runtime control of self-learning, intelligent, service-
oriented software systems. We propose a new technique to employing runtime code
specifications for software reliability. The paper aims at establishing the fact that
traditional models fail to ensure reliable software operation as they employ brute
force mechanisms. Instead, we should work on embedding reliability into software
operation by using a mechanism based on formal models like Hoare’s rule.

Keywords Learning automata � Software reliability � Formal methods
Automata-based software reliability model � Finite state automata

R. Wason (&)
Department of MCA, Bharati Vidyapeeth’s Institute of Computer Applications
and Management, New Delhi, India
e-mail: rit_2282@yahoo.co.in

A. K. Soni
School of Engineering and Technology, Sharda University, Greater Noida, India
e-mail: ak.soni@sharda.ac.in

M. Qasim Rafiq
Department of Computer Science and Engineering, Aligarh Muslim University,
Aligarh, India
e-mail: mqrafiq@hotmail.com

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_29

295

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_29&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_29&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_29&domain=pdf

1 Introduction

Ensuring correct operation by implementing dependable software is the most
important challenge of software production today [1]. Accurate reliability assess-
ment not only optimizes the overall software life cycle costs but also allows for
efficient scheduling of resources for software [2]. It makes way for able perfor-
mance appraisal of operational software. Reliability assessments form the basis of
various activities like software project management, software feasibility and soft-
ware modification decision. Hecht [3] describes software reliability functions into
three major categories of measurement, estimation and prediction. Software relia-
bility “measurement” relies upon failure interval data obtained by executing the
software in its real operational environment [4]. Software reliability “estimation”
refers to determining software reliability based upon operation in some test envi-
ronment. Reliability “prediction” implies the practice of computing software reli-
ability measures from program data which does not include failure intervals and
takes into account factors like size and program complexity [5]. Diverse applica-
tions and importance of software reliability metrics can be strongly coupled to the
functions described above. For example, system engineering relies upon prediction;
project management upon estimation; and operational software management upon
measurement [6].

To ensure the above characteristics, many varied software reliability models
have been proposed since early 1970s [7]. A careful analysis of these models
reveals that they actually try to provide a mechanism for describing a random
process called failure either as a function of the number of failures experienced of
next time to failure [8]. For the past four decades, all these models have estimated
software reliability combining failure history data with their individual assumptions
as depicted in Table 1.

An analysis of the different classes of software reliability models as depicted in
Table 1 reveals that all the traditional reliability models suffer from what we may
call the “conditional applicability syndrome”. None of the existing software relia-
bility models are capable of maintaining and controlling software reliability
throughout the software life cycle. Though these models may be successful for a
particular software system under one operational environment, they may fail or
yield inaccurate estimates for the same software under different settings.

A major lacuna of all software dependability and reliability research is the
absence of a generic, intelligent, self-learning reliability estimation model. Despite
huge effort and volumes of work, we are still looking for a formal reliability
assessment model that can identify possible states the software may assume during
its life cycle to ensure accurate reliability “prediction”, precise reliability “estima-
tion” and correct reliability “measurement” once the software is operational [9, 10].

All the conventional models treat software as a black box and estimate
software reliability using complex statistical or mathematical functions which
have been borrowed from hardware reliability models [11]. Detailed analysis of the
history of software reliability estimation parameters reveals that all the common

296 R. Wason et al.

software reliability estimation parameters such as failure rate (k), hazard function
(k(t)), MTBF, MTTR, MTTF were initially suggested for the reliability prediction
of hardware products [12] and were simply fitted to the software process over-
looking the different nature of software versus hardware as well as their reliability.

Hence, it has been observed that the shortcomings of the existing software
reliability models have been the major cause of the unreliability of modern
software.

Major challenges of software reliability can be defined as the ability to achieve
the following [13]:

(i) Encompass heterogeneous runtime execution and operation mechanisms for
software components.

(ii) Provide abstractions that can identify, isolate and control runtime software
errors.

(iii) Ensure robustness of software systems.

Table 1 Applicability of traditional reliability models in different software development phases

S. No. Software
development
phase

Features Usable reliability
models

Drawbacks

1 Design phase Faults are detected by
other formal and
informal methods

None Absence of test cases
and failure data makes
all existing software
reliability models
unsuitable

2 Unit testing
phase

Test cases generated
module-wise from
input domain in
deterministic fashion.
In most cases,
programmer himself is
the tester

Fault seeding
models or input
domain-based
models

Test cases are not a
representative sample
of the actual
operational usage;
hence, estimates
obtained may not be
of much use

3 Integration
testing phase

Test cases generated
to verify the
correctness of the
partial or whole
system in either a
random or
deterministic fashion

Time between
failures, fault
seeding, failure
count and input
domain-based
models

Different reliability
estimation models
applicable under
diverse assumptions.
Choice of model
should be based on
operational
environment

4 Acceptance
testing phase

Inputs for operational
usage are generated to
verify software
acceptability

Fault count and
input
domain-based
models

Reliability model
based on operational
environment

5 Operational
phase

Allied, deterministic
user inputs instead of
random

Fault count models Reliability model
based on operational
environment

Traditional Software Reliability Models Are Based on Brute … 297

Hence, it is time that the software engineering community learns from mistakes
of conventional reliability models and utilizes post-testing failure data to control
software operation at run-time [14, 15].

The above discussion implies that what is required is a more holistic approach,
integrating formal methods like Hoare’s logic and automata [16]. The key feature of
this approach shall be a shift of emphasis from probabilistic assumptions about the
reliable execution of software to actual runtime operation control [8, 12, 17, 18].
This paper proposes a general framework for a reliability model based on finite state
machines.

The remainder of this paper is designed as follows. Section 2 reviews some
popular software reliability models. Section 3 establishes the brute force nature of
all traditional SRGMs as the major cause of their inaccurate estimates. Section 4
discusses the viability of modelling reliability metrics using formal methods like
Hoare’s logic. Section 5 discusses the basic framework for a generic, intelligent,
self-learning reliability estimation model. Section 6 discusses the conclusion and
future enhancements for this study.

2 Software Reliability Measurement

Chow [7] was the first to suggest a software reliability estimation model. Since then
hundreds of models were applied for calculating reliability of different software
systems. However, with every model, the search for another model that overcomes
the limitations of its ancestors intensifies. Actually, none of the traditional reliability
models offer silver bullet for accurate reliability measurement for software. It is
observed that traditional reliability models are only trying to mathematically rep-
resent the interaction between the software and its operational environment. As
such most of these models are hence brute force as they are probabilistically trying
to estimate software reliability by fitting some mathematical model [7] onto the
software reliability estimation process. The limitation of traditional models along
with the growing size and complexity of modern software makes accurate reliability
prediction all the more hazardous.

As observed from Table 1, most of the software reliability models calculate
reliability based on failure history data obtained from either the testing or debug-
ging phase of software development [12]. However, difficulty lies in the quantifi-
cation of this measure. Most of the existing reliability models assess reliability
growth based on failure modes surfaced during testing and combine them with
different assumptions to estimate reliability [1, 2, 10]. Some of the well-known
traditional software reliability models can be classified according to their main
features as detailed in Table 2.

Tables 1 and 2 establish that all the existing reliability models have limited
applicability during software testing, validation or operational phases of the soft-
ware life cycle. However, the basic foundation of most software reliability growth

298 R. Wason et al.

models is often viewed doubtfully due to the unrealistic assumptions they are based
on, hence being the underlying cause of the reliability challenge of this century.

3 Brute Force Nature of Traditional Models

Despite decades of continual research and progress, software reliability remains a
term of aspiration. As the human society comes to rely heavily on powerful systems
that keep shrinking in size and growing in complexity, software systems have come
under harsh tectonic stresses due to the growing demand for reliable, distributed
systems. Despite more than half-a-century of advancement, the software industry
continues to strive for a mature engineering discipline to meet the reliability
demands of an information-age society [13]. The fundamental cause of this failure
is the fact that our basic approach to software construction is flawed. All traditional
software reliability estimation models demand more information about the software
than is actually known like failure rate. As a result, this produces dubious
assumptions about software resulting in misleading results. Having understood the
root cause of all our software quality problems, we now need to identify and debug
the mistakes of traditional reliability models in order to enable a befitting solution to
our software reliability crisis.

Table 2 Feature classification of traditional reliability models

S. No. Class Example Assumptions

1 Time between
failure/
deterministic
models

Jelinski–Moranda
de-eutrophication model; Goel–
Okumoto imperfect debugging
model; Littlewood–Verrall
Bayesian model

(i) Independent times between
failures
(ii) Equal probability of each fault
exposure
(iii) Embedded faults independent
of each other
(iv) Debugging and perfect fault
removal after each occurrence

2 Fault count
models

Goel–Okumoto NHPP model;
Musa’s execution time model;
Shooman exponential model;

(i) Independent testing intervals
(ii) Homogeneous testing during
intervals
(iii) Number of faults detected per
interval independent of each other

3 Fault seeding
models

Mills hypergeometric model (i) Seeded faults are randomly
distributed in the software with
equal probability of being
detected with native faults

4 Input
domain-based
model

Nelson model; Ramamoorthy
and Bastani model

(i) Known input profile
distribution
(ii) Random testing used
(iii) Input domain can also be
partitioned into equivalence
classes

Traditional Software Reliability Models Are Based on Brute … 299

At this point, it would be logical to first understand the nature of computing.
A computer program in reality can be termed as a behaving machine (BM) or an
automaton that can detect modifications in its environment and effect alterations in
it just like our biological nervous system [13]. Such a universal behaving machine
(UBM) may be composed of a couple of elementary behaving entities called nodes
and an environment that can bring a change in the state of these nodes. The above
description maps to what we know of mathematically as a finite state machine
(FSM) [8, 17–19]. Hence, from the above discussion, we may conclude that at its
core all software behave as a finite state machine.

Unfortunately for the software world, traditional reliability models do not treat
the software as a tightly integrated collection of communicating entities that can
switch states upon environmental stimuli [20, 21]. The cause for this can be
attributed either to sheer ignorance or vested interest of ensuring oneself a lifetime
career as reliability engineer. All traditional models present a time-variant reliability
analysis of existing software by calculating reliability using brute force efforts for
generating assumptions and parameter values to be fitted onto a mathematical
model [1, 7]. However, the accuracy of the model assumptions and parameter
values is questionable.

From the long legacy of software failures, the software community has culti-
vated a belief that large, complex software are less reliable [9]. The belief strikingly
contrasts the human brain, the most dependable and complex system in the world,
with reliability scores of magnitude greater than that of any composite existing
software [13]. Hence, the human brain is a living proof of the fact that the reliability
of a behaving system does not have to be inversely proportional to its complexity.
The problem with the traditional reliability models lies in their way of quantifying
reliability. Most existing reliability models use either of the alternative way to
quantify reliability: failure intensity (expected number of failures per unit time) or
mean time to failure (MTTF, expected value of the failure interval) [1]. However,
both the estimates involve estimation of software reliability from failure data
obtained during testing and validation phases of software which may significantly
differ from the actual operational environment where the system may be actually
implemented.

The primary purpose of any software reliability model is to anticipate failure
behaviour that will be observed from the program at run-time [22]. This runtime
behaviour, however, changes rapidly with the implementation environment under
which a program operates and cannot be completely tracked during program test-
ing. Developer alliance can further diminish secure coding practices.

4 Perceiving Reliability with Hoare’s Logic

Uncertainty will continue to disrupt reliability of all our software systems, unless
we transition to some metric rooted firmly in science and mathematics [4, 9, 23].
Engineers have always relied on mathematical analysis to predict how their designs

300 R. Wason et al.

will behave in the real world [2]. Unfortunately, the mathematics that describes
physical hardware systems does not apply within the artificial binary universe of
software systems [2]. However, computer scientists have contrived ways to trans-
late software specifications and programs into equivalent mathematical expressions
which can be analysed using theoretical tools called formal methods [5, 15]. In the
current decade when reliable software is no longer just a negotiable option but a
firm requirement for many real-time, critical software systems, we need to become
smarter about how we design, analyse and test software systems.

Hoare’s logic/Floyd–Hoare logic is an axiomatic means of proving program
correctness which has been the formal basis to formally verify the correctness of
software [16]. However, it is rarely applied in actual practice. We propose devel-
opment of a reliability model that can control the traversed program path using an
underlying automata-based software representation and apply Hoare’s logic as the
basis to ensure correct runtime program execution [11]. Our approach performs
dynamic checking of software transition and instead of halting the program upon
failure state transition; we allow the program to continue execution through an
alternate path. Formal, Hoare’s logic-based software verification provides strong
possibility to establish program correctness [16]. However, practical use of this
logic is limited due to difficulties like determining invariants for iterations and side
effects of invoking subroutines (methods/functions/procedures) in different pro-
gramming languages.

Hoare’s logic based on predicate logic [16] defines a set of axioms to classify the
semantics of programming languages. It describes an axiom for each program
construct. These axioms are further applied to establish program correctness for
programs written in different programming languages.

We propose applying axioms of Hoare’s logic for ensuring reliable software
operation [16]. To clarify the same, we discuss the Hoare axiom for assignment:

Let x: = E be an assignment, then

Q Ejxð Þf gx :¼ E Qf g ð1Þ

Equation 1 states that x: = E is acceptable with respect to the particular
post-assertion Q and the derived pre-assertion Q(E|x).

Taking, Hoare’s axiom of assignment as basis, we propose an axiom of relia-
bility to be followed by each software transition.

x :¼ P
is acceptable with respect to the given post-state qi 2 Q and the previous

pre-state qj 2 Q
P jdð Þ. This implies that a given user input x is correct only if it

transforms the state of software under study to an acceptable post-state.

Traditional Software Reliability Models Are Based on Brute … 301

5 Proposed Model Framework

Systems crash when they fail to expect the unexpected [2]. The unreliability of
software stems from the problem of listing and/or identifying all the possible states
of the program [13]. To conquer this limitation, we propose development of an
automata-based software reliability model [11, 24]. The proposed model is based on
the conventional idea of a Markov model [25, 26]. This model divides the possible
software configurations into distinct states, each connected to the others through a
transition rate. In this framework, the software at run-time would be controlled by
an underlying automata representation of the software. Each software state change
and/or transition shall be allowed by the compiler and/or interpreter only after
validating if it takes the software to an acceptable automata node. The basic flow of
this automata-based reliability model is depicted in Fig. 1.

As depicted in Fig. 1 above, the proposed model framework utilizes the
equivalent assembly code of the software under study to extract the underlying
opcodes. Utilizing these opcode instructions, a next state transition table is obtained
which is used as the basis for designing the underlying finite state automata (FSM).
Each node of the obtained FSM can be assigned a probability value. Initially, each
node of the FSM can be assigned an equivalent probability. With each software
execution, the node probability can be incremented and/or decremented depending
upon the software path of execution. The proposed framework shall help ensure
reliable software execution by monitoring each software transition. In case, the
framework detects that in the next transition the software may transit to a failure
node, it may halt the system immediately and work on finding an alternate route.

Fig. 1 Basic flow diagram of
proposed automata-based
software reliability model

302 R. Wason et al.

6 Conclusion

The ultimate objective of this study is to embrace the software community with the
fact that existing software reliability models are all brute force as they do not
capture the actual nature of software execution [27]. With this work, we also have
built upon a novel software reliability model that uses the formal model of an
automaton to control runtime software operation. The utmost importance of this
framework is that the framework can be built into the software execution engine
(compiler and/or interpreter) to ensure similar automata-based execution for all
software sharing similar execution semantics. However, this remains a tall objective
to achieve in the near future.

This research may be considered as generic model for ensuring reliable software
operation of modern agent-based, cloud-based, distributed or service-oriented
software. This research could also be classified as a generic one which could
instantiate numerous other studies. Possible extensions to this research can be
training of the FSM framework into learning automata to identify and register faulty
nodes as well as incorrect user input types leading to the same. Further, the model
can also be applied to improve runtime performance of software. This study is a
step forward towards overcoming all software reliability issues and ensuring robust
software systems.

References

1. Vyatkin, V., Hanisch, H.M., Pang, C., Yang, C.H.: Closed-loop modeling in future
automation system engineering and validation. IEEE Trans. Syst. Man Cybern. Part C: Appl.
Rev. 39(1), 17–28 (2009)

2. Yindun, S., Shiyi, Xu: A new method for measurement and reduction of software complexity.
Tsinghua Sci. Technol. 12(S1), 212–216 (2007)

3. Hecht H.: Measurement, estimation and prediction of software reliability, in software
engineering technology, vol. 2, pp. 209–224. Maidenhead, Berkshire, England, Infotech
International (1977)

4. Samimi, H., Darli, A.E., Millstein, T.: Falling back on executable specifications. In:
Proceedings of the 24th European Conference on Object-Oriented Programming
(ECOOP’10), pp. 552–576 (2010)

5. Wahls, T., Leavens, G.T., Baker, A.L.: Executing formal specifications with concurrent
constraint programming. Autom. Softw. Eng. 7(4), 315–343 (2000)

6. Leuschen, M.L., Walker, I.D., Cavallaro, J.R.: Robot reliability through fuzzy markov
models. In: Proceedings of Reliability and Maintainability Symposium, pp. 209–214 (1998)

7. Beckert, B., Hoare, T., Hanhle, R., Smith, D.R., et al.: Intelligent systems and formal methods
in software engineering. IEEE Intell. Syst. 21(6), 71–81 (2006)

8. Musa, J.D., Okumoto. A logarithmic poisson execution time model for software reliability
measurement. In: Proceedings of the 7th International Conference on Software Engineering,
pp. 230–237. Orlando (1984)

9. Meyer, B., Woodcock, J.: Verified software: theories, tools, experiments. In: IFIP TC 2/WG
2.3 Conference VSTTE 2005, Springer-Verlag (2005)

Traditional Software Reliability Models Are Based on Brute … 303

10. Hsu, C.J., Huang, C. Y.: A study on the applicability of modified genetic algorithms for the
parameter estimation of software reliability modeling. In: Proceedings of the 34th
Annual IEEE Computer Software and Applications Conference, pp. 531–540 (2010)

11. Jelinski, Z., Moranda, P.B.: Software reliability research. In: Statistical Computer perfor-
mance Evaluation, pp. 465–484. Academic Press, New York (1972)

12. Benett, A.A.: Theory of probability. Electr. Eng. 52, 752–757 (1933)
13. Hoare, C.A.R.: How did software get so reliable without proof. In: Proceedings of The Third

International Symposium of Formal Methods Europe on Industrial Benefits and Advances in
Formal Methods, pp. 1–17 (1996)

14. Zee, K., Kuncak, V., Rinard, M.C.: Full functional verification of linked data structures. In:
Proceedings of the 2008 ACM SIGPLAN Conference on Programming Language Design and
Implementation PLDI ’08, pp. 349–361. ACM, New York (2008)

15. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.: Extended static
checking for java. In: Proceedings of the ACM SIGPLAN 2002 Conference on Programming
language design and implementation PLDI ’02, pp. 234–245. ACM, New York (2002)

16. Zee, K., Kuncak, V., Rinard, M.C.: An integrated proof language for imperative programs. In:
Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language Design and
Implementation PLDI ’09, pp. 338–351. ACM, New York (2009)

17. Wason, R., Ahmed, P., Rafiq, M.Q.: Automata-based software reliability model: the key to
reliable software. Int. J. Softw. Eng. Its Appl. 7(6), 111–126 (2013)

18. Benes, N., Buhnova, B., Cerna, I., Oslejsek, R.: Reliability analysis in component-based
development via probabilistic model checking. In: Proceedings of the 15th ACM SIGSOFT
Symposium on Component-Based Software Engineering (CBSE’12), pp. 83–92 (2012)

19. Sharygina, N., Browne, J.C., Kurshan, R.P.: A formal object-oriented analysis for software
reliability: design for verification. In: Proceedings of the 4th International Conference on
Fundamental Approaches to Software Engineering (FASE’01), pp. 318–322. Springer-Verlag
(2001)

20. Afshar, H.P., Shojai, H., Navabi, Z.: A new method for checking FSM correctness
(Simulation Replacement). In: Proceedings of International Symposium on
Telecommunications, pp. 219–222. Isfahan–Iran (2003)

21. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2), 183–235
(1994)

22. Chow, T.S.: Testing software design modeled by finite state machines. IEEE Trans. Softw.
Eng. SE-4(3), 178–187 (1978)

23. Hoare, C.A.R.: An axiomatic basis for computer programming. ACM Commun. 12(10), 576–
580 (1969)

24. Crochemore, M., Gabbay, D.M.: Reactive automata. Inf. Comput. 209(4), 692–704 (2011)
25. Goseva-Popstojanova, K., Kamavaram, S.: Assessing uncertainty in reliability of

component-based software systems. In: 14th International Symposium on Software
Reliability Engineering (ISSRE 2003), pp. 307–320 (2003)

26. Goel, A.L.: Software reliability models: assumptions, limitations and applicability. IEEE
Trans. Softw. Eng. 11(12), 1411–1414 (1983)

27. Ramamoorthy, C.V., Bastani, F.B.: Software reliability—status and perspectives. IEEE Trans.
Softw. Eng. SE-8(4), 354–371 (1982)

304 R. Wason et al.

Object-Oriented Metrics for Defect
Prediction

Satwinder Singh and Rozy Singla

Abstract Today, defect prediction is an important part of software industry to meet
deadlines for their products. Defect prediction techniques help the organizations to
use their resources effectively which results in lower cost and time requirements.
Various metrics are used for defect prediction in within company (WC) and
cross-company (CC) projects. In this paper, we used object-oriented metrics to
build a defect prediction model for within company and cross-company projects. In
this paper, feed-forward neural network (FFNN) model is used to build a defect
prediction model. The proposed model was tested over four datasets against within
company defect prediction (WCDP) and cross-company defect prediction (CCDP).
The proposed model gives good results for WCDP and CCDP as compared to
previous studies.

Keywords Object-oriented metrics � Defect prediction
Artificial neural network (ANN)

1 Introduction

Defect prediction is a technique to find defects in software before its delivery. It is
an important part of software engineering to control the schedule and cost of a
software system. There are various models that can be used for defect prediction.
Defect prediction models help the engineer to check the reliability of the software
against time and cost factor. These models are developed using various metrics. But
today, object-oriented metrics are more popular. So in this paper, object-oriented
metrics are used for defect prediction.

S. Singh � R. Singla (&)
BBSBEC, Fatehgarh Sahib, Punjab, India
e-mail: rozysingla92@gmail.com

S. Singh
e-mail: satwinder.singh@bbsbec.ac.in

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_30

305

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_30&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_30&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_30&domain=pdf

Software metrics are collected with the help of automated tools which are used
by defect prediction models to predict the defects in the system. There is generally a
dependent variable, and various independent variables are present in any fault
prediction model. Dependent variable defines that the software modules are faulty
or not. Various metrics such as process metrics, product metrics, etc., can be used as
independent variables. For example, cyclomatic complexity and lines of code which
are method-level product metrics [1].

Cross-company defect prediction (CCDP) is a mechanism that builds defect
predictors which use data from various other companies, and the data may be
heterogeneous in nature. Cross-project defect prediction uses data from within
company projects or cross-company projects. CC (cross-company) data involve
knowledge from many different projects and are diversified as compared to within
company (WC) data [2].

Previous works mostly focus on defect prediction within company projects. Very
few studies were based on cross-company and cross-projects defect prediction but
did not produce satisfactory results.

Defect prediction from static code can be used to improve the quality of soft-
ware. Here in this paper, to cover the above gap focus is on to predict the parts of
the code which is defective. Further, efforts will be made to create the general
framework or model for defect prediction in cross-company and cross-project
software to improve the quality of software.

Zimmermann et al. observed that many companies do not have local data which
can be used in defect prediction as they may be too small. The system which has to
be tested might be released for first time, and so there is no past data [3].

Mainly, the focus of various defect prediction studies is to build prediction
models using the available local data (i.e., within company predictors). For this
purpose, companies have to maintain a data repository where data of their past
projects can be stored. This stored data are useful in defect prediction. However,
many companies do not follow this practice.

In this research, the focus is on binary defect prediction and examines if there is
any conclusion or not. This research presents the assets of cross-company
(CC) versus within company (WC) data for defect prediction.

2 Literature Survey

As per the title of the paper, efforts over here will be made to design a defect
prediction model that can be used for with-in and cross-company projects. To
design a defect prediction model, it is required to study the previous work done by
the research community so far. The same is done as follow.

Zimmermann et al. [3] calculated the performance of defect prediction for
cross-projects by using data from 12 projects (622 combinations). Among of these
combinations, only 21 pairs resulted in efficient prediction performance. Data
distributions of the initial and final projects are different which result in low

306 S. Singh and R. Singla

prediction performance. It is expected that training and test data have the same
distribution of data. This assumption is good for within-project prediction and may
be not suited for cross-project prediction. Cross-project prediction can be indicted
in two dimensions: the domain dimension and the company dimension. They
noticed that many software companies may or may not have local data for defect
prediction as they are small or they do not have any past data. Zimmermann et al.
[3] observed the datasets from Firefox and Internet Explorer (IE). They experi-
mented on these Web browsers and found that Firefox data could predict for defects
in IE very well, but vice versa was not true. They come up with the result that
“building a model from a small population to predict a larger one is likely more
difficult than the reverse direction.”

Peters et al. [4] described one way to find the datasets for training and testing
which would help in cross-company defect prediction and within company defect
prediction. The authors divided the datasets as labeled or unlabeled data. Unlabeled
datasets can be used for predicting the defects in cross-company projects. They
introduce a new filter “Peters filter” which generates the training datasets. The
performance of Peters filter is compared with the Burak filter which uses k-nearest
neighbor method for calculating the training dataset. These filters are used with
various prediction models to calculate their performance. They used random forest
(RF), Naïve Byes (NB), linear regression (LR), and k-nearest neighbor (k-NN)
prediction models for calculating the performance of filters. The performance
measurement parameters are accuracy, recall, precision, f-measure, and g-measure.
After this experiment, they come with ideas that the cross-company defect pre-
diction is needed for predicting results over small datasets.

Zhang et al. [5] proposed a universal model for defect prediction that can be used
in within company and cross-company projects. One issue in building a
cross-company defect prediction is the variations in data distribution. To overcome
this, the authors first suggested collecting data and then transforming the training
and testing data to make more similar in their data distribution. They proposed a
context-aware rank transformation for limiting the variations in the distribution of
data before applying them to the universal defect prediction model. The six context
factors are used by authors which are programming language, issue tracking, the
total lines of code, the total number of files, the total number of commits, and the
total number of developers for prediction. They used 21 code metrics and 5 process
metrics in their research. Their experimental results show higher AUC values and
higher recall than with-in project models and have better AUC for cross-projects.

Zimmerman et al. [3] proposed a novel transfer learning algorithm called
Transfer Naive Bayes (TNB) for cross-company defect prediction. The advantage
of transfer learning is that it allows that training and testing data to be heteroge-
neous. They have used instance-transfer approach in their research which assigns
weights to source instances according to their contribution in the prediction model.
They use four performance metrics, probability of detection (PD), probability of
false alarms (PF), F-measure, and AUC to measure the performance of defect
predictor. They show that the TNB gives good performance.

Object-Oriented Metrics for Defect Prediction 307

Kitchenham et al. [2] analyzed a cross-company dataset of Web projects. The
Web projects may be Web hypermedia or Web software application. They devel-
oped a cost estimation model based on these datasets. They used STATATM tool for
the experiment, which uses regression. Their experiment results show that a
cross-company effort estimation model can be constructed [6].

3 Methodology

Feed-forward neural networks (FFNNs) are the most popular neural networks
which are trained with a back-propagation learning algorithm. It is used to solve a
wide variety of problems. A FFNN consists of neurons, which are organized into
layers. The first layer is called the input layer, the last layer is called the output
layer, and the layers between are hidden layers. The used FFNN model is shown in
Fig. 1. Each neuron in a particular layer is connected with all neurons in the next
layer.

The connection between the ith and jth neuron is characterized by the weight
coefficient wij. The weight coefficient has an impact on the degree of importance of
the given connection in the neural network. The output of a layer can be determined
by equations

a ¼ x1w1 þ x2w2 þ x3w3 � � � þ xnwn ð1Þ

In this research, seven neurons are used at input layer and three neurons are used
at hidden layer. The seven inputs are object-oriented metrics which are: NOC[4],
RFC[4], DIT[4], WMC[4], CBO[4], LCOM[4], and LCOM5[9].

In this research, following activation functions are used:

1. Hyperbolic tangent sigmoid function (tansig)
2. Linear transfer function (purelin)

Fig. 1 A multi-layer
feed-forward neural network

308 S. Singh and R. Singla

tansig is used as activation function for hidden layer, and purelin is used as
activation function for the output layer.

1. Hyperbolic Tangent Sigmoid Function (tansig)

It takes two real-valued arguments and transforms them to a range (−1, 1).
The equation used for tansig is

a ¼ tansig nð Þ ¼ 2
1þ e�2�nð Þ � 1 ð2Þ

2. Linear Transfer Function (purelin)

Purelin (n) takes one input and returns value n.
The equation for purelin is

a ¼ purelin ðnÞ ¼ nþ b ð3Þ

where b is bias value.

3.1 Performance Evaluation Parameters

Performance evaluation parameters are needed to calculate or validate the perfor-
mance of the proposed model. If these parameters are not considered, then the
performance of the proposed model cannot be evaluated.

Table 1 shows the confusion matrix for fault prediction. The confusion matrix is
divided into four subparts which are as following:

i. True positives (TP): number of modules correctly classified as faulty modules.
ii. False positives (FP): number of not-faulty classes predicted as faulty classes.
iii. True negatives (TN): number of non-faulty modules correctly predicted as

non-faulty.
iv. Finally, false negatives (FN): number of faulty classes incorrectly predicted as

not-faulty classes. According to the confusion matrix, following performance
parameter is used to measures the performance of the proposed model:

Specificity: It is also known as true negative rate (TNR). It defines how the
faulty classes are classified as faulty by the predictor. It is defined as:

Table 1 Fault detection
confusion matrix

Non-faulty Faulty

Non-faulty True negative (TN) False positive (FP)

Faulty False negative (FN) True positive (TP)

Object-Oriented Metrics for Defect Prediction 309

Specificity ¼ TN
FPþTN

ð4Þ

ROC (Receiver Operating Characteristics): The performance of a binary
classifier is shown by ROC curve. It is in graphical form. The curve is created by
plotting the true positive rate (TPR) against the false positive rate (FPR) at various
threshold settings.

The true positive rate is calculated as:

TPR ¼ TP
TPþ FNð Þ ð5Þ

The false positive rate is calculated as:

FPR ¼ FP
FPþTNð Þ ð6Þ

ROC graphs are two-dimensional graphs in which TP rate is plotted on the Y-
axis and FP rate is plotted on the X-axis. The area under ROC curve (AUC) is often
calculated to compare different ROC curves. Higher AUC values indicate the
classifier is, on average, more to the upper left region of the graph [7]. The ROC
curve ranges between 0 and 1. It measures the perceptiveness of the proposed
model. The general values of ROC to evaluate perceptiveness of the model are as
follow:

If 0.5 � ROC � 0.6: no perceptiveness, i.e., not better than guessing.
If 0.6 � ROC � 0.7: poor perceptiveness.
If 0.7 � ROC � 0.8: good perceptiveness.
If 0.8 � ROC � 0.9: excellent perceptiveness.
If 0.9 � ROC � 1.0: outstanding perceptiveness.

4 Collection of Data

In order to perform this research, data was collected from the Bugzilla1 database for
two versions of Mozilla Firefox (MF) 2.0 and 3.0 and for one version of Mozilla
Seamonkey (SM) in which the number of bugs found and corrected in each class of
the system. The Bugzilla database contains all errors (bugs) that have been found in
projects with detailed information that includes the release number, error severity,
and summary of errors. As this study is focused on object-oriented metrics, so only
those bugs were considered which were affecting these classes.

1www.bugzila.org.

310 S. Singh and R. Singla

Two MF Versions, i.e., 2.0 and 3.0 and SM Version 1.0.1 open source systems
were used for analysis in this study. Another system chosen for cross-company and
cross-domain analysis is Licq (an instant messaging or communication client for the
UNIX). The database for bugs is obtained from social community known as GitHub2

community. Licq is smaller system with 280 classes (Tables 2, 3, 4, 5, and 6).
From the descriptive statistics, it was noticed that the maximum DIT level is 11

for Firefox Version 3.0 dataset and almost 75% classes were having three levels of

Table 2 Dataset details

Name Number of classes Number of defect classes % Defected classes

Licq 280 126 45

Firefox Version 2.0 4524 81 1.79

Firefox Version 3.0 4971 59 1.186

SM Version 1.0.1 4103 47 1.145

Table 3 Descriptive statistical analysis of Licq dataset

NOC RFC DIT WMC CBO LCOM LCOM5

Mean 0.7071 16.5964 1.5929 24.2571 4.6071 452.721 1.5821

Median 0.0000 7.0000 1.0000 4.0000 3.0000 1.0000 1.0000

Std. deviation 4.16074 52.5919 1.39326 126.54807 12.0081 3936.03 1.31997

Variance 17.312 2765.91 1.941 16014.414 144.196 1.549E7 1.742

Minimum 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Maximum 57.00 720.00 5.00 1920.00 195.00 45002.00 11.00

Percentiles 25% 0.0000 3.0000 0.0000 2.0000 1.0000 0.0000 1.0000

50% 0.0000 7.0000 1.0000 4.0000 3.0000 1.0000 1.0000

75% 0.0000 14.7500 3.0000 12.7500 6.0000 8.0000 2.0000

Table 4 Descriptive statistical analysis of Firefox MF Ver. 2.0 dataset

NOC RFC DIT WMC CBO LCOM LCOM5

Mean 1.0654 27.0009 1.9931 202.1603 10.5524 40.2962 4.3035

Median 0.0000 12.0000 2.0000 4.0000 5.0000 9.0000 2.0000

Std. deviation 16.24396 47.3012 1.8057 1298.32154 14.03634 112.744 8.33282

Variance 263.866 2237.409 3.261 1685638.82 197.019 12711.4 69.436

Minimum 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Maximum 1074.00 764.00 10.00 54619.00 182.00 3233.00 101.00

Percentiles 25% 0.0000 4.0000 1.0000 0.0000 3.0000 1.0000 1.0000

50% 0.0000 12.0000 2.0000 4.0000 5.0000 9.0000 2.0000

75% 1.0000 29.0000 3.0000 44.0000 13.0000 36.0000 5.0000

2www.github.com.

Object-Oriented Metrics for Defect Prediction 311

inheritance. Descriptive dataset value of Firefox Versions over Seamonkey Version
shows the differentiate data which are expected also. This is only because of the
cross-project selection. This selection will help the study to analyze the results in
better way for cross-projects. Following object-oriented metrics are used in this
research: number of children (NOC), response for a class (RFC), depth of the
inheritance tree (DIT), weighted methods per class (WMC), coupling between
object classes (CBO), lack of cohesion in methods (LCOM) [8], lack of cohesion
in methods (LCOM5) [3].

5 Results

In this section, results are shown which were captured during the experiment
conducted for 500, 1000, and 2000 epochs. The experiment was performed on all
the datasets to test if the proposed model works for within company, cross-projects,
and cross-company defect prediction.

Table 5 Descriptive statistical analysis of Firefox MF Ver. 3.0 dataset

NOC RFC DIT WMC CBO LCOM LCOM5

Mean 1.0758 26.9111 2.1362 40.0406 10.3750 225.845 4.6966

Median 0.0000 11.0000 2.0000 8.0000 5.0000 3.0000 2.0000

Std. deviation 16.4041 48.9986 2.02096 116.30474 14.2038 1451.15 10.0614

Variance 269.096 2400.86 4.084 13526.793 201.750 2105844.9 101.233

Minimum 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Maximum 1132.00 769.00 11.00 3294.00 194.00 55612.00 104.00

Percentiles 25% 0.0000 4.0000 1.0000 1.0000 3.0000 0.0000 1.0000

50% 0.0000 11.0000 2.0000 8.0000 5.0000 3.0000 2.0000

75% 1.0000 27.0000 3.0000 34.0000 12.0000 41.0000 4.0000

Table 6 Descriptive statistical analysis of Seamonkey 1.0.1 dataset

NOC RFC DIT WMC CBO LCOM LCOM5

Mean 1.0846 29.7714 2.0041 245.1311 11.0943 44.4619 4.3215

Median 0.0000 12.0000 2.0000 3.0000 5.0000 7.0000 1.0000

Std. deviation 17.0505 53.7139 1.79840 1523.63884 14.7759 127.550 8.65779

Variance 290.720 2885.18 3.234 2321475.30 218.328 16269 74.957

Minimum 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Maximum 1078.00 770.00 10.00 54950.00 174.00 3250.00 101.00

Percentiles 25% 0.0000 4.0000 1.0000 0.0000 3.0000 1.0000 1.0000

50% 0.0000 12.0000 2.0000 3.0000 5.0000 7.0000 1.0000

75% 1.0000 31.0000 3.0000 48.0000 14.0000 37.0000 5.0000

312 S. Singh and R. Singla

From Table 7, it was analyzed that the Licq dataset gives the highest TNR which
is 1 when tested using other datasets. MF Ver. 3.0 shows lowest TNR rate when
tested using Licq dataset that represents poor cross-company defect prediction.
Further, it was analyzed that when proposed model is applied over the
cross-projects (MF Ver. 3.0) or over the cross-company projects (Licq), the results
shown in Table 7 were not as favorable as compared to the within company
projects.

Table 8 shows the results of proposed fault prediction model for 1000 epochs.
The datasets were trained using 1000 iterations.

When TNR rate was analyzed, it shows highest value when Licq tested using
other datasets, i.e., the model is favorable for cross-company defect prediction if
only TNR is considered. MF Ver. 3.0 gives lowest TNR rate when the model was
trained using Licq dataset. Further, it was analyzed that when proposed model was
executed on the cross-projects, then the model was favorable for cross-projects as
compared to the within company projects and is shown in Table 10.

Table 7 Results for model validation for 500 epochs

Training on Testing on % TNR AUC

MF Ver. 2.0 MF Ver. 2.0 99.91 0.500

MF Ver. 3.0 99.90 0.619

SM Version 1.0.1 99.80 0.619

Licq 100 0.576

MF Ver. 3.0 MF Ver. 2.0 99.91 0.309

MF Ver. 3.0 99.90 0.662

SM Version 1.0.1 99.83 0.662

Licq 100 0.575

SM Version 1.0.1 MF Ver. 2.0 99.62 0.303

MF Ver. 3.0 99.57 0.646

SM Version 1.0.1 99.36 0.646

Licq 100 0.576

Licq MF Ver. 2.0 33.78 0.685

MF Ver. 3.0 32.96 0.699

SM Version 1.0.1 35.20 0.734

Licq 61.03 0.600

MF Ver. 2.0 with low severity level MF Ver. 2.0 99.91 0.305

MF Ver. 3.0 99.90 0.651

SM Version 1.01 99.83 0.651

Licq 100 0.571

MF Ver. 2.0 with medium severity level MF Ver. 2.0 99.93 0.303

MF Ver. 3.0 99.90 0.650

SM Version 1.01 99.83 0.650

Licq 100 0.577
(continued)

Object-Oriented Metrics for Defect Prediction 313

Table 7 (continued)

Training on Testing on % TNR AUC

MF Ver. 2.0 with high severity level MF Ver. 2.0 99.93 0.303

MF Ver. 3.0 99.90 0.649

SM Version 1.01 99.83 0.649

Licq 100 0.576

MF Ver. 3.0 with low severity level MF Ver. 2.0 99.91 0.310

MF Ver. 3.0 99.90 0.662

SM Version 1.01 99.83 0.662

Licq 100 0.570

MF Ver. 3.0 with medium severity level MF Ver. 2.0 99.93 0.311

MF Ver. 3.0 99.90 0.663

SM Version 1.01 99.83 0.663

Licq 100 0.576

MF Ver. 3.0 with high severity level MF Ver. 2.0 99.93 0.308

MF Ver. 3.0 99.90 0.661

SM Version 1.01 99.83 0.661

Licq 100 0.573

Table 8 Results for 1000 epochs

Training on Testing on % TNR AUC

MF Ver. 2.0 MF Ver. 2.0 99.93 0.307

MF Ver. 3.0 99.90 0.656

SM Version 1.0.1 99.83 0.656

Licq 100 0.574

MF Ver. 3.0 MF Ver. 2.0 99.93 0.310

MF Ver. 3.0 99.90 0.665

SM Version 1.0.1 99.83 0.665

Licq 100 0.575

SM Version 1.0.1 MF Ver. 2.0 99.84 0.298

MF Ver. 3.0 99.76 0.638

SM Version 1.0.1 99.63 0.638

Licq 100 0.580

Licq MF Ver. 2.0 31.87 0.320

MF Ver. 3.0 31.57 0.233

SM Version 1.0.1 33.94 0.235

Licq 72.05 0.461

MF Ver. 2.0 with low severity level MF Ver. 2.0 99.93 0.305

MF Ver. 3.0 99.90 0.652

SM Version 1.0.1 99.83 0.652

Licq 100 0.573
(continued)

314 S. Singh and R. Singla

In Table 9, the results of proposed fault prediction model are shown for
2000 epochs; i.e., the training was performed over the selected datasets using 2000
iterations.

Table 8 (continued)

Training on Testing on % TNR AUC

MF Ver. 2.0 with medium severity level MF Ver. 2.0 99.95 0.304

MF Ver. 3.0 99.90 0.650

SM Version 1.0.1 99.83 0.650

Licq 100 0.577

MF Ver. 2.0 with high severity level MF Ver. 2.0 99.95 0.303

MF Ver. 3.0 99.90 0.650

SM Version 1.0.1 99.85 0.650

Licq 100 0.577

MF Ver. 3.0 with low severity level MF Ver. 2.0 99.93 0.310

MF Ver. 3.0 99.90 0.664

SM Version 1.0.1 99.83 0.664

Licq 100 0.572

MF Ver. 3.0 with medium severity level MF Ver. 2.0 99.95 0.311

MF Ver. 3.0 99.90 0.663

SM Version 1.0.1 99.85 0.663

Licq 100 0.570

MF Ver. 3.0 with high severity level MF Ver. 2.0 99.95 0.308

MF Ver. 3.0 99.90 0.663

SM Version 1.0.1 99.85 0.663

Licq 100 0.573

Table 9 Results for 2000 epochs

Training on Testing on % TNR AUC

MF Ver. 2.0 MF Ver. 2.0 99.95 0.309

MF Ver. 3.0 99.90 0.663

SM Version 1.0.1 99.85 0.663

Licq 100 0.578

MF Ver. 3.0 MF Ver. 2.0 99.95 0.311

MF Ver. 3.0 99.90 0.668

SM Version 1.0.1 99.85 0.668

Licq 100 0.575

SM Version 1.0.1 MF Ver. 2.0 99.91 0.296

MF Ver. 3.0 99.88 0.627

SM Version 1.0.1 99.80 0.627

Licq 100 0.579
(continued)

Object-Oriented Metrics for Defect Prediction 315

TNR rate is more than 90% in most of the cases except for the Licq dataset
which gives lowest results when the proposed model was trained with it.

6 Conclusion

After studying these results, it is concluded that good prediction system is required
for predicting the software defects at an early stage of software development.
Neural network is based on a machine learning approach. The proposed neural
network model has identified the relationship between errors and metrics. The

Table 9 (continued)

Training on Testing on % TNR AUC

Licq MF Ver. 2.0 90.23 0.709

MF Ver. 3.0 43.97 0.726

SM Version 1.0.1 45.38 0.772

Licq 67.19 0.629

MF Ver. 2.0 with low severity level MF Ver. 2.0 99.95 0.307

MF Ver. 3.0 99.90 0.660

SM Version 1.0.1 99.85 0.660

Licq 100 0.574

MF Ver. 2.0 with medium severity level MF Ver. 2.0 99.95 0.304

MF Ver. 3.0 99.90 0.652

SM Version 1.0.1 99.85 0.652

Licq 100 0.575

MF Ver. 2.0 with high severity level MF Ver. 2.0 99.95 0.304

MF Ver. 3.0 99.90 0.650

SM Version 1.0.1 99.85 0.650

Licq 100 0.577

MF Ver. 3.0 with low severity level MF Ver. 2.0 99.95 0.309

MF Ver. 3.0 0.999 0.666

SM Version 1.0.1 0.9985 0.666

Licq 1 0.573

MF Ver. 3.0 with medium severity level MF Ver. 2.0 99.95 0.310

MF Ver. 3.0 99.90 0.663

SM Version 1.0.1 99.88 0.663

Licq 100 0.568

MF Ver. 3.0 with high severity level MF Ver. 2.0 99.95 0.311

MF Ver. 3.0 99.90 0.664

SM Version 1.0.1 99.90 0.664

Licq 100 0.576

316 S. Singh and R. Singla

proposed model is also used for cross-company projects also, but the results are not
up to the mark. The proposed model has provided better accuracy, AUC, and MSE
values (Table 10).

As compared to previous work, these results are better. The proposed model
gives AUC value 0.821 using Firefox MF Ver. 3.0 on Firefox MF Ver. 3.0, 0.815
for SM Version 1.0.1 when the model is trained with Firefox MF Ver. 2.0. The
model proposed by Zhang et al. [5] is tested on few datasets, so it may not
applicable to other datasets. The model proposed by Ma et al. [9] helps to transfer
the results of one dataset to others to predict defects in the dataset. It does not
provide any defined model for cross-project and cross-company projects [10, 11].
After analyzing these results, it is analyzed that model is well suited for predicting
defects in both within company projects and as well as in within company
cross-projects but for cross-company projects, and results are not favorable as
compared to within company projects. It gives better AUC values for cross-project
defect prediction [12–14].

The proposed model predicts defects under different severity levels; as the
proposed model was tested under different severity levels, it performs better.

The prediction model is not capable of predicting defects in the cross-company
projects [15, 16]. Licq cannot predict defects in MF Ver. 2.0, MF Ver. 3.0, and SM
Version 1.0.1 effectively [17, 18]. MF Ver. 2.0, MF Ver. 3.0, and SM Version 1.0.1
cannot predict defect in Licq efficiently.

In future, these models can be used for inter languages software. These models
can be further modified for cross-company projects for the better results.

References

1. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10),
1345–1359 (2010)

2. Kitchenham, B.A., Mendes, E., Travassos, G.H.: Cross versus within-company cost
estimation studies: a systematic review. IEEE Trans. Softw. Eng. 33(5), 316–329 (2007)

3. Zimmermann, T., Nagappan, N., Gall, H., Giger, E., Murphy, B.: Cross-project defect
prediction: a large scale experiment on data vs. domain vs. process. In: Proceedings of ESEC/
FSE 2009 7th Joint Meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software Engineering, New York, NY,
USA, pp. 91–100 (2009)

4. Peters, F., Menzies, T., Gong, L., Zhang, H.: Balancing privacy and utility in cross-company
defect prediction. IEEE Trans. Softw. Eng. 39(8), 1054–1068 (2013)

Table 10 Comparison with previous work

Proposed model Zhang et al. [5] Ma et al. [9]

AUC for within company projects 0.821 0.70 0.76

AUC cross-projects 0.815 0.79 0.78

AUC cross-company projects 0.772 0.79 0.78

Object-Oriented Metrics for Defect Prediction 317

5. Zhang, F., Mockus, A., Keivanloo, I., Zou, Y.: Towards building a universal defect prediction
model. In: MSR 2014 Proceedings of 11th Working Conference on Mining Software
Repositories, pp. 182–191

6. Hitz, M., Montazeri, B.: Chidamber & Kemerer’s metrics suite: a measurement theory
perspective. IEEE Trans. Softw. Eng. 22(4), 267–271 (1996)

7. Fawcett, T.: ROC graphs: notes and practical considerations for data mining researchers.
Intelligent Enterprise Technologies Laboratory, HP Laboratories Palo Alto, HPL-2003-4, 7
Jan 2003

8. Jamali, S.M.: Object Oriented Metrics (A Survey Approach) (Jan 2006)
9. Ma., Y., Zang, G.L.X., Chen, A.: Transfer learning for cross-company software defect

prediction. Inf. Softw. Technol. 54(3), 248–256 (2012)
10. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE Trans.

Softw. Eng. 20(6), 476–493 (1994)
11. Henderson-Sellers, B.: Software Metrics. Prentice Hall, Hemel Hempstaed, U.K. (1996)
12. Kaur, T., Kaur, R.: Comparison of various lacks of cohesion metrics. Int. J. Eng. Adv.

Technol. (IJEAT) 2(3), 252–254 (2013). ISSN: 2249–8958
13. Mitchell, T.M.: Machine Learning, 1st edn. McGrawHill (1997)
14. Hagan, M.T., Menhaj, M.B.: Training feedforward networks with the Marquardt algorithm.

IEEE Trans. Softw. Eng. 5(6), 989–993 (1994)
15. Aggarwal, K.K., Singh, Y., Kaur, A., Malhotra, R.: Investigating effect of design metrics on

fault proneness in object-oriented systems. J. Object Technol. 6(10), 127–141 (2007)
16. Canfora, G., Lucia, A.D., Penta, M.D., Oliveto, R., Panichella, A., Panichella, S.:

Multi-objective cross-project defect prediction. In: Proceedings of the 6th IEEE
International Conference on Software Testing, Verification and Validation, 18–22 Mar
2013, pp. 252–261. IEEE, Luxembourg

17. Gayathri, M., Sudha, A.: Software defect prediction system using multilayer perceptron neural
network with data mining. Int. J. Recent Technol. Eng. (IJRTE) 3(2), 54–59 (2014)

18. Jamali, S.M.: Object Oriented Metrics (A Survey Approach) (January 2006)

318 S. Singh and R. Singla

A Comparative Analysis of Static
and Dynamic Java Bytecode
Watermarking Algorithms

Krishan Kumar and Prabhpreet Kaur

Abstract Software piracy is one of the most serious issues confronted by software
industry creating a huge number of dollars misfortune consistently to the product
creating organizations. The worldwide income misfortune was assessed to be more
than $62.7 billion in the year 2013 because of the product theft. Software water-
marking demoralizes theft, as a proof of procurement or origin, and likewise helps
in following the wellspring of unlawful redistribution of duplicates of program-
ming. In this paper, we have compared and analyzed the static and dynamic Java
bytecode watermarking algorithms. Firstly, each Java jar file is watermarked using
the watermarking algorithms, and after this, distortive attacks are applied to each
watermarked program by applying obfuscation and optimizing. After studying the
results obtained, we found that dynamic watermarking algorithms are slightly better
than static watermarking algorithms.

Keywords Software piracy � Watermarking � Java bytecode � Obfuscation

1 Introduction

From the last decade, code of the software is distributed in an architecturally neutral
format which has increased the ability to reverse engineer source code from the
executable. With the availability of large amount of reversing tools on the Internet,
it had become easy for crackers and/or reverse engineer to copy, decompile, and
disassemble of software especially which are made from Java and Microsoft’s
common intermediate language as they are mostly distributed through Internet.

K. Kumar (&)
Faculty of Science and Technology, ICFAI University, Baddi, HP, India
e-mail: Krishankumar@iuhimachal.edu.in

P. Kaur
Department of Computer Science and Technology, Guru Nanak Dev University,
Amritsar, India
e-mail: prabhsince1985@yahoo.co.in

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_31

319

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_31&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_31&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_31&domain=pdf

Many of the software protection techniques can be reversed using the model
described in [1].

As per Business Software Alliance (BSA) report [2], the commercial value of
pirated software is $62.7 billion in the year 2013. The rate of pirated software had
been increased from 42% in 2011 to 43% in 2013, and in most of the emerging
economies this rate is high. So, software protection has become an important issue
in current computer industry and become a hot topic for research [3, 4].

Numbers of techniques are being developed and employed to control the soft-
ware piracy [5–12]. One of the techniques to prevent the software piracy is software
watermarking. Software watermarking is a technique [13] used for embedding a
unique identifier into an executable of a program. A watermark is similar to
copyright notice; it asserts that you can claim certain rights to the program. The
presence of watermark in program would not prevent any attacker from reverse
engineering it or pirating it. However, the presence of watermark in every pirated
copy later will help you to claim the program is ours.

The embedded watermark is hidden in such a way that it can be recognized at
later by using the recognizer to prove the ownership on pirated software [14]. The
embedded watermark should be robust that it should be resilient to
semantics-preserving transformations. But in some cases it is necessary that
watermark should be fragile such that it becomes invalid if the
semantics-preserving transformation is applied. This type of watermark is mostly
suitable for the software licensing schemes, where if any change is made to the
software which could disable the program. Obfuscation and encryption are used for
the purpose either preventing the decompilation or decreasing the program
understanding, while fingerprinting and watermarking techniques are used to
uniquely identify software to prove ownership.

In this paper, we present a comparative analysis of existing static and dynamic
Java bytecode watermarking algorithms implemented in Sandmark [15] framework.
A total of 12 static and 2 dynamic watermarking algorithms are tested and results
are compared.

First section represents the details regarding the watermarking system, types,
techniques, etc. In second section, evaluation of testing procedure is presented. In
third section, we will present the results of our research work, and finally, fourth
section contains the results and future work.

2 Background

Watermarking algorithms are utilized widely in the multimedia industry to recog-
nize the multimedia files such as video and audio files, and similar idea has
extended to software industry. The motivation behind watermarking is not to make
program harder as in case of obfuscation, but it discourages the software thieves
from illegal distributing copies of software as they know they could be identified.

320 K. Kumar and P. Kaur

2.1 Difficulties Faced by Software Watermarking

There are several problems related to implementation of software watermarks, and
some of the watermarking techniques are vulnerable to various attacks such as
distortive attacks. Watermarking software must meet the following set of
constraints:

1. Program size: Embedded watermarks should not increase the size of program
significantly.

2. Program efficiency: Effectiveness of watermarked system or software must be
like unique program and need not be diminished essentially.

3. Robust watermarks: Embedded watermarks must be sufficiently solid to dis-
tortive or semantics saving changes.

4. Embedded watermarks must be well hidden, to avoid removal of watermark by
the attacker.

5. Watermarks extraction process must be unique such that only software owner
can extract the watermark.

One of the troublesome issues which have to unravel is keeping the watermark
avoided enemies, while in the meantime permitting the product proprietor to pro-
ficiently extricate the implanted watermark when required. In the event that is
sufficiently simple then a foe would have the capacity to concentrate watermark as
well. In the event that the watermark is concealed well then programming proprietor
may have an issue in separating the watermark.

2.2 Watermarking Techniques

Software watermarks can be classified into two classifications: static and dynamic
[16]. Static watermark strategies embed the watermark in the information and/or
code of the project while dynamic watermarking systems insert the watermark in an
information structure assembled at runtime.

Static watermarks are embedded in the information and/or code of a system. For
instance, insert a copyright notice into the strings. If there should be an occurrence
of Java projects, watermarks could be embedded inside of their consistent pool or
system groups of Java class records.

As before the scholastic exploration in the field of software watermarking began,
some of pioneer static software watermarking systems were displayed in patents
[16, 17]. The principle issue with embedding a string watermark in software is that
pointless variables could likewise be effectively uprooted by performing dead code
examination, and the majority of the times when obfuscation or optimization of
code is applied numerous useless method or variable names are either lost or
renamed.

A Comparative Analysis of Static and Dynamic Java … 321

2.3 Classification of Watermark

Nagra et al. classified the watermark into four types [13, 18]:
Authorship Marks are utilized to recognizing a product creator, or creators.

These watermarks are mostly visible and robust to the attacks.
Fingerprinting Marks are utilized to serialize the spread article by implanting

an alternate watermark in each circulated duplicate. It is utilized to discover the
system or channel of dissemination, i.e., the individual who has unlawfully circu-
lated the duplicates of software. The watermarks are for the most part strong,
undetectable and comprise of a one of a kind identifier, e.g., client reference
number.

Validation Marks are utilized by basically end clients to confirm that product
item is authentic, real, and unaltered, for instance, if there should arise an occur-
rence of Java, digitally marked Java Applets. A typical system is to process the
summary of programming item and implants into programming as a watermark. An
overview is registered by utilizing the MD5 or SHA-1. An acceptance imprint
ought to be delicate and obvious.

Licensing Marks are utilized to guarantee the product is valid against a permit
key. One property of these watermarks is that they are fragile. The key ought to
wind up futile if the watermark is harmed.

2.4 Types of Attacks to Watermarks [13]

I. Distortive attacks: These kinds of attacks include applying the
semantics-preserving changes to a product, for example, optimizations and
obfuscations in this way uprooting any watermark which depend on system
language structure.

II. Additive attack: In these attacks, another watermark is added by an adversary
to the effectively watermarked system so as to provide reason to feel
ambiguous about which watermark was included first [19].

III. Subtractive attacks: In these attacks, an aggressor decompiled or dismantled
the code keeping in mind the end goal to expel the watermark from the
program.

3 The Empirical Evaluation

Static and dynamic software watermarking algorithms are assessed and examined
by watermarking the 35 [20] jar files with the available watermarking algorithms
implemented in Sandmark and afterward applying distortive attacks to each
watermarked jar program file by utilizing obfuscation techniques. After all the jar

322 K. Kumar and P. Kaur

files have been obfuscated, we attempt to find the inserted watermarks from the
obfuscated jar files. It is conceivable that numerous watermarks will be lost due to
the obfuscation. We attempt to embed and recognize the watermark GNDU-Asr
from the jar files.

3.1 The Watermarker

We are going to assess and investigate the 12 out of 14 static watermarking cal-
culations and 2 dynamic watermarking calculations executed in Sandmark [15].

3.1.1 Static Watermarking Algorithms Are as

1. Add Expression: A bogus expression containing the watermark is added to
class file by this algorithm.

2. Add Initialization: This algorithm adds the fake local variable to the distinc-
tive methods as a string into the constant pool of a class file.

3. Add Method and Field: Inserts the watermark by partitioning a watermark into
two sections: First section is stored in the field’s name, and second section is
stored in method’s name.

4. Add Switch: A watermark is embedded as case values of switch statement by
this algorithm.

5. Davidson/Myhrvold [21]: Watermark is inserted by reordering the funda-
mental block present in software.

6. Graph Theoretic Watermark [22]: Watermark is inserted in a CFG of soft-
ware, further added to the original software.

7. Monden: Watermark is installed by supplanting op-codes in dummy method,
produced by Sandmark.

8. Qu/Potkonjak [23]: Watermark is embedded in neighborhood variable
assignments by adding requirements to the impedance diagrams.

9. Register Types: Watermark is embedded by presenting neighborhood variables
of certain Java standard library sorts.

10. Static Arboit [24]: It is a watermarking calculation that installs the watermark
through murky predicates. A watermark is encoded in a misty predicate and
after that adding the predicate to a chose branch.

11. Stern: Watermark is inserted as a factual item by making a recurrence vector
representation of the code.

12. String Constant: Embeds the watermark in a string of an arbitrary class.

A Comparative Analysis of Static and Dynamic Java … 323

3.1.2 Dynamic Watermarking Algorithms

1. Arboit Algorithm [24]: In this, a trace of the program is used to select the
branches. The watermark can be encoded in the opaque predicate by ranking the
predicates in the library and then assigning each predicate a value or by using
constants in the predicated to encode. It is also possible to embed the watermark
through the use of opaque methods. In this case, a method call is appended to
the branch and this method evaluates the opaque predicate. If the watermark is
encoded using the rank of the predicate, then it is possible to reuse the opaque
methods to further distinguish the watermark.

2. The Collberg-Thomson Algorithms [15]: This algorithm is a dynamic soft-
ware watermarking method that embeds the watermark in the topology of a
graph structure built at runtime. Watermarking a Java jar file using the CT
algorithm and recognizing that watermark requires several phases. First, the
source program has to be annotated. This means that calls to sandmark.wa-
termark.trace.Annotator.mark() are added to the source program in locations
where it is OK to insert watermarking code. Next, the source program is
compiled and packaged into a jar file. Then the program is traced, i.e., run with
a special (secret) input sequence. This constructs a trace file, a sequence of mark
()-calls that were encountered during the tracing run. The next step is embedding
which is where the watermark is actually added to the program, using the data
from the tracing run.

3.2 The Transformation Attacks

We are using distortive attacks to evaluate the watermarking algorithms. Sandmark
research framework contains variety of semantics-preserving obfuscation tech-
niques which will be applied to watermarked jar files. We also use ProGuard [25] to
apply optimizations to test case programs.

3.3 The Test Case Jar Files

Test jar files used are plug-ins of jEdit [20] downloaded by installing jEdit [26].

4 Results

Obtained results are represented in Sects. 4.1 and 4.2 regarding static and dynamic
algorithms.

324 K. Kumar and P. Kaur

4.1 Static Watermarking Algorithms

4.1.1 Watermarking

After embedding watermark GNDU-ASR [27, 28], we have obtained 336 water-
marked jar files. Few algorithms failed to insert the predetermined watermark,
which may be because of incompatible program or error. For instance, Add
expression, String constant, and Allatori successfully embedded watermarks in
every one of the 35 test jar program [29–30]. After examining the obtained jar files,
we have obtained about 80% of the watermarked jar files (Fig. 1; Table 1).

After examining the 336 obtained watermarked jar files, only 294 watermarked
jar files have watermarks which were successfully recognized. That implies success
rate of recognizing the watermark is 87.5% (Fig. 2; Table 2).

4.1.2 Obfuscation

We obfuscated 336 jar programs with 36 obfuscation algorithms and 1 optimiza-
tion, which should have produced 12432 obfuscated watermarked jars files. There
are few algorithms failed to produce jars files. So after applying obfuscation to
watermarked jar files, we have got 11223 obfuscated watermarked jars utilizing the
37 transformations. This means that only 90.28% attacked watermarked jar files
were actually produced (Fig. 3; Table 3).

79.76%

20.24%

Watermarks embeds

Succesful

Failed

Fig. 1 Depicts that around
*80% watermarks embeds
and 20% gets failed due to
some error or incompatible jar
file

Table 1 Percentage of
watermarks are embedded and
failed

Total Successful Failed

Watermarks embeds 420 336 84

% age 79.76 20.24

A Comparative Analysis of Static and Dynamic Java … 325

4.1.3 Recognition

Result of recognizing the watermark, embedded by different watermarking algo-
rithms after applying the transformative attack i.e. after applying obfuscation, the
resulting obtained watermarked jar files are shown by line graph [31]. The

Table 2 Percentage of
watermark recognition before
the transformative attack
applied

Total Successful Failed

Watermarks recognition 336 294 42

% age 87.5 12.5

Table 3 Percentage of jar
file obtained after obfuscation
is applied

Total Successful Failed

Obfuscation 12432 11223 1209

% age 90.28 9.72

87.5%

12.5%

Watermarks Recognitions

Succesful Failed

Fig. 2 Depicts that 87.5%
watermarks are recognized
while 12.5% got failed before
the transformative attacks are
applied

0%

90.28%

9.72%

Obfuscations

Succesful Failed

Fig. 3 Depicts that we have
obtained around 90% jar files
after successfully applying the
obfuscation to the
watermarked jar files

326 K. Kumar and P. Kaur

horizontal bar line is marked with numbers indicating the number of successful
recognition of watermarks with respect to particular obfuscation algorithm (Fig. 4).

4.2 Dynamic Watermarking Algorithms

4.2.1 Watermarking

After embedding watermark, we have obtained 65 out of an expected 70 water-
marked jars. Five watermarked jar files failed to embed the specified watermarks,
due to error or incompatible program jar (Fig. 5; Table 4).

After examining the 65 watermarked jar files, only 62 jar files having water-
marks were successfully recognized. That implies success rate of recognizing the
watermark is 95.85% (Fig. 6; Table 5).

333333333233333332333333333326333333333232333233

3

3333

0 1 1 4

33
6

30283333

1

2121212119172121
7 4

20211821
13

192121212121212121

21

2121

21212121

21
21

21212116
21

3434343434343434
3434

34343434
33

343434343434343434

34

3434

34343434

34
34

34343434

1

9 9 8 8 7 9 9 9
8 9

7 15
5 5

9
9 9 8 9 9 9 7 8 8

4

4 9

7 3 2 2

9

8
8 6 1 8

4

2828282826252828
1728

2828
2728

28
28282828

1
28282828

28

33

0 28

1 0 2

28

28
28

1
2826

0

3433343333343434

16

34
3434

3434
34

34333434

4

34342832

32
18

26
14

192627

33
34

34

34
3427

3

0 0 0 0 0 0 0 0

0

0
0 0

0 0
0

0 0 0 0

0

0 0 0 0

0
0

0
0

0 0 0

0
0

0

0
0 0

0

2929 292927292929

28 5

29
0 8

2932
2929

6
29

29

5
292929

29
29

29
29

292929

29
29

29

29 1 3

1

1111111111 7
1111

2
11

11
1111

1111
11 1

11
11

0

11
111111

11
1 11

11

0 0 1

11
11

11

6 11
1

1

272527262525
2627

23
26

27
2626

2726
2626

26
26

1

26
262726

261026

16
25

0
5

22
27

26

2626
25

2

35353535
3135

3535

35
35

35
3535

3535
3535

35
35

35

35
35 3535

353535

35
35

35
35

35
35

35

3535
35

35

33302931
3333

3333

30
33

33
2831

3033
33

2233
33

33

31
322733

333333

30
33

33
33

33
33

29

3333
31

5

31313131
30312931

31
30

30
3131

3131
31

3127

31

31

31
313131

313131

30
31

2927

31
31

31

3030
31

10

0 0 0 0
0 0 0 0

0
0

0
0 0

0 0
0

0 0

0

0

0
0 0 0

0 0 0

0
0

0 0

0
0

0

0 0
0

0

0

50

100

150

200

250

300

350

O
ri

g
in

a
l

A
rr

a
y

F
o

ld
e

r
A

rr
a

y
S

p
lit

te
r

B
lo

a
ck

 M
a

rk
er

C
o

n
st

a
n

t p
o

o
l R

eo
rd

e
r

D
yn

a
m

ic
 In

lin
er

F
a

ls
e

R
ef

e
ct

o
r

In
te

rg
e

r
a

rr
a

y
sp

lit
te

r
In

te
rl

e
a

ve
 m

e
th

o
d

O
ve

rl
o

a
d

N
a

m
e

s
P

a
ra

m
a

lia
s

R
en

a
m

e
R

eg
is

te
r

S
p

lit
 C

la
ss

e
s

S
tr

in
g

 E
nc

o
d

e
r

C
la

ss
 S

p
lit

te
r

F
ie

ld
 A

ss
ig

nm
e

nt
M

e
th

o
d

m
e

rg
e

r

P
u

b
lis

iz
e

 fi
e

ld
s

si
m

pl
e

o
pq

ue
 p

re
di

ca
te

s
st

a
tic

 m
et

h
o

d
b

o
d

ie
s

lu
dg

eo
n

S
ig

na
tu

re
s

B
o

o
le

a
n

S
pl

itt
er

B
ra

nc
h

In
ve

rt
e

r
D

u
p

lic
a

te
 R

e
g

is
te

rs
In

se
rt

 O
pa

qu
e

P
re

di
ca

te
s

Ir
re

d
u

ci
b

ili
ty

M
e

rg
e

 L
o

ca
l I

nt
e

g
e

rs
O

pa
qu

e
B

ra
nc

h
In

se
rt

io
n

P
ro

m
o

te
 P

ri
m

iti
ve

 R
e

g
is

te
rs

P
ro

m
o

te
 P

ri
m

iti
ve

 T
yp

e
s

R
a

n
d

o
m

 D
e

a
d

C
o

d
e

R
eo

rd
er

 In
st

ru
ct

io
ns

R
e

o
rd

e
r

P
a

ra
m

e
te

rs
T

ra
n

sp
a

re
n

t B
ra

nc
h

In
se

rt
io

n
V

a
ri

a
bl

e
 R

ea
ss

ig
n

e
r

In
lin

e
r

P
ro

gu
a

rd
 O

pt
im

iz
e

Results of Recognition of watermark after applying obfuscation to WM
Algortihms

Arboit Collberg & Thomson

String Constant Stern Static Arboit

Register Types Qu/Potkonjak Monden

Graph Theoretic Watermark Davidson/Myhrvo Add Method & Field

Add Initialization

Fig. 4 Depicts the number of successful watermarks recognized embedded by static software
watermarking algorithms

A Comparative Analysis of Static and Dynamic Java … 327

4.2.2 Obfuscation

We obfuscated the 65 jar files with 36 obfuscation techniques, which should have
produced 2340 obfuscated watermarked jars files. There are few algorithms that
failed to produce some jars files. So after applying obfuscation to watermarked jar
files, we have got 2253 obfuscated watermarked jars utilizing 36 transformations
(Fig. 7; Table 6).

In case of Dynamic Arboit algorithm, results are shown (Fig. 8; Table 7).

0%

93%

7%

Watermarks Embeds

Successful Failed

Fig. 5 Depicts that around
93% successfully
watermarked jar files are
obtained after watermarking

Table 4 Percentage of
successful embedding of
dynamic watermark

Total Successful Failed

Watermarks embeds 70 65 5

% age 92.85 7.15

95.38%

4.62%

Watermarks recognized

Successful Failded

Fig. 6 Depicts that more
than 95% embedded
watermarks are recognized
before applying obfuscation

Table 5 Percentage of
watermarks recognized after
watermarking

Total Successful Failed

Watermarks embeds 65 62 3

% age 95.38 4.62

328 K. Kumar and P. Kaur

95.54 %

4.46%

obfuscation
Successful Failed

Fig. 7 Depicts that more than 95% obfuscated jar files are obtained after applying obfuscation in
case of CT algorithm

Table 6 Percentage of obfuscated jar files after applying transformation with 36 obfuscations
algorithms watermarked by CT algorithm

Total Successful Failed

CT Algorithm 1188 1135 53

% age 95.54 4.46

97.47%

2.53%

Obfuscation
Successful Failed

Fig. 8 Depicts that more than 97% obfuscated jar files are obtained after applying obfuscation in
case of dynamic Arboit algorithm

A Comparative Analysis of Static and Dynamic Java … 329

4.2.3 Recognition

The result of recognizing the embedded watermark in the obfuscated jar files is
demonstrated by line graph in case of Dynamic CT and Arboit watermarking
algorithm [32, 33]. Figure 9 shows the bar line marked with numbers which show
the number of jar files successfully recognized the watermark obfuscated by
respective obfuscation algorithms shown on x-axis.

4.3 Comparative Analysis of Static and Dynamic Software
Watermarking Algorithms

Software watermarking techniques should be resilient against the determined
attempts at disclosure and removal of watermark with a specific end goal to stay
compelling against the copyright infringement and software piracy. Very little work

33
30 29

31
33 33 33 33

30
33 33

28
31 30

33 33

22

33 33 33
31 32

27

33 33 33 33
30

33 33 33 33 33

29

33 33
3132 32 32 32

30
32

29
32 32

30 30
32 32 32 32 32 32

27

32 32 32 32 32 32 32 32 32
30

32
29

27

32 32 32
30 30

32

0

5

10

15

20

25

30

35

O
rig

in
al

A
rr

ay
 F

ol
de

r
A

rr
ay

 S
pl

itt
er

B
lo

ac
k

M
ar

ke
r

C
on

st
an

t p
oo

l R
eo

rd
er

D
yn

am
ic

 In
lin

er
F

al
se

 R
ef

ec
to

r
In

te
rg

er
 a

rr
ay

 s
pl

itt
er

In
te

rle
av

e
m

et
ho

d
O

ve
rlo

ad
 N

am
es

P
ar

am
al

ia
s

R
en

am
e

R
eg

is
te

r
S

pl
it

C
la

ss
es

S
tr

in
g

E
nc

od
er

C
la

ss
 S

pl
itt

er
F

ie
ld

 A
ss

ig
nm

en
t

M
et

ho
d

m
er

ge
r

P
ub

lis
iz

e
fie

ld
s

si
m

pl
e

op
qu

e
pr

ed
ic

at
es

st
at

ic
 m

et
ho

d
bo

di
es

lu
dg

eo
n

S
ig

na
tu

re
s

B
oo

le
an

 S
pl

itt
er

B
ra

nc
h

In
ve

rt
er

D
up

lic
at

e
R

eg
is

te
rs

In
se

rt
 O

pa
qu

e
P

re
di

ca
te

s
Ir

re
du

ci
bi

lit
y

M
er

ge
 L

oc
al

 In
te

ge
rs

O
pa

qu
e

B
ra

nc
h

In
se

rt
io

n
P

ro
m

ot
e

P
rim

iti
ve

 R
eg

is
te

rs
P

ro
m

ot
e

P
rim

iti
ve

 T
yp

es
R

an
do

m
 D

ea
d

C
od

e
R

eo
rd

er
 In

st
ru

ct
io

ns
R

eo
rd

er
 P

ar
am

et
er

s
T

ra
ns

pa
re

nt
 B

ra
nc

h
In

se
rt

io
n

V
ar

ia
bl

e
R

ea
ss

ig
ne

r
In

lin
er

Dynamic Software Watermarking Algorithms

1 2

Fig. 9 Depicts the number of successful watermarks gets recognized, embedded by CT and
Arboit watermarking algorithms against the obfuscation algorithms

Table 7 Percentage of obfuscated jar files obtained after applying transformation with 36
obfuscations algorithms watermarked by dynamic Arboit algorithm

Total Successful Failed

Dynamic Arboit 1147 1118 29

% age 97.47 2.53

330 K. Kumar and P. Kaur

has been done in this field on assessing the quality of software watermarking
algorithms. Our investigation of software watermarking algorithms utilizing the
Sandmark had tested the 12 static and 2 dynamic software watermarking algo-
rithms. Test results are indicated in Fig. 10. The algorithms are tested against the
distortive attacks. The attacks comprise of arrangement of semantics-safeguarding
transformations which are applied to the product or system trying to make the
watermark unrecoverable while keeping up the product execution and usefulness
like the first.

Figure 10 demonstrates the comparative analysis of static and dynamic software
watermarking algorithms. Different algorithms are represented by distinctive shades
of bar line checked with number as demonstrated in figure. Each software water-
marking algorithm undergone for 37 obfuscation transformations and result of
recognizing the watermark after obfuscation are shown below in Fig. 10.

35 35 35 35 33 35 35 35 33 35 35

0

16

35 35 35 35 35 35 35

14

35 35 35 35 35 34 32 35

0 4

27
35 35 34

1 5 1

33 33 33 33 32 33 33 33 32 33 33

33

33

33
26

33 33 33 33 32

32

33 32 33

3

33 33

0 1

1
4

33

6

30 28

33 33

1

21 21 21 21 19 17 21 21

7 4

20

21
18

21

13
19 21 21 21 21

21

21 21 21

21

21 21

21 21

21
21

21

21

21 21

21 16

21

34 34 34 34 34 34 34 34

34 34

34

34
34

34

33

34 34 34 34 34

34

34 34 34

34

34 34

34 34

34
34

34

34

34 34

34 34

1

9 9 8 8
7 9 9 9

8 9

7

15 5

5
9

9 9 8 9 9

9

7 8 8

4

4 9

7 3

2
2

9

8

8 6

1
8

4

28 28 28 28
26 25

28 28

17
28

28

28 27

28
28

28 28 28 28

1
28

28 28 28

28

33

0
28

1

0
2

28

28

28

1
28 26

0

34 33 34 33
33 34

34 34

16

34

34

34 34

34
34

34 33 34 34

4

34

34
28 32

32

18

26

14

19

26
27

33

34

34

34
34 27

3

0 0 0 0
0 0

0 0

0

0

0

0 0

0
0

0 0 0 0

0

0

0
0 0

0

0

0

0

0

0
0

0

0

0

0
0 0

0

29 29 29 29
27 29

29 29

28
5

29

0
8

29
32

29 29

6

29

29
5

29
29 29

29

29

29

29

29

29
29

29

29

29

29

1 3

1

11 11 11 11
11 7

11 11

2

11

11

11
11

11
11

11
1

11

11

0

11

11
11 11

11
1

11

11

0

0
1

11

11

11

6

11
1

1

27 25 27 26
25 25

26 27

23

26

27

26
26

27
26

26
26

26

26

1

26

26 27 26

26 10 26

16

25

0

5

22

27

26

26

26
25

2

35 35 35 35

31 35
35 35

35

35

35

35
35

35
35

35
35

35

35

35

35

35 35 35

35 35 35

35

35

35

35

35

35

35

35

35
35

35

33
30 29 31

33 33
33 33

30

33

33

28
31

30
33

33

22 33

33

33

31

32
27

33

33 33 33

30

33

33

33

33

33

29

33

33

31

22

31
31 31 31

30
31

29 31

31

30

30

31
31

31
31

31

31
27

31

31

31

31
31

31

31 31 31

30

31

29

27

31

31

31

30

30
31

26

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

Comparative Analysis of Static & Dynamic WM Algorithms

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fig. 10 Comparative analysis of static and dynamic watermarking algorithms. From the above
graph, it can be seen that dynamic watermarking algorithms CT and dynamic Arboit are slightly
better than static watermarking algorithms

A Comparative Analysis of Static and Dynamic Java … 331

4.4 Analysis of Results

We have tested both the static and dynamic watermarking algorithms within
Sandmark with respect to distortive attacks. Distortive attacks are any
semantics-preserving code transformations, such as code obfuscation or optimiza-
tion algorithms.

By examining the above figure, it is found that many watermarks got lost due to
obfuscations techniques applied.

Important observations of comparative analysis are as:

i. Number of watermarks gets lost because of change applied by obfuscation
algorithms.

ii. String constant watermarking algorithms create the best result and strongest to
the distortive attacks, yet it can be effectively evacuated.

iii. Qu/Potkonjak static watermarking algorithm is the weakest algorithms, while
it does not effectively installed any watermark.

iv. Dynamic watermark is marginally superior to anything static against the
distortive attacks.

v. ProGuard analyzer makes the best results with a lower number of watermark
affirmations for all watermarkers, beside the string constant.

5 Conclusion

Software piracy is one of most serious issues for software industry, creating loss of
a large number of dollars consistently to the product business. Software water-
marking is a system which had demonstrated adequate to fight against the product
theft. The strategy not ensures but rather helps in discovering the wellspring of
unlawful dispersion of software and making legitimate move against them.

We have depicted an examination of the static and dynamic Java bytecode
watermarking algorithms implemented inside Sandmark utilizing distortive attacks
and affirmed that most watermarks inserted by static watermarking algorithms are
very little strong to the distortive attacks applied by obfuscation techniques. From
the above results, we can observe that string constant watermarking algorithm
delivers best results yet it can be effortlessly uprooted. In the case of dynamic
watermarking algorithm, watermarks inserted by CT and dynamic Arboit algorithm
are strong to the distortive attacks applied by obfuscation techniques.

From the above results, this is clear that dynamic WM algorithms are somewhat
stronger than static WM algorithms when distortive attacks are applied.

Software watermarking must be incorporated with other form of protection such
as obfuscation or tamper-proofing techniques in order to better protect software
from copyright infringement and decompilation.

332 K. Kumar and P. Kaur

References

1. Krishan, K., Kaur, P.: A generalized process of reverse engineering in software protection &
security. Int. J. Comput. Sci. Mob. Comput. 4(5), 534–544 (2015). ISSN 2320–088X

2. http://globalstudy.bsa.org/2013/index.html. Last accessed 20 May 2015
3. Ertaul, L., Venkatesh, S.: Novel obfuscation algorithms for software security. In: 2005

International Conference on Software Engineering Research and Practice, SERP’05,
pp. 209–215 (June 2005)

4. Ertaul, L., Venkatesh, S.: Jhide—a tool kit for code obfuscation. In: 8th IASTED International
Conference on Software Engineering and Applications (SEA 2004), pp. 133–138 (Nov 2004)

5. Nehra, A., Meena, R., Sohu, D., Rishi, O.P.: A robust approach to prevent software piracy. In:
Proceedings of Students Conference on Engineering and Systems, pp. 1–3. IEEE (March
2012)

6. Mumtaz, S., Iqbal, S., Hameed, I.: Development of a methodology for piracy protection of
software installations. In: Proceedings of 9th International Multitopic Conference, pp. 1–7.
IEEE (Dec 2005)

7. Jian-qi, Z., Yan-heng, L., Ke, Y., Ke-xin, Y.: A robust dynamic watermarking scheme based
on STBDW. In: Proceedings of World Congress on Computer Science and Engineering, vol.
7, pp. 602–606. IEEE (2009)

8. Zhu, J., Xiao, J., Wang, Y.: A fragile software watermarking algorithm for software
configuration management. In: Proceedings of International Conference on Multimedia
Information Networking and Security, vol. 2, pp. 75–78. IEEE (Nov 2009)

9. Shengbing, C., Shuai, J., Guowei, L.: Software watermark research based on portable execute
file. In: Proceedings of 5th International Conference on Computer Science and Education,
pp. 1367–1372. IEEE (Aug 2010)

10. Donglai, F., Gouxi, C., Qiuxiang, Y.: A robust software watermarking for jMonkey engine
programs. In: Proceedings of International Forum on Information Technology and
Applications, vol. 1, pp. 421–424. IEEE (July 2010)

11. Shao-Bo, Z., Geng-Ming, Z., Ying, W.: A strategy of software protection based on
multi-watermarking embedding. In: Proceedings of 2nd International Conference on Control,
Instrumentation and Automation, pp. 444–447. IEEE (2011)

12. Zhang, Y., Jin, L., Ye, X., Chen, D.: Software piracy prevention: splitting on client. In
Proceedings of International Conference on Security Technology, pp. 62–65. IEEE (2008)

13. Collberg, C., Nagra, J.: Surreptitious Software: Obfuscation, Watermarking, and Tamper
proofing for Software Protection. Addison Wesley Professional (2009)

14. Myles, G.: Using software watermarking to discourage piracy. Crossroads—The ACM
Student Magazine (2004) [Online]. Available: http://www.acm.org/crossroads/xrds10-3/
watermarking.html

15. Collberg, C.: Sandmark Algorithms. Technical Report, Department of Computer Science,
University of Arizona, July 2002

16. Collberg, C., Thomborson, C.: Software watermarking: models and dynamic embeddings. In:
Proceedings of Symposium on Principles of Programming Languages, POPL’99, pp. 311–324
(1999)

17. Collberg, C., Thomborson, C., Low, D.: On the limits of software watermarking. Technical
Report #164, Department of Computer Science, The University of Auckland (1998)

18. Zhu, W., Thomborson, C., Wang, F.-Y.: A survey of software watermarking. In: IEEE ISI
2005, LNCS, vol. 3495, pp. 454–458 (May 2005)

19. Myles, G., Collberg, C.: Software watermarking via opaque predicates: implementation,
analysis, and attacks. In: ICECR-7 (2004)

20. World-Wide Developer Team.: jEdit—programmer’s text editor (2015) [Online]. Available:
http://www.jedit.org/

21. Nagra, J., Thomborson, C.: Threading software watermarks. In: IH’04 (2004)

A Comparative Analysis of Static and Dynamic Java … 333

http://globalstudy.bsa.org/2013/index.html
http://www.acm.org/crossroads/xrds10-3/watermarking.html
http://www.acm.org/crossroads/xrds10-3/watermarking.html
http://www.jedit.org/

22. Nagra, J., Thomborson, C., Collberg, C.: A functional taxonomy for software watermarking.
In: Oudshoorn, M.J. (ed.) Australian Computer Science Communication, pp. 177–186. ACS,
Melbourne, Australia (2002)

23. Qu, G., Potkonjak, M.: Analysis of watermarking techniques for graph coloring problem. In:
Proceeding of 1998 IEEE/ACM International Conference on Computer Aided Design,
pp. 190–193. ACM Press (1998)

24. Arboit, G.: A method for watermarking java programs via opaque predicates. In: The Fifth
International Conference on Electronic Commerce Research (ICECR-5) (2002) [Online].
Available: http://citeseer.nj.nec.com/arboit02method.html

25. http://proguard.sourceforge.net/
26. Sogiros, J.: Is Protection Software Needed Watermarking Versus Software Security. http://bb-

articles.com/watermarkingversus-software-security (March, 2010) [Online]. Available: http://
bb-articles.com/watermarking-versus-software-security

27. Weiser, M.: Program slicing. In ICSE’81: Proceedings of the 5th International Conference on
Software Engineering, p. 439449. IEEE Press, Piscataway, NJ, USA (1981)

28. Kumar, K., Kaur, P.: A thorough investigation of code obfuscation techniques for software
protection. Int. J. Comput. Sci. Eng. 3(5), 158–164 (2015)

29. Collberg, C.S., Thombor-son, C.: Watermarking, tamper-proofing, and obfuscation—tools for
software protection. In: IEEE Transactions on Software Engineering, vol. 28, pp. 735–746
(Aug 2002)

30. Stytz, M.R., Whittaker, J.A.: Software protection-security’s last stand. IEEE Secur. Priv.
95–98 (2003)

31. Qu, G., Potkonjak, M.: Hiding signatures in graph coloring solutions. In: Information Hiding,
pp. 348–367 (1999). citeseer.nj.nec.com/308178.html

32. Collberg, C., Sahoo, T.R.: Software watermarking in the frequency domain: implementation,
analysis, and attacks. J. Comput. Secur. 13(5), 721–755 (2005)

33. Hamilton, J., Danicic, S.: An evaluation of the resilience of static java bytecode watermarks
against distortive attacks. Int. J. Comput. Sci. (International Association of Engineers
(IAENG), HongCong), 38(1), 1–15 (2011)

334 K. Kumar and P. Kaur

http://citeseer.nj.nec.com/arboit02method.html
http://proguard.sourceforge.net/
http://bb-articles.com/watermarkingversus-software-security
http://bb-articles.com/watermarkingversus-software-security
http://bb-articles.com/watermarking-versus-software-security
http://bb-articles.com/watermarking-versus-software-security

Software Architecture Evaluation
in Agile Environment

Chandni Ahuja, Parminder Kaur and Hardeep Singh

Abstract The function and significance of mission-critical software-intensive
systems have got substantial recognition. Software architecture has become a new
field since system software is all the time more intricate. Agile software develop-
ment counters the advancement in requirement, besides to attend to the fixed plan.
In this paper, the effort has been made to find parameters for software architecture
evaluation and then evaluate software architecture under agile environment based
on the determined parameters.

Keywords Software architecture � Agile � Parameters � Metrics

1 Introduction

Present civilization cannot do without the mission-critical software-intensive sys-
tems. Software systems are difficult and costly to build and devise. The success of
software systems depends on its software architecture as it grows in complexity as
well as cost. The analysis of software architecture and designing of major activities
is the part of software development. Software engineering has its majority of
activities based on software architecture engineering. The function and significance
of software architecture have got substantial recognition in past two decades,
though it is not a new activity, but has become a new field since system software is
all the time more intricate. Now, it is taken into consideration at the time of the

C. Ahuja (&) � P. Kaur � H. Singh
Department of Computer Science and Engineering, Guru Nanak Dev University,
Amritsar 143005, Punjab, India
e-mail: ahujachandni2@gmail.com

P. Kaur
e-mail: parminder.dcse@gndu.ac.in

H. Singh
e-mail: hardeep.dcse@gndu.ac.in

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_32

335

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_32&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_32&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_32&domain=pdf

software development process. Software architecture has number of alternatives to
its specification and explanation.

1.1 Definition of Software Architecture

Besides all the denotation of architectonics of software in the published work till
now; no such explanation is there that can define software architecture completely
in every aspect. The definitions by their commonality define the framework or
framework of the system that encompasses software gears, the superficially evident
properties of those gears, and the associations amid them [1]. That an architectonics
is related with two of all framework and behavior and is related to important
decisions, it may abide to styles of architecture, is affected by customers and its
surroundings, and takes decision rationally [2].

1.2 Software Architectonics and Software Architect

The vicinity of software architecture has great importance amid software formation
and evolvement. The success of a software project depends on the proper use of
software architecture, which affects the explanation, implementation, and evalua-
tion aspects of software.

For an outstanding software architect or a team of software architects, it is
essential to maintain thin line between the external and internal requirements of
software development. Activities, duties, and roles of architects must be attuned to
its software development process. Every software developer, without bypassing,
has to pass through the activities: requirement, analysis, design, and implementa-
tion, and testing cycles, during software development. The accepted Software
Development Life cycles (SDLC) in various form of current exercise are (1) wa-
terfall, (2) iterative, (3) iterative and incremental, (4) evolutionary prototyping, and
(5) ad-hoc or code-and-fix SDLC [4]. A SDLC provides the idea of how a problem
is solved in various stages of software development by an engineer. These activities
depict that architects are involved throughout the life cycle of the project’s
development.

1.3 Agile Software Development

Although in plan-driven methodologies, architectural activities are only limited to
the first stage of project development life cycle; almost all stages of agile software
development life cycle involve architectural activities. Agile methods have made its

336 C. Ahuja et al.

base on the Agile Manifesto (http://agilemanifesto.org) that proposes values that
uncover the enhanced ways of embryonic software and aids rest to do the similar:

• “Individuals and interactions over processes and tools;
• Working software over comprehensive documentation;
• Customer collaboration over contract negotiation;
• Responding to change over following a plan” [4].

The agenda of agile software development is to counter the advancement in
requirement besides to attend to the fixed plan. This leads to the alterations in the
results required, which is managed by development process. Such a trend of
advancement in work makes it necessary for software architecture to adapt to agile
evolution. Apart from various life cycles, the chief principle of agile software
maturity is refactoring. Refactoring is alteration of source code and design of the
software without changing the functionality or exterior performance of software.
The key is to make sure of the attributes of product quality [5]. The capability of an
association en route for creation and response to alter in bid to yield in a tumultuous
commerce atmosphere is defined as agility [6].

Agile software development is a way to advance the software incrementally and
iteratively by reducing waste and only performing actions that directly add value.
Agile methods like extreme programming, scrum, agile programming emphasize on
rapid and pliable development and reveal the inborn vitality of up-to-date software
design. The brimming boon of expeditive iterations is elucidation of constraints that
are incorrectly defined earlier, recuperating the dialog amid the project owner and
developer and clearing things that cannot work. Secondary benefits involve revision
of code that was incorrectly written, which is difficult to clarify in pre-planned
projects, and partial cost optimization.

1.4 Agile Architecture Is a Paradox

On one hand, traditional models take account of a number of issues and suffer from
the delay due to time and effort invested in designing and implementing compo-
nents of software as per a good software architecture design in order to cover all
requirements, which perhaps may not be utilized in the end. On the other hand,
agile models lay emphasis on less documentation, with hardly any planning ahead,
and redesigning the software from scratch if it no longer serves the latest demands.
On the whole, “it means that architecture and business do not evolve in the same
way and same speed” [7]. Agile models manage to adapt to new changes very
quickly, whereas software architecture aims at superiority attributes for the system
software. Architecture has become potent part of huge and compound projects
irrespective of the methods applied. Software architecture is found related in the
situation of agile expansion; though, novel methodology and extraordinary prepa-
ration are necessary to put together architectural practices in agile expansion [8].

Software Architecture Evaluation in Agile Environment 337

http://agilemanifesto.org

So, using software architectonics skills in agile methodology can get better toward
producing system software which has a suitable arrangement as well a satisfactory
quality rank [9] and ensuring rapid response change to market needs [10].

2 Literature Survey

The relevant research papers covered for defining problem are given below.
Kruchten [3] presents “what do software architects really do?” Software architect

or a team must manage the delicate balance between external and internal forces, to
be successful. Teams that go beyond the equilibrium fall into traps which are
described as the architectural anti-patterns.

Kunz et al. [5] state agile software development methodologies are widely
accepted. Not all metrics and methods from traditional life cycle model are used
without adaptation for software evaluation. Different and new techniques are
required in the field of software measurement.

Abrahamsson et al. [6] proposed guidelines as to how design and deploy agile
processes engrained with sound architectural principles and practices, by presenting
the contrasts in both the approaches to the development of software.

Mordinyi et al. (2010) [7] proposed an architectural framework for agile soft-
ware development, to which on separating the computational and coordination and
computational models can offer a great deal of pliability in regard with the archi-
tectural and design changes introduced by agile business processes.

Falessi et al. [8] presented a study, to separate the fact from the myths about the
potential coexistence of agile development and software architecture, at the IBM
Software Laboratory in Rome.

Breivold et al. [10] surveyed the research literature about the relationship
between agile development and software architecture. The main findings were that
there was no scientific support for the claims made about agile and software
development and that more empirical studies are needed in same area to reveal
benefits and shortcomings of agile software development methods.

Gardazi et al. [1] describe software architecture as an old activity that has gained
recent popularity as a separate activity the during development process. A survey of
description, evolution, evaluation, and usage of software architecture in software
industry is done and arrived at a conclusion.

Hadar et al. [2] presented a study to understand activities related to software
architecture as seen by software architect with or without the knowledge of agile
methodologies, to find that software architecture activities are not confined to first
phase of software development instead to most or all of the phases of software
development life cycle.

Aitken et al. [4] presented a comparative analysis of the presently used agile and
traditional methodologies, methods, and techniques and proposed, since the two
approaches are not found to be incompatible, which leads to future possibility of
Agile Software Engineering.

338 C. Ahuja et al.

Akbari et al. [9] present the review to the usage of concepts of software archi-
tecture in agile methods, that combine software architecture and agile methods to
improve software developments. By using software architecture skills in agile
methods can improve the structure of software systems, thus providing quality
attributes for software systems. Table 1 shows the comparative analysis of research
papers surveyed.

Table 1 Comparative analysis

Reference No. Advantages Disadvantages

[1] Most of the people prefer
scenario-based methods software
evaluation approach. When a project
results in deliverables that are
designed to meet a thoroughly
architected project, then there is
greater likely hood of success

In software industry, most of the
projects are offshore projects and are
done by purely technical teams. Its
success is greatly affected by the use
of selection of software architecture

[2] Strengths of agile methodologies,
where the agile architects perceive
that their activities are spread
throughout the development life
cycle. One contributing reason is
agile architects reduce their effort in
up-front architecture decisions, and so
they have much time to devote to
every other phase which needs their
attention

Quantitative research is needed to
validate and verify the hypothesis
with willing participation of architects
from different methodologies and
domains, i.e., how architects with
experience in both agile and non-agile
methodologies directly perceive the
differences between the two
methodologies

[3] A way to track the productive time of
architects, by sorting it in three
categories, consisting of internal
architectural design, external (inward
and outward communication), and
keeping them in the ratio, is
suggested

Implementation reviews are missing,
and whether the presented method
conforms to the results, is not known

[4] Agile software development
methodologies and traditional
software development methodologies
are very similar and can be put
together to improve efficiency and
effectiveness of overall software
development

Possibility to merge the two
approaches, known as Agile Software
Engineering, is left on future
researches

[5] An approach to support agile software
development and refactoring using
software measurement is presented

Different types of software metrics
have not been implemented, and tool
only supports Java as a programming
language

[6] Steps for those who are interested in
designing and deploying agile
processes architectural principles and
practices are presented

Empirical study and researchers
results in the same field are missing

(continued)

Software Architecture Evaluation in Agile Environment 339

3 Problem Definition

Software architecture, a novel field of software engineering, is a structure of pro-
gram or a system, which gives correct and well-formed information about its
components, and relationship between them. Software architecture is a basis to
explain and study the software system.

Agile environment is a conceptual framework, consisting of group of techniques
and methods that follow incremental way of development for constant evolution, in
order to respond to the changing requirements of the client by delivering small
increments of running software.

Many have considered plan-driven software development and agile software
development as polar opposites, and software architecture still plays a great role in
case of large systems. Real conflict lies in the heavy documentation of software
architecture and need of minimalism in agile software development methodologies,
whereas many believe amalgam of two can provide software developers with
expansive range of tools and options.

4 Objectives

1. To find parameters for software architecture evaluation under agile environment.
2. To evaluate the change in architecture under agile environment based on the

determined parameters.

Table 1 (continued)

Reference No. Advantages Disadvantages

[7] Architecture framework for agile
processes (AFA) to allow the
proficient understanding of new
business needs with fewer effects on
other gears in the architecture is
described

The framework does not have
benchmark. A clear evaluation with
respect to testing and development
time is not available

[8] Agile developers are found to agree
on the values of architectural design
patterns for merging agile methods
into architectural practices

Non-agile developers seem to be
negative about the concept of
merging the two approaches

[9] Several ways to merge and embed
software architecture and agile
methods are proposed

[10] Insight about what researchers all
over the globe say about agile and
architecture is known

Results of large-scale industrial
studies in order to understand how
agile and architecture interrelate, i.e.,
wide range of empirical data is
missing

340 C. Ahuja et al.

5 Experimental Design

Software is intrinsically ethereal. Systems may be made up of a large number of
software elements connected collectively with the help of dissimilar type of need.
Creator of software avail oneself of kit to envisage being fit to raise the level of
speculation and lessen the amount of facts required. Such category of software kit
allows the person to have an access to various windows and themes. Such a subject
toggle poses an issue of downloading, installing, and then using tools or system
external in a code editor, which is the time-intensive process. Building and
implementing such open source software (OSS) visualization plug-in is a sub-
stantial initiative in involving the visualization tools in the forward engineering
process.

This section presents various software architecture metrics for evaluating soft-
ware and various agile software metrics to evaluate software in agile environment.
Following each is a table listing the metrics with their descriptions.

5.1 Software Architecture Metrics

Design and architectural metrics issues have gained much attention in current years
owing to growing size and intricacy of industrial software. These metrics affect four
important quality attributes of software architecture that are reusability, interoper-
ability, reliability, and maintainability. The data and the changing software qualities
of a software product are measured on the evolution. Metrics are used to find out the
quality of the software product during its evolution [11]. Table 2 lists the software
architecture metrics.

5.2 Agile Software Metrics

Growth in agile software development methodologies such as extreme programming
or agile programming reveals the inborn vitality of up-to-date software design. The
pliability of software, the rapid advancement of consumer and technology-driven
needs, the complexity of in scripting accurate specifications given all the unknowns,
and the intricacy of the software ecosystem itself makes the ancient development
waterfall from specification through execution and QA to release a perilous and
predominantly futile concern [12]. At the top level, the aim of a software develop-
ment project is to convey value to patrons with high quality, in time, and in com-
petence. Then is the need of rolling forecast for the overall financial plan and
timeline against the business value desired. These are all aspects of situations of the
output of a software development process, but not all of them can be simple or
measured in a straight line [12]. Table 3 lists the Agile Software Metrics.

Software Architecture Evaluation in Agile Environment 341

Table 2 Software architecture metrics

Abbreviation Full name of metric Description

No3C Number of
third-party
components

This metric consists of the number of components
taken from the outside vendors and reflects the
ingenuousness of architecture of the software [11]

NoC List of components This metric consists of the total number of
architectural units of a particular system which is the
highest level of abstraction. It indicates the size of
the system. Components can be composite objects,
clients, and servers, machines that are virtual in
nature

NoCC Number of control
components

This metric indicates those components that give
valid output for a given set of valid input. Control
components can be also called active units and are
like processes, machine at a particular state,
knowledge providers. This metric comes under the
number of component metric

NoDC Number of data
components

This metric consists of the components that are not
actively present at the front, which is passive in
nature, like data storage units

TNEI Total number of
external interfaces

This metric consists of the connecting units that
make the communication between the internal and
external components of the system. This even
indicates the level of coupling exhibited by the
system. The measure of this metric varies depending
upon the level of clustering

TNII Total number of
internal interfaces

This metric consists of the connecting units that
make the communication among the internal
components of the system. Its measure again varies
with the intra-grouping of components

NoSC Number of
specialized
components

This metrical tells the list of components which are
system specific by nature. These parts are of specific
service and do not serve other fields. Its measure
depends on the subjectivity of architects and
designers

LPSC List of purpose
significant
components

The metrical shows the list of major parts whose
breakdown badly affects the performance of the
system. This is also subjective in nature and measure
depends on the designers

LMMP List of mutual
memory parts

The metrical is an essential part which is universal in
nature. Due to the global nature of shared memory, it
is not a suitable non-functional quality attribute but
is still very important from performance point of
view

LoAR List of architectural
revisions

The metrical indicates the list of variations that
architecture of software was before the present
architecture. As the number of architectural revision
increases, the architectural quality improves. One
should note the architectural revisions can be more
than the number of releases of the software
architecture

(continued)

342 C. Ahuja et al.

In this section, the Eclipse framework and its structure are described; plug-in:
X-Ray [15] is introduced, followed by metrical applied in the plug-in with its
polymeric outlook; JArchitect features are described; and open source software
particularly JFreeCharts is discussed.

5.3 Eclipse

Eclipse has been an open source; a Java-based software structure that is autono-
mous of platform. The structure is operated to fabricate an Integrated Development
Environment (IDE) as well as a compiler which is a portion of Eclipse. It lays stress
on putting up off the latch development plan of action that is constructed by
extendable structure, tools, and estimated time for constructing, changing, and
handling the system. With an enormous sightseer, Eclipse is being used and sup-
ported by many universities, known researchers and volunteer individuals.

Table 2 (continued)

Abbreviation Full name of metric Description

NoIT Number of interface
types

This metric is meant to count the various interaction
methods available in the system to support the
several interactions. The complexity of the system
increases with the increase in the number of interface
types

NoV Number of versions This metric indicates the development of the system,
which is the list of product releases so far

LoGC List of generic
components

The metrical is used to number the components
which are generic in their usability and functionality

NoRC Number of
redundant
components

Components can fail during their working. To
recover the system from these failures, the system
consists of a list of software and hardware parts
which are replication of other components in
functionality. Redundant components are maintained
to be useful during failures

NoSS Number of
subsystems

The metric indicates the logical or physical
components clusters. The number of subsystems
indicates the abstraction level of the system, which
should be low in coupling and high in cohesion

LoS List of services The metrical indicates the list of telecommunication
facilities that are provided to the system. As the
services increase so does the service interactions,
which further increases the complexity

LCP List of concurrent
parts

The metrical indicates the list of parts that are
working together at a real time. The measure of this
metric affects the quality of the system

Software Architecture Evaluation in Agile Environment 343

Table 3 Agile software metrics

Metric Description Needs to be

Software size In agile methodologies, the size of the
software is depicted in story points. This is
done by breaking down the functionality in
user’s view to the stories of user [13]

Minimized

Estimate of effort
Estimate of staffing

For the proper knowledge of the cost drivers,
effort and staffing are at the pinnacle. Agile
methodologies do not alter the basic
information; also, it does not alter the
method for monitoring the growth. It is
expected to ought the required skills in the
agile teams. It is difficult to do staffing at the
early stages. Systems are tested by test teams
appointed by the organization outside the
scene of the development team

Varies at different
stages of development
process

Schedule Speed of performing the work leads to
schedule. Agile development has the goal of
fixing the schedule variable and it works by
maximizing the performance of teams within
fixed time frame. This emphasizes
stakeholders to properly discuss the needs
and take part in prioritizing the work

Maximized

Quality check and
customer
complacency

Agile methods provide much opportunity for
insight in quality check and customer
complacency. This makes the customer look
into the product itself on frequent delivery of
working software, besides the immediate
products of work like need of specifications
and design documentation. A consistent
check on the required functionality and
features of the product is very important for
the customer content

Maximized

Price and funds Cost and funding frameworks can be altered
by influencing the repetitive feature of agile
methodologies. Non-obligatory agreement
funding lines frameworks work by adding
pliability to managing development and
planning organization work

Minimized

Requirements Requirements are thorough and whole
requirements specification document that is
not a precondition to the initiation of
activities for development in agile
methodologies. But, it is advantageous to
have the pliability to elucidate, describe
extensively and arrange requirements as per
the need, which has been presented by user
stories, or wide range of programs. The cost
of altering the need is noticed at later stages.
The rapid incremental approach to agile
development reduces the rework

Average

(continued)

344 C. Ahuja et al.

Table 3 (continued)

Metric Description Needs to be

Delivery and
progress

In delivery and progress monitoring, the
regular delivery of operational software
products provides a clear view of progress.
Showing up of system features allows early
chances to filter the ultimate product and by
making sure that the team of development
focuses on the required technological
performance

Maximized

High quality The overall quality of the system can be
evaluated by tracking the partial defect rate.
• New bug reporting rate
The bug rate of complex features is higher
than normal, which on iterations decline as
the product improves. On the completion of
project, it should go down the normal bug
rate
• Average bug longevity. The quality of the
software architecture and team depends on
the length of time bugs remain open. The
small bug can be fixed in near real-time.
Bugs will remain open for longer time or
can take an iteration to close in case of
serious design flaws

Maximized

Timeliness The timeliness metric makes sure of feature
completion over time. In order to maintain
trust between business owners and
developers, there is need of transparency of
delivered software on a standard schedule.
For this features are not released to make
sure the schedule is on

Minimized

Efficiency/
Adaptability

The iteration is efficient if it provides
evidence as to the estimated total time and
cost of the project. Adaptability is a check of
how easily an organization is able to adapt to
the expected development of a specification,
customer feedback, and internal learning that
happens as a project proceeds. Adaptability
is close to efficiency as the right suitable time
to make changes is when the work is being
done on the feature. Longer the wait alter a
feature, the higher is the cost

Defects Agile approaches help development teams to
minimize defects over the iterations.
Tracking defect metrics tells how well it
helps in preventing issues and when to refine
its processes [14]

Minimized

Software Architecture Evaluation in Agile Environment 345

(1) Eclipse Description

Eclipse is being managed by the Eclipse Foundation and was actually developed by
IBM. The company, Eclipse, is not dividend oriented. It lays trustworthy plan of
action, free of royalty with right to allot it to all over the world. Open source
engagements’ rules are its ground rules, which have clean metrical-oriented cre-
ation. Everyone has the chance to supply and take part by availing oneself of the
plug-in. The Eclipse structure which is the implementation of presenter has its
direct interaction with the plug-in. New facilities can be appended or alterations in
previously provided facilities can be done. Also, the facilities can be shared among
other plug-ins. Eclipse has been created by a huge group of developers around the
globe.

(2) Eclipse Infrastructure

Hundreds of plug-ins surround a small kernel, making Eclipse a non-single
monolithic program. X-Ray is one of the hundred plug-ins. Every plug-in depends
on the core services of Eclipse, or which are provided by other plug-ins or com-
bination of both. Hence, code from dissimilar applications and various plug-in is
shared and run.

(3) Eclipse Platform Overview

Pinnacle projects are there in the workspace, which are further linked to directories
specified by the user in the systems. The user is allowed to have access to the
structure of system. This is known as the workbench.

5.4 X-Ray

A plug-in called X-Ray operates for the structure of Eclipse. Software visualization
significantly assists in software and reverse engineering. Software visualization
provides ways to decrease the complex nature of the system in use, rendering it
straightforward and simpler perspectives and abstraction properly and fully
understand any system. X-Ray plug-in is used to study mini and major projects,
which gives the user the chance to understand the system without using stand-alone
applications or tools or analyzing the source code.

In this plug-in, the user is allowed to envisage the project while operating it,
without using any other tool in order to envisage it, at one place in Eclipse
framework irrespective of the stand-alone nature of visualization tools, as shown in
Fig. 1. The user can head on to any system, studying its shapes, detecting errors,
and collecting favorable information, given various views and using various
metrics.

346 C. Ahuja et al.

(1) Metrics

Metrical provides a concise version of significant facts. A metrical, which is the
consequence of matching a distinctive quality to a mathematical value of an ele-
ment, is a number. Metrical aids in providing a numerical value of what is not a
number in reality. It helps to abridge the unique aspect of the element, to be able to
have a significant representation of that aspect in the overall graphical depiction
[15]. A polymetric visual image overworks on various metrics to depict them as
group of entities.

(2) X-Ray Metrical

A variety of metrical X-Ray plug-in is used in for its views, in order to model
classes and entities like packages in the form of nodes according to the view where
it is shown. It is used to model number of methods, number of lines of a particular
code, class of the type, along with weights of its dependency.

(3) Metrical View of System Complexity

In X-Ray plug-in view of system complexity, the position of the class is depicted by
the position of each and every node of the system which is under consideration. In
order to represent the class, hierarchy nodes are placed in a tree structure. Nodes are
the visual images of the classes in Java which have different color. White color
visualizes interfaces, light blue visualizes abstract classes, blue visualizes concrete
classes, and green nodes depict the classes that are external to the system under
study. By knowing the kind of representation of various entities, it helps in
detecting the design flaws. Table 4 abridges the various metrics used on node in the
system complexity view.

Fig. 1 X-Ray plug-in providing the system complexity view in Eclipse IDE

Software Architecture Evaluation in Agile Environment 347

5.5 JArchitect

JArchitect is a static analyzer that simplifies complex Java code base. JArchitect has
following features:

• Rules and code analysis through CQLinq queries;
• Powerful way to combine many Java tools;
• Interactive tooling;
• Meaningful reporting.

JArchitect makes it easy to manage a complex Java code base. One can analyze
code structure; specify design rules, do effective code reviews and master evolution
by comparing different versions of the code. JArchitect makes it possible to achieve
high Code Quality. With JArchitect, software quality can be measured using Code
Metrics, visualized using Graphs and Treemaps, and enforced using standard and
custom rules [16].

5.6 JFreeChart

The JFreeChart project was established by David Gilbert in February 2000.
JFreeChart is the most commonly used chart library for Java, with 2.2 million
downloads till date. JFreeChart is a 100% free Java chart library that makes it
simple for developers to produce professional quality charts inside their applica-
tions. JFreeChart is meant to be used by developers. JFreeChart has wide range of
aspects that include:

• a regular and well-documented API, supporting a wide selection of chart types;
• a pliable blueprint that can easily be extended and is meant to target both

client-side and server-side application;
• support for several types of output, including Swing and JavaFX components,

image files (including PNG and JPEG), and vector graphics file formats (in-
cluding PDF, EPS, and SVG);

Table 4 Various metrics used in the system complexity view

Metrics Features

Place Calculated on the basis of the tree arrangement that is in the top-down fashion

Color White color visualizes interfaces, light blue visualize abstract classes, blue visualize
concrete classes and green nodes depicts the classes that are external to the system
under study

Width Number of used methods

Height Number of lines of a code

Border Red for stand-alone class; orange for inner class

Edges It depicts hierarchy of nodes, thus inheritance between classes

348 C. Ahuja et al.

• JFreeChart is open source free software. It is available beneath the terms of the
GNU Lesser General Public License (LGPL), which allows use in proprietary
applications.

(1) Requirements

• Java 2 platform (JDK version 1.6.0 or later);
• JavaFX requires JDK 1.8

(2) Funding

Object Refinery Limited is a private limited liability company that is based in
UK and provides funds for the project. It trades documentation for:

• JFreeChart
• Orson Charts (a 3D chart library for Java)
• Orson PDF (a PDF generator for Jave 2D)

6 Results and Discussion

On selecting a project as a target for X-Ray, a default polymeric view opens to the
user which tells about the system complexity. Forty-seven versions of
JFreeChart are analyzed to acquire general information of respective project which
is drawn inside the X-Ray plug-in, as shown in Fig. 2 and Fig. 3.

On placing the cursor on the body of the node, the tooltip gives facts about node
and reason of its due size. Details of entropy provided by the tooltip are class and its

Fig. 2 X-Ray analysis of JFreeChart-0.9.0

Software Architecture Evaluation in Agile Environment 349

name, methods, number of lines of a code, with the Java file which has the source
code, a few more classes that are operated by current classes.

The general information for version 1 implementing JFreeChart-0.9.0 is—
[X-Ray] P:10 C:196M:1545 L:37427, as shown in Fig. 2. This tells about metrical
envisaged by plug-in X-Ray and number of entities, respectively.

The general information for version 2 implementing JFreeChart-0.9.1 is—
[X-Ray] P:11 C:212M:1623 L:39196, as shown in Fig. 3. This tells about metrical
envisaged by plug-in X-Ray and number of entities, respectively. The X-Ray
visualization shows the change from version1 JfreeChart-0.9.0 to version2
JFreeChart-0.9.1, in terms of size, i.e., length and width, and color of nodes.
Similarly, rest 45 versions implementing JFreeChart in X-Ray are analyzed and
their general information is collected.

Same number of versions of JFreeChart is run in the Visualjarchitect.exe UI, as
shown in Figs. 4 and 5.

The result appears in the Visualjarchitect.exe UI when various versions of
JfreeChart are run for the analysis of metrics. It provides the general information
about each version analyzed, ByteCode Instruction, Lines of Code, Lines of
Comment, Percentage Comments, Source Files, Projects, Packages, Types,
Methods, Fields, and it analyzes Third-party Projects, Packages, Types, Methods,
and Fields used along with the respective JFreeChart version.

In version 1, JFreeChart-0.9.0 is run, as shown in Fig. 4, to give results as
follows, ByteCode Instruction: 75966, Lines of Code: 11762, Lines of Comment:
10531, Percentage Comments: 47, Source Files: 192, Projects: 1, Packages: 10,
Types: 210, Methods: 1711, Fields: 912, and it analyses Third-party Projects: 2,
Packages: 40, Types: 343, Methods: 640, and Fields: 35, that are used along with
the respective JFreeChart version.

Fig. 3 X-Ray analysis of JFreeChart-0.9.1

350 C. Ahuja et al.

In version 2, JFreeChart-0.9.1 is run, as shown in Fig. 5, to give results as
follows, ByteCode Instruction: 79273, Lines of Code: 12185, Lines of Comment:
11222, Percentage Comments: 47, Source Files: 207, Projects: 1, Packages: 11,
Types: 233, Methods: 1840, Fields: 932, and it analyses Third-party Projects: 2,
Packages: 41, Types: 347, Methods: 650 and Fields: 35, that are used along with the
respective JFreeChart version. It provides the general information about
JFreeChart versions in Visualjarchitect.exe UI.

In order to find the effect on metrics due to the development of next version for
each existing version of JFreeChart, the value of all versions for few metrics is
taken, and the difference between two consecutive versions is found. This difference
in values of respective metrics is graphically represented in Figs. 6, 7, 8, and 9. It is
evident that rate of change is greater from 2nd to 10th version, then sudden rise and

Fig. 4 Metric evaluation of JFreeChart-0.9.0

Fig. 5 Metric evaluation of JFreeChart-0.9.1

Software Architecture Evaluation in Agile Environment 351

Fig. 6 Difference of classes values analysis

Fig. 7 Difference of method values analysis

352 C. Ahuja et al.

Fig. 8 Difference of types values analysis

Fig. 9 Difference of average method complexity values analysis

Software Architecture Evaluation in Agile Environment 353

fall at 16th to 18th, then fall and rise at 20th to 22nd version, rise and fall at 28th to
32nd version, again a visible rise and fall at 42nd to 44 version.

In Fig. 6, the value of differences among consecutive values of versions has
drastic variations. Versions 2nd to 10th have sudden peaks and valleys. Tenth
version onwards highs and lows are even. At versions 20th to 22nd, there is a low
valley depicting the sudden decrease in the number of classes. With a sudden
increase in the value at versions 28th to 32nd, the highs and lows are again even till
last version.

In Fig. 7, the value of differences among consecutive values of versions has
drastic variations. Versions 2nd to 10th have sudden peaks and valleys. Tenth
version onwards highs and lows are even. At versions 20th to 22nd, there is a low
valley depicting the sudden decrease in the number of classes used. With a sudden
increase in the value at versions 28th to 32nd and at 42nd to 44th, the rest highs and
lows are again even till last version.

In Fig. 8, the value of differences among consecutive values of versions has
drastic variations. Versions 2nd to 10th have sudden peaks and valleys. Tenth
version onwards small highs and lows are visible. At versions 20th to 22nd, there is
a low valley depicting the sudden decrease in the number of types used. With a
sudden increase in the value at versions 28th to 32nd, the highs and lows are again
even till last version.

In Fig. 9, the value of differences among consecutive values of versions has
drastic variations. Versions 2nd to 10th have sudden peaks and valleys. Tenth
version onwards considerable valleys can be seen. At versions 20th to 22nd, there is
a high peak depicting the sudden increase in the average method complexity.
Versions ahead of this witness valleys again, with a sudden decrease in average
methods complexity at version 42nd to 44th and sudden increase in the value at
versions 44th to 47nd.

In Figs. 6 and 7, the rate of change in classes is proportional to the rate of change
in methods used in version, mainly at 2nd to 10th version, and 28th to 32nd version,
respectively. This aims to fulfil the expected requirement of newer versions, as the
requirements increase so does that classes, and hence the number of methods to
implement them. However, the rate of change in methods continues to be high for
the version groups from 16th to 18th, and 42nd to 44th version. This usually
happens in two cases, firstly, if the number of classes remains same as compared to
number of methods which increase in the next version; and secondly, if same
number of classes is discarded as the number of new classes added to match the
increasing functionality of methods in the next version. Also, the rate of change in
rest of the classes and methods remains even and proportional. So far, this obser-
vation is very natural, but a striking feature noticed in the two graphs was the
sudden decrease in the value at version 21, indicating less number of classes and
methods in use and again a sudden rise at version 22, indicating rise in the value of
classes and methods in use. The behavior is common in both the cases of classes
and methods.

In Figs. 8 and 9, it is clearly visible that the rate of change of types is inversely
proportional to rate of change of method complexity from version 20th to 22nd.

354 C. Ahuja et al.

Like the striking feature noticed in case of classes and methods, type values used
behave similarly, thus increasing the average method complexity. The portion
comprising of versions 4th to 6th, 23rd to 25th, 28th to 32nd, and 34th to 36th
depicts the increase in the rate of change of types and decrease in the rate of change
of methods complexity, which tells about the cohesiveness of the methods. At
versions 2nd to 4th, 6th to 8th, 16th to 18th, and 45th to 47th, the increment in the
rate of change of types is proportional to the rate of change of methods complexity,
i.e., as the number of types increases, so does the method complexity; and vice
versa for the versions 28th to 32nd, and 42nd to 44th, i.e., as the number of types
decreases, so does the method complexity.

7 Conclusion

Agile software development is a popular way to advance the software incrementally
and iteratively by reducing waste and only performing actions that add value. In
order to evaluate the change in architecture under agile environment, software with
its iterations is analyzed for basic parameters. The change in the parameters like
classes, methods, and types is proportional to the user requirement, and with the
increase in the methods used to fulfil the user requirements, the average complexity
with newer iterations decreases, depicting the cohesiveness of methods.

8 Future Scope

In the near future, the work can be extended by

• Using other software, like system software, application software and then test
for results of the tools used to analyze and evaluate software architecture under
agile environment.

• Also by broadening the base by increasing number of metrics used in evaluation
for significant improvement of the work.

References

1. Gardazi, S.U., Shahid, A.A.: Survey of software architecture description and usage in
software industry of Pakistan. In: International Conference on Emerging Technologies, 2009
(ICET 2009), pp. 395–402. IEEE (2009)

2. Hadar, I., Sherman, S.: Agile vs. plan-driven perceptions of software architecture. In: 2012
5th International Workshop on Cooperative and Human Aspects of Software Engineering
(CHASE), pp. 50–55. IEEE (2012)

3. Kruchten, P.: What do software architects really do? J. Syst. Softw. 81(12), 2413–2416 (2008)

Software Architecture Evaluation in Agile Environment 355

4. Aitken, A., Ilango, V.: A comparative analysis of traditional software engineering and agile
software development. In: 2013 46th Hawaii International Conference on System Sciences
(HICSS), pp. 4751–4760. IEEE (2013)

5. Kunz, M., Dumke, R.R., Zenker, N.: Software metrics for agile software development. In:
19th Australian Conference on Software Engineering, 2008 (ASWEC 2008), pp. 673–678.
IEEE (2008)

6. Abrahamsson, P., Babar, M.A., Kruchten, P.: Agility and architecture: can they coexist?
Softw. IEEE 27(2), 16–22 (2010)

7. Mordinyi, R., Kuhn, E., Schatten, A.: Towards an architectural framework for agile software
development. In: 2010 17th IEEE International Conference and Workshops on Engineering of
Computer Based Systems (ECBS), pp. 276–280. IEEE (2010)

8. Falessi, D., Cantone, G., Sarcia, S.A., Calavaro, G., Subiaco, P., D’Amore, C.: Peaceful
coexistence: agile developer perspectives on software architecture. IEEE Softw. 2, 23–25
(2010)

9. Akbari, F., Sharafi, S.M.: A review to the usage of concepts of software architecture in agile
methods. In: 2012 International Symposium on Instrumentation and Measurement, Sensor
Network and Automation (IMSNA), vol. 2, pp. 389–392. IEEE (2012)

10. Breivold, H.P., Sundmark, D., Wallin, P., Larsson, S.: What does research say about agile and
architecture? In: 2010 Fifth International Conference on Software Engineering Advances
(ICSEA), pp. 32–37. IEEE (2010)

11. Kalyanasundaram, S., Ponnambalam, K., Singh, A., Stacey, B.J., Munikoti, R.: Metrics for
software architecture: a case study in the telecommunication domain. IEEE Can. Conf. Electr.
Comput. Eng. 2, 715–718 (1998)

12. http://ianeslick.com/2013/05/06/agile-software-metrics/
13. http://blog.sei.cmu.edu/post.cfm/agile-metrics-seven-categories-264
14. http://www.dummies.com/how-to/content/ten-key-metrics-for-agile-project-management.

html
15. Jacopo Malnati. http://xray.inf.usi.ch/xray.php (2008)
16. http://www.jarchitect.com/

356 C. Ahuja et al.

http://ianeslick.com/2013/05/06/agile-software-metrics/
http://blog.sei.cmu.edu/post.cfm/agile-metrics-seven-categories-264
http://www.dummies.com/how-to/content/ten-key-metrics-for-agile-project-management.html
http://www.dummies.com/how-to/content/ten-key-metrics-for-agile-project-management.html
http://xray.inf.usi.ch/xray.php
http://www.jarchitect.com/

Mutation Testing-Based Test Suite
Reduction Inspired from Warshall’s
Algorithm

Nishtha Jatana, Bharti Suri and Prateek Kumar

Abstract This paper presents an approach that provides a polynomial time solution
for the problem of test suite reduction or test case selection. The proposed algorithm
implements dynamic programming as an optimisation technique that uses memo-
risation which is conceptually similar to the technique used in Floyd–Warshall’s
algorithm for all pair shortest path problem. The approach presents encouraging
results on TCAS code in C language from Software-artifact Infrastructure
Repository (SIR).

Keywords Test case reduction � Test case optimisation � Floyd–Warshall’s
algorithm

1 Introduction

Reduction of test cases is an important and a tedious task, and there have been
many attempts by numerous researchers to automate its process. Test suite min-
imisation is, in general, an NP complete problem [1]. Several algorithms have been
proposed to generate reduced test suites that are approximately minimal [2].

Mutation testing was originally proposed by DeMillo [3] and Hamlet [4]. It is a
technique that was initially proposed to measure the quality of the test cases. It is a
fault-based approach that uses ‘mutation score’ as the adequacy score for the test
suite that needs to be evaluated. Later, the researchers started using it as a technique
for generation of test data [5]. The concept of mutation testing is to deliberately

N. Jatana (&) � P. Kumar
Department of Computer Science and Engineering, MSIT, New Delhi, India
e-mail: nishtha.jatana@gmail.com

P. Kumar
e-mail: prateek061093@gmail.com

B. Suri
USICT, GGS Indraprastha University, New Delhi, India
e-mail: bhartisuri@gmail.com

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_33

357

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_33&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_33&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_33&domain=pdf

introduce faults into the source code, thereby generating ‘mutants’. The underlying
principle that makes mutation testing effective as a testing criterion is that the
introduced faults may be very much similar to the faults that a skilled programmer
may make. The mutants which are caught by the test cases are said to be killed, and
the rest are said to be live mutants. Jia and Harman [5] comprehensively surveyed
the overall analysis and development in the field of mutation testing.

Floyd–Warshall’s algorithm [6] for finding solution to all pair shortest path
problem has been mapped to the test suite reduction problem in this paper. The time
complexity of the dynamic programming approach to solve the all pair shortest path
problem using Floyd–Warshall turns out to be polynomial, given as O(n^3) [7]. It
was originally proposed by Robert Floyd and is popular till date by his name. The
‘three nested loop algorithm’ that is used today was formulated in the same year by
Ingerman [8].

In this paper, we strive to trail the principal of KISS that is an acronym for ‘Keep
it simple, stupid’ [9] that advocates the use of simple techniques rather than
complicated ones in design of a solution to a problem. We, therefore, hereby
propose a straightforward technique for test case reduction for which many com-
plicated techniques already exist.

The contributions of this paper include

– Demonstrating the problem of selection of test suite reduction as a polynomial
time-solvable problem.

– Proposing a method that uses similar concept as used by Floyd–Warshall’s
algorithm along with the process of mutation testing.

– Empirically stating the results of executing the proposed technique on TCAS
code from SIR and triangle problem.

The remainder of this paper is organised as follows: Sect. 2 presents the related
work. Section 3 explains the proposed technique. Section 4 illustrates the results,
while Sect. 5 gives the conclusion and intended future work.

2 Related Work

Minimising the test suite is an NP-complete problem, so heuristic approaches have
been significantly considered to deal with it [1]. Greedy approaches have been
applied to obtain minimised test suite [1, 10, 11]. Agrawal [12, 13] minimised the
test suite using a delayed greedy approach and the notion of dominators,
super-blocks and mega-blocks in order to derive coverage implications amongst the
basic blocks for the coverage of statements and branches in the reduced suite. To
overcome the limitations of single-criteria test minimisation, multi-criteria test suite
minimisation techniques were developed [14, 15]. Yoo and Harman [16] used a
genetic algorithm and Pareto-efficient approach for multi-objective minimisation of
test suite.

358 N. Jatana et al.

3 Methodology

The proposed approach for test suite reduction uses a concept which is analogous to
Floyd–Warshall’s algorithm. Research questions address the aim of the study. The
experimental design includes the subject programs and tool used in the study. The
procedure used to conduct the experiment gives the steps followed for the technique
proposed.

3.1 Research Questions

As an evidence for showing that proposed solution is capable of solving test case
selection problem, the study addresses the following research questions:

RQ1: Can traditional concepts like dynamic programming be applied for selection
of test cases that can run in polynomial time?
RQ2: Is the proposed approach capable of killing significant number of mutants and
hence in detecting large number of faults?

3.2 Experimental Design

Subject Programs: Two programs have been used as test benches in our experiment.
These programs have been used by numerous researchers in the field of mutation
testing [17, 18]. Triangle program is used for the determination of the type of
triangle using its dimensions. It takes three variables as input. The code is as used
by Jia and Harman [17], and the test cases were randomly generated by specifying
the range of input variable from [−10 to 101]. Traffic collision avoidance system
(TCAS) is a program designed to avoid or reduce collisions between aircraft. It
takes 12 variables as input. The source code and the test cases for TCAS have been
downloaded from Software-artifact Infrastructure Repository (SIR) for assessing
our technique under controlled experimentation [19]. Table 1 gives description of
the subject programs used.

Table 1 Description of subject programs

S. No. Name of subject
program

Size
(LOC)

Description Number of
mutants created

1. Triangle 50 Determines type of triangle from the
given length of the sides

121

2. TCAS 173 Traffic collision avoidance system 79

Mutation Testing-Based Test Suite Reduction … 359

Tool used: Milu [20] is a mutation testing tool for C language that is efficiently
designed for generation of both first-order and higher-order mutation testing. Milu
provides easy generation of mutants and provides flexible environment for general
purpose mutation testing. This tool was used in this study to generate first-order
mutants for the subject programs as mentioned in Table 1. These mutants were used
in further evaluation of the proposed approach to measure its effectiveness.

3.3 Procedure

The procedure for the proposed approach is as follows:

1. The mutants of the two subject programs are generated using Milu [20].
2. Test cases are executed against each of the generated mutants, and the corre-

sponding results are to be stored in output files.
3. Test cases are considered to be vertices of a weighted graph, and the weight

assigned to each edge is the union of the mutants killed by the two test cases that
are assigned to the vertices that are the end points of this particular edge. The
aim of the approach is to maximise the mutants killed by a dynamic program-
ming approach on the adjacency matrix of the fully connected graph.

4. The output of the proposed approach is a 2-D matrix W[1…n][1…n], where W
[i][j] denotes the maximum mutants killed in going from vertex i to vertex j. The
second output is another 2-D matrix P[1…n][1…n], where P[i][j] is a list of all
the test cases that were traversed in going from vertex i to vertex j. This path
matrix is significant in terms of providing a solution to test case selection
problem as the paths specified in the path matrix give us the test cases that can
be used for testing the program to detect errors.

3.3.1 Algorithm of Proposed Approach

Variables used:

N: number of test cases
T: a set containing N test cases (initially randomly generated)
S[1…N]: list, where S[i] = Set containing mutants killed by ith test case
P: total number of distinct mutants killed by all test cases combined
PUT: program under test
Sets: total number of test cases.
arr[i][j]: arr[i][j] is the adjacency matrix of the completely connected graph.
Initially, it contains the mutants killed by the test case (i) and (j) combined. Finally,
it will store the maximum mutants that can be killed if we go from test case (i) to
test case (j) in the completely connected graph of the test cases as the nodes.

360 N. Jatana et al.

path[i][j]: total nodes in the path from ith node to jth node in the graph.
p[i][j]: a list to store the node numbers used in the path from test case (i) to test case (j).

Modules used:

Gen_Init_Pop(N): generates initial random test cases
FindMutantsKilled(j): finds the list of mutants (denoted by mutant numbers) killed
by the jth test case in T
GetDistinctMutantsKilled(S[], TOTAL): returns the count of the distinct mutants
killed by all test files in T
find_union(i,j): finds union of mutants killed by ith and jth test cases
find_union_count(i,j,k): finds count of the mutants killed by kth test case combined
with ith and jth test case
find_union(i,j,k): finds union of mutants killed by test case combined with ith and
jth test case
enqueue(p[i][j],k): inserts k at the end of p[i][j]
print(k,sets): used to print the status of p[][] and the path[][] matrix at the kth
iteration.

Steps followed:

Mutation Testing-Based Test Suite Reduction … 361

3.3.2 Time Complexity of the Proposed Approach

The time complexity of the original Warshall’s algorithm for all pair shortest path
T1(n) = O(n^3) where n is the number of nodes in the graph. Our presented
approach for test suite reduction that is conceptually similar to Floyd—Warshall’s
algorithm has worst-case time complexity, T2(n) = O(M*n^3) where M is the
number of mutants and n is the number of test cases. This provides and answers to
RQ1, that the proposed technique that implements dynamic approach can provide a
polynomial time solution for test case reduction problem.

4 Results

Figure 1 depicts the result of the approach applied to the subject programs. As an
answer to RQ2, it can be stated that the proposed technique is able to kill significant
number of mutants and thus can be used for test case reduction. It can be seen from
the figure that 69% mutants are killed for TCAS code and 89% mutants are killed
for triangle code. Therefore, we can conclude that the proposed technique is capable
of finding a minimised test suite that is able to detect faults in the program under
test. The minimised test suite shown in case of TCAS consists of 14 test cases from
the 1608 test cases downloaded from SIR repository and 14 test cases in case of
triangle problem also from the 1000 test cases that were randomly generated.

Fig. 1 Result of executing the proposed approach on the test benches (‘killed mutants’ represent
the mutants killed using the proposed approach, and ‘live mutants’ represent the mutants which
were not killed)

362 N. Jatana et al.

5 Conclusion and Future Work

This study proposed a technique for test suite reduction using a dynamic pro-
gramming approach conceptually similar to that used by Floyd–Warshall’s algo-
rithm and its evaluation on TCAS code and triangle problem. The proposed
technique runs in polynomial time. The results depict that the proposed technique is
capable of finding a minimised test suite that can find faults in the program under
test.

As a part of future work, we intend to further verify the proposed approach on
larger programs and also apply more traditional algorithms like Kruskal’s algo-
rithm, Prim’s algorithm, Dijkstra’s algorithm and other approaches that employ
greedy approach or dynamic programming approach that can be applied with
mutation testing for test case generation/optimisation/selection.

References

1. Tallam, S., Gupta, N.: A concept analysis inspired greedy algorithm for test suite
minimization. SIGSOFT Softw. Eng. Notes 31(1), 35–42 (2006)

2. Zhang, L., Marinov, D., Zhang, L., Khurshid, S.: An empirical study of JUnit test-suite
reduction. In: 2011 IEEE 22nd International Symposium on Software Reliability Engineering
(ISSRE), pp. 170–179 (2011)

3. DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Hints on test data selection: help for the
practicing programmer. Computer 11, 34–41 (1978)

4. Hamlet, R.G.: Testing programs with the aid of a compiler. IEEE Trans. Softw. Eng. 3(4),
279–290 (1977)

5. Jia, Y., Harman, M.: An analysis and survey of the development of mutation testing. IEEE
Trans. Softw. Eng. 37(5), 649–678 (2010)

6. Floyd, R.: Algorithm 97: shortest path. Commun. ACM 5(6) (1962)
7. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: The Floyd-Warshall algorithm. In: Introduction

to Algorithms, pp. 558–565. MIT Press and McGraw-Hill (1990)
8. Ingerman, P.: Algorithm 141: path matrix. Commun. ACM 5(11) (1962)
9. Partridge, E., Dalzell, T., Victor, T.: The Concise New Partridge Dictionary of Slang.

Psychology Press (2007)
10. Offutt, A.J., Pan, J., Voas, J.M.: Procedures for reducing the size of coverage-based test sets.

In: Twelfth International Conference on Testing Computer Software, Washington, D.C.,
pp. 111–123 (1995)

11. Hsu, H.Y., Orso, A.: MINTS: a general framework and tool for supporting test-suite
minimization. In: IEEE Computer Society, pp. 419–429 (2009)

12. Agrawal, H.: Dominators, super blocks, and program coverage principles of programming
languages. In: Symposium on 21st ACM SIGPLAN-SIGACT, Portland, Oregon (1994)

13. Agrawal, H.: Efficient coverage testing using global dominator graphs. In: ACM
Sigplan-sigsoft Workshop on Program Analysis for Software Tools and Engineering,
Toulouse, France (1999)

14. Black, J., Melachrinoudis, E., Kaeli, D.: Bi-criteria models for all-uses test suite reduction. In:
26th International Conference on Software Engineering(ICSE’04), Washington, D.C., USA,
pp. 106–115 (2004)

Mutation Testing-Based Test Suite Reduction … 363

15. Yoo, S., Harman, S.U.M.: Highly scalable multi objective test suite minimisation using
graphics cards. In: Search Based Software Engineering, pp. 219–236. SpringerLink (2011)

16. Yoo, S., Harman, M.: Using hybrid algorithm for Pareto efficient multi-objective test suite
minimisation. J. Syst. Softw. 83(4), 689–701 (2010)

17. Jia, Y., Harman, M.: Constructing subtle faults using higher order mutation testing. In: 8th
International Working Conference on Source code Analysis and Manipulation (SCAM 2008),
pp. 249–258 (2008)

18. Papadakis, M., Malevris, N.: Automatic mutation test case generation via dynamic symbolic
execution. In: 21st International Symposium on Reliability Software Engineering,
pp. 121–130 (2010)

19. Do, H., Elbaum, S.G., Rothermel, G.: Supporting controlled experimentation with testing
techniques: an infrastructure and its potential impact. Empirical Softw. Eng. Int. J. 10(4),
405–435 (2005)

20. Jia, Y., Harman, M.: MILU: a customizable, runtime-optimized higher order mutation testing
tool for the full C language. In: Practice and Research Techniques, 2008. TAIC PART’08.
Testing: Academic & Industrial Conference, Windsor, 29–31 Aug 2008, pp. 94–98 (Online).
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4670308, http://ieeexplore.ieee.org/
xpl/articleDetails.jsp?arnumber=4670308

364 N. Jatana et al.

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4670308
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4670308
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4670308

Software Component Retrieval Using
Rough Sets

Salman Abdul Moiz

Abstract Software reusability is one of the important mechanisms needed to
maintain its quality and productivity. Even though the candidate components are
available in the repository to be reused, software engineers prefer to develop the
system from scratch. There exists fear of reuse because the developers are not sure
whether candidate component will work. In this paper, first the focus is on
retrieving the desired components based on rule generation using rough sets. If the
component is not found, then it can be developed and stored in repository.
Secondly, uncertainty in identifying the desired component is addressed and an
approach to model such uncertainty is proposed. Rough set exploration system
(RSES) tool is used to simulate the results on certain behaviors of banking domain.

Keywords Uncertainty � Component extraction � Use case � Rough sets
Decision rules � RSES

1 Introduction

Software reuse is the process of implementing or updating software systems using
existing software assets [1]. Software reuse has become a topic of much interest in
the software community due to its potential benefits, which include increased
product quality, decreased product cost, and schedule. The idea is to maintain a
repository of developed components, which forms the basis of reusing them.
Reusable components are increasingly replacing the use of monolithic and pro-
prietary technologies [2]. Several approaches are presented in the literature for
retrieving reusable components, but a methodology is needed to maintain a
repository which helps in retrieving the components effectively.

In this paper, an approach to maintain the component repository is proposed. It is
assumed that the repository includes the action states of each of the functionalities

S. A. Moiz (&)
School of Computer & Information Sciences, University of Hyderabad, Hyderabad, India
e-mail: salman.abdul.moiz@gmail.com

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_34

365

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_34&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_34&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_34&domain=pdf

so that the appropriate functionality could be retrieved effectively. For a particular
domain, there could be several functionalities and corresponding action states. The
huge set of action states will be a barrier to retrieve the components. It is proposed
to retrieve the components by generating rules using rough sets. Given the
requirements realized using actions, the rough set approach can help in retrieving
the desired functionalities effectively. Further, there could be a possibility that a
different component is retrieved when the same set of action states are given at
various instances of time. This leads to a chaos in selecting a particular component.
Rough sets are used to address the issues with uncertainty.

The remaining part of this paper is organized as follows. Section 2 specifies the
various approaches for component retrieval; Sect. 3 illustrates the mechanism of
retrieving components using rough set and later describes the proposed approach in
retrieving components using rule generation. Section 4 describes the mechanism to
retrieve components for ATM application using RSES tool, and Sect. 5 concludes
the paper.

2 Related Work

In most of the reuse-driven development, software assets can be reused when the
organizations have significant amount of applications; there exist culture of thinking
in terms of reuse, and the development team understands the value of the artifacts
when made reusable. Techniques for software component retrieval usually have a
problem with maintenance of consistent component repositories. Several approa-
ches for component retrieval are proposed in the literature. In [3], an experiment is
proposed in which several components can be retrieved using full-text indexing.
However, the issue is to maintain the index structure because as the repository
grows the index structure also grows. In [4], an approach for selection of compo-
nent is proposed using genetic algorithms. But the overlap of functionalities causes
confusion, thereby leading to uncertainty. In [5], a mechanism is adopted to
compare the components with respect to the structure, behavior, and granularity,
and a metric called “direct replace ability similarity” is proposed. As the granularity
increases, the performance of component retrieval goes down. In [6], a metamodel
is used to retrieve interconnected components by incorporating ontology and tax-
onomies characteristics. The retrieval approach is based on the given architecture.
The retrieval of the component differs from the architecture selected. This may
require a huge component repository, and there may be issues in retrieving the
component, and the throughput of the system decreases as the repository increases.
In [7], cluster of related components forms a subset of libraries. This approach uses
text mining approach and clusters the related components. Since the component
search starts at word level, the component retrieval may be difficult when the
repository grows.

In the proposed approach, the given requirements are modeled using use cases.
The action states generated using the use case specifications act as input for

366 S. A. Moiz

component retrieval. The decision rules are generated which helps in selecting a
component from the repository.

3 Decision Making Using Rough Sets

Rough sets theory is used in varied applications. It can be used to model and
measure uncertainty in applications. Its purpose is to arrive at a proper decision in
presence of uncertainty. The approach can be used in many activities of software
engineering as the developer is not certain about the artifacts throughout the soft-
ware development life cycle.

3.1 Rough Sets

A classical set theory for handling of incomplete information call rough set theory
was introduced by Pawlak [8]. Rough sets can be introduced informally in software
engineering as follows:

Let S be the satisfaction set which specifies the satisfaction of customer from the
given set of requirements R (R is a requirements set). The conformance of the end
product with respect to given set of requirements can be as follows:

C1: All the functionalities (realized for given set of requirements) are up to the
satisfaction level of customer

C2: All the functionalities are not up to the satisfaction of customer
C3: The functionalities are possibly satisfied by the customer

In the rough sets, terminology C1 is the lower approximation, C1 U C3 is upper
approximation, and the difference between the lower and upper approximation is
the boundary region B. The boundary region specifies the functionalities where
customer’s satisfaction criterion is unknown. Those functionalities are uncertain
with respect to the customer’s satisfaction. Rough set is one of the mathematical
models to deal with uncertainties [9]. The challenge is to model the uncertainties
using approximation in a way that leads to rule generation.

3.2 Methodology for Component Extraction

The goal of the proposed approach is to extract components when the requirements
captured using use cases are realized such that it lists the action states. Given the
action states, a component may be successfully retrieved or it may not exist or there
could be uncertainty in retrieving the components. The uncertainty may arise when

Software Component Retrieval Using Rough Sets 367

same action state is given at different instances, but the desired outcome differs in
each instance. The structure of proposed component repository motivated by Khoo
et al. [10] is specified in Table 1.

The requirements set is a universal set (U), and the objects of universal set
represent instance of requirements of a domain. For each object, there exists con-
ditional attributes and decision attribute. The decision and conditional attributes
together form a set P. As each use case is set of sequence of activities, all the action
states are realized as conditional attributes. Few of the action states are selected for
implementation of particular functionality. Use case realizes the functionalities of
the system. The decision attribute specifies the respective function, component or
module available to implement the use case. The decision attributes constitute the
functionalities of the system.

In general, whenever there is a request for retrieval of a component or a module,
required action states are extracted from use case specification. Given the action
states decision, rules are generated using rough sets. These rules help in selecting a
component. This would be effective even if the repository grows. In real-time
applications, there can be numerous action states as such it will be difficult to
identify whether a component for the given functionality is available to be reused.

Consider the following component repository with seven objects which specifies
several requests for component retrieval. Two conditional attributes specify the
action states, and one decision attribute specifies the functionality selected. To
demonstrate the application of rough set theory in component retrieval, one com-
ponent is assumed to be available in the repository. The decision attributes increases
as the number of reusable components increase. In Sect. 4, the results are simulated
for few scenarios of ATM applications.

Table 2 specifies a component repository log that specifies the different instances
of requirements as a function of action sates and a decision attribute specifying
whether a component is available in repository to be retrieved.

The confusion is caused due to uncertainty. Confusion or chaos arises when the
retrieved component is same for different action states. The atoms and concepts are
derived from the information given in Table 2.

From Table 2, the {a1}—elementary sets are B1 = {r2, r6, r7} and B2 = {r1, r3,
r4, r5}. The {a2}—elementary sets are B3 = {r3, r4, r6} and B4 = {r1, r2, r5, r7}.

The elementary sets formed by action states are known as atoms [10].
C = f (action states). (r1, r4) and (r2, r7) are identical as they retrieve the similar

components for the identical action states. The atoms are A1 = {r1, r5}, A2 = {r2,
r7}, A3 = {r3}, A4 = {r4}, and A5 = {r6}. The elementary sets formed by decisions
are called concepts [10].

For the decision attribute 1, C1 = {r3, r6}, and for the decision attribute 0,
C2 = {r1, r2, r4, r5, r7}. r3, r4 lead to confusion as it is not certain that whether the
component retrieval is possible for the same set of action states (conditional

Table 1 Component repository

Requirements Conditional attributes Decision attribute

368 S. A. Moiz

attributes). Rough set theory is used to address these uncertainties. The lower and
upper approximation of the selected component (decision attribute = 1) is evaluated
as follows:

Only A5 = {r6} is distinguishable from other atom(s) in C1 which is r3.
Therefore, lower approximation of C1 is R(C1) = {r6}. The upper approximation is
the union of R(C1), and those atoms which are indistinguishable. {r3, r4} are
indistinguishable in C1. Therefore, upper approximation of C1 is RðC1Þ = {r3, r4,
r6}. The boundary region of C1 is defined as RðC1Þ � RðC1Þ. Though the boundary
region can be computed manually, but when repository grows, it is difficult to
compute the uncertainty in uncertainty in retrieving components. As such decision
rules can be directly generated when the action states are given. The decision rules
are generated using various available mechanisms, viz. exhaustive algorithm,
LEM2 algorithm, genetic and covering algorithm. Learning for Example Module,
Version 2 (LEM2) [11] is a rule induction algorithm which uses the idea of multiple
attribute–value pairs. LEM2 is used in this paper to generate the rules which map
the action states to the respective components available in the repository.

The above example only illustrates retrieval of a single component. In the
repository, there will be numerous components available and each instance of
action state may or may not retrieve a component. If there does not exist uncertainty
and the decision variable is 0 for a given set of action state, then the component
does not exist and it has to be developed and again stored in repository. There may
be a possibility that the existing component may be configured. Hence, there could
be several versions of the same components available in the repository.

The steps in the component retrieval are shown in Fig. 1. Given the require-
ments, the goal is to identify whether there exist any reusable component available
in component repository to realize the given requirement. The given requirements
are modeled using use cases, and action states are identified. The action states act as
input for rule generation, and the decision attribute is analyzed. If the decision
attribute is 1 for a particular component, it can be reused. Otherwise, the desired
functionality needs to be developed and the repository is to be updated. If the

Table 2 Component repository log

Requirement request conditional
attributes
(action states)

Decision attribute
(component)

a1 a2

r1 0 0 0

r2 1 0 0

r3 0 1 1

r4 0 1 0

r5 0 0 0

r6 1 1 1

r7 1 0 0

Software Component Retrieval Using Rough Sets 369

decision attribute value is 0 at one instance and one at another, then there exists
uncertainty. The uncertainty can be modeled by introducing additional attributes,
and the rules are generated again by introducing the derived attributes. The derived
attribute values help in resolving uncertainty to an extent. In this paper, LEM2
algorithm is used to generate the rules.

4 Results and Analysis

In the proposed approach, an attempt is made to model the component retrieval
using rough sets. Consider the transactions of an ATM machine which has several
functionalities. Three operations are considered in this paper, viz. withdraw cash,
query account, and transfer funds. Each of these functionalities is a use case which
includes several action states derived from use case specification. All the action

Fig. 1 Component retrieval using rule generation

370 S. A. Moiz

states are maintained in the component repository log relation. The action states
form the decision attributes, viz. Boolean. If the action state is selected, then it is
high (1), otherwise it is low (0). The problem of choosing an appropriate func-
tionality depends on the action state selected. The action states which are modeled
as conditional attributes are used for rule generation. The criterion for selection of
the candidate component differs from one domain to the other. Table 3 specifies the
component repository log of ATM operations.

The components for the withdraw cash, query account, and transfer funds are
represented by F1, F2, and F3, respectively. The total number of conditional
attributes, i.e., the action states for these three operations, is represented as A1 to
A12. The action states A1 to A12 are captured from use case specification. It was
observed from the specification documents of the three functionalities that some of
the action states are common between several functionalities of the ATM appli-
cation. The action states specified by A1, A10, A11, and A12 are common for
functionalities for F1 and F2, respectively.

The common action states help in knowing the commonality of various func-
tionalities with respect to action states of a particular domain. If there is a change in
few of the action states, then the existing functionality can easily be modified and
stored in repository. Several versions of same functionality can be stored in the
repository. There may be a possibility that for a given set of action states, no
existing functionality exists to be used. This is denoted as F0 in the component
repository log of ATM transactions. These functionalities are designed and
implemented; then, the component repository is updated with new set of action
states and respective functionalities realized.

Table 3 Component repository Log for ATM

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 Function

1 1 1 1 1 1 1 1 0 0 0 0 F1

1 0 0 0 0 0 0 0 1 0 0 0 F2

1 0 0 0 0 0 0 0 0 1 1 1 F3

1 0 0 0 0 0 0 0 0 1 1 0 F0

1 0 0 0 0 0 0 0 0 1 0 1 F0

1 0 0 0 0 0 0 0 0 1 0 0 F0

1 1 1 1 1 1 1 1 0 0 0 1 F0

1 1 1 1 1 1 1 1 0 0 1 0 F0

1 1 1 1 1 1 1 1 0 0 1 1 F0

1 1 1 1 1 1 1 1 0 1 0 0 F0

1 0 0 0 0 0 0 0 0 1 1 1 F3

1 0 0 0 0 0 0 0 0 1 1 1 F0

1 1 1 1 1 1 1 1 0 0 0 0 F1

1 1 1 1 1 1 1 1 0 0 0 0 F1

1 1 1 1 1 1 1 1 0 0 0 0 F1

Software Component Retrieval Using Rough Sets 371

Given the component repository log relation as input, rough set exploration
system (RSES) tool is used to generate rules using LEM 2 algorithm. The rules
generated for Table 3 using LEM2 algorithm on RSES tool are as follows:

(a) (A1 = 1) & (A2 = 1) & (A3 = 1) & (A4 = 1) & (A5 = 1) & (A6 = 1) &
(A7 = 1) & (A8 = 1) & (A9 = 0) & (A10 = 0) & (A11 = 0) &
(A12 = 0) => (Function = F1[4]) 4

(b) (A1 = 1) & (A2 = 0) & (A3 = 0) & (A4 = 0) & (A5 = 0) & (A6 = 0) &
(A7 = 0) & (A8 = 0) & (A9 = 0) & (A10 = 1) & (A11 = 1) &
(A12 = 1) => (Function = F3[2]) 2

(c) (A1 = 1) & (A9 = 0) & (A2 = 1) & (A3 = 1) & (A4 = 1) & (A5 = 1) &
(A6 = 1) & (A7 = 1) & (A8 = 1) & (A10 = 0) &
(A11 = 1) => (Function = F0[2]) 2

(d) (A1 = 1) & (A9 = 0) & (A10 = 1) & (A2 = 0) & (A3 = 0) & (A4 = 0) &
(A5 = 0) & (A6 = 0) & (A7 = 0) & (A8 = 0) & (A11 = 0) => (Function = F0
[2]) 2

(e) (A1 = 1) & (A9 = 0) & (A10 = 1) & (A2 = 0) & (A3 = 0) & (A4 = 0) &
(A5 = 0) & (A6 = 0) & (A7 = 0) & (A8 = 0) & (A11 = 1) &
(A12 = 0) => (Function = F0[1]) 1

(f) (A1 = 1) & (A9 = 0) & (A2 = 1) & (A3 = 1) & (A4 = 1) & (A5 = 1) &
(A6 = 1) & (A7 = 1) & (A8 = 1) & (A11 = 0) & (A10 = 0) &
(A12 = 1) => (Function = F0[1]) 1

(g) (A1 = 1) & (A9 = 0) & (A10 = 1) & (A2 = 1) => (Function = F0[1]) 1

Description of the rule:
(A1 = 1) & (A2 = 1) & (A3 = 1) & (A4 = 1) & (A5 = 1) & (A6 = 1) &

(A7 = 1) & (A8 = 1) & (A9 = 0) & (A10 = 0) & (A11 = 0) &
(A12 = 0) => (Function = F1[4]). If A1 = 1 and A2 = 1 and A3 = 1 and A4 = 1
and A5 = 1 and A6 = 1 and A7 = 1 and A8 = 1 and A9 = 0 and A10 = 0 and
A11 = 0 and A12 = 0, then function F1 will be selected. The log specifies that this
retrieval was done four times.

For a given set of requirements captured using use case, the use case specifi-
cation is used to capture the action states. If the action states A1 to A8 are only
selected, the functionality F1 can be retrieved. Similarly,

(A1 = 1) & (A9 = 0) & (A10 = 1) & (A2 = 1) => (Function = F0[1]). If
A1 = 1, A2 = 1, A9 = 0, A10 = 1, function F0 is selected. This means there does
not exist any function or component which satisfies these conditional attributes or
action states. Hence, the new functionality is to be realized and mapping of action
states and new functionality is again stored in repository so that it can be reused in
future. This is true for functional requirements. The proposed approach can be
implemented by mapping the use case specification to action states. Once the
requirements are given, use case is to be modeled, the action states are to be
captured, and the same is to be used to generate rules. These rules may help in
identifying whether a functionality satisfying these requirements is available for
reuse. If it is available, it can be reused directly or can be developed or existing

372 S. A. Moiz

functionality can be modified. For the real-time applications, the quality attributes
form a candidate for decision attribute. In some of the applications, the perfor-
mance, time for execution form important elements in selecting a required com-
ponent. In such applications though the action states may be same, it may not
retrieve the desired component. In such cases, additional attributes are realized for
action states such that uncertainty of selecting a proper functionality can be
realized.

5 Conclusion

Software reusability is one of the important building blocks which are used to
develop a highly productive software within time and budget. In this paper, an
approach is presented to retrieve the components by mapping each component with
its action states. The decision rules help in mapping the action states to the func-
tionalities available for reuse. Rough sets approach using LEM2 is used to generate
the rules. The result shows that given action states, it is possible to select an existing
component or identify a functionality which is not available for reuse. The
uncertainty can be resolved by introducing additional attributes. The additional
attribute may include other action states or a composition of few of other action
states. In future, there is a need to model uncertainty but the challenge is to decide
upon the additional attribute. Later a domain-specific component repository with
rule generation can be maintained so that the component retrieval will be faster.

References

1. Mahmood, S., Lai, R., Kim, Y.S.: Survey of component-based software development. IET
Softw. 1(2) (2007)

2. Kim, H.K., Chung, Y.K.: Transforming a legacy system into components. Springer, Berlin,
Heidelberg (2006)

3. Mili, H., Ah-ki, E., Godin, R., Mcheick, H.: An experiment in software retrieval. Inf. Softw.
Technol. 45(10), 663–669 (2003)

4. Dixit, A.: Software component retrieval using genetic algorithms. In: International
Conference on Computer & Automation Engineering, pp. 151–155 (2009)

5. Washizaki, H., Fukazawa, Y.: A retrieval technique for software component using directed
replace ability similarity. Object Oriented Inf. Syst. LNCS 2425, 298–310 (2002)

6. Singh, S.: An experiment in software component retrieval based on metadata & ontology
repository. Int. J. Comput. Appl. 61(14), 33–40 (2013)

7. Srinivas, C., Radhakrishna, V., Gurur Rao, C.V.: Clustering & classification of software
components for efficient component retrieval & building component reuse libraries. In: 2nd
International Conference on Information Technology & Quantitative Management, ITQM,
Procedia CS 31, pp. 1044–1050 (2014)

8. Pawlak, Z.: Rough sets. Int. J. Comput. Inform. Sci. 11(5), 341–356 (1982)
9. Laplante, P.A., Neil, C.J.: Modeling uncertainty in software engineering using rough sets.

Innov. Syst. Softw. Eng. 1, 71–78 (2005)

Software Component Retrieval Using Rough Sets 373

10. Khoo, L.P., Tor, S.B., Zhai, L.Y.: A rough-set-based approach for classification and rule
induction. Int. J. Adv. Manuf. Techol. 15(7), 438–444 (1999)

11. Grazymala–Busse, J.W.: A new version of the rule induction system Lers. Fundam.
Informatica 31(1), 27–39 (1997)

374 S. A. Moiz

Search-Based Secure Software Testing:
A Survey

Manju Khari, Vaishali and Manoj Kumar

Abstract In today’s era, each software developer is developing enormous products
consisting non-functional requirements but fails to provide security. Metaheuristic
search is used to estimate the test cases with the help of fitness functions,
search-based secure software testing (SBST) Security is not possible without the
vulnerabilities in the software. The overall objective is to study various vulnera-
bilities and various metaheuristic techniques. The results of the survey highlighted
the numerous fitness functions that could lead to security, further tools were
mentioned for various vulnerability scans. The research questions and corre-
sponding solutions to enlighten the scenario are provided in this survey.

Keywords Security � Non-functional requirements � Metaheuristic
Vulnerability scan � Search-based testing

1 Introduction

To ensure good quality software, non-functional requirements (NFRs) must be
included along with the functional requirements (FRs). NFR specifies essential need
of the system that evaluates operations rather than its significant performance.
SBST can be used as an extension to metaheuristic search techniques which gen-
erates software tests. Search-based software engineering (SBSE) converts software
engineering problem into computational search problem that can be handled with
metaheuristic techniques. This involves defining search space or set of possible
solutions. SBSE helps as an optimization technique in solving software engineering

M. Khari � Vaishali (&) � M. Kumar
Department of Computer Science, AIACTR, Geeta Colony, New Delhi 110031, India
e-mail: vaishalig1012@gmail.com

M. Khari
e-mail: manju.khari@yahoo.co.in

M. Kumar
e-mail: mnj_gpt@rediffmail.com

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_35

375

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_35&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_35&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_35&domain=pdf

problems. In this paper, after identifying the non-functional requirements and the
various metaheuristic search algorithms, the focus will be on the fitness functions
used for different kinds of algorithms [1]. While using the software, there could be
the case when various kinds of vulnerabilities can attack the system. There are
different categories of the vulnerabilities, defined in this paper. Security aspects are
enlightened with different kinds of solutions in the Web applications as well as in
the local system. Various metaheuristic techniques are shown in coming sections
along with the susceptibilities, for example buffer overflows, SQL Injection. Their
tools and the fitness function are well complemented to provide the security aspects.

In Fig. 1, it is shown that evolution of search-based secure software testing
(SBSST) which comprises of various individual stand-alone phases. At the earliest,
software engineering (SE) was evolved but that could not provide efficient approach
to provide an efficient search within software. So, SE combined with search-based
techniques like metaheuristic and search-based software engineering is generated.
But SBSE failed to provide security in software. To fulfil those needs, if SBSE is
integrated with the security testing (ST) module, then it can be said that SBSST can
be successfully formed.

Distribution of the rest of the paper is as follows: Sect. 2 highlights some of the
key concepts which will be highly used during the entire paper, explaining the
meaning of the keywords used. Section 3 focuses on the most appropriate research
questions focuses on this survey and their solutions based on depth research lit-
erature. Threats, conclusions are represented in Sects. 4 and 5, respectively.

2 Key Points

• Metaheuristic: Metaheuristic is an advanced problem which is standa-lone
framework in algorithm. It offers norms, rules, or course of action to formulate
algorithms for optimization.

• SBSE: SBSE was proved as an efficient technique in development of software
ranging from requirements analysis phase to testing of software. It contains
particular procedures for testing known as SBST, and test cases generated is

Fig. 1 Evolution of search based secure software testing

376 M. Khari et al.

referred as search-based data generation (SBDG). The motive is to formulate a
testing requirement in prototype model which could generalize optimization
problem for various distinct fitness functions with heuristic.

• ST: The objective of it is to expose enormous vulnerabilities and flaws which
could be possible in any system. The process can be done through different
techniques.

• Vulnerability Scan: This is the phenomenon used to match conditions with the
existing security issues with the help of automated tools. The upcoming risk is
set automatically with no manual verification or interpretation by the test
vendor.

3 Strategies of Research

The survey is a process of study and analysis of all available researches done
previously by great researchers. It can be interpreted by the means of creating a
short summary that can explain the previous work done. With the help of the work
done, the survey is being summarized in the form of different research questions
and their answers.

3.1 Research Questions

To scrutinize the verification of analysing the non-functional properties which is
security whether in local system or in Web-systems, it should have the ability to
detect any possible vulnerability by doing vulnerability scan. We have the fol-
lowing research questions:

RQ1: What is metaheuristic and its techniques?
RQ2: Why SBST is used to tackle security vulnerabilities?
RQ3: What is meant by software security testing?

4 Elucidation for Research Questions

4.1 RQ1: What Is Metaheuristic and Its Techniques?

Metaheuristic is an advanced method which is used to discover, create, or pick a
heuristic that generates an efficient solution to solve an optimization problem, even
with partial collection of knowledge or capacity [2].

Search-Based Secure Software Testing: A Survey 377

• Properties of Metaheuristic:

– Metaheuristic is the technique that directs the searching procedure.
– The aim is to find strengthful solutions, so efficient dealing with search space

has been applied.
– Movement of complex procedure from simple search.
– In general, metaheuristic is uncertain and non-deterministic.
– Metaheuristic does not obey problem of explicit domain.

• Classifications on the basis of “type of Strategy” as shown in Fig. 2:

– Single versus population-based searches: Single solution approach con-
centrates on altering and updating a single solution. It consists of various
techniques which are specific and constant in nature whereas,
population-based approach updates and modifies compound solutions. It
includes evolutionary computation, genetic algorithm (GA), and particle
swarm optimization (PSO).

– Swarm intelligence: It is considered as combined or group behaviour of
decentralised, self-coordinated mediators in a population or swarm.
Examples are: ant colony optimization, PSO, artificial bee colony.

– Hybrids and parallel metaheuristic: Hybrid metaheuristic is the one which
integrates present techniques with the other optimization approaches, like
mathematical programming, constraint programming, and machine learning.
Whereas, parallel approach employs the techniques of parallel programming
to run the various metaheuristic searches simultaneously.

4.2 RQ2: Why SBST Is Used to Tackle Security
Vulnerabilities?

• SBST attempts to solve two aspects of cost vulnerability problem as follows:

– Firstly, it is less economical, because as compared to traditional system it is
very much less labour concentrated.

Fig. 2 Taxonomy for
“metaheuristic”

378 M. Khari et al.

– Secondly, SBST techniques are specifically used to tackle subsets of all
already familiar vulnerabilities which are accountable for general security
threats.

• Search-based security [3] is used to uncover the vulnerabilities and applies
different methods to improve its security functionalities as shown in Table 1.

Table 1 summarizes all the vulnerabilities, their corresponding fitness function,
and the tools which are helpful in providing security to them. Buffer overflow, SQL
Injection, and XSS are the vulnerabilities which mostly occur while working on the
software, so their tools are also mentioned in order to provide enough security.

4.3 RQ3: What Is Meant by Software Security Testing?

With the wide use of computers in the era of new technologies, software has
become more complicated and implemented in a larger scale resulting in more
software security problems. Software security testing is one of the vital means to
ensure the security of a software trustiness and reliability.

It can be divided into

• Security functional testing: it states either security functions deployed correctly
and in consistent form or not with their specific security requirements or not.

• Security vulnerability testing: it states and discovers security vulnerabilities
from the viewpoint of attacker [4].

5 Threats

Whenever any software is prone to any of the vulnerability, we say that particular
vulnerability is considered as a threat to the system. Software, prone to threat, can
be categorized into

Table 1 Analysis of various vulnerabilities

Article Vulnerability Fitness function (if any) Tools used

Antoniol
[3]

Buffer
overflow

Dynamic weight fitness function (DWF) RatScan,
CodeSonar

Grosso
[1]

SQL
Injection

– AMNESIA

Avancini
[5]

Cross-site
scripting

Subset of population is selected to produce
more population and gives final solution

Txl, Yices

Search-Based Secure Software Testing: A Survey 379

• Progression stage (internal threats): Any software can be interjected at any time
by the software engineer in its life cycle of the requirements specification phase
and in the SRS document.

• Computation stage (both internal and external threats): This threat is detected
when the particular software runs on systems which are connected by the net-
work and when vulnerability is openly shown during the working stage [6]. This
stage can be misused by the attackers in the form of leaked script they can login
into the system through remote systems, and resulting in the attacks like buffer
overflow.

6 Conclusion

This survey showcased the usage of various search techniques for testing security in
the running software present in local as well as web system. In ST, GA, LGP, PSO
techniques have been applied in order to detect the possible vulnerabilities. It
focused on the type of vulnerabilities which could be possible and may cause an
attack. There is extensive acceptance of automatic computer systems, and the
responsibility played by many of software, and their motive is to provide very high
security when it comes to connecting the software applications with the user
through networking.

Various tools and their corresponding fitness functions were mentioned in order
to protect and detect any upcoming vulnerability in the system. When compared to
similar research efforts previously done, this paper concentrates to only the security
as the primary parameter to work on. This paper concludes the most important
vulnerabilities ever attacked in any system.

Finally, it is clearly felt that the system needs more efficient algorithms and those
methods in the software engineering, which can provide secure environment, so that
the user can access freely. In the near future, the system will be focussing on the
situation where the vulnerabilities should not enter the system without the
permission.

References

1. Grosso, C.D., Antoniol, G., Penta, M.D., Galinier, P., Merlo, E.: Improving network
applications security: a new heuristic to generate stress testing data. In: GECCO. Proceedings
of the Seventh Annual Conference on Genetic and Evolutionary Computation, pp. 1037–1043.
ACM (2005)

2. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and conceptual
comparison. ACM Comput. Surv. 35, 263–308 (2003)

3. Antoniol, G.: Search Based Software Testing for Software Security: Breaking Code to Make it
Safer, pp. 87–100. IEEE (2009)

380 M. Khari et al.

4. Gu, T., Shi, Y.-S., Fang, Y.: Research on software security testing. World Acad. Sci. Eng.
Technol. 70, 647–651 (2010)

5. Avancini, A., Ceccato, M.: Security testing of web applications: a search based approach for
cross-site scripting vulnerabilities. In: 11th IEEE International Working Conference on Source
Code Analysis and Manipulation, pp. 85–94 (2011)

6. Hamishagi, V.S.: Software security: a vulnerability activity revisit. In: Third International
Conference on Availability, Reliability and Security, pp. 866–872. IEEE (2008)

Search-Based Secure Software Testing: A Survey 381

Limitations of Function Point Analysis
in Multimedia Software/Application
Estimation

Sushil Kumar, Ravi Rastogi and Rajiv Nag

Abstract Till date the Function Point Analysis (FPA) was and it is mostly
accepted size estimation method for the software sizing community and it is still in
use. In developing the software system, software projects cost plays very important
role before it is developed in the context of size and effort. Allan J. Albrecht in 1979
developed the FPA, which, with some variations has been well accepted by the
academicians and practitioner (Gencel and Demirors in ACM Trans Softw Eng
Methodol 17(3):15.1–15.36, 2008) [1]. For any software development project,
estimation of its size, completion time, effort required, and finally the cost esti-
mation are critically important. Estimation assists in fixing exact targets for project
completion. In software industry, the main concern for the software developers is
the size estimation and its measurement. The old estimation technique—line of
code—cannot solve the purpose of size estimating requirements for multilanguage
programming skill capabilities and its ongoing size growing in the application
development process. However, by introducing the FP, we can resolve these dif-
ficulties to some degree. Gencel and Demirors proposed an estimation method to
analyze software effort based on function point in order to obtain effort required in
completion of the software project. They concluded that the proposed estimation
method helps to estimate software effort more precisely without bearing in mind the
languages or developing environment. Project manager can have the track on the
project progress, control the cost, and ensure the quality accurately using given
function point (Zheng et al. in estimation of software projects effort based on
function point, IEEE, 2009) [2]. But, the use of multimedia technology has pro-
vided a different path for delivering instruction. A two-way multimedia training is a
process, rather than a technology, because of that interested users are being bene-
fited and have new learning capabilities. Multimedia software developer should use

S. Kumar (&)
Sharda University, Greater Noida, India
e-mail: sushilkumar_2002@yahoo.com

R. Rastogi
Department of CS & E, Sharda University, Greater Noida, India

R. Nag
B I T Mesra Extention Centre, Noida, India

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_36

383

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_36&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_36&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_36&domain=pdf

suitable methods for designing the package which will not only enhance its capa-
bilities but will also be user-friendly. However, FPA has its own limitations, and it
may not estimate the size of multimedia software projects. The characteristics and
specifications of multimedia software applications do not fall under FPA specifi-
cations. The use of FPA for multimedia software estimation may lead to wrong
estimates and incomplete tasks which will end up into annoying all the stakeholders
of the project. This research paper is an attempt to find out the constraint of function
point analysis based on highlighting the critical issues (Ferchichi et al. in design
system engineering of software products implementation of a software estimation
model, IMACS-2006, Beijing, China, 2006) [3].

Keywords FPA—function point analysis � CAF—complexity adjustment factor
UFPs—unadjusted function points � External outputs (EOs) � External inputs (EIs)
External inquiries (EQs) � External logical files (ELFs) � Internal logical files (ILFs)

1 Introduction

In recent times, multimedia software has the potential to be used to share numerous
information in lively and interesting ways by merging hypermedia systems with
instruction in every walk of life. The end users could be motivated to learn the
subjects of their interest through a systematic representation and combination of
predictors like multimedia files, scripts, Web building blocks, and hyperlinks.

Designers/developers of multimedia software must decide in advance with the
help of clients and end users regarding positioning and locations of textual and
graphical elements in the screen or console. While designing the software, it is
desirable to have congruence between the functional location and the tools used for
designing. Thus, the end user can adequately focus and have experience on the
multimedia elements flow instead of having known to internal architecture of
multimedia software.

The interactive multimedia instructional packages should be lucid and attractive
for the end user. Generally, the developers have the tendency to use lots of audio
and video in a single program which is neither cost-effective nor efficient.

So, the judicious mix of audio and video with the instructional material is
essential for designing the cost-effective multimedia software. The software
industry/developer should not be swayed away by the capacity and capability of
voluminous space; otherwise, it will result in wastage of time and effort.

384 S. Kumar et al.

2 Function Point Analysis (FPA)

Allan J. Albrecht, in the middle of 1970, was first one to devise the function point
analysis method. Previously, the lines of code were used to calculate the software
size to overcome difficulties associated with it, and then, FPA was introduced to
help in developing a method to forecast endeavor related with the software
development process. The function point analysis was first introduced in 1979;
then, later in 1983, he came up with the next edition.

According to Albrecht, the functionality from user’s perspective is measured
from FPA on the basis of what information the user sends and gets back in return
from the system.

The function point formula for calculation of FP is as follows:

FP ¼ UFP � CAF

where UFP stands for unadjusted function points and CAF is complexity adjust-
ment factor.

The UFP and CAF calculation are shown below.
UFP Calculation:
Based on the counts, five functional factors, the unadjusted function points can

be calculated as follows:

(1) External Inputs (EIs),
(2) External Outputs (EOs),
(3) External Inquiries (EQs),
(4) Internal Logical Files (ILFs), and
(5) External Interface Files (EIFs).

2.1 External Inputs (EIs)

EIs are a simple process where the control data or business data cross the borderline
from outside of the system to inside of the system. The data can be received from a
data input source or a different function. Few internal logical files may be main-
tained by the data.

2.2 External Outputs (EOs)

A simple process by which processed data cross the borderline from inside of the
system to outside of the system is termed as EOs. Additionally, an internal logical

Limitations of Function Point Analysis … 385

file (ILF) is updated by EO. The processed data produce reports or output files with
the help of ILFs which are sent to other applications.

2.3 External Inquiries (EQs)

EQ is a simple process of retrieving data form ILFs and external interface files
(EIFs). It has both input and output components. Internal logical files are not
updated by the input process, and the output side does not contain processed data.

2.4 Internal Logical Files (ILFs)

ILF is a unique collection of logically related data which can be identified by the
user. It exists entirely within the applications boundary and is preserved through
external inputs.

2.5 External Interface Files (EIFs)

EIF is a collection of logically connected data which are only for referencing
purpose. The existence of EIF is outside the application and is taken care of by
another application. The EIF is an internal logical file for that application.

2.6 Rating of Components

All the components are put under one of the five major components, i.e., functional
units (EIs, EOs, EQs, ILFs, or EIFs), and then, the ranking is done as low, average,
or high (weighting factors). Table 1 shows the distribution of components in terms
of functional units, weighting factors, and the rate of weights.

Table 1 Functional units and
weighting factors

Functional units Weighting factors

Low Average High

EIs 3 4 6

EOs 4 5 7

EQs 3 4 6

ILFs 7 10 15

ELFs 5 7 10

386 S. Kumar et al.

Table 2 shows the complexity levels of the components. The counts for each and
every component can be put as shown in Table 2. For getting the rated value, each
count it is multiplied by the numerical value as shown in Table 1. The rated values
on every row are added across the table, giving a total value for each type of
component. These totals are then again added down to get the final total number of
unadjusted function points.

2.7 Calculation of Complexity Adjustment Factor (CAF)

The complexity adjustment factor calculation in FPA is done on the basis of 14
general characteristics (GSCs) for rating of general functionality of the application
being counted. These characteristics have allied details which assist in deciding the
weights of the characteristics. A scale of zero to five is used to signify no influence
to strong influence.

Table 3 describes the GSC briefly.
After getting all the inputs from 14 GSCs, they should be combined and placed

in a tabular manner using complexity adjustment equation (CAE). Rate of factors
varies from 0 to 5. The factors not useful for the system are rated as 0; the other
relevant factors are rated by their influence (importance) as given below:

0—no influence, 1—incidental, 2—moderate, 3—average, 4—significant, 5—
essential

CAF ¼ 0:65þ 0:01
X

Fi
� �

Here i range from 1 to 14 represents each general system characteristic one by
one, and

Fi is the degree of influence of each GSC. Lastly, all 14 GSCs are summed up.
Numerous works have been accomplished in the field of software size and effort

estimation in software engineering, and still, a lot many improvements may be
required in future.

In software engineering, effort estimation for software projects has been found to
be costly and challenging problem. Stakeholders expect a precise estimate for the

Table 2 Table used for
calculating UFP

Type of
components

Complexity levels

Low Average High Total

EI _x3=_ _x4=_ _x6=_

EO _x4=_ _x5=_ _x7=_

EQ _x3=_ _x4=_ _x6=_

ILF _x7=_ _x10=_ _x15=_

ELF _x5=_ _x7=_ _x10=_

Total number of unadjusted function points

Limitations of Function Point Analysis … 387

projects in the early stages, and coming up with those numbers is not only difficult
but also at times not technically feasible. Boehm et al. report that estimating a
project in its first stages yields estimates that may be off by as much as a factor of 4.
Even at the point when detailed specifications are produced, professional estimates
are expected to be wrong by ±50% [4].

The author suggested a number of metrics are suggested in the literature by
different researchers like—line of code (LOC), feature point, use case point (UCP),
object points, and function points for accurate calculation of software size [5].

According to the author, in LOC method, the calculation of software size is done
with the help of counting the number of instructions/lines in a given software
program. Methods based on LOC are very simple but not very effective in terms of
large size software projects [6].

The accurate software size estimation of a software project is really a difficult
task, if the code of the software is large enough. The exact sizing of software is very
essential component for the software development phase, since it ultimately decides
the cost of the given software project. The author also proposed a method for the
purpose of accurate software size estimation by proposing a new general system
property [7].

Table 3 Description of complexity adjustment factors

S.
No.

GSC (general system
characteristic)

Description

a Data communications Assists in information movement that facilitates the no. of
communications with the application

b Distributed data
processing

Handling process of distributed data and its functions

c Performance The reply time required by the user

d Heavily used
configuration

Load on the hardware platform where the application is
executed

e Transaction rate Frequency of transactions: daily, weekly, or monthly

f Online data entry Percentage of the information entered online

g End-user efficiency The application was designed for end-user efficiency

h Online update No. of ILFs updated by online transaction

i Complex processing Applications having extensive logical/mathematical
processing

j Reusability The application developed to meet user/s needs

k Installation ease Ease/difficulty is conversion and installation

l Operational ease Effective and/or automated; start-up, backup, and retrieval
process

m Multiple sites Specifically designed, developed, and supported applications
to be installed at a no. of sites in many organizations

n Facilitate change Application designed, developed, and supported for
facilitating change

388 S. Kumar et al.

The number of end-user programmers will expand exponentially, so end-user
programming environments will definitely have impact on software size and effort
estimation for software projects. Sizing is a key estimating activity. However, the
author anticipates that more precise estimates and characterizations of end-user
practices will help researchers target further work in developing languages and tools
to assist end users in programming tasks [8].

This paper highlights the point on the software evaluation methods which are
already available. According to the author, no model can evaluate the multimedia
software cost accurately. Conventional estimation techniques highlight only on the
actual development efforts; this paper tries to describe test effort estimation. In fact,
testing activities make up 40% of total software development effort. Hence, test
effort estimation is a crucial part of evaluation process [9].

3 Multimedia Systems Features Against FPA

The multimedia component such as graphics, menus, audio, video, hyperlinks,
scripts that contributes to the representation on the screen cannot be ascertained by
using FPA. The developer must focus on three points while developing multimedia
software, first getting the user’s attention, and then helping the user to find and
organize pertinent information, and in the last to integrate all those information into
the user’s knowledge structure.

Designers/developers should ascertain the positioning of navigational buttons,
content display control buttons, status, and progress indicators, and the areas should
be separated from each other. For getting the best results, the consistency between
screens should be maintained. The location of functional areas should not change,
and the devices used in the design should remain the same throughout as defined at
the beginning of the program.

To make multimedia software interactive, motivating, and relevant, a framework
has to be developed. The successful development of multimedia modules must grab
attention; inform about its objectives to the end user and motivate the user, create
awareness of prior learning, present the stimulus material to intended, provide
learning guidance, elicit performance, provide feedback to the user, assess perfor-
mance, and enhance retention for maintaining the quality. If these things are taken
care of in the software package, then it will effectively lead to easy learning.

For achieving the above, the following multimedia components are required:
Screen Design: The designing of screen is very important for multimedia

developers as it is the area of various contents. The screen design should include the
textual and graphic elements for presenting the content in a sequential manner to
highlight the learning specifics. The content will vary as per the requirements of the
package being developed. Each instructional screen or input field should not only
be designed aesthetically but also provide appropriate navigation tools and effective
instruction to the user.

Limitations of Function Point Analysis … 389

Navigation/Animation: The navigation/animation features make the multimedia
modules interactive which enhances learning and also makes easy for the user to
handle it. Navigational elements not only compose a program and perform
housekeeping tasks but also provide the user some control over the events. The
navigation process should be clearly defined within the system for the user and
should remain consistent throughout the program.

Graphics Capabilities: In multimedia software, the information can be provided
in either text mode or graphics mode, or, both (if required). Users unable to read the
information given in text may easily understand it, if the same is presented or
supplemented by use of various visuals. Generally, it has been seen that complex
and difficult topics could be understood easily if appropriate graphics are used for
explaining them.

Audio: Many multimedia programs use texts as a critical instructional compo-
nent which is difficult for the beginners to understand. Text type of information is
easy and inexpensive to develop, so at times, developers use it extensively as it also
used minimal computer memory. The text should be supported by audio.

Video: The multimedia software is incomplete without motion video, like home
videos, commercial tapes, and movies, but the video display needs more storage
space in the computer than simple animations. This requires special hardware and/
or software.

All these multimedia files audio, video, and images required effort to
incorporate.

Scripts: To generate reports automatically, it requires an effort to link HTML/
XML data.

Web Building Blocks: It required effort to use standard Web components.
Links: To link applications to databases and other applications, it required effort.
Domain of multimedia system is increasing year by year. Because of underes-

timation or overestimation of multimedia software, an estimation tool has to be
evolved. FPA also may not be taken as an accurate tool which lacks the necessary
attribute to estimate multimedia software.

Table 4 indicates the features of multimedia software system and FPA.

3.1 Limitations of FPA

1. Calculated function points are not suitable for most of the programming
languages.

2. FPA can be successfully used for size estimation of scientific programs, system
programs, and networking programming modules.

3. Animations, the simulations size and effects of additional document used in
multimedia software are not considered in FPA perspective.

4. Multimedia software holds huge volume of data. FPA occupies less data
storage.

390 S. Kumar et al.

5. Multimedia software requires high level of synchronized service networking,
but this kind of data transfer facilities is not available in case of FPA.

6. Multimedia software is extensively used for transmitting the secured data, so to
achieve this, high-level security codes are required. Each line in the program,
related to security codes, has much weight. FPA does not provide any attention
to such codes.

4 Conclusion

The software industry has many models developed by various researchers for
estimation of size in terms of time and effort required in developing software
packages. The commonly used models are expert estimation, Function Point and its

Table 4 Significant features required for multimedia software estimation

S.
No.

Features Multimedia software FPA

1 Technology Knowledge/
expertise in MM

Parametric/proxy-based/algorithmic
method

2 Past project
experience

Necessary for
effective estimation

For producing useful variables for
estimation in the case of FPA

3 Time More time Time reduced

4 Accuracy Web/GUI-based
applications

Accurate according to the specifications
of FPA

5 Dependency Language dependent

6 Cost More cost for
estimation

Cost is less for estimation

7 Reusability More considered Less considered

8 GUI support Supported Not supported

9 Database More considered Less considered

10 Networking More considered Less considered

11 Storage More considered Less considered

12 Distribution More considered Less considered

13 Multimedia
specialization

Must be specialist Not required

14 Effort in special
effects

Required Not required

15 Consideration of
animation

Required Not required

16 Simulation Required Not required

Limitations of Function Point Analysis … 391

derivatives like use case point, object points, and COCOMO. All the models are
available for size and effort estimation.

However, in this modern era with the introduction of new technologies like Java-
and Android-based applications, the analysis stated above illustrates that FPA is not
fully compatible for estimation of multimedia software system. So, for multimedia
software industry, one has to come up with a better software size estimation model
which will consider the special requirements of the industry.

References

1. Gencel, C., Demirors, O.: Functional size measurement revisited. ACM Trans. Softw. Eng.
Methodol. 17(3), 15.1–15.36 (2008)

2. Zheng, Y., Wang, B., Zheng, Y., Shi, l.: Estimation of Software Projects Effort Based on
Function Point. IEEE (2009)

3. Ferchichi, A., Bourey, J.P., Bigand, M., Barron, M.: Design System Engineering of Software
Products Implementation of a Software Estimation Model. IMACS-2006. Beijing, China
(2006)

4. Boehm, B., Clark, B., Horowitz, E., Westland, C., Madachy, R., Selby, R.: Cost models for
future software life cycle processes: COCOMO 2.0. Ann. Softw. Eng. Softw. Process Product
Meas (1995)

5. Diwaker, C., Dhiman, A.: Size and effort estimation techniques for software development. Int.
J. Soft. Web Sci. (IJSWS) (2013)

6. Choursiya, N., Yadav, R.: A survey on software size and effort estimation techniques. Cogn.
Tech. Res. J. 2(2) (2014)

7. Nilesh, C., Rashmi, Y.: An enhanced function point analysis (FPA) method for software size
estimation. Int. J. Comput. Sci. Inf. Technol. 6(3), 2797–2799 (2015)

8. Archana, S., Qamar, A.S., Singh, S.K.: Enhancement in function point analysis. Int. J. Softw.
Eng. Appl. (IJSEA) 3(6) (2012)

9. Borade, J.G., Khalkar, V.R.: Software project effort and cost estimation techniques. Int. J. Adv.
Res. Comput. Sci. Softw. Eng. 3(8) (2013). ISSN: 2277 128X

392 S. Kumar et al.

Maintainability Analysis
of Component-Based Software
Architecture

Nitin Upadhyay

Abstract The analysis of the maintainability of a component-based software
system (CBSS) architecture is a critical issue as it majorly contributes to the overall
quality, risks, and economics of the software product life cycle. Architectural styles’
features of CBSS, which characterize maintainability, are identified and represented
as architecture-style-maintainability digraph. The maintainability scenarios are
represented by the digraph nodes. The edges of the digraph represent the degree of
influence among the scenarios. A detailed procedure for the maintainability analysis
of CBSS is suggested through a maintainability function. The scenario maintain-
ability index SMI measures the maintainability of a system. A lower value of the
SMI implies better maintainability of the system. The maintainability analysis
procedure mentioned in the paper helps the key stakeholders of the CBSS in
managing, controlling, and improvising the maintainability of a system by appro-
priately incorporating maintainability scenarios in heterogeneous architectural
styles.

Keywords Maintainability � Software architecture � Software component
Architecture analysis � Maintainability index

1 Introduction

The maintenance analysis and execution in software product life cycle are considered
to be the critical issue as it contributes to 60–80% of the total life costs [1–3] no
matter whether the software is built from custom or commercial-off-the-shelf
(COTS). As maintenance process majorly contributes to the overall quality, risks,
and economics of the software product life cycle, some organizations are looking at
their maintenance process life cycle as an area for competitive age [4]. Software

N. Upadhyay (&)
Information Technology and Production & Operations Management,
Goa Institute of Management, Sattari, India
e-mail: nitin@gim.ac.in

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_37

393

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_37&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_37&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_37&domain=pdf

organizations nowadays prefer the usage of component technology to get just-in-time
software product. Building a software system from COTS does not change the
importance nor the expense associated with the maintenance, evolution, and man-
agement [5]. Software maintenance as per IEEE Standard 1219 is defined as:

Modification of a software product after delivery to correct faults, to improve performance
or other attributes, or to adapt the product to a modified environment [6].

Software architecture design phase is considered as a major and critical phase as
most of the decisions taken at this stage a have major impact on overall software
product life cycle. Maintainability is considered to be a design attribute of a system
and thus plays a significant role during system operation. The inputs to the design
stage are the requirements which include all desired system features and specifi-
cations as per system stakeholders. The quality of the product is driven by its
architectural design decisions. A software architectural design would be completely
successful if it fulfills all/maximum system’s functional and non-functional
requirements. Authors in their work [7, 8] have mentioned that the quality of a
component-based software system is influenced by the composition and complexity
of the components in the system. Software architecture encompasses set of com-
ponents, connectors, and configurations describe the software structure at an
abstract level [9]. An architectural style represents the software architecture
repeatable pattern that characterizes its configurations of components and connec-
tors [10]. Researches have come with many effective architectural styles and many
new styles continuously emerging as the consequence of technological advance-
ments [11–13]. The maintainability scenarios required to address the maintain-
ability requirement will have a great impact on the architectural style. Thus, a
practitioner needs to understand how to analyze maintainability scenario and
associated architecture as a whole to get the desired quality? A method or model
that supports analysis of the maintainability of a CBSS considering architectural
style(s) and scenarios can certainly provide benefit to practitioners, maintainers, and
designers to configure, control, and manage the overall product life cycle that best
fits their maintainability quality demands. In the paper [8], the authors have utilized
system graph to represent complete CBSS in terms of its subsystems. The system
graph models CBSS structure as system structural graphs considering subsystems
and interactions between them. In the current paper, aforementioned problem is
addressed and correlation of the maintainability of the CBSS with its architecture
and maintainability scenarios is accomplished.

Most techniques in the research in the maintainability assessment and evaluation
relate to the number of lines of code and generally based on linear regression. The
rest of the paper is structured as follows: Sect. 2 describes the development of
maintainability scenario and graph. In Sect. 3, maintainability analysis and scenario
evaluation is discussed. Finally, in Sect. 4 concluding remarks are presented by
providing the benefits of the developed method.

394 N. Upadhyay

2 Maintainability Scenario and Graph

According to the authors [10], to understand the software architecture, during the
requirement elicitation phase the scenarios must be used and documented
throughout, considering operator’s viewpoint of the system [14]. To understand
system’s maintainability, it is to be noted that the scenarios of change to the
software product can be used as a method of comparing design alternatives [15, 16].
By analyzing the scenarios associated with the quality attribute for the architectural
style, one can figure out how to satisfy the quality attribute of the architecture. In
this paper, three scenarios are considered for the analysis—addition of a compo-
nent, deletion of a component, and edition of a component. The organization can
take up more or altogether different scenarios as per their requirements. The nec-
essary scenarios for analyzing the maintainability quality attribute in heterogeneous
architecture style(s) are sown in Table 1.

Architecture style and scenarios need to be represented in an analytical frame-
work to get more precise results from analyzing scenarios in architectural styles.
A system represents configurations of components and connectors. These config-
urations include description of ports and roles. Ports are the interfaces of compo-
nents, therefore define the point of interaction among component and environment
and roles define the interfaces of the connectors. An overview of a system can be
depicted in Fig. 1.

The structure of software systems in the style is related to the structural feature of
an architectural style. These features include: constituent parts, control topology, data
topology, control/data interaction topology, and control/data interaction indirection.
As Table 2 shows, different styles have different features/elements. However, all of
them have component, connector, port, and role. Thus, in order to get numerical
index for maintainability, suitable weights or experimental values can be assigned to
each element and for their interactions. Cost for performing each scenario is different,
thus suitable weights can be assigned to each scenario for the analysis. It is to be
noted that while applying scenario on architecture, if there exists more than one state,
then the average values of the states as the result value will be considered for the
analysis. By putting values obtained for all the scenarios and their interactions in the
system maintainability function, a numerical index (SMI) can be calculated. By
having variations in the architectural styles, different indexes can be obtained. This
will provide the facility to set up the benchmarks and also helps in evaluating and
selecting the particular or combination of architecture style(s).

Table 1 Maintainability scenarios

Scenario name Scenario description

Addition Addition of a new component to the architecture

Deletion Deletion of an existing component from the architecture

Edition Edition of an existing component. Two cases
– Change in ports
– No change in ports

Maintainability Analysis of Component-Based Software Architecture 395

A maintainability scenario graph (MSG) models the maintainability scenarios
and their influence. This digraph comprises of a set of nodes V = {vi}, where i = 1,
2, 3…n scenarios; and a set of directed edges E = {ei}, where i = 1, 2, 3…
m influences/interactions among set of scenarios (nodes). A node vi represents the
ith maintainability scenario and edges represent the influence of one scenario over
another scenario. The number of nodes “n,” in a maintainability scenario graph,
considered is equal to the number of maintainability scenario considered for the
given CBSS. If scenario si, represented by node vi, upon completion has influence
on other scenario sj, represented by node vj, then an edge (directed) from vj to vj is
considered. If both the scenarios are influencing each other, then bidirectional edge
is considered (from vi to vj and from vj to vi).

It can be inferred that applying one scenario on architecture style may have
ripple effect in executing other or all scenarios. Thus, the MSG for the typical case
for the three scenarios (edition, addition, deletion) is shown in Fig. 2.

Table 3 shows the degree of influence among the scenarios. Various possibilities
and cases can come in relation to degree of influence. For example, the degree of
influence/interaction for addition scenario and among other two scenarios is shown
in first row. The degree of influence/interaction is strong for edition scenario (i.e., S.
No. C and edge (e13)) and weak for deletion scenario (i.e., S. No. B and edge
(e12)). Similarly, the degree of influence/interaction among other scenarios is
shown in Table 3. It is advised to get the experts opinion in formulating the
influence/interaction value among the scenarios.

For the easy analysis, the cost/weight of different elements of the architecture in
different styles is considered to be same. The scenario cost/weight are based on
person-day and shown in Table 4.

The MSG provides a visual representation of the CBSS scenarios and their
influence. The digraph becomes more complex if the number of nodes (scenarios)
and edges increases. In such situation, visual analysis becomes complex. To
overcome the complexity, the MSG digraph is converted and represented in the
form of a matrix. The matrix is further utilized to generate an expression of the
maintainability. The matrix proposed for the same is called a system maintainability
scenario matrix (SMSM), one-to-one representation of MSG. This is represented as
matrix, expression (1)

Fig. 1 Component-based
system overview

396 N. Upadhyay

T
ab

le
2

St
yl
e,

el
em

en
ts
,
an
d
to
po

lo
gy

St
yl
e

E
le
m
en
ts

T
op

ol
og

y

C
om

po
ne
nt

C
on

ne
ct
or

Po
rt

R
ol
e

D
at
a
flo

w
Pr
oc
es
si
ng

el
em

en
ts

D
at
a
flo

w
s

Pr
oc
es
si
ng

el
em

en
ts

D
at
a
fl
ow

s
A
rb
itr
ar
y

Pi
pe

an
d
fi
lte
r

Fi
lte
rs
/T
ra
ns
du

ce
rs

Pi
pe
s/
D
at
a

st
re
am

s
T
ra
ns
du

ce
rs

D
at
a
st
re
am

s
D
ir
ec
te
d

gr
ap
hs

B
at
ch

se
qu

en
tia
l

pr
oc
es
si
ng

Ph
as
e
st
an
d-
al
on

e
pr
og

ra
m
s

B
at
ch

da
ta

St
an
d-
al
on

e
pr
og

ra
m
s

B
at
ch

da
ta

L
in
ea
r

In
de
pe
nd

en
t

co
m
po

ne
nt

Pr
oc
es
s;
m
od

ul
es

C
om

m
un

ic
at
io
n

pr
ot
oc
ol

Pr
oc
es
s;
m
od

ul
es

C
om

m
un

ic
at
io
n

pr
ot
oc
ol

A
rb
itr
ar
y

E
ve
nt
-b
as
ed

im
pl
ic
it

in
vo

ca
tio

n

Pr
oc
es
se
s;
ev
en
t
ha
nd

le
r

E
ve
nt
s;
m
es
sa
ge

pr
ot
oc
ol

Pr
oc
es
se
s;
ev
en
t
ha
nd

le
r

M
es
sa
ge

pr
ot
oc
ol

A
rb
itr
ar
y

C
om

m
un

ic
at
in
g

pr
oc
es
s

Pr
oc
es
se
s;
ev
en
t
ha
nd

le
r

E
ve
nt
s;
m
es
sa
ge

pr
ot
oc
ol

Pr
oc
es
se
s;
ev
en
t
ha
nd

le
r

E
ve
nt
s;
m
es
sa
ge

pr
ot
oc
ol

A
rb
itr
ar
y

C
al
l
an
d
re
tu
rn

Pr
oc
ed
ur
es
;
da
ta

st
or
es

Pr
oc
ed
ur
e
ca
lls
;

da
ta

ac
ce
ss

Pr
oc
ed
ur
es
;
da
ta

st
or
es

Pr
oc
ed
ur
e
ca
lls
;

da
ta

ac
ce
ss

A
rb
itr
ar
y

L
ay
er
ed

sy
st
em

L
ay
er

se
t
of

pr
oc
ed
ur
es

Pr
oc
ed
ur
e
ca
lls

Se
t
of

pr
oc
ed
ur
es

Pr
oc
ed
ur
e
ca
lls

H
ie
ra
rc
hi
ca
l

A
bs
tr
ac
t
da
ta

ty
pe

M
an
ag
er
s

Pr
oc
ed
ur
e
ca
lls

M
an
ag
er
s

Pr
oc
ed
ur
e
ca
lls

A
rb
itr
ar
y

E
ve
nt
-b
as
ed

im
pl
ic
it

in
vo

ca
tio

n

Pr
oc
es
se
s;
ev
en
t
ha
nd

le
r

E
ve
nt
s;
m
es
sa
ge

pr
ot
oc
ol

Pr
oc
es
se
s;
ev
en
t
ha
nd

le
r

M
es
sa
ge

pr
ot
oc
ol

A
rb
itr
ar
y

O
bj
ec
t-
or
ie
nt
ed

M
an
ag
er
s
ob

je
ct
/c
la
ss
es

Pr
oc
ed
ur
e
ca
lls

M
an
ag
er
s
ob

je
ct
/c
la
ss
es

Pr
oc
ed
ur
e
ca
lls

A
rb
itr
ar
y

D
at
a
ce
nt
er
ed

D
at
a
st
or
e;

co
m
pu

ta
tio

n
cl
ie
nt
s

D
at
a
ac
ce
ss
;

da
ta

qu
er
ie
s

D
at
a
st
or
e;

co
m
pu

ta
tio

n
cl
ie
nt
s

D
at
a
ac
ce
ss
;

da
ta

qu
er
ie
s

St
ar

V
ir
tu
al

m
ac
hi
ne
s

D
at
a
m
em

or
y;

st
at
e

m
em

or
y;

pr
og

ra
m

m
em

or
y

D
at
a
pa
th
s

D
at
a
m
em

or
y;

st
at
e
m
em

or
y;

pr
og

ra
m

m
em

or
y;

in
te
rp
re
ta
tio

n
en
gi
ne

D
at
a
pa
th
s

Fi
xe
d

Maintainability Analysis of Component-Based Software Architecture 397

SMSM ¼
1 2 3 Scenarios
S1 e12 e13
e21 S2 e23
e31 e32 S3

2
4

3
5
1
2
3

ð1Þ

Diagonal element Si, where i = {1, 2, 3}, represents value of ith maintainability
scenario as scenario cost and off-diagonal elements eij the degree of influence/
interaction of ith maintainability scenario over jth maintainability scenario. To
generate a meaningful information for the SMSM, a resultant characteristic
expression is generated based on the permanent of the matrix that contains number
of terms which are invariants.

Permanent of a matrix is a standard matrix function and is used in combinatorial
matrix. Utilizing such concept will help in considering maintainability scenario
structural information from combinatorial point of view. This facilities in associ-
ating proper meaning to structural features and their combinations. Moreover, no
information will be lost as the expression does not contain any negative sign.
Permanent of this matrix is called as system maintainability scenario function,

Fig. 2 Maintainability
scenario graph

Table 3 Scenario and degree of influence

S. No. Scenario Degree of influence

Strong = 3 Medium = 2 Weak = 1 None = 0

A Addition C (e13) B (e12)

B Deletion C (e23) A (e21)

C Edition A (e31) B (e32)

Table 4 Scenario action and elements cost/weight description

Actions Cost/Weight
(Person-day)

Elements Cost/Weight
(Person-day)

Leading to add
component

3 Component 1

Leading to delete
component

1 Connector 0.5

Leading to edit
component

2 Port 0.75

Role 0.25

398 N. Upadhyay

abbreviated as SMS-f. The characteristics of the CBSS based on heterogeneous
architecture style upon performing scenarios are represented by SMS-f.

The SMS-f (Permanent) of matrix, expression (1), is mentioned as below as
expression (2).

SMS-f ¼ S1 � S2 � S3�½ � þ e23 � e32 � S1 þ e12 � e21 � S3 þ e13 � e31 � S2½ �½
þ e13 � e32 � e21 þ e12 � e23 � e31½ �� ð2Þ

The expression 2 can easily be written by simply visually inspecting CBSS
system of Fig. 1. For easy analysis, the expression 2 is rearranged as groups
(N + 1). In general, the permanent of a N * N matrix, A where entries ai,j is defined
in [17], is written as in expression (3):

Per Að Þ ¼
X
P

YN
i¼1

ai;PðiÞ; ð3Þ

where the sum is overall permutations P. The expression 3, in general, shows the
SMS-f of complete CBSS.

3 Maintainability Analysis and Scenario Evaluation

The CBSS system maintainability scenario characteristic is represented in Eq. (1)
where diagonals’ elements correspond to the different scenarios as considered and
off-diagonal elements correspond to influences/interactions between scenarios. The
values of diagonal elements S1, S1, and S1 are calculated as:

S1 ¼ SMSM S1ð Þ S2 ¼ SMSM S2ð Þ S3 ¼ SMSM S3ð Þ ð4Þ

SMSM (S1), SMSM (S2), and SMSM (S3) are the system maintainability sce-
nario matrices for three scenarios and can be calculated by generating respective
SMSMs. This can be generated by considering the sub-scenario of respective
scenarios. The whole procedure is repeated recursively until terminal node appears
(last node: no further decomposition). In short, procedure to do so is mentioned
below:

1. Determine the sub-scenario considering their various sub-sub-scenarios.
2. Determine the degree of interactions/influences, etc., between different

sub-scenarios.
3. Repeat step 1 and 2 until terminal node appears.

For an exhaustive analysis, a MSG digraph (like Fig. 1) of different scenarios for
a CBSS under study can be formulated considering their respective SMSMs and
SMS-fs. Technical experts help can be taken in order to finalize the exact degree of

Maintainability Analysis of Component-Based Software Architecture 399

influence between scenarios or sub-scenarios. Maintainability of the CBSS archi-
tecture considering scenarios early in the software development life cycle can be
assessed through an index. The numerical value of SMS-f is called scenario
maintainability index (SMI). The SMI can be utilized to perform comparison of two
or more competing alternative CBSS architectural designs considering maintain-
ability aspect. The lower the value of the maintainability index, the better is the
CBSS software product from a maintainability consideration.

4 Conclusion

In the current research work, a systematic analytical model based on graph theory is
developed to analyze the maintainability of the CBSS architectural designs con-
sidering architectural styles and maintainability scenarios. The proposed main-
tainability analysis method provides benefits to designers, architects, quality
analyst, and other key stakeholders to face the global competition and challenges by
controlling maintainability of a set of CBSS. The proposed method is capable of
considering the complete CBSS system from point of view of maintainability
scenarios and possible interactions among them. The proposed method considers
prominent maintainability scenarios—edition, addition, deletion, of all CBSS
architectural design. The method encompasses the development of maintainability
scenario graph, system scenario maintainability matrix, and system maintainability
index for CBSS architectural design. The method can handle all possible combi-
natorial formulation of interrelations of the scenarios/sub-scenarios of CBSS under
study. System maintainability index provides a quantitative measure of maintain-
ability of CBSS that can be used to benchmark the alternative designs from the
maintainability point of view. Future work will carry out the applicability of the
proposed method in considering different architectural styles for analyzing CBSS.

References

1. Lientz, B.P., Swanson, E.B.: Characteristics of application software maintenance. Comm.
ACM 21(6), 466–471 (1978)

2. Parikh, G.: The Guide to Software Maintenance. Winthrop Publishers, Cambridge, Mass
(1982)

3. Pigoski, T.M.: Practical Software Maintenance, pp. 29–31. Wiley, New York, NY (1997)
4. Moad, J.: Maintaining the competitive edge. Datamation 36(4), 61–66 (1990)
5. Szyperski, C.: Component Software: Beyond Object-Oriented Programming.

Addison-Wesley (2002)
6. IEEE.: Standard for Software Maintenance, IEEE Std 1219, IEEE Computer Society, Los

Alamitos, CA (1993)
7. Woit, D.: Specify component interactions for modular reliability estimation. In: Proceedings

of First International Software Quality Week (1997)

400 N. Upadhyay

8. Upadhyay, N., Deshpande, B.M., Agrawal, V.P.: MACBSS: modeling and analysis of
component based software system. IEEE World Congr. Comput. Sci. Inf. Eng. 595–601
(2009)

9. Pen, H., He, F.: Software trustworthiness modelling based on interactive Markov chains. Inf.
Technol. Eng. 219–224 (2014) (Liu, Sung and Yao, editors)

10. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, SEI Series. Pearson
Education (2013)

11. Perry, D.E., Wolf, A.L.: Foundation for the study of software architecture. Softw. Eng. Notes
17(4), 40–52 (1992)

12. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Discipline.
Prentice Hall (1996)

13. Hofmeister, C., Nord, R., Soni, D.: Applied Software Architecture, Notes in Computer
Science. Addison Wesley (1998)

14. Niu, N., Starkville, M.S, Xu, D.L., Cheng, J.R.C., Zhendong, N.: Analysis of architecturally
significant requirements for enterprise systems. IEEE Syst. J. 8(3) (2014)

15. Bernard, K.F., Yvan, M.: Software architecture knowledge for intelligent light maintenance.
Adv. Eng. Softw. 67, 125–135 (2014)

16. Knodel, J., Naab, M.: Software architecture evaluation in practice: retrospective on more than
50 architecture evaluations in industry. In: Proceedings of Software Architecture (WICSA),
pp. 115–124 (2014)

17. Forbert, H., Marx, D.: Calculation of the permanent of a sparse positive matrix. Comput.
Phys. Commun. 150(3), 267–273 (2003)

Maintainability Analysis of Component-Based Software Architecture 401

An Assessment of Vulnerable Detection
Source Code Tools

Anoop Kumar Verma and Aman Kumar Sharma

Abstract The commonly used programming language includes C and C++ for the
software development and even introduced as a course contents in computer
applications in number of institutions. As software development proceeds through
various phases of system development life cycle, the design phase and coding phase
have the greatest impact of the rest of phases, so every software development
should have a good user interface and database design including writing a source
code in order to make user interface active.

Keywords Vulnerabilities � Software development � Source code
Static source code analysis � Software tools

1 Introduction

When detecting C/C++ program vulnerabilities, static source code analysis can be
used. This paper makes a comparative analysis of three open-source static source
code analysis tools for C/C++ programming languages. Threats and vulnerabilities
are responsible for creating challenges in security of information [1], so there arise a
need to make source code good enough to prevent flaws and therefore reduce
testing efforts. To make source code effective, errors or vulnerabilities in code need
to be identified as soon as possible. Initially, a programmer writes a program in a
particular programming language. This form of the program is called the source
program, or more generically, source code. Secure software development should be
engineered in such a way that the software functions smoothly and handles security
threats effectively during malicious attack [2].

A. K. Verma (&) � A. K. Sharma
Department of Computer Science, Himachal Pradesh University, Shimla, India
e-mail: anoopthakur14@gmail.com

A. K. Sharma
e-mail: sharmaas1@gmail.com

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_38

403

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_38&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_38&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_38&domain=pdf

A bug may be defined as error that causes undesirable behavior of the source
code. A bug is classified into three types: syntax, data, and logical [3]. Syntax error
occurs due to the violation of rules of a programming language, if these kinds of
errors are not removed program will not run. With data errors, the program gets
compiled successfully but the data values that were passed into the program were
created. With logic errors, program runs and data values accepted, but the result is
not the desired one as expected. Program vulnerability is a property of the program
that allows a user to disturb confidentiality, integrity, and/or availability of the
software [4]. Vulnerability detection methods can be classified into static and
dynamic methods [5]. These methods can be applied in order to detect the various
types of errors in a source code. When detecting vulnerabilities statically, the source
code need not be executed while in case of dynamic detection of vulnerabilities, the
source code needs to be executed. To detect vulnerabilities in a C or C++ programs,
some static code analyzer tools are being used in this study.

Programs with errors either will not be executed or will give incorrect results;
this may be due to the syntax errors or the semantic errors or may be due to data
errors. Software with syntax errors are reported by the compiler. The developer
rectifies the syntax based on the error message. These errors are identified at initial
stage; such errors are least deadly as they were detected and rectified at the initial
stage. Programs having semantic errors are not identified at earlier stages, and their
life is long with deadly impact on the program as they affect the efficiency of the
program. With data errors, results are not valid as expected. If vulnerabilities in the
program are decreased to minimum possible extent, the efficiency, compilation
time, execution time improves considerably.

The following are some common source code vulnerabilities.

1. Divide Error: This error occurs during the division of a number by zero.
2. Out of Bounds: This error occurs during the accessing of an array element out

of the given range.
3. Memory Leaks: A memory leak occurs in programming languages that do not

support garbage collector mechanism. It is basically a situation where the
allocated memory to pointer-type variables is not freed while program is in
execution [6].

4. Uninitialized Variable: This type of error occurs while using an uninitialized
variable.

If vulnerabilities are detected manually during the testing phase of the software
development, it may consume more time and all the errors may not be identified
thus include more human labor. Instead of manual testing, automated testing of
source code can be performed using some source code analysis tools.

404 A. K. Verma and A. K. Sharma

2 Tools

This section describes the following open-source static source code analysis tools.

1. Cppcheck 1.68
2. Flawfinder
3. Visual Code Grepper (VCG)

2.1 Cppcheck 1.68 [7]

As its name suggests, it analyzes C/C++ source code developed by Daniel
Marjamaki and Cppcheck team during the period 2007–2010. This tool does not
detect syntax errors, but detect the errors that compilers fails to detect.

Features:
1. Runs on both Windows and Ubuntu operating systems.
2. Can be run through GUI or through command prompt.
3. Out of bounds checking.
4. Generates output in XML and HTML formats also.
5. Checks for uninitialized variables.
6. Memory leaks checking.

Benefits:
The following are the some of the benefits that can be analyzed while running

this tool.

1. Provides checking of a single file or all file within the same directory.
2. Displays various severities as errors, warning, style, performance, portability,

and information.
3. Allows setting through command prompt with the available switches.
4. Cppcheck can be integrated to Microsoft Visual Studio.
5. It is possible to write Cppcheck extension using dump files in python. For

example, the cppcheckdata.py module allows loading such dump files.

Source of Availability:

Cppcheck is freely available at http://cppcheck.sourceforge.net.

2.2 Flawfinder [8]

Flawfinder is developed by David A. It scans through C/C++ source code and looks
for the potential security flaws. After complete scanning of source code, it produces

An Assessment of Vulnerable Detection Source Code Tools 405

http://cppcheck.sourceforge.net

a list of hits sorted by the riskiest hits displayed firstly. The level of risk is shown
inside square brackets that may vary from 0, very little risk, to 5, great risk. The risk
level also dependent on the arguments passed to the functions. Flawfinder works on
Unix platform and on Windows platform.

Features:
1. Flawfinder works by performing simple lexical tokenization (skipping com-

ments and correctly tokenizing strings), looking for token matches to the
database (particularly to find function calls).

2. File name given to analysis on command line is examined for the extension.
3. After analysis is completed, summary of the results is displayed that reports

number of hits, number of line analyzed including total number of lines ana-
lyzed source line of code (SLOC).

4. It reports hit density means number of hits per thousand lines of source code.

Benefits:
Following are the some of the benefits that can be analyzed while running this

tool.

1. It produces physical SLOC analyzed excluding blank and commented lines.
2. It displays information about line analyzed in the source code per second.
3. It can display the output in HTML format.

Source of Availability:

Flawfinder is freely available at http://www.dwheeler.com/flawfinder.

2.3 Visual Code Grepper (VCG) [9]

VCG is freely available code analysis tool written by Jonathan Murray and Nick
Dunn that quickly identifies bad/insecure code. It also have a configuration file for
all languages that user can customize accordingly as per his needs and require-
ments. This security scanner also breaks down the vulnerabilities to six pre-defined
levels of severity. The results can also be exported to XML.

Features:
1. Configuration file for each language allows user to add bad functions that

programmer wants to search for.
2. It can also find some common phases within comments like “ToDo”, “FixMe”,

etc.
3. It generates a pie chart displaying proportions of the code including overall

code, overall whitespace, overall comment, and potentially dangerous code.

406 A. K. Verma and A. K. Sharma

http://www.dwheeler.com/flawfinder

Benefits:
The following are some of the benefits that can be analyzed while running this

tool.

1. It provides support for multiple languages source code scanning.
2. It has configuration files for different languages that have setting for potentially

dangerous function, such files are modifiable.
3. Results can be exported to XML format.
4. It has options to scan the code (excluding comments) and scanning of complete

code.
5. The results can be filtered based on the levels (low, medium, high, critical,

potentially unsafe, etc.).

Source of Availability:

VCG is freely available at http://sourceforge.net/projects/visualcodegrepp/.

3 Comparison/Analysis of Tools

The approach that parses the source code to look for vulnerabilities thoroughly is
known as static code analysis [10]. The source code analysis tools were compared
based on the features supported by each of them. The tools considered for analysis
are as follows:

1. Cppcheck
2. Flawfinder
3. Visual Code Grepper

3.1 Conceptual Comparison

Table 1 shows the comparative analysis of the tools.
From Table 1, the following observations can be revealed:

1. All the tools considered are open-source software and are freely available.
2. Cppcheck and Visual Code Grepper are GUI whereas the flawfinder tool is not a

GUI it is a command line interface.
3. Among the tools, Cppcheck can be run in both the modes of GUI as well as

through command line.
4. Cppcheck and Visual Code Grepper are supported only on Windows platform,

whereas the flawfinder is supported on Ubuntu platform.
5. Only VCG provides multiple language support.
6. Calculations of line of code are available in both flawfinder and VCG.

An Assessment of Vulnerable Detection Source Code Tools 407

http://sourceforge.net/projects/visualcodegrepp/

3.2 Empirical Comparison

For the empirical evaluation of the software tools, a source code to find the sum and
average of numbers in the array is written in C language which is given in Table 2
“Program for finding sum and average of numbers in the array”. The program is
given as input; the all the above described tools and following results are revealed
along with their screen shots. The given C source code will take an array of n
number as input, and their sum is calculated inside a loop; after the sum of values in
array is obtained its average is calculated, and the sum and average is displayed and

Table 1 Comparative analysis of tools on various parameters

Tool/
parameters

OSS GUI Command
line

Windows
platform
supported

Ubuntu
platform
supported

Multiple
language
support

Calculate
KLOC/
sec

Cppcheck ✓ ✓ ✓ ✓ ✕ ✕ ✕

Flawfinder ✓ ✕ ✓ � ✓ ✕ ✓

Visual
Code
Grepper

✓ ✓ ✕ ✓ ✕ ✓ ✓

Where ✓ denotes that the tool supports the concerned feature
� denotes that the tool does not support the concerned feature

Table 2 Program for finding sum and average of numbers in the array

//todo
//Program to find sum and average of numbers in the array.
int main()
{
unsigned short n, a[10];
int i,sum = 0;
float avg;
printf(“Enter the number of elements to be stored”);
scanf(“%d”,&n);
for (i = 0; i < n; i++)
{
scanf(“%d”,&a[i]);
}
for (i = 0; i < n; i++)
{
sum = sum + a[i];
}
avg = sum/n;
printf(“Sum = :%d”,sum);
printf(“Average = %f”,avg);
system(“pause”);

}

408 A. K. Verma and A. K. Sharma

system will be paused for a while after execution. The physical SLOC is 21. The
mentioned code is passed as parameter to the tools, namely Cppcheck, Flawfinder,
and Visual Code Grepper.

Results:
The results obtained from the tools are presented.

1. Cppcheck

Figure 1 shows the results as given by Cppcheck tool. The source code mentioned
in Table 2 is given a file name “FinalTesting.c” and is added to the tool through file
menu of the tool. The tool reports the severity as warning at line number 10 and 13 for
format String, at the bottom a summary detail with the error messages “requires ‘int
*’ but the argument type is ‘unsigned short *’.” is displayed.

2. Flawfinder

Figure 2 shows the results as given by flawfinder tool. The source code as given
in Table 2 is given a file name “FinalTesting.c”. Flawfinder produces a list of “hits”
as shown in the figure sorted by risk; the riskiest hits are shown first. The level of
risk is shown inside square brackets that may vary from 0, very little risk, to 5, great
for example “[0+] 12” indicated that at level 0 or higher there were 12 hits. After
the list of hits is displayed, a summary is shown including number of hits, lines
analyzed, and the physical source lines of code (SLOC) analyzed. A physical SLOC
is exclusion of blank, commented lines in this case SLOC = 21.

3. Visual Code Grepper

Figure 3 shows the results obtained from Visual Code Grepper corresponding to
the given source code. The results given by the tool for the potentially unsafe codes

Fig. 1 Showing results on Cppcheck

An Assessment of Vulnerable Detection Source Code Tools 409

along with line number in which they occurs. This tool also generates a pie chart as
depicted in Fig. 4 after analyzing the source code as shown in Fig. 3, depicting
overall line of code, overall comment, and potentially dangerous code.

Fig. 2 Showing results on flawfinder

Fig. 3 Showing results on VCG

410 A. K. Verma and A. K. Sharma

4 Conclusion and Future Scope

The major focus of this study is the use of static source code analysis tool during the
development phase in order to avoid programming bugs that may lead to vulner-
abilities and if occurred can be found easily at earliest using static source code
analysis tools so that testing time of the application can be reduced and program-
ming bugs can be handled to improve the coding practices used by the programmer.
The tools considered in this study provide the support for the C and C++ but the
tool VCG (support multiple languages, such as C, Java, C#, VB, PHP) among them
illustrated tool VCG is to be good enough as it also depicts the results in the form of
pie chart that also depicts the summary including overall code (including comment
appended code), overall comments, overall whitespaces, potentially dangerous
functions, and potentially broken/unfinished flags. But in order to avoid vulnera-
bilities in the source code, organizations may not rely completely only on the static
code analysis tools, instead the security must be considered as a functional aspect of
the software development life cycle and should be considered at every stage.
Furthermore, some kind of security framework should be developed for the secure
software development and in designing such a framework secure design patterns
and secure coding practices must be used. The proposed framework should be
verified by organizations and IT professionals, and its output needs to be evaluated
in order to measure its effectiveness. Some security models should be built and
synchronized with the traditional software engineering models to consider security
at every stage of SDLC.

References

1. Bakshi, S.: Security in software development. In: CSI Communication (2014)
2. Daud, M.I.: Secure software development model: a guide for secure software life cycle. In:

International MultiConference of Engineers and Computer Scientist, vol. 1, 17–19 Mar, Hong
Kong (2010)

Fig. 4 Showing graphical results on VCG

An Assessment of Vulnerable Detection Source Code Tools 411

3. Delwiche, L.D., Slaughter, S.J.: Errors, warnings and notes (oh my) a practical guide to
debugging SAS programs. In: Proceedings of the 2003 SAS Users Group International
(SUGI) Conference (2003)

4. Ermakov, A., Kushik, N.: Detecting C program vulnerabilities. In: Proceedings of the Spring/
Summer Young Researches Colloquium on Software Engineering (2011)

5. Jimenez, W., Mammar, A., Cavalli, A.R.: Software vulnerabilities, prevention and detection
methods a review. In: SECMDA Workshop—Enschede (2009)

6. Vipindeep, V., Jalote, P.: List of common bugs and programming practices to avoid them.
Electronic (2005)

7. http://sourceforge.net/projects/visualcodegrepp/. Accessed on 8 June 2015 at 0800 hrs
8. http://www.dwheeler.com/flawfinder/. Accessed on 20 July 2015 at 0600 hrs
9. http://cppcheck.sourceforge.net/. Accessed on 29 July 2015 at 0900 hrs

10. Godbole, S.: Developing secure software. In: CSI Communication (2014)

412 A. K. Verma and A. K. Sharma

http://sourceforge.net/projects/visualcodegrepp/
http://www.dwheeler.com/flawfinder/
http://cppcheck.sourceforge.net/

Devising a New Method for Economic
Dispatch Solution and Making Use
of Soft Computing Techniques
to Calculate Loss Function

Ravindra Kumar Chahar and Aasha Chuahan

Abstract This paper has a description of a new method which is designed for the
economic dispatch problem of power system. This method demonstrates a new
technique for calculating loss in the economic dispatch problem. This technique can
be utilized for online generation of solution by using soft computing methods to find
out loss function in the solution. A newmethod to find out the loss function using two
new parameters is described here. Fuzzy sets and genetic algorithm are used to find a
penalty term based on the values of these two parameters. Thus, all the calculations
required to accommodate loss function in the solution of economic dispatch are
presented here. The algorithm for the new proposed system is presented in this paper.

Keywords Economic dispatch problem � Loss function � Soft computing methods
Fuzzy sets � New parameters for calculating loss function � Genetic algorithm

1 Introduction

The economic dispatch problem of power system is solved by using deterministic
approach [1]. In the deterministic approach, the input parameters are known with
certainty and the solution is found using mathematical equations [2]. However,
there are various inaccuracies, and uncertainties are present in the solution. These
inaccuracies could be due to fuel cost variations, inaccuracies in measurements,
wear and tear of equipment, and other calibration errors [3].

Due to these inaccuracies, the deterministic solution may not give an optimal
solution. Thus, there is a need to account for these inaccuracies and uncertainties in
the solution. This paper presents a new technique employing fuzzy sets and genetic
algorithm that uses risk management in the solution of economic dispatch problem.

R. K. Chahar (&) � A. Chuahan
EEE Department, Lingaya’s University, Faridabad, India
e-mail: far56nb@gmail.com

A. Chuahan
e-mail: aashachuahan07@gmail.com

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_39

413

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_39&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_39&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_39&domain=pdf

Firstly, the algorithm for deterministic approach is described. The design of the
solution employing fuzzy sets is described. The usage of genetic algorithm with the
fuzzy sets is also described. Thus, a novel method is formulated based on risk
management for the solution of economic dispatch problem.

2 New Approach for the Solution of Economic Dispatch
Problem

2.1 Steps of the Deterministic Approach

The various steps of the deterministic approach are listed below:

Step 1 Declare various parameters:
a[i], b[i], c[i], Pd, optimal_total_cost, Pg, alpha, ep, Lagr, Lagrnew, it,
Itmax, in, Inmax, pgmin, pgmax, and Bij.
a[i], b[i], and c[i] are cost coefficients. Pd is the load demand (MW).
Optimal fuel cost is represented by optimal_total_cost, pg is output of a
generator, and alpha and ep are parameters used in Lagrangian
technique.
it and in indicate iteration counters. Lagr and Lagrnew are Lagrangian
multipliers. Itmax and Inmax are maximum number of iterations.
pgmax and pgmin are maximum and minimum limits of a generator.
Bij is transmission line coefficients [4].

Step 2 Read the values of input parameters:
a[i], b[i], c[i], Bij, pgmin, and pgmax.

Step 3 Assign the values of parameters used:
Pd = 220
alpha = 0.005
ep = 0.0001 and ep2 = 0.001
ep2 is used for inner loop.

Step 4 Guess the value of Lagr.

Step 5 Initialize the values of generator outputs P1, P2, and P3.
Let P1 = P2 = P3 = 0.0
Initialize it = 1.
Itmax = Inmax = 100.

Step 6 Test whether it < Itmax?
If yes, then go to Step 7 else display the message ‘solution not con-
verging in 100 iterations’ and stop.

Step 7 Initialize in = 1.
P1[it − 1] = P2[it − 1] = P3[it − 1] = 0.0

414 R. K. Chahar and A. Chuahan

Step 8 Test whether in < Inmax?
If yes, then go to Step 9 else go to Step 13.

Step 9 Calculate the value of pg[i][it] for i = 1 to 3 using the following
equation:
pg[i][it] = Term1/Term2.
Term1 = Lagr � (1 − Term3) − b[i]
Term2 = 2 � (Term4 + Term5 + Term6)
Term3 =

P
j 6¼i (2 � Bij � Pj[it − 1])

Term4 = a[i] + (a[i] � cvpi
2)

The parameter cvpi is the coefficient of variation for ith generator.
Term5 = p � cvpi

2

The parameter p is a penalty term that represents risk.
Term6 = Lagr � Bii � (1 + cvpi

2)

Step 10 Check for upper and lower limits of pg[i][it].
If pg[i][it] < pgmin, then pg[i][it] = pgmin.
If pg[i][it] > pgmax, then pg[i][it] = pgmax.

Step 11 Find the value of Deltai.
Deltai = |pg[i][it] − pg[i][it-1]|
max = max (Delta1, Delta2, Delta3)

Step 12 Test whether max � ep2?
If yes, then go to Step 13 else increment the value of in and
pg[i][it − 1] = pg[i][it], go to Step 8.

Step 13 Calculate transmission losses (PL):
PL = Term7 + Term8

Term7 =
P

i=1to3(Bii � Pi)
Term8 =

P
i=1to3

P
j=1to3, j 6¼i(Pi � Bij � Pj)

Step 14 Calculate Deltap.
Deltap = |Pd + PL −

P
i=1to3 (Pi)|

Step 15 Test whether Deltap � ep?
If yes, then calculate the optimal_total_cost, display the value, and stop
else go to Step 16.
FT = a[i] � Pg[i]2 + b[i] � pg[i] + c[i]
The parameter FT is the optimal_total_cost and is calculated using the
equation given above [4].

Step 16 Calculate Lagrnew.
Lagrnew = Lagr + (alpha � Deltap)
Lagr = Lagrnew

Step 17 Increment the value of counter it by 1 and go to Step 6.

Devising a New Method for Economic Dispatch Solution and Making … 415

2.2 Description of Fuzzy Sets Used in the New Approach

The deterministic approach finds the solution of economic dispatch problem by
taking the values of risk factor p and cvpi as zero. As there is a need to account for
risk in the solution, the fuzzy sets are used to determine the value of risk.

The fuzzy set uses a triangular membership function [5] to find the membership
values of pi.

Let u(p1) = t1
The value of u(p2) = t2
Here, p1 and p2 are penalty term for Generator1 and Generator2.
To find out the values of p1 and p2, two new parameters are defined:
Parameter A represents the value of loss function.
Parameter B shows the deviation of value from mean value of the generator

output.
The parameter B is chosen by taking Pgmax and multiplying by cvpi.
For example, if Pgmax = 1000 MW and cvp2 = 0.04, then parameter B is cal-

culated as:

Parameter B ¼ 1000� 0:04 ¼ 40

Parameter A is selected by assigning penalty term equal to approximately 1% of
Lagrangian multiplier (which is calculated in deterministic schedule).

For example, let Lagrangian multiplier = 27.2.

Penalty term ¼ 1=100ð Þ � 27:2 ¼ 0:272

The penalty term is given as follows:
The penalty term pi is defined as:
Parameter A/(parameter B)2

Thus, parameter A = 0.272 * (parameter B)2 = (435.2). An appropriate value
equal to 435 may be assigned to parameter A.

Here, u is used for membership value.

Factor1 ¼
X

t1 þ t2ð Þ

This factor is used by genetic algorithm to find out the value of risk based on the
values of cvpi.

416 R. K. Chahar and A. Chuahan

2.3 Usage of Genetic Algorithm in the Method

The value of factor1, that is being calculated using fuzzy set described above, is
used in the genetic algorithm.

Let y1 = factor1 � a[1]
y2 = factor1 � a[2]
y3 = factor1 � a[3]

fa1 = a1 � y1
2 + b1 � y1

fa2 = a2 � y2
2 + b2 � y2

fa3 = a3 � y3
2 + b3 � y3

a1 = cvp1
a2 = cvp2
a3 = cvp3
bi = 10 � ai

The genetic algorithm is used to find optimal solution of fai.
The risk factor is found using the following equation:

p ¼ min faið Þ

This value of p is used in the algorithm described for deterministic approach.
Thus a method, which is capable to include risk factor, is being devised. The

genetic algorithm uses crossover and mutation operators for each generation and
then uses wheel selection algorithm to select next generation according to fitness
values. Initially, genetic algorithm finds random numbers and calculates fitness
values.

3 Illustrations and Result

3.1 Sample System Consisting of Two Generators

A sample system having two generators is chosen. The various input parameters are
listed below (Table 1):

Table 1 Output of the
method using fuzzy sets

PD (MW) FT ($/h) Lagrangian multiplier ($/MW-h)

500 5806.16 12.21

600 7137.41 14.45

700 8693.866 16.65

800 10,376.68 17.89

900 12,178.016 19.169

Devising a New Method for Economic Dispatch Solution and Making … 417

A1 ¼ 0:008 b1 ¼ 10:0 c1 ¼ 0:0
A2 ¼ 0:009 b2 ¼ 8:0 c2 ¼ 0:0

B 1½ � 1½ � ¼ 0:00015 B 1½ � 2½ � ¼ 0:000010 B 2½ � 2½ � ¼ 0:000030

Fuzzy sets are used for a1, a2, b1, b2, and cvp2.

Cvp1 ¼ 0:0 Cvp2 ¼ 0:04

Computed membership of a1 = 0.4
Computed membership of a2 = 0.45
Computed membership of b1 = 0.4
Computed membership of b2 = 0.32
Computed membership of cvp2 = 0.08
Sum of membership values = 1.65
Computed membership using sum = 0.55
Value of parameter B = 40.0
Value of parameter A = 880.0

3.2 Conclusions

A method is presented that is capable of including risk analysis in the solution of
economic dispatch problem. The need for including uncertainty in economic dis-
patch problem is described and discussed [6]. A new method for unit commitment
is presented [7]. The solution for nonconvex economic dispatch is given in [8].
A method using particle swarm optimization for nonconvex economic dispatch is
given in [9].

The method described in this paper uses fuzzy sets and genetic algorithm to
formulate a novel technique for risk analysis. The deterministic approach for
solving economic dispatch problem is described. The penalty term calculated using
the new method is used with the deterministic approach to solve the economic
dispatch problem. Thus, a method that is capable of generating solution in situations
of uncertainties has been formulated. This can be utilized for online solution of the
economic dispatch problem. The method described above is capable of generating
an optimal solution [5] under situations of uncertainties and inaccuracies. It takes
into considerations fuel cost, transmission losses, and cost of risk to find an optimal
solution of the economic dispatch problem.

418 R. K. Chahar and A. Chuahan

References

1. Kusic, G.L.: Computer Aided Power Systems Analysis. Prentice-Hall of India, New Delhi
(1986)

2. Kirchmayer, L.K.: Economic Operation of Power Systems. Wiley Eastern, New Delhi (1958)
3. Parti, S.C.: Stochastic Optimal Power Generation Scheduling. Ph.D. (Thesis), TIET, Patiala

(1987)
4. Kothari, D.P., Dhillon, J.S.: Power Optimization, 2nd edn, pp. 135–200. PHI Learning Private

Limited, Delhi (2013)
5. Klir, G.J., Folger, T.A.: Fuzzy Sets, Uncertainty and Information. Prentice-Hall India, New

Delhi (1997)
6. Overholt, P.: Accommodating Uncertainty in Planning and Operations. Department of Energy

(DOE), CERTS (1999)
7. Ongsakul, W., Petcharaks, N.: Unit commitment by enhanced adaptive Lagrangian relaxation.

IEEE Trans. Power Syst. 19(1) (2004)
8. Binetti, G., Davoudi, A., Naso, D., Turchiano, B., Lewis, F.L.: A distributed auction-based

algorithm for the nonconvex economic dispatch problem. IEEE Trans. Ind. Inf. 10(2) (2014)
9. Park, J.-B., Jeong, Y.-W., Shin, J.-R., Lee, K.Y.: An improved particle swarm optimization

for nonconvex economic dispatch problems. IEEE Trans. Power Syst. 25(1) (2010)

Devising a New Method for Economic Dispatch Solution and Making … 419

Trusted Operating System-Based
Model-Driven Development of Secure
Web Applications

Nitish Pathak, Girish Sharma and B. M. Singh

Abstract This paper adds security engineering into an object-oriented
model-driven software development for real-life Web applications. In this paper,
we use mining patterns in Web applications. This research paper proposes a unified
modeling language-based secure software maintenance procedure. The proposed
method is applied for maintaining a large-scale software product and real-life
product-line products. After modeling, we can implement and run this Web
application, on SPF-based trusted operating systems. As we know, reverse engi-
neering of old software is focused on the understanding of legacy program code
without having proper software documentation. The extracted design information
was used to implement a new version of the software program written in C++. For
secure designing of Web applications, this paper proposes system security perfor-
mance model for trusted operating system. For re-engineering and
re-implementation process of Web applications, this paper proposes the
model-driven round-trip engineering approach.

Keywords Design patterns � Design recovery � Reverse engineering structured
design � Re-implementation and re-engineering language translation
Temporal patterns � Navigation patterns

N. Pathak (&)
UTU, Dehradun, India
e-mail: nitish_pathak2004@yahoo.com

G. Sharma
Department of Computer Science, BPIBS, Government of NCT of Delhi, New Delhi, India
e-mail: gkps123@gmail.com

B. M. Singh
Department of Computer Science and Engineering, College of Engineering, Roorkee, India
e-mail: bmsingh1981@gmail.com

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_40

421

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_40&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_40&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_40&domain=pdf

1 Introduction

When long-established structured programming model could not manage with
large-scale business application development, object-oriented programming was
introduced to resolve such problems in programming. Object-oriented program-
ming is a latest way of study on programming. In OOP, a software program is
separated into a group of objects, which concurrently hold information (attributes or
data members) and member function (methods) [1]. Software application is
developed throughout combining objects in a similar way as structuring a house
with bricks [2]. Lots of pleasant words may have been used by software developers
to express their valuation on OOP. Approximately, every modern software appli-
cations are constructed based on object-oriented analysis and designing [3].

The object-oriented model offers a number of features that are intended to help
the development of large and flexible software, if employed properly. By flexibility,
it is meant that the principles of encapsulation, information and data hiding, data
abstraction, inheritance, and polymorphism should be properly applied so as to
remove any odors of weakness and rigidity [4]. Basically, the addition of new
functionality in an object-oriented system should have as partial impact on
obtainable code as probable. We use Web usage mining to understand user’s
activities when computer user interacts with the Web sites. After understanding user
activities, the Web site and security performance flexibility model can be reorga-
nized according to the user requirement [5]. To accomplish this, design information
was extracted from the old C++ source code and entered into an object-oriented
software development process.

There are several Web log resources such as Web server log, Web proxy log, user
browsers history files, cookies files of browser etc. Web server log is used which
records user request of server sites. In 1994, UML arose from the unification of three
object-oriented design methods: the Booch Method, the Object Modeling Technique
(OMT), and the Objectory Method [6, 7]. The unified modeling language standard
was set and is managed by the Object Management Group. UML offers a structure to
incorporate several diagrams. “Only class diagrams are being used regularly by over
half the respondents, with sequence and use case diagrams used by about half.” In
software industry, collaboration/communication diagrams were the least popular and
accepted and not widely used by software designer [8]. Exponential expansion of the
Web makes it a fashionable and rich place for latest research. The vibrant and
amorphous environment of the Web applications for automatic tools for analyzing
Web application data and their patterns [9, 10]. Webmining has been described as the
analysis of appealing and helpful patterns from the Web. It requires analysis of
diverse aspects of a business software application: the platform on which software
runs, the interaction of a software system with other applications, the libraries and the
components of the programming language that the business application uses etc. As
we know, Much of the previous work on reverse engineering in software engineering
has focused on the source code analysis [11, 12].

422 N. Pathak et al.

Object-oriented design information is improved from the source code and some
obtainable design documentation. The procedure of improving a program’s design
is known as design recovery [13]. A design is improved by piecing equally
information from the source code, obtainable documents, software developer’s
experienced with the software system knowledge. As we know, the software
round-trip engineering, i.e., forward engineering and backward engineering, plays a
vital role in software development life cycle [14, 15]. Figure 1 indicates the reverse
engineering and re-implementation process for software development process.

If there is no software requirement specification, i.e., SRS for a software system,
reverse engineering will become more and more complex. The object-oriented
design should be represented at an abstraction level that eliminates implementation
language dependence [16]. This makes it potential to re-implement the software
system in a new language. There are various business object-oriented tools that
provide the reverse engineering abilities.

Object-oriented design and software engineering focus on the object-oriented
design and completion of a software product without considering the lifetime of a
software product [17]. As we know, the major attempt in software engineering
organizations is exhausted after development, and on maintaining the software
systems to eliminate accessible errors, bugs and to acclimatize them to changed
software requirements. For recently developed software systems, the complexity
can be reduced by carefully documenting the software system. The information can
furthermore be used to develop and preserve other software systems; i.e., we
achieve supplementary information that can be used by a forward engineer for the
purpose of forward engineering.

This paper discusses a unified modeling language-based software maintenance
process [18]. In this paper there are two major points, one trusted operating system
base secure reverse engineering and second is model analysis. Still, the construction
of UML models from the source code is far from simple, even if an object-oriented
programming language has been used [19]. Because of the differences in concepts

Fig. 1 Reverse engineering
and re-implementation
process for Web applications

Trusted Operating System-Based Model-Driven Development … 423

at the design and implementation levels, interpretations are essential even for the
extraction of class diagrams from the source code. Figure 2 is related to general
model for software re-engineering process for software development.

To attain high quality throughout the secure Web application development,
requirement discovery and analysis play an essential role. This research paper
presents an empirical study carried out to assess the object-related metrics from
Web applications. The objective of this research work is related to the under-
standability worth perceived by the user through code, i.e., also known as forward
engineering process [20, 21]. If a software solution is being designed for the first
time, our purpose is to be capable to properly model that software solution and to
make as much of implementation/code from the object-oriented model. This will
serve our motivation to enable IT services’ companies to maintain object-oriented
software development on several platforms. Our purpose is to reprocess as much of
that software solution as possible in making that software solution accessible on
several platforms.

Models are the foremost artifacts in software development process. These
models can be used to signify a variety of things in the software design and
software development life cycle. These object-oriented models are at the core of
forward engineering and reverse engineering [22]. In forward engineering, normally
platform-independent object-oriented models are developed by software designers
as part of software design document. In reverse engineering, these object-oriented
models are usually derived automatically using model-driven transformations.

2 Secure Web Application Modeling

In this paper, we are suggesting the security performance flexibility model for
trusted operating system. And we implemented this SPF model to retain balance
among security and performance issue in Web applications. In this paper, we are

Fig. 2 General model for
software re-engineering

424 N. Pathak et al.

proposing mining-based system SPF for trusted operating system. As we know,
only a small amount of parts of the operating system security are actually necessary
[23]. According to Fig. 3, SPF allows computer system administrators to selectively
stop some unnecessary parts of the security for secure Web applications; with the
help of this contribution, we can maintain high-performance security for any Web
application. Whenever we avoid some useless security checks at system and kernel
level, the performance of software system will be improved in all respect [24].

For such designing and development of Web applications, first of all, we have to
recognize which part can be disabled to get the highest performance, in particular
Web application.

As we identify that each and every security check and security constraints are
not noteworthy in all software systems. For improving the performance, speed,
efficiency for particular system, this paper proposes that we should use secure
operating systems for better security performance in Web applications. The con-
sideration behind the SPF configuration is explained in Fig. 3. With this approach,
the Web server’s efficiency, speed effectiveness, security aspect, and all can be
improved.

Web applications can be described in unified modeling language with diverse
object-oriented diagrams: Class diagram is used for application components; object
diagram is used for object components; use case diagram is used for functional
requirement and interactions with external systems. As we know, during software
development process, it is very much common for software requirements to change
and for faults to be corrected and removed. Each and every change in software may
require that the UML object-oriented model be changed and a small change may
lead to several other related changes.

Fig. 3 System-SPF structural
design for stock control Web
application

Trusted Operating System-Based Model-Driven Development … 425

3 Axes of Change in Round-trip Engineering

In order to highlight the interference between the classes of a computer system, the
proposed object-oriented model defines numerous axes of change through which a
change in a class can influence other classes enforcing them to be modified, i.e.,
ripple effect. By change, we signify that given a change in one of the affecting
classes, the affected classes should be updated, in order for the software system to
function properly. For example, the change in the signature of a member function in
a class will need the update of all classes that use this member function. Each class
can change because of its participation in one or more axes of change. Consider a
software system for supporting a public library. Figure 4 indicates the
object-oriented class diagram.

C++ source code for secure forward and reverse engineering:

#include ”Admin.h”

//##ModelId = 4F7A74800186

Admin::Manages Library()

{

}

//##ModelId = 4F7A747201D4

class Admin

{

public:

//##ModelId = 4F7A74800186

Manages Library();

Fig. 4 Generic
object-oriented class diagram
for round-trip engineering

426 N. Pathak et al.

private:

//##ModelId = 4F7A7477002E

ID;

//##ModelId = 4F7A747A0280

Name;

};

//##ModelId = 4F7A75040119

class articles : public Item

{

};

#endif /* ARTICLES_H_HEADER_INCLUDED_B085108E */

//##ModelId = 4F7A74FF0242

class books : public Item

{

};

//##ModelId = 4F7A7583037A

class faculty : public Lib_user

{

};

#endif /* FACULTY_H_HEADER_INCLUDED_B0851E4D */

//##ModelId = 4F7A74E400FA

class Item

{

//##ModelId = 4F7A74E90203

ID;

//##ModelId = 4F7A74F00222

Title;

//##ModelId = 4F7A74F40280

Author;

};

#endif /* ITEM_H_HEADER_INCLUDED_B0851A6E */

#include ”Lib_user.h”

//##ModelId = 4F7A7534009C

Lib_user::take books()

{

}

//##ModelId = 4F7A753A0167

Lib_user::payfine()

{

}

//##ModelId = 4F7A753D001F

Lib_user::returnbook()

Trusted Operating System-Based Model-Driven Development … 427

{

}

//##ModelId = 4F7A750D032C

class Lib_user

{

public:

//##ModelId = 4F7A7534009C

take books();

//##ModelId = 4F7A753A0167

payfine();

//##ModelId = 4F7A753D001F

returnbook();

private:

//##ModelId = 4F7A7526005D

ID;

//##ModelId = 4F7A75290128

Name;

};

#endif /* LIB_USER_H_HEADER_INCLUDED_B0856AD8 */

#include ”Librarian.h”

//##ModelId = 4F7A74C003A9

Librarian::Issuebooks()

{

}

//##ModelId = 4F7A74C9037A

Librarian::renewal()

{

}

//##ModelId = 4F7A74CF0167

Librarian::collectfine()

{

}

//##ModelId = 4F7A74D9003E

Librarian::collect books()

{

}

//##ModelId = 4F7A749100EA

class Librarian

{

428 N. Pathak et al.

public:

//##ModelId = 4F7A74C003A9

Issuebooks();

//##ModelId = 4F7A74C9037A

renewal();

//##ModelId = 4F7A74CF0167

collectfine();

//##ModelId = 4F7A74D9003E

collect books();

private:

//##ModelId = 4F7A74AD00AB

ID;

//##ModelId = 4F7A74B1004E

Name;

};

#endif /* LIBRARIAN_H_HEADER_INCLUDED_B0855943 */

#include ”Library.h”

//##ModelId = 4F7A745500DA

Library::Issue code()

{

}

//##ModelId = 4F7A7459037A

Library::Main books()

{

}

//##ModelId = 4F7A746203B9

Library::Details()

{

}

class Library

{

public:

//##ModelId = 4F7A745500DA

Issue code();

//##ModelId = 4F7A7459037A

Main books();

//##ModelId = 4F7A746203B9

Details();

private:

//##ModelId = 4F7A743D033C

Name;

//##ModelId = 4F7A744602EE

Location;

};

operation::issue()

Trusted Operating System-Based Model-Driven Development … 429

{

}

//##ModelId = 4F7A756600FA

operation::renewal()

{

}

//##ModelId = 4F7A756A00BB

operation::return()

{

}

//##ModelId = 4F7A756C004E

operation::fine()

{

}

class operation

{

public:

//##ModelId = 4F7A756400EA

issue();

//##ModelId = 4F7A756600FA

renewal();

//##ModelId = 4F7A756A00BB

return();

//##ModelId = 4F7A756C004E

fine();

private:

//##ModelId = 4F7A755A03D8

book id;

};

#endif /*

#include ”Lib_user.h”

//##ModelId = 4F7A75C40109

class Student : public Lib_user

{

};

#endif /* STUDENT_H_HEADER_INCLUDED_B0851C73 */

Unified modeling language has been widely used for designing software models
for software development. Reverse engineering for Web applications has to be
focused on object-oriented design recovery.

430 N. Pathak et al.

4 Conclusion

This research paper has presented a process for redesigning of an existing software
system, with the help of reverse engineering. This paper focuses on security per-
formance flexibility model of trusted operating system for maintaining the security
in various Web applications. As we know, it is very easier to modify an
object-oriented design than source code. The recovered design of old software
describes the existing software system, after that we can design and develop the
new system. After reverse engineering and round-trip engineering of any old Web
application, we will get a new software system that is improved structured, proper
documented, and extra easily maintained than the old and previous software ver-
sion. Therefore, object-oriented reverse engineering is a part of re-engineering of
software systems.

In this research paper, we proposed a novel method to software design and to
software maintenance and showed how it has been used for maintaining large-scale
software. In this paper, we also proposed the model-driven development of secure
operating system for secure Web applications.

References

1. Briand, L.C., Di Penta, M., Labiche, Y.: An experimental investigation of formality in
UML-based development. IEEE Trans. Softw. Eng. 31(10) (2005)

2. Xing, Z., Stroulia, E.: Analyzing the evolutionary history of the logical design of
object-oriented software. IEEE Trans. Softw. Eng. 31(10) (2005)

3. Brambilla, M., Ceri, S., Fraternali, P.: Process modeling in web applications. ACM Trans.
Softw. Eng. Methodol. 15(4) (2006)

4. Simons, C.L., Parmee, I.C., Gwynllyw, R.: Interactive, evolutionary search in upstream
object-oriented class design. IEEE Trans. Softw. Eng. 36(6) (2010)

5. Fonseca, J., Vieira, M., Madeira, H.: Evaluation of web security mechanisms using
vulnerability & attack injection. IEEE Trans. Dependable Secure Comput. 11(5) (2014)

6. De Lucia, A., Gravino, C., Oliveto, R., Tortora, G: An experimental comparison of ER and
UML class diagrams for data modeling. Empirical Softw. Eng. 15, 455–492 (2010). https://
doi.org/10.1007/s10664-009-9127-7. © Springer Science + Business Media, LLC 2009

7. Bernardi, S., Merseguer, J., Petriu, D.C.: Dependability modeling and analysis of software
systems specified with UML. ACM Comput. Surv. 45(1), Article 2 (2012)

8. Wu, O., Hu, W.: Measuring the visual complexities of web pages. ACM Trans. Web 7(1),
Article 1 (2013)

9. Desnoyers, P., Wood, T., Shenoy, P.: Modellus: automated modeling of complex internet data
center applications. ACM Trans. Web 6(2), Article 8 (2012)

10. Marcus, A., Poshyvanyk, D.: Using the conceptual cohesion of classes for fault prediction in
object-oriented systems. IEEE Trans. Softw. Eng. 34(2) (2008)

11. Pathak, N., Sharma, G., Singh, B.M.: Forward engineering based implementation of TOS in
social networking. Int. J. Comput. Appl. USA 102(11), 33–38 (2014). ISSN: 0975–8887

12. http://link.springer.com/article/10.1007/s13198-015-0338-6
13. Pathak, N., Sharma, G., Singh, B.M.: Designing of SPF based secure web application using

forward engineering. In: IEEE International Conference on IndiaCom2014, pp 464–469.
IEEE Xplore (2015). ISBN: 978-9-3805-4415-1

Trusted Operating System-Based Model-Driven Development … 431

http://dx.doi.org/10.1007/s10664-009-9127-7
http://dx.doi.org/10.1007/s10664-009-9127-7
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s13198-015-0338-6

14. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in
software engineering. Empirical Softw. Eng. 14, 131–164 (2009). https://doi.org/10.1007/
s10664-008-102-8. Open access at Springerlink.com, Dec 2008

15. Pathak, N., Sharma, G., Singh, B.M.: Experimental analysis of SPF based secure web
application. Int. J. Mod. Educ. Comput. Sci., 48–55 (2015). ISSN: 2075-0161

16. Kosiuczenko, P.: Redesign of UML class diagrams: a formal approach. Softw. Syst. Model. 8,
165–183 (2009). https://doi.org/10.1007/s10270-007-0068-6. (Nov 2007 © Springer 2007)

17. Barna, P., Frasincar, F.: A workflow-driven design of web information systems. In: ICWE’06,
11–14 July 2006, Palo Alto, California, USA. ACM 1-59593-352-2/06/0007

18. Davis, J.P.: Propositional logic constraint patterns and their use in UML-based conceptual
modeling and analysis. IEEE Trans. Knowl. Data Eng. 19(3) (2007)

19. Barrett, R., Pahl, C., Patcas, L.M., Murphy, J.: Model driven distribution pattern design for
dynamic web service compositions. In: ICWE’06, 11–14 July 2006, Palo Alto, California,
USA. ACM 1-59593-352-2/06/0007

20. Cooley, R.: The use of web structure and content to identify subjectively interesting web
usage patterns. ACM Trans. Internet Technol. 3(2), 93–116 (2003)

21. Trujillo, J.: A report on the first international workshop on best practices of UML
(BP-UML’05). In: SIGMOD Record, vol. 35, no. 3, Sept 2006

22. Ricci, L.A., Schwabe, D.: An authoring environment for model-driven web applications. In:
WebMedia’06, 19–22 Nov 2006, Natal, RN, Brazil. Copyright 2006 ACM 85-7669-100-0/06/
0011

23. Jiang, D., Pei, J., Li, H.: Mining search and browse logs for web search: a survey. ACM
Trans. Intell. Syst. Technol. 4(4), Article 57 (2013)

24. Valderas, P., Pelechano, V.: A survey of requirements specification in model-driven
development of web applications. ACM Trans. Web 5(2), Article 10 (2011)

432 N. Pathak et al.

http://dx.doi.org/10.1007/s10664-008-102-8
http://dx.doi.org/10.1007/s10664-008-102-8
http://dx.doi.org/10.1007/s10270-007-0068-6

Navigational Complexity Metrics
of a Website

Divyam Pandey, Renuka Nagpal and Deepti Mehrotra

Abstract Navigation is the ease with which user traverses through a website while
searching for information. The smooth is the navigation, the better are the chances
of finding our concerned piece of information. Hence, it can be considered as an
important parameter that contributes to the usability of the website. There are
several factors that enhance the complexity of navigation of website. The important
ones are website structural complexity, broken links, path length, maximum depth,
etc. In this study, navigational complexity of seven websites is evaluated and
compared on these parameters.

Keywords Navigation � Complexity � Usability � Broken links
Sitemap

1 Introduction

Designing a website that satisfies the visitor by providing the desired information
effectively and quickly is a challenging task. Navigation and search are the two
main parameters considered for finding any information on the website. The usage
of the website depends upon many parameters [1, 2], and navigation [3] is crucial
among them. Website is a collection of different pages which are connected through
each other via hyperlinks, and information can reside in any of the pages.
Navigating through the structure of the hyperlink greatly affects the user experience
and satisfaction, and too much of traversing may lead to dissatisfaction. The breadth
versus depth issue in website design for optimal performance is widely studied.

D. Pandey (&) � R. Nagpal � D. Mehrotra
Amity School of Engineering and Technology, Amity University, Noida, Uttar Pradesh, India
e-mail: divyampandey@hotmail.com

R. Nagpal
e-mail: rnagpal1@amity.edu

D. Mehrotra
e-mail: mehdeepti@gmail.com

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_41

433

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_41&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_41&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_41&domain=pdf

Zaphris [4] found that for a website having 64 links, a two-level website design
with 8 links per page had provided the fastest response time and lowest navigational
effort. With the increasing size of websites and diverse applications, the complexity
of the website grows, and looking for some information in a website, the user tends
to get lost. Instead of finding the correct information, the user either ends at the
wrong place or finds incorrect, incomplete or inappropriate information which
decreases the usability of the website. Zhang et al. [5] proposed metrics for website
navigability based on the structural complexity of the website which depends on the
connectivity of the links. More the Web pages are interlinked together, more is the
structural complexity of the website and more is the difficulty in navigation of the
website. Jung et al. [6] have given entropy-based structural complexity measures
WCOXIN (in-link complexity) and WCOXOUT (out-link complexity) for Web
applications to measure the structural changes. The ease of navigation primarily
depends on website design and user using the website. With respect to website
design its size, complexity, possible paths, defects, search tool effect navigational
dimension and the user input can be measured by using user feedback (perceptual
view of the target people), analysing the server log files from which Web usage is
measured with respect to visitor per page, pages per visitor (questionnaire) or Web
log analysis (Web mining) by considering the will definitely improve. It is
important to construct a good navigational website and for that one need to study
navigation of a website, so that users are able to find the information they are
looking for. In this paper, a metrics is proposed to measure the navigability of the
website w.r.t. its design aspects. The major factors that will affect the ease of
navigational complexity of the website are hyperlink structure, possible path
defects, path length and path density in the website.

2 Factors Affecting Navigational Complexity
of the Website

Different factors affecting the navigational complexity of the website are discussed
in the following section.

2.1 Website Structural Complexity

Website structural complexity is relationship between the various pages of a
website. A website is linked to other pages of the website through various hyper-
links. These hyperlinks are generally the path through which users browse the Web
page to navigate various parts of the website, in order to get the information they
want. The greater the complexity, the more are the chances of the user getting lost
in the website and not being able to find the information that they required. Apart

434 D. Pandey et al.

from structural complexity, there are other factors on which navigational com-
plexity depends.

2.2 Other Factors

2.2.1 Website Defects

Website may have many defects such as broken links and orphan pages which
affect the navigation of the website adversely. Broken links are Web pages which
no longer exist on the Web either because they are deleted accidentally or URL is
renamed. Broken links affect navigation as the user cannot find the piece of
information that might be earlier available on the broken link. Orphan links are
created when we create a page but forget to link it or mistype the link. The visitors
may feel upset by incorrect links. These are depicted in the sitemap of the website
as shown in Fig. 1 by ‘cross-sign’.

Fig. 1 Sitemap of an educational institute

Navigational Complexity Metrics of a Website 435

2.2.2 Maximum Depth

Maximum depth is the deepest level to which we can go in the hierarchical structure
of the website. A broader hierarchical Web structure is preferable in comparison
with deeper hierarchical Web structure as it enables the user to find the complete yet
concise information and also does not let the user get lost in the deeper levels.

2.2.3 Path Density

Path density or the average connected distance is the number of clicks that are
required to move from one Web page to another Web page where our desired
information is present. The lesser the number of clicks between the two Web pages,
the better it is. Impacts of different factors on the website are given in Table 1. This
implies if any of the above mentioned factors increases, it shall increase the
navigational complexity of the website. However for better designing, it is required
to have less navigational complexity.

3 Methodology

To compute the navigational complexity of the website, sitemap is established.
Sitemap with the help of a POWER MAPPER TOOL which selects the URL of the
website and depending on the design it may be organized into different levels. The
sitemap of the university, U1, is shown in Fig. 1. The sitemap is used to create the
tree structure using the hyperlinks in the website. In the tree structure, the Web
pages at each level link to Web pages at other level and the node which are not
linked to other Web pages are treated as leaf node. In the current study, seven
websites of educational institutes are taken, and consequently, the tree structure is
created using sitemap and is shown in Fig. 2. Once full tree structure is created, the
total number of links (‘e’), various nodes in the graph (‘n’), the leaf nodes (‘d’), etc.,
are evaluated. With the help of these values, the value of WSC1, WSC2, WSC3,
WSC4, WSC5 using Fig. 2 is evaluated as follows:

Table 1 Impact of factors on navigability of the website

Factors How do they impact the navigation of a
website?

1. Structural complexity Positively

2. Broken link, orphan pages (website
defects)

Positively

3. Maximum depth Positively

4. Path density Positively

436 D. Pandey et al.

Total no. of pages: 15
Total no. of out links = 14
e = 14 (Total no. of links in the graph)
n = 15 (Total no. of nodes in the graph)
d = 11 (Total leaf nodes)

WSC1 ¼
Xn

i¼1

outlink ið Þ ¼
Xn

i¼1

inlink ið Þ ¼ total number of links ¼ 14 ð1Þ

WSC2 ¼ WSC1

n
¼

Pn
i¼1 outlink ið Þ

n
¼ 14

15
¼ 0:933333 ð2Þ

WSC3 ¼ NOIP Gð Þ ¼ e� nþ dþ 1 ¼ 14� 15þ 11þ 1 ¼ 11 ð3Þ

WSC4 ¼ WSC3

n
¼ e� nþ dþ 1

n
¼ 11

15
¼ 0:733333 ð4Þ

WSC5 ¼
Xn

i¼1

out link2 nð Þ ¼ 76
15

¼ 5:066667 ð5Þ

Broken links and orphan pages can be easily identified. We have a page not
found node in the sitemap which is indicative of a broken link and orphan pages.

As shown in Fig. 2, the maximum depth is 2. The average connected distance or
path density is two (2). To have the same range of values for all the inputs,
normalization of the input parameters is done. Normalized data was calculated by
the formula

v0 ¼ v�min
A

� �
= max

A
�min

A

� �
ð6Þ

Home
Page

Home
Page Placement

List of
Students

Life@xyz

Magazines Notices Tender Book
Supplier

Not
Found

Contact Profile Support

Advertisement

Director's
Profile

Fig. 2 Tree structure of website

Navigational Complexity Metrics of a Website 437

4 Results and Discussion

Using Eqs. (1)–(5), the website structural complexity (WSC1-WSC5) is calculated
for seven educational websites and given in Table 2. The complexities for the entire
website are calculated by taking the average of WSC4 and WSC5.

Using the sitemap and creating the tree structure of the websites under study,
other parameters on which the complexity of the website depends are computed as
given in Table 3.

To have the same range of values for all the inputs, normalization of the input
parameters is done using Eq. (6). The normalized data for all the input variables is
given in Table 4. Navigational complexity is evaluated by taking the average of all
the input parameters, i.e.

Navigational Complexity ¼ Structural ComplexityþWebsite Defectsþ Path Lengthþ Path Densityð Þ
4

ð7Þ

Using Eq. (7), navigational complexity metrics is evaluated and given in
Table 4.

As per the results obtained from Table 4, the highest navigational complexity is
of site U1 and the least navigational complexity is of site U6. It is clear from the
above results that structural complexity and Website defects of U5 were the highest,

Table 2 Structural complexity

Website WSC1 WSC2 WSC3 WSC4 WSC5 Complexity

U1 999 0.999 678 0.678 18.757 9.7175

U2 87 0.988636 79 0.897727 15.55682 8.227273

U3 70 0.985915 61 0.859155 15.49296 8.176056

U4 280 0.996441 217 0.772242 15.51601 8.144128

U5 154 0.993548 116 0.748387 24.59355 12.67097

U6 97 0.989796 80 0.816327 1.265306 1.040816

U7 100 0.990196 87 0.852941 23.08824 11.97059

Table 3 Other parameters affecting complexity of website

Website Website defects, broken link, orphan
pages

Path length (maximum
depth)

Path
density

U1 3 Level 7 2

U2 2 Level 3 1

U3 10 Level 3 1

U4 13 Level 6 1

U5 21 Level 5 1

U6 7 Level 3 1

U7 3 Level 4 1

438 D. Pandey et al.

but when other parameters, i.e. maximum depth and path lengths, were included,
the site U1 was found to have maximum navigational complexity as all the factors
contribute equally in calculating the navigational complexity of the website.

5 Conclusions

Navigational complexity plays a vital role in evaluating the usability of the website.
Hence, it is desired to have minimum navigational complexity for an effective
website. The website having the minimum value of navigational complexity is the
one in which user faces less problems; it facilitates easy navigation to find our
concerned information and thereby is the best website design. The website having
the maximum value of navigational complexity is the one in which a user faces the
most difficulty in navigation and consequently the user is not able to find its share of
information rendering the website as the worst website. U6 has been concluded to
be the best navigable website as its navigational complexity is the minimum.

References

1. Sreedhar, G., Vidyapeetha, R.S., Centre, N.I.: Measuring quality of web site navigation 1 1.
Science (80-), 80–86 (2010)

2. Nagpal, R., Mehrotra, D., Kumar Bhatia, P., Sharma, A.: Rank university websites using fuzzy
AHP and fuzzy TOPSIS approach on usability. Int. J. Inf. Eng. Electron. Bus. 7, 29–36 (2015).
https://doi.org/10.5815/ijieeb.2015.01.04

3. Chhabra, S.: A survey of metrics for assessing the navigational quality of a website based on
the structure of website. 167–173 (1989)

4. Zaphiris, P.G.: Depth vs breath in the arrangement of web links. Proc. Hum. Factors Ergon.
Soc. Annu. Meet. 44, 453–456 (2000). https://doi.org/10.1177/154193120004400414

Table 4 Normalized data

Website Structural
complexity

Website
defects

Maximum
depth

Path
density

Navigational
complexity

U1 0.746051 0.052632 1 1 0.699671

U2 0.617916 0 0 0 0.154479

U3 0.613512 0.421053 0 0 0.258641

U4 0.610767 0.578947 0.75 0 0.484929

U5 1 1 0.5 0 0.625

U6 0 0.263158 0 0 0.065789

U7 0.939779 0.052632 0.25 0 0.310603

Navigational Complexity Metrics of a Website 439

http://dx.doi.org/10.5815/ijieeb.2015.01.04
http://dx.doi.org/10.1177/154193120004400414

5. Zhang, Y.Z.Y., Zhu, H.Z.H., Greenwood, S.: Web site complexity metrics for measuring
navigability. In: Fourth International Conference on Quality Software, 2004 QSIC 2004
Proceedings (2004). https://doi.org/10.1109/qsic.2004.1357958

6. Jung, W., Lee, E., Kim, K.: An entropy-based complexity measure for web applications using
structural information. J. Inf. Sci. 619, 595–619 (2011)

440 D. Pandey et al.

http://dx.doi.org/10.1109/qsic.2004.1357958

Evaluation and Comparison of Security
Mechanisms In-Place in Various Web
Server Systems

Syed Mutahar Aaqib and Lalitsen Sharma

Abstract This paper presents a novel approach to study, identify, and evaluate the
security mechanisms in-place across various Web server platforms. These security
mechanisms are collected and compiled from various sources. A set of security
checks are framed to identify the implementation of these security mechanisms in
diverse Web server platforms. The paper is concluded with a case study which
implements this approach.

Keywords Web server � Web server security � Information security

1 Introduction

Security in computer science literature is considered to be the maintenance the
confidentiality, integrity, and availability of information [1–3]. Security is a primary
concern for World Wide Web researchers as the frequency of Distributed Denial of
Service (DDoS) attacks, probability of exposure, or compromise of sensitive
information, data manipulation and spoofing have increased [1]. Initially, the
architecture of Web server was conceived to serve only static Web pages, which
was later extended into dynamic content [2, 4, 5]. Although this functionality
delivers more customized content, it also implies that there is an increasing growth
of security problems which needs to be mitigated while migrating to new supportive
architectures. Web servers are therefore considered to be a vital backbone for Web
applications, from simple file transfer applications to delivery of confidential data
for e-commerce applications. The security compromises of any type can thus cause
heavy damage of data including economic and financial losses. The security of the
Web server is also characterized by the operating system interfaces, communication
and security protocols, network configuration and its environment. The imple-
mentation of security features like Secure Socket Layer (SSL) within Web servers is

S. M. Aaqib (&) � L. Sharma
Department of Computer Science & IT, University of Jammu, Jammu Tawi, J&K, India
e-mail: syed.auqib@gmail.com

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_42

441

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_42&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_42&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_42&domain=pdf

therefore mandatory for all contemporary Web servers. However, some of the Web
servers who have been claimed to be developed in adherence to various security
guidelines still contain known and unknown vulnerabilities [6]. The source of these
vulnerabilities is sometimes the misconfiguration of the networking infrastructure
such as intrusion detection system and firewalls.

Thus, there is need to evaluate the security of a Web server system by taking into
consideration the holistic view of the system which includes the security features
provided by the Web server software, the operating system, the configuration of the
networking infrastructure and its environment. Such an approach should allow the
evaluation and comparison of the security mechanism in-place in Web server
systems. A standardized procedure should be adopted where tests can be applied
and reapplied across various Web server systems. These tests may also be repeated
for reproducibility and validation. Comparing security of two Web servers is a
complicated issue. One obvious way to measure security of a Web server is by
checking the chances of violation of the confidentiality, integrity, and availability of
information.

2 Background and Related Work

A lot of work has focused to study the security of a computer system in general and
security of Web server in particular [6]. Bishop [1] in his work stressed about the
three dimensions of security which viz, security requirements, security policy, and
security mechanisms. A number of methodologies elaborating Web security char-
acteristics have been presented by numerous organizations [7]. These methodolo-
gies have gained international acceptance and are used as security policy standard
in the development of Web servers. The first security evaluation methods based on
Common Criteria standard [7] was proposed by the United States Department of
Defense [8]. This standard emphasized a set of security requirements that must be
present in a Web server system. Centre for Internet Security (CIS) presented a
benchmark [9] which evaluates the security configuration settings for commonly
used Apache and IIS Web servers. The Department of Information Technology
(DIT), Govt. of India, has also published a set of security recommendation for
securing a Web server [10]. National Informatics Centre (NIC), Govt. of India, has
published a manual [11] for enhancing the security of government Web sites. Such
security recommendations have been found effective in preventing security hacks of
government Web sites [11]. Researchers [6] have made vertical comparison
between various generic servers based on the number of security flaws and severity
and have also studied the vulnerabilities in operating systems [12, 13]. Others have
used quantitative empirical models for the comparison of security vulnerabilities in
Apache and IIS Web servers [13]. Another technique reported in the literature is to
characterize and count potential vulnerabilities that exist in a product [14]. In this
paper, a different approach to evaluate the security of Web servers across different
Web server platforms is presented.

442 S. M. Aaqib and L. Sharma

3 Methodology

A comprehensive survey of technical security manuscripts published by various
security organizations was done and a total of 390 best security mechanisms were
compiled. The security mechanisms of Web servers were evaluated by performing a
test to verify whether a set of security mechanisms have been implemented on the
target system. A security comparison was then performed between various Web
servers to identify which Web server implements most of the security mechanisms.
The number of steps involved in this process is listed below:

• Survey for identification of best security mechanisms for Web servers;
• Categorization of security mechanisms in various classes;
• Execution of a number to tests to verify the implementation of security mech-

anisms in Web servers;
• Case Study: Comparison of the security mechanisms implemented in various

Web servers.

A detailed study of the technical security manuscripts published by various
organizations like CIS [9], NIST [8], Common Criteria [7], Web server security
guidelines (DIT, Govt. of India) [10], and Web site security recommendation
published by National Informatics Centre [11] was performed and a total of 390
best security mechanisms were identified. These security mechanisms were then
divided into various classes for ease in the evaluation of security tests. A set of tests
were then designed to identify whether these security mechanisms are implemented
with a particular Web server system. For the comparison of security of Web servers,
a case study of eight Web server system installations was taken to implement this
approach. Finally, a number of tests were performed for each Web server, and these
tests verify whether the system implements the security mechanisms compiled.

3.1 Metrics

A simple metric employed in this approach is the count of the number of best
security mechanism implemented in a particular Web server. The final security
score is thus the weighted percentage of the total security practices implemented,
which implies the security level of the system. Till date, no consensus has been
drawn about the set of best security mechanisms that should be applied to Web
server systems. The huge amount of diverse technical manuscripts in the form of
books, manuals, reports, and papers are available on the subject of Web server
security, but researchers have found no common ground for any agreement on the
best standard mechanisms.

List of the technical documents included in this study is:

• Apache Benchmark document;
• IIS benchmark document;

Evaluation and Comparison of Security Mechanisms In-Place … 443

• Web server Common Criteria;
• Web server NIST document;
• DIT Web Server Guidelines;
• NIC Web site Security Guidelines.

After the end of the thorough study of all this literature and technical manu-
scripts, 390 security mechanisms were complied. Out of these 146 came from CIS
documentation (Apache Web server: 101, IIS Web server: 45), 38 from DIT doc-
ument, 11 from NIC, 39 from Common Criteria, and 156 from NIST. Out of all the
mechanisms compiled, it was found that most of them are similar (equivalent) and
deal with same security problems. The categorization of such similar security
mechanisms was done, and they were grouped together under a unique directive.
After applying this method, the numbers of unique security mechanisms were
counted and a total of 78 best security mechanisms were identified.

This set of 78 best security mechanisms were characterized into six categories
based on an internationally valid standard for information security [15]. The
characterization of security mechanisms into these six classes was done for ease in
using them in evaluation. Table 1 lists the categories of security mechanisms
grouped under six categories and the class assigned to each category.

3.2 Web Server Tests

A set of tests were designed to identify whether or not this set of 78 of security
mechanisms are implemented in a particular Web server system. Based on the
nature of the security mechanisms, a set of tests were defined. These tests comprise
of a set of questions with optional procedure to verify presence of each security
mechanisms within the system. The output of the test, yes/no, would occur only
after the execution of the optional procedure.

Table 1 Characterization of
security mechanisms into
classes

Categories of security mechanisms Class
assigned

Security policy Class A

Access control Class B

Communication and operations
management

Class C

Human resource security Class D

Information system acquisition
development

Class E

Physical environment security Class F

444 S. M. Aaqib and L. Sharma

4 Case Study—Results and Discussion

To validate the approach used, a case study for the comparison of security of five
different Web servers was taken. Table 2 presents details about each Web server
tested, its version, the operating system, and the number of applications running on
the server. The results of these tests for Web server are presented in the following
tables (Table 3). “Test OK” in Table 3 refers to the successful execution of tests
which implies presence of a set particular security mechanism in the Web server
under study. “Test Fail” refers to the number of tests failed and unknown refers to
unknown test, for each set of best mechanisms presented in Table 3. This case
study was used to check the number of best security mechanism in-place in these
Web server systems. A number of significant insights were gained from this study.
One of the interesting observations was that the two Web servers of different
version from a same vendor, showed different results in this study. Such different
results were obtained for a same Web server while comparing their installations on
different platforms.

The reason being the security of a Web server is not dependent only on the Web
server software only but it is also characterized by the underlying operating system
architecture, the network management, and its configuration.

For example, while comparing the same Apache HTTPd server on Scientific
Linux CERN and Windows XP 2000, it was found that Apache on SLC CERN
system passed more tests and thus was more secure [16]. Another aspect used in
this study was the comparison of diverse Web server systems, of different under-
lying operating systems. While comparing the security mechanism in Apache
Tomcat 6.0.13 and Apache Tomcat 6.0.16 on Windows Server 2003 platform, it
was revealed that Apache Tomcat 6.0.16 passed more tests and hence was more
secure. Here also, the explanation is the support provided by the underlying
operating system platform and its security configuration. Among all the Web ser-
vers under study, it was found that Microsoft IIS passed more number of tests than
any other Web server and thus implements higher number of security mechanisms.
The only limitation of this approach is that the execution of these tests requires

Table 2 Web servers examined in the case study

S. No. Web server Operating system Applications running

1 Apache HTTPd 2 Windows XP 6

2 Apache Tomcat 6.0.13 Windows Server 2003 3

3 Microsoft IIS 6.0 Windows XP 2

4 Apache Tomcat 6.0.16 Windows Server 2003 2

5 Apache HTTPd 2 Scientific Linux SLC CERN 3

6 Microsoft IIS 7.0 Windows Server 2003 3

7 Nginx Web Server Scientific Linux SLC CERN 2

8 Nginx Web Server Windows Server 2003 2

Evaluation and Comparison of Security Mechanisms In-Place … 445

T
ab

le
3

R
es
ul
ts
of

ca
se

st
ud

y
fo
r
ei
gh

t
di
ff
er
en
t
W
eb

se
rv
er

sy
st
em

in
st
al
la
tio

ns

C
as
e
1,

A
pa

ch
e

H
TT

P
d
2

T
es
t

O
K

T
es
t

fa
il

U
nk

no
w
n

C
as
e
2,

A
pa

ch
e

T
om

ca
t
6.
0.
13

T
es
t

O
K

T
es
t

fa
il

U
nk

no
w
n

C
as
e
3,

M
ic
ro
so
ft

II
S
6.
0

T
es
t

O
K

T
es
t

fa
il

U
nk

no
w
n

C
la
ss

A
0

7
0

C
la
ss

A
0

7
0

C
la
ss

A
03

04
0

C
la
ss

B
17

8
1

C
la
ss

B
14

12
0

C
la
ss

B
10

16
1

C
la
ss

C
18

15
0

C
la
ss

C
16

16
1

C
la
ss

C
18

14
0

C
la
ss

D
1

1
0

C
la
ss

D
1

1
0

C
la
ss

D
02

00
0

C
la
ss

E
4

4
0

C
la
ss

E
4

4
0

C
la
ss

E
05

03
0

C
la
ss

F
1

1
0

C
la
ss

F
2

0
0

C
la
ss

F
02

00
0

T
ot
al

41
36

1
T
ot
al

37
40

1
T
ot
al

40
37

1

C
as
e
4,

T
om

ca
t

6.
0.
16

T
es
t

O
K

T
es
t

fa
il

U
nk

no
w
n

C
as
e
5,

A
pa

ch
e

H
T
T
P
d

T
es
t

O
K

T
es
t

fa
il

U
nk

no
w
n

C
as
e
6,

M
ic
ro
so
ft

II
S
7.
0

T
es
t

O
K

T
es
t

fa
il

U
nk

no
w
n

C
la
ss

A
0

7
0

C
la
ss

A
7

0
0

C
la
ss

A
7

0
0

C
la
ss

B
13

13
0

C
la
ss

B
9

17
0

C
la
ss

B
9

17
0

C
la
ss

C
21

12
1

C
la
ss

C
15

18
0

C
la
ss

C
15

18
0

C
la
ss

D
2

0
0

C
la
ss

D
2

0
0

C
la
ss

D
2

0
0

C
la
ss

E
4

4
0

C
la
ss

E
2

6
0

C
la
ss

E
2

6
0

C
la
ss

F
2

0
0

C
la
ss

F
0

2
0

C
la
ss

F
0

2
0

T
ot
al

42
36

0
T
ot
al

35
43

0
T
ot
al

35
43

0

C
as
e
7,

N
gi
nx

Se
rv
er

SL
C

T
es
t
O
K

T
es
t
fa
il

U
nk

no
w
n

C
as
e
8,

N
gi
nx

Se
rv
er

W
in
do

w
s

T
es
t
O
K

T
es
t
fa
il

U
nk

no
w
n

C
la
ss

A
02

03
2

C
la
ss

A
02

03
2

C
la
ss

B
07

15
4

C
la
ss

B
07

16
3

C
la
ss

C
11

18
4

C
la
ss

C
11

16
6

C
la
ss

D
02

00
0

C
la
ss

D
02

00
0

C
la
ss

E
02

05
1

C
la
ss

E
02

04
2

C
la
ss

F
01

01
0

C
la
ss

F
01

01
0

T
ot
al

25
42

11
T
ot
al

25
40

13

446 S. M. Aaqib and L. Sharma

immense computer proficiency as this approach requires verification of mechanisms
in-place for different Web servers systems.

References

1. Bishop, M.: What is computer security. IEEE Secur. Priv. (2003)
2. Laprie, J.C.: Dependability of computer systems: concepts, limits, improvements. In:

Proceedings of the 6th International Symposium on Software Reliability Engineering (1995)
3. Lin, P.: So You Want High Performance (Tomcat Performance). Jakarta Tomcat (2003)
4. Aaqib S.M., Sharma L.: Analysis of delivery of web contents for kernel-mode and user–mode

web servers. Int. J. Comput. Appl. 12(9), 37–42 (Foundation of Computer Science, New
York, USA) (2011)

5. Arlitt, M., Williamson, C.: Understanding web server configuration issues. Softw. Pract.
Experience 34(2), 163–186 (2004)

6. Ford, R., Thompson, H., Casteran, F.: Role Comparison Report-Web Server Role. Technical
Report, Security Innovation (2005)

7. Common Criteria: US Government Protection Profile. Web Server for Basic Robustness
Environments, Version 1.1 (2007)

8. NIST.: National Institute of Standards and Technology, Guidelines on Securing Public Web
Servers, Special Publication, 800-44 Version 2 (2007)

9. CIS. Centre for Internet Security 2008. Retrieved from CIS http://www.cisecurity.org/as
accessed on June 2015

10. CERT-In.: Web Server Guidelines 2004. Department of IT, Government of India (2004)
11. NIC Guidelines for Indian Government Websites.: National Informatics Centre (2013).

Retrieved from: http://darpg.gov.in as accessed on June 2015
12. Alhazmi, O.H., Malaiya, Y.K., Ray, I.: Security vulnerabilities in software systems: a

quantitative perspective. In: Proceedings of the Annual IFIP WG11.3 Working Conference on
Data and Information Security, pp. 281–294 (2005)

13. Rescorla, E.: Is finding security holes a good idea? IEEE Secur. Priv. 03(1), 14–19 (2003)
14. Neto, A.A., Mendes, N., Duraes, J., M., Madeira, H.: Assessing and comparing security of

web servers. In: 14th IEEE Pacific Rim International on Dependable Computing (2008)
15. IEC-ISO. 17799:2005: Information Technology-Security Technique—Code of Practice for

Information Security Management. Retrieved from http://www.iso.org/iso/ as on Oct 2012
16. Web Server Protection Profile. Retrieved from http://llniap.nist.govIcc-scheme (2001). Woo,

S., Alhazmi, O.H., Malaiya, Y.K.: Assessing Vulnerabilities in Apache and IIS HTTP
Servers. Colorado State University, Fort Collins (2008)

Evaluation and Comparison of Security Mechanisms In-Place … 447

http://www.cisecurity.org/as
http://darpg.gov.in
http://www.iso.org/iso/
http://llniap.nist.govIcc-scheme

Component-Based Quality Prediction
via Component Reliability Using
Optimal Fuzzy Classifier
and Evolutionary Algorithm

Kavita Sheoran and Om Prakash Sangwan

Abstract Sequentially to meet the rising necessities, software system has become
more complex for software support from profuse varied areas. In software reliability
engineering, many techniques are available to ensure the reliability and quality. In
design models, prediction techniques play an important role. In case of
component-based software systems, accessible reliability prediction approaches
experience the following drawbacks and hence restricted in their applicability and
accuracy. Here, we compute the application reliability which is estimated depend
upon the reliability of the individual components and their interconnection mech-
anisms. In our method, the quality of the software can be predicted in terms of
reliability metrics. After that the component-based feature extraction, the reliability
is calculated by optimal fuzzy classifier (OFC). Here, the fuzzy rules can be opti-
mized by evolutionary algorithms. The implementation is done via JAVA and the
performance is analyzed with various metrics.

Keywords Quality prediction � Component-based system � Reliability
Fuzzy classifier � Evolutionary algorithm

1 Introduction

In software development life cycle, software architecture is estimated of higher
significance. It is utilized to symbolize and converse the system structure and
performance to all of its stakeholders through a variety of concerns. In addition, SA
smooths the progress of stakeholders in accepting design decisions and rationale,
more promoting reprocess and competent development. Recently, in software
systems, development one of the foremost concerns is systematic SA reorganizing

K. Sheoran (&)
Department of Computer Science, MSIT, Delhi, India
e-mail: kavitasheoran0780@gmail.com

O. P. Sangwan
Department of Computer Engineering, Guru Jambeshwar University, Hissar, India

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_43

449

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_43&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_43&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_43&domain=pdf

to accommodate novel necessities because of the new market opportunities, tech-
nologies, platforms, and frameworks [1–3].

In this proposed method, we compute the application reliability which is esti-
mated depending on individual components reliability values and their intercon-
nection mechanisms. In our proposed method, the quality of the software can be
predicted in terms of reliability metrics. Subsequent to the component-based feature
extraction, the reliability is calculated by optimal fuzzy classifier (OFC). Here, the
fuzzy rules can be optimized by using evolutionary algorithms. The paper is well
organized in the below sections as follows. The literature that are associated with
our proposed method are mentioned in Sect. 2. The proposed method of software
quality prediction is explained in Sect. 3. Section 4 explains the result of the
proposed methodology and finally our proposed method is concluded with sug-
gestions for future works in Sect. 5.

2 Related Work

Numerous researches have been performed in the field of software quality as it has
gained more significance with the advance in computer technologies. Some of the
recent researches are as mentioned below.

Brosch et al. [4] by unequivocally modeling the system procedure outline and
execution environment. The technique has offered a UML-like modeling notation,
where these models are mechanically changed into a proper analytical model.
Utilizing methods of data propagation and reliability assessment their work has
created upon the Palladio Component Model (PCM), In general with the employ-
ment of reliability-improving architecture methods the case studies recognized
effectual hold up of practice profile analysis and architectural configuration ranking.

Ahmed and Jamimi [5] have anticipated a route for developing fuzzy logic-based
transparent quality forecasting models, in which they have used the procedure to a
case study to forecast software maintainability where Mamdani fuzzy inference
engine was utilized.

Brosig et al. [6], e.g., Queueing Petri Nets and Layered Queueing Networks,
have managed an in-depth assessment and quantitative assessment of demonstrating
model transformations.

3 Proposed Methodology for Software Quality Prediction

The process of predicting the quality to be required to develop a software system is
software quality prediction [7]. The evaluation of quality in software is more
demanding task and frequent researches were approved out. For software quality
prediction in our proposed method, we craft the use of soft computing-based

450 K. Sheoran and O. P. Sangwan

software quality prediction where fuzzy logic incorporated with the evolutionary
algorithm is used [8].

3.1 Steps Involved in the Software Quality Prediction

Here, we calculate the application reliability which is predictable based on the
reliability of the individual components and their interconnection mechanisms. In
our proposed method, the quality of the software can be predicted in terms of
reliability metrics. After the component-based feature extraction, the reliability is
calculated by optimal fuzzy classifier (OFC). Here, the fuzzy rules can be optimized
by using evolutionary algorithms (Fig. 1).

3.2 Software Cost and Reliability Measure to Estimate
the Quality

3.2.1 Software Reliability Measure

The reliability can be measured by estimating the testing effort of the particular
software. The failure rate with respect to the time of execution can be calculated and
this gives the reliability of that particular software at the execution time. The
reliability of the software can be measured while computing the expression given
below,

Fig. 1 Proposed software
quality prediction model

Component-Based Quality Prediction via Component Reliability … 451

rðtÞ ¼ f ðtÞ=et ð1Þ

where, f ðtÞ = Failure rate at time (t) and et = execution time.

Fuzzy Logic

Fuzzy logic is a technique that decides issues too intricate and to be understood
quantitatively.

(i) Fuzzy Triangular Membership Function

By means of the triangular membership function, the attributes having mathe-
matical values in the XML database is changed into the fuzzy. The triangular
membership function is selected herein which p, q, and r stand for the x coordinates
of the three vertices of f ðxÞ in a fuzzy set where r is the higher boundary and p is the
lower boundary where the membership degree is zero, q is the center where
membership degree is 1. To compute the membership values, the formula used is
depicted as below,

f ðxÞ ¼
0 if x� p
ðx�pÞ
ðq�pÞ if p� x� q
ðr�xÞ
ðr�qÞ if q� x� r
0 if x� r

8>><
>>:

ð2Þ

(ii) Fuzzy Rules

A set of rules have been described for a fuzzy arbiter where it outputs the
software efforts in reference to the attributes fuzzy value. The software efforts are
grouped into different rules based on the parameters, and in our method we utilize
optimization procedure so as to optimize the fuzzy rules. We have utilized evolu-
tionary programming for optimizing the rules.

Fuzzy Rule Optimization Using Evolutionary Programming (EP)

(i) Generation of Random Chromosomes

Originally each chromosome has Nd gene values and Np numbers of random
chromosomes are produced, where chromosomes symbolize the values. At this
time, the process makes use of the measures that have relevant indices and the gene
values specify the indices of the reliability measure. Hence the chromosome created
can be represented as given below,

452 K. Sheoran and O. P. Sangwan

DðjÞ
l ¼ dðjÞ0 ; dðjÞ2 ; dðjÞ3 ; . . .; dðjÞNd�1

n o
0� j�Np � 10� l�Nd � 1 ð3Þ

Here DðjÞ
l signifies the lth gene of the jth chromosome and here d symbolize the

measures.

F̂ðjÞ
l

n o
¼

F0ðjÞ
l

���
���

P F0ðjÞ
lj j�1

q¼0 F0ðjÞ
l ðqÞ

� �2

0
B@

1
CA

1=2

F0ðjÞ
l ðqÞ ð4Þ

where,

F0ðjÞ
l ðqÞ ¼ FðjÞ

l ðqÞ FðjÞ
l

���
���� XFðjÞ

lj j�1

q¼0

FðjÞ
l ðqÞ ð5Þ

The normalized feature set F̂ðjÞ
l

n o
acquired from Eq. (4) is the ultimate feature

set extracted for an exacting reliability measure.

(ii) Fitness Function

To examine the similarity among the reliability measures that are being designed
the fitness value predicted for the EP is SED which is the distance measure
developed.

F jð Þ ¼
PNd�1

l¼0 dðjÞl
dðjÞl
���

��� ð6Þ

where,

dðjÞl ¼
XjFŜðjÞk j�1

r¼0

F̂ðjÞ
l ðrÞ � F̂qðqÞ

� �2
ð7Þ

In Eq. (7), F̂q is the value of selected measure, dðjÞl symbolizes the SED among

each DðjÞ
l of the jth chromosome and the respective measure. Consequently, the F jð Þ

is arranged in the ascending order and Np=2 number of mean distances are selected

from f jð Þ. Then the equivalent DðjÞ
l of the selected F jð Þ is acquired and then the

chosen chromosomes are subjected to the genetic operator, mutation.

Component-Based Quality Prediction via Component Reliability … 453

(iii) Mutation

t number of values are chosen from the mean of chromosomes which are already

in sorted form. The selected means are known as DðjÞ
newl. The genes which are having

least SED values are replaced by the new ones.

(iv) Selection of Optimal Solution

The chromosome having maximum fitness is selected and the iteration repeated
Imax times. It denotes that the reliability value recovered in an effective way. So, we
compute the reliability measure value based on these features that is used for quality
measurement of the specified application software.

3.2.2 Software Cost Measure

To speedup the testing process, automated testing tools are used. It does not only
hurry up the testing process but it increases the efficiency of the testing by certain
extent. The total cost of software is given as;

Ct ¼ C0t þC1ð1þ kÞf ðtÞþC2 f tj
� �� ð1þ kÞf ðtÞ� �þC3

Z t

0

xðtÞdt
0
@

1
A ð8Þ

where P is described as fractions of extra errors found during the software testing
phase and is the number of additional faults during the testing time. C0t is cost of
adopting new automated testing tools into testing phase. k is directly proportional to
cost as k increases cost also increases.

4 Results and Discussion

Software quality prediction using optimal fuzzy classifier (OFC) with the aid of
evolutionary algorithm is implemented in the working platform of JAVA. Table 1
shows the fitness value of our proposed improved particle swarm optimization
method using different iterations.

Table 1 Fitness value for
different iteration

No. of
iterations

Fitness value using
IPSO

Proposed
method

5 12.658 15.2

10 10.354 14.6

15 10.354 12.8

20 10.123 11.32

25 9.654 10.5

454 K. Sheoran and O. P. Sangwan

Figure 2 shows the compared fitness value for the existing work using IPSO and
our method where optimal fuzzy classifier is used. The graph shows that our
proposed method has delivered better fitness value which aids in improving the
quality of the software.

Table 2 illustrates the reliability and the cost value that is obtained using our
proposed method of quality prediction. For various time intervals, the corre-
sponding reliability and the cost values are estimated (Table 3).

5 Conclusion

Software quality prediction is measured as a main aspect while designing software.
The proposed system is developed to forecast improved software quality by means
of soft computing method. Initially, test cases are generated from the input and then
extract the component-based software metrics from the test cases. Subsequently, the
component-based feature extraction the reliability is computed by optimal fuzzy
classifier (OFC). Here, the fuzzy rules can be optimized by using evolutionary
algorithms. The reliability and cost of the software are then evaluated, and these

Fig. 2 Comparison of the
fitness value for the existing
work using IPSO and our
proposed method

Table 2 Reliability and cost
value of our proposed method

Time Reliability Cost

0.001 0.00932 985.25

0.003 0.01134 993.32

0.004 0.01243 1012.42

0.005 0.01623 1025.21

0.007 0.02315 1078.68

0.008 0.02512 1100.35

Table 3 Comparison of
software quality measures for
our proposed and existing
method

Methods Reliability Cost

Existing method using IPSO 0.0294 1150.76

Proposed method 0.03242 1118.26

Component-Based Quality Prediction via Component Reliability … 455

values are compared with the existing method. From the comparative analysis, it is
clear that our proposed method achieved better outcome when compared to other
existing methods.

References

1. Dobrica, L., Ioniţa, A.D., Pietraru, R., Olteanu, A.: Automatic transformation of software
architecture models. U.P.B. Sci. Bull Series C 73(3), 3–16 (2011)

2. Seiffert, C., Khoshgoftaar, T.M., Van Hulse, J.: Improving software-quality predictions with
data sampling and boosting. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 39(6) (2009)

3. (Cathy) Liu, Y., Khoshgoftaar, T.M., Seliya, N.: Evolutionary optimization of software quality
modeling with multiple repositories. IEEE Trans. Softw. Eng. 36(6) (2010)

4. Brosch, F., Koziolek, H., Buhnova, B., Reussner, R.: Architecture-based reliability prediction
with the palladio component model. IEEE Trans. Softw. Eng. 38(6) (2012)

5. Ahmed, M.A., Al-Jamimi, H.A.: Machine learning approaches for predicting software
maintainability: a fuzzy-based transparent model. IET Softw. (2013)

6. Brosig, F., Meier, P., Becker, S., Koziolek, A., Koziolek, H., Kounev, S.: Quantitative
evaluation of model-driven performance analysis and simulation of component-based
architectures. IEEE Trans. Softw. Eng. (2013)

7. Hsu, C.-J., Huang, C.-Y.: Optimal weighted combinational models for software reliability
estimation and analysis. IEEE Trans. Reliab. 63(3) (2014)

8. Shepperd, M., Bowes, D., Hall, T.: Researcher bias: The use of machine learning in software
defect prediction. IEEE Trans. Softw. Eng. 40(6) (2014)

456 K. Sheoran and O. P. Sangwan

Applying Statistical Usage Testing Along
with White Box Testing Techniques

Sunil Kumar Khatri, Kamaldeep Kaur and Rattan Datta

Abstract Cleanroom software engineering (CSE) reference model is a rigorous
incremental model that focuses on defect prevention using sound mathematical
principles combined with statistical usage testing (Linger, Trammell, in cleanroom
software engineering reference model, 1996, [1]). Similar to the concept of hard-
ware cleanrooms, this model is also used for the development of zero defect and
extremely reliable software (Mills, Poore, in Quality Progress, 1988, [2]). Statistical
usage testing (SUT) is a technique defined for testing as a part of CSE model [1].
The technique works by performing usage modelling and assigning usage proba-
bilities (Runeson, Wohlin in IEEE Trans Softw Eng 20(6): 494–499, 1994, [3]).
Next statistical tests are carried out on the usage models [3]. CSE relies on SUT for
testing, and unit testing is not defined in the CSE process (Hausler et al. in IBM
Syst J 33(1): 89, 109, 1994, [4]). However, additional testing can be carried out
along with SUT depending on the need (Prowell et al. in cleanroom software
engineering technology and process, 1999, [5]). The paper presents the usefulness
and advantages of applying SUT along with various white box testing techniques.
The white box testing techniques used in the paper are data flow testing, control
flow testing and mutation testing.

Keywords Statistical usage testing � White box testing � Data flow testing
Control flow testing � Mutation testing

S. K. Khatri (&)
Amity Institute of Information Technology, Amity University, Noida, India
e-mail: skkhatri@amity.edu; sunilkkhatri@gmail.com

K. Kaur
Department of Computer Science, New Delhi Institution of Management, New Delhi, India
e-mail: kamaldeepkaurkalsi@yahoo.co.in

R. Datta
Mohyal Educational and Research Institute of Technology, New Delhi, Delhi, India
e-mail: rkdatta_in@yahoo.com

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_44

457

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_44&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_44&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_44&domain=pdf

1 Introduction

Cleanroom software engineering (CSE) reference model is a rigorous model that
focuses on defect prevention using sound mathematical principles combined with
statistical usage testing [1]. Similar to the concept of hardware cleanrooms, this
model is also used for the development of zero defect and high-reliability software
[2, 3]. Cleanroom software engineering has three very important and prominent
characteristics: developing the software incrementally, function-oriented specifi-
cation and statistical usage testing [5]. Cleanroom certification process includes two
vital steps:

• Converting the software usage into usage models and test planning [5]
• Statistical usage testing and also the certification of the software [5].

Authors have already shown the benefits of using SUT with black box testing
techniques [6]. This paper illustrates the usage of SUT in conjunction with one of
the unit testing technique, i.e. white box testing. This section of the paper gives an
introduction to the SUT process. Section 2 defines various white box testing
techniques used in the paper in conjunction with SUT. The software that is used in
the paper is an ‘HTML to Text utility’ that changes HTML documents into easy
text files, by eliminating various HTML tags. Section 3 defines the process of
performing SUT on HTML to TEXT utility. Section 4 demonstrates the application
of combined testing techniques on the software under consideration, while the last
section deals with results obtained after the study.

Statistical Usage Testing

Statistical usage testing (SUT) technique is a technique described for testing as a
part of CSE model [1], and it forms the certification part of this model [3]. SUT is
based on the point of view of the user and is simply related with the interfaces to the
users [7]. The intent of SUT is not in testing the software implementation, but its
ability to satisfy the anticipated function from the user’s point of view [7]. SUT is
therefore a black box testing technique [7] where the internal details of the pro-
gramming structures are not checked.

Statistical usage testing is performed as a formal experiment that is statistical in
nature [5]. The technique works by performing usage modelling and assigning
usage probabilities [3]. Next statistical tests are carried out on the usage models [3].
All the feasible executions of the software usage are sampled by the generation of
random test cases [8]. Next the test cases are executed, and the outcomes are
comprehended using a defined level of confidence [5]. Finally, the failure data is
collected, and the results are reported [5].

Statistical usage testing can be performed with the aid of Markov chains [8]. The
process begins with the development of the usage Markov chain, which models all
possible software usages [8]. When the sequences from the usage Markov chain are
performed as test cases on the software, the testing Markov chain is permitted to

458 S. K. Khatri et al.

progress according to the results of the tests [8]. The process continues by running
test cases and reporting failures [8]. The process of cleanroom certification is
depicted in Fig. 1.

SUT has many applications, and moreover, SUT using Markov chains can be
efficiently applied to uncover failures in the simple customized software [9].

2 White Box Testing Techniques (WBTT)

2.1 Use of White Box Testing Techniques (WBTTs)
with SUT

CSE relies on SUT for testing, and unit testing is not defined in the CSE process [4].
However, additional testing can be carried out along with SUT depending on the
need [5]. The application of other testing techniques in conjunction with SUT can
be elemental to exhibit precise scenario of usage or to accomplish complete usage

Fig. 1 Steps of SUT using
Markov chain model [5]

Applying Statistical Usage Testing Along with White Box … 459

model coverage with lesser number of test cases [5]. It is normally desirable to carry
out any non-statistical tests before performing statistical testing [5]. The usage of
appropriate testing technique at the correct level can aid in the development of
high-quality software [10]. In fact, SUT can be more effectual if incorporated with
other testing techniques [11].

Unit testing is a testing technique which checks the internal details of the code.
But it is not defined in CSE model [4]. Not permitting the programmer admittance
to the code can be less productive. Figure 2 shows the gap in testing [12], which
can be filled by using other testing techniques. The paper highlights the usage of
SUT in juxtaposition with one of the unit testing technique, i.e. white box testing.
The paper presents the usefulness and advantages of applying SUT along with
various WBTTs. The WBTTs used in the paper are data flow testing, control flow
testing and mutation testing.

In WBTTs, the testers need the information regarding the internal structure [13]
and working of the software [14]. It is related with testing the implementation of the
software [15]. The principal purpose of this testing technique is to implement
various programming structures like decisions, loops, variables and also various
data structures used in the program [15]. Since WBTT starts working at most basic
level of the software development process, it offers advantages like forcing the test
developer to rationale circumspectly concerning the implementation, illuminating
errors in the code [16] and compelling the desired coverage of loops, decisions,
variables, etc. [15].

2.2 Types of White Box Testing Techniques

Various white box testing techniques are as follows:

1. Control Flow Testing

Control flow testing (CFT) is a technique that makes use of the control structures
of the program to generate the test cases for the program [17]. The test cases are

Fig. 2 Gap in testing [12]

460 S. K. Khatri et al.

generated to sufficiently cover the entire control structure of the program [17].
A control flow graph (CFG) which is a pictorial representation [18] is used to
represent the control structure of a program [17]. The control flow graph can be
represented as G = (N, E) where N denotes the set of nodes and E indicates the set
of edges [17]. Each node corresponds to a set of program statements [17]. The
process of CFT is shown in Fig. 3. The process begins with converting the program
into a control flow graph [19]. Next various paths are selected, and test input data is
generated [19]. The test cases are executed, and results are reported [19]. Control
flow testing includes statement, branch and path coverage.

– Statement coverage entails that every statement of the program should be
executed at least once during testing [15].

– Branch coverage necessitates the traversal of every edge in the CFG at least
once [15].

– Path coverage entails the execution of all the feasible paths in the CFG [15].

2. Data Flow Testing

In data flow testing (DFT), information regarding the location of variables
definition and also the location of the usage of definitions is used to indicate the test
cases [15]. The fundamental intent of data flow testing is to test the various defi-
nitions of variables and their successive uses [15]. For DFT, a definition-use graph
is initially developed from the control flow of the program [15]. A variable
appearance in the program can be one of the below given types:

Fig. 3 Process of CFT [19]

Applying Statistical Usage Testing Along with White Box … 461

Def: the definition of a variable [15]
C-use: the computational use [15]
P-use: the predicate use [15].

There can be different criteria like all-defs criteria, all c-uses criteria, all p-uses
criteria, all c-uses/some p-uses criteria, all, all-uses criteria, all-paths criteria, p-uses/
some c-uses criteria. [15].

3. Mutation Testing

Mutation testing (MT) is a white box structural testing method in which a small
fault or change (known as mutants) is introduced in the original software [15].
Unlike DFT or CFT, it does not consider any paths for testing; instead it creates
‘mutants’ [15]. The elemental concept of mutation testing is to ensure that during
the testing, every mutant results into a dissimilar output than the output of the
original program [15]. If the test case is capable of differentiating and locating the
change, then mutant is said to be killed [20].

The basic concept of mutation testing is shown in Fig. 4. As depicted in the
diagram, a fault is introduced in the original code to generate a mutant code [21].
Next the test cases are applied to both the original code and the mutant code, and
then the output of both is compared [21]. If the selected test data distinguishes the
original program from the mutant program, then the mutant is killed [15]. If no,
then the mutant is alive and more test cases are required [15]. Mutation testing has
further subtypes like operator mutation, value mutations, decision mutation.

Fig. 4 Mutation testing
process [21]

462 S. K. Khatri et al.

3 Testing ‘HTML to Text Converter Utility’ Using SUT

3.1 HTML to TEXT Utility

HTML to Text utility changes HTML documents into easy text files, by eliminating
all HTML tags. The converter takes as input the HTML file and produces the text
version by removing tags. Figure 5 shows the graphical user interface of the utility.

3.2 SUT for HTML to TEXT Converter

SUT is the technique used for testing given in the CSE model [1], and it forms the
certification part of this model [3]. The process of SUT begins by the development
of usage models [8]. A usage model is usually depicted as a graph as a Markov
chain. A Markov chain is a directed graph in which the nodes depict events and the
arcs correspond to transitions amid the states. There are two types of Markov chains
used in SUT process: the usage chain and the testing chain. The usage Markov
chain starts by setting up the states and arcs of the chain [8]. Once all the states and
arcs are complete, all the arcs are assigned transition probabilities [8]. In the second
phase, the testing Markov chain is constructed [8]. The testing chain is permitted to
progress with respect to the result of the test, when the sequences from the usage
chain are applied to the software [8]. To begin with, the testing chain has the similar
nodes and transition arcs as the usage chain with every arc assigned with a

Fig. 5 HTML to text
converter GUI

Applying Statistical Usage Testing Along with White Box … 463

frequency count of 0 [8]. The frequency counts specified on the arcs are incre-
mented as the sequences are produced from the usage chain [8]. All the feasible
executions of the software usage are sampled by the generation of random test cases
[8]. Next the execution of various randomly generated test cases is carried out [5].
Finally, the failure data is collected and the results are reported [5].

Figure 6 shows initial Markov chain. After invocation, the user browses the
source file, converts it into text form, views the output, and finally terminates the
application.

Table 1 enumerates various transition probabilities from one state to the other
state, and Table 2 depicts the transition matrix. In the table, the captions ‘From
state’ means the starting state, and ‘to state’ refers to the destination state. For
example, the transition from ‘invocation’ to ‘browse source file’ has the transition
probability of 1, as this is the only transition from the invocation state. The entry 0
depicts there no transition is possible in these states.

Fig. 6 Initial Markov chain

Table 1 Transition probabilities for usage model

Sequences used:

From state To state Probability

<Invocation><browse source file><convert><show output><termination>

Invocation Browse source file 1

Browse source file Convert 1

Convert Show output 1

Show output Termination 1

Termination Invocation 1

Table 2 Transition matrix

To state

States Invocation Browse source
file

Convert Show
output

Termination

From
state

Invocation 0 1 0 0 0

Browse source
file

0 0 1 0 0

Convert 0 0 0 1 0

Show output 0 0 0 0 1

termination 1 0 0 0 0

464 S. K. Khatri et al.

The usage chain serves as the basis of statistical test cases for any software [8].
A test case in SUT is actually any connected sequence of states in the usage chain
that starts with the initial state and finishes with the termination state. In other
words, a test case is a random walk through the transition matrix [22]. Thus, once
usage model has been developed, any number of test cases can be attained from the
model [8]. For example, random numbers <84, 31, 10, 25> serve as a test case and
lead to the following sequence of events [22].

<Invocation><Browse Source File><Convert><Show Output><Termination>
Random number 84 generates the move from ‘invocation’ to ‘browse source file’

as the probability is 100% [22]. In fact, any random number would produce the
same sequence. It can be noted that the Markov chain permits adequate statistical
assessment [8]. Many important statistical results can be obtained using Markov
chains which can be highly beneficial to the testers [8]. Various significant statis-
tical results include:

p (stationary distribution) of the Markov chain which can be computed as:

p ¼ pT

where T is the transition matrix, pi is the time the usage chain expends in state in the
long run. With respect to the test case, it is the projected appearance rate of state i in
long run [8]. This information permits the testing team to find out various parts of
software will get the maximum concentration from the test cases [8]. For the
problem under consideration T and p are given below:

T ¼

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

Here

p ¼ p1; p2; p3; p4; p5½ �
p ¼ pT

p ¼ p1; p2; p3; p4; p5½ �

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

0
BBBB@

1
CCCCA

p1 ¼ 0p1 þ p2 þ 0p3 þ 0p4 þ 0p5

Applying Statistical Usage Testing Along with White Box … 465

i:e: p1 ¼ p2 ð1Þ

Similarly p2 ¼ p3; p3 ¼ p4; p5 ¼ p1 ð2Þ

As p1 þ p2 þ p3 þ p4 þ p5 ¼ 1 ð3Þ

Putting 1 and 2 in 3
We get 5p1 = 1
p1 = 1/5
Similarly, other values of p can be computed, i.e.
p2 = 1/5, p3 = 1/5, p4 = 1/5, p5 = 1/5
Another important statistic is
ni = 1/pi

When the value of ni is calculated for i equal to final terminating state, the output
is projected number of states till the final or last state of the software [8]. This refers
to the anticipated test case length for usage model [8]. For the problem under
consideration ni, i.e. n1, n2, n3, n4, n5 = 1/0.2 = 5.

4 Applying SUT Along with WBTT

The above section performed SUT on the case under consideration. But no unit
testing was performed on the code. For the problem under consideration, it is seen
that even after performing SUT, some errors are left uncovered. Figures 7 and 8
show the output window for a sample HTML page and Google HTML page,
respectively. It was found that the output was not correct for the Google page as
many tags and script codes were seen in the output window. Therefore, other testing
techniques related to the code scrutiny must be performed in this case.

The below section performs various WBTTs (CFT, DFT and MT) on the
problem in conjunction with SUT. The comparative analysis of applying SUT alone
and SUT along with other WBTT is also shown. The software had many modules
which were tested, but since it was not feasible to demonstrate all the modules, the
paper uses ‘take_tag’ and ‘convert’ module to demonstrate control flow graphs.

4.1 Control Flow Testing (CFT)

A control flow graph is a pictorial representation of all possible control flow of a
program while taking into account the label of every statement [15]. A node in the
graph refers to a statement with its label in the program and edges correspond to the
likely transfer of control flow between statements [15]. Figures 9 and 10 show the
control flow graph for take_tag() and convert() modules, respectively. As shown in

466 S. K. Khatri et al.

the control flow graphs, labels on the arcs indicate the transition from one statement
to another. For simplicity, alphabets have been used.

a. Test Cases for Path Coverage for Program [15]

Since it is unfeasible to show all the modules, we use take_tag() module to
demonstrate our testing. The module takes as its input HTML code. There are
numerous HTML files that could be input to program making it unfeasible to test all
possible inputs.

Fig. 7 HTML to text
converter output window for a
sample page

Fig. 8 Output window for
Google page

Applying Statistical Usage Testing Along with White Box … 467

b. Test Cases for Statement and branch Testing Coverage

Consider the control flow graph already constructed (as in Fig. 9). (In Fig. 9
INV refers to invocation, INIT R-initialize R, INIT L-initialize R, APP<IN R
append ‘<’ in result, WHILE L>0, INIT C is initialize C, IF is for condition,
BRK-break, R.APP is append in R, IF C=< is for condition, L++ increment L, L−−
decrement L, RETN R is return R.).

Table 3 depicts the test cases to satisfy statement testing coverage. For example,
if path is ‘abcdefgp’, then EOF is reached, and if path is ‘abcdefijkmh’, then its L is
incremented.

Fig. 9 Markov chain for take_tag module

Fig. 10 Markov chain for convert module

468 S. K. Khatri et al.

T
ab

le
3

T
es
t
ca
se
s
to

sa
tis
fy

st
at
em

en
t
te
st
in
g
co
ve
ra
ge

P
Pr
oc
es
s
lin

ks
T
es
t
ca
se
s

a
b

c
d

e
f

g
h

i
j

k
l

m
n

p
I

O

ab
cd
ef
gp

p
p

p
p

p
p

p
p

H
T
M
L
co
de

E
O
F
re
ac
he
d

ab
cd
efi
jk
m
h

p
p

p
p p

p
p

p
p

p
p

p
H
T
M
L
co
de

O
ut
pu

t
st
ri
ng

ab
cd
efi
jln

h
p

p
p

p
p

p
p

p
p

p
p

H
T
M
L
co
de

O
ut
pu

t
st
ri
ng

P
pa
th
s,
I
in
pu

t,
O

ou
tp
ut

Applying Statistical Usage Testing Along with White Box … 469

Table 4 shows the test cases to satisfy branch testing coverage for program. For
example, if path is ‘abcdefgp’, then the file reaches the end of file.

Table 5 enumerates the summary and comparison of applying SUT and SUT
together with control flow testing. It is found during testing that additional errors are
uncovered when both the techniques are applied in conjunction. It is seen that there
is no change in the size of transition matrix or number of states in Markov chain.
But there was an increase in number of errors detected as indicated in Table 5.

4.2 Data Flow Testing (DFT)

DFT is performed by locating the definition computation use (DCU) and definition
predicate use (DPU) of different variables used in the program [15]. The predicate
use and computational use for various variables are given in Table 6. For example,
the variable R is defined in node named INIT R. The c-use of the variable R occurs
in nodes APP in R and R.APP, while its p-use does not occur in any of the nodes.

DFT uses a number of criteria for testing like all-defs, all c-uses, all p-uses,
all-edges, all p-uses and some c-uses [15]. To generate the test cases for this
program using various criteria of DFT, the problem is divided into two parts [15].
Initially, those paths are selected that satisfy the chosen criteria. In the next step, the

Table 4 Test cases to satisfy
branch testing coverage for
program

Paths Decisions Test cases

Input Output

abcdefgp EOF HTML code EOF reached

abcdefijkmh T HTML code Output string

abcdefijlnh F HTML code Output string

Table 5 Comparison: SUT
and SUT along with CFT

Parameter SUT SUT with CFT

Markov chain states 5 5

Total transitions 5 5

Transition matrix size 5 � 5 5 � 5

Entries in transition matrix 25 25

Errors detected 3 6

Table 6 DCU and DPU data
flow testing criteria

(Node, variable) DCU DPU

(INIT R, R) {APP in R, R.
APP}

ø

(INIT L, L) {L++, L−} {WHILE}

(INIT C, C) ø {IF C=−1, IF
C=<}

470 S. K. Khatri et al.

selection of the test cases that will implement those paths takes place [15]. For the
problem, following criteria have been used.

a. All-edges

All-edges criteria is same as 100% branch coverage [15]. Considering all-edges
criteria, if the paths executed by the test cases consist of the paths given below, then
it is seen that all-edges are covered:

(INVC, INIT R, INIT L, APPL IN R, WHILE, INT R, IF C=−1, BRK, RETN R)
(INVC, INIT R, INIT L, APPL IN R, WHILE, INT R, IF C=−1, R APP, IF C=<,

C++, WHILE, RETN R)
(INVC, INIT R, INIT L, APPL IN R, WHILE, INT R, IF C=−1, R APP, IF C=<,

C−−, WHILE, RETN R)

b. All-defs

All-defs criterion necessitates that for all the definitions of all the variables, at
least one use which can either computation or predicate use, ought to be exercised
during testing. The below given set of paths will assure the all-defs criteria is
satisfied.

(INVC, INIT R, INIT L, APPL IN R, WHILE, INT R, IF C=−1, BRK, RETN R)
(INVC, INIT R, INIT L, APPL IN R, WHILE, INT R, IF C=−1, R APP, IF C=<,

C++, WHILE, RETN R)
(INVC, INIT R, INIT L, APPL IN R, WHILE, INT R, IF C=−1, R APP, IF C=<,

C−−, WHILE, RETN R)

C. All-Uses, All P-Uses and All C-Uses

The same paths as specified above can be used to satisfy all-uses criteria, which
require that all p-uses and all c-uses of all variable definitions.

Table 7 enumerates the summary and comparison of applying SUT and SUT
together with DFT. It is found during testing that additional errors are uncovered
when both the techniques are applied in conjunction. It is seen that there is no
change in the size of transition matrix or number of states in Markov chain. But
there was an increase in number of errors detected as indicated in Table 7.

Table 7 Comparison: SUT
and SUT along with DFT

Parameter SUT SUT with DFT

Markov chain states 5 5

Total transitions 5 5

Transition matrix size 5 � 5 5 � 5

Entries in transition matrix 25 25

Errors detected 3 5

Applying Statistical Usage Testing Along with White Box … 471

4.3 Mutation Testing

Mutation testing is used to choose test data which has the capability of finding
errors. The elemental concept of mutation testing is to ensure that during the testing
process, each mutant produces a dissimilar result than the outcome of the original
code [15]. If the test case is capable of differentiating and locating the change, then
mutant is said to be killed [20]. For the same program, we consider following
mutants as indicated in Table 8.

During testing process of this software utility, various strings and tags were
given as input and the three test mutants specified about in Table 8 were killed.

Table 9 enumerates the summary and comparison of applying SUT and SUT
along with DFT. It is found that combination of both the techniques found more
errors.

Table 8 Mutants used for testing

472 S. K. Khatri et al.

5 Findings and Conclusion

For the software under consideration, it was found that even after performing SUT,
some errors were left uncovered, as the software did not produce the correct output
for some of the web pages. Therefore, white box techniques were highly essential.
The use of WBTT in combination with SUT was found beneficial in the following
ways:

(1) In some cases when errors are not uncovered using SUT alone and code
scrutiny is required, then white box techniques must be used.

(2) Using SUT with data flow testing aids to validate the correctness of variables
defined and used. Using DFT along with SUT helps to find more errors related
to the usage and definition of data in the code.

(3) Control flow testing can be used along with statistical usage testing for code
inspection so as to make certain that every control structure like statement,
branch and loop has been exercised least once. It also facilitates to test an
adequate number of paths to attain coverage. Therefore, all the control struc-
tures including all the statements, conditions and loops can be tested.

(4) Mutation testing can also be used with SUT for fault identification and to
eliminate code ambiguity.

(5) All the above techniques along with SUT enable code inspection which aids in
detecting internal code errors.

6 Limitations and Future Work

The paper has used only one software for testing. For more general results, the
combined testing techniques can be applied to various other software also.

In future, the authors intend to find new application areas where SUT can be
applied.

Acknowledgements Authors express their deep sense of gratitude to the founder president of
Amity University Dr. Ashok K. Chauhan for his keen interest in promoting research in Amity
University and have always been an inspiration for achieving great heights.

Table 9 Comparison: SUT
and SUT along with MT

Parameter SUT SUT with MT

Errors detected 3 4

Applying Statistical Usage Testing Along with White Box … 473

References

1. Linger, R.C., Trammell, C.J.: Cleanroom Software Engineering Reference Model. Nov 1996.
[Online] Available: http://leansoftwareengineering.com/wp-content/uploads/2009/02/
cleanroomsei.pdf

2. Mills, H.D., Poore, J.H.: Bringing software under statistical quality control. In: Quality
Progress, Nov 1988

3. Runeson, P., Wohlin, C.: Certification of software components. IEEE Trans. Softw. Eng. 20
(6), 494–499 (1994)

4. Hausler, P.A., Linger, R.C., Trammell, C.J.: Adopting Cleanroom software engineering with a
phased approach. IBMSyst. J. 33(1), 89, 109 (1994). https://doi.org/10.1147/sj.331.0089.URL:
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5387350&isnumber=5387343

5. Prowell, S.J., Trammell, C.J., Linger, R.C., Poore, J.H.: Cleanroom Software Engineering
Technology and Process, 14. Addison-Wesley. ISBN 0-201-85480-5 (1999)

6. Khatri, S.K., Kaur, K., Datta, R.: Using statistical usage testing in conjunction with other
black box testing techniques. Int. J. Reliab. Qual. Saf. Eng. 22(1), 1550004 (23 p) c World
Scientific Publishing Company (2015). https://doi.org/10.1142/s0218539315500047

7. Runeson, P., Wohlin, C.: Statistical Usage Testing for Software Reliability Certification and
Control (1993)

8. Whittaker, J.A., Poore, J.H.: Statistical testing for Cleanroom software engineering. In:
Proceedings of the Twenty-Fifth Hawaii International Conference, System Sciences, vol. 2,
pp. 428–436. ISBN: 0-8186-2420-5 (1992)

9. Kaur, K., Khatri, S.K., Datta, R.: Analysis of statistical usage testing technique with Markov
chain model. In: ICRITO (2013)

10. Kaur, K., Khatri, S.K., Datta, R.: Analysis of various testing techniques. Int. J. Syst. Assur.
Eng. Manag. (2013). ISSN 0975-6809. https://doi.org/10.1007/s13198-013-0157-6

11. Chugh, N.: Framework for Improvement in Cleanroom Software Engineering Thesis. Thapar
University Patiala (2009)

12. https://ece.uwaterloo.ca/*snaik/MYBOOK1/Ch5-DataFlowTesting.ppt
13. BCS SIGIST.: Standard for Software Component Testing by British Computer Society

Specialist Interest Group in Software Testing (2001). http://www.testingstandards.co.uk/
Component%20Testing.pdf

14. http://istqbexamcertification.com/what-is-white-box-or-structure-based-or-structural-testing-
techniques/

15. Jalota, P.: An Integrated Approach to Software Engineering, 3rd edn. Narosa Publication,
New Delhi (2005)

16. http://www.tutorialspoint.com/software_testing_dictionary/white_box_testing.htm
17. http://www.cs.ccu.edu.tw/*naiwei/cs5812/st4.pdf
18. Beizer, B.: Software Testing Techniques, 2nd edn. (1990)
19. https://ece.uwaterloo.ca/*snaik/MYBOOK1/Ch4-ControlFlowTesting.ppt
20. http://www.softwaretestinggenius.com/mutation-testing
21. http://www.guru99.com/mutation-testing.html
22. Trammell, C.: Quantifying the reliability of software: statistical testing based on a usage

model. In: Software Engineering Standards Symposium, 1995. (ISESS’95) ‘Experience and
Practice’, Proceedings, Second IEEE International, pp. 208, 218, 21–25 Aug 1995. https://doi.
org/10.1109/sess.1995.525966

Sunil Kumar Khatri Prof. Sunil Kumar Khatri (Ph.D. in Comp. Science, MCA and B.Sc. in
Computer Science) is working as Director in Amity Institute of Information Technology, Amity
University, Noida, India. He has been conferred ‘IT Innovation and Excellence Award for
Contribution in the field of IT and Computer Science Education’ in 2012 and ‘Exceptional

474 S. K. Khatri et al.

http://leansoftwareengineering.com/wp-content/uploads/2009/02/cleanroomsei.pdf
http://leansoftwareengineering.com/wp-content/uploads/2009/02/cleanroomsei.pdf
http://dx.doi.org/10.1147/sj.331.0089
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5387350&isnumber=5387343
http://dx.doi.org/10.1142/s0218539315500047
http://dx.doi.org/10.1007/s13198-013-0157-6
https://ece.uwaterloo.ca/%7esnaik/MYBOOK1/Ch5-DataFlowTesting.ppt
http://www.testingstandards.co.uk/Component%20Testing.pdf
http://www.testingstandards.co.uk/Component%20Testing.pdf
http://istqbexamcertification.com/what-is-white-box-or-structure-based-or-structural-testing-techniques/
http://istqbexamcertification.com/what-is-white-box-or-structure-based-or-structural-testing-techniques/
http://www.tutorialspoint.com/software_testing_dictionary/white_box_testing.htm
http://www.cs.ccu.edu.tw/%7enaiwei/cs5812/st4.pdf
https://ece.uwaterloo.ca/%7esnaik/MYBOOK1/Ch4-ControlFlowTesting.ppt
http://www.softwaretestinggenius.com/mutation-testing
http://www.guru99.com/mutation-testing.html
http://dx.doi.org/10.1109/sess.1995.525966
http://dx.doi.org/10.1109/sess.1995.525966

Leadership and Dedication in Research’ in the year 2009. He has edited four books, six special
issues of international journals and published several papers in international and national journals
and proceedings of repute. His areas of research are software reliability, data mining and network
security.

Kamaldeep Kaur Ms. Kamaldeep Kaur did her BCA and MCA from GNDU with top merit
positions. She worked as a lecturer in Lovely Professional University for three years. At present,
she is working as an Assistant Professor at New Delhi Institution of Management, New Delhi. She
is also doing her Ph.D. in software testing from Amity University.

Rattan K. Datta Prof. (Dr.) Rattan K. Datta is first-class M.Sc. from Punjab University and Ph.D.
from IIT-D. He has been associated with IT and its applications for the last over three decades
heading main frames, mini and supercomputers. He is Fellow of Computer Society of India, IETE,
India Met Society, Telematic Forum and member of Indian Science Congress Association (ISCA).
He was also National President of Computer Society of India (CSI), Indian Meteorological Society
and IT section of ISCA. He has guided a number of students for Ph.D. (IIT, BITs Pilani, PTU and
other universities). Currently he is Honorary C.E.O. and Director, MERIT, New Delhi.

Applying Statistical Usage Testing Along with White Box … 475

A Review on Application Security
Management Using Web Application
Security Standards

A. Rakesh Phanindra, V. B. Narasimha and Ch. V. PhaniKrishna

Abstract Software influences almost every aspect of modern society.
Development of quality software systems has always been a great experiment for
software developers. By and by, it happens that non-practical elements are fre-
quently disregarded while concentrating on the usefulness of the framework. A few
frameworks have fizzled due to the carelessness of non-utilitarian necessities. As of
late, Web application security has turned into the essential talk for security spe-
cialists, as application assaults are always on rise and posturing new dangers for
associations. A few patterns have risen recently in the assaults propelled against
Web application. The execution of international security standard is to minimize the
security disappointments and to moderate their results. Applications have been
helpless for whatever length of time that they have existed. To ponder the effect of
non-utilitarian prerequisites on necessities development, we are proposing a very
important non-functional requirement Application Security Management is to
define the requirements for security in all applications that use the web application
security standards (WASS).

Keywords Non-functional requirements � Software quality � Application
security management � Web application security standards

A. Rakesh Phanindra (&) � Ch. V. PhaniKrishna
Department of CSE, KL University, Guntur, India
e-mail: rakeshmtech2011@gmail.com

Ch. V. PhaniKrishna
e-mail: phanik16@kluniversity.in

V. B. Narasimha
Department of CSE, UCE, Osmania University, Hyderabad, India
e-mail: vbnarasimha@gmail.com

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_45

477

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_45&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_45&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_45&domain=pdf

1 Introduction

When people speak about really great value software, they usually reflect in terms of
its usefulness, easiness or aesthetics. But there is more to it than that. A really great
piece of software will exploit quality completely like a piece of Brighton Rock [1].

Web applications have become the main targets for several reasons:
1. The web-based applications are unprotected to the Internet with standard bound-

aries. Attackers can simply determine applications and look for vulnerabilities.
2. Regular intelligence manages that Web sites should be revived always keeping

in mind the end goal to draw in and hold clients. This frequently prompts
shortcutting arrangement administration and control techniques, bringing about
untested and misconfigured Web applications being uncovered.

3. Web applications regularly comprise of blends of off-the-rack programming,
business- or foreman-created applications and open-source parts. A significant
part of the helplessness in these segments goes disregarded until broken or a
patch notice comes to. What’s more, the instability and multifaceted nature of
these parts can lessen programming advancement and testing procedures
unsuccessful. Web applications convey assailants with a decent start point to
enter into the association, for example, a joined database, or to misuse the Web
page keeping in mind the end goal to download malware onto the PC of cus-
tomers going to the site.

2 Objective

The purpose of proposing a very important non-functional requirement application
security management is to define the requirements for security in all applications
that use the Web application security standards (WASSs) [2]. Security rules safe-
guard applications, and the underlying information, by preventing unauthorised
alteration, destruction or loss of use.

3 Scope

The intended audience for this management practice is all users with responsibility
for the development, implementation, and management of security in applications.

4 Types of Vulnerabilities

Some of the top issues associated with Web applications that must be addressed are
shown in the following diagram (Fig. 1).

478 A. Rakesh Phanindra et al.

Estimation units and learning of security properties are not really known. This
procedure causes the intricate frameworks deterioration into less complex and littler
frameworks in this way permitting the estimative of properties that will help the
comprehension and estimation of programming frameworks security properties [3].

A bad design can cause potential problems for different types of security vul-
nerabilities. Table 1 lists the vulnerabilities, category wise and the potential
problems that can be caused due to bad design.

Fig. 1 Issues associated with Web applications

Table 1 Vulnerabilities category-wise problems that can be caused due to bad design

Rule category Vulnerability type

Authentication rules Lacking authentication

Weak password and password recuperation
validation

Authorization rules Insufficient authorization

Parameter manipulation

Insecure direct object reference

Session management rules Session hijacking

Session fixation

Insufficient session expiry

Input validation rules SQL injection (injection flaws)

Cross-site scripting (XSS)

Malicious file execution

Error handling rules Improper error handling

Information security rules Information leakage

Cryptography rules Insufficient cryptographic storage

Environment and application server
rules

Directory indexing

Transport layer security

Database security

Logging rules Auditing and logging

A Review on Application Security Management Using Web … 479

The rules for securing a site’s applications can be sorted out in a various leveled
structure keeping in mind the end goal to address security at every level. The
principal level, the single exchange, is the littlest bit of rationale in a Web appli-
cation [1]. The following level is the complete session and is comprised of various
exchanges. The highest level is the complete application including countless ses-
sions. Examination of the security prerequisites for every level is essential.

5 Methodology

The logical activities for software development life cycle for a Web Application
development project phases are given below:

1. Design
2. Coding
3. Security Testing
4. Delivery and Deployment.

5.1 Design

The applicable rules to be considered while designing secure Web applications are
as follows:

• Authentication Rules
• Authorization Rules
• Session Management Rules
• Input Validation Rules
• Error Handling Rules
• Information Security Rules
• Cryptography Rules
• Environment and Application Server Rules
• Logging Rules (Table 2).

Table 2 Applicable rules to be considered while design secure Web applications

Entry Application design phase

Inputs Baselines software requirement specification
Security requirements
Classification of information stored in application under design

Tasks Ensure compliance to applicable rules, refer: Web application
security standards (WASSs) document for details

Verification/validation Design review

Outputs Updated traceability matrix, review reports

Exit Reviewed detailed modeling elements

480 A. Rakesh Phanindra et al.

5.2 Coding

All rules in WASS document are applicable during the coding phase depending on
the type of application (Level 1, Level 2, Level 3); however, for unit testing and
code review, verification matrix in this document can be referred [4].

Entry Coding phase

Inputs Baselines design document
Security requirements, classification of information stored in application
under design

Tasks Code according to the coding standards and method specifications,
checklist for code review

Verification/
validation

Unit testing, code review

Outputs Code review, reports updated, traceability matrix review reports

Exit Baselined source code

5.3 Security Testing

All rules in WASS document are applicable during the security testing phase
depending on the type of application (Level 1, Level 2, Level 3); however, veri-
fication matrix in this document can be referred for any details.

Entry Completion of one round of functional testing

Inputs Functionally stable application, security requirements, classification of
information stored in application under design

Tasks Perform automated and manual security testing

Verification/
validation

Reviewed and approved security test reports

Outputs Security test reports against WASS review reports

Exit Baselined and tested application

5.4 Delivery and Deployment

• Authentication Rules
• Authorization Rules
• Session Management Rules
• Input Validation Rules

A Review on Application Security Management Using Web … 481

• Error Handling Rules
• Information Security Rules
• Cryptography Rules
• Environment and Application Server Rules
• Logging Rules

Entry User acceptance test (UAT) sign-off by the customer

Inputs Tested deliverables
Acceptance criteria as defined in project plan
Contract for information on deliverables agreed with the customer
Project plan for any specific replication, delivery and onsite installation
requirements

Tasks Develop deployment plan, document delivery checklist, conduct
pre-delivery checks, deliver the work products

Verification/
validation

Deployment plan

Outputs Deployment plan, product delivery checklist, review reports

Exit Sign-off from customer on delivered and accepted application

6 Management Practices

6.1 Requirements, Design, and Development

• Before an application is developed, acquired, or enhanced, security requirements
must be formally documented to address all relevant security rules as defined in
WASS [1, 5].

• Each project must establish mechanisms to certify the completeness of security
requirements of each high-risk application within formally documented project
review processes.

• Application design specifications must be formally documented to address all
security requirements.

• Applications should rely on approved IT services (e.g., strategic enterprise
directory, single sign-on, Microsoft NTLM) for security processes (e.g.,
authentication, authorization).

• A formal plan (either separate plan or integrated with the project plan) must be
documented for Level 1 applications and approved by the business owner.

482 A. Rakesh Phanindra et al.

6.2 Testing

• New or significantly enhanced version releases of applications (including legacy
applications) must be fully tested against applicable security rules prior to
production deployment [6].

• Confidential information should not be used for the purpose of application
development and testing. The use of confidential information for development
and testing must be authorized by the business owner of the application.

• Successful testing of an application’s security rules must be recorded in
accordance with formal change control processes.

• Personally identifiable information (PII) must not be used in application
development or testing, unless otherwise permitted under applicable data pro-
tection laws, rules, or regulations (e.g., healthcare information portability and
accountability, EU data protection directive).

• Where the use of confidential information is required for test purposes, access
controls must be applied to applications and underlying systems in the test
environment. Confidential information must be deleted from the test environ-
ment as soon as feasible following the test execution.

6.3 Audience

• The standards must be shared with the customer, customized (if required), and
approved before putting it to use. This must happen before the application
design starts.

• Project teams are accountable for ensuring that Web applications within their
scope are compliance with this standard.

• Project architects are accountable for ensuring that this standard is appropriately
complied with on projects where they are the named architect.

• Project managers should ensure that compliance with this standard is included in
system requirements.

• Developers are responsible for developing code that complies with this standard.
• Web security testers must ensure that the application is not vulnerable to vul-

nerabilities described in this document.

6.4 Verification Matrix

Compliance to WASS can be verified in several ways. The following gives an
indication on complying with each rule.

A Review on Application Security Management Using Web … 483

Each rule maybe verified in two ways. Manual testing is a series of
security-related tests available that may be used to verify most rules [7, 8]. Rules
which cannot be verified by manual testing will require code review. Code review
requires access to the source code of the application [9, 10].

The verification matrix is provided as an aid to navigate the various rule state-
ments. A 1 indicates that the rule statement is verifiable via the corresponding
verification technique. Multiple check marks mean the rule statement is verified by
a combination of techniques. Specific guidance on how to verify each rule is
available in Table 3.

Table 3 Application security management design, development and testing guidelines

Rule ID Rule description Verification
responsibility

Code
review

Manual
testing

1 Try not to permit the login procedure to begin from a
unencrypted page

⊠

2 Secret key quality ought to be upheld to utilize upper- and
lower-case letters, numbers, and images

⊠

3 Secret key maturing ought to be implemented to guarantee
that passwords do not stay unaltered for drawn-out
stretches of time

⊠

4 Validate authorization on every request ⊠

5 Employ access control in the business layer, not only the
presentation layer

⊠ ⊠

6 Do not pass any credentials or parameters that can be used
to bypass authentication or authorization rules within a
URL

⊠

7 Ensure that all URLs and business functions are protected
by an effective access control mechanism that verifies the
user’s role and entitlements

⊠ ⊠

8 Only use the inbuilt session management mechanism
within the development framework

⊠ ⊠

9 Ensure that a new session is regenerated upon successful
authentication

⊠ ⊠

10 Ensure that every page has a logout link ⊠

11 Use an appropriate timeout period that automatically logs
out an inactive session

⊠

12 Try not to acknowledge new, preset or invalid session
identifiers from the URL or in the solicitation

⊠

13 Utilize a standard info approval system to validate all input
data for length, type, syntax, and business rules before
tolerating the information to be shown or put away

⊠

(continued)

484 A. Rakesh Phanindra et al.

Table 3 (continued)

Rule ID Rule description Verification
responsibility

Code
review

Manual
testing

14 Ensure that all user-supplied data is HTML/URL/URI
information is HTML/UR/URI encoded before rendering

⊠ ⊠

15 Use strongly typed parameterized queries or stored
procedures

⊠

16 Validate any application critical information passed as
variables in cookies

⊠

17 Check any user-supplied documents or filenames taken
from the client for genuine purposes

⊠

18 Avoid point by point slip messages that are helpful to an
aggressor

⊠

19 Utilize custom error pages in order to guarantee that the
application will never leak error messages to an attacker

⊠ ⊠

20 In the case of any system failure, the application must “fail
closed” the resource

⊠

21 Do not store any confidential information in cookies ⊠

22 Prevent sensitive data from being cached on client side ⊠

23 Ensure that confidential information is transmitted by
using HTTP POST method

⊠

24 Do not write/store any sensitive information in HTML
source

⊠

25 Ensure proper masking techniques are used while
displaying sensitive personally identifiable information to
users

⊠ ⊠

26 Do not use hidden fields for sensitive data ⊠

27 Abstain from uncovering private item references to user at
whatever point conceivable, for example essential keys or
filenames

⊠

28 Do not save passwords within cookies to allow users to be
remembered

⊠ ⊠

29 Do not store any confidential information including
passwords in log entries unless encrypted

⊠

30 Do not use weak cryptographic algorithms or create
cryptographic algorithms for the generation of random
numbers used in security-related processes

⊠ ⊠

31 Employ one-way hash routines (SHA-1) to encrypt
passwords in storage

⊠

32 Use cryptographically secure algorithms to generate the
unique IDs being used in the URLs, hence securing the
URLs from being rewritten

⊠ ⊠

33 Guarantee that infrastructure credentials, for example
database qualifications or message queue access points of
interest, are legitimately secured

⊠

(continued)

A Review on Application Security Management Using Web … 485

7 Conclusion

Before an application is developed, acquired, or enhanced, security requirements
must be formally documented to address all relevant security rules as defined in
WASS. On providing security of Web application, development will be improved
by relating security checkpoints and procedures at right on time phases of
advancement and in addition all through the product improvement lifecycle.
Distinct importance should be applied to the coding phase of development. Security
mechanisms that should be used include threat modeling, risk analysis, static
analysis, digital signature, among others.

References

1. http://eyefodder.com/2011/06/quality-software-non-functional-requirements.html
2. Khatter, K., Kalia, A.: Impact of non-functional requirements on requirements evolution. In:

6th International Conference on Emerging Trends in Engineering and Technology (ICETET),
pp. 61–68. IEEE (2013)

3. https://en.wikipedia.org/wiki/Web_application_security
4. Shuaibu, B.M., Norwawi, N.M., Selamat, M.H., Al-Alwani, A.: Systematic review of web

application security development model, Artif. Intell. Rev. 43(2), pp. 259–276 (2015)
5. Aydal, E.G., Paige, R.F., Chivers, H., Brooke, P.J.: Security planning and refactoring in

extreme programming. Lecture Notes in Computer Science, vol. 4044 (2006)
6. Web and mobile security best practices. http://www.faresweb.net/e-books/web-mobile-

security-best-practices/download
7. Alalfi, M.H., Cordy, J.R., Dean, T.R.: A verification framework for access control in dynamic

web applications. Paper presented at the proceedings of the 2nd Canadian conference on
computer science and software engineering, Montreal, Quebec, Canada 2009

8. http://csrc.nist.gov/publications/nistpubs/800-50/NIST-SP800-50.pdf
9. https://www.owasp.org/images/4/4e/OWASP_ASVS_2009_Web_App_Std_Release.pdf

10. http://www.sans.org/reading-room/whitepapers/analyst/application-security-tools-
management-support-funding-34985

Table 3 (continued)

Rule ID Rule description Verification
responsibility

Code
review

Manual
testing

34 Employ the principle of least privilege while assigning
rights to execute queries

⊠

35 Encrypt confidential information in transit across public
networks

⊠

36 Provide an appropriate logging mechanism to detect
unauthorized access attempts

⊠

486 A. Rakesh Phanindra et al.

http://eyefodder.com/2011/06/quality-software-non-functional-requirements.html
https://en.wikipedia.org/wiki/Web_application_security
http://www.faresweb.net/e-books/web-mobile-security-best-practices/download
http://www.faresweb.net/e-books/web-mobile-security-best-practices/download
http://csrc.nist.gov/publications/nistpubs/800-50/NIST-SP800-50.pdf
https://www.owasp.org/images/4/4e/OWASP_ASVS_2009_Web_App_Std_Release.pdf
http://www.sans.org/reading-room/whitepapers/analyst/application-security-tools-management-support-funding-34985
http://www.sans.org/reading-room/whitepapers/analyst/application-security-tools-management-support-funding-34985

A Review of Software Testing
Approaches in Object-Oriented
and Aspect-Oriented Systems

Vasundhara Bhatia, Abhishek Singhal, Abhay Bansal
and Neha Prabhakar

Abstract Software testing is considered to be a very important phase in the
development of any software. It becomes crucial to inculcate appropriate software
testing techniques in every software development life cycle. Object-oriented soft-
ware development has been in use for a while now. Aspect-oriented approach
which is comparatively new and works on the basics of object-oriented approach.
But aspect-oriented approach also aims to provide modularity, higher cohesion, and
separation of concerns. In this paper, we have reviewed the various testing tech-
niques that are developed for both object-oriented and aspect-oriented systems.

Keywords Object-oriented � Object-oriented testing � Aspect-oriented
Aspect-oriented testing � Software testing

1 Introduction

Software testing is considered to be a very important phase in the development of
any software. It tries to ensure that the software produced is of high quality and
reliable [1]. The testing activity requires about 30–40% of the total effort that is put
in the development of software [2]. This amount of effort is put so that end product
produced must not contain any errors or minimum errors. It is said that if a bug

V. Bhatia (&) � A. Singhal � A. Bansal � N. Prabhakar
Department of CSE, ASET, Amity University, Noida, Uttar Pradesh, India
e-mail: vasundhara.bhatia9@gmail.com

A. Singhal
e-mail: asinghal1@amity.edu

A. Bansal
e-mail: abansal1@amity.edu

N. Prabhakar
e-mail: nehaprabhakar91@gmail.com

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_46

487

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_46&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_46&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_46&domain=pdf

or an error is found out after the software has been released; the cost for fixing
it is 4 times as compared to the cost incurred if an error is found at the testing
phase [3].

Object-oriented approach aims to map the real-life objects into software objects
[4]. This approach uses the concepts of classes and objects where class tries to
support information hiding and object tries to support reusability. This approach
includes a number of features such as encapsulation, inheritance, abstraction,
polymorphism, and reusability [5]. But, as these features are included, the com-
plexity also increases [6]. Thus, it becomes very important to test the entire
object-oriented system in a well-defined way.

Aspect-oriented approach is built on the basics of object-oriented approach. In
the object-oriented approach, the cross-cutting concerns are present in the core
classes. The aim of aspect-oriented programming is to separate cross-cutting con-
cerns by modularizing these concerns into a single unit, which is known as an
aspect [7]. These cross-cutting concerns could be security, exception handling,
logging, etc. This separation helps to increase modularity in a system, and the
system also becomes more cohesive [8].

This paper is divided into five sections. Section 2 presents evaluation criteria on
which various papers are analyzed. Section 3 analyzes papers on object-oriented
testing. Section 4 analyzes various papers on aspect-oriented testing. Section 5
presents a conclusion and limitation of the paper. Finally, the acknowledgment is
provided.

2 Evaluation Criteria

To perform the review of object-oriented and aspect-oriented papers, certain criteria
have to be considered for evaluation. A number of research questions are proposed
here, and each paper is evaluated according to this research criteria. These research
questions are adapted from [8] and [9]. The research questions are as follows:

R1: Is the objective of the study clearly specified?
An analysis has to be done on the condition if the paper clearly specifies the

objective of the search and the objective is fulfilled.
R2: Does the paper propose a new technique?
This specifies that if a paper has proposed a new method or technique. The paper

should contribute some new work and point out certain results.
R3: Is a new tool developed?
Certain researchers develop new tool which supports the objective of their

search. Our aim is to find if a new tool exists. In certain conditions, an existing tool
is used.

488 V. Bhatia et al.

R4: Is the system fully/partially automated?
The research work might be done either manually or through an automated

system. We have to find if the technique proposed automates the system either fully
or partially.

R5: Is the data/system used for analysis sufficient for search?
It has to be considered that the data or the system, which is used for the analysis

of the research, is sufficient to give accurate results to the proposed technique.
R6: Does the paper specify what benefits will search provide?
The benefits that an approach might offer might not be clear in certain cases. We

have to analyze if the researcher specifies what benefits the approach will provide in
a clear and precise manner.

R7: Are any limitations of the study defined?
We have to identify if the researcher has identified what limitations does the

proposed approach provides. The limitations or the future possible work must be
clearly defined.

R8: Can the technique be used in real-world applications?
It has to be found out if the technique is capable of being used the real-world

applications. Some approaches might work well in a certain environment, but it has
to be seen that if it might work well in real-world applications (Table 1).

In addition, some other criteria are identified through which the basic charac-
teristics of the research work can be identified which are adapted from [10] and
defined in Table 2. They are as follows:

Table 1 Fields used for analysis

Field Meaning

Testing level The level of testing here could be: unit testing: testing the smallest part/unit
in an application. Integration testing: testing a number of units in
collaboration with each other

Model used They are used for representation of design of an application. They could be
sequence diagram, class diagram, collaboration diagram, state chart
diagram, object relation diagram

Tool used A tool is used to support the approach being proposed. It defines the name
of the tool which is used. The tool could be developed the researcher, or an
existing tool can be used

Source code
domain

This specifies the language of the code on which the analysis is done. Also,
if certain further details about the code are given, then it is specified

A Review of Software Testing Approaches in Object-Oriented … 489

Table 2 A review of characteristics of object-oriented and aspect-oriented testing literature

Paper Testing
level

Model used Tool used Source code
domain

Research
questions
R1, R2, R3,
R4, R5, R6,
R7, R8

Object-oriented testing

[11] Integration
testing

Sequence diagram, use
case diagram

Integration
testing coverage
analysis tool

Java R1, R2, R3,
R4, R6

[12] Unit testing Automatic test
generation

Palus Java R1, R2, R3,
R4, R5, R6,
R8

[13] Unit testing – EATOOS Java R1, R2, R3,
R4, R6, R7

[14] Unit testing Automatic test
generation

MATLAB Java R1, R2, R4,
R6, R7

[15] Unit testing State chart diagram – Object-oriented R1, R2, R6,
R7

[16] Unit testing State chart diagram JUnit Object-oriented R1, R2, R4,
R5, R6, R7,
R8

[17] Unit testing Automatic test
generation

– Java R1, R2, R4,
R5, R6, R7

[18] Unit testing – – Java R1, R2, R6,
R7

[19] Unit testing State chart diagram – Object-oriented R1, R2, R6,
R7

[20] Integration
testing

Class diagram,
sequence diagram, state
chart diagram

– Object-oriented R1, R2, R4,
R5, R6, R7

[21] Unit testing – Diffut Java R1, R2, R3,
R4, R5, R6

Aspect-oriented testing

[22] Integration
testing

Class diagram, object
relation diagram

AJMetrics,
Eclipse, EMF

AspectJ R1, R2, R4,
R6, R7

[23] Unit testing State chart diagram – Aspect-oriented R1, R2, R6,
R7

[25] Unit testing – APTE, AJTE AspectJ R1, R2, R3,
R4, R6

[26] Integration
testing

– – AspectJ R1, R2, R6,
R7

[27] Unit testing State chart diagram AJUnit AspectJ R1, R2, R3,
R4, R6, R7,
R8

[28] Integration
testing

– JaBUTi/AJ AspectJ R1, R2, R4,
R5, R6, R7,
R8

(continued)

490 V. Bhatia et al.

3 Object-Oriented Testing

Object-oriented testing aims to test the various features offered in the object-oriented
programming. The features are encapsulation, inheritance, abstraction, polymor-
phism, and reusability. With the introduction of these features, the complexity also
increases and thus the need to test the system. In this section, we have analyzed a
number of papers which are based on testing object-oriented systems.

The tool, which is proposed by Augsornsri and Suwannasart [11], performs
integration testing for object-oriented software. It presents the total coverage of the
class and the method and generates test cases for uncovered methods.

Zhang et al. [12] presented a static and dynamic automated approach for test
generation, addressing the problem of creating tests, which are legal and behav-
iorally diverse.

Mallika [13] proposed a tool, which could provide automation in unit testing of
object-oriented classes. A choice is given to the tester to choose which methods
should be tested.

Suresh et al. [14] provide test data generation to perform testing in
object-oriented programs. Extended control flow graph is used to achieve it. It
utilizes artificial bee colony and binary particle swarm optimization algorithm to
generate the optimized test cases.

Table 2 (continued)

Paper Testing
level

Model used Tool used Source code
domain

Research
questions
R1, R2, R3,
R4, R5, R6,
R7, R8

[29] Unit testing – Parasoft JTest
4.5, Raspect

AspectJ R1,R2,R3,R4,
R6

[30] Integration
testing

Collaboration diagram – AspectJ R1, R2, R4,
R6, R7

[31] Integration
testing

Object relation diagram AJATO AspectJ R1, R2, R3,
R4, R6, R7,
R8

[32] Unit testing State chart diagram – AspectJ R1, R2, R6,
R7, R8

[33] Integration
testing

Class diagram Eclipse AspectJ R1, R2, R4,
R6

[34] Integration
testing

Collaboration diagram Sequence
generator

AspectJ R1, R2, R3,
R4, R6, R7

[35] Unit testing Class diagram JUnit, JamlUnit,
JAML

AspectJ R1, R2, R3,
R4, R6, R7,
R8

A Review of Software Testing Approaches in Object-Oriented … 491

Swain et al. [15] propose an optimization approach for test data generation. State
chart diagram is used here. The state chart diagram provides information through
which test cases are thus created and minimized.

A model-based testing approach has been proposed by Shirole et al. [16]. In this
approach, test cases are generated from state chart diagrams which are represented
as extended finite state machine and genetic algorithm.

An approach proposed by Gupta and Rohil [17] automates the generation of both
feasible and unfeasible test cases which leads to higher coverage. This is done using
evolutionary algorithms.

The work by Mallika [18] presents a modified approach for unit testing in
object-oriented systems where an analysis has been made to identify the method
with the highest priority using a DU pair algorithm.

Shen et al. [19] proposed a technique, which is novel for the testing of
object-oriented systems. It aims to divide the classes available into an integrated
value, which measures the frequency and the significance of each class. The class,
which has the highest value, is utilized to generate test cases. It helps to find the
faults which are often not easily found and reduces the cost of testing.

A test model has been proposed by Wu et al. [20]. It is generated from class,
sequence, and state chart diagrams. It focuses on the issues encountered when
integration testing takes place and defines coverage criteria where interaction
among classes is enhanced.

A framework, which is known as Diffut given by Xie et al. [21] is proposed to
perform differential unit testing. The aim is to compare the output from two ver-
sions of a method and ensure that the system performs correctly with both the
versions.

4 Aspect-Oriented Testing

Aspect-oriented testing is done to ensure that both classes and aspects work cor-
rectly in integration with each other. Aspects introduce modularity in
aspect-oriented programming by separating cross-cutting concerns from the core
concerns. So, it becomes very essential to test both classes and aspects, and thus,
the concept of aspect-oriented testing comes into effect. In this section, we consider
a number of papers which are based on aspect-oriented testing.

An approach was proposed by Delamare and Kraft [22], where the test order of
class integration is based on the amount of impact the aspects have on the classes. It
is modeled using genetic algorithm.

A state-based approach has been proposed by Xu et al. [23] for testing of
aspect-oriented programs. Aspectual state model is used. It is based on an existing
model, which is known as flattened regular expression (FREE) state model [24].

A framework known as Automated Pointcut Testing for AspectJ Programs
(APTE) given by Anbalagan and Xie [25] tests the pointcuts present in an AspectJ

492 V. Bhatia et al.

program. APTE uses an existing framework, which performs unit testing without
weaving.

The approach proposed by Xu et al. [26] presents a hybrid testing model. The
class state model and scope state model are merged forming aspect scope state
model (ASSM). It combines state models and flow graph to produce test suites.

An approach was given by Badri et al. [27] who proposed a state-based auto-
mated unit testing approach. It also proposes a tool AJUnit which is based on JUnit.
It tries to ensure that the integration of the aspects and classes is done in such a way
that the behavior of the class independently is not affected.

Cafeo and Masiero [28] proposed a model, based on the integration of
object-oriented and aspect-oriented programs contextually. A model which is
known as Contextual Def-Use (CoDu) graph is used to represent the control flow
and data flow units.

Xie et al. [29] proposed a framework known as Raspect. It is used to remove the
test cases, which are redundant present in the aspect-oriented programs. To auto-
mate the test case generation the tools, which are used to generate test cases in Java,
are used.

A technique is proposed by Massicotte et al. [30] in which test sequences are
generated based on the interactions that take place between classes and aspects
dynamically. The integration of a number of aspects is done with collaborating
objects. This approach follows an iterative process.

An approach has been proposed by Colanzi et al. [31]. This approach deals with
determining the appropriate order, which is used to integrate the classes and aspects
and also the correct order to test them.

A technique was proposed by Xu et al. [32] to test what is the behavior of an
aspect and the aspect’s corresponding base class. A state-based strategy was pro-
posed, which could also consider what impact the aspects have on the classes.

A model proposed by Wang and Zhao [33] is proposed to test aspect-oriented
programs, and algorithm is implemented which generates the relevant test cases.
A tool is developed so that the test case generation is automated.

An approach proposed by Massicotte et al. [34] develops a strategy for inte-
gration of class and aspects. It performs a static and a dynamic analysis in which
testing sequences are generated and verified.

A tool known as JamlUnit [35] was proposed by Lopes and Ngo [35] as a
framework, which performed unit testing. This testing was done for the aspects,
which were written in Java Aspect Markup Language (JAML). This tool enabled
the testing of aspects as independent units.

5 Conclusion and Limitations

In this paper, the number of papers of object-oriented and aspect-oriented testing
was reviewed. This is done on the basis of several research questions according to
which each paper is evaluated. It provides a guideline to a researcher for further

A Review of Software Testing Approaches in Object-Oriented … 493

research in the areas related to object-oriented and aspect-oriented testing. It also
gives a roadmap to a researcher to go through few researches done over the past few
years. Further, the limitation of this paper is that the review is given for the papers
of only unit and integration testing levels. Also, evaluation criteria are limited to
eight research questions. A number of other factors and questions can be considered
to refine the search in future.

Acknowledgements We are thankful to the researchers of the papers we have covered, who have
given their contribution to provide some valuable work in the area of object-oriented and
aspect-oriented testing. We have carried out this review only because of the work done by these
researchers.

References

1. Gong, H., Li, J.: Generating test cases of object-oriented software based on EDPN and its
mutant. In: The 9th International Conference for Young Computer Scientists, pp. 1112–1119.
Hunan (2008)

2. Pressman, R.S.: Software Engineering—A Practitioner’s Approach, 3rd edn. McGraw-Hill,
New York (1992)

3. Watanabe, H., Tokuoka, H., Wu, W., Saeki, M.: A technique for analysing and testing
object-oriented software using coloured petri nets. In: Software Engineering Conference, Asia
Pacific (1998). https://doi.org/10.1109/apsec.1998.733718

4. Kartal, Y.B., Schmidt, E.G.: An evaluation of aspect oriented programming for embedded
real-time systems. In: 22nd International Symposium on Computer and Information Sciences.
IEEE, Ankara (2007). https://doi.org/10.1109/iscis.2007.4456890

5. Gulia, P., Chugh, J.: Comparative analysis of traditional and object oriented software testing.
ACM SIGSOFT Softw. Eng. Notes 4(2), 1–4 (2015)

6. Gordan, J.S., Roggio, R.F.: A comparison of software testing using the object-oriented
paradigm and traditional testing. In: Proceedings of the Conference for Information Systems
Applied Research, 6(2813). USA (2013)

7. Laddad, R.: AspectJ in Action, 2nd edn. Manning Publications co. (2009)
8. Singhal, A., Bansal, A., Kumar, A.: A critical review of various testing techniques in

aspect-oriented software systems. ACM SIGSOFT Softw. Eng. Notes 38(4), 1–9 (2013)
9. Ali, M.S., Babar, M.A., Chen, L., Stol, K.-J.: A systematic review of comparative evidence of

aspect-oriented programming. Inf. Softw. Technol. 52, 871–887 (2010)
10. Neto, A.C.D., Subramanyan, R., Vieira, M., Travassos, G.H.: A survey on model-based

testing approaches: a systematic review. In: Proceedings of the 1st ACM International
Workshop on Empirical Assessment of Software Engineering Languages and Technologies:
held in conjunction with the 22nd IEEE/ACM International Conference on Automated
Software Engineering (ASE), pp. 31–36 (2007)

11. Augsornsri, P., Suwannasart, T.: An integration testing coverage tool for object-oriented
software. In: International Conference on Information Science and Applications. IEEE, Seoul
(2014). https://doi.org/10.1109/icisa.2014.6847360

12. Zhang, S., Saff, D., Bu, Y., Ernst, M.D.: Combined static and dynamic automated test
generation. In: Proceedings of the 2011 International Symposium on Software Testing and
Analysis, pp. 353–363 (2011)

13. Mallika, S.S.: EATOOS-testing tool for unit testing of object oriented software. Int.
J. Comput. Appl. (0975–8887) 80(4), 6–10 (2013)

494 V. Bhatia et al.

http://dx.doi.org/10.1109/apsec.1998.733718
http://dx.doi.org/10.1109/iscis.2007.4456890
http://dx.doi.org/10.1109/icisa.2014.6847360

14. Suresh, Y., Rath, S.K.: Evolutionary algorithms for object-oriented test data generation.
ACM SIGSOFT Softw. Eng. Notes 39(4), 1–6 (2014)

15. Swain, R.K., Behera, P.K., Mohapatra, D.P.: Generation and optimization of test cases for
object-oriented software using state chart diagram. In: Proceedings of International Journal
CSIT-CSCP-2012, pp. 407–424 (2012)

16. Shirole, M., Suthar, A., Kumar, R.: Generation of improved test cases from UML state
diagram using genetic algorithm. In: Proceedings of the 4th India Software Engineering
Conference, pp. 125–134 (2011)

17. Gupta, N.K., Rohil, N.K.: Improving GA based automated test data generation technique for
object oriented software. In: 3rd IEEE International Advance Computing Conference,
pp. 249–253. Ghaziabad (2013)

18. Mallika, S.S.: Improvised DU pairs algorithm for unit testing of object oriented software. Int.
J. Adv. Res. Comput. Sci. Softw. Eng. 3(7), 853–857 (2013)

19. Shen, X., Wang, Q., Wang, P., Zhou, B.: A novel technique proposed for testing of object
oriented software systems. In: IEEE International Conference on Granular Computing. IEEE,
Nanchang (2009). https://doi.org/10.1109/grc.2009.5255073

20. Wu, C.S., Huang, C.H., Lee, Y.T.: The test path generation from state-based polymorphic
interaction graph for object-oriented software. In: 10th International Conference on
Information Technology: New Generations, pp. 323–330. Las Vegas (2013)

21. Xie, T., Taneja, K., Kale, S., Marinov, D.: Towards a framework for differential unit testing of
object-oriented programs. In: Second International Workshop on Automation of Software
Test. Minneapolis (2007). https://doi.org/10.1109/ast.2007.15

22. Delamare, R., Kraft, N.A.: A genetic algorithm for computing class integration test orders for
aspect-oriented systems. In: IEEE Fifth International Conference on Software Testing,
Verification and Validation, pp. 804–813. Montreal (2012)

23. Xu, D., Xu, W., Nyagard, K.: A state-based approach to testing aspect-oriented programs. In:
The Proceedings of the 17th International Conference on Software Engineering and
Knowledge Engineering (SEKE’05). Taiwan (2005)

24. Binder, R.V.: Testing Object Oriented Systems: Models, Patterns and Tools. Addision
Wesley, New York (2000)

25. Anbalagan, P., Xie, T.: APTE: automated pointcut testing for aspectj programs. In:
Proceedings of the 2nd Workshop on Testing Aspect-Oriented Programs, pp. 27–32 (2006)

26. Xu, W., Xu, D., Goel, V., Nygard, K.: Aspect flow graph for testing aspect-oriented
programs. In: the Proceedings of the IASTED International Conference on Software
Engineering and Applications. Oranjestad, Aruba (2005)

27. Badri, M., Badri, L., Fortin, M.B.: Automated state based unit testing for aspect-oriented
programs: a supporting framework. J. Object Technol. 8(3), 121–126 (2009)

28. Cafeo, B.B.P., Masiero, P.C.: Contextual integration testing of object-oriented and aspect -
oriented programs: a structural approach for Java and AspectJ. In: 25th Brazilian Symposium
on Software Engineering, pp. 214–223 (2011)

29. Xie, T., Zhao, J., Marinov, D., Notkin, D.: Detecting redundant unit tests for AspectJ
programs. In: 17th International Symposium on Software Reliability Engineering,
pp. 179–190. Raleigh (2006)

30. Massicotte, P., Badri, M., Badri, L.: Generating aspects-classes integration testing sequences:
a collaboration diagram based strategy. In: Proceedings of the 2005 Third ACIS International
Conference on Software Engineering Research, Management and Applications (SERA’05),
pp. 30–37 (2005)

31. Colanzi, T., Assuncao, W.K.G., Vergilio, S.R., Pozo, A.T.R.: Generating integration test
orders for aspect-oriented software with multi-objective algorithms. In: the Proceedings of 5th
Latin-American Workshop on Aspect-Oriented Software Development (2011)

32. Xu, D., Xu, W.: State-based incremental testing of aspect-oriented programs. In: Proceedings
of the 5th International Conference on Aspect-Oriented Software Development (AOSD’06),
pp. 180–189 (2006)

A Review of Software Testing Approaches in Object-Oriented … 495

http://dx.doi.org/10.1109/grc.2009.5255073
http://dx.doi.org/10.1109/ast.2007.15

33. Wang, P., Zhao, X.: The research of automated select test cases for aspect oriented software.
In: The Proceedings of International Conference on Mechanical, Industrial and Manufacturing
Engineering (2012). https://doi.org/10.1016/j.ieri.2012.06.002

34. Massicotte, P., Badri, L., Badri, M.: Towards a tool supporting integration testing of
aspect-oriented programs. J. Object Technol. 6(1), 67–89 (2007)

35. Lopes, C.V., Ngo,T.C.: Unit testing aspectual behavior. In WTAOP: Proceedings of the 1st
Workshop on Testing Aspect-Oriented programs held in conjunction with 4th International
Conference on Aspect-Oriented Software Development (AOSD’05) (2005)

496 V. Bhatia et al.

http://dx.doi.org/10.1016/j.ieri.2012.06.002

A Literature Survey of Applications
of Meta-heuristic Techniques
in Software Testing

Neha Prabhakar, Abhishek Singhal, Abhay Bansal
and Vasundhara Bhatia

Abstract Software testing is a phenomenon of testing the entire software with the
objective of finding defects in the software and to judge the quality of the developed
system. The performance of the system is degraded if bugs are present in the
system. Various meta-heuristic techniques are used in the software testing for its
automation and optimization of testing data. This survey paper demonstrates the
review of various studies, which used the concept of meta-heuristic techniques in
software testing.

Keywords Software testing � Ant colony optimization (ACO) � Genetic algorithm
(GA) � Bugs � Test cases � Optimization

1 Introduction

Software testing is the stage of software development life cycle (SDLC), which is
about testing the functionality and behavior of the developed system with the
intention of finding errors in the system. Software testing is generally considered as
an important phase of SDLC because it ensures the quality of the system [1]. The
acceptance/rejection of the developed system depends upon the quality of the
system, which ensures that the system is free from defects. The essential task of the
software testing is creation of test suite on which the testing methodologies are
applied [2].

N. Prabhakar (&) � A. Singhal � A. Bansal � V. Bhatia
Department of CSE, ASET, Amity University, Noida, Uttar Pradesh, India
e-mail: nehaprabhakar91@gmail.com

A. Singhal
e-mail: asinghal1@amity.edu

A. Bansal
e-mail: abansal1@amity.edu

V. Bhatia
e-mail: vasundhara.bhatia9@gmail.com

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_47

497

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_47&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_47&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_47&domain=pdf

Software testing is considered as a basic technique to acquire customer’s belief in
the software. Testing is a lengthy as well as an expensive task [3]. However, modern
approaches for software testing would result in comparatively lesser cost [4].

The goal of testing is not just to catch bugs and defects in the system; it could be
done for the purposes [5] such as assurance of the quality of the software, verifi-
cation and validation and checking the functionality of the software.

Once the testing is done, there arises a need to address the defects/bugs that
occurred during testing. The significance of the bugs relies upon factors like fre-
quency, correction cost, consequential cost, and application cost.

This paper is segregated into five sections. Section 2 consists of brief intro-
duction about the meta-heuristic techniques such as ant colony optimization
(ACO) and genetic algorithm (GA). Section 3 describes the method adopted for
carrying out the literature review and proposes the criteria for evaluating research
papers. Section 4 presents the analysis of some relevant papers of GA and ACO
along with the results of our observations in those papers. Finally, the conclusion of
survey is portrayed in Sect. 5.

2 Meta-heuristic Techniques

Perfectly created test suites not only reveal the bugs in the software, but also it
minimizes the cost associated with software testing. If the test sequence could be
generated automatically, then the load on the tester can be minimized and required
test coverage could be achieved. For the purpose of optimization of software
testing, two meta-heuristic techniques such as ant colony optimization and genetic
algorithm are used.

2.1 Ant Colony Optimization

The basic concept behind ACO is to mimic the actions of actual ants to resolve
various optimization difficulties. The capability of ants like searching for the nearest
food source, reaching a destination could become possible due to a chemical called
pheromone. As more ants traverse the same path, the measure of pheromone
dropped by the ants on particular path increases [6].

2.2 Genetic Algorithm

Genetic algorithm is a biologically inspired technique. It is a searching mechanism,
which gives the optimized results of problems. The concept of GA depends on the
fact that only the fittest generations can survive. Initially, many random solutions

498 N. Prabhakar et al.

are picked, which acts like population. Recombination, selection, and mutation are
the main phases of the genetic algorithm [7].

3 Benchmark for Evaluation

A well-defined approach for software testing consists of the series of processes that
could be implemented in software to reveal the defects in the software.
A meticulous literature review has been performed to analyze the gaps in the
existing technologies. Various databases were referred for gathering research papers
for the review purpose like IEEE Xplore, ACM digital library, other online sources
like Google scholar and open access journal (Table 1).

Following keywords were used for searching relevant research papers:
We have considered various benchmarks in the form of research questions to

analyze the application of ACO and GA in software testing and finally evaluating
all the testing techniques based on the number of factors satisfied by the research
papers [, 2, 5, 6, 8–18]. The final result of the survey is shown in Table 2. The
research questions for the evaluation are as follows:

Table 1 Keywords used in searching papers

Serial number Keywords used

1 Software testing using meta-heuristic techniques

2 Software testing using genetic algorithm

3 Software testing using ACO

4 Software testing using ACO and genetic algorithm

Table 2 Analysis of numerous research papers

Factors [2] [2] [10] [8] [11] [12] [13] [6] [14] [15] [16] [17] [18] [21]

R1 ✓ ✓ ✓

R2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

R3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

R4 ✓ ✓ ✓ ✓ ✓ ✓

R5 ✓ ✓ ✓ ✓ ✓

R6 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

R7 ✓ ✓

R8 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

R9 ✓

R10 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Total
number of
factors
satisfied

4 4 4 5 5 3 3 3 5 5 7 4 5 4

A Literature Survey of Applications of Meta-heuristic … 499

R1: Does the system reduce efforts required for software testing and test case
generation?

Software testing is considered as a complicated task. The generation of test cases
is a time-consuming process since whole testing depends on test data suite? Rathore
et al. [9] explained that 50% of the effort of software development project is
absorbed by software testing and generation of test data. So according to the
above-mentioned research question, the system should minimize the efforts required
for testing and test case generation.

R2: Does the system generate optimum set of data?
A good system generates an optimum set of data, which means it has to generate

such set of data, which gives best result of testing; generation of unnecessary data
set should be avoided by the system.

R3: Does the system reduce the testing time?
As testing is considered as time-consuming process and it actually takes months

to test a complete software, so testers always need a system or a technique that
could minimize the testing time.

R4: Does the proposed system generate test data automatically?
Generation of test data automatically or automation testing is a demand of every

tester. Automatic generation of test data reduces the time of the tester as tester does
not have to create the test data manually, everything is done by a tool itself, and
testers just have to check the results given by the testing tool.

R5: Does the proposed system minimize the size of test suite?
Test suite reduction helps in reduction of load on tester. Large test suite with

redundant test data or unnecessary data increases the complexity of the testing, and
burden on tester is also increased.

R6: Is the system efficient enough?
A system is said to be efficient if it achieves higher work rate with less efforts of

tester and negligible wastage of expenses. An efficient system saves the resources of
organizations like manpower, money, energy consumption, various machines.

R7: Does the system focus on finding global optimum solution?
Global optimum solution is the one, which finds the best solution among all the

possible solutions of a problem. Rather than converging to a local optimum solu-
tion, i.e., finding solution within the neighborhood, system should explore all the
possible solutions and then choose the appropriate one.

R8: Does the system choose optimal path and that path leads to maximum
coverage for fault detection?

Path testing is done by selecting a path that assures that every code linked to that
path of a program is executed at least once. In case of path testing, the selection of
path should be an optimal one, and it should expand its root to the maximum
portion of the program so that maximal code of the program gets executed and
helps to detect the maximum faults in one go.

R9: Does the system reduce redundant paths?
Sometimes system includes already existing path in the data set and attempts to

execute already executed path again, which leads to the wastage of time. So to

500 N. Prabhakar et al.

avoid this situation, system should detect the presence of already existing data set in
the test suite.

R10: Does the system focus on the minimization of cost on the testing?
Minimization of expenses is an ultimate goal of every task, and same goes for

software testing also. Prakash et al. [10] explained that close to 45% of the software
development cost is spent on software testing. Minimization of resources, man-
power, time, etc., leads to minimized cost of the system.

4 Analysis of ACO and GA

ACO and GA both are the techniques for the optimization of software testing. The
results produced by these techniques are far better than traditional techniques.
These techniques are considered as biologically inspired techniques, which gives
solutions to most of the real-life problems that arise in industries.

We have analyzed available papers to study the application of these techniques
in software testing and explained crux of each paper scrutinized by us.

4.1 Genetic Algorithm

Mahajan et al. [2] proposed a model that examines the performance of the GA when
applied for automatic creation of test suite using data flow testing technique. An
incremental coverage method is adopted to enhance the convergence.

Rathore et al. [9] proposed a method for automatic creation of test data in
software testing. The proposed technique applies the concept of tabu search and GA
and merges the power of the two techniques to produce more useful results in lesser
time.

Rao et al. [5] proposed an approach that worked on those paths which were more
fault finding and resulted in the enhancement of the testing performance.

Prakash et al. [10] proposed that the faults eliminating ability is directly pro-
portional to the accuracy of the software testing and test cycles. Important factor is
to minimize the testing time and cost but without compromising with the quality of
the software. For this, it is required to follow a technique and reduce the test data by
recommending N test cases based on some heuristics.

Srivastava et al. [8] proposed a model which generates the practical testing data
suite using GA. Various experiments have been performed to automatically create
the test data suite. Present systems do not assure to produce test information only in
achievable path.

Manual test data generation is a complex task and accomplished by intelligence
of neurons to observe the patterns [11]. Automated test data generators generally do
not possess the capability to create effective test data as they do not mimic the
natural mechanism.

A Literature Survey of Applications of Meta-heuristic … 501

Khor and Grogono [12] proposed an automatic test generator called GENET
using formal concept analysis and GA, to automatically attain the branch coverage
test data.

Gulia and Chillar [19] recommended a tactic in which optimized test data could
be generated. They are generated using state chart diagram of the UML. Using the
genetic algorithm, test cases can be optimized easily. Genetic algorithm works best
when the input is large.

Varshney et al. [20] have provided a study of meta-heuristic techniques and the
hybrid approaches which have been proposed to carry the test data generation. In
their study, they provided various areas which can be explored, issues that arise and
the future directions in the area of test cases creation for structural testing.

4.2 Aco

Srivastava et al. [13] worked on the creation of test cases by means of
meta-heuristic techniques like GA and ACO. In this paper, GA is used to produce
the test suite for an algorithm requesting for resources. Numerous test cases were
generated and also estimated the amount of usable and worthless test cases among
those test data. Srivastava et al. [13] also performed the analysis for the success
ratio of both of these techniques and found that the success ratio of GA is 45–46%,
whereas the success ratio of ACO is 53–55% and proved that ACO has better
success rate.

An approach is proposed by Mala and Mohan [6] which take the decision of
optimized test sequence called intelligent search agent (ISA). Software which is
under test is symbolized by graph, in that graph every vertex is represented by a
heuristic value, and every edge is assigned a weight called edge weight. Intelligent
agent takes decision of finest arrangement by observing those vertices which meets
fitness benchmark and then produces the optimized test data by using all the paths
of software.

Mala and Mohan [6] have also proved that the performance of the ISA is better
than ACO in terms of the generation of optimized data and time.

An algorithm is proposed by Cui Donghua and Yin Winjie. [14] Based on ACO,
which focused on the problem of test suite reduction, this reduces the pressure on
the tester since exhaustive testing becomes difficult. Two criteria are considered for
the test suite reduction such as test cost criteria and test coverage criteria.

Based on these criteria, a comparison is performed between this algorithm and
other classical algorithm and proved that this algorithm reduced the budget and size
of test data and attained effectiveness.

Singh et al. [15] proposed an algorithm which implements a technique called
regression test prioritization technique which rearranges the test data in a time
constraint environment. Since time is always a constraint for a tester, so there arises
a need for prioritizing the available test cases. ACO has been used to implement this
problem.

502 N. Prabhakar et al.

Srivatava [16] presented an algorithm which automates the generation of the
paths in control flow graph in structural testing using cyclomatic complexity. The
basic fundamental behind this algorithm is pheromone releasing behavior of ants
which determines the optimal paths in the testing.

Suri et al. [17] analyzed the technique proposed in [15] and concluded that ant
colony optimization discovers improved arrangements at different conditions of
time constraint. The accuracy of this method is proved to be nearly optimal.

Yi [18] proposed an algorithm which is a mixture of ant colony system algorithm
and genetic algorithm (ACSGA) to achieve path specific software testing data. The
result of this algorithm shows that the creation capability of target path has been
improved seemingly.

Li et al. [21] have proposed a model which can generate test data. This is done
using ant colony optimization which is improved. The coverage criteria considered
here are path testing.

Noguchi et al. [22] suggested a framework for prioritizing test data. The
researchers suggest that often the testers may not have the access to the source code.
In that case, black box testing is used where the testing is done only on the input
and the output provided. They also suggest that a lot of previous work has been
done on white box testing. In the proposed framework, the researchers use a test
execution history which they have collected from another product. This is done
using ant colony optimization. Two products are used here to show the accuracy of
the results.

Srivastava and Baby [23] proposed an approach which helps to generate test
sequences to get full coverage of the code. They try to do it by automating the
system. Ant colony optimization technique is applied to automate the system.

Table 2 represents the set of research question in the form of R1–R10 along with
the papers form which those questions were assumed [24–28]. The tick mark shows
the listed factor is satisfied by that corresponding research paper.

5 Conclusion

This review paper presents a detailed survey of the study of the outcomes and
application of ant colony optimization and genetic algorithm in software testing. It
is found that ACO and GA both can be used for distinct software testing areas like
generation of test data, optimization of test suite, minimization of test suite, auto-
matically generation of test cases, prioritization of test cases. On the other hand, few
limitations of GA and ACO were also observed. In this paper, analysis of papers
based on research questions will provide future guidance to researchers.

A Literature Survey of Applications of Meta-heuristic … 503

References

1. Mayan, J.A., Ravi, T.: Test case optimization using hybrid search. In: International
Conference on Interdisciplinary Advances in Applied Computing. New York, NY, USA
(2014)

2. Mahajan, M., Kumar, S., Porwal, R.: Applying genetic algorithm to increase the efficiency of
a data flow-based test data generation approach. ACM SIGSOFT Softw. Eng. Notes (2012)
(New York, NY, USA)

3. Binder, R.V.: Testing Object-Oriented Systems: Models, Patterns, and Tools, 1st edn.
Addison-Wesley Professional (1999)

4. Li, H., Lam, C.P.: An ant colony optimization approach to test sequence generation for
statebased software testing. In: Proceedings of Fifth International Conference on Quality
Software. Melbourne, pp. 255–262 (2005)

5. Rao, K.K., Raju, G.S.V.P., Nagaraj, S.: Optimizing the software testing efficiency by using a
genetic algorithm—a design methodology. ACM SIGSOFT Softw. Eng. Notes 38, 10 (2013).
New York, NY, USA

6. Mala, J.D., Mohan, V.: IntelligenTester-software test sequence optimization using graph
based intelligent search agent. In: Computational Intelligence and Multimedia Applications.
Sivakasi, Tamil Nadu (2007)

7. Roper, M., Maclean, I., Brooks, A., Miller, J., Wood, M.: Genetic Algorithms and the
Automatic Generation of Test Data (1995)

8. Srivastava, P.R., Gupta, P., Arrawatia, Y., Yadav, S.: Use of genetic algorithm in generation
of feasible test data. ACM SIGSOFT Softw. Eng. Notes 34 (2009)

9. Rathore, A., Bohara, A., Gupta, P.R., Lakshmi, P.T.S., Srivastava, P.R.: Application of
genetic algorithm and tabu search in software testing. In: Fourth Annual ACM Bangalore
Conference (2011)

10. Prakash, S.S.K., Dhanyamraju Prasad, S.U.M., Gopi Krishna, D.: Recommendation and
regression test suite optimization using heuristic algorithms. In: 8th India Software
Engineering Conference (2015)

11. Bhasin, H.: Artificial life and cellular automata based automated test case generator.
ACM SIGSOFT Softw. Eng. Notes 39 (2014)

12. Khor, S., Grogono, P.: Using a genetic algorithm and formal concept analysis to generate
branch coverage test data automatically. In: 19th IEEE International Conference on
Automated Software Engineering (2004)

13. Srivastava, P.R., Ramachandran, V., Kumar, M., Talukder, G., Tiwari, V., Sharma, P.:
Generation of test data using meta-heuristic approach. In: TENCON 2008 IEEE Region 10
Conference. Hyderabad (2008)

14. Donghua, C., Wenjie, Y.: The research of test-suite reduction technique. In: Consumer
Electronics, Communications and Networks (CECNet). XianNing (2011)

15. Singh, Y., Kaur, A., Suri, B.: Test case prioritization using ant colony optimization.
ACM SIGSOFT Softw. Eng. Notes 35 (2010)

16. Srivastava, P.R.: Structured testing using Ant colony optimization. In: First International
Conference on Intelligent Interactive Technologies and Multimedia (2010)

17. Suri, B., Singhal, S.: Analyzing test case selection & prioritization using ACO.
ACM SIGSOFT Softw. Eng. Notes 36 (2011)

18. Yi, M.: The research of path oriented test data generation based on a mixed Ant colony
system algorithm and genetic algorithm. In: Wireless Communications, Networking, and
Mobile Computing (WiCOM). Shanghai (2012)

19. Gulia, P., Chillar, R.S.: A new approach to generate and optimize test cases for uml state
diagram using genetic algorithm. ACM SIGSOFT Softw. Eng. Notes 37 (2012)

20. Varshney, S., Mehrotra, M.: Search based software test data generation for structural testing:
a perspective. ACM SIGSOFT Softw. Eng. Notes 38 (2013)

504 N. Prabhakar et al.

21. Li, K., Zhang, Z., Liu, W.: Automatic test data generation based on ant colony optimization,
vol. 6. Tianjin (2009)

22. Noguchi, T., Washizaki, H., Fukazawa, Y., Sato, A., Ota, K.: History-based test case
prioritization for black box testing using ant colony optimization. Graz (2015)

23. Srivastava, P.R., Baby, K.: Automated software testing using meta-heuristic technique based
on an Ant colony optimization. In: Electronic System Design (ISED). Bhubaneswar (2010)

24. Talbi, E.G.: Meta Heuristic from Design to Implementation. Wiley, Hoboken, New Jersey
(2009)

25. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley Longman Publishing Co. Inc., Boston, MA, USA (1989)

26. Bueno, P.M.S. Jino, M.: Identification of potentially infeasible program paths by monitoring
the search for test data. In: Automated Software Engineering, Grenoble (2000)

27. Ayari, K., Bouktif, S., Antoniol, G.: Automatic mutation test input data generation via Ant
colony. In: GECCO’07 Proceedings of the 9th Annual Conference on Genetic and
Evolutionary Computation (2007)

28. Wong, W.E., Horgan, J.R., London, S.: Effect of test set minimization on fault detection
effectiveness. In: Proceedings of the 17th International Conference on Software Engineering
(1995)

A Literature Survey of Applications of Meta-heuristic … 505

A Review of Test Case Prioritization
and Optimization Techniques

Pavi Saraswat, Abhishek Singhal and Abhay Bansal

Abstract Software testing is a very important and crucial phase of software
development life cycle. In order to develop good quality software, the effectiveness
of the software has been tested. Test cases and test suites are prepared for testing,
and it should be done in minimum time for which test case prioritization and
optimization techniques are required. The main aim of test case prioritization is to
test software in minimum time and with maximum efficiency, so for this there are
many techniques, and to develop a new or better technique, existing techniques
should be known. This paper presents a review on the techniques of test case
prioritization and optimization. This paper also provides analysis of the literature
available for the same.

Keywords Software testing � Regression testing � Test case prioritization
Test case optimization

1 Introduction

Software testing is an important phase of software development life cycle (SDLC),
and it consumes substantial amount of time. A proper strategy is required for its
effectiveness to carry out the testing activities [1, 3].

So software testing is the testing of the software product for its effectiveness and
accuracy [1], and testing is done with objectives that testing process should be able to
detect the errors in the software inminimum amount of time and effort. It should detect
that the product is developed as per the specification. It should demonstrate that the

P. Saraswat (&) � A. Singhal � A. Bansal
Department of CSE, ASET, Amity University, Noida, Uttar Pradesh, India
e-mail: pavisaraswat@gmail.com

A. Singhal
e-mail: asinghal1@amity.edu

A. Bansal
e-mail: abansal1@amity.edu

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_48

507

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_48&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_48&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_48&domain=pdf

product has a good quality, and it should be able to test cases that cover yet undetected
errors. Testing is facing a big dilemma, as on the one hand thinking is that the software
should bemadewith zero errors but on the other hand, themain aim of the testing team
is to find out maximum errors in minimum time, and in testing the product’s output is
been tested to every possible input that means it may be valid or invalid [2]. We have
mainly two types of testing, such as static testing and dynamic testing. The two main
approaches of testing are functional approach and structural approach.

1.1 Regression Testing

Regression testing is the process of retesting the modified and affected parts of the
software and ensuring that no new errors have been introduced into the previously
tested code [4]. So after adding some functionalities or doing some changes in the
software, the product is modified which is fault of commission, and then regression
testing is needed. In regression testing, existing test suites and test plans are also
useful. Here testing is done only on modified or the affected components, not the
whole software. There are no such limitations on performing regression testing it is
performed as many times as it is needed [1, 4]. But schedule gives no time for the
regression testing that is why it is performed under larger time constraints.

1.2 Test Case Prioritization

Test case prioritization is scheduling of test cases in some order that they detect the
faults very fast and easily in that particular order rather than some random order [1, 3,
5]. As it is well known that there is no such specified budget and time for regression
testing, so the aim is to findmaximum faults inminimum time; for that arrangement of
test cases or test suites is done in some confined order. This even defines some criteria
like fault detection and code coverage according to which test cases are prioritized.

1.3 Techniques of Test Case Prioritization and Optimization

Test case prioritization is a very beneficial process andmuch needed process as in this,
we arrange test cases in some priority-based order, which gives us an efficient testing
output or results [1].Wehave approaches for test case prioritization, and one of them is
greedy approach in which some criterion is fixed on which the maximum weighted
element is chosen. The major drawback of greedy approach is that it gives the local
optimal solution not the global optimal of the problem considered. Other than this
there is onemore,which is additional genetic algorithmor twooptimal algorithms; it is
same as greedy but uses different strategies. Evenmeta-heuristic search techniques are
used infinding a solution to a particular problemwith a reasonable computational cost.
So some techniques are prioritization in parallel scenario for multiple queues (PSMQ)
[3], multi-objective particle swarm optimizer for test case optimization, ant colony

508 P. Saraswat et al.

optimization (ACO) algorithm for fault coverage is used, and regression test case
prioritization [7], genetic Algorithm and greedy algorithm, multi-objective test case
prioritization (MOTCP) [11], multi-objective regression test optimization (MORTO)
[15], testing importance of module approach (TIM). Metrics are used in test case
prioritization techniques to calculate the efficiency; some of them are average per-
centage block coverage (APBC), average percentage decision coverage (APDC),
average percentage offaults detected (APFD), average percentage statement coverage
(APSC), and average percentage-fault-affected module cleared per test case (APMC).

This paper is divided into four sections; Sect. 2 describes the literature survey on
Test Case Prioritization Techniques and the research questions. Section 3 describes
analysis of the literature work in tabular form, and Sect. 4 presents conclusion on the
work study done.

2 Literature Survey

In order to analyze various techniques available for test case prioritization and
optimization technique, we broadly divided those into mainly two paradigms like
procedural paradigm and object-oriented paradigm.

We studied and analyzed available papers that what are its contents that mean that
what technology is being used in it and what are the algorithms used in the paper for
the test case prioritization and optimization. Then we defined that what are the
metrics used in the papers for their efficiency calculation and what are all coverage
focused in the paper. And after getting all the information from the paper, we can get
the information that in which area which all techniques are more useful as compared
to the others. And the same procedure is followed for the object-oriented paradigm.

2.1 Research Questions

Few research questions that are formed and also been answered below are as
follows:

RQ1: Are there metrics used in the paper?
RQ2: Is fault coverage considered?
RQ3: Is code coverage considered?
RQ4: Is APFD or its some version is used?
RQ5: Is genetic approach used?

3 Analysis of Papers

In this phase, we present the review study in tabular form as given in Tables 1, 2,
and 3.

A Review of Test Case Prioritization and Optimization Techniques 509

T
ab

le
1

A
na
ly
si
s
of

te
ch
ni
qu

es
in

th
e
pr
oc
ed
ur
al

pa
ra
di
gm

R
ef
er
en
ce

ID
T
ec
hn
iq
ue

an
d

al
go
ri
th
m

M
et
ri
c

us
ed

C
ov
er
ag
e

Im
pl
em

en
ta
tio

n
R
ef
er
en
ce

ID
T
ec
hn
iq
ue

an
d

al
go
ri
th
m

M
et
ri
c
us
ed

C
ov
er
ag
e

Im
pl
em

en
ta
tio

n

[1
]

Pr
io
ri
tiz
at
io
n
in

pa
ra
lle
l
sc
en
ar
io

A
PF

D
(p
ar
al
le
l

sc
en
ar
io
s)

M
ic
ro
so
ft

Po
w
er
Po

in
t

20
03

[1
1]

M
O
T
C
P,

a
so
ft
w
ar
e
to
ol

A
PF

D
C
od
e
an
d

ap
pl
ic
at
io
n

re
qu
ir
em

en
t

co
ve
ra
ge

Fo
ur

Ja
va

ap
pl
ic
at
io
ns
:

A
ve
C
al
c,

L
aT

az
za
,

iT
ru
st
,
A
rg
oU

m
l

[2
]

Pa
rt
ic
le

sw
ar
m

op
tim

iz
at
io
n

(1
)
St
at
em

en
t

(2
)
Fu

nc
tio

n
(3
)
B
ra
nc
h

(4
)
C
od
e

20
te
st
ca
se
s

fr
om

JU
ni
t
te
st

su
ite

[1
2]

G
en
et
ic

al
go
ri
th
m

is
us
ed

In
fo
rm

at
io
n

flo
w

m
et
ri
c

(I
F)

C
od
e

co
ve
ra
ge

is
us
ed

It
is
im

pl
em

en
te
d
on

tw
o
sa
m
pl
e
C
co
de
s

[3
]

M
ul
ti-
ob
je
ct
iv
e

pa
rt
ic
le

sw
ar
m

op
tim

iz
at
io
n

(M
O
PS

O
)

Fa
ul
t

co
ve
ra
ge

an
d

ex
ec
ut
io
n

tim
e

PC
w
ith

In
te
l

co
re

15
an
d

4
G
B

m
em

or
y

an
d
M
A
T
L
A
B

R
20
09
b

[1
3]

T
es
t
pl
an
ne
r
an
d

te
st
m
an
ag
er

C
od
e

co
ve
ra
ge

is
us
ed

It
is
im

pl
em

en
te
d
on

tr
ia
ng
le

pr
ob
le
m

[4
]

Fa
ilu

re
pu
rs
ui
t

sa
m
pl
in
g
an
d

ad
ap
tiv

e
fa
ilu

re
pu
rs
ui
t
sa
m
pl
in
g

A
PF

D
Fa
ul
t

co
ve
ra
ge

Pr
og
ra
m
s

av
ai
la
bl
e
in

th
e

Si
em

en
s
su
ite

at
SI
R

in
iti
at
iv
e

[1
4]

M
O
R
T
O

ap
pr
oa
ch

C
od
e-
ba
se
d

co
ve
ra
ge

O
n
co
st
s
an
d
va
lu
es

th
at

in
co
rp
or
at
ed

in
to

su
ch

a
M
O
R
T
O

ap
pr
oa
ch

[5
]

M
et
a-
he
ur
is
tic

(a
)
G
en
et
ic

al
go
ri
th
m

(b
)
PS

O

Fa
ul
t

co
ve
ra
ge

It
is

im
pl
em

en
te
d
on

JA
V
A

[1
5]

A
nt

co
lo
ny

op
tim

iz
at
io
n

A
PF

D
Fa
ul
t

co
ve
ra
ge

M
ed
ic
al

so
ft
w
ar
e

an
d
fi
na
nc
ia
l

so
ft
w
ar
e

[6
]

T
es
t
su
ite

re
fi
ne
m
en
t
on

ba
si
s
of

ri
sk

an
d

sp
ec
ifi
ca
tio

n

Fu
nc
tio

na
lit
y

co
ve
ra
ge

It
is

im
pl
em

en
te
d
on

m
ul
tip

le
te
st

ca
se
s
pr
es
en
t

[1
6]

T
IM

ap
pr
oa
ch

E
IS

al
go
ri
th
m

A
PF

D
an
d

A
PM

C
m
et
ri
cs

ar
e

us
ed

Pr
og
ra
m

st
ru
ct
ur
e

co
ve
ra
ge

O
n
tw
o
Ja
va

pr
og
ra
m
s
w
ith

JU
ni
t

an
d
jto

pa
s.

fr
om

SI
R
(c
on

tin
ue
d)

510 P. Saraswat et al.

T
ab

le
1

(c
on

tin
ue
d)

R
ef
er
en
ce

ID
T
ec
hn
iq
ue

an
d

al
go
ri
th
m

M
et
ri
c

us
ed

C
ov
er
ag
e

Im
pl
em

en
ta
tio

n
R
ef
er
en
ce

ID
T
ec
hn
iq
ue

an
d

al
go
ri
th
m

M
et
ri
c
us
ed

C
ov
er
ag
e

Im
pl
em

en
ta
tio

n

[7
]

A
C
O

pa
ra
lle
liz
ed

an
d

no
n-
pa
ra
lle
liz
ed

en
vi
ro
nm

en
t

Fa
ul
t

co
ve
ra
ge

It
is

im
pl
em

en
te
d
on

H
ad
oo
p

fr
am

ew
or
k

w
he
re

tim
e
is

re
du
ce
d
fo
r

re
al
ly

w
el
l

ex
te
nd

[1
7]

Si
m
ila
ri
ty
-b
as
ed

T
C
P
us
in
g
th
e

or
de
re
d

se
qu
en
ce

of
pr
og
ra
m

el
em

en
ts

A
PF

D
C
od
e

co
ve
ra
ge

an
d
or
de
re
d

se
qu
en
ce

ar
e

us
ed

O
n
th
e
si
m
pl
e
co
de

an
d
so
m
e
of

th
e

re
se
ar
ch

qu
es
tio

ns
ar
e
an
sw

er
ed

on
th
at

ba
si
s

[8
]

G
en
et
ic

al
go
ri
th
m

gr
ee
dy

al
go
ri
th
m

A
PF

D
,

A
PS

C
,

A
PD

C

Fa
ul
t

co
ve
ra
ge
,

st
at
em

en
t

co
ve
ra
ge
,
an
d

de
ci
si
on

co
ve
ra
ge

It
co
m
pa
re
s
al
l

th
e
te
ch
ni
qu
es

an
d
th
ei
r

ap
pr
oa
ch
es

an
d

th
e
m
et
ri
c
us
ed

[1
8]

M
od
ul
ar
-b
as
ed

te
ch
ni
qu
e
an
d

gr
ee
dy

al
go
ri
th
m

ar
e
us
ed

A
PF

D
Fa
ul
t

co
ve
ra
ge

is
us
ed

O
n
un
iv
er
si
ty

st
ud
en
t
m
on
ito

ri
ng

sy
st
em

,
ho
sp
ita
l

m
an
ag
em

en
t
sy
st
em

,
an
d
in
du
st
ri
al

pr
oc
es
s
op
er
at
io
n

sy
st
em

[9
]

Pr
io
ri
tiz
ed

pa
ir
w
is
e

co
m
bi
na
tio

n
an
d

pr
io
ri
tiz
ed

pa
ir
w
is
e
so
rt
in
g

al
go
ri
th
m

W
ei
gh
t

co
ve
ra
ge

(W
C
)

Pa
ir
w
is
e

co
ve
ra
ge

B
ot
h
th
e
PP

C
an
d
PP

S
ar
e

co
m
pa
re
d
an
d

im
pl
em

en
te
d
in

th
e

cl
as
si
fi
ca
tio

n
tr
ee

ed
ito

r

[1
9]

Pa
rt
ic
le

sw
ar
m

op
tim

iz
at
io
n

It
is
de
m
on
st
ra
te
d
by

th
e
te
st
sy
st
em

of
si
x-
ge
ne
ra
tio

n
un
its

[1
0]

A
na
ly
tic
al

ap
pr
oa
ch

A
re
a

se
le
ct
or

in
di
ca
to
r

D
ef
ec
t

co
ve
ra
ge

T
E
T
R
A

sy
st
em

re
le
as
e

A Review of Test Case Prioritization and Optimization Techniques 511

T
ab

le
2

A
na
ly
si
s
of

te
ch
ni
qu

es
in

th
e
ob

je
ct
-o
ri
en
te
d
pa
ra
di
gm

R
ef
er
en
ce

Id
T
ec
hn
iq
ue

an
d

al
go
ri
th
m

M
et
ri
c

us
ed

C
ov
er
ag
e

Im
pl
em

en
ta
tio

n
R
ef
er
en
ce

Id
T
ec
hn
iq
ue

an
d

al
go
ri
th
m

M
et
ri
c
us
ed

C
ov
er
ag
e

Im
pl
em

en
ta
tio

n

[2
0]

H
ie
ra
rc
hi
ca
l

te
st
ca
se

pr
io
ri
tiz
at
io
n
is

us
ed

A
PF

D
Fa
ul
t
co
ve
ra
ge

O
n
fo
ur

cl
as
se
s,

st
ud
y,

le
c_
tim

e,
sp
or
ts
tim

e,
an
d
us
e

tim
e

[2
7]

B
ac
te
ri
ol
og
ic
al

al
go
ri
th
m

M
em

or
iz
at
io
n,

fi
lte
ri
ng
,
an
d

m
ut
at
io
n

fu
nc
tio

n

It
is

im
pl
em

en
te
d

on
a
.N
E
T

co
m
po
ne
nt
s

[2
]

Pa
rt
ic
le

sw
ar
m

op
tim

iz
at
io
n

te
ch
ni
qu
e
is

us
ed

St
at
em

en
t,

fu
nc
tio

n,
br
an
ch
,

an
d
co
de

co
ve
ra
ge

Im
pl
em

en
te
d
by

ex
ec
ut
in
g
20

te
st

ca
se
s
fr
om

th
e
JU

ni
t

te
st
su
ite

[2
8]

G
en
et
ic

al
go
ri
th
m

an
d

m
ut
at
io
n

te
st
in
g

M
ut
at
io
n
sc
or
e

an
d
fi
tn
es
s

fu
nc
tio

n

O
n
a
.N
E
T

co
m
po
ne
nt

[2
1]

B
ac
te
ri
ol
og
ic
al

ad
ap
ta
tio

n
te
ch
ni
qu
e
is

us
ed

Sp
ec
ifi
ca
tio

n,
im

pl
em

en
ta
tio

n,
an
d
te
st

co
ns
is
te
nc
y
is

ch
ec
ke
d

on
co
m
po
ne
nt

w
ri
tte
n
in

C
#
in

th
e

.N
E
T

fr
am

ew
or
k

[2
9]

E
ve
nt

flo
w

te
ch
ni
qu
e

D
at
a

fl
ow co
ve
ra
ge

O
n
Ja
va

pr
og
ra
m
s

[2
2]

G
en
et
ic

al
go
ri
th
m

A
P
B
C
m

,A
PF

D
,

A
PB

C

A
dd
iti
on
al

m
od
ifi
ed

lin
es

of
co
de

co
ve
ra
ge

A
M
L
O
C

E
xp
er
im

en
te
d
on

th
e
tw
o
da
ta
ba
se

us
in
g
ge
ne
tic

al
go
ri
th
m

[3
0]

G
en
et
ic

al
go
ri
th
m

Pr
im

e
pa
th

co
ve
ra
ge

O
n
A
T
M

sy
st
em

[2
3]

T
ab
u
se
ar
ch

an
d
G
A

Fa
ul
t
co
ve
ra
ge

O
n
pr
ot
ot
yp
e
of

sa
m
pl
e
vo
te
rs

id
[3
1]

G
en
et
ic

al
go
ri
th
m

K
ey

as
se
ss
m
en
t

m
et
ri
c

C
od
e

co
ve
ra
ge

O
n
th
e
Ja
va

de
co
di
ng

te
ch
ni
qu
e

[2
4]

A
R
T

F m
ea
su
re

P m
ea
su
re

A
sp
ec
ts
an
d
ja
va

co
de
s

[3
2]

G
en
et
ic

al
go
ri
th
m

Pa
re
to

fr
on
tie
r

no
.
of

no
n-
do
m
in
at
ed

so
lu
tio

ns

Fa
ul
t

co
ve
ra
ge

O
n
11

op
en
-s
ou
rc
e

pr
og
ra
m
s

(c
on

tin
ue
d)

512 P. Saraswat et al.

T
ab

le
2

(c
on

tin
ue
d)

R
ef
er
en
ce

Id
T
ec
hn
iq
ue

an
d

al
go
ri
th
m

M
et
ri
c

us
ed

C
ov
er
ag
e

Im
pl
em

en
ta
tio

n
R
ef
er
en
ce

Id
T
ec
hn
iq
ue

an
d

al
go
ri
th
m

M
et
ri
c
us
ed

C
ov
er
ag
e

Im
pl
em

en
ta
tio

n

[2
5]

V
A
R
T

R
eg
re
ss
io
n
fa
ul
t
in

th
e
fu
nc
tio

n
av
ai
la
bl
e
pr
od
uc
ts

[3
3]

G
en
et
ic

al
go
ri
th
m

an
d

pa
rt
ic
le

sw
ar
m

op
tim

iz
at
io
n

C
od
e
an
d

fa
ul
t

co
ve
ra
ge

O
n
M
A
T
L
A
B

pr
og
ra
m
m
in
g

[2
6]

R
T
S

Im
pl
em

en
te
d
on

to
ol

an
d
co
m
pa
re
d

w
ith

m
an
ua
l
R
T
S

[3
4]

B
ee

co
lo
ny

op
tim

iz
at
io
n

Fa
ul
t

co
ve
ra
ge

O
n
Ja
va

pr
og
ra
m
m
in
g

ap
pl
ic
at
io
n

A Review of Test Case Prioritization and Optimization Techniques 513

4 Conclusion

In this paper, an empirical review has been performed on the techniques used in test
case prioritization and optimization in procedural paradigm and object-oriented
paradigm. All the available related papers of the research have been taken from the
literature. They are reviewed deeply, and each paper has been analyzed on the basis
of techniques or algorithm used, metrics used for efficiency, coverage that has been
taken and implementation basis of that paper. After reading this present paper,
researchers can get a quick review of the papers and get the relevant information
like coverage, metrics used and much more. They can also know the depth of the
papers and their research work.

References

1. Qu, B., Nie, C., Xu, B.: Test case prioritization for multiple processing queues. In: ISISE’08
International Symposium on Information Science and Engineering, vol. 2, pp. 646–649. IEEE
(2008)

2. Hla, K.H.S., Choi, Y. Park, J.S. Applying particle swarm optimization to prioritizing test
cases for embedded real time software retesting. In: 8th International Conference on
Computer and Information Technology Workshops, pp. 527–532. IEEE (2008)

Table 3 Analysis of papers based on research questions

ID RQ1 RQ2 RQ3 RQ4 RQ5 ID RQ1 RQ2 RQ3 RQ4 RQ5

[1] X X [19] X
[2] X [20] X X X
[3] X [2] X
[4] X X X [21] X
[5] X X [22] X X X X
[6] [23] X X
[7] X [24] X
[8] X X X X [25]

[9] X [26]

[10] X [27] X X
[11] X X X [28] X X
[12] X X X [29]

[13] X [30] X
[14] X [31] X X X
[15] X X X [32] X X X
[16] X X [33] X X X
[17] X X X [34] X
[18] X X X

514 P. Saraswat et al.

3. Tyagi, M., Malhotra, S.: Test case prioritization using multi objective particle swarm
optimizer. In: International Conference on Signal Propagation and Computer Technology
(ICSPCT), pp. 390–395. IEEE (2014)

4. Simons, C., Paraiso, E.C.: Regression test cases prioritization using failure pursuit sampling.
In: 10th International Conference on Intelligent Systems Design and Applications (ISDA),
pp. 923–928. IEEE (2010)

5. Nagar, R., Kumar, A., Kumar, S., Baghel, A.S.: Implementing test case selection and
reduction techniques using meta-heuristics. In: Confluence The Next Generation Information
Technology Summit (Confluence), 2014 5th International Conference, pp. 837–842. IEEE
(2014)

6. Ansari, A.S., Devadkar, K.K., Gharpure, P.: Optimization of test suite-test case in regression
test. In: IEEE International Conference on Computational Intelligence and Computing
Research (ICCIC), pp. 1–4. IEEE (2013)

7. Elanthiraiyan, N., Arumugam, C.: Parallelized ACO algorithm for regression testing
prioritization in hadoop framework. In: International Conference on Advanced
Communication Control and Computing Technologies (ICACCCT), pp. 1568–1571. IEEE
(2014)

8. Sharma, N., Purohit, G.N.: Test case prioritization techniques-an empirical study. In:
International Conference on High Performance Computing and Applications (ICHPCA), vol.
28(2), pp. 159–182. IEEE (2014)

9. Kruse, P.M., Schieferdecker, I. Comparison of approaches to prioritized test generation for
combinatorial interaction testing. In: Federated Conference on Computer Science and
Information Systems (FedCSIS), pp. 1357–1364. IEEE (2012)

10. Stochel, M.G., Sztando, R.: Testing optimization for mission-critical, complex, distributed
systems. In: 32nd Annual IEEE International Conference on Computer Software and
Applications, 2008. COMPSAC’08, pp. 847–852. IEEE (2008)

11. Islam, M.M., Scanniello, G.: MOTCP: a tool for the prioritization of test cases based on a
sorting genetic algorithm and latent semantic indexing. In: 28th IEEE International
Conference on Software Maintenance (ICSM), pp. 654–657. IEEE (2012)

12. Sabharwal, S., Sibal, R., Sharma, C.: A genetic algorithm based approach for prioritization of
test case scenarios in static testing. In: 2nd International Conference on Computer and
Communication Technology (ICCCT), pp. 304–309. IEEE (2011)

13. Khan, S.U.R., Parizi, R.M., Elahi, M.: A code coverage-based test suite reduction and
prioritization framework.In: Fourth World Congress on Information and Communication
Technologies (WICT), pp. 229–234. IEEE (2014)

14. Harman, M.: Making the case for MORTO: multi objective regression test optimization. In:
Fourth International Conference on Software Testing, Verification and Validation Workshops,
pp. 111–114. IEEE (2011)

15. Noguchi, T., Sato, A.: History-based test case prioritization for black box testing using ant
colony optimization. In: IEEE 8th International Conference on Software Testing, Verification
and Validation (ICST), pp. 1–2. IEEE (2015)

16. Ma, Z., Zhao, J.: Test case prioritization based on analysis of program structure. In: Software
Engineering Conference, 2008. APSEC’08. 15th Asia-Pacific, pp. 471–478. IEEE (2008)

17. Wu, K., Fang, C., Chen, Z., Zhao, Z.: Test case prioritization incorporating ordered sequence
of program elements. In: Proceedings of the 7th International Workshop on Automation of
Software Test, pp. 124–130. IEEE Press (2012)

18. Prakash, N., Rangaswamy, T.R.: Modular based multiple test case prioritization. In: IEEE
International Conference on Computational Intelligence and Computing Research (ICCIC),
pp. 1–7. IEEE (2012)

19. Rugthaicharoencheep, N., Thongkeaw, S., Auchariyamet, S.: Economic load dispatch with
daily load patterns using particle swarm optimization. In: Proceedings of 46th International
Universities Power Engineering Conference (UPEC), pp. 1–5. VDE (2011)

A Review of Test Case Prioritization and Optimization Techniques 515

20. Chauhan, N., Kumar, H.: A hierarchical test case prioritization technique for object oriented
software. In: International Conference on Contemporary Computing and Informatics (IC3I),
pp. 249–254. IEEE (2014)

21. Baudry, B., Fleurey, F., Jezequel, J.M., Le Traon, Y.: Automatic test case optimization using
a bacteriological adaptation model: application to. net components. In: Proceedings of the
ASE 2002. 17th IEEE International Conference on Automated Software Engineering,
pp. 253–256. IEEE (2002)

22. Malhotra, R., Tiwari, D.: Development of a framework for test case prioritization using
genetic algorithm. ACM SIGSOFT Softw. Eng. Notes 38(3), 1–6 (2013)

23. Mayan, J.A., Ravi, T.: Test case optimization using hybrid search technique. In: Proceedings
of the 2014 International Conference on Interdisciplinary Advances in Applied Computing.
ACM (2014)

24. Arcuri, A., Briand, L.: Adaptive random testing: an illusion of effectiveness? In: Proceedings
of the 2011 International Symposium on Software Testing and Analysis, pp. 265–275. ACM
(2011)

25. Pastore, F., Mariani, L., Hyvärinen, A.E.J., Fedyukovich, G., Sharygina, N., Sehestedt, S.,
Muhammad, A.: Verification-aided regression testing. In: Proceedings of the 2014
International Symposium on Software Testing and Analysis, pp. 37–48. ACM (2014)

26. Gligoric, M., Negara, S. Legunsen, O., Marinov, D.: An empirical evaluation and comparison
of manual and automated test selection. In: Proceedings of the 29th ACM/IEEE International
Conference on Automated Software Engineering, pp. 361–372. ACM (2014)

27. Baudry, B., Fleurey, F., Jézéquel, J.M., Le Traon, Y.: Automatic test case optimization: a
bacteriologic algorithm. IEEE Softw. 22(2), 76–82 (2005)

28. Baudry, B., Fleurey, F., Jézéquel, J.M., Le Traon, Y.: Genes and bacteria for automatic test
cases optimization in the. net environment. In: Proceedings of the 13th International
Symposium on Software Reliability Engineering, ISSR, pp. 195–206. IEEE (2002)

29. Liu, W., Dasiewicz, P.: The event-flow technique for selecting test cases for object-oriented
programs. In: Canadian Conference on Engineering Innovation: Voyage of Discovery, vol. 1,
pp. 257–260. IEEE (1997)

30. Hoseini, B., Jalili, S.: Automatic test path generation from sequence diagram using genetic
algorithm. In: 7th International Symposium on Telecommunications (IST), pp. 106–111.
IEEE (2014)

31. Mahajan, S., Joshi, S.D., Khanaa, V.: Component-based software system test case
prioritization with genetic algorithm decoding technique using java platform. In:
International Conference on Computing Communication Control and Automation, pp. 847–
851. IEEE (2015)

32. Panichella, A., Oliveto, R., Di Penta, M., De Lucia, A.: Improving multi-objective test case
selection by injecting diversity in genetic algorithms. IEEE Trans. Softw. Eng. 41(4), 358–
383 (2015)

33. Valdez, F., Melin, P., Mendoza, O.: A new evolutionary method with fuzzy logic for
combining particle swarm optimization and genetic algorithms: the case of neural networks
optimization. In: International Joint Conference on Neural Networks, IJCNN, (IEEE World
Congress on Computational Intelligence), pp. 1536–1543. IEEE (2008)

34. Karnavel, K., Santhosh Kumar, J.: Automated software testing for application maintenance by
using bee colony optimization algorithms (BCO). In: International Conference on Information
Communication and Embedded Systems (ICICES), pp. 327–330. IEEE (2013)

516 P. Saraswat et al.

Software Development Activities
Metric to Improve Maintainability
of Application Software

Adesh Kumar pandey and C. P. Agrawal

Abstract The maintenance is very important activity of the software development
life cycle. The maximum percentage of design and development cost of software
system is going into maintenance to incorporate the change into functional
requirement. The increased functional requirements lead towards system configu-
ration changes, which may further increase the cost of development. Every software
company want to design and develop the software which is easy to maintain at
lower costs. It is better to design and develop more maintainable software to meet
this objective; this paper proposed software development activities metric, which
will help software developers to develop the easy-to-maintain application software.

Keywords Application software � Metric � Software development life cycle

1 Introduction

The maintenance activities consume a large portion of the total life cycle cost and
time. Software maintenance activities may account almost 70% of total develop-
ment cost. If we analyse the distribution of efforts during design and development
of a software system, 60% of the maintenance budget goes in enhancement
activities, and 20% each for adaptation and correction [1].

Maintenance activities consume lot of time and cost of software development
life cycle; it motivates us to design and develop software, which are easy to
maintain and cost effective. Any new functional requirement by user or client
reinitiates development in the analysis phase. Fixing of a software problem may
require working in the analysis phase, the design phase or the implementation

A. K. pandey (&)
Department of Information Technology, KIET Group of Institutions, Ghaziabad, India
e-mail: adeshpandey.kiet@gmail.com

C. P. Agrawal
Department of Computer Applications, M.C.N.U.J.C., Bhopal, India
e-mail: agrawalcp@yahoo.com

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_49

517

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_49&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_49&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_49&domain=pdf

phase. It is clear that software maintenance may require almost all tools and
techniques of software development life cycle. It is very important to understand the
scope of desired change and do the analysis accordingly during software mainte-
nance. Design during maintenance involves redesigning the product to incorporate
the desired changes by users or clients. It is essential to update all internal docu-
ments, and whenever the changes take place in the code of the software system,
new test cases must be designed and implemented. It is important to update the all
supporting documents like software requirements specification, design specifica-
tions, test plan, user’s manual, cross-reference directories and test suites to reflect
the changes suggested by the user or client. Updated versions of the software and all
related updated documents must be released to various users and clients.
Configuration control and version control must be updated and maintained [1].

It is clear from above discussion that there is urgent need to identify and apply
the maintainability factors to in initial phase of software design and development
life cycle to increase the system availability and decrease overall development cost.

2 Software Development Activities Metric to Improve
the Maintainability

Yang and Ward say that “Possibly the most important factor that affects main-
tainability is planning for maintainability” [2]. This means that maintainability has
to be built inside a project during the development phase or it will be very difficult
if not impossible to add afterwards. Therefore, estimation and improvements need
to be done continuously starting from the beginning of the project.

There are number of activities in software development life cycle which may
directly or indirectly affects the maintainability of application software.

The developers should identify the expected changes and prioritize theses
changes as per their importance, so that their considerations can result in correct
architecture design to accommodate the changes. The analysis phase of software
development is concerned with determining customer requirements and constraints
and establishing feasibility of the product [1]. From the maintenance viewpoint, the
most important activities that occur during analysis are develop standards and
guidelines, set milestones for the supporting documents, specify quality assurance
procedures, identify likely product enhancements, determine resources required for
maintenance and estimate maintenance costs [1].

Different types of standards and guidelines for design, coding and documenta-
tion can be developed to enhance the maintainability of software. Architectural
design is concerned with developing the functional components, conceptual data
structures and interconnections in a software system. The most important activity
for enhancing maintainability during architectural design is to emphasize clarity,
modularity and ease of modification as the primary design criteria [3].

518 A. K. pandey and C. P. Agrawal

Configuration management of software is probably the single most important
management and maintainability concept [1].

Refactoring is a disciplined technique for restructuring an existing body of code,
changing its internal structure without changing its external behaviour. Its heart is a
series of small behaviour preserving transformations [4].

The complexity is another issue in maintainability. One issue affecting com-
plexity is the coupling of modules. It has been proposed that the complexity of a
component-based system could be computed with a coupling measurement. The
complexity of a program depends upon its magnitude, its control structure and its
data flows. Some of the factors, which may affect the complexity, are system
stability, team stability, program age and changing requirement [4].

Software implementation activities should be aligned with the goal of producing
software that is easy to understand, easy to modify and cost effective. Single-entry,
single-exit coding constructs should be used, standard indentation of constructs
should be observed, and a straightforward coding style should be adopted. Ease of
maintenance is enhanced by use of symbolic constants to parameterize the software,
by data encapsulation techniques and by adequate margins on resources such as
table sizes and overflow tracks on disks [1].

Testing is part of maintainability. In the “IEEE Standards for a Software Quality
Metrics Methodology”, maintainability is defined as consisting of three factors:
correctability, expandability and testability. Testability is defined by IEEE as “the
effort required to test software” [5].

The personal interests of developers also affect software’s maintainability. It is
often schedule, budget or fear of breaking something that lead developers to write
bad code [6].

The importance of software development activities to develop maintainable
application software clearly signifies from the above deliberation in literature sur-
vey [7–12].

Researchers have chosen different software development activities in their
research work, which are critical to develop maintainable application software. We
summarize all these critical software development activities (SDA) metric in the
form of SDA matrix, as shown in Table 1.

3 Analysis of SDA Metric

We have discussed the attributes of SDA metric and their subfactors with software
developers and experts of software engineering from academics. We finally con-
clude the following about the SDA metric:

1. The early planning and analysis activities are part of requirement analysis phase
of software life cycle development process.

2. Refactoring and design activities are part of design phase of software
development.

Software Development Activities Metric to Improve … 519

T
ab

le
1

D
ev
el
op

m
en
t
ac
tiv

iti
es

m
et
ri
c

E
ar
ly

pl
an
ni
ng

A
na
ly
si
s

ac
tiv

iti
es

St
an
da
rd
s

an
d

gu
id
el
in
es

D
es
ig
n
ac
tiv

iti
es

C
on

fi
gu
ra
tio

n
m
an
ag
em

en
t

R
ef
ac
to
ri
ng

C
om

pl
ex
ity

Im
pl
em

en
ta
tio

n
ac
tiv

iti
es

C
on
ce
pt
ua
l

in
te
gr
ity

E
xp
ec
te
d

ch
an
ge
s

St
an
da
rd
s
an
d

gu
id
el
in
es

U
ni
fo
rm

co
nv
en
tio

ns
C
la
ri
ty

an
d

m
od
ul
ar
ity

M
ai
nt
en
an
ce

gu
id
e

R
ef
ac
to
ri
ng

op
po
rt
un
ity

an
d
tim

e
Pr
og
ra
m

si
ze

(t
ot
al

st
at
em

en
t)

T
ec
hn
ic
al

de
bt

A
rc
hi
te
ct
ur
al

de
si
gn

Pr
io
ri
tiz
at
io
n
of

ch
an
ge
s

Se
t

m
ile
st
on
es

N
am

in
g

co
nv
en
tio

ns
E
as
e
to

en
ha
nc
em

en
ts

D
ev
el
op

a
te
st

su
ite

R
ef
ac
to
ri
ng

te
ch
ni
qu
es

Su
bp
ro
gr
am

si
ze

(s
ta
te
m
en
t

pe
r
m
od
ul
e)

C
le
an

co
de

C
om

m
on

co
nv
en
tio

ns

D
ec
om

po
si
tio

n
of

fu
nc
tio

na
lit
ie
s

Q
ua
lit
y

as
su
ra
nc
e

pr
oc
ed
ur
es

C
od
in
g

st
an
da
rd
s,

co
m
m
en
ts

an
d
st
yl
e

Fu
nc
tio

ns
,

st
ru
ct
ur
e
an
d

in
te
rc
on
ne
ct
io
n

M
an
ag
em

en
t

of
th
e
SC

M
pr
oc
es
s

Pr
es
er
vi
ng

th
e

be
ha
vi
ou
r

B
ra
nc
h

de
ns
ity

(p
er

st
at
em

en
t)

N
or
m
al
iz
ed

co
de

U
ni
fo
rm

gu
id
el
in
es

E
xp
ec
te
d

en
ha
nc
em

en
ts

D
ef
en
ci
ng

pr
og
ra
m
m
in
g

Pr
in
ci
pl
es

of
in
fo
rm

at
io
n

hi
di
ng

So
ft
w
ar
e

co
nfi

gu
ra
tio

n
id
en
tifi

ca
tio

n

C
on
si
st
en
cy

be
tw
ee
n

re
fa
ct
or
in
g
co
de

an
d

ot
he
r
so
ft
w
ar
e

ar
te
fa
ct
s

D
ec
is
io
n

de
ns
ity

(p
er

st
at
em

en
t)

D
ea
d
co
de

C
om

m
un
ic
at
io
n

be
tw
ee
n
te
am

m
em

be
rs

R
es
ou
rc
es

fo
r

th
e

m
ai
nt
en
an
ce

D
at
a
ab
st
ra
ct
io
n

an
d
to
p-
do
w
n

hi
er
ar
ch
ic
al

de
co
m
po
si
tio

n

So
ft
w
ar
e

co
nfi

gu
ra
tio

n
id
en
tifi

ca
tio

n

So
ft
w
ar
e

de
ve
lo
pm

en
t

m
et
ho
do
lo
gy

Sy
st
em

st
ab
ili
ty

(S
S)

D
ep
en
de
nc
ie
s

E
st
im

at
ed

m
ai
nt
en
an
ce

co
st
s

St
an
da
rd
iz
ed

no
ta
tio

ns
fo
r

al
go
ri
th
m
s

So
ft
w
ar
e

co
nfi

gu
ra
tio

n
st
at
us

ac
co
un
tin

g

Fe
at
ur
es

of
pr
og
ra
m
m
in
g

la
ng
ua
ge
s

T
ea
m

st
ab
ili
ty

(T
S)

Pa
tc
he
d
co
de

(c
on

tin
ue
d)

520 A. K. pandey and C. P. Agrawal

T
ab

le
1

(c
on

tin
ue
d)

E
ar
ly

pl
an
ni
ng

A
na
ly
si
s

ac
tiv

iti
es

St
an
da
rd
s

an
d

gu
id
el
in
es

D
es
ig
n
ac
tiv

iti
es

C
on

fi
gu
ra
tio

n
m
an
ag
em

en
t

R
ef
ac
to
ri
ng

C
om

pl
ex
ity

Im
pl
em

en
ta
tio

n
ac
tiv

iti
es

C
on
ce
pt
ua
l

in
te
gr
ity

D
at
a
St
ru
ct
ur
es

an
d
pr
oc
ed
ur
e

in
te
rf
ac
e

sp
ec
ifi
ca
tio

ns

So
ft
w
ar
e

co
nfi

gu
ra
tio

n
au
di
tin

g

St
yl
e
of

pr
og
ra
m
m
in
g

Pr
og
ra
m

ag
e

(P
A
)

D
up
lic
at
ed

co
de

Sp
ec
ifi
c
ef
fe
ct
s

an
d
ex
ce
pt
io
n

ha
nd
lin

g

So
ft
w
ar
e

re
le
as
e

m
an
ag
em

en
t

an
d
de
liv

er
y

R
eq
ui
re
m
en
t

st
ab
ili
ty

C
ro
ss
-r
ef
er
en
ce

di
re
ct
or
ie
s

Software Development Activities Metric to Improve … 521

3. It is clear from the deliberation of standard and guidelines and conceptual
integrity that we can merge subfactors of these two into one. Finally, we con-
sider refined version of standard and guidelines attribute only.

4. Software development methodologies depend on the type of software and the
environment of development, so we can ignore this attribute.

The subfactors of SDA metric are analysed as follows:

1. Two subfactors of analysis activities, standard and guidelines and set milestone
are part of standard and guidelines metric. The resource for the maintenance is
already covered under estimation of maintenance cost.

2. The subfactors of design like clarity and modularity, ease to enhancement and
function interconnection are similar so we can call them modularity and
enhancement as one unit. The subfactor information hiding and specific effects
and exception handling are part of programming style so we can remove them
from design activities.

3. Refactoring opportunities and time, software development methodologies, fea-
tures of programming languages and style of programming are standard
parameters, which cannot be controlled during software development life cycle.

4. In case of complexity, program size and subprogram size are covered under the
subfactors module size. The team stability is the part of human factor metric.

On the basis of above deliberations, we are proposing the optimized software
development activities metrics to develop maintainable application software, as
shown in Fig. 1.

Fig. 1 Optimized SDA metric to developing maintainable application software

522 A. K. pandey and C. P. Agrawal

4 Conclusion

Maintainability is about the ease of change in software system as and when
required.

Maintainability cannot be built into software after it has been implemented and
delivered. The ease of maintenance has to be considered from the very beginning
during the design and development of software. We are proposing the factors,
which are critical to design and development of maintainable application software.
These factors will help to increase system availability and decrease overall design,
development and operating cost of application software.

References

1. Fairley, R.: Software maintenance. In: Software Engineering Concepts. Tata McGraw-Hill,
pp. 311–329 (1997)

2. Yang, H., Ward, M.: Successful Evolution of Software Systems. Artech House Publishers
(2003)

3. Software Design for Maintainability. http://engineer.jpl.nasa.gov/practices/dfe6.pdf
4. Washizaki, H., Nakagawa, T., Saito, Y., Fukazawa, Y.: A coupling based complexity metric

for remote component based software systems toward maintainability estimation. In: Software
Engineering Conference, APSEC 2006. 13th Asia Pacific, pp. 79–86 (Dec 2006)

5. IEEE Standard for a Software Quality Metrics Methodology. In: IEEE Std 1061–1992,
vol., no., p 1 (1993). doi: 10.1109/IEEESTD.1993.115124.

6. Martin, R.: Clean Code: A Handbook of Agile Software Craftsmanship. Prentice Hall (2008)
7. Singh, R., Yadav, V.: Predicting design quality of object-oriented software using UML

diagrams. In: 3rd IEEE International Advance Computing Conference (IACC), pp. 1662–
1667 (2013)

8. Kleinschmager, S., Robbes, R., Stefik, A.: Do static type systems improve the maintainability
of software systems? An empirical study. In: IEEE 20th International Conference on Software
Engineering, 153–162 (June 2012)

9. Dubey, S.K., Rana, A., Dash, Y.: Maintainability prediction of object-oriented software
system by multilayer perceptron model. ACM SIGSOFT Softw. Eng. Notes 1–4 (2012)

10. Ren, Y., Xing, T., Chen, X., Chai, X.: Research on software maintenance cost of influence
factor analysis and estimation method. In: Intelligent Systems and Applications (ISA), 3rd
International Workshop, pp. 1–4 (May 2011)

11. Sharma, A., Kumar, R., Grover, P.S.: Estimation of quality for software components: an
empirical approach. ACM SIGSOFT Softw. Eng. Notes 33(6) (2008)

12. Grover, P.S., Kumar, R., Sharma, A.: Few useful considerations for maintaining software
components and component-based systems. ACM SIGSOFT Softw. Eng. Notes 32(5), 1–5
(2007)

Software Development Activities Metric to Improve … 523

http://engineer.jpl.nasa.gov/practices/dfe6.pdf
http://dx.doi.org/10.1109/IEEESTD.1993.115124

Label Count Algorithm for Web
Crawler-Label Count

Laxmi Ahuja

Abstract Web crawler is a searching tool or a program that glance the World Wide
Web in an automated style. Through GUI of the crawler, user can specify the URL
and all the links related are retrieved and annexed to the crawl frontier, which is a
tally to visit. The links are then checked and retrieved from the crawl frontier. The
algorithms for crawling the Web are vital when it comes to select any page which
meets the requirement of any user. The present paper analyzes the analysis on the
Web crawler and its working. It proposes a new algorithm, named as label count
algorithm by hybridization of existing algorithms. Algorithm labels the frequently
visited site and selects the best searches depending on the highest occurrence of
keywords present in a Web page.

Keywords Web crawler � Breadth-first search � Depth-first search
Page rank algorithm � Genetic algorithm

1 Introduction

There are about 1.7 billion of Web pagess [1, 2], the various search engines like
Google, Yahoo, and Bing hinge on the crawlers to intensify, and lot of pages are
maintained for the expeditious piercing. The data search is when performed,
thousands of results are appeared. The users do not have the tenacity to brook each
and every page. Therefore, to sort out the best result, the search engine has a bigger
job to perform. Web crawler is needed to maintain the mirror site for all the
well-liked Web sites. Many sites in a particular search engines use crawling to have
up-to-date data and are mainly used to create a copy of all the visited Web pages
which are frequently or often used for later processing [3]. This will provide the fast
searches for a search engine to index the downloaded pages. The HTML code and
the hyperlinks can be endorsed by the help of the crawler. Web crawlers are also

L. Ahuja (&)
Amity Institute of Information Technology, Amity University, Noida, India
e-mail: lahuja@amity.edu

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_50

525

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_50&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_50&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_50&domain=pdf

known as automatic indexers [4]. The aptness for a computer to sweep documents
of large volumes in anticipation of a supervised vocabulary, taxonomy, synonym,
or ontology and use these terms to catalog large document cache more quickly and
effectively is called automatic indexing [5]. As the documents’ number rapidly
enlarges with the built up of the Internet, the aptness to be maintained to find
applicable information in a marine of no applicable information, the automatic
indexing will grow useful. It is also useful for the data-driven programming which
is also called the scraping of Web [5].

2 Preliminaries

The crawler persistently substantiates the loop for replication. This is done to evade
the replicas which will take a levy on the coherence of the crawling process.
Theoretical wise, this process of retrieving all the connection is continued till
completely the links are reposed but practical wise, the crawler searches only the
levels of depth of 5 and after this it concludes that no need to go further under a
compulsion. The reason why it goes till depths of 5 is (a) 5 depths or levels are
ample to assemble majority of information. (b) The safeguard to avoid ‘spider
traps’. Spider trap occurs when Web pages contain infinite loop within them [6].
Crawler is pin down in the page or can even wreck. It can be done intentional or
unintentional. As the page bandwidth is eaten up, so it is intentionally done to trap
the crawler. An ability of a crawler to circumvent spider traps is known as
robustness. The first thing a crawler is supposed to do when it visits a Web site is to
look for a ‘robots.txt’ file. The file contains instructions to which part of the Web
site is to be indexed and which part is to be ignored. Using a robots.txt file is the
only way to control what a crawler can see on your site [7, 8].

2.1 Crawling Strategy

There are various strategies which are being followed by the crawler:

• Politeness strategy: It defines that the overloading of the Web sites should be
avoided.

• Selection strategy: This type of strategy defines that what pages should be
downloaded. In arrangement with restricting the followed links, an
HTTP HEAD request is made by the crawler to determine a MIME type’s Web
resource before a request to the entire resource is made with a GET request.
URL is then examined with the crawler, and if the URL ends with .html, .htm, .
asp, php, .jsp, etc., then only a resource is requested. To avoid the crawling more
than once for the same resource, URL normalization is performed by the
crawlers.

526 L. Ahuja

• Revisit strategy: This strategy states that for changes of the page when is to be
checked. Often cost functions which are used: freshness and age.

• FRESHNESS: Freshness indicates that the local copy is accurate or not in terms
of a binary measure [9].

• AGE: Age is measure in terms of how the local copy is outdated. The uniform
policy necessitates revisiting all pages with the same frequency in the collection
nevertheless of their change of rates. Whereas on the other hand proportional
strategy necessitates revisiting the pages more often which changes more
frequently, where the change in frequency is directly proportional to the fre-
quency visited (estimated one).

• Parallelization strategy: It defines that coordination between the Web crawlers
which are distributed is done.

2.2 Architecture

A crawler should have an optimized structure and a well strategy to crawl. They are
a focal point for any engine of search, and the information related to these is kept
secret [10, 11].

Figure 1 describes the general structure of the Web crawler, and the working
details are given below:

• Fetch: To fetch the URL, it generally uses the http protocol.
• Duplicate URL Eliminates: In this, the URL is checked for duplicate or

redundant data which is to be eliminated.
• URL Frontier: It contains the URLs which are to be yield in the current crawl.

Firstly, in URL Frontier a set of seed is stored and from that set of seed crawler
is arise.

• Parse: Texts, videos, images, etc., are obtained while parsing the page.

Fig. 1 General architecture of a crawler

Label Count Algorithm for Web Crawler-Label Count 527

• DNS: It looks up an IP address for domain names. It is a domain name service
resolution.

• URL Filter: It filters the URL deciding that the extracted URL from the frontier
(robots.txt) should be excluded or the URL would be normalized, i.e., relative
encoding.

• Content: It tests whether a Web page having the same content has already been
perceived at another URL or not, and develops a method to quantify the
impression of a Web page.

3 Schemes for Web Crawling

The crawling algorithm regulates the applicable and sanctions from a consigned
origin of powerful accurate information form of elements such as keyword location
and frequency [12]. And not all information constitutes is useful as some hostile
user, attempting to allure extra traffic into their site by lodging the frequently used
keywords. Thus, this becomes the challenge for the Web crawler, the capacity to
download huge relevant and robustness number of pages.

3.1 Genetic Algorithm

This is the best type of algorithm which is useful when the user does not have
time or have less time to search a huge database. It also performs efficient results
in case of multimedia. In a confined still point, the risk of becoming trapped is
reduced [13]. It always operates on a whole population. Solution is taken from the
population which in turn will be used for the new population. This algorithm also
produces result to search and optimization issues. It starts with result set known as
population. There is a hope that new population will be better than the old
population.

3.2 Breadth-First Search Algorithm

This type of algorithm starts the search from the main node which is the root node
and then proceeds to the other child nodes [13–15]. But it goes level by level. If the
node is found, i.e., the data which is to be searched is found then it will be denoted
as victory but in case not it continues with the search by performing in the next
level unless the final goal is met. And if all the nodes are traversed and no data is
found, then it is termed as aborted.

528 L. Ahuja

3.3 Page Rank Algorithm

On counting back links for a given page, the importance of Web pages is deter-
mined. It does not determine the page rank of the whole Web site but is individually
determined for each page [13–15].

3.4 Depth-First Search Algorithm

In depth-first search algorithm, the traversing is done. The searching is always
started from the main node which is the root node and then follows with the other
child nodes. If the child nodes are found more than two, then the priority is in favor
of the child node which is at the left side. It is then cross profound unless there is
not a single child is left. It goes back to the node which is not visited and continues
in a same manner. It always makes sure that at least once all the nodes are visited.
There is a chance of an infinite loop if the branches are too large (Table 1).

Label count Searching Algorithm

This particular algorithm will search the keyword depending on the two possible
criteria [16]. Firstly, it will label all the Web sites or Web pages which are being
frequently visited which in turn will depend on the highest number of hit counters,
let us say the number of hits above 40% will be considered [17, 18]. If it fulfills the
above-mentioned criteria, we move on to the next step of the level search.
A level-by-level search is performed on the selected (labeled) pages and on basis of
the pages having the highest occurrence of the keyword will be added to the crawl
frontier [19]. And through the crawl frontier, user can have a check on the links.
And on the basis of his requirement, he can visit the Web pages.

Pseudocode

1. Start
2. Procedure LCS (graph, source)
3. Create a queue Q
4. Let there are 4 Web pages A, B, C, D
5. If the hit.counter ()>=40% and out of 4 Web pages 3 falls under the criteria.

Then labels are appended to the pages.
6. A<-label.1
7. B<-label.2
8. D<-label.3
9. If the keyword.occurence () > 6. Then

10. Enqueue source onto Q
11. End

Figure 2 describes the percentage of the sites visited frequently.

Label Count Algorithm for Web Crawler-Label Count 529

Table 1 Comparative study on various Web crawling algorithms

Criteria BFS DFS Page Rank Genetic

Concept It is a cautious
search where you
uniformly
advance in each
and every
feasible way, if
the objective is
somewhere out
there we may find
it

It is a more hostile
and chance-taking
search where we
select only one
path and all the
other paths are
ignored until the
end of the
selected path is
reached

It is considerable
direction applying
communal
intelligence to
regulate the
significance of a
Web page

It is a heuristic
search which
emulates the
selecting the
natural process

Memory It will use a lot of
memory but will
find the first best
search

If search graph is
shallow then low
memory

Efficient usage of
memory takes
place

Efficient usage of
memory takes
place

Robustness Robust Less robust Robust More robust

Time Takes time Takes really long
time

Less time Less time

Solution Always
shallowest
solution

May not find the
shallowest
solution. If the
graph has infinite
depth, then it fails
to decide

We can use only
single-precision or
double-precision
value for source
and destination
arrays. The use of
single-precision
rank vector will
not lead to
numerical error

It gives solution to
search and
optimization
issues. They do
not break easily
even if the inputs
changed slightly

Time
complexity

O(|V| + |E|) O(|E|) O(n * m) O(gens * n * m)

Space
complexity

O(|V|2) O(|V|) O(n * m) O(gens * n * m)

Above 40%(Frequently Visited Sites)

Less Visited Sites

Fig. 2 Percentage of visited sites

530 L. Ahuja

4 Conclusion and Future Work

The exponential growth of Web is raising many challenges for the Web crawler.
The main intent of this paper was to shed light on the Web crawler and its working.
It also considered the best suitable algorithms which are used for the Web crawling
and made a comparative study on these algorithms depending on their advantages
and disadvantages. We created a new algorithm which can be useful for future
development of a Web crawler. As the amount of available data continues to grow,
Web crawling algorithms will become an increasingly improvement area of
research. The label count searching algorithm we created will provide a relevant
data from the authorized Web sites in a timely manner.

References

1. http://en.wikipedia.org/wiki/Breadth-first_search
2. Russel, S., Norvigin, P.: The Artificial Intelligence: A Modern Approach (2003)
3. Kurant, M., Markopoulou, A., Thiran, P.: The International Teletraffic Congress (ITC 22) (2010)
4. Abiteboul, S., Preda, M., Cobena, G.: An adaptive on-line page importance computation. In:

The Proceedings of the 12th International Conference on the World Wide Web, pp. 280–290.
ACM Press (2003)

5. Najork, M., Wiener, J.L.: Breadth-first search crawling leads to high-quality pages. In:
Proceedings of the 10th International Conference on World Wide Web (2001)

6. McCallum, A., Nigam, K., Rennie, J., Seymore, K.: An approach for machine learning to build
domain-specific search engines. In: Proceedings of the 16th International Joint Conference on
Artificial Intelligence. Morgan Kaufmann, San Francisco, CA, 662–667 (1999)

7. Beamer, S., Asanović, K., Patterson, D.: Direction optimizing breadth-first search algorithm
in the international conference. In: Networking (SC ’12), Article No. 12 (2012)

8. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking algorithm
which Brought order to the web. A Technical Report by Stanford University (1998)

9. Internet Archive, from the http://archive.org/
10. Internet Archive, Heritrix home page, from http://crawler.archive.org/
11. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. In: Seventh

World Wide Web Conference International Proceedings (1998)
12. Qin, Y., Xu, D.: A Balanced rank algorithm based on the PageRank and the Page Belief

recommendation (2010)
13. Coppin, B.: An Artificial Intelligence, p. 77. Jones and the Barlett Publishers (2004)
14. de kunder, M.: The size of world wide web. Retrieved from http://www.worldwidewebsize.

com/8/8/11
15. Signorini, A.: A survey of the ranking algorithms. Retrieved from http://www.divms.uiowa.

edu/*asignori/phd/report/asurvey-of-ranking-algorithms.pdf, 29/9/2011
16. www.wikipedia.org/wiki/Automatic_indexing
17. Boldi, P., Codenotti, B., Santini, M., Vigna, S.: UbiCrawler: a fully distributed scalable web

crawler. Softw Pract. Exp. 34(8), 711–726 (2004)
18. Papapetrou, O., Samaras, G.: A distributed location aware web crawling. In: Proceedings of

the 13th International World Wide Web Conference on Alternate Track Papers & Posters.
ACM, New York (2004)

19. Wolf, J.L., Squillante, M.S., Yu, P.S., Sethuraman, J., Ozsen, L.: The optimal crawling
strategies for web search engines. In: Proceedings of the 11th International Conference on
World Wide Web, pp. 136–147. ACM, New York USA (2002)

Label Count Algorithm for Web Crawler-Label Count 531

http://en.wikipedia.org/wiki/Breadth-first_search
http://archive.org/
http://crawler.archive.org/
http://www.worldwidewebsize.com/8/8/11
http://www.worldwidewebsize.com/8/8/11
http://www.divms.uiowa.edu/%7easignori/phd/report/asurvey-of-ranking-algorithms.pdf
http://www.divms.uiowa.edu/%7easignori/phd/report/asurvey-of-ranking-algorithms.pdf
http://www.wikipedia.org/wiki/Automatic_indexing

Vulnerability Discovery in
Open- and Closed-Source Software:
A New Paradigm

Ruchi Sharma and R. K. Singh

Abstract For assisting the developers in process of software development,
vulnerability discovery models were developed by researchers which helped in
discovering the vulnerabilities with time. These models facilitate the developers in
patch management while providing assistance in optimal resource allocation and
assessing associated security risks. Among the existing models for vulnerability
discovery, Alhazmi–Malaiya logistic model is considered the best-fitted model on
all kinds of datasets owing to its ability to capture s-shaped nature of the curves.
But, it has the limitation of dependence on shape of dataset. We have proposed a
new model that is shape-independent accounting for better goodness of fit as
compared to the earlier VDM. The proposed model and Alhazmi–Malaiya logistic
model for vulnerability discovery has been evaluated on three real-life datasets each
for open- and closed- source software, and the results are presented toward the end
of the paper.

Keywords Vulnerability discovery � Open source � Closed source
Gamma � Alhazmi–Malaiya logistic model

1 Introduction

The high-order connectivity of computing systems has raised the concerns for
already existing software security. These concerns marked the outset of quantitative
modeling of the process of vulnerability discovery. Vulnerability discovery models
assist the developers in patch management, optimal resource allocation and
assessment of associated security risks. In this paper, we have proposed a new

R. Sharma � R. K. Singh (&)
Department of Information Technology, Indira Gandhi Delhi Technical University
for Women, Delhi, India
e-mail: rksingh988@gmail.com

R. Sharma
e-mail: rs.sharma184@gmail.com

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_51

533

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_51&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_51&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_51&domain=pdf

VDM to find the number of vulnerabilities and their distribution with time in a
software system by using analytical modeling techniques while enumerating the
difference in vulnerability detection patterns for open- and closed-source software.
The vulnerability detection rate in open- and closed-source software shows some
significant differences owing to the differences in strategies followed during their
development and testing [1–3]. In the literature, work on quantitative characteri-
zation of vulnerabilities has been done based on two approaches. Some researchers
used distribution functions to model the vulnerability discovery process while
others used functions [4]. Distribution function approach proceeds with a pre-
sumption that the trend of vulnerability discovery will follow a specific shape like
exponential, logarithmic or linear [5–7]. The best-fitted model proposed by
Alhazmi and Malaiya uses a logistic function which follows an S-shaped curve [8].
The first vulnerability discovery model was proposed by Ross Anderson and is
known as Anderson Thermodynamic (AT) model [5, 9]. AT model for cumulative
number of vulnerabilities with time by function NðtÞ. [5, 10]

NðtÞ ¼ k
ct
lnðctÞ ð1Þ

where C is the constant of integration. This VDM is not defined at t ¼ 0. Also,
some of the values obtained initially were negative which is not viable. Another
model termed as AML model was proposed by Alhazmi and Malaiya. It states that
in the initial phases of a software’s operational phase, the cumulative number of
vulnerabilities follows an upward trend as the system attracts more users followed
by a linear curve which later declines due to reduced number of remaining
vulnerabilities and decreasing attention [8, 10]. Cumulative number of vulnerabil-
ities is given by:

NðtÞ ¼ a
ace�abt þ 1

ð2Þ

where N(t) is the total number of vulnerabilities in the system at time t. a is the total
number of vulnerabilities in the system, b and c are the regression coefficients. The
well-established models in software reliability growth modeling say that at t = 0,
the number of bugs discovered should be equal to zero [11]. But, according to this
model, there are a

acþ 1 number of vulnerabilities discovered at t = 0. Further, fol-
lowing the concept of AML, vulnerability discovery process follows a sigmoid
shape which is always not the case. Two VDM, namely quadratic model and
exponential model, were proposed by Rescorla. They used function distribution and
proceeded with a pre-assumed shape of the vulnerability discovery curve [6].
Rescorla quadratic model proposed that the cumulative number of vulnerabilities
follows a quadratic relationship with time and can be obtained by the following
equation:

534 R. Sharma and R. K. Singh

NðtÞ ¼ Bt2

2
þ kt ð3Þ

where k and B are coefficients of regression. B is the curve slope and k is a constant
obtained with the datasets used. Rescorla proposed another model based on Goel–
Okumoto SRGM [12]. This exponential model can be given as follows:

NðtÞ ¼ að1� e�ktÞ ð4Þ

where “a” and k denotes the total vulnerabilities and rate constant, respectively.
Some other models present in the literature include the logarithmic Poisson model
by Musa and Okumoto [7]. This model was developed as a software reliability
growth model and later applied to discover vulnerability trends in the software.

NðtÞ ¼ k lnð1þ btÞ ð5Þ

where k and b are regression coefficients. Alhazmi et al. also worked on vulnera-
bility discovery in multiple upgradations of software [13]. They also used Weibull
distribution in their VDM in [4]. But, the existing models for vulnerability dis-
covery do not capture all kinds of data shapes efficiently due to which they cannot
be used for a variety of datasets.

2 Proposed Approach

The approach used in this work follows from non-homogenous Poisson process
(NHPP)-based software reliability growth models [11]. NHPP-based models have
following assumptions [11].

(i) The vulnerability detection/fixation is modeled by NHPP.
(ii) Software system may suffer failure during execution due to remaining vul-

nerabilities in the system.
(iii) All the vulnerabilities remaining in the software equally influence the rate of

failure of the software.
(iv) The no. of vulnerabilities found at any time instant is in direct proportion to

the no. of vulnerabilities remaining.
(v) When a failure is encountered, vulnerability causing the failure is detected

and removed with certainty.
(vi) From detection and correction point of view, all vulnerabilities are mutually

independent.

The various functions/distribution functions used in existing models for the
process of vulnerability discovery are dependent on the shape of dataset used, and
therefore, decision makers are required to select the model after analyzing the
dataset of software under consideration. To eliminate this limitation, we have used

Vulnerability Discovery in Open- and Closed-Source … 535

gamma distribution function in our proposed VDM which is a shape-independent
distribution and fits all kind of datasets with a better goodness of fit. The gamma
distribution is a two-parameter continuous probability distribution. It can be convex
or concave both upward and downward facing depending on the value of its scale
and shape parameters. Due to these properties, it fits a wider range of datasets as
compared to fixed shape models. The failure density function for gamma distri-
bution is given as follows:

f ðtÞ ¼ 1
C að Þb

t
b

� �a�1

e�
t
bð Þ; t� 0; a; b[0 ð6Þ

where a; b denote the shape and scale parameters, respectively. a controls the shape
of distribution. When a < 1, the gamma distribution is exponentially shaped and
asymptotic to both the horizontal and vertical axes. While stretching or com-
pressing, the range of distribution is governed by the scale parameter b. When b is
taken as an integer value, the distribution represents the sum of b exponentially
distributed random variables that are independent of each other and each variable
has a mean of a (which is equivalent to a rate parameter of a−1). For a = 1, gamma
distribution is the same as the exponential distribution of scale parameter b. When a
is greater than one, the gamma distribution assumes a unimodal and skewed shape.
As the value of a increases, the skewness of curve decreases.

Gamma distribution is used to describe the distribution until the nth occurrence
of an event in a Poisson process [11]. We have used the cumulative distribution
function for gamma to perform vulnerability prediction in this study which is given
by

cdf ðGammaÞ ¼ F t; a; bð Þ ¼
Z t

0

f u; a; bð Þdu ¼ c a; btð Þ
C að Þ ð7Þ

So; NðtÞ ¼ a � Fðt; a; bÞ ð8Þ

where “a” is the total number of vulnerabilities in the software and NðtÞ is the
number of vulnerabilities at a time instant “t”. When “t” tends to1, N(t) tends to a.
Equation (7) gives the cumulative distribution function of gamma distribution, and
Eq. (8) gives the final model for vulnerability discovery which is referred as gamma
vulnerability discovery model (GVDM). Equation (8) is applied on various datasets
from closed and open-source software to find out the values of parameters
a; a and b. The parameters used in the proposed and existing VDM are estimated by
applying nonlinear regression technique using Statistical Package for the Social
Sciences (SPSS).

536 R. Sharma and R. K. Singh

3 Parameter Estimations

Vulnerability discovery models are estimated on six datasets using Statistical
Package for Social Sciences (SPSS). The datasets used in this study are collected
from National Vulnerability Database [14]. The closed-source software datasets
used in this study includes: Zonealarm (C1), Google Chrome (C2), and Windows 7
(C3). O1 and C1 are antivirus datasets, O2 and C2 are browser datasets, and O3 and
C3 denote the datasets for operating system. Table 1 presents the estimated value of
parameters in AML and GVDM.

4 Prediction Capabilities of Models

The prediction capabilities of models described above are evaluated based on bias,
variance, root mean square prediction error (RMSPE), mean square error (MSE),
and coefficient of multiple determination (R2). The results for comparison based on
the criteria described above are tabulated in Table 2.

For various studies in the literature, goodness of fit for vulnerability discovery
models has been evaluated using chi-square test and Akaike information criteria
(AIC) [8, 10, 15]. In these studies, the AML model showed best results for all the
systems. We applied AML model and GVDM to datasets described in the previous
sections and observed the following results:

• The proposed model, GVDM, gave better results for datasets of open-source
community as observed from Table 2.

• AML model performed well for the datasets belonging to closed-source com-
munity of software as seen from Tables 2 [16–18].

Table 1 Parameter estimates for Alhazmi–Malaiya logistic model (AML) and gamma vulner-
ability discovery model (GVDM)

Datasets Models

AML GVDM

Parameters

a b c a a b

(O1) 72.087 0.015 1.244 77.685 5.686 1.251

(O2) 1324.3 0 0.028 2130.142 2.555 0.189

(O3) 346.553 0.001 0.028 1047.686 1.086 0.025

(C1) 32.764 0.014 0.517 134.309 1.388 0.047

(C2) 1072 0.001 0.106 1122.852 6.745 1.455

(C3) 388.873 0.002 0.069 423.276 3.134 0.798

Vulnerability Discovery in Open- and Closed-Source … 537

5 Conclusion

This work presented a new vulnerability discovery model based on gamma dis-
tribution. The AML model and the proposed GVDM were evaluated for their
prediction capabilities based on five different comparison criteria. The results
obtained are presented in Table 2 that show the gamma vulnerability discovery
model (GVDM) is best suited for open-source software and AML model is best
suited for closed-source software. The parallel and evolutionary development of
open source is captured effectively by GVDM, whereas a relatively planned
approach of closed source development follows the logistic behavior as suggested
by AML. Closed-source software goes through planned phases, and therefore in the
initial phases, the cumulative number of vulnerabilities follows an upward trend as
the system attracts more users after which it follows a linear curve. Later, the rate of
vulnerability discovery declines owing to decreased number of remaining vulner-
abilities and decreasing attention. Therefore, the logistic function of AML model
captures this data effectively, whereas for open-source software, the development is
generally parallel or evolutionary and follows no specific trend and therefore the
GVDM captures vulnerabilities among the open datasets efficiently.

References

1. Llanos, J.W.C., Castillo, S.T.A.: Differences between traditional and open source develop-
ment activities. In: Product-Focused Software Process Improvement, pp. 131–144. Springer,
Berlin (2012)

2. De Groot, A., et al.: Call for quality: open source software quality observation. In: Open
Source Systems, pp. 57–62. Springer, US (2006)

3. Potdar, V., Chang, E.: Open source and closed source software development methodologies.
In: 26th International Conference on Software Engineering, pp. 105–109 (2004)

Table 2 Results for comparison criteria

Parameters VDM AML GVDM VDM AML GVDM VDM AML GVDM

Bias O1 0.175 −0.15 O2 4.507 0.42 O3 1.695 0.959

C1 0.015 −0.11 C2 5.592 0.045 C3 1.4872 0.075

Variance O1 1.635 1.689 O2 30.74 23.41 O3 28.99 24.27

C1 0.722 0.877 C2 23.6 5.327 C3 16.1 12.9

RMSPE O1 1.644 1.696 O2 31.066 23.415 O3 29.05 24.29

C1 0.722 0.884 C2 24.253 5.327 C3 16.111 12.91

MSE O1 6.156 7.012 O2 899.11 509.16 O3 783.69 547.8

C1 0.447 0.672 C2 518.62 24.837 C3 222.81 142.88

R2 O1 0.991 0.989 O2 0.994 0.997 O3 0.892 0.924

C1 0.987 0.981 C2 0.997 1 C3 0.987 0.992

538 R. Sharma and R. K. Singh

4. Joh, H.C., Kim, J., Malaiya, Y.K.: Vulnerability discovery modeling using Weibull
distribution. In: 19th International Symposium on Software Reliability Engineering. https://
doi.org/10.1109/issre.2008.32

5. Anderson, R.J.: Security in opens versus closed systems—the dance of Boltzmann, Coase and
Moore. In: Open Source Software: Economics, Law and Policy, Toulouse, France, 20–21
June 2002

6. Rescola, E.: Is finding security holes a good idea? IEEE Secur. Priv. 3(1), 14–19 (2005)
7. Musa, J.D., Okumoto, K.: A Logarithmic Poisson Execution Time Model for Software

Reliability Measurement. 0270-5257/84/0000/0230/ IEEE (1984)
8. Alhazmi, O.H., Malaiya, Y.K.: Quantitative vulnerability assessment of systems software. In:

Proceedings of Annual Reliability and Maintainability Symposium, pp. 615–620, Jan 2005
9. Brady, R.M., Anderson, R.J., Ball, R.C.: Murphy’s Law, the Fitness of Evolving Species, and

the Limits of Software Reliability. Cambridge University Computer Laboratory Technical
Report No. 471 (September 1999)

10. Alhazmi, O.H., Malaiya, Y.K.: Modeling the vulnerability discovery process. In: Proceedings
of 16th IEEE International Symposium on Software Reliability Engineering (ISSRE’05),
pp. 129–138 (2005)

11. Kapur, P.K., Pham, H., Gupta, A., Jha, P.C.: Software Reliability Assessment with OR
Applications. Springer, UK (2011)

12. Goel, A.L., Okumoto, K.: Time-dependent error detection rate model for software and other
performance measures. IEEE Trans. Reliab. 28(3), 206–211 (1979)

13. Kim, J., Malaiya, Y.K., Ray, I.: Vulnerability discovery in multi-version software systems. In:
10th IEEE High Assurance Systems Engineering Symposium (2007)

14. https://nvd.nist.gov/, 10 Mar 2015
15. Alhazmi, O.H., Malaiya, Y.K.: Application of vulnerability discovery models to major

operating systems. IEEE Trans. Reliab. 57(1), 14–22 (2008)
16. Browne, H.K., Arbaugh, W.A., McHugh, J., Fithen, W.L.: A trend analysis of exploitations.

University of Maryland and CMU Technical Reports (2000)
17. Schneier, B.: Full disclosure and the window of vulnerability. Crypto-Gram, 15 Sept 2000.

www.counterpane.com/cryptogram-0009.html#1
18. Pham, H.: A software reliability model with vtub-shaped fault detection rate subject to

operating environments. In: Proceeding of the 19th ISSAT International Conference on
Reliability and Quality in Design, Hawaii (2013)

Vulnerability Discovery in Open- and Closed-Source … 539

http://dx.doi.org/10.1109/issre.2008.32
http://dx.doi.org/10.1109/issre.2008.32
https://nvd.nist.gov/
http://www.counterpane.com/cryptogram-0009.html#1

Complexity Assessment for Autonomic
Systems by Using Neuro-Fuzzy
Approach

Pooja Dehraj and Arun Sharma

Abstract IT companies want to reach the highest level in the development of best
product within a balance cost. But with this development, systems and network
complexity are increasing thus leading toward unmanageable systems. Therefore,
there is a strong need for the development of self-managed systems which will
manage its internal activities without or with minimum human intervention. This
type of systems is called as autonomic systems and is enabled with self-abilities.
However, there are both the sides of the autonomic systems. Due to the implemen-
tation of autonomic capabilities in the system, overall complexity is also increased. In
the present paper, authors extended their approach by using the neuro-fuzzy-based
technique to predict the complexity of systems with autonomic features. Results
obtained are comparatively better than previous work where authors applied fuzzy
logic-based approach to predict the same. The proposed work may be used to assess
the maintenance level required for autonomic systems, as higher complexity index
due to autonomic features will lead toward low maintenance cost.

Keywords Modified maintenance assessment model (MAM) � Computation index
Fuzzy logic � Neuro-fuzzy

1 Introduction

Today, it is the world of demand where IT companies want to reach the highest
level in the development of best product within a balance cost. Computation
Science is the branch which develop mathematical model based on the analysis
techniques for computer to solve problems. But with the increase in the code

P. Dehraj (&) � A. Sharma
Department of Information Technology, Indira Gandhi Delhi Technical
University for Women, Delhi, India
e-mail: poojadehraj2000@gmail.com

A. Sharma
e-mail: arunsharma2303@gmail.com

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_52

541

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_52&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_52&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_52&domain=pdf

complexity, maintenance is also increasing. To provide solutions back to the
managed system in real-time need continuous monitoring by expertise which has
thorough knowledge of all kinds of system errors and security failures. But this is
the worst case scenario. Practically, this is not possible all the time so there is need
to develop intelligent system that itself handles its internal activities like configu-
ration, optimization of system’s resources, securing system from the attacks. In
2001, IBM [1] proposed this idea in the Harvard University and relates this concept
with human body. Like our body handles its internal temperature, heals minor
injuries and take intelligent actions when it identifies some malfunctions within the
body. Similarly, the systems can also be designed with all such kind of abilities
require for computation purpose so that they handle system’s activities at some
level which in result reduces maintenance of overall autonomic systems. Some
IT-based companies have worked on this idea and developed some autonomic
applications [2, 3]. Also, there are few systems that support some level of auto-
nomicity [4]. But how the maintenance level of autonomic system is evaluated?

In this paper, maintenance assessment of self-features enabled system is eval-
uated using Neuro-Fuzzy Technique (NFT) [5]. This is an attempt to improve the
results which were evaluated using fuzzy approach on the previously proposed
Maintenance Assessment Model (MAM). In our previous paper, the evaluation was
done on the small dataset values due to unavailability of the autonomic applica-
tion’s data. Neuro-fuzzy is the combination of neural network and fuzzy system. It
uses a learning algorithm for training the dataset so that results will come out to be
more accurate and interpretable [6]. The paper is divided into few sections. The
introduction of autonomic computing technique is explained in the second section
followed with brief detail of autonomic systems. In the third section, literature
review is mentioned. The modified maintenance assessment model with the
implementation part is continued in the fourth section. In the fifth section, con-
clusion and future work are mentioned.

2 Autonomic Computing-Enabled Systems

Autonomic computing is the computation technique that shifts the management
activity of the system to the system [7]. The work of administrator is to design
high-level terms and policies on which system works. This concept is there in the
hardware part of the computation network but not in the software or application. To
make system’s software intelligent to handle its activities, there is need to enable
the system with some autonomic functionality like self-adjusted, self-optimized,
self-protected, self-healed, self-awareness, self-configured. IBM categories all
features into four major attributes that an autonomic system requires. Figure 1
shows four major attributes of the autonomic system. The attributes are abbreviated
as CHOP.

542 P. Dehraj and A. Sharma

The working of these attributes performs a management task using MAPE-K
loop which was designed by IBM [8]. That architecture is considered as reference
architecture of the autonomic system. That architecture is explained below.

2.1 Architecture of Autonomic System

The architecture of autonomic system is based on policies and rules provided with
some repository database; e.g., if there is need to increase a system’s resource
utilization, then an autonomic system must be aware of all its resources, resource
specification, and their connectivity with different systems. On the basis of this
knowledge, system will analyze and then plan for the execution of the response
onto the managed element for the optimization of its resources. Similarly, healing,
protection, and configuration can also be performed using a generalized MAPE-K
loop that work for all kind of system’s activities. For this purpose, IBM defined few
policies. The conclusion of those policies and rules is [9]:

“System must be aware of its environmental activities and capable of handling
the problems using some defined solution provided as the knowledge database”.
Figure 2 presents the MAPE-K loop which works as a self-control loop during the
process.

Autonomic system consists of autonomic agent or manager and managed ele-
ment. In MAPE-K loop, M performs monitoring of the system’s activities. If agent
identifies any unwanted activity in the managed element, then A will do analysis
of that unwanted activity using K which is a knowledge data. Knowledge data

Fig. 1 Features of autonomic
system (AS) [7]

Fig. 2 Architecture of AS [8]

Complexity Assessment for Autonomic Systems … 543

is a kind of repository of the solutions that is structured or designed on basis of
previous problems of same kind. After that, P does the overall planning for exe-
cution of the solution back to the managed entity using effectors [8]. The gathering
of information and execution of solutions is done by the sensors and effectors,
respectively.

3 Literature Review

The development of computer systems started in 1939 called first generation
computers [10]. These computers are extremely large in size and with the devel-
opment, and the size of the computers was reduced and management also became
easy. Initially, the connectivity was done by wired and then wireless networks came
into existence. With this fast development in computer-based communication
world, systems become more complex and their management also. Now, the
developers wanted to design applications that can handle basic level of configu-
ration, optimization of system’s resources, and security using user’s intervention.
But it was found that, the complexity has reached at an extent where it was not
possible to provide management methods in real time. So, the need of designing
autonomic system became an emerging task for the developers of IT industries.
This term was coined by IBM in 2001 [1] but Kephert [7] provided a detailed
description of autonomic system’s attributes. These attributes are based on the
management process of the system. Many IT companies tried to approach this
concept in their computer network [3]. IBM also highlighted high-level policies for
such systems provided with reference architecture for autonomic system [9]. The
basic attributes of autonomic system and its architecture have already been intro-
duced. Table 1 [4] shows some autonomic applications with the autonomic capa-
bilities which are implemented on them.

These are the few applications developed by IBM, HP, and by some universities
[11]. No application out of six has all the features incorporated in them. A. Sharma
et al. [12] proposed generic approach for the SDLC of the autonomic system.
According to them, the autonomic system required different approach because

Table 1 Autonomic application

Properties Application

SMART Optimal
grid

Auto
Admin

ROC Autonomia Software
rejuvenation

Self-configuration ✓ ✓ – – ✓ –

Self-healing – – – ✓ ✓ ✓

Self-optimization ✓ ✓ ✓ – ✓ –

Self-protection – – – ✓ ✓ ✓

Self-awareness ✓ – – ✓ – ✓

Anticipatory ✓ ✓ – – – –

544 P. Dehraj and A. Sharma

requirements of autonomic applications differ based on its domain specification.
Chauhan et al. [13] further extended the development of autonomic systems and
found that Agile Modeling Approach (AMA) will be best suited to the autonomic
system. To provide standardization to the autonomic approach, few authors have
described the attributes affecting its quality and fewer have attempted to assess it.
Quality here does not mean conventional quality measures; it means the factors
determine how much autonomic any system is. Nami and Sharifi [14] worked to
find the relationship between autonomic attributes and factors which effect system’s
quality in case of autonomic system.

The maintenance of such systems will definitely be low but not 0%. In our
previous work, a Maintenance Assessment Model (MAM) has been proposed and
complexity phase of that model was evaluated using fuzzy logic approach [8]. In
that work, the author first identified maintenance-based factors considering func-
tionality of an autonomic system and then selects only those factors which have
direct relationship with the CHOP and maintenance [15]. The factors are listed
below:

1. Complexity
2. Reusability
3. Performance
4. Security

After this, minor factors under each factor are identified based on software
engineering concepts and autonomic computing technique. One phase of that model
has been implemented using fuzzy logic [16, 17]. They used the dataset values of
some autonomic applications which are not completely autonomic. Figure 3 is the
one phase of MAM. The fuzzy inferences rules were designed and minor factors
under complexity were taken as input variables which gave overall application’s
complexity as output [8]. The actual value of complexity is compared with
experimental values and it was found that complexity of the autonomic applications
falls under low category with 21% error. The interpretation of the result shows that
fully autonomic applications have not been developed yet.

Fig. 3 Complexity phase of
MAM

Complexity Assessment for Autonomic Systems … 545

4 Proposed Model

Autonomic concept not remains a hypothetical concept but it still required the
development to reach fully autonomic communication system. The implementation
of fully autonomic system needs to approach different domain-specific requirements
because this concept will reduce the management complexity of any IT area.
However, such systems can never be considered as maintenance free. Their
development and deployment still require some maintenance. Maintenance of such
system will definitely be low after developing self-managed systems. To identify
their level of maintenance, some factors which have direct dependency with the
CHOP are taken into consideration. During our further study, the author analyzed
that there are other factors which follow the properties of autonomic computing. To
design more generalized form of MAM, some changes have been done that are
shown in the paper. For this purpose, the three conditions are taken before modi-
fying MAM. These conditions are:

• There should exist bidirectional dependency between CHOP level and major
factors.

• The major factors should incorporate autonomicity concept.
• The factors should be affected if there is a change after recovery-oriented

measurements (Fig. 4).

This model is now modified and complexity is replaced with computation index
because complexity is not considered as a better term for autonomic system.
Computation index will be more relevant attribute that fulfills autonomicity concept
and also the system’s adaptability can be considered as a part of availability; i.e., if
complete system is available for different platform or domain for use, then it is also
adaptable to those respective domain specifications. So, availability term is more
relevant in autonomic system context.

Fig. 4 Modified MAM [8]

546 P. Dehraj and A. Sharma

4.1 Implementation of the Proposed Approach

There are other soft computing techniques also like neural network, neuro-fuzzy,
genetic algorithm. The previous paper limitations have been overcome in the pre-
sent paper by using hybrid neuro-fuzzy approach which gives the better result than
fuzzy. Neuro-fuzzy technique is the combination of fuzzy and derived algorithm of
neural network. The result of the neuro-fuzzy is the hybrid intelligent system,
combination of fuzzy system which is capable of doing human-like reasoning and
the learning algorithm derived from neural network. For using fuzzy logic,
neuro-fuzzy is applied on two contradictory attributes: accuracy and interpretability.
Linguistic fuzzy modeling and precise fuzzy modeling are used for interpretability
and accuracy, respectively. Neuro-fuzzy system includes parameter’s adaptation
recursively, dynamic evolution and components pruning for handling system
behaviors and to keep system updates.

Kumari and Sunita [18] performed a survey analysis of few soft computing
techniques and concluded that neuro-fuzzy is better among all in case of diagnosis.
This approach is better because it works on data which is trained by the neural
network-based learning algorithm. But preparation of trained data will only be done
on local information and performs modifications only on that available data. Neural
network can be viewed as three-layer procedure. First layer is the input variables;
fuzzy rules work as second layer in the structure, and third layer is the output.
Neuro-fuzzy involves feedback and then forwards the response again to the system.

4.2 Empirical Evaluation

The training data and testing data files are created and simulated by using same
fuzzy rules that were designed in previous work [8]. For neuro-fuzzy, Sugeno style
is used for simulation. The experiment is performed for the same autonomic

Fig. 5 Simulation results of the proposed approach

Complexity Assessment for Autonomic Systems … 547

applications as in [8]. The results were compared with the previous work [8]. The
root mean square value is improved from 21% to 16% in case of neuro-fuzzy-based
approach. The screen shot given here shows the experimentation of the proposed
approach (Fig. 5).

5 Conclusion and Future Work

Autonomic system’s maintenance activities are found to be different from the
non-autonomic system because an autonomic system is capable of doing many
activities automatically which requires human intervention in case of
non-autonomic system and also complexity of autonomic system is due to the
implementation of self-features. In our empirical study, we have found that the
computation index value of autonomic application lies in low range which may
require high level of maintenance. The previous work limitation is overcome by
using neuro-fuzzy approach and result has been verified with the experimental
values, which is calculated based on fuzzy inferences rules designed using dataset
values. All self-features have not been implemented in those applications. So, the
computation index is still low. As computation index increases with the imple-
mentation of autonomic features, it means the application’s dataset values which are
used for experiment are not fully autonomic. Secondly, in MAM, the overall
maintenance is determined from the evaluation of CARS factors. So after deter-
mining CARS impact then only correct level of maintenance which an autonomic
application still requires will be evaluated. Future work includes estimating the
remaining part of the MAM model based on some more dataset information and
study.

References

1. Horn, P.: Autonomic computing: IBM’s perspective on the state of information technology.
In: Technical Report, International Business Machines Corporation (IBM), USA (2001)

2. McCann, J.A., Huebscher, M.C.: Evaluation issues in autonomic computing. In: Grid and
Cooperative Computing Workshops, pp. 597–608. Springer, Berlin (2004)

3. Parashar, M., Hariri, S.: Autonomic computing: an overview. In: Unconventional
Programming Paradigms, pp. 257–269. Springer, Berlin (2005

4. Salehie, M., Tahvildari, L.: Autonomic computing: emerging trends and open problems.
ACM SIGSOFT Softw. Eng. Notes 30(4), 1–7 (2005)

5. Jang, J.S.R., Sun, C.T.: Neuro-fuzzy modeling and control. Proc. IEEE 83(3), 378–406
(1995)

6. Mitra, S., Hayashi, Y.: Neuro-fuzzy rule generation: survey in soft computing framework.
IEEE Trans. Neural Netw. 11(3), 748–768 (2000)

7. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Comput. 36(1), 41–50
(2003)

548 P. Dehraj and A. Sharma

8. Dehraj, P., Sharma, A.: Complexity based maintenance assessment for autonomic agent. In:
Advances in Computer Science, pp. 221–231 (2015)

9. Lohman, G.M., Lightstone, S.S.: SMART: making DB2 (More) autonomic. In: Proceedings
of the 28th International Conference on Very Large Data Bases. VLDB Endowment (2002)

10. Schoenherr, S.E.: Computer evolution. Available at http://www.aes.org/aeshc/docs/recording.
technology.history/computer1.html

11. Menon, J., Pease, D.A., Reese, R., Duyanovich, L., Hillsberg, B.: IBM storage tank—a
heterogeneous scalable SAN file system. IBM Syst. J. 42(2), 250 (2003)

12. Sharma, A., Chauhan, S., Grover, P.: Autonomic computing: paradigm shift for software
development. CSI Commun. 35 (2011

13. Chauhan, S., Sharma, A., Grover, P.: Developing self managing software systems using agile
modeling. ACM SIGSOFT Softw. Eng. Notes 38(6), 1–3 (2013)

14. Nami, M.R., Sharifi, M.: Autonomic computing: a new approach. In: First Asia International
Conference on Modelling & Simulation (AMS’07), pp. 352–357. IEEE (2007)

15. Chess, D.M., Palmer, C.C., White, S.R.: Security in an autonomic computing environment.
IBM Syst. J. 42(1), 107–118 (2003)

16. Zadeh, L.A.: Fuzzy logic. Computer 21(4), 83–93 (1988)
17. Takahagi, E.: Fuzzy measure-Choquet integral calculation system. Available: http://www.isc.

senshu-u.ac.jp/*thc0456/Efuzzyweb/fm11.html
18. Kumari, N., Sunita, S.: Comparison of ANNs, fuzzy logic and neuro-fuzzy integrated

approach for diagnosis of coronary heart disease: a survey. Int. J. Comput. Sci. Mobile
Comput. 2(6), 216–224 (2013)

Complexity Assessment for Autonomic Systems … 549

http://www.aes.org/aeshc/docs/recording.technology.history/computer1.html
http://www.aes.org/aeshc/docs/recording.technology.history/computer1.html
http://www.isc.senshu-u.ac.jp/%7ethc0456/Efuzzyweb/fm11.html
http://www.isc.senshu-u.ac.jp/%7ethc0456/Efuzzyweb/fm11.html

Proposal for Measurement
of Agent-Based Systems

Sangeeta Arora and P. Sasikala

Abstract The software industry is always striving for new technologies to improve
the productivity of software and meet the requirement of improving the quality,
flexibility, and scalability of systems. In the field of software engineering, the
software development paradigm is shifting towards ever-increasing flexibility and
quality of software products. A measure of the quality of software is therefore
essential. Measurement methods must be changed to accommodate the new para-
digm as traditional measurement methods are no longer suitable. This paper dis-
cusses the significant measurement factors as they relate to agent-based systems,
and proposes some metrics suitable for use in agent-based systems.

Keywords Agent-based system � Measurement � Metrics

1 Introduction

Artificial intelligence is acclimatising agents current principles in addition to
playing an important role in global network connection, with search engines being a
particularly relevant example of this importance. Technology is accumulating
intricacy of software hence agents are becoming familiar with it as a paradigm in
software engineering. Agents are centered on societal opinion of computations and
assistance by the sensors those are the reason after their continuous environment
sensing.

Franklin and Grasser [1] discussed agents as intelligent organisms placed in the
environment and capable of taking autonomous actions to fulfil their design
objectives within a long-lived computational system, with sensors and effectors.
Agents are smart enough to decide on self-directed actions in order to capitalize and
make progress towards their goals.

S. Arora (&) � P. Sasikala
Makhanlal Chaturvedi National University of Journalism and Communication,
Bhopal, India
e-mail: ar.sangeeta@gmail.com

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_53

551

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_53&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_53&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_53&domain=pdf

Categories of agents are outlined based on their functionality, i.e. simple agents
with predefined processing rules that are self-activated as a result of arising con-
ditions. Agents are self-governed and experienced, no external intervention from
resource (users). For example, when a telephone call is made, a bell rings, and after
a defined period of time the call is transferred automatically to an answering
machine.

A dynamic environment is the best suited to intelligent agents constructed with
an ability to learn from their environment as well as train from predefined
situations.

Jennings [2, 3] detailed how agent-based computing is moving toward multi-
faceted and distributed systems, which leads in turn to the maximization of complex
systems towards the mainstream software engineering paradigm.

Software development is continually improving in a fashion and is helping to
increase and enrich productivity. In recent decades, the software development
paradigm has changed from being procedural to being object oriented and currently
we succeeded to component and aspect, now moving to agent [4].

The agent-oriented paradigm is an emerging one in software engineering, agent
in active form unlike in object and component oriented paradigm. This is diverse
concept from object paradigm like classes to role, variable to belief/knowledge and
method to message. Being a component, an agent has its own interface through
which to communicate with other agents without residing components in memory.

A system is situated within an environment and senses that environment and acts
on it, over time, in pursuit of its own agenda, thereby effecting what it senses in the
future [5].

Agents follow a goal-oriented approach sensing the environment constantly.
They autonomously perform their own controllable actions if any changes are
detected, and with the help of other agents interact to complete the task without the
need for any human intervention. The characteristics of agents are discussed below
(Fig. 1).

(i) Situated: Agents stay in the memory and monitor the environment for
activation.

(ii) Autonomous: Agents are activated as they detect a change in the environ-
ment. They do not need to operate explicitly.

Fig. 1 Characteristics of an
agent

552 S. Arora and P. Sasikala

(iii) Proactive: Each agent has its own goal. As they sense for the requirement of
the environment, they will be active to achieve the goal.

(iv) Reactive: Agents continuously monitor the environment. They react when
changes occur in the environment.

(v) Social Ability: One agent cannot perform all tasks. An agent has to com-
municate with other agents to complete required tasks.

On top of the distinctiveness it has been attested that an agent is a component,
which activates itself by sensing the environment.

Software development has allowed the adoption of new techniques with
increasing complexity that allow improvement in the quality and adaptability of
systems in different environments and on multiple platforms.

The measurement of software quality should be of a high quality, and not be
evaluated by old defined method due to legacy tricks for new technology-driven
systems. The new paradigm requires a new methodology to improve the quality of
systems through the enhancement of the quality of measurement of systems.

This paper is presented in five sections. Section 2 provides some guidelines
regarding existing metrics. Section 3 discusses the necessity for new metrics.
Section 4 proposes some metrics for agent-based systems and discusses the rela-
tionship between metrics and dependent factors. The paper concludes in Sect. 5.

2 Existing Metrics

Quantitative evaluation is the best means of measurement as it is numerically based
and this is a requirement for the evaluation of systems. Despite this, its use to assess
the system quality will still result in subjective evaluation. Metrics are employed by
software to maintain the quality of a system and serve as a means of comparison,
cost estimation, fault prediction, and forecasting. Software metrics play a vital role
in measuring the quality of software development but new metrics are required for
agents. New generation technology requires different segments to measure the
quality of software, which leads to metrics growth.

Software metrics were familiarized in the late 1960s to support management
decisions taken at the time of development. They were used to calculate effort, time,
and other predictions, such as LOC (lines of code) or similar size counts, function
points, defect counts, and effort figures by Etzkorn et al. [6] and Sedigh Ali et al. [7].

Here in a test by a top metrics emphasizes on the functionality of the system.
Several metrics are available for the measurement of computer software and its

processes, which can deliberate to enrich its Query continuously too. Measurement
radiate the estimation, quality control, productive assessment, and project control
used by software engineers to help assess the quality of technical products and to
assist in the tactical decision making of a project.

Proposal for Measurement of Agent-Based Systems 553

Metrics of the software process and products are quantitative evaluations that
enable the software industry to gain insights into the efficacy of the process and any
projects that are conducted using it as a framework. Basic quality and productivity
data can be analyzed and means of the data can be compared with those of the past
to better identify how future progress can be made. Metrics can be used to identify
and isolate problems in order to facilitate remedies and improve the process of
software development. If a quantitative evaluation is not made then judgment can
be based only on subjective evaluation. With a quantitative evaluation, trends
(either good or bad) can be better identified and used to make true improvements
over time. The first step is to define a limited set of process, project, and product
measures that are easy to collect and which can be normalized using either size or
function-oriented metrics. The results are analyzed and compared to past means for
similar projects performed within the organization. Trends are assessed and con-
clusions are generated.

Abreu and Carapuca [8] discussed metrics relating to design, size, complexity,
reuse, productivity, quality, class, and method basically for object-oriented systems.
In a similar fashion, Binder [9] put forward the measurement of encapsulation,
inheritance, polymorphism, and complexity. Dumke et al. [10] proposed for all
phases of object-oriented development. Lee et al. [11] clarified metrics for class
coupling and cohesion. A metrics suite was also proposed for object-oriented
design by Chidamber and Kemerer [12]. These metrics were purely for key con-
cepts of object-oriented programming, such as object, class, and inheritance etc.
[13]. These metrics evaluated reusability and the coupling factor between classes.

Measurement methods were proposed for components and focused on the
complexity of interaction (Narasimhan and Hendradjaya [14], Mahmood and Lai
[15], Salman [16], Kharb and Singh [17], Gill and Balkishan [18]). Similarly,
metrics based on (Boxall and Araban [19], Washizaki et al. [20], Rotaru and Dobre
[21]) reusability and component size, probability, integration, reliability, resource
utilization, etc., were proposed by Gill and Grover [22].

3 The Necessity for New Metrics

The agent is relatively related to object and component, which is based on system,
and follows the concept of object-oriented development. The agent is an active
object in contrast to an object acting passively in an object-oriented paradigm. An
agent with autonomous and reactive properties provides a diverse potency appli-
cable in different environments. Consequently, the metrics proposed for object-
based and component-based systems are inadequate.

Accordingly, additional software metrics are needed to ensure the quality of
agent-based systems through the measurement of the quality of those systems.

554 S. Arora and P. Sasikala

Hitch in an established metrics aimed at a number of deduces:

• An agent has an individual thread of control due to its autonomous nature.
• On account of its autonomous nature an agent will decide on an action by itself.

It perceives any changes to its environment.
• Agents are social in nature. A single agent cannot perform all necessary

activities. An agent needs the cooperation of other agents to complete its task.
• Adaptability is one of the important features of an agent. When an agent moves

from one environment to another, adaptability to the new environment is
required.

• Agents communicate with other agents via the help of their own interface. Each
agent has an independent interface through which it can communicate with other
agents.

• Agents are reactive by nature. How much time is taken by an agent after it has
identified its aim? This means that agent action time is also important.

• When an agent is moving in different environments, resources are acquired by
that agent. Resource accessibility is therefore important in achieving the goal.

• An agent stays in memory to sense the environment. An agent senses the
environment for activation.

• Agents are proactive in achieving their goal. They set their goals and wait for
them to be achieved.

• Agents have to communicate with different environments and with different
types of agents. This is why they need to have a dynamic nature.

• Agents are active objects unlike the passive objects in object-oriented systems.
• Each agent communicates with other agents through an interface without

knowing the details of the other agents.
• Agents have to trust other agents to fulfil their goal.

4 Advancement in Metrics

Agent-based systems are constituted of one or more agents. Different agents have
the aforementioned identifiable roles and interact and cooperate with other agents in
different environments as required by their tasks. Various significant issues
regarding complexity have an effect on the nature of the agent:

• Agent communication
• Process time
• Receptiveness of resources for an agent in its surroundings
• Time to grasp surroundings
• Switching time from one environment to another
• Action taken by agents
• Number of unpredictable changes in an environment
• Interoperability among agents
• Belief and reputation

Proposal for Measurement of Agent-Based Systems 555

In the way of agents, metrics have accomplished many upright endeavours.
Klugal [23] discussed metrics for various aspects of agent-based systems. Mala and
Cil et al. [24] proposed complexity dimensions in terms of system size, intelligence,
and agent interaction. Sarkar and Debnath [25] introduced a new framework and
metrics based on collaboration. Sterling [26] discussed quality goals based on
adaptivity. Magarino et al. [27] proposed a metrics suite for measuring
agent-oriented architectures. The respective quality attributes are getting on with
metrics: extensibility, modularity and complexity.

Sivakumar et al. [28] presented a metric to measure the quality of software for an
agent-oriented system, proposing a tool to measure the quality. Dam and Winikoff
[29] worked on the maintenance phase with the help of agents detailing the repair of
inconsistencies using event-triggered plans.

Bitonto et al. [30] proposed competency factors in terms of rationality, auton-
omy, reactivity, and environment adaptability. The measures were also represented
with perspective of different points. These factors lie on many other various lines.
Closed intervals were used for calculating the different factors. We have used some
aspects of this work in the preparation of this paper.

Bakar et al. [31] proposed a framework to assess the quality of interaction among
agents. In this paper, both availability and trustability metrics are addressed. Marir
et al. [32] discussed metrics used to measure the complexity of multi-agent systems.
Stocker et al. [33] provided a solution that enables the measurement of workload in
the early stages of a design. Their work is founded on multi-agent systems based on
the belief-desire-intention (BDI) model.

Atop altogether all have been accomplishing their work towards agent-based
metrics. Metrics are proposed in various dimensions like in direction of traditional
metrics and perspective of agent. The factors to be considered for our proposed
metrics are as follows:

(i) Resource Availability
This refers to available resources in different environments. It is only
possible when an agent has complete, accurate, and current state informa-
tion of an environment.

frjr 2 R; r is number of resources required for processg

(ii) Process Time
This refers to the length of time required to perform any task by single or
multiple agents.

process time ¼ activation time of agentsþ execution time

556 S. Arora and P. Sasikala

(iii) Agent Type (Static or Dynamic)
A static agent works in a deterministic environment where any action has a
single effect, whereas a dynamic agent works in a non-deterministic envi-
ronment where the same action in identical situations may have entirely
different effects. Dynamic agents are also capable of learning.

(iv) Pathway Transit (Interrupted or Uninterrupted)
When one agent is shifting to another environment, then it is either inter-
rupted or uninterrupted.

(v) Pathway Type (Static or Dynamic)
A static passage means that the environment is not changing at the time of
action, whereas a dynamic passage means the environment is changing at
the time of action.

(vi) Number of Agents
This specifies how many agents should participate in achieving the goal.
AG represents the agents present in an environment while ag represents the
number of active agents for the particular task.

ag�AG

(vii) Number of Actions
How many actions should be taken in order to achieve the goal?
AC represents the total number of actions assigned to the agent and ac is
number of actions taken by the agent to fulfil the particular task.

ac�AC

(viii) Learning Ability
A dynamic agent is able to learn from experience.

(ix) Agent Success Rate
The agent success rate depends on the task being successfully completed by
the agent.

Success Rate ¼ t
T
� 100

T represents the total tasks undertaken by the agent and t represents the
number of successful tasks completed by the agent.

(x) Leadership
Is the agent able to initiate the task or not?

(xi) Agent Action
What type of action is taken by the agent? This applies to dynamic agents
only.

Proposal for Measurement of Agent-Based Systems 557

(xii) Expected Action
The action specified at the time of development of the system.

(xiii) Diplomacy
Is the agent able to undertake negotiations in the case of actions?

(xiv) Instrumentation
Is the agent actually able to diagnose the error while taking action? This
factor depends upon the proactive ability of the agent.

(xv) Generality
This is when any agent does the task of another agent (deactivated agent).

In addition to these factors are the foundations of the following projected
metrics:

Agent Competence Metric (ACM): This measures the effectiveness of an
agent.

Agent Support Metric (ASM): This provides a measurement of the number of
agents communicating to complete the task.

Resource Receptive Metric (RRM): This helps to calculate the resources
accessible in other environments.

Agent Versatility Metric (AVM): This measures the adaptability of an agent to
different environments.

Agent Skill Metric (ASKM): This metric calculates how an agent performs in
different situations.

Agent Shift Metric (ASHM): This provides a measure of the switching time
taken by an agent moving from one environment to another.

Agent Environment Shift Metric (ASSM): In achieving its goal, an agent will
move from one environment to another. As a result an environment transition
measurement is required.

Agent Achievement Metric (AACM): As well as agent participation, success
rate depth is also important.

Cooperation Agent Metric (CAM): This relates to communication among
agents and the help given by one agent to another.

Trust Metric (TM): This helps to calculate the trust factor of an agent and its
environment.

The relationships between metrics and factors are shown in Table 1.
The table shows the proposed metrics based on the behavior of an agent in the

system. It shows the relationship among the proposed metrics and their dependency
factors. For example, to measure agent competency, we must be aware of the type
of agent, process time, and surroundings. These parameters differ with respect to
surrounding, process, and communication time. Through the use of these param-
eters we can see that the success of the metrics depends on several factors. It is
essential to regard these parameters as the parameters on which metrics depends.

558 S. Arora and P. Sasikala

T
ab

le
1

R
el
at
io
ns
hi
ps

be
tw
ee
n
m
et
ri
cs

an
d
fa
ct
or
s

M
et
ri
c

Fa
ct
or

U
nr
ea
ch
ab
le

Pr
oc
es
s

tim
e

A
ge
nt

ty
pe

(s
ta
tic

or
dy
na
m
ic
)

Pa
th
w
ay

tr
an
si
en
t

(i
nt
er
ru
pt
ed

or
un
in
te
rr
up
te
d)

Pa
th
w
ay

ty
pe

(s
ta
tic

or dy
na
m
ic
)

N
um

be
r

of ag
en
ts

N
um

be
r

of ac
tio

ns

K
no
w
le
dg
e

ap
tit
ud
e

R
el
ia
bi
lit
y

G
en
er
al
ity

A
ge
nt

ec
tio

n
E
xp
ec
te
d

ec
tio

n
N
eg
ot
ia
tio

n
Fa
ilu

re
an
al
ys
is

D
ep
ut
at
io
n

E
ff
or
t

es
tim

at
io
n

A
ge
nt

co
m
pe
te
nc
e

m
et
ri
c

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y

A
ge
nt

su
pp
or
t

m
et
ri
c

Y
Y

Y
Y

Y
Y

A
ge
nt

ac
hi
ev
em

en
t

m
et
ri
c

Y
Y

Y
Y

Y
Y

R
es
ou
rc
e

re
ce
pt
iv
e

m
et
ri
c

Y
Y

Y
Y

A
ge
nt

ve
rs
at
ili
ty

m
et
ri
c

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

A
ge
nt

sk
ill

m
et
ri
c

Y
Y

Y
Y

A
ge
nt

sh
if
t

m
et
ri
c

Y
Y

Y

A
ge
nt

en
vi
ro
nm

en
t

sh
if
t
m
et
ri
c

Y
Y

Y
Y

Y
Y

A
ge
nt

ac
hi
ev
em

en
t

m
et
ri
c

Y
Y

Y
Y

Y
Y

Y

C
oo
pe
ra
tio

n
ag
en
t
m
et
ri
c

Y
Y

Y
Y

Y
Y

Y

T
ru
st

m
et
ri
c

Y
Y

Y
Y

A
ut
on
om

y
de
gr
ee

Y
Y

Y

Proposal for Measurement of Agent-Based Systems 559

5 Conclusion

Agents-based development is promising technique for the development of complex
and distributed systems. Technology is accumulative intricacy of software hence
Agents are acquainting with as a paradigm in software engineering. Agents are
centered on societal opinion of computations and assistance by the sensors that are
the reason for their continuous environment sensing.

In this paper we have discussed agents and conclude that measurement requires a
quantification of quality and provides an inexperienced glance en-route for mea-
surement of an agent-based system. Popular existing metrics are inadequate and
new metrics are required to measure the quality of agent-based systems. In this light
upon essentiality of metrics for various type of paradigm towards agent-based
systems, we have considered some significant issues as well as some issues relating
to complexity.

As a result of these complexity issues certain new metrics are proposed in this
paper. These metrics depends various factors, e.g., process time, knowledge, and
aptitude etc. The values of these metrics are not precise and vary from system to
system, having vague values. Soft computing may be better approach for
addressing these types of factors. Future work should look to address the effec-
tiveness of these factors for metrics using soft computing techniques.

References

1. Franklin, S., Graesser, A.: Is it an agent, or just a program? A taxonomy for autonomous
agents. In: Proceedings of the Third International Workshop on Agent Theories,
Architectures, and Languages. Springer, Berlin (1996)

2. Jennings, N.R.: On Agent-Based Software Engineering, pp. 277–296. Elsevier, New York
(2000)

3. Jennings, N.R.: An agent-based approach for building complex software systems. Commun.
ACM 44(4), 35–41 (2001)

4. Arora, S., Sasikala, P., Agarwal, C.P., Sharma, A.: Developmental approaches for agent
oriented system—a critical review. In: CONSEG 2012 (2012)

5. Maes, P.: The agent network architecture (ANA). SIGART Bull. 2(4), 115–120
6. Etzkorn, L.H., Hughes Jr., W.E., Davis, C.G.: Automated reusability quality analysis of OO

legacy software. Inf. Soft. Technol. J. 43(2001), 295–308 (2001)
7. Sedigh-Ali, S., Ghafoor, A., Paul, R.A.: Software engineering metrics for COTS-based

systems. IEEE Comput. J. 44–50 (2001)
8. Abreu, F.B., Carapuca, R.: Candidate metrics for object-oriented software within a taxonomy

framework. J. Syst. Softw. 26, 87–96 (1994)
9. Binder, R.V.: Design for testability in object-oriented systems. Commun. ACM 37(9), 87–101

(1994)
10. Dumke, R., Foltin, E., Koeppe, R., Winkler, A.: Measurement-Based Object-Oriented

Software Development of the Software Project. Software Measurement Laboratory. Preprint
Nr. 6, 1996, University of Magdeburg (40 p.)

560 S. Arora and P. Sasikala

11. Lee, Y., Liang, B., Wu, S., Wang, F.: Measuring the coupling and cohesion of an object-
oriented program based on information flow. In: Proceedings of the ICSQ’95, Slovenia,
pp. 81–90 (1995)

12. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. J. IEEE Trans.
Softw. Eng. 20, 476–493 (1994)

13. Jang, K.S., Nam, T.E., Wadhwa, B.: On measurement of objects and agents. http://www.
comp.nus.edu.sg/*bimlesh/ametrics/index.htm

14. Narasimhan, L., Hendradjaya, B.: Some theoretical considerations for a suite of metrics for
the integration of software components. Inf. Sci. 177, 844–864 (2007)

15. Mahmood, S., Lai, R.: A complexity measure for UML component-based system
specification. Softw. Practice Exp. 38, 117–34 (2008)

16. Salman, N.: Complexity metrics AS predictors of maintainability and integrability of software
components. J. Arts Sci. (2006)

17. Kharb, L., Singh, R.: Complexity metrics for component-oriented software systems.
SIGSOFT Softw. Eng. Notes 33, 1–3 (2008). http://doi.acm.org/10.1145/1350802.1350811

18. Gill, N.S., Balkishan: Dependency and interaction oriented complexity metrics of component-
based systems. SIGSOFT Softw. Eng. Notes, 33, 1–5 (2008). http://doi.acm.org/10.1145/
1350802.1350810

19. Boxall, M.A.S., Araban, S.: Interface metrics for reusability analysis of components. In:
Proceedings of the 2004 Australian Software Engineering Conference, IEEE Computer
Society, p. 40 (2004)

20. Washizaki, H., Yamamoto, H., Fukazawa, Y.: A metrics suite for measuring reusability of
software components. In: Proceedings of the 9th International Symposium on Software
Metrics, IEEE Computer Society, p. 211 (2003)

21. Rotaru, O.P., Dobre, M.: Reusability metrics for software components. In: Proceedings of the
ACS/IEEE 2005 International Conference on Computer Systems and Applications, IEEE
Computer Society, p. 24-I (2005)

22. Gill, N.S., Grover, P.S.: Component-based measurement: few useful guidelines.
ACM SIGSOFT Softw. Eng. Notes 28(6), 4 (2003)

23. Klügl, F.: Measuring complexity of multi-agent simulations—an attempt using metrics. In:
Dastani, M.M., El Fallah Seghrouchni, A., Leite, J., Torroni, P. (eds.) LADS 2007. LNCS
(LNAI), vol. 5118, pp. 123–138. Springer, Heidelberg (2008)

24. Mala, M., Çil, İ.: A taxonomy for measuring complexity in agent-based systems. In: IEEE 2nd
International Conference on Software Engineering and Service Science (ICSESS’11),
pp. 851–854 (2011)

25. Sarkar, A., Debnath, N.C.: Measuring complexity of multi-agent system architecture. IEEE
(2012)

26. Sterling, L.: Adaptivity: a quality goal for agent-oriented models? In: Preprints of the 18th
IFAC World Congress, pp. 38–42 (2011)

27. García-Magariño, I., Cossentino, M., Seidita, V.: A metrics suite for evaluating agent-oriented
architectures. In: Proceedings of the 2010 ACM Symposium on Applied Computing SAC 10
(2010). ACM Press, pp. 912–919 (2010)

28. Sivakumar, K. Vivekanandan, Sandhya, S.: Testing agent-oriented software by measuring
agent’s property attributes. In: ACC 2011. Springer, Berlin, pp. 88–98 (2011)

29. Dam, H.K., Winikoff, M.: An agent-oriented approach to change propagation in software
maintenance. Auton. Agents Multi-Agent Syst. 23(3), 384–452 (2011)

30. Di Bitonto, P., Laterza, M., Roselli, T., Rossano, V.: Evaluation of multi-agent systems:
proposal and validation of a metric plan. In: Transactions on Computational Collective
Intelligence VII, vol. 7270, pp. 198–221. Springer, Berlin (2012)

31. Bakar, N.A., Selamat, A.: Assessing agent interaction quality via multi-agent runtime
verification. In: Proceeding ICCCI 2013, pp. 175–184. Springer, New York (2013)

Proposal for Measurement of Agent-Based Systems 561

http://www.comp.nus.edu.sg/%7ebimlesh/ametrics/index.htm
http://www.comp.nus.edu.sg/%7ebimlesh/ametrics/index.htm
http://doi.acm.org/10.1145/1350802.1350811
http://doi.acm.org/10.1145/1350802.1350810
http://doi.acm.org/10.1145/1350802.1350810

32. Marir, T., Mokhati, F., Bouchelaghem-Seridi, H., Tamrabet, Z.: Complexity measurement of
multi-agent systems. In: ProceedingMATES 2014, vol 8732. Springer, NewYork, pp. 188–201
(2014)

33. Stocker, R., Rungta, N., Mercer, E., Raimondi, F., Holbrook, J., Cardoza, C., Goodrich, M.:
An approach to quantify workload in a system of agents. In: Proceeding AAMAS’15
International Foundation for Autonomous Agents and Multiagent Systems Richland, SC
©2015, ISBN: 978–1-4503-3413-6, pp. 1041–1050 (2015)

562 S. Arora and P. Sasikala

Optimal Software Warranty Under
Fuzzy Environment

A. K. Shrivastava and Ruchi Sharma

Abstract Prolonged testing ensures a higher reliability level of the software, but at
the same time, it adds to the cost of production. Moreover, due to stiff contention in
the market, developers cannot spend too much time on testing. So, they offer a
warranty with the software to attract customers and to gain their faith in the product.
But servicing under warranty period incurs high costs at the developer end. Due to
this, determining optimal warranty period at the time of software release is an
imperative concern for a software firm. Determination of optimal warranty is a
trade-off between providing maximum warranty at minimum cost. One of the prime
assumptions in the existing cost models in software reliability is that the cost
coefficients are static and deterministic. But in reality, these constants are dependent
on various non-deterministic factors thus leading to uncertainty in their exact
computation. Using fuzzy approach in the cost model overcomes the uncertainty in
obtaining the optimal cost value. In this paper, we addressed this issue and pro-
posed a generalized approach to determine the optimal software warranty period of
a software under fuzzy environment, where testing and operational phase are
governed by different distribution functions. Validation of the proposed model is
done by providing a numerical example.

Keywords Optimal warranty � Fuzzy environment � Software reliability
Generalized framework � Testing

A. K. Shrivastava (&)
Research Development Center, Asia Pacific Institute of Management, New Delhi, India
e-mail: kavinash1987@gmail.com

R. Sharma
Department of Computer Engineering, Netaji Subhash Institute of Technology, Delhi, India
e-mail: rs.sharma184@gmail.com

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_54

563

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_54&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_54&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_54&domain=pdf

1 Introduction

Nowadays, providing warranty with software at the time of purchase is a fairly
common phenomenon. Warranty is an attribute that helps the firms in establishing
reliability of their product to the customers. It acts as an add-on which attracts
customers to buy their product with a greater faith. But providing warranty on the
software costs a lot to the firm; therefore, it is important to find the optimal warranty
period of the software so as to bear minimum cost for fixing bugs or replacing the
software during warranty period. In past, many researchers have worked on the
problem release time problems of software [1]. Researchers also incorporated
the role of software warranty in the cost models [2]. Pham and Zhang [3] revised
the traditional cost model and proposed a cost model incorporating the effect of
warranty and risk in the cost modeling. Dohi et al. [4] worked toward minimizing
the total cost involved during software development by finding the optimal software
warranty period assuming that the process of debugging follows NHPP. Rinsaka
and Dohi [5] proposed cost model to determine the optimal software warranty
period under discrete and continuous operational circumstances using environment
factor to differentiate between testing and operational phase. Generally, operational
environment is different from testing phase due to various factors like skill, usage
resources. Several methods to assess reliability during operational phase have been
suggested [6]. Yang and Xie [7] proposed different reliabilities for operational and
testing phase in software reliability modeling and differentiated the testing and
operational phase depending on the number of faults. From the above literature
review, we find that two common and strong assumptions were made in all the cost
models. Firstly, the testing and operational phases are governed by same distri-
bution functions. Secondly, release time studies for several existing SRGM have
been carried out, but they have been formulated under the assumption of clearly
defined constraints and goals and precisely computed value of constants. But, these
attributes depend on various aspects that are non-deterministic and hence cannot be
computed accurately. So, defining this problem in a fuzzy environment is a more
realistic approach. Fuzzy set theory [8] quantitatively deals with uncertainty by
permitting imprecision in the conventional set theory. Kapur et al. [9] developed a
cost model for optimal release time of a software under fuzzy environment.
Pachauri et al. [10] extended the work of Kapur et al. [9] by incorporating imperfect
debugging and proposed a cost model for optimal release time of SRGM with
testing effort. In this paper, we have formulated a generalized cost model to
determine optimal software warranty with reliability constraints under fuzzy envi-
ronment. The paper organization is as follows. Section 2 describes the notations
and assumptions of the proposed cost model. In Sect. 3, we have formulated the
cost model, its formulation, and solution based on fuzzy approach. Section 4
provides the numerical illustration and results of the proposed model. Finally,
conclusion has been drawn in Sect. 5.

564 A. K. Shrivastava and R. Sharma

2 The Cost Model

A. Notations

a Number of expected faults in the
software

c1 Testing cost per unit testing time

b Rate of fault removal per remaining
fault

c2 Cost of fixing a fault during testing
phase

tlc Software life cycle length c3 Testing cost during warranty period

w Warranty period c4 Cost of fixing a fault during warranty
phase

mðtÞ Expected number of faults removed in
time interval (0, t]

c5 Penalty cost of debugging a fault
after warranty period

B. Assumptions of the proposed model:

(1) The fault that led to software failure is detected and removed as soon as the
failure takes place.

(2) The time of detecting each error is independent of other faults and is a
nonnegative random variable which is distributed identically with the
probability density function f(t).

(3) to is the time of software release into the market.
(4) tlc is the length of the software life cycle that is known in advance, and it is

believed to be sufficiently large in comparison to to.
(5) The warranty period is measured from the release time to.
(6) After the end of warranty period, whenever a failure is encountered by the

user, a penalty cost is incurred by the software developer.

The basic cost model proposed by Okumoto and Goel [11] included a cost
function for the total cost of debugging in testing phase and operational phase and is
given as

CðtÞ ¼ c1tþ c2mðtÞþ c3ða� mðtÞÞ ð1Þ

In the cost model given above, it was assumed that the rate of detecting the fault
in testing and operational phase remains the same. But in reality, it may differ. By
unified scheme, we know that

mðtÞ ¼ a � FðtÞ ð2Þ

Software warranty plays an imperative role for product in the market. Therefore,
researchers extended the basic cost model to include warranty period and proposed
cost function as

Optimal Software Warranty Under Fuzzy Environment 565

CðtÞ ¼ c1tþ c2mðtÞþ c3ðmðtþwÞ � mðtÞÞ ð3Þ

Software life cycle is divided into three phases, namely testing phase, warranty
phase, and after warranty phase, i.e., 0; t0½ �; t0; t0 þw½ � and t0 þw; tlc½ �. The general-
ized cost function using different distribution function for different phases is given by

CðwÞ ¼ c1t0 þ c2aF1ðt0Þþ c3wþ c4að1� F1ðt0ÞÞF2ðt0 þw� t0Þ
þ c5að1� F1ðt0ÞÞð1� F2ðt0 þw� t0ÞÞ:F3ðtlc � ðt0 þwÞÞ ð4Þ

In the cost model given by Eq. (4), first term denotes the cost of testing, second
term denotes the cost of debugging the faults encountered during testing phase,
third term denotes the testing cost in warranty period, fourth term denotes the cost
of debugging in warranty phase, and last term is for cost of debugging after war-
ranty period. Fuzzified form of the cost function is given as:

eCðwÞ ¼ ~c1t0 þ ~c2aF1ðt0Þþ ~c3wþ ~c4að1� F1ðt0ÞÞF2ðt0 þw� t0Þ
þ ~c5að1� F1ðt0ÞÞð1� F2ðt0 þw� t0ÞÞ:F4ðtlc � ðt0 þwÞÞ ð5Þ

3 Problem Formulation

Here, we consider an optimization problem with constraints on desired reliability
level by the end of warranty period. The problem addressed in our study can be
given as

Minimize eCðwÞ
Subject to RðwÞ ¼ mðwÞ

a�
JR0

ðP1Þ

where R0 represents the aspiration level of number of faults detected in warranty
phase and a� represents the remaining number of faults after release. The symbolJ
.ð Þ denotes “fuzzy greater (less) than or equal to” and has linguistic interpretation
“essentially greater (less) than or equal to.” In the next section, we discuss the fuzzy
mathematical programming approach to solve the above problem (P1).

A. Problem solution

The algorithm to solve the above said fuzzy optimization problem based on the
fuzzy mathematical programming approach is described below.

566 A. K. Shrivastava and R. Sharma

Algorithm

1. Find the crisp equivalent of the fuzzy parameters using a defuzzification function.
Here, we use the defuzzification function of type F2ðAÞ ¼ a1 þ 2aþ auð Þ=4

2. Fix the aspiration (restriction) level of objective function of the fuzzifier min
(max).

3. Define suitable membership functions for fuzzy inequalities. The membership
function for the fuzzy less than or equal to and greater than or equal to is given
as

l1ðtÞ ¼
1; GðTÞ�G0

G��GðtÞ
G��G0

; G0\GðTÞ
0; GðTÞ[G�

8<
:

9=
; l2ðtÞ ¼

1; HðTÞ[H0
HðtÞ�H�

H0�H� ; H� �HðTÞ
0; HðTÞ\H�

8<
:

9=
;

respectively, where G0 and H0 are the restriction and aspiration levels,
respectively, and G* and Q* are the corresponding tolerance levels. The
membership functions can be a linear or piecewise linear function that is
concave or quasiconcave.

4. Use the extension principle to identify fuzzy decision, which gives a mathe-
matical programming problem for a crisp environment as follows

Maximize a
Subject to liðwÞ� a; 0� a� 1; w� 0; i ¼ 1; 2; . . .n;

ðP2Þ

We can arrive at the solution of the problem (P2) using the standard crisp
mathematical programming algorithms where a is the degree of aspiration of the
management goals. Closer the value of a to 1, greater is the level of satisfaction.

4 Numerical Example

This section presents a numerical illustration of fuzzy optimization method dis-
cussed above. Based on the model assumptions, we obtain an exponential distri-
bution model proposed by Goel and Okumuto [12]. We estimated the unknown
parameters of GO model on a software failure data set [13]. Parameter estimation is
done using least square method of the nonlinear regression function of SPSS
software. Parameters estimates and residual sum of square (R2) are obtained as
a ¼ 130:201; b ¼ 0:083;R2 ¼ 0:986. The fuzzy cost coefficient constants eCi; i ¼
1; 2; 3; 4; 5 and eR0 are specified as triangular fuzzy number (TFN) represented as
A ¼ ða1; a; auÞ which are given in Table 1.

The problem (P1) is restated using the defuzzification function F(P) as

Optimal Software Warranty Under Fuzzy Environment 567

Table 1 Defuzzified values of the cost (in $) coefficients and reliability aspiration level

Fuzzy (P) parameter eC1 eC2 eC3 eC 0
4

eC5 eR0 fCB

al 35 8 75 10 145 0.65 4000

a 40 10 80 15 150 0.70 5000

au 50 12 85 20 155 0.75 6000

Defuzzified value F(P) 60 10 80 15 150 0.70 5000

Minimize F ~CðwÞ� � ¼ Fð ec1Þt0 þFð ec2ÞaF1ðtoÞþFð ec3Þtw
þFð ec4Það1� F1ðt0ÞÞF2ðt0 þw� t0Þ

þFð ec5Það1� F1ðt0ÞÞð1� F2ðt0 þw� t0ÞÞ � F4ðtlc � ðt0 þwÞÞ
Subject to FðeRÞðtÞJFðfR0Þ and w� 0

ðP3Þ

Now with imprecise definition of the available budget, the cost objective
function is introduced as a constraint. Membership function corresponding to the
above problem (P3) is defined as

l1ðwÞ ¼
1; CðwÞ� 4000
5000�CðwÞ
5000�4000 ; 4000\CðwÞ\5000

0; CðwÞ[5000

8><
>:

9>=
>;

l2ðwÞ ¼
1; RðwÞ[0:90
RðwÞ�0:70
0:90�0:70 ; 0:70�RðwÞ� 0:90

0; RðwÞ\0:70

8><
>:

9>=
>;

Now the objective function is defined as

Max a

s:t: l1ðwÞ� a; l2ðwÞ� a; a� 0; a� 1
ðP4Þ

Now on taking FðtÞ ¼ 1� e�bt and release time of the software t0 ¼ 20 in
problem (P4), we get a nonlinear constrained problem. On solving this problem
using MAPLE software, we obtain that firm can provide warranty period
w* = 20.12 weeks on the software which is released after 20 weeks of testing.
Also, the level of satisfaction a ¼ 0:613 is achieved from firms point.

5 Conclusion

Ambiguity in defining the management goals can be handled by considering fuzzy
approach. Two important objectives of cost minimization and reliability maxi-
mization from developer’s point of view are taken in the problem definition. We

568 A. K. Shrivastava and R. Sharma

have considered TFN to define fuzzy numbers which can be compared with other
type of fuzzy numbers for the possible variations that could result. We can use
different methods for defuzzification. In future, we can extend our model to
incorporate testing effort in the cost model. We are working on the cost model to
incorporate imperfect debugging in the above cost model to make it more realistic.

References

1. Kapur, P.K., Pham, H., Gupta, A., Jha, P.C.: Software reliability assessment with or
applications. Springer, UK (2011)

2. Yamada, S.: Optimal release problems with warranty period based on a software maintenance
cost model. Trans. IPS Jpn. 35(9), 2197–2202 (1994)

3. Pham, H., Zhang, X.: A software cost model with warranty and risk costs. IEEE Trans.
Comput. 48(1), 71–75 (1999)

4. Dohi, T., Okamura, H., Kaio, N., Osaki, S.: The age-dependent optimal warranty policy and
its application to software maintenance contract. In: Kondo, S., Furuta, K. (eds.) Proceedings
of the 5th International Conference on Probability Safety Assessment and Management, vol.
4, pp. 2547–52. Academy Press, New York (2000)

5. Rinsaka, K., Dohi, T.: Determining the optimal software warranty period under various
operational circumstances. Int. J. Qual. Reliab. Manag. 22(7), 715–730 (2005)

6. Okamura, H., Dohi, T., Osaki, S.: A reliability assessment method for software products in
operational phase—proposal of an accelerated life testing model. Electron. Commun. Jpn.
Part 3 84, 25–33 (2001)

7. Yang, B., Xie, M.: A study of operational and testing reliability in software reliability
analysis. Reliab. Eng. Syst. Safety 70, 323–329 (2000)

8. Zimmermann, H.J.: Fuzzy Set Theory and Its Applications. Kluwer Academic Publisher
(1991)

9. Kapur, P.K., Pham, H., Gupta, A., Jha, P.C.: Optimal release policy under fuzzy environment.
Int. J. Syst. Assur. Eng. Manag. 2(1), 48–58 (2011)

10. Pachauri, B., Kumar, A., Dhar, J.: Modeling optimal release policy under fuzzy paradigm in
imperfect debugging environment. Inf. Softw. Technol. 55, 1974–1980 (2013)

11. Okumoto, K., Goel, A.L.: Optimum release time for software systems based on reliability and
cost criteria. J. Syst. Softw. 1, 315–318 (1980)

12. Goel, A.L., Okumoto, K.: Time dependent error detection rate model for software reliability
and other performance measures. IEEE Trans. Reliab. 28(3), 206–211 (1979)

13. Wood, A.: Predicting software reliability. IEEE Comput. 9, 69–77 (1996)

Optimal Software Warranty Under Fuzzy Environment 569

Automation Framework for Test Script
Generation for Android Mobile

R. Anbunathan and Anirban Basu

Abstract System testing involves activities such as requirement analysis, test case
design, test case writing, test script development, test execution, and test report
preparation. Automating all these activities involves many challenges such as
understanding scenarios, achieving test coverage, determining pass/fail criteria,
scheduling tests, documenting result. In this paper, a method is proposed to auto-
mate both test case and test script generation from sequence diagram-based sce-
narios. A tool called Virtual Test Engineer is developed to convert UML sequence
diagram into Android APK to test Android mobile applications. A case study is
done to illustrate this method. The effectiveness of this method is studied and
compared with other methods through detailed experimentation.

Keywords Android test � Test framework � Test automation � Menu tree
navigation � Test case generation � Test script generation � APK generation
Model-based testing

1 Introduction

System testing involves major activities such as test case generation and test exe-
cution. Usually, test Engineer needs to understand scenarios from requirement
document, and then design test cases. Test case includes a set of inputs, execution
conditions, and expected results [IEEE Standard 829-1998]. While designing test
cases, test coverage needs to be ensured. Test coverage includes normal functional
scenarios, alternative scenarios, and non-functional aspects. Test execution can be
manual or automated [1]. To automate these test cases, test script has to be

R. Anbunathan (&)
Bharathiar University, Coimbatore, India
e-mail: anbunathan.r@gmail.com

A. Basu
Department of CSE, APS College of Engineering, Bengaluru, India
e-mail: abasu@anirbanbasu.in

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_55

571

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_55&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_55&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_55&domain=pdf

developed. Test Engineer needs to learn scripting language supported by
commercial-off-the-shelf tool or in-house built tool.

In this paper, a method is proposed to automate the above system testing
activities and a tool was developed based on this methodology. Scenarios in the
form of UML sequence diagrams [2] are considered as input. XMI file of sequence
diagram is parsed by using method proposed in [3]. From the XMI file, messages
along with method name and arguments, nodes, edges, conditions are extracted.
Using this information, a CFG is generated. From CFG, test cases are generated for
all basis paths. These test cases are converted to XML file.

Also menu tree database generated from the target device (mobile) [4] is taken as
another input. An APK is generated which takes the generated XML file and menu
tree database as inputs and generates events in order to execute test cases. In this
paper, the design issues faced while realizing this architecture are discussed. Also
the advantages of this method, comparing with other methods, are explained.
A case study is done as a proof of concept.

2 Related Work

This section discusses various methods that have been proposed for test automation.
Several test automation frameworks [5] are available in literatures.

In [3], Kundu et al. proposed a method to parse sequence diagram-based XMI
file and then generate Control Flow Graph (CFG). Different sequence diagram
components such as messages, operands, combined fragments, guards are consid-
ered. From XMI file, nodes, edges, guards are extracted and then a graph is created.
A defined set of rules are applied, which are based on the program structures such
as loop, alt, break, and then, CFG is arrived.

Sawant and Sawant [6] proposed a method to convert UML diagrams such as
Use Case Diagram, Class Diagram, and Sequence Diagram into test cases. A graph
called Sequence Diagram Graph (SDG) is generated from these diagrams and then
test cases are generated from this graph. The UML diagrams are exported to XML
file using MagicDraw tool. This XML file is edited, based on test case requirement.
A Java program is developed to read this XML and then generate all nodes, edges
from start to end. Scenarios are generated by scanning these nodes using breadth
first algorithm.

Sarma et al. [7] transformed a UML Use Case Diagram into a graph called Use
Case Diagram Graph (UDG), and Sequence Diagram into a graph called the
Sequence Diagram Graph (SDG) and then integrated UDG and SDG to form the
System Testing Graph (STG). The STG is then traversed to generate test cases for
system testing. In this approach, state-based transition path coverage criteria for test
case generation. Also, complex scenarios are considered which include negative
scenarios and multiple conditions.

In [8], Fraikin et al. proposed a tool called SeDiTeC, to generate test stubs from
testable sequence diagram. This approach involves together to control center tool

572 R. Anbunathan and A. Basu

for creating sequence diagram and then export into XML file. An extension pro-
gram is developed to create test stubs from this XML file. In early development
phase, these stubs help to test other completed sequence diagrams. SeDiTeC tool
also allows to instrument source code of associated classes, which behaves like test
stub.

In [9], Swain et al. proposed a method to generate test cases from Use Case
Dependency Graph (UDG) derived from Use Case Activity Diagram and
Concurrent Control Flow Graph (CCFG) derived from sequence diagram. Also, it
implements full predicate coverage criteria. From UDG, paths are determined using
depth first algorithm. Sequence diagram is converted into corresponding Activity
diagram using defined set of rules. From Activity diagram, sequences are obtained,
and then decision table is constructed to generate test cases. A semi-automated tool
called ComTest is built to parse XML, which is exported from sequence diagram,
and then test cases are generated.

3 Architecture of Proposed Framework

In this section, architecture and design constraints of proposed framework are
discussed.

3.1 Overview of the proposed framework

The proposed framework is based on Model-Based Testing (MBT). In this
approach, sequence diagrams are created to capture input scenarios. XMI file
obtained from this sequence diagram is parsed to extract model information such as
messages. From these messages, a sequence of executable commands is extracted
and stored in a XML file as nodes. This XML file is parsed by an Android
application (APK), and the commands are executed to produce events in Android
mobile.

3.2 Architecture of the Virtual Test Engineer

Figure 1 illustrates proposed framework to generate test script for Android mobile.
The framework includes two major tools known as Virtual Test Engineer
(VTE) and a menu tree generator. VTE is a Java-based application, consists of a
User Interface (UI) having controls and buttons to select input files. It has major
modules such as XMI parser, test case generator, and APK generator. XMI parser is
exactly same as mentioned in [3], generates CFG from sequence diagram. Test case
generator converts this CFG into basis path test cases in the form of XML file. APK

Automation Framework for Test Script Generation for Android … 573

generator takes this XML file and menu tree database file and then creates a new
APK file, which can be installed in Android mobile. This APK invokes Android
service, which in turn parses XML test cases and then generates events. These
events are passed to an UI Automator [10]-based jar file, which is nothing but
library of functions such as Click button, Click menu, Navigate, Wait,
VerifyUIText. These functions perform Android button/menu clicks to simulate
user actions, and then reading UI texts to verify expected results.

(1) XMI parser module
UML sequence diagram as shown in Fig. 2 is converted to XMI [11] using
Papyrus tool [12]. This XMI file is parsed using SAX parser and then different
sequence diagram components such as synchronous messages, asynchronous
messages, reply messages, combined fragments, interaction operands, and
constraints are extracted. Combined fragment includes different interaction
operators such as alternatives, option, break, and loop. The precedence relations
of messages and combined fragments are found recursively. Using precedence

Fig. 1 Architecture of
automation framework

Fig. 2 Sequence diagram
and corresponding CFG

574 R. Anbunathan and A. Basu

relations, edges are identified. From edges list, a Control Flow Graph (CFG) is
generated. Figure 3 illustrates a sequence diagram and the corresponding CFG
for alarm test case.

(2) Test case generator module
Basis paths are identified from CFG. Each basis path constitutes one test case.
One test case contains several test steps. One or more test cases are grouped
under a test suite. From edges in each basis path, method name, arguments are
extracted and then XML file is generated using simple tool [13]. Simple tool
uses XML annotations to generate XML nodes such as TestSuite, TestCase,
TestStep. For example, the following XML content shows how nodes are
nested:

<TestSuite>

<TestCase>

<TestStep>

<methodname>Navigate</methodname>

<argument key=“PackageName”>com.lge.clock</argument>

<argument key=“MenuItem”>New alarm</argument>

</TestStep>

<TestStep>

<methodname>LibSetSpinner</methodname>

<argument key=“TimeInMinutes”>2</argument>

</TestStep>

.

Fig. 3 UI of generated APK

Automation Framework for Test Script Generation for Android … 575

.

<TestCase>

<TestCase>

.

.

<TestCase>

<TestSuite>

(3) APK generator module
An APK is generated by using a template APK. The template APK includes
Activity (Java) file, Android manifest.xml, String.xml file, layout file. These
files are copied to target APK and then modified as given in following steps:

1. Create Android project using “Android create project” command
2. Copy Activity (Java) file, AndroidManifest.xml, Strings.xml file, layout file

etc to new project
3. Build using “ant release” command. This will create unsigned APK in bin

folder of new project.
4. Sign this unsigned APK using “jarsigner” command.
5. Generate signed APK using “zipalign” command.
6. Copy signed APK to destination folder.

3.3 Mobile side architecture

Mobile side architecture is as shown in Fig. 4. The purpose of generated APK is to
pass file names of generated XML file and menu tree Sqlite db file to VTE service.
VTE service parses XML file and generates events such as Navigate, ClickButton,
VerifyUIText. These events are sent to UI Automator-based jar. This jar includes
library functions such as Navigate, ClickButton, VerifyUIText. For example,
ClickButton library function contains UI Automator-based commands to simulate
button click as given below:

UiObject Button = new UiObject(new UiSelector().text

(ButtonName));

if(Button.exists() && Button.isEnabled())

{

Button.clickAndWaitForNewWindow(10000);

sleep(1000);

clickwidgetstatus=true;

}

576 R. Anbunathan and A. Basu

This UI Automator commands are actually simulating touch events in mobile
device. For example, if ButtonName is “Save,” then UI Automator searches for
“Save” button in current screen and then clicks over the text “Save.” Navigate
command searches the target menu item in menu tree DB and finds corresponding
navigation path as shown in Fig. 5. By using this path, it navigates through menu
tree to reach this menu item. Library functions send the result of each operation to
VTE service. VTE service saves these results in Excel test report.

Generated APK VTE Service XL test report

Library jar

XML
Testcase

Menutree
DB

Fig. 4 Mobile side
architecture

Fig. 5 Menu tree database

Automation Framework for Test Script Generation for Android … 577

4 Case Study

In this section, the application of the tool is explained with a case study. The case
study involves setting an alarm, which snoozes after 5 min. A sequence diagram is
drawn with the following messages, as shown in Fig. 2:

1. Navigate to new alarm widget
2. Set spinner value to current time+2 min
3. Save alarm
4. Wait for 2 min for alarm to invoke
5. Verify “Dismiss” text in current screen
6. Select Snooze option
7. Wait for 5 min for snoozing
8. Verify again “Dismiss” text in current screen
9. Delete the alarm

One of the combined fragment construct, “Alt,” is used to draw messages 6, 7,
and 8. Alt has both if and else constructs. Else part contains “Dismiss” alarm
message, so that two test cases are generated for one sequence diagram by VTE.
Figure 6 shows two basis path test cases generated for alarm scenarios. VTE uses
“Dot” tool [14] to display basis path graphs. At the same time, XML-based test
cases are generated by VTE as shown in Fig. 7.

Fig. 6 Basis path test cases generated by VTE

578 R. Anbunathan and A. Basu

By clicking “Generate APK” button in VTE, an APK with project name, in this
case “Alarm.apk” is generated. This APK sends XML name, menu tree DB name to
VTE service. VTE service parses XML test case and triggers the following com-
mand to invoke library function in “Library.jar” file:

proc ¼ java:lang:Runtime:getRuntimeðÞ:execð00uiautomatorruntestLibrary:jar
� ccom:uia:example:my:Library00 þ 00 � ecommand00

þ commandstrþ 00 � eargument1name00 þ argument1nameþ 00

� eargument2name00 þ argument2nameþ 00 � eargument1value00

þ argument1valueþ 00 � eargument2value00 þ argument2valueþ 00

� edatabase00 þ databasestrÞ;

Library function in Library.jar file generates events in Android mobile to sim-
ulate user actions such as clicking menu items, buttons in order to execute these test
cases. When “Execute” button of Alarm.apk as shown in Fig. 3 is clicked, test cases
are executed sequentially and an Excel-based test report is generated automatically
as shown in Fig. 8.

Fig. 7 Generated
XML-based test cases

Automation Framework for Test Script Generation for Android … 579

5 Experimental Results

The tool was applied to verify whether system testing is feasible with this approach
to satisfy the following test conditions:

a. Different Android applications
b. Different Android OS versions (e.g., Kitkat and Lollypop)
c. Devices with different form factors (e.g., QVGA(240 � 320) and WVGA

(480 � 800)]
d. Different UI versions
e. Program structures coverage (e.g., loop, alternative, option, and break)
f. Structural coverage (e.g., path coverage, node coverage, edge coverage, guard

coverage)
g. Different verification methods (e.g., UIText verification, log verification)
h. Test case type (e.g., normal flow and alternative flow)

Alarm application is taken for experiment to generate test cases and test scripts
automatically to meet all above coverage criteria.

5.1 Horizontal deployment

In this experiment, different applications such as alarm, messaging, and calculator
are considered. Different coverage criteria as listed above are considered. Total 19
test cases are automated using this method. This has to be elaborated to cover all
applications in future. Table 1 shows deployment data captured for different
Android applications. The coverage achieved is showed using a √ symbol.

In this experiment, different applications such as alarm, messaging, and calcu-
lator are considered. Different coverage criteria as listed above are considered. Total

Fig. 8 Test report for alarm scenarios

580 R. Anbunathan and A. Basu

T
ab

le
1

D
ep
lo
ym

en
t
da
ta

fo
r
an
dr
oi
d
ap
pl
ic
at
io
ns

A
pp

lic
at
io
n
na
m
e

N
o
of

te
st
ca
se
s

A
nd

ro
id

O
S

Fo
rm

fa
ct
or

U
I

ve
rs
io
n

Pr
og

ra
m

st
ru
ct
ur
e

T
es
t
co
ve
ra
ge

K
itk

at
L
ol
lip

op
Q
V
G
A

W
V
G
A

4
4.
1

L
oo

p
A
lt

O
pt

B
re
ak

Pa
th

N
od

e
E
dg

e
G
ua
rd

A
la
rm

5
√

√
√

√
√

√
√

√
√

X
√

√
√

√

St
op

w
at
ch

5
√

√
√

√
√

√
X

X
X

X
X

√
√

X

T
im

er
4

√
√

√
√

√
√

X
X

X
X

X
√

√
X

w
or
ld

cl
oc
k

3
√

√
√

√
√

√
X

X
X

X
X

√
√

X

Se
tti
ng

s
4

√
√

√
√

√
√

X
X

X
X

X
√

√
X

C
al
cu
la
to
r

4
√

√
√

√
√

√
X

X
X

X
X

√
√

X

M
es
sa
ge

4
√

√
√

√
√

√
√

√
√

X
√

√
√

√

Automation Framework for Test Script Generation for Android … 581

19 test cases are automated using this method. This has to be elaborated to cover all
applications in future. Table 1 shows deployment data captured for different
Android applications. The coverage achieved is showed using a √ symbol.

5.2 Bug fixing/Enhancement

During experimentation, the following bugs are fixed:

1. When input model is using combined fragments such as “loop,” “alt,” the
generated XML test cases are not carrying related information. For example, in
case of “loop,” loop count has to be passed as attribute within a test step.

2. When different testers are making test cases for same package, more than one *.
uml files are resulted. For example, model.uml and model1.uml are resulted
from two testers for “Alarm” package. VTE supports this feature allowing more
than one input (*.uml) files and generates one single output XML file, con-
taining all test cases.

6 Comparison with Other Methods

In [3], a method to parse XMI exported from sequence diagram is illustrated. And
then a Control Flow Graph (CFG) is constructed from nodes, edges, and guards. In
our approach, basis path-based test cases in the form of XML file are generated
from CFG. Also, test scripts in the form of APKs are generated, which simulate
user interface events in Android phones.

In [6], after parsing XML file exported from sequence diagram, scenarios are
generated by traversing through all paths. But the algorithm to traverse the paths is
not clearly given. In our approach, a recursive algorithm is made to generate basis
path-based test cases, to ensure coverage criteria such as path coverage, node
coverage, edge coverage, and guard coverage are achieved.

In [7], test cases are generated from sequence diagram. Object Constraint
Language (OCL) is used to define messages, guards, etc. In our approach, library
functions with method names and arguments are defined. All messages need to use
these pre-defined library functions, so that XML-based test cases are generated with
these method names and arguments used as XML tags.

In [8], test stubs are generated to perform integration testing. Code instrumen-
tation is required for executing test cases. In our case, test cases and test scripts are
generated for performing system testing. It is a block box approach.

In [9], ComTest tool is proposed, which is generating test scripts. But test script
format is not explained. In our approach, Virtual Test Engineer (VTE) is developed.
It takes menu tree database and XML-based test cases as inputs. Menu tree database

582 R. Anbunathan and A. Basu

helps to navigate through menu tree path and reach any menu item in phone. An UI
Automator-based jar file is used to simulate user interface events such as click menu
item, click button to navigate.

7 Conclusions

In this paper, an automation framework for generating system test scripts for
Android mobile is proposed. A tool called “Virtual Test Engineer” is built to realize
this approach. Testing activities such as requirement analysis, test case design, test
case generation, test script generation, and test execution are automated. The sce-
narios are captured in the form of sequence diagram. XMI file exported from
sequence diagram is parsed to get CFG. Basis path test cases are generated from
CFG in the form of XML file. An APK is generated to handle this XML and
simulate user interface events such as click menu item, click button. Also, this APK
takes menu tree database as input and facilitates navigation through menu tree of
Android phone. To execute multiple APKs in sequence, a test scheduler is involved.
The objective is to reduce the test effort by automating test engineering activities
throughout the test cycle.

Currently, few applications of Android mobile are testable with this method. In
future, this method will be elaborated to cover all Android applications.

In future, a suitable algorithm will be developed using genetic algorithm and
Artificial Intelligence (AI) planning, to generate test data.

This method will be more generalized, so that this method will be adaptable for
other embedded systems, Windows, or Linux-based applications.

References

1. Anbunathan R., Basu, A.: An event based test automation framework for android mobiles. In:
IEEE First International Conference on Contemporary Computing and Informatics (IC3I)
(2014)

2. Binder, R.V.: Testing object-oriented systems: models, patterns, and tools, Addison-Wesley
(1999)

3. Kundu, D., Samanta, D., Mall, R.: An approach to convert XMI representation of UML 2.x
interaction diagram into control flow graph. Int. Sch. Res. Netw. (ISRN) Softw. Eng. (2012)

4. Anbunathan R., Basu, A.: A recursive crawler algorithm to detect crash in android
application. In: IEEE International Conference on Computational Intelligence and Computing
Research (ICCIC) (2014)

5. Basu, A.: Software quality assurance, testing and metrics, PHI Learning (2015)
6. Sawant, V., Shah, K.: Automatic generation of test cases from UML models. In: Proceedings

of International Conference on Technology Systems and Management (ICTSM) published by
International Journal of Computer Applications (IJCA) (2011)

7. Sarma, M., Kundu, D., Mall, R.: Automatic test case generation from UML sequence
diagram. In: Proceedings of the 15th International Conference on Advanced Computing and

Automation Framework for Test Script Generation for Android … 583

Communications (ADCOM, ‘07), pp. 60–67, IEEE Computer Society, Washington, DC,
USA (2007)

8. Fraikin, F., Leonhardt, T.; SeDiTeC—testing based on sequence diagrams. In: Proceedings of
the IEEE International Conference on Automated Software Engineering, (ASE ‘02), pp. 261–
266 (2002)

9. Swain, S.K., Mohapatra, D.P., Mall, R.: Test case generation based on use case and sequence
diagram. Int. J. Softw. Eng. 3(2), 21–52 (2010)

10. Android Developers. UI automator. Available at: http://developer.android.com/tools/help/
uiautomator/index.html. Last accessed 29 Nov 2014

11. OMG, XML metadata interchange (XMI), v2.1 (2004)
12. https://eclipse.org/papyrus/
13. http://simple.sourceforge.net/
14. http://www.graphviz.org/Documentation/dotguide.pdf

584 R. Anbunathan and A. Basu

http://developer.android.com/tools/help/uiautomator/index.html
http://developer.android.com/tools/help/uiautomator/index.html
https://eclipse.org/papyrus/
http://simple.sourceforge.net/
http://www.graphviz.org/Documentation/dotguide.pdf

Optimizing the Defect Prioritization
in Enterprise Application Integration

Viral Gupta, Deepak Kumar and P. K. Kapur

Abstract Defect prioritization is one of the key decisions that impacts the quality,
cost, and schedule of any software development project. There are multiple attri-
butes of defects that drive the decision of defect prioritization. Generally in practice,
the defects are prioritized subjectively based on few attributes of defects like
severity or business priority. This assignment of defect priority does not consider
other critical attributes of the defect. There is a need of a framework that collec-
tively takes into consideration critical attributes of defects and generates the most
optimum defect prioritization strategy. In this paper, critical attributes of defects are
considered and a new framework based on genetic algorithm for generating opti-
mized defect prioritization is proposed. The results from the experimental execution
of the algorithm show the effectiveness of the proposed framework and improve-
ment by 40% in the overall quality of these projects.

Keywords Defect prioritization � Triage � Genetic algorithm � Enterprise
application � Quality � Testing � And optimization

1 Introduction

Software testing is the process of executing the program under test with the intent of
finding defects. The process of analysis, prioritization, and assignment of defects is
known as defect triaging [1]. Defect triaging is a complex process that brings

V. Gupta (&) � D. Kumar
Amity Institute of Information Technology, Amity University, Noida 110025,
Uttar Pradesh, India
e-mail: viralgupta@hotmail.com

D. Kumar
e-mail: deepakgupta_du@rediffmail.com

P. K. Kapur
Centre for Interdisciplinary Research, Amity University, Noida 110025,
Uttar Pradesh, India
e-mail: pkkapur1@gmail.com

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_56

585

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_56&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_56&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_56&domain=pdf

stakeholders from multiple teams like test, business, and development together. Test
team raises the defect with basic attributes in the defect tracking system and assigns
the value of severity to the defect. Severity of the defect signifies the impact on the
system. The business team verifies the defect and updates the priority of the defect.
Priority of the defect signifies the order in which the defect needs to be fixed.
Development manager analyses various attributes of the defects like severity, pri-
ority, estimate to fix, next release date, skills required to fix, availability of resources
and prioritizes and assigns the defects to the developers. The prioritization of defects
is the very important factor in the defect management process that impacts the
quality, cost, and schedule of the project releases. Defect prioritization should ideally
consider multiple attributes of the defects [2]. In the present scenario, defect prior-
itization is being done subjectively and manually by the business team leader or the
development manager based on very few attributes like severity and priority. In a
large enterprise application integration project where the daily defect incoming rate
is 80–100, team accumulates more than 1000 defects to be fixed. Considering five
days of release drop cycle, development team faces the challenge to decide which
defects to fix for the next code drop cycle to get optimized results. In order to make
this decision, the development team requires a framework that takes into account
multiple attributes of the defects and can generate the optimized defect prioritization
for these defects, so that the development team will focus on the resolution of the
prioritized defects only. This effective defect prioritization can improve the total
number of defects fixed for the next release, customer satisfaction, and faster time to
market. In a large enterprise application integration project, the complexity of defect
management and release management increases due to heterogeneous systems
involved in the integration and additional attributes of the defects comes into action
[3]. In this paper, a new framework using genetic algorithm is proposed that con-
siders multiple attributes of the defects and generates the optimized defect prioriti-
zation that overall results in the process improvements by more than 40%. This paper
begins by providing the brief overview of the past work conducted in this area,
followed by details of genetic algorithm, proposed methodology. An experiment is
conducted on an enterprise application development project. Finally, the paper is
concluded with the discussions of the results of the experiment.

2 Literature Review

Kaushik et al. [1] in their study surveyed defect triages engaged in the software
product development company and identified various challenges faced by practi-
tioners during the defect prioritization and assignments. These challenges are
ambiguity in understanding requirements, defect duplication, conflicting objectives
of defects, and incomplete supporting knowledge. The study emphasized the issue
of subjective assignment of severity and priority to the defects and underlines the
ignorance of various critical factors like cost to fix defects, technical risks, and
exposure in defect prioritization. The study proposed adoption of research

586 V. Gupta et al.

directions like multiobjective defect prioritization, utilization of software artefacts
traceability matrix for resolving the issue of defect prioritization.

Cubranic et al. [4] proposed the adoption of supervised machine learning using
Bayesian learning approach to automatically assign bug reports to the developers.
The study conducted an experiment to analyse the group of more than 15,000 bug
reports from the large project and assigned these defects automatically to the
developers based on text categorization techniques. The six-step heuristic was
proposed to conduct the experiment. Except 180 bugs, all bugs were assigned to
162 developers. The results showed overall 30% accuracy in prediction of the
defect assignment. The results were evaluated by the project.

Ahmed et al. [5] in their study discussed various ways to optimize the manual
analysis of the incoming defects and categorization of these defects. The study
highlights the amount of efforts and cost spent in manually analysing deluge of
defects and categorizing them into various categories. An experiment was con-
ducted on the group of more than 4000 defects from telecom projects. The study
used k-nearest classification and Naïve Bayes algorithms to categorize the incoming
defects into functional, logical, standard, and GUI-related categories. The results
show the highest accuracy achieved using Bayes algorithm was 79%.

Alenezi et al. [6] presented an approach for predicting the priority of the defect
based on the algorithms, namely Naïve Bayes, decision trees, and random forest.
These algorithms are based on the machine learning techniques. An experimental
evaluation has been conducted on the software projects. The element of subjectivity
in manually assigning the priority of the defects has been highlighted in the study.
Two feature sets are used in order to execute the proposed algorithms. These feature
sets are textual contents of the bug report and the metadata information of the bug
report. More than 8000 defects from two projects were categorized in the priority
classes of high priority, medium, average, and low priority. The results show that
the feature set of metadata information outperforms the other feature set. The results
from random forest and decision trees outperform the Naïve Bayes results.

Malhotra et al. [7] in their paper proposed text classification techniques to
predict and assess the severity of defects. The report of defects was taken from the
software projects, and support vector machine algorithm is used to predict the
severity of defects. The study advocates the prediction and automatic allocation of
the severity of defects using the text classification techniques. The study executed
the algorithm based on 5, 25, 50, and 100 feature set. The results were evaluated
using the precision and recall metrics to find out the effectiveness of the algorithms.

Chen et al. [8] conducted an experiment to achieve test case prioritization for the
functional testing. This experiment is conducted to prioritize the functional test
cases that were derived from the functional specifications. The study assumes that
the primary factors for the evaluation of test case prioritization are requirement
severity score and the interdependency between the test cases. The requirements are
categorized into four categories, and the scores are assigned to each category, while
test case dependency was also categorized under six categories, and the scores are
assigned. The researchers executed genetic algorithm (GA) and ant colony opti-
mization (ACO) algorithms on the five sets of test suites. It was concluded that the

Optimizing the Defect Prioritization in Enterprise Application … 587

GA and ACO algorithms provided similar efficiency in achieving the test case
prioritization.

Xuan et al. [9] in their study analysed the developer’s priorities to improve three
aspects of defect management, namely defect triage, defect severity identification and
assignment and the prediction of the reopened defects. The results show that the
average prediction accuracy has been approved by 13% after considering the devel-
oper’s priority. The main premise of the study is that developers have different
capability offixing these defects [10, 11]. These developers are ranked and prioritized,
and this developer prioritization is used for improving the defect triaging process.

There has been a very little research work done in the literature for achieving
defect prioritization [12–15]. Most of the past work is focussed on the utilizing
machine language algorithms and text categorization techniques for defect catego-
rization [16, 17]. There has been slight evidence of work done for utilizing genetic
algorithm for test case prioritization, but there has not been any concrete experimental
work done in the past showing usage of genetic algorithm in defect prioritization.

3 Genetic Algorithm

Usage of evolutionary algorithms in the software testing is an emerging trend that
helps in the automatic generation of the test cases, test data, and also helps in
sequencing these test cases to achieve the optimization in test execution phase
[18–20]. Genetic algorithm is an optimization technique and the search method that
is based on the concept of evolution of species using natural selection of the fittest
individuals [1]. The genetic algorithm works on the population which consists of
possible solutions of a given problem for which an optimized solution is sought.
The possible solutions from the population are represented by chromosome which
is denoted by a string of binary digits known as genes. Genetic algorithm uses three
main operators, namely selection, crossover, and mutation. As a part of selection
process, all chromosomes are evaluated based on the fitness value. Fitness function
defines the capability of an individual to qualify as best among others. The best
chromosomes are selected for crossover [21]. In the crossover process, the genes of
the selected chromosomes are swapped in order to produce more capable
next-generation chromosomes or the offsprings [22, 23]. The process is repeated
until next generation has sufficient chromosomes. The last step is mutation which
alters a part of the chromosomes to produce good results.

4 Proposed Approach and Experimental Set-up

In the past, defect prioritization has been done based on few attributes like priority
or severity. It has been identified that defect prioritization is a multiattribute
problem. From the survey of the literature, authors found four attributes that drive

588 V. Gupta et al.

the defect prioritization. These attributes are severity, priority, time to fix, and
blocked test cases. Authors identified ten experts from the software industry. These
experts are working as delivery head, delivery manager, test manager, and business
consultants in software companies that execute enterprise application integration
projects. Each of these experts has more than 15 years of experience in the industry.
A questionnaire was sent to these experts to seek their opinion about the importance
of these attributes and to find out if there is any additional attribute that impacts the
defect prioritization and has not been mentioned in the past work. Each expert
ðE1;E2;E3;E4. . .E10Þ was required to provide response on a five-point scale,
namely very strong impact (VSI), strong impact (SI), medium impact (MI), low
impact (LI), VLI (no impact). These responses were assigned numerical scores as
VSI is assigned as 5, SI is assigned score as 4, MI is assigned score as 3, LI is
assigned score as 2, and VLI is assigned score as 1. Overall scores for each attribute
is calculated from the responses of all experts. A software development project that
implements the enterprise application integration is chosen, and an experiment is
conducted by executing genetic algorithm to prioritize the defects and evaluate the
effectiveness of outcomes. This software project, namely “Banking Payments
Platform (BPP)”, is a very large integration project of 30 applications that are
operational in bank for many years. The software development team is working on
the major upcoming release to integrate these applications. Total line of code for
these applications is 10 Million, and the total software development and testing
team size is 50. At the time of the study, the project is in system testing phase. Total
1000 defects have been identified till date, and 600 defects have been closed. Daily
defect arrival rate is 25–30. Daily closure rate from the development team is 15–20,
which is resulting in increase in backlog defects. In the system testing phase, there
are 40 developers in the team and on an average ten defects are assigned to each
developer. The release code drop cycle is 5 days, and authors have found this
project to be the most relevant project to conduct the experiment. Each developer
has ten backlogs of defects, and the next release code drop is 5 days away. Each
developer is faced with the decision to prioritize the defects assigned to him. This
study proposes usage of genetic algorithm. For the purpose of this experiment,
chromosomes consist of the set of defects to be fixed by the developers (Table 1).

Fitness function in the experiment is a function of multiple attributes of the
defects. These attributes were identified from the literature and ranked based on the
expert’s interview. The fitness function is derived from rankings of the attributes
achieved by the expert’s interview. EAI score (ES) is derived by assigning
numerical scores to the EAI values for each defect. 7 is assigned to orchestration
defects, 5 is assigned to maps/schema defects, 3 is assigned to pipeline defect, and 1
is assigned to adaptors defects. Severity score (SS) is derived by assigning
numerical scores to the severity values for each defect. 7 is assigned for critical
defect, 5 is assigned for high, 3 is assigned for medium defect, and 1 is assigned for
low defect. Similarly, priority score (PS) is derived by assigning numerical scores to
the priority values for each defect. 7 is assigned for very high priority defect, score
of 5 is assigned for high priority defect, score of 3 is assigned for medium priority

Optimizing the Defect Prioritization in Enterprise Application … 589

T
ab

le
1

In
iti
al

ch
ro
m
os
om

es

D
1

D
2

D
8

D
3

D
5

D
4

D
9

D
6

D
7

D
10

D
5

D
8

D
1

D
6

D
2

D
4

D
10

D
3

D
7

D
9

C
hr
om

os
om

e
1

C
hr
om

os
om

e
2

D
9

D
1

D
2

D
3

D
8

D
4

D
7

D
5

D
6

D
10

D
1

D
5

D
8

D
2

D
4

D
6

D
10

D
3

D
7

D
9

C
hr
om

os
om

e
3

C
hr
om

os
om

e
4

590 V. Gupta et al.

defect, and score of 1 is assigned for low priority defect. Total SevPriority Score
(PS) is calculated as (1).

PSn ¼ SSn � PSn ð1Þ

TBTCn ¼ BTCnð Þ
Pn

k¼0 BTCk
ð2Þ

The number of blocked test cases for each defect is represented by
ðBTC1;BTC2;BTC3;BTC4. . .BTC10Þ. The total blocked test case score TBTCn for
a defect would be calculated as (2). The time required to fix a defect is represented
as by ðTF;TF2;TF3;TF4. . .TF10Þ, and the proposed rank to fix the nth defect is
represented as by ðR;R2;R3;R4. . .R10Þ. The total time score (TS) would be cal-
culated as follows:

TSn ¼ 11� Rnð Þ
TFn

ð3Þ

Fitness score FSnð Þ for each defect given by following equation:

FSn ¼ SSn � PSnð Þþ BTCnð Þ
Pn

k¼0 BTCk
þ 11� Rnð Þ

TFn
þEAIn ð4Þ

Total fitness score FStotð Þ for the entire chromosome is given by following
equation, where m is the rank of the defect where time to fix the defects stretches
beyond the next release code drop date.

FStot ¼
Xm

n¼1

SSn � PSnð Þþ BTCnð Þ
Pn

k¼0 BTCk
þ 11� Rnð Þ

TFn
þEAIn

� �

ð5Þ

Initial number of chromosomes taken was 4. The encoding used for chromosome
is alphanumeric [24–26]. The crossover rate (C.R.) is 0.8, and mutation rate is 0.3.
Section technique is used as fitness function that is based on five attributes of the
defects. The crossover method was hybrid, namely single point and double point.
Mutation method was random.

5 Outcomes and Discussions

Based on the responses received from the experts, it has been identified that the top
five attributes of the defects that must be considered during the defect prioritization
activity were severity, priority, time to fix, blocked test cases, and EAI factor.
Authors found that EAI factor is the new factor that has not been identified in any of
the past work. The values for EAI factors are orchestration, maps/schema, pipeline,

Optimizing the Defect Prioritization in Enterprise Application … 591

T
ab

le
2

D
ef
ec
t
at
tr
ib
ut
es

ra
nk

ed
by

ex
pe
rt
s

D
ef
ec
ts
at
tr
ib
ut
es

V
SI

SI
M
I

L
I

V
L
I

V
SI

sc
or
e

V
SI
s 1

ð
Þ

SI
sc
or
e

SI
s 1

ð
Þ

M
I
sc
or
e

M
Is

1
ð

Þ
L
I
sc
or
e

L
Is

1
ð

Þ
V
L
I
sc
or
e

V
L
Is

1
ð

Þ
T
ot
al

sc
or
e

T
SI
s 1

ð
Þ

Se
ve
ri
ty

4
3

3
0

0
20

12
9

0
0

41

Pr
io
ri
ty

3
4

2
1

0
15

16
6

2
0

39

T
im

e
to

fi
x

3
2

2
3

0
15

8
6

6
0

35

B
lo
ck
ed

te
st
ca
se
s

6
3

1
0

0
30

12
3

0
0

45

E
A
I
fa
ct
or

5
2

1
1

1
25

8
3

2
1

39

592 V. Gupta et al.

and adaptor-related defects. The highest impacting factor is the number of blocked
test cases. Attributes identified from the survey questionnaire and the expert’s
interview were incorporated in the calculation of the fitness function for the
selection operator of the genetic algorithm. Multiple cycles of genetic algorithm
were executed. The first cycle of genetic algorithm had four chromosomes, and the
highest fitness score was 194.516 (Tables 2, 3, 4, 5, 6, 7, 8, and 9).

Table 3 lists four initial chromosomes that represent initial defect priorities that a
developer has considered. The maximum fitness score of 194.516 is for the third
chromosome. Using the total fitness scores, average fitness score, and the cumu-
lative fitness score, three chromosomes are selected for the next operation of the

Table 3 Genetic algorithm cycle 1: selection—fitness scores

Chromosome FS FA FC RN DF PF TCU

1 1, 2, 8, 3, 5, 4, 9, 6, 7, 10 164.175 0.255 0.255 0.275 3 3 22

2 5, 8, 1, 6, 2, 4, 10, 3, 7, 9 142.008 0.221 0.476 0.832 3 2 64

3 9, 1, 2, 3, 8, 4, 7, 5, 6, 10 194.516 0.302 0.778 0.166 4 4 23

4 1, 5, 8, 2, 4, 6, 10, 3, 7, 9 143.008 0.222 1.000 0.547 3 2 64

Table 4 Genetic algorithm cycle 1: crossover and mutation

Parent Child Mutation

3 9, 1, 2, 3, 8, 4, 7, 5, 6, 10 1, 5, 8, 2, 4, 4, 7, 5, 6, 10 1, 9, 8, 2, 3, 4, 7, 5, 6, 10

4 1, 5, 8, 2, 4, 6, 10, 3, 7, 9 9, 1, 2, 3, 8, 6, 10, 3, 7, 9 5, 1, 2, 4, 8, 6, 10, 3, 7, 9

1 1, 2, 8, 3, 5, 4, 9, 6, 7, 10 9, 1, 2, 3, 8, 4, 9, 6, 7, 10 9, 1, 2, 3, 8, 4, 5, 6, 7, 10

3 9, 1, 2, 3, 8, 4, 7, 5, 6, 10 1, 2, 8, 3, 5, 4, 7, 5, 6, 10 1, 2, 8, 3, 5, 4, 7, 9, 6, 10

Table 5 Genetic algorithm cycle 2: selection—fitness scores

Chromosome FS FA FC RN DF PF TCU

5 1, 9, 8, 2, 3, 4, 7, 5, 6, 10 205.508 0.275 0.277 0.123 4 4 22

6 5, 1, 2, 4, 8, 6, 10, 3, 7, 9 184.270 0.246 0.523 0.658 4 3 76

7 9, 1, 2, 3, 8, 4, 5, 6, 7, 10 194.516 0.260 0.783 0.267 4 4 63

8 1, 2, 8, 3, 5, 4, 7, 9, 6, 10 164.175 0.219 1.000 0.581 3 3 22

Table 6 Genetic algorithm cycle 2: crossover and mutation

Parent Child Mutation

7 9, 1, 2, 3, 8, 4, 5, 6, 7, 10 9, 1, 2, 4, 8, 6, 10, 6, 7, 10 9, 1, 2, 4, 8, 5, 3, 6, 7, 10

6 5, 1, 2, 4, 8, 6, 10, 3, 7, 9 5, 1, 2, 3, 8, 4, 5, 3, 7, 9 6, 1, 2, 10, 8, 4, 5, 3, 7, 9

7 9, 1, 2, 3, 8, 4, 5, 6, 7, 10 9, 1, 8, 2, 3, 4, 7, 6, 7, 10 9, 1, 8, 2, 3, 4, 5, 6, 7, 10

5 1, 9, 8, 2, 3, 4, 7, 5, 6, 10 1, 9, 2, 3, 8, 4, 5, 5, 6, 10 1, 9, 2, 3, 8, 4, 7, 5, 6, 10

Optimizing the Defect Prioritization in Enterprise Application … 593

genetic algorithm. Crossover method was single point, and first five genes were
crossed over between two chromosomes. After the crossover and mutation opera-
tions, four child chromosomes are generated for the second cycle of the genetic
algorithm. In the next cycle, the maximum fitness score of 205.508 is for the first
chromosome. Using the total fitness scores, average fitness score, and the cumu-
lative fitness score, three chromosomes are selected for the next cycle. Crossover
method was hybrid, and five elements from the fourth element were crossed over
between two chromosomes. After the crossover and mutation operations, four child
chromosomes are generated for the third cycle of the genetic algorithm. In the next
cycle, the maximum fitness score of 243.905 is for the first chromosome. Using the
total fitness scores, average fitness score, and the cumulative fitness score, two
chromosomes are selected for the next operation of the genetic algorithm. Two
child chromosomes are generated for the third cycle of the genetic algorithm. In the
next cycle, the maximum fitness score of 270.111 is for the first chromosome. This
defect sequence can fix defect 6 defects for the next code drop. All of these six
defects are from top two severities. These six defects are responsible for total 56
blocked test cases. From the outcomes of the experiment, it has been proved that the
fitness scores for the chromosomes have improved over multiple cycles of the
executed genetic algorithm. In the first cycle, the developer was able to fix four
defects and unblock 22 test cases, while after the application of the genetic algo-
rithm, developer can fix six defects and unblock 56 test cases. There has been 46%
improvement in the defects closed, 54% improvement in the closure of the top two
severities/priorities of defects, and 21% reduction in the test case blockage.

Table 7 Genetic algorithm cycle 3: selection—fitness scores

Chromosome FS FA FC RN DF PF TCU

9 9, 1, 2, 4, 8, 5, 3, 6, 7, 10 243.905 0.309 0.309 0.250 5 5 30

10 6, 1, 2, 10, 8, 4, 5, 3, 7, 9 160.937 0.204 0.513 0.640 4 2 26

11 9, 1, 8, 2, 3, 4, 5, 6, 7, 10 192.516 0.244 0.757 0.301 4 4 34

12 1, 9, 2, 3, 8, 4, 7, 5, 6, 10 191.516 0.243 1.000 0.024 4 4 30

Table 8 Genetic algorithm cycle 3: crossover and mutation

Parent Child Mutation

9 9, 1, 2, 4, 8, 5, 3, 6, 7, 10 9, 1, 2, 4, 3, 4, 5, 6, 7, 10 9, 1, 2, 4, 3, 7, 5, 6, 8, 10

11 9, 1, 8, 2, 3, 4, 5, 6, 7, 10 9, 1, 8, 2, 3, 5, 3, 6, 7, 10 9, 1, 8, 2, 3, 5, 4, 6, 7, 10

594 V. Gupta et al.

T
ab

le
9

Fi
na
l
ge
ne
tic

al
go

ri
th
m

cy
cl
e
4:

se
le
ct
io
n—

fi
tn
es
s
sc
or
es

C
hr
om

o
#

C
hr
om

os
om

e
Fi
tn
es
s

sc
or
e

Fi
tn
es
s

av
er
ag
e

Fi
tn
es
s

cu
m
ul
at
iv
e

R
an
do

m
nu

m
be
r

D
ef
ec
ts

fi
xe
d

T
op

tw
o
pr
io
ri
ty

de
fe
ct
s

fi
xe
d

T
es
t
ca
se
s

un
bl
oc
ke
d

13
9,

1,
2,

4,
3,

7,
5,

6,
8,

10
27

0.
11

1
0.
56

8
0.
56

8
0.
45

0
6

6
56

14
9,

1,
8,

2,
3,

5,
4,

6,
7,

10
20

8.
50

8
0.
43

2
1.
00

0
0.
36

0
1

4
22

Optimizing the Defect Prioritization in Enterprise Application … 595

6 Conclusions

Defect prioritization involves the decision-making process to prioritize defects
based on various attributes of the defects. In the past, there has been very less work
done that empirically demonstrates defect prioritization resulting in improvements.
This study proposed a framework to utilize genetic algorithm for defect prioriti-
zation that results in quality improvements. Authors of this study ranked the defect
attributes required by the genetic algorithm for defect prioritization problem.
Totally five attributes were identified and ranked; a new attribute, namely EAI
factor has been identified, which was not mentioned in the past work. The exper-
iment result demonstrated overall 46% improvement in the number of defects
closed by a developer for the next code drop, 54% improvement in the closure of
the top two severities/priorities of defects, and 21% reduction in the blockage of test
cases. The outcome of the experiment has been found very useful by the devel-
opment, business, and testing teams.

References

1. Kaushik, N., Amoui, M., Tahvildari, L, Liu, W, Li, S.: Defect prioritization in the software
industry: challenges and opportunities. In: IEEE Sixth International Conference on Software
Testing, Verification and Validation, pp. 70–73 (2013). https://doi.org/10.1109/icst.2013.40

2. Somerville, I.: Software engineering, 6th edn. Addison-Wesley, Boston (2001)
3. Themistocleous, M.G.: Evaluating the adoption of enterprise application integration in

multinational organizations (Doctoral dissertation) (2002)
4. Cubranic, D., Murphy, G.C.: Automatic bug triage using text categorization. Online (n.d.).

Retrieved from https://www.cs.ubc.ca/labs/spl/papers/2004/seke04-bugzilla.pdf
5. Ahmed, M.M., Hedar, A.R.M., Ibrahim, H.M.: Predicting bug category based on analysis of

software repositories. In: 2nd International Conference on Research in Science, Engineering
and Technology, pp. 44–53 (2014). http://dx.doi.org/10.15242/IIE.E0314580

6. Alenezi, M., Banitaan, S.: Bug report prioritization: which features and classifier to use? In:
12th International Conference on Machine Learning and Applications, pp. 112–116 (2013).
https://doi.org/10.1109/icmla.2013.114

7. Malhotra, R., Kapoor, N., Jain, R., Biyani, S.: Severity assessment of software defect reports
using text categorization. Int. J. Comput. Appl. 83(11), 13–16 (2013)

8. Chen, G.Y.H., Wang, P.Q.: Test case prioritization in a specification based testing
environment. J. Softw. 9(4), 2056–2064 (2014)

9. Xuan, J., Jiang, H., Ren, Z., Zou, W.: Developer prioritization in bug repositories. In:
International Conference of Software Engineering, 2012, pp. 25–35, Zurich, Switzerland,
(2012)

10. Bhattacharya, P., Iliofotou, M., Neamtiu, I., Faloutsos, M.: Graph-based analysis and
prediction for software evolution, [Online] (n.d.). Retrieved from http://www.cs.ucr.edu/
*neamtiu/pubs/icse12bhattacharya.pdf

11. Cohen, J., Ferguson, R., Hayes, W.: A defect prioritization method based on the risk priority
number, [Online] (n.d.). Retrieved from http://resources.sei.cmu.edu/asset_files/whitepaper/
2013_019_001_70276.pdf

12. Goldberg, D.E.: Genetic algorithms: in search, optimization and machine learning, p. 1989.
Addison Wesley, M.A. (1989)

596 V. Gupta et al.

http://dx.doi.org/10.1109/icst.2013.40
https://www.cs.ubc.ca/labs/spl/papers/2004/seke04-bugzilla.pdf
http://dx.doi.org/10.15242/IIE.E0314580
http://dx.doi.org/10.1109/icmla.2013.114
http://www.cs.ucr.edu/%7eneamtiu/pubs/icse12bhattacharya.pdf
http://www.cs.ucr.edu/%7eneamtiu/pubs/icse12bhattacharya.pdf
http://resources.sei.cmu.edu/asset_files/whitepaper/2013_019_001_70276.pdf
http://resources.sei.cmu.edu/asset_files/whitepaper/2013_019_001_70276.pdf

13. Guo, P.J., Zimmermann, T., Nagappan, N., Murphy, B.: Characterizing and predicting which
bugs get fixed: an empirical study of microsoft windows. In: International Conference on
Software Engineering, ACM (2010)

14. Gupta, N.M., Rohil, M.K.: Using genetic algorithm for unit testing of object oriented
software. Int. J. Simul. Syst. Sci. Technol. 10(3), 99–104 (2008)

15. Jeong, G., Kim, S., Zimmermann, T.: Improving bug triage with bug tossing graphs. In:
European Software Engineering Conference, ESEC-FSE’09 (2009)

16. Keshavarz, S., Javidan, R.: Software quality control based on genetic algorithm. Int.
J. Comput. Theor. Eng. 3(4), 579–584 (2011)

17. Kim, D., Tao, Y., Kim, S., Zeller, A.: Where should we fix this bug? A two-phase
recommendation model. IEEE Trans. Softw. Eng. 39(11), 1597–1610 (2013)

18. Krishnamoorthi, R., Sahaaya, S.A., Mary, A.: Regression test suite prioritization using genetic
algorithms. Int. J. Hybrid Inf. Technol. 2(3), 35–52 (2009)

19. Majid, H.A., Kasim, N.H., Samah. A. A.: Optimization of warranty cost using genetic
algorithm: a case study in fleet vehicle. Int. J. Soft Comput. Eng. (IJSCE), 3(4), 199–202
(Sept 2013)

20. Mala, D.J., Ruby, E., Mohan, V.: A Hybrid test optimization framework—coupling genetic
algorithm with local search technique. Comput. Inform. 29, 133–164 (2010)

21. Pargas, R.P., Harrold, M. J., Peck, R. R.: Test data generation using genetic algorithm.
J. Softw. Test. Verific. Reliab. 1–19 (1999)

22. Patel, K., Sawant, P., Tajane, M., Shankarmani, R.: Bug tracking and prediction. Int. J. Innov.
Emerg. Res. Eng. 2(3), 174–179 (2015)

23. Sharma, Chayanika, Sabharwal, Sangeeta, Sibal, Ritu: A survey on software testing
techniques using genetic algorithm. Int. J. Comput. Sci. Issues 10(1), 381–393 (2013)

24. Srivastava, P.R., Kim, Tai-hoon: Application of genetic algorithm in software testing. Int.
J. Softw. Eng. Its Appl. 3(4), 87–96 (2009)

25. Sthamer, H.H.: The automatic generation of software test data using genetic algorithms
(Doctoral dissertation) (1995). Retrieved from profs.info.uaic.ro

26. Tian, Y., Lo, D., Sun, C.: DRONE: predicting priority of reported bugs by multi-factor
analysis. IEEE Int. Conf. Softw. Mainten. 2013, 199–209 (2013)

Optimizing the Defect Prioritization in Enterprise Application … 597

Desktop Virtualization—Desktop
as a Service and Formulation of TCO
with Return on Investment

Nitin Chawla and Deepak Kumar

Abstract Cloud computing provides multiple deployment options to organizations
such as Software as a Service (SaaS), Platform as a Service (PaaS), Infrastructure as
a Service (IaaS). Desktop as a Service is upcoming deployment model which has a
multi-tenancy architecture, and the service is available on a subscription basis.
Desktop as a Service (DaaS) authorizes users to access the applications anytime
using virtualized desktop. Virtualized desktops hosted on cloud provided flexibility
to use any device. With no software for IT to maintain, Desktop as a Service is
straightforward to buy and easy to manage. This paper describes the needs of
Desktop as a Service, benefits of DaaS, barriers to widespread DaaS adoption,
comparison of industry DaaS leaders, and describes its application in real.
A general model and framework have also been developed to calculate the total cost
of ownership and return on investment to help the organization to take decisions
and have relevant discussions to adopt DaaS.

Keywords Cloud computing � Desktop virtualization � Desktop as a Service
Deployment model � Cloud security

1 Introduction

The principle of cloud desktops has been around for many years, but it has only just
begun to gain a foothold in terms of adoption. That could be because IT shops are
interested in VDI [1] but cannot front the money for it, or because the cloud is just a
hot-button topic these days. Either way, many people do not know the details of
DaaS [1] technology or how it compares to VDI. Start here for the basics on how it
works, how it is different from VDI, and why the comparisons are not necessarily

N. Chawla (&) � D. Kumar
Amity University, Noida 110025, Uttar Pradesh, India
e-mail: nitin1203@gmail.com

D. Kumar
e-mail: deepakgupta_du@rediffmail.com

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_57

599

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_57&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_57&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_57&domain=pdf

fair. VDI has seen pretty slow adoption—some experts think it will never crack
20%—so what does that say about how quickly organizations will adopt cloud
desktops? There are tons of options out there now, and they’ll just improve over
time. Many companies try to get VDI off the ground but find that it is too expensive
or that users reject it. Especially in small companies where VDI is often cost
prohibitive, DaaS can be a great option because you’re taking advantage of
infrastructure someone else already built and has pledged to maintain. It might seem
like DaaS and VDI are dissimilar, but the two share a lot of the same benefits,
including easier desktop management, more flexibility and mobility, and less
hardware. They also both come with licensing complexity. But of the two, only
DaaS brings cloud security concerns.

For many VDI projects, costs can balloon down the line, and the infrastructure is
hard to scale up and down on your own. But with a subscription-based, cloud-centric
model, costs are predictable over the long term, and you can scale quickly in either
direction if you need to. And with DaaS, it can be easier to set up a pilot program. The
DaaS cost models that vendors such as Amazon push are flawed. When you compare
the highest-priced VDI software with all the bells and whistles to the lowest-priced
DaaS setup based on server images, of course, DaaS is going to look cheaper. But you
can’t compare Windows 7 to Windows Server. They’re just not the same thing. DaaS
can be confusing. For example, did you know that some application delivery tech-
niques are technically DaaS? And there is a big difference between hosting Windows
Server images in the cloud and hosting desktops. Don’t forget about the potential
licensing costs and complexity that can come with DaaS—they mean that sometimes
cloud desktops won’t save money over VDI. Depending on which provider and
platform you settle on, deploying cloud desktops may not save money over VDI in
the long run. Management costs—because you still need to maintain and update
images, applications, security, and the network—subscription fees, and hardware
requirements all play into how much cash stays in the company kitty. With hosted
desktops, you have to license theWindows OSes, the desktop virtualization software,
and the endpoint devices.

Additionally, every DaaS vendor and service provider handles licensing in its
own way. Some providers need you to bring your own Virtual Desktop Access
licenses. Windows desktop OS licensing restrictions make it really hard for com-
panies to do “real” DaaS. Instead, DaaS vendors such as Amazon and VMware skin
Windows Server 2008 R2 images to look like Windows. It works and customers
want it, but it is not a true desktop. Just like some rectangles are squares, some
DaaS providers are platforms—but not all platforms are providers, and not all
providers are platforms. If that’s got your head spinning, don’t fret. There are ways
to find the right provider and platform for you, but you’ll have to take charge. Make
sure you ask the right questions and negotiate a service-level agreement (SLA) that
sways in your favor. In the DaaS market, there are many providers, but not as many
platforms. The platform is what cloud desktops run on, and providers are the
companies you buy that service from.

For example, VMware [2] has a platform and is a provider, but if you want to
host desktops on to cloud infrastructure, you’ll need to talk to a provider that has a

600 N. Chawla and D. Kumar

relationship with that platform. Not all DaaS providers are created equal. Some
vendors and platforms might not support the clients, operating systems, or appli-
cations you need. Management consoles and capabilities also differ from one
product to the next. The provider you choose should have an SLA that outlines how
the company will handle security breaches and outages.

In this paper, we state multiple factors to calculate the TCO. Factors which can
affect the TCO are divided into two parts: tangible benefits and intangible benefits.
A general ROI model has also been developed to help the organizations in adopting
the new technology like DaaS.

2 Components of DaaS

Virtualization has become the new leading edge, and Desktop as a Service (DaaS)
is gaining ground in this space. Due to increasing constraints on IT budgets,
Desktop as a Service provides secure, flexible, and manageable solution to eco-
nomically satisfy organization’s needs. Desktop as a Service is well-suited envi-
ronment as it provides agility and reduction in up-front capital investment as
compared to the on-premise environment consisting of physical and decentralized
desktop environment with high cost. Desktop as a Service platform solution pro-
vides organizations the flexibility of cloud services in a secure enterprise-class
cloud (Figs. 1 and 2).

DaaS solution provides facility to the user to connect via RDP to a client OS
such as Windows XP or Linux as a VM on a server. For this infrastructure to
function, a DaaS solution must have the following components.

Fig. 1 Desktop virtualization architecture

Desktop Virtualization—Desktop as a Service and Formulation … 601

• A virtualization platform. A platform can run client operating systems like
Linux, Windows. The platform should be able to host multiple VMs to support
concurrency. Some of the virtual platforms are VMware, Hyper-V [3].

• A protocol for the users to connect to the virtualized OS. Most of the users
use Windows, and RDP , part of windows, is used. Using RDP, once can use its
features such as device and printer redirection. Multiple options such as thin
client or remote client under full OS are available to take a decision for the
protocol.

• A virtual management platform. This platform offers the creation and con-
figuration of VM on the servers. A physical server can be divided into multiple
VMs using the virtual management platform. Virtual platform transforms static
desktops into secure, virtual workspaces that can be delivered on demand.
Virtual platform can provision virtual or remote desktops and applications to
streamline management and easily entitle end users.

• A connection broker. A session is created the very first time user logs in. This
connection broker ensures that users log into their existing sessions.

• Application virtualization. Virtualization is done at multiple levels such as
hardware virtualization and software virtualization. For software virtualization,
application virtualization and database virtualization are done. Application
virtualization ensures the distribution of evenly distribution of logged-in users to
reduce the load on single application server [4].

• Profile and data redirection. Profile and data redirection enables users’ per-
sonalization to be maintained. It also ensures that data stored by users is stored
on the server. Profiles and data redirection is what allows a user to logon onto
any computer and have all their personal files and setting apply to that computer
as it was the last time they used a computer.

• Client devices. Users use any device, known as thin clients, to access the
virtualized environment. Some of the OSes used in client devices are Windows,
Linux.

Fig. 2 Inhibitors to DaaS and VDI adoption

602 N. Chawla and D. Kumar

3 Comparison of DaaS Providers

While evaluating a DaaS solution, one needs to observe multiple areas. First is the
hypervisor [5], which is a platform for configuring and running virtual machines.
Hypervisors differ in their capabilities; cloud providers contrast in their solutions
offering. How to appropriately choose hypervisor for the desired server/desktop
virtualization is really challenging, because a trade-off between virtualization per-
formance and cost is a hard decision to make in the cloud. Others components are
processor speed and cores, RAM, type of storage.

Below is the comparison of various service providers which offer technical
components along with the commercials (Table 1).

Table 1 Comparison of various service providers

Desktop
model

Horizon air
desktops and
horizon air
apps (standard) [10]

Amazon workspaces
(value) [11]

desktopasservice.com
[12]

Microsoft Azure
(basic tier) [13]

Price per
month

$35/desktop/month
MSRP (minimum
order quantity of
50)

$27 (no up-front
commitment and you
can delete
workspaces at
anytime)

$30 (7 or more users) INR 782

Processor 1 vCPU 1 vCPU 1 core

Memory 2 GB VRAM 2 GB VRAM 4 GB RAM 1.75 GB

Hard disk 30 GB 10 GB 20 GB + 20 GB
(operating system)

40 GB

Access
device

Horizon view
clients, browser,
PCoIP zero clients

Laptop computer
(Mac OS or
Windows), iPad,
Kindle fire, or
Android tablet,
PCoIP zero clients

Android, iPhone, an
iPad, Windows
mobile/computer PC,
Mac, Linux, thin
clients, etc.

Android. iPhone
and iPad,
Windows
mobile/computer
PC, Mac, Linux,
thin clients, etc.

Desktop
device

Persistent and
nonpersistent VDI

Persistent Persistent Persistent

Available
OS

Windows XP, 7,
8 � 64

Windows 7
experience to users
(provided by
Windows Server
2008 R2 with RDS)

Windows and Linux
based

Windows and
Linux based

Windows Server
2008 R2

Windows Server
2012 R2

Technology VMware Amazon workspaces
and Amazon
workspaces
application manager

Microsoft remote
desktop services
(RDP)-based
Windows desktops

Microsoft’s
remote desktop
service (RDS)

Citrix XenApp or
XenDesktop can also
be offered on request
and is priced $15 extra
per month per desktop

Desktop Virtualization—Desktop as a Service and Formulation … 603

4 Obstacles in Adoption of DaaS

Despite the benefits, there are multiple obstacles to the adoption of DaaS. Trust is
one of the major obstacles for many institutions/organizations because of low
control of IT departments over the data entered through DaaS. Doubt related to the
security of data maintained by services providers is always a distrust factor.
Connectivity is another obstacle as outages are planned by the service providers
because of handling of multiple customers in the same data centers as well as the
application of patches to remove the bugs or issues resolved by OEMs apart from
upgrading to the higher version of the technologies.

User customization is also one of the difficulties in DaaS. As virtualized desktop
is hosted on cloud and cloud is managed by provider so it is difficult to tailor the
end user environment because the same environment is available to the users of
multiple companies/organizations. Some of the customizations can be done by
admin using VDI but that is also up to an extent.

As far as data is concerned, clarity on data ownership and its compliance has to
be decided. Incase DaaS provider controls one’s data but archiving or
purging-related activities shall be governed by data owners so that regulatory
compliance related to data can be maintained. Another major area to focus on is
licensing regulations; DaaS should be compliant with licensing types and security
roles provided to multiple users. An expert should be available in a company
adopting for DaaS to oversee these kinds of issues as licensing noncompliance
might cause in spending more money.

There are multiple service providers available in the market to offer DaaS to the
organizations. The adoption of DaaS is more in urban areas than in nonurban areas
because of multiple major issues such as latency, availability of local resources,
conservation in putting the data in cloud due to security. With the continuous
advancement in technologies available with service providers, high-speed Internet
has resolved latency issues. Service providers are also providing services, using
multiple technologies, which require low bandwidth needs.

Data migration is also very important factor as companies while migrating from
on-premise deployed applications to cloud-based applications do think about the
history of the data. In data migration cases, the size of data also matters and need to
create a data migration strategy [6] arises. The challenge is to perform the data
migration within reasonable performance parameters. Stretching out a migration
over days or even weeks becomes a data center dilemma. The migration solution,
has to increase its efficiency to allow for business change and for agility to decrease
the likelihood of errors in the process of confining precious IT administrative
resources.

Availability of critical application is required by all businesses. For applications,
hosted on cloud, availability is backed by stringent SLAs provided by cloud service
providers. There are important applications which require scheduled downtime. To
achieve application availability, virtualization is done at hardware as well as soft-
ware levels.

604 N. Chawla and D. Kumar

DaaS has huge potential in the market especially for the organizations which
want high security and do not want users to store any company-related data in their
devices like PC, laptop, but these are early years for DaaS with a limited number of
organizations as buyers due to main challenge of consistent or unavailable
bandwidth

The human factor presents challenges in adoption as well: IT skill sets and user
acceptance/experience were both cited as inhibitors by 40% of respondents.

5 Formulation of TCO/ROI

This aim of this section is to provide the parameters to be used to calculate the TCO
[7] and then the ROI to adopt DaaS. TCO is total costs included to set up and adopt
DaaS. The view given below can used to give the short-term view instead of
long-term view and also not able to provide the hidden investments that might
minimize the ROI. TCO is unlike ROI as it defines the costs related to purchase of
new things. Multiple vendors provide TCO calculation such as TCO/ROI evaluated
at VMware TCO/ROI calculator [8, 9].

1. DaaS Benefits

DaaS promises a major value add of shifting cost from CAPEX to OPEX,
lowering the up-front investments, generating standardization of processes, higher
agility to enable organization users. Some of the benefits are tangible, and some are
intangible.

Table 2 shows the benefits, challenges, and cost components to be considered to
calculate the TCO.

ROI calculation is significant for the organization which is looking to do any
transformation. DaaS adoption is also a kind of transformation which involves
change management across all the employees as users will be connected to cen-
tralized servers to access their desktop instances. It is vital to answer few questions:
“Is it right time to shift to DaaS?” and “Are we doing it with right consultants or
vendors?” ROI not only includes up-front investments but also includes resources
effort, time, and organizational maturity to adopt DaaS.

Although the applicability of ROI cannot be generalized and depends upon one
organization to another, a base model can help any organization to validate the
initial levels and then can customize as per the needs. These organizations have
structured way of calculating ROI; nevertheless, it is important to pursue
cloud-specific ROI models. Below are the formulas used.

TCO ¼ Upfront InvestmentsþRecurring ExpenditureþTermination Expenditure

ROI ¼ DaaS Benefits Tangible Benefitsþ Intangible Benefits � Business Challenges Impactð Þ � TCO
TCO

Desktop Virtualization—Desktop as a Service and Formulation … 605

Table 2 Tangible (quantifiable) and intangible (strategic) benefits, challenges, and cost

Tangible benefits Description

Reduction of high-end PC PC cost for employees is shifted from CAPEX to OPEX
as users will be moved to DaaS (cloud)

Reduction of operating systems Licenses purchase cost is shifted from CAPEX to OPEX

Reduction of antivirus licenses Licenses purchase cost is shifted from CAPEX to OPEX

Reduction of workstation security
tools

Licenses purchase cost is shifted from CAPEX to OPEX

Reduction of upgrades/updates cost Maintenance (upgrades, updates, patches, etc.) are
required to be done at server instead of PC

Increased productivity User mobility and ubiquitous access can increase
productivity. Collaborative applications increase
productivity and reduce rework

Improved data security and privacy As the data is stored in server so theft of laptop shall not
affect any organization data privacy

Disaster recovery As the data is stored in server which is linked to disaster
recovery site

No data loss in case of PC crash As the data is stored in server so loss or crash of PC shall
not affect

Improved performance due to less
SLA to configure

Configuration of new user can be done in very less time

Intangible benefits Description

Focus on core business Relocation of IT resources to support core business
functions.

Risk transfer like data loss Make sure the cloud service provider is providing the
facility of disaster recovery so that data loss risk can be
covered in case of any mishap

Challenges to consider Description

Bandwidth issues Bandwidth issues at user end can refrain connecting to
DaaS at cloud

Up-front cost Description

Infrastructure readiness Some investment in bandwidth may be necessary to
accommodate the new demand for network/Internet
access. Other infrastructure components may need to be
upgraded

Implementation Contracting to perform consulting and implementation
activities to migrate to cloud

Change management Implementation of new process and then execution of
processes to support users

Integration Services required to integrate other internal applications
or cloud-based applications

Recurring cost Description

Subscription fee These will comprise agreed-on periodic fees (monthly,
quarterly, yearly) for the use of cloud services

Professional implementation fee In case of DaaS, server integration is required with the
existing organization servers

(continued)

606 N. Chawla and D. Kumar

6 Conclusion

This paper introduces the comparison of various service providers. Desktop vir-
tualization technologies offer many advantages, but attention must be paid what is
the main goal and accordingly which technology to implement—to follow the
trends, to reduce costs, to make administration easier, to achieve user flexibility or
something else. The way organizations are moving from private infrastructure,
those days are not far away when all the services on cloud will be available and
used. Almost every organization is thinking of moving servers on cloud, and
desktops connect with these servers so the movement of desktops on cloud is the
next to be available on cloud.

It is very difficult to create an ROI model which can provide result straightaway
to the organizations. There are cases where savings are obvious due to the reduction
of costly hardware and other mandatory software licenses for the PC/laptop/mobile/
tablets. However, there are hidden costs in the long term and most evident one is
bandwidth required to use DaaS. ROI should also factor the view of time duration
such as short term, medium term, or long term. Weightage of the factors is also
dependent on the organization; for example, security is a major factor for some
organizations like call center whereas IT resources want to have their machines for
the development purpose

References

1. https://en.wikipedia.org/wiki/Desktop_virtualization
2. http://www.vmware.com/
3. Haga, Y., Imaeda, K., Jibu, M.: Windows server 2008 R2 hyper-V server virtualization.

Fujitsu Sci. Tech. J. 47(3), 349–355 (2011)
4. http://www.webopedia.com/TERM/A/application_virtualization.html

Table 2 (continued)

Tangible benefits Description

Subscriber management Management of subscriber to keep track of maintenance
activities, contract scope of work and SLA adherence

Data migration from cloud Data migration from the cloud to internal raw database
and then transform the data into new form according to
the new application database.

Readiness of internal hardware and
its related infrastructure

Procurement and configuration of internal hardware
including processing power and storage

Termination charges Charges for early termination

IT resources Resources to support the new applications and
infrastructure

Desktop Virtualization—Desktop as a Service and Formulation … 607

https://en.wikipedia.org/wiki/Desktop_virtualization
http://www.vmware.com/
http://www.webopedia.com/TERM/A/application_virtualization.html

5. Hardy, J., Liu, L., Lei, C., Li, J.X.: Internet-based virtual computing infrastructure for cloud
computing. In: Principles, Methodologies, and Service-Oriented Approaches For Cloud
Computing, Chap. 16, pp. 371–389. IGI Global, Hershey, Pa, USA (2013)

6. Kushwah, V.S., Saxena, A.: Security approach for data migration in cloud computing. Int.
J. Sci. Res. Publ. 3(5), 1 (2013)

7. Kornevs, M., Minkevica, V., Holm, M.: Cloud computing evaluation based on financial
metrics. Inf. Technol. Manag. Sci. 15(1), 87–92 (2013)

8. VMware TCO/ROI Calculator, VMware, http://roitco.vmware.com/vmw/
9. Frequently Asked Questions, Report of VMware ROI TCO Calculator, Version 2.0, VMware

(2013)
10. http://www.vmware.com/cloud-services/desktop/horizon-air-desktop/compare.html
11. http://aws.amazon.com/workspaces/pricing/
12. http://www.desktopasservice.com/desktop-as-a-service-pricing/
13. http://azure.microsoft.com/en-us/pricing/details/virtual-machines/
14. https://en.wikipedia.org/wiki/Bring_your_own_device
15. http://investors.citrix.com/releasedetail.cfm?ReleaseID=867202
16. http://blogs.gartner.com/chris-wolf/2012/12/10/desktop-virtualization-trends-at-gartner-data-

center/
17. http://custom.crn.com/cloudlive/intelisys/assets/pdf/DaaS-Gaining-Ground-2014-Research-

Survey-FINAL.PDF

608 N. Chawla and D. Kumar

http://roitco.vmware.com/vmw/
http://www.vmware.com/cloud-services/desktop/horizon-air-desktop/compare.html
http://aws.amazon.com/workspaces/pricing/
http://www.desktopasservice.com/desktop-as-a-service-pricing/
http://azure.microsoft.com/en-us/pricing/details/virtual-machines/
https://en.wikipedia.org/wiki/Bring_your_own_device
http://investors.citrix.com/releasedetail.cfm?ReleaseID=867202
http://blogs.gartner.com/chris-wolf/2012/12/10/desktop-virtualization-trends-at-gartner-data-center/
http://blogs.gartner.com/chris-wolf/2012/12/10/desktop-virtualization-trends-at-gartner-data-center/
http://custom.crn.com/cloudlive/intelisys/assets/pdf/DaaS-Gaining-Ground-2014-Research-Survey-FINAL.PDF
http://custom.crn.com/cloudlive/intelisys/assets/pdf/DaaS-Gaining-Ground-2014-Research-Survey-FINAL.PDF

An Assessment of Some Entropy
Measures in Predicting Bugs
of Open-Source Software

Vijay Kumar, H. D. Arora and Ramita Sahni

Abstract In software, source code changes are expected to occur. In order to meet
the enormous requirements of the users, source codes are frequently modified. The
maintenance task is highly complicated if the changes due to bug repair,
enhancement, and addition of new features are not reported carefully. In this paper,
concurrent versions system (CVS) repository (http://bugzilla.mozilla.org) is taken
into consideration for recording bugs. These observed bugs are collected from some
subcomponents of Mozilla open-source software. As entropy is helpful in studying
the code change process, and various entropies, namely Shannon, Renyi, and
Tsallis entropies, have been evaluated using these observed bugs. By applying
simple linear regression (SLR) technique, the bugs which are yet to come in future
are predicted based on current year entropy measures and the observed bugs.
Performance has been measured using various R2 statistics. In addition to this,
ANOVA and Tukey test have been applied to statistically validate various entropy
measures.

Keywords Bug prediction � Entropy � Coding � Software repositories
Open-source software

V. Kumar
Department of Mathematics, Amity School of Engineering and Technology,
New Delhi 110061, India
e-mail: vijay_parashar@yahoo.com

H. D. Arora � R. Sahni (&)
Department of Applied Mathematics, Amity Institute of Applied Sciences,
Amity University, Sector-125, Noida, Uttar Pradesh, India
e-mail: smiles_ramita@yahoo.co.in

H. D. Arora
e-mail: hdarora@amity.edu

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_58

609

http://bugzilla.mozilla.org
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_58&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_58&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_58&domain=pdf

1 Introduction

The software industry people are gaining a lot of attention due to the success and
development of open-source software community. Open-source software is the
software whose source code is available for modification by everyone with no
central control. Due to factors like fewer bugs, better reliability, no vendor
dependence, educational support, shorter development cycles, open-source software
system gives an aggressive competition to the closed-source software. Due to
increasing popularity of open-source software, changes in source code are
unavoidable. It is a necessity to record changes properly in storage locations, viz.
source code repositories. There is a direct correlation between the number of
changes and faults or bugs in the software system. Bugs may be introduced at any
phase of the software development life cycle, and by lying dormant in the software,
bugs affect the quality and reliability of the software system, thereby making the
system complex. Measuring complexity is an essential task which starts from
development of code to maintenance. Entropy, a central concept of information
theory, is defined as measure of randomness/uncertainty/complexity of code
change. It tells us how much information is present in an event. Information theory
is a probabilistic approach dealing with assessing and defining the amount of
information contained in a message. While dealing with real-world problems, we
cannot avoid uncertainty. The paramount goal of information theory is to capture or
reduce this uncertainty.

In this paper, the data has been collected for 12 subcomponents of Mozilla
open-source system, namely Doctor, Elmo, AUS, DMD, Bonsai, Bouncer, String,
Layout Images, Toolbars and Toolbar Customization, Identity, Graph Server, and
Telemetry Server. Initially, the number of bugs/faults present in each component is
reported for 7 years from 2008 to 2014. Thereafter, for the data extracted from these
subcomponents, Shannon entropy [1], Renyi entropy [2], and Tsallis entropy [3]
have been evaluated for each time period, i.e., from 2008 to 2014. Simple linear
regression (SLR) using Statistical Package for Social Sciences (SPSS) has been
applied between the entropy calculated and observed bugs for each time period to
obtain the regression coefficients. These regression coefficients have been used to
calculate the predicted bugs for the coming year based on the entropy of the current
year. Performance has been measured using goodness of fit curve and other R2

statistics. In addition to this, ANOVA and Tukey test have been applied to statis-
tically validate various entropy measures. There are many measures of entropy, but
only these three entropies are considered for this study to compile and conclude
results based on these measures, other measures may also be taken for further study
and analysis, and comparative study is another area of research. The paper is further
divided into the following sections. Section 2 contains the literature review of the
work previously been done. Section 3 provides the basics of entropy measures and
the code change process. Section 4 discusses the methodology adopted in this paper
with data collection and preprocessing and calculation of entropy measures. In
Sect. 5, the bug prediction modeling approach is described. In Sect. 6, the

610 V. Kumar et al.

assessment of entropy measures has been discussed. Finally, the paper is concluded
with limitations and future scope in Sect. 7.

2 Literature Review

Researchers have proposed and implemented a huge number of approaches for
prediction of dormant bugs lying in the software and for measuring the reliability
growth of the software (Goel and Okumoto [4]; Huang et al. [5]; Kapur and Garg
[6]; Kapur et al. [7]; Kapur et al. [8]; etc.). Hassan [9] proposed information theory
to measure the amount of uncertainty or entropy of the distribution to quantify the
code change process in terms of entropy and used entropy-based measures to
predict the bugs based on past defects. Ambros and Robbes [10] provided an
extensive comparison of well-known bug prediction approaches. Singh and
Chaturvedi [11] developed a theoretical agenda for developing bug tracking and
reliability assessment (BTRAS) based on different classification criteria. Khatri
et al. [12] presented a generalized model to find out the proportion of bug com-
plexity present in the software for providing better software production. Singh and
Chaturvedi [13] collected the source code change data of Mozilla components to
validate the proposed method and to predict the bugs yet to come in future based on
the current year entropy by applying simple linear regression and support vector
regression techniques. Chaturvedi et al. [14] presented a novel approach to predict
the potential complexity of code changes using entropy-based measures. These
predicted changes help in determining the remaining code changes yet to be dif-
fused in the software. The diffusion of change complexity has been validated using
some subcomponents of Mozilla project. Singh et al. [15] proposed three approa-
ches, namely software reliability growth models, potential complexity of code
change-based models, and code change complexity-based models to determine the
presence of potential bugs in the software. Sharma et al. [16] developed prediction
models for determining severity level of a reported bug based on attributes, namely
priority, number of comments, number of dependents, number of duplicates,
complexity, summary weight, and CC list (a list of people who get mail when the
bug changes) in cross-project context. They also considered bug reports of some
products of Mozilla open-source project for empirical validation.

3 Entropy Measures and Code Change Process

The concept of entropy in information theory was developed by Shannon [1]. He
defined a formal measure of entropy, called Shannon entropy:

An Assessment of Some Entropy Measures in Predicting Bugs … 611

S ¼ �
Xn
i¼1

pi log2 pi ð1Þ

where pi is the probability of occurrence of an event.
A systematic approach to develop a generalization of Shannon entropy [1] was

made by Renyi [2] who characterized entropy of order a defined as follows:

R ¼ 1
1� a

log
Xn
i¼1

pai

 !
; a 6¼ 1; a[0 ð2Þ

where a is a real parameter.
Tsallis [3] proposed another generalization of Shannon entropy [13] defined as:

T ¼ 1
a� 1

1�
Xn
i¼1

pai

 !
; a 6¼ 1; a[0 ð3Þ

Renyi entropy [2] and Tsallis entropy [3] reduce to Shannon entropy [1] when
a ! 1.

For Renyi [2] and Tsallis entropies [3], any value of a[0 can be taken, other
than 1 to study the variation and effect of varying alpha on entropies. So here, five
values of parameter a i.e., 0.1, 0.3, 0.5, 0.7, and 0.9 are taken into consideration.

The code change process refers to study the patterns of source code changes/
modifications. Bug repair, feature enhancement, and the addition of new features
cause these changes/modifications. The entropy-based estimation plays a vital role
in studying the code change process. Entropy is determined based on the number of
changes in a file for a particular time period with respect to total number of changes
in all files. Keeping in mind the frequency of changes in the code, we can decide the
specific duration to be day, month, year, etc. For example, consider that there are 13
changes occurred for four files and three periods. Let P1, P2, P3, and P4 be the four
files and S1, S2, and S3 be the three periods. In S1, files P1, P2, and P4 have one
change each and P3 has two changes. Table 1 depicts the total number of changes
occurring in each file in respective time periods S1, S2, and S3.

Table 1 Number of changes (denoted by *) in files with respect to a specific period of time where
P1, P2, P3, and P4 represent the files and S1, S2, and S3 represent the time periods

File/time S1 S2 S3

P1 * * *

P2 * *

P3 ** **

P4 * ** *

612 V. Kumar et al.

Total files in S1 = 5. Thus, probability of P1 for S1 = 1/5 = 0.2; probability of
P2 for S1 = 1/5 = 0.2; probability of P3 for S1 = 2/5 = 0.4; and probability of P4
for S1 = 1/5 = 0.2. Similarly, we can find out the probabilities of the time periods
S2 and S3. Based upon the above probabilities, we have calculated Shannon
entropy [13], Renyi entropy [11], and Tsallis entropy.

4 Methodology

In this paper, first the data is collected and preprocessed and then entropy measures
have been calculated.

4.1 Data Collection and Preprocessing

Mozilla is open-source software that offers choice to the users and drives innovation
on the Web. It is a free software community which produces a large number of
projects like Thunderbird, the bug tracking system Bugzilla, etc. In this paper, we
have selected few components of Mozilla software with respective bugs from the
CVS repository: http://bugzilla.mozilla.org [17]. Steps for data collection, extrac-
tion, and prediction of bugs are as follows:

1. Choose the project, select the subsystems, and browse CVS logs.
2. Collect bug reports of all subsystems, extract bugs from these reports, and

arrange bugs on yearly basis for each subsystem.
3. Calculate Shannon entropy, Renyi entropy, and Tsallis entropy for each time

period using these bugs reported for each subsystem.
4. Use SLR model to predict bugs for the coming year based on each entropy

calculated for each time period.

In our study, we have taken a fixed period as 1 year taken from 2008 to 2014.
We have considered 12 subsystems with number of bugs as 6 bugs in Doctor, 32
bugs in Elmo, 72 bugs in Graph Server, 43 bugs in Bonsai, 45 bugs in Bouncer, 33
bugs in String, 12 bugs in DMD, 90 bugs in Layout Images, 23 bugs in AUS, 39
bugs in Identity, 12 bugs in Telemetry Server, and 36 bugs in Toolbars and Toolbar
Customization.

4.2 Evaluation of Shannon, Renyi, and Tsallis Entropies

This data information has been used to calculate the probability of each component
for the seven time periods from 2008 to 2014 as discussed in Sect. 3. Using these
probabilities Shannon [1], Renyi [2] and Tsallis entropies [3] are calculated using

An Assessment of Some Entropy Measures in Predicting Bugs … 613

http://bugzilla.mozilla.org

Eq. (1)–(3), respectively, for each time period. For Renyi [2] and Tsallis entropies
[3], five values of a, i.e., 0.1, 0.3, 0.5, 0.7, and 0.9 are considered. Table 2 shown
below depicts the Shannon entropy [1], Renyi entropy [2], and Tsallis entropy [3]
for each year.

From this analysis, it has been observed that Shannon entropy [1] lies between 2
and 4. It is maximum in the year 2014 and minimum in the year 2009. Renyi
entropy [2] and Tsallis entropy [3] decrease as the value of a increases. At a ¼ 0:1;
Renyi entropy [2] is maximum for each time period, and at a ¼ 0:9, Renyi entropy
[11] is minimum for each time period. Similarly, at a ¼ 0:1, Tsallis entropy [3] is
maximum for each time period, and at a ¼ 0:9, Tsallis entropy [3] is minimum for
each time period.

5 Bug Prediction Modeling

Simple linear regression (SLR) [18] model is the most elementary model involving
two variables in which one variable is predicted by another variable. The variable to
be predicted is called the dependent variable, and the predictor is called the inde-
pendent variable The SLR has been widely used to repress the dependent variable
Y using independent variable X with the following equation

Y ¼ AþBX ð4Þ

where A and B are regression coefficients.
The regression coefficients can be obtained using the simple linear regression

technique using Statistical Package for Social Sciences (SPSS). After estimating the
regression coefficients using different measures of entropy and historical data of
observed bugs, a system is constructed with which we can predict bugs likely to
occur in the next year. In this study, X, i.e., entropy measure, is considered to be an
independent variable and Y, i.e., predicted bugs likely to occur next year, is con-
sidered to be a dependent variable. Here X, i.e., entropy measure, is different in each
case, i.e., as Shannon entropy [1], Renyi entropy [2], and Tsallis entropy [3]. For
Renyi [2] and Tsallis entropies [3], five parameter values are considered, viz. 0.1,
0.3, 0.5, 0.7, and 0.9. The following notations are used for simplicity:

X: entropy measures; Yo: observed bugs; Y: predicted bugs for Shannon
entropy.YR/ represents the predicted bugs for Renyi entropy with a varying as 0.1,
0.3, 0.5, 0.7, and 0.9, respectively.YT/ represents the predicted bugs for Tsallis
entropy with a varying as 0.1, 0.3, 0.5, 0.7, and 0.9, respectively. Table 3 depicts
the predicted bugs along with Shannon entropy [13], Renyi entropy [11], and
Tsallis entropy [19].

614 V. Kumar et al.

T
ab

le
2

Sh
an
no

n
en
tr
op

y,
R
en
yi

en
tr
op

y,
an
d
T
sa
lli
s
en
tr
op

y
fo
r
ea
ch

tim
e
pe
ri
od

w
ith

di
ff
er
en
t
va
lu
es

of
a

Y
ea
r

S
R
(0
.1
)

R
(0
.3
)

R
(0
.5
)

R
(0
.7
)

R
(0
.9
)

T(
0.
1)

T(
0.
3)

T(
0.
5)

T(
0.
7)

T(
0.
9)

20
08

2.
49

09
0.
83

42
0.
81

31
0.
79

35
0.
77

99
0.
75

78
5.
14

93
3.
86

98
2.
98

65
2.
35

99
1.
90

65

20
09

2.
47

61
0.
77

45
0.
76

73
0.
76

09
0.
75

44
0.
74

84
4.
42

03
3.
49

29
2.
80

26
2.
27

98
1.
88

05

20
10

2.
73

19
0.
89

28
0.
87

35
0.
85

68
0.
84

16
0.
82

84
5.
95

67
4.
41

19
3.
36

32
2.
62

84
2.
10

16

20
11

2.
72

81
0.
89

55
0.
87

98
0.
86

39
0.
84

71
0.
82

99
5.
99

73
4.
47

14
3.
40

75
2.
65

09
2.
10

58

20
12

2.
99

42
0.
98

73
0.
96

38
0.
94

35
0.
92

51
0.
90

88
7.
48

68
5.
32

78
3.
92

64
2.
98

21
2.
32

77

20
13

3.
01

71
1.
05

99
1.
02

22
0.
98

70
0.
95

35
0.
92

27
8.
88

31
5.
99

49
4.
23

05
3.
10

73
2.
36

71

20
14

3.
15

96
1.
03

09
1.
01

08
0.
99

24
0.
97

49
0.
95

88
8.
30

07
5.
85

89
4.
26

97
3.
20

32
2.
47

02

An Assessment of Some Entropy Measures in Predicting Bugs … 615

T
ab

le
3

Pr
ed
ic
te
d
bu

gs
us
in
g
en
tr
op

y
m
ea
su
re
s

Y
ea
r

Y o
Y

Y
R
a¼

0:
1

Y
R
a¼

0:
3

Y
R
a¼

0:
5

Y
R
a¼

0:
7

Y
R
a¼

0:
9

Y
T
a¼

0:
1

Y
T
a¼

0:
3

Y
T
a¼

0:
5

Y
T
a¼

0:
7

Y
T
a¼

0:
9

20
08

45
29

40
38

35
33

30
40

38
35

32
30

20
09

27
27

25
25

25
25

26
29

27
26

26
26

20
10

41
56

55
55

54
54

55
53

53
53

54
55

20
11

53
55

56
56

57
56

56
54

55
55

56
56

20
12

80
85

79
80

81
83

84
77

79
81

82
84

20
13

68
88

98
96

95
92

89
10

0
98

95
93

89

20
14

12
9

10
4

90
93

96
10

0
10

2
90

94
97

10
0

10
3

616 V. Kumar et al.

6 Assessment of Entropy Measures

The statistical performance and regression coefficients using SPSS for the consid-
ered data sets are shown in Table 4.

From Table 4, it is concluded that for Shannon entropy [1], R2 is maximum, i.e.,
0.775, and adjusted R2 is maximum, i.e., 0.730. For Renyi entropy [2], it is
observed that on increasing a from 0.1 to 0.9, the value of R2 increases from 0.620
to 0.763 and adjusted R2 also increases from 0.544 to 0.716. For example, R2 ¼
0:775 implies that 77.5% of the variance in dependent variable is predictable from
independent variables, and adjusted R2 ¼ 0:730 implies that there is 73.0% varia-
tion in the dependent variable. Similar conclusion can be drawn for Tsallis entropy
[3].

Further, we have performed the analysis of variance (ANOVA) test and Tukey
test to validate the entropy measure results considered in this paper. The one-way
ANOVA is used to only determine whether there are any significant differences
between the means of three or more independent (unrelated) groups. To determine
which specific groups differed from each other, multiple comparison test, i.e.,
Tukey’s HSD test, is used. It takes into consideration the number of treatment
levels, the value of mean square error and the sample size and the statistic q that we
look up in a table (studentized range statistic table). Once the HSD is computed, we
compare each possible difference between means to the value of the HSD. The
difference between two means must equal or exceed the HSD in order to be sig-
nificant. The formula to compute a Tukey’s HSD test is as follows:

Table 4 Statistical performance parameters for entropy measures using simple linear regression

Entropy
measures

Parameter (a) R R2 Adjusted
R2

Std. error of
the estimate

Regression
coefficients

A B

Shannon
entropy

– 0.881 0.775 0.730 17.57127 −250.486 112.073

Renyi
entropy

0.1 0.787 0.620 0.544 22.86081 −171.528 253.845

0.3 0.812 0.659 0.590 21.65929 −190.628 280.770

0.5 0.835 0.697 0.637 20.39309 −209.866 308.490

0.7 0.860 0.739 0.687 18.93128 −232.461 340.699

0.9 0.874 0.763 0.716 18.03841 −243.825 361.012

Tsallis
entropy

0.1 0.782 0.611 0.534 23.11530 −41.947 15.946

0.3 0.814 0.663 0.595 21.53316 −72.233 28.378

0.5 0.841 0.707 0.648 20.06774 −110.451 48.672

0.7 0.862 0.742 0.691 18.82165 −158.038 80.642

0.9 0.876 0.767 0.721 17.89233 −216.574 129.226

An Assessment of Some Entropy Measures in Predicting Bugs … 617

HSD ¼ q

ffiffiffiffiffiffiffiffiffiffi
MSE
n

r
ð5Þ

where MSE: mean square error, n: sample size, and q: critical value of the stu-
dentized range distribution

6.1 One-Way ANOVA

We have applied one-way ANOVA for Shannon [1], Renyi [2], and Tsallis
entropies [3]. The ANOVA test has been applied to five cases. In case 1, Shannon
entropy, Renyi entropy for a ¼ 0:1, Tsallis entropy for a ¼ 0:1 are considered, and
in case 2, Shannon entropy, Renyi entropy for a ¼ 0:3, Tsallis entropy for a ¼ 0:3
are considered. Other cases are defined similarly taking a as 0.5, 0.7, and 0.9
respectively. In all the cases, Shannon entropy values remain the same as this
entropy is independent of a. We set null and alternate hypothesis as

Ho : There is no significant difference between the three means. H1 : There is a
significant difference between the three means. Level of confidence is chosen as
0.05 for ANOVA test. Table 5 depicts the results obtained from ANOVA.

It is observed from Table 5 that the calculated value of F in all the five cases is
greater than the critical value of F at 0.05. Thus, the null hypothesis is rejected, and
alternate hypothesis is accepted. Thus, there is a significant difference in the means
of three different measures of entropy, viz. Shannon’s [1], Renyi’s [2], and Tsallis’s
[3] entropies. In order to find out which groups show a significant difference,
Tukey’s HSD test is applied.

6.2 Tukey’s HSD Test

We find ‘q’ from studentized range statistic table using degree of freedom (within)
(ANOVA results) and number of conditions ‘c.’ Here, in all the cases, degree of
freedom (within) is 18, and number of conditions is 3, and sample size ‘n’ is 7.
Thus, ‘q’ from the table for 0.05 level of confidence is 3.61. HSD is computed
using Eq. (5), and MSE (mean square error) values are observed from ANOVA

Table 5 Variability of
Shannon, Renyi, and Tsallis
entropies using ANOVA

Cases F(calculated) p value F critical

Case 1 61.8925 8.57E-09 3.554557

Case 2 76.91664 1.52E-09 3.554557

Case 3 95.27835 2.66E-10 3.554557

Case 4 121.6313 3.5E-11 3.554557

Case 5 159.5823 3.52E-12 3.554557

618 V. Kumar et al.

T
ab

le
6

R
es
ul
ts
of

T
uk

ey
te
st

C
as
es

M
SE

H
SD

Sh
an
no

n
en
tr
op

y
(m

ea
n)

R
en
yi

en
tr
op

y
(m

ea
n)

T
sa
lli
s

en
tr
op

y
(m

ea
n)

Sh
an
no

n
ve
rs
us

R
en
yi

en
tr
op

y
(d
iff
er
en
ce

of
m
ea
ns
)

R
en
yi

ve
rs
us

T
sa
lli
s

en
tr
op

y
(d
iff
er
en
ce

of
m
ea
ns
)

T
sa
lli
s
ve
rs
us

Sh
an
no

n
en
tr
op

y
(d
iff
er
en
ce

of
m
ea
ns
)

C
as
e
1

0.
94

52
51

1.
32

65
74

2.
79

97
14

0.
92

50
29

6.
59

91
74

1.
87

46
85

5.
67

41
45

3.
79

94
6

C
as
e
2

0.
34

09
9

0.
79

67
62

2.
79

97
14

0.
90

43
46

4.
77

54
17

1.
89

53
68

3.
87

10
71

1.
97

57
03

C
as
e
3

0.
14

03
42

0.
51

11
54

2.
79

97
14

0.
88

54
48

3.
56

95
34

1.
91

42
66

2.
68

40
86

0.
76

98
2

C
as
e
4

0.
06

95
93

0.
35

99
48

2.
79

97
14

0.
86

80
61

2.
74

45
16

1.
93

16
53

1.
87

64
55

0.
05

51
98

C
as
e
5

0.
04

33
52

0.
28

40
94

2.
79

97
14

0.
85

06
94

2.
16

56
57

1.
94

90
2

1.
31

49
63

0.
63

40
57

An Assessment of Some Entropy Measures in Predicting Bugs … 619

results. The mean of Shannon entropy is same for all cases as it is independent of a.
Using these values, the difference between each pair of means is evaluated. The
pairs are defined as follows: Shannon entropy versus Renyi entropy, Renyi entropy
versus Tsallis entropy, and Tsallis entropy versus Shannon entropy. Table 6 depicts
the values of HSD, MSE, means of the entropies, and difference of means for all the
cases.

In case 1, case 2, case 3, and case 5 for all the three pairs, i.e., Shannon versus
Renyi, Renyi versus Tsallis, and Tsallis versus Shannon, the HSD value is less than
their respective difference of means. Thus, according to Tukey test, the difference
between Shannon entropy and Renyi entropy, Renyi entropy and Tsallis entropy,
and Tsallis entropy and Shannon entropy are statistically significant. But in case 4,
the difference of means of the pair Tsallis versus Shannon is less than the HSD
value. Thus, for this case, the difference between Tsallis entropy and Shannon
entropy is not statistically significant, whereas the difference between Shannon
entropy and Renyi entropy and Renyi entropy and Tsallis entropy are statistically
significant.

7 Conclusion and Future Scope

The quality and reliability of the software are highly affected by the bugs lying
dormant in the software. After collecting bug reports of each subcomponent from
the CVS repository, the number of bugs present in each of them is recorded on
yearly basis taken from 2008 to 2014. Using these data sets, the Shannon entropy,
Renyi entropy, and Tsallis entropy are calculated. Renyi entropy and Tsallis
entropy for five different values of a are considered, i.e., a ¼ 0:1; 0:3; 0:5; 0:7; 0:9.
It is observed that for this data set obtained, Shannon entropy lies between 2 and 4.
Renyi and Tsallis entropies decrease as a value increases. Simple linear regression
technique is applied to calculate the predicted bugs using the calculated entropy and
observed bugs in SPSS software. These predicted bugs help in maintaining the
quality of the software and reducing the testing efforts. We have compared the
performance of different measures of entropy considered on the basis of different
comparison criteria, namely R2, adjusted R2, and standard error of estimate. It is
also observed that among Shannon entropy, Renyi entropy, and Tsallis entropy, R2

is maximum in the case of Shannon entropy, i.e., R2 ¼ 0:775. In the case of Renyi
entropy, R2 is maximum when a ¼ 0:9, i.e., R2 ¼ 0:763. Similarly, for Tsallis
entropy also, R2 is maximum when a ¼ 0:9, i.e., R2 ¼ 0:767. By applying ANOVA
and Tukey test, the different measures of entropy are validated. In this paper, only
open-source Mozilla products are considered. The study may be extended to other
open-source and closed-source software systems with different subcomponents.
Entropy measures, namely, Shannon entropy, Renyi entropy, and Tsallis entropy,
are considered for evaluation of predicted bugs, and the parameter value for Renyi
entropy and Tsallis entropy is limited to few values. The study may be extended for

620 V. Kumar et al.

other measures of entropy with different parameter values. This study can further be
extended to analyze the code change process using other entropy measures in other
projects which can be further used in predicting the future bugs in a project.

References

1. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423
(1948). 623–656

2. Renyi, A.: On measures of entropy and information. In: Proceedings 4th Berkeley
Symposium on Mathematical Statistics and Probability, vol. 1, pp. 547–561 (1961)

3. Tsallis, C., Mendes, R, Plastino, A. The role constraints within generalised non extensive
statistics. Physica 261A, pp. 534–554 (1998)

4. Goel, A.L., Okumoto, K.: Time dependent error detection rate model for software reliability
and other performance measures. IEEE Trans. Reliab. 28(3), 206–211 (1979)

5. Huang, C.Y., Kuo, S.Y., Chen, J.Y.: Analysis of a software reliability growth model with
logistic testing effort function. In: Proceedings of Eighth International Symposium on
Software Reliability Engineering, pp. 378–388 (1997)

6. Kapur, P.K., Garg, R.B.: A software reliability growth model for an error removal
phenomenon. Softw. Eng. J. 7, 291–294 (1992)

7. Kapur, P.K., Pham, H., Chanda, U., Kumar, V.: Optimal allocation of testing effort during
testing and debugging phases: a control theoretic approach. Int. J. Syst. Sci. 44(9), 1639–1650
(2013)

8. Kapur, P.K., Chanda, Udayan, Kumar, Vijay: Dynamic allocation of testing effort when
testing and debugging are done concurrently communication in dependability and quality
management. Int. J. Serbia 13(3), 14–28 (2010)

9. Hassan, A.E.: Predicting faults based on complexity of code change. In: The proceedings of
31st International Conference On Software Engineering, pp. 78–88 (2009)

10. Ambros, M.D., Robbes, R.: An extensive comparison of bug prediction approaches. In:
MSR’10: Proceedings of the 7th International Working Conference on Mining Software
Repositories, pp. 31–41 (2010)

11. Singh, V.B., Chaturvedi, K.K.: Bug tracking and reliability assessment system (BTRAS). Int.
J. Softw. Eng. Appl. 5(4), 1–14 (2011)

12. Khatri, S., Chillar, R.S., Singh, V.B.: Improving the testability of object oriented software
during testing and debugging process. Int. J. Comput. Appl. 35(11), 24–35 (2011)

13. Singh, V.B., Chaturvedi, K.K.: Improving the quality of software by quantifying the code
change metric and predicting the bugs. In: Murgante, B., et al. (eds.) ICCSA 2013, Part II,
LNCS 7972, pp. 408–426. Springer, Berlin (2013)

14. Chaturvedi, K.K., Kapur, P.K., Anand, S., Singh, V.B.: Predicting the complexity of code
changes using entropy based measures. Int. J. Syst. Assur. Eng. Manag. 5(2), 155–164 (2014)

15. Singh, V.B., Chaturvedi, K.K., Khatri, S.K., Kumar, V.: Bug prediction modelling using
complexity of code changes. Int. J. Syst. Assur. Eng. Manag. 6(1), 44–60 (2014)

16. Sharma, M., Kumari, M., Singh, R.K., Singh, V.B.: Multiattribute based machine learning
models for severity prediction in cross project context. In: Murgante, B., et al. (eds.) ICCSA
2014, Part V, LNCS 8583, pp. 227–241 (2014)

17. http://bugzilla.mozilla.org
18. Weisberg, S.: Applied linear regression. Wiley, New York (1980)

An Assessment of Some Entropy Measures in Predicting Bugs … 621

http://bugzilla.mozilla.org

A Path Coverage-Based Reduction
of Test Cases and Execution Time Using
Parallel Execution

Leena Singh and Shailendra Narayan Singh

Abstract A novel method for ameliorating the effectiveness of software testing is
proposed, which focuses the reduction of number of test cases using prevailing
techniques. The domains of each input variable are reduced by using
ReduceDomains algorithm. Then, the method allocates fixed values to variables
using algebraic conditions for the reduction of number of test cases by using
prevailing method. By performing this, the values of the variables would be
restricted in a fixed range, subsequently making lesser number of potential test
cases to process. The projected method is based on the parallel execution in which
all the independent paths are executed parallelly in spite of sequential execution and
reduces the number of test cases and execution time.

Keywords Software testing � Test case generation � Test suite reduction

1 Introduction

Software testing is used for enhancing the quality and reliability of the software. It
promotes assurance of the actual software that it sticks to its specification appro-
priately. “It is a time-consuming job that accounts for around 50% of the cost of
development of a software system due to high intricacy and large pool of labor.”
“Software testing is based on execution of the software on a fixed set of inputs and an
evaluation of the expected output with the actual output from the software” [1]. The
set of inputs and expected outputs corresponding to each other is known as a test case.
A group of test cases is known as a test suite. Software testers maintain a diversity of
test sets to be used for software testing [2]. “As test suites rise in size, they may
develop so big that it becomes necessary to decrease the sizes of the test sets.

L. Singh (&) � S. N. Singh
ASET, AMITY University, Noida, India
e-mail: leenasingh25@gmail.com

S. N. Singh
e-mail: sns2033@gmail.com

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_59

623

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_59&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_59&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_59&domain=pdf

Reduction of test cases is most thought-provoking than creating a test case. The goal
of software testing is to identify faults in the program and provide more robustness for
the program in test.” “One serious task in software testing is to create test data to
satisfy given sufficiency criteria, among which white box testing is one of the most
extensively recognized. Given a coverage criterion, the problem of creating test data
is to search for a set of data that lead to the maximum coverage when given as input to
the software under test.” So any methods which could reduce the cost, achieve high
testing coverage and number of test cases will have boundless potential. An approach
of reducing testing work, while confirming its efficiency, is to create minimum test
cases automatically from artifacts required in the initial stages of software devel-
opment [3]. Test-data creation is the procedure of recognizing an input data set that
suites a specified testing condition. Test generation technique and application of a
test-data sufficiency criterion are the two main aspects [4]. A test generation tech-
nique is an algorithm to create test sets, whereas a sufficiency criterion is a condition
that finds out whether the testing process is complete or not. Generation of test-data
techniques, which automatically generate test data for satisfying a given test coverage
criterion, has been developed. The common test-data creation techniques are random
test-data generation techniques, symbolic test-data generation technique, dynamic
test-data generation techniques, and, recently, test-data generation techniques based
on optimization techniques [5, 6]. Different studies have been conducted to propose a
reduced test suite from the original suite that covers a given set of test requirements.
Several new strategies of test suite reduction have been reported.Most strategies have
been proposed for code-based suites, but the results cannot be generalized and
sometimes they are divergent [7, 8]. A. Pravin et al. developed an algorithm for
improving the testing process by covering all possible faults in minimum execution
time [9]. B. Subashini et al. proposed a mining approach which is used for the
reduction of test cases and execution time using clustering technique [10]. A practical
based influencing regression testing process has been developed by T. Muthusamy
et al. for quick fault detection to test case prioritization [11]. For reducing test cases,
there are many techniques in the literature such as dynamic domain reduction (DDR),
Coverall algorithm, each having their own advantages and disadvantages. DDR [12]
is based upon an execution of specific path and statement coverage, which covers all
the statement from header files till the end of the source code. In this case, a number of
test cases obtained were 384 for a particular example of calculation of mid-value of
three integers. “Coverall algorithm is used to reduce test cases by using algebraic
conditions to allot static values to variables (maximum, minimum, constant vari-
ables). In this algorithm, numbers of test cases are reduced to 21 for a single assumed
path” [13].

In this paper, a set of tests is generated that each one traverses a specified path.
The purpose is to assure none of the paths in the code is uncovered. For these paths,
generation of a large set of test data is very tedious task. As a result, certain strategy
should be applied to reduce the number of large amount of test cases which is
redundant, i.e., same set of test cases repeating. By applying strategy to avoid

624 L. Singh and S. N. Singh

conflicts, test path generation will be exceeded up to reduce redundancy and pro-
duce effective test cases to cover all paths in a control flow graph.

2 Problem Description

To execute all test cases it takes more time because all test cases are executing
sequentially. As the time being constraint parameter, it is always preferred to reduce
the execution time. As test cases and time are directly related, more the test cases
more will be the execution time. The proposed method is based on the parallel
execution for the reduction of the number of test cases and time of execution. The
advantage of the proposed approach is that in this technique, all the independent
paths are executed parallelly in spite of sequential execution.

3 Proposed Technique

It is based on the parallel execution of all independent paths parallelly which
reduces the quantity (in number) of test cases and execution time. A potential
drawback of existing reduction techniques is that they have covered only one single
path. The goal of the proposed approach is to cover all independent paths which are
executing parallelly in spite of sequential execution.

3.1 Algorithm

A brief outline of the steps involved in the generation of test case and reduction is
as follows:

1. Using the source code (for a program which determines the middle value of
three given integers f, s and t [12]), draw the corresponding control flow graph
of the problem.

2. Then, the cyclomatic complexity is determined from the graph (flow graph).
3. After that, the basis set of linearly independent paths is determined.
4. Then, the domains of each input variable are reduced by using ReduceDomains

algorithm.
5. After that generation of test suites by using algebraic conditions to allot specific

values to variables and check the coverage criteria, if satisfied.
6. Apply parallel test case executer for reduction of large amount of test cases

which is redundant.

A Path Coverage-Based Reduction of Test Cases and Execution … 625

The first step is to construct the control flow graph for a program which finds out
the mid-value of the given three integers f, s and t. The corresponding control flow
graph is constructed as shown in Fig. 1.

A control flow graph illustration of a program is a directed graph comprising of
nodes and edges, where each statement is symbolized by a node and each possible
transfer of control from one statement to another is symbolized by an edge. The
next step is to calculate the cyclomatic complexity which is used to determine the
quantity (in number) of linearly independent paths from flow graph. Each new path
presents a new edge. It is a sign of the total number of test sets that are required to
attain maximum coverage of code. The subsequent test sets offer more in-depth
testing than statement and branch coverage. “It is defined by the equation V
(G) = e − n + 2p where “e” and “n” are the total number of edges and total number
of nodes in a control flow graph and p is number of linked components. The value
of V(G) is a sign of all the probable execution paths in the program and denotes a
lower bound on the number of test cases necessary to test the method completely.”
From Fig. 1, cyclomatic complexity is V(G) = 14 − 0 + 2 = 6.

Therefore, numbers of independent paths are 6, i.e.,
Path1 1 6 7 10

 Path2 1 6 8 9 10

 Path3 1 2 3 10

 Path4 1 2 4 10

 Path5 1 6 8 10

 Path6 1 2 3 5 10

1
w

6 2
w

7
w

8
w

9
w

3
w

4
w

10
w

5
w

Mid =t

s < t

f < sf > s

Mid = s

f < tf > t

f > s f < s

Mid =s

f > t

Mid =f Mid =f

Return (mid)

s > t

Fig. 1 Control flow graph (CFG)

626 L. Singh and S. N. Singh

After this, constraints on each separate path are used to reduce the domain and
then test cases are generated by using algebraic conditions to allot specific values to
variables. All test cases for all paths receive from are shown in Table 1.

From Table 1, range values for variables “f” are used in path 2 and path 6, “s”
used in path 1 and path 4, “t” used in path 3 and path 5, respectively.

Therefore, range values for variables f, s and t are defined as follows:

f1 ¼ �5 to 5
s1 ¼ �10 to � 5
t1 ¼ 0 to 5

Here, f1, s1 t1 are range identifiers.
Individual path test case identifier as shown in Table 2 creates some exclusive

value to every interval on an independent path.

4 Parallel Test Case Executor

The last step is parallel test case executor. The proposed algorithm was executed on
a PC with a 2.10 GHz Intel Core i3-2310 M Processor and 2 GB RAM running on
the Windows 7 operating system. For parallel execution of all paths, Eclipse
Parallel Tools Platform in C is used. As each independent path is executed paral-
lelly by using thread, it contains all combinations of test cases. Figure 2 shows a
part of the source code of parallel execution of all test cases. The screenshot for
parallel execution of all test cases with execution time is presented in Fig. 3.

Table 1 All test cases for all
paths

Test cases Path Variable f Variable s Variable t

T1 Path 1 10 −10 to −5 −10

T2 Path 2 −5 to 5 5 −10

T3 Path 3 5 −10 0–5

T4 Path 4 −5 −10 to −5 10

T5 Path 5 −10 5 0–5

T6 Path 6 −5 to 2 −5 10

Table 2 Individual path test
case identifier

Test cases f s t

T1 10 s1 −10

T2 f1 5 −10

T3 5 −10 t1
T4 −5 s1 10

T5 −10 5 t1
T6 f1 −5 10

A Path Coverage-Based Reduction of Test Cases and Execution … 627

5 Result and Analysis

In this paper, the test suites have been developed for a particular example of
calculation of mid-value of three integers. The total number of test cases for the
proposed method is 55,566 for all paths, whereas in Coverall algorithm and Get
Split algorithm, the total numbers of test cases are 9261 for a single assumed path.

Fig. 2 Part of source code of
parallel execution of all test
cases

Fig. 3 Parallel test case
execution result of all
independent paths

628 L. Singh and S. N. Singh

The technique which is proposed covers all the possible independent paths, num-
bers of test cases are reduced to 6 with execution time 0.0139999 s as compared to
Coverall and Get Split algorithm where number of test cases obtained were 21 and
384 with execution time 10.5 and 192 s, respectively. The comparison of the
proposed method with other existing algorithms is shown in Table 3.

6 Conclusion

The proposed method is based on the parallel execution to cover all independent
paths which are executing parallelly in spite of sequential execution for the
reduction of the number of test cases and time of execution. From Table 3, the
proposed method achieves greater percentage in reduction of test cases in com-
parison with other existing techniques and improves the efficiency of software. This
method has also achieved lower execution time using parallelism as well as
reducing test cases. The technique which is proposed, the test cases for all the paths
are obtained to be 6 with execution time 0.0139999 s that are lesser than the
existing algorithm even with all possible independent path coverage.

References

1. Beizer, B.: Software testing techniques. Van Nostrand Reinhold, 2nd edn (1990)
2. Jeffrey, D.B.: Test suite reduction with selective redundancy. MS thesis, University of

Arizona (2005)
3. Gong, D., Zhang, W., Zhang, Y.: Evolutionary generation of test data for multiple paths.

Chin. J. Electron. 19(2), 233–237 (2011)
4. Ghiduk, A.S., Girgis, M.R.: Using gentic algorithms and dominance concepts for generating

reduced test data. Informatics (Solvenia) 34(3), 377–385 (2010)
5. Korel, B.: Automated software test data-generation. Conf. Softw. Eng. 10(8), 870–879 (1990)
6. Clarke, L.A.: A system to generate test data and symbolically execute programs. IEEE Trans.

Softw. Eng. SE-2(3), 215–222 (1976)
7. Gallagher, M.J., Narsimhan, V.L.: ADTEST: A test data generation suite for ada software

systems. IEEE Trans. Softw. Eng. 23(8), 473–484 (1997)

Table 3 Comparison of proposed method with other existing algorithms

Methods area Proposed method Coverall algorithm GetSplit algorithm

Program Mid-value Mid-value Mid-value

Over all test cases 55,566 9261 9261

Reduced test cases 6 21 384

Path coverage criteria All path (multiple) Specific path Specific path

Saving (%) 99.99 99.77 95.85

Execution time (s) 0.0139999 10.5 192

A Path Coverage-Based Reduction of Test Cases and Execution … 629

8. Gupta, N., Mathur, A.P., Soffa, M.L.: Automated test data generation using an iterative
relaxation method. In: ACM SIGSOFT Sixth International Symposium on Foundations of
Software Engineering (FSE-6), pp. 231–244. Orlando, Florida (1998)

9. Pravin A., Srinivasan, S.: An efficient algorithm for reducing the test cases which is used for
performing regression testing. In: 2nd International Conference on Computational Techniques
and Artificial Intelligence (ICCTAI’2013), pp. 194–197, 17–18 March 2013

10. Subashini, B., JeyaMala, D.: Reduction of test cases using clustering technique. Int. J. Innov.
Res. Eng. Technol. 3(3), 1992–1996 (2014)

11. Muthusamy, T., Seetharaman, K.: Effectiveness of test case prioritization techniques based on
regression testing. Int. J. Softw. Eng. Appl. (IJSEA) 5(6), 113–123 (2014)

12. Jefferson, A., Jin, Z., Pan, J.: Dynamic domain reduction procedure for test data generations
design and algorithm. J. Softw. Pract. Experience 29(2), 167–193 (1999)

13. Pringsulaka, P., Daengdej, J.: Coverall algorithm for test case reduction. In: IEEE Aerospace
Conference, pp. 1–8 (2006). https://doi.org/10.1109/aero.2006.1656028

630 L. Singh and S. N. Singh

http://dx.doi.org/10.1109/aero.2006.1656028

iCop: A System for Mitigation
of Felonious Encroachment Using GCM
Push Notification

Saurabh Mishra, Madhurima Hooda, Saru Dhir and Alisha Sharma

Abstract A mobile application can enable a user to get control on an infrared or IR
sensor device, remotely and also along with detecting and notifying of any
movement that should happen around the sensor via GPRS. To further improve this
thought, we interfaced the mobile technology with hardware. The focus is placed on
getting the control of the secured zones, by monitoring the human movement IR
sensors alongside some other movement that might happen in the fringe of the
sensor. The use of this thought can be extremely very much expected in the cir-
cumstances that are exceedingly secure and in which, not withstanding manual
security, electronic and mobile security efforts to establish safety are likewise
needed. These spots could be banking sector, money midsections, criminal prisons,
atomic establishments, confidential and very secret exploration zones, and so forth.
The paper implements an intrusion detection system iCop and also presents the
testing results showing expected output and actual output. Also, the risk factors and
their corresponding mitigation plan are discussed.

Keywords Arduino � IR sensor � GPRS � Google C2DM

S. Mishra � M. Hooda (&) � S. Dhir
Amity University, Noida 110025, Uttar Pradesh, India
e-mail: mhooda@amity.edu

S. Mishra
e-mail: mishrasaurabh95@gmail.com

S. Dhir
e-mail: sdhir@amity.edu

A. Sharma
NIIT Technologies Ltd., Noida, India
e-mail: alishasharma361@gmail.com

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_60

631

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_60&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_60&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_60&domain=pdf

1 Introduction

An intrusion detection system (IDS) protects felonious admittance to user system or
network software. A wireless IDS can easily perform this chore through sensors at
different work stations via Internet. These systems supervise traffic on the network
and have the authority to look at all the individuals who are logging in and may
threat the private data of the company and can also put forth the request of alerting
the personnel to respond. The wireless networking system no way requires wired
intrusion detection. The reason is that the wireless communication medium itself
needs to be secured apart from protecting it from other attacks associated with a
wired system [1]. Because of this unpredictable arrangement of the system, it is
moderately perplexing to prevent the Trojan assault despite of suitable software
programs and hardware equipments (utilized as a part of request to ensure the
Trojans assault on the system, in the same route there are considerably more tools
designed which are intended to crush them) [2]. So keeping in mind the end goal to
anticipate such issue, developing and implementing the wireless intrusion detection
system are the need of great importance [3]. The sensor nodes of a remote sensor
system are freely distributed so as to perform an application-oriented global errand.
The sensors are not just invaluable in measuring climate conditions, for example,
stickiness, temperature and weight however, when these gadgets are used inside a
system, they are keen, reasonable and assumes an imperative part in observing the
remote system.

The archaic of this paper includes feasibility study in Sect. 2 followed by
Sect. 3, which presents an overview of Arduino architecture followed by Sect. 4,
which discusses the methodology adopted for implementing iCop intrusion detec-
tion system. Section 5 describes detailed description of the iCop system, testing
results and risk analyses, finally leading to the conclusion.

2 Feasibility Study

To select the best system, that can meet the performance requirements, a feasibility
study must be carried out [4]. It is the determination of whether or not a project is
worth doing. Our iCop system is financially plausible in the light of the fact that the
hardware part will be utilized in project, which is effortlessly accessible in the
business sector at an extremely ostensible expense. The iCop is profoundly versatile
which can be for all intents and purposes actualized at whatever time anyplace. It is
actually possible as it can assimilate modifications. In manual processing, there is
more risk of blunders, which thus makes bunches of muddling, and is less spe-
cialized or logical. Through the proffered system, we can without much of a stretch
set this procedure into an exceptionally deliberate example, which will be more
specialized, imbecile evidence, bona fide, safe and solid. Notwithstanding it, the
proffered system is exceedingly adaptable in the light of the fact that when the

632 S. Mishra et al.

interruption is identified, the individual can get the notice ready message on their
android advanced mobile phones, which demonstrates its proficiency and viability,
smart phones, which proves its efficiency and effectiveness.

3 A Brief About Arduino Platform

We make use of Arduino open-source platform which is based on I/O board, and
furthermore, an advancement domain for coding of microcontroller in C dialect.
Arduino uses an integrated development environment and can be deployed in many
computing projects. Also, Arduino can very easily communicate with software run-
ning on your computer, for examplewith softwares such asNetBeans andEclipse. It is
very helpful in controlling sensors for sensing stuff such as push buttons, touch pads,
tilt switches, photo resistors etc. and actuators to do stuff such as motors, speakers,
lights (LEDS), LCD (display). It is very adaptable and offers a wide mixed bag of
digital and analog inputs, for example serial peripheral interface (SPI) and pulse width
modulation (PWM) outputs. It is quite amiable and can be tack on with a computer
system by means of universal serial bus (USB). It delineates via a standard serial
protocol and runs on a stand-alone mode. It is likewise truly cheap, generally dollar
thirty per board furthermore accompanieswith free authoring software. Also, being an
open-source undertaking, programming and equipment are to a great degree available,
and exceptionally adaptable for being redone and amplified.

Sensors are devices which are basically used to detect the presence of any object,
intrusion or sound. The sensor that we have used in our iCop system is basically
used to detect the presence of humans. In order to switch on the sensor, set the pin
with output high and to switch off the sensor, the pin is set to output low. The code
snippet shown below set the pin to high and low.

strPosition=readString.indexOf(“codes”);

switchChar=readString.charAt(strPosition+5);

switch (switchChar)

{

case ’1’:

clientUser.println(“HTTP/1.1 200 OK”);

digitalWrite(outPin1, HIGH);

break;

case ’2’:

clientUser.println(“HTTP/1.1 201 OK”);

digitalWrite(outPin1, LOW);

break;

default:

clientUser.print(“Default Status”);

}

break;

iCop: A System for Mitigation of Felonious Encroachment … 633

4 Methodology

Different techniques are used for modifying the data on a device such as pushing,
polling and Cloud to Device Messaging (C2DM). In the polling technique, the
application contacts the server and modifies the latest data on the device. In this
method, a background service is built, which will uphold a thread that would go and
drag something (data) from the Web and will be on hold for the allotted time and
then again endeavoured to drag something from the Web. This cycle will work in a
repetitive way. In opposite of it, in the pushing technique, the server contacts the
installed application and shows the availability of updated application with the
latest data, on the device. This can be implemented by pushing a message to the
device and the application can hold the message service directly. For this updation,
we require a permission “android permission. Receive_SMS”, to obtain the mes-
sage (SMS) during the server [5]. On the other hand, C2DM has multi-layered
parties implicated in it like an application server which will push the message to the
android application. When the message is pushed from application server to the
android application, then it routes the message towards the C2DM server. C2DM
sends the message to the respective device and suppose the device is not available
at that time, then the text will be forwarded once it will be online. As soon as the
message is received, the broadcast target will be generated. The mobile application
will authorize an intended receiver for this broadcast by registering the application.

There is a necessity taking the permission to perform Google C2DM along with
numerous implementation steps, such as invoking a registration identification
number from the Google C2DM, registering as a receiver for the C2DM messaging
along with an authentication of the application with C2DM server.

5 iCop System

The intrusion detection system is a cyclic process. There will be several compo-
nents which will be deployed in order to detect the intrusion. The components will
be server, mobile and embedded components, etc.

Figure 1 shows the block diagram of the iCop system described in this paper.
The embedded part is written in C and is mainly responsible for sending high/low
input to the sensor. It will receive the enable and disable command through the Web
server via a USB cable which will be eventually turned on/off. Moreover, it is also
responsible for detecting any movement that happens around the IR sensor with the
help of a circuit, which will route it to the Web server and further route it to the
Android device via the Web and the alert will be displayed in the form of notifi-
cation message with the help of Google Cloud Messaging (GCM) service of
Google, along with the beep sound which emphatically alerts the user [6].

The android part will be written in Java Platform, Micro Edition (J2ME) and will
be installed in the android device with version above 2.2. The device will be

634 S. Mishra et al.

connected to the computer via general packet radio service (GPRS) and will send
the on/off command for enabling and disabling the sensor. The Web server running
on the computer will further route the request to the electrical circuit in which
embedded code to enable and disable the sensor is stored. The Web server part will
be deployed in this component and will mainly responsible for receiving the request
from the android device and transfer it to the Arduino circuit. The PC on which the
Web server will be running will be connected to the Internet and its IP address will
be used by the mobile application for connection.

Keeping in mind the end goal to make an application for cell phones, Google
C2DM administration is a valuable option, which will approve to associate the IR
sensor gadget consistently. The mobile application which when joined with the
e-chip and IR sensors using the GPRS mode [7], with two important parts: the
mobile part and the electronic part. The mobile part may have an interface, through
which one can control the infrared sensor (IR). This notification framework for
intrusion caution for cell phones and different gadgets is the greatest point of
preference of the iCop system as it permits the client to get caution messages about
the interruption identification at whatever point they utilize their cell phone, from
the cloud. An automatic message is sent to every enlisted gadget when an assault on
a system is identified.

5.1 Testing Results

The testing is applied on Web part and mobile part of the iCop system. Table 1
shows the input, expected output and actual output of the system. The results show
that all the output is OK for mobile as well as Web part of the system.

Fig. 1 Block diagram of
iCop system

iCop: A System for Mitigation of Felonious Encroachment … 635

5.2 Risk Analysis

Table 2 shows the risk identified in the implementation phase of the iCop system. It
is identified that the risk area is coded when connectivity is between mobile clients
and cloud server. The mitigation plan is to handle this is, for establishing the
connection, static IP address is taken using a data card and wireless connection is
created to connect the mobile client with the server. Also, it is identified that the risk

Table 1 Test results showing expected output and actual output

Module Input Expected output Actual output Result

Mobile
part

Incorrect
username
and
password

The J2ME application
should inform the user
with an appropriate
message

The application should
display the message

OK

Mobile
part

Correct
username
and
password

The J2ME should load the
appropriate contacts from
the remote server via
GPRS

Contacts are getting
loaded

OK

Mobile
part

Correct
username
and
password

If the GPRS feature is not
enabled or not working,
the application should
display the message

Message is getting
displayed about GPRS
feature not working

OK

Mobile
part

Correct
username
and
password

After contacts are loaded
from the database, the
application should give the
option to add, edit, delete,
synchronize and logout

The mobile application
gives these options, and
when the user adds new
contacts they are
transferred to the remote
server via GPRS. When a
contact is being added or
deleted, it is committed to
the database via GPRS.
The synchronization
features fetch any new
contact which are added at
the remote server and
display on the handset

Ok

Web
part

Sign up
details

The user’s category
registration detail should
be successfully inserted in
the database, and he
should be able to delete,
add and edit the contacts
in that category

Details are getting added
in the database, and the
user is able to manage the
records from the Web pan

OK

Web
part

Login
username
and
password

Correct contact should be
fetched from the database.
If there is any new contact
added from the mobile
device

Addition, editing and
deletion are correctly
getting synchronized from
the mobile device to the
remote server via GPRS

OK

636 S. Mishra et al.

area is coded when connectivity is between mobile and hardware devices. In order
to diminish this connectivity risk, Google’s cloud service called C2DM was used to
keep a track of notification events.

6 Conclusion

Application permits the client to manage the intrusion sensors remotely through
GPRS, so that the remote detecting is not needed. This will help the clients to
screen the crucial and sensitive establishments remotely from an unapproved
access. It can be killed without human intermeddling. Also, the client might secure
access Google’s dependable cloud administrations keeping in mind the end goal to
secure the sensitive areas. We can further extend this application in order to detect
the intrusion of a larger area by connecting large intrusion sensors. Furthermore, we
can integrate several other sensors to our application which will not only detect
human intrusion, but also detect smoke and fire alarms. This application has the
scope of scalability in which we can measure the parameters of different premises at
the same time.

Table 2 Risk analysis with mitigation plan

Risk
ID

Classification Description Risk
area

Probability Impact Mitigation plan

R1 Implementation Connectivity
between
mobile client
and cloud
server

Coding High High In order to establish the
connectivity, we took
the static IP address
using a data card and
created a wireless
network through which
the mobile client could
connect to the server

R2 Implementation Connectivity
between
mobile and
hardware
device

Coding High High In order to mitigate this
connectivity risk, we
took the help of
Google’s cloud service
called C2DM which
would help us keep a
track of notification
events

iCop: A System for Mitigation of Felonious Encroachment … 637

References

1. Maiti, A., Sivanesan, S.: Cloud controlled intrusion detection and burglary prevention
stratagems in home automation systems. In: 2nd Baltic Congress on Future Internet
Communications, pp. 182–185 (2012)

2. Galadima, A.A.: Arduino as a learning tool. In: 11th International Conference on Electronics,
Computer and Computation (ICECCO) (2014)

3. Hakdee, N., Benjamas, N., Saiyod, S.: Improving intrusion detection system based on snort
rules for network probe attack detection. In: 2nd International Conference on Information and
Communication Technology, pp. 70–72 (2014)

4. Yilmaz, S.Y., Aydin, B.I., Demirbas, M.: Google cloud messaging (GCM): an evaluation. In:
Symposium on Selected Areas in Communications, pp. 2808–2810 (2014)

5. Ryan, J.L.: Home automation. Electron. Commun. Eng. J. 1(4), 185–190 (1989)
6. Google cloud messaging: http://www.androidhive.info/2012/10/android-push-notifications-

using-google-cloud-messaging-gcm-php-and-mysql/
7. Kumar, P., Kumar, P.: Arduino based wireless intrusion detection using IR sensor and GSM.

IJCSMC 2(5), 417–424 (2013)

638 S. Mishra et al.

http://www.androidhive.info/2012/10/android-push-notifications-using-google-cloud-messaging-gcm-php-and-mysql/
http://www.androidhive.info/2012/10/android-push-notifications-using-google-cloud-messaging-gcm-php-and-mysql/

Clustering the Patent Data Using
K-Means Approach

Anuranjana, Nisha Mittas and Deepti Mehrotra

Abstract Today patent database is growing in size and companies want to explore
this dataset to have an edge for its competitor. Retrieving a suitable patent from this
large dataset is a complex task. This process can be simplified if one can divide the
dataset into clusters. Clustering is the task of grouping datasets either physical or
abstract objects into classes of similar objects. K-means is a simple clustering
technique which groups the similar items in the same cluster and dissimilar items in
different cluster. In this study, the metadata associated with database is used as
attribute for clustering. The dataset is evaluated using average distance centroid
method. The performance is validated via Davies–Bouldin index.

Keywords Patents � K-means � Davies–Bouldin index � International patent
classification � Cooperative patent classification

1 Introduction

A patent is an invention for which the originator is granted the intellectual rights for
which he is developing something new and beneficial for the society [1, 2]. The
patentee has the right to partially or wholly sell the patent. Patent analysis helps
enterprises and researchers with the analysis of present status of technology, growth
of economy, national technological capacity, competitiveness, market value, R&D
capability, and strategic planning to avoid unnecessary R&D expenditure [2, 3].
Patents contain a lot of unknown and useful information that is considered essential

Anuranjana (&) � N. Mittas � D. Mehrotra
Amity School of Engineering and Technology, Amity University,
Noida, Uttar Pradesh, India
e-mail: aranjana@amity.edu

N. Mittas
e-mail: nsh.mtts@gmail.com

D. Mehrotra
e-mail: mehdeepti@gmail.com

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_61

639

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_61&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_61&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_61&domain=pdf

from R&D and advancement of technology point of view. Large amount of patent
data from various sources become difficult and time-consuming for the analysis of
the relevant dataset.

Patent data analysis is been done for efficient patent management. There are
various patent analysis tools and techniques for solving the problem. The basic
approaches include data mining, text mining, and visualization techniques.
Classification and clustering are popular methods of patent analysis. Unstructured
data uses the text mining approach for datasets like images, tables, figures. Natural
Language Processing (NLP) technique is widely used for patent documents which
are highly unstructured in nature [4, 5]. The second commonly used approach is
visualization technique which works on citation mechanism in relation to patents.
These approaches find application in statistical analysis of results in terms of
graphs, histograms, scatter plots, etc. [6].

The work proposed is to demonstrate patent mining capability through K-means
clustering on RapidMiner tool [7]. With K-means clustering technique, objects with
similar characteristics make one cluster and dissimilar objects make another cluster
based on distance between the two.

2 Background Study

A patent document has information related to one’s claim, the abstract, the full text
description of the invention, its bibliography, etc. [8, 9]. The information found on the
front page of a patent document is called patent metadata. Patent mining uses clas-
sification and clustering techniques for patent analysis. Supervised classification is
used to group patents by a preexisting classification. Clustering the unsupervised
classification technique helps the patents to be divided into groups based on simi-
larities of the internal features or attributes [10]. Presently, the clustering algorithm
used in text clustering is the K-means clustering algorithm. The patent analysis
technique needs suitable dataset obtained from stored information repositories. The
task is performed on selection of suitable attributes, the dataset, mining technique, etc.

K-means is an important unsupervised learning algorithm. At every step, the
centroid point of each cluster is observed and the remaining points are allocated to
the cluster whose centroid is closest to it, hence called the centroid method. The
process continues till there is no significant reduction in the squared error, and also
it enables to group abstract patent objects into classes of similar group of patent
objects, called as “clusters.” Clustering helps the search to get reduced from huge
amount of patents repository to a cluster comprising patents of same nature. Hence,
it is widely adopted for narrowing down the search for fast execution of query.

640 Anuranjana et al.

2.1 Processing of Algorithm

The K-means clustering algorithm is a popular partition clustering algorithm that
works to bring similar objects in a cluster. The steps involved are:

1. The given dataset points are classified into certain number of clusters (K). The
initial choice of K is random.

2. These points are considered as a centroid point for each cluster and are placed as
far as possible.

3. Now, take each point of a given dataset and associate it with the nearest centroid
point.

4. Once all elements of dataset are distributed, the new centroid is calculated based
on the clusters obtained from previous step.

5. Once again all elements are redistributed in the clusters with the closest centroid.
6. The steps are repeated until the centroid do not change.

The Davies–Bouldin index “is a similarity measure between the clusters and is
defined as a measure of dispersion of a cluster and a dissimilarity measure between
two different clusters.” The following conditions were stated to satisfy the Xij index:

1. Xij � 0
2. Xij = Xji

3. If mi = 0 and mj = 0 then Xij = 0
4. If mj > mk and bij = bik then Xij > Xik

5. If mj = mk and bij < bik then Xij < Xik

The above given conditions state that Xij is a positive and symmetric value.
Davies–Bouldin index satisfies the above said conditions for Xij as:

Xij ¼ ðmi þmjÞ=bij

Hence, the DB index was given the following definition as

DB nc ¼ 1=nc
Xnc

i¼1

Xi

Xi ¼ max

i ¼ 1; . . .; nc; i ¼ jXij; i ¼ 1; . . .; nc

The clusters should have minimum possible similarity between each other. The
result with minimum value of DB gets up with better cluster formation. The per-
formance level is plotted graphically.

Clustering the Patent Data Using K-Means Approach 641

3 Methodology

The analysis of the patent dataset is done through data mining tool called
RapidMiner [11, 12]. The tool can easily handle numeric and categorical data
together. The RapidMiner tool provides a broad range of various machine learning
algorithms and data preprocessing tools for researchers and practitioners so that
analysis can be done and optimum result be obtained [13]. This tool contains
different number of algorithms for performing clustering operation. Here, the K-
means operator in RapidMiner is used to generate a cluster model.

4 Experiments and Results

Data dataset: The data dataset contains five attributes: appln_id, cpc, cpc_main-
group_symbol, publn_auth, and publn_kind. Last three attributes contain categor-
ical values. To process it through K-means algorithm, these attributes are converted
into numerical values for accuracy of results. Through RapidMiner, this can be
easily achieved using nominal to numeric conversion operator. The K-means
clustering technique is applied on patent dataset which is obtained from Patent
Statistical Database (PATSTAT) [14].

Data acquisition process: The raw datasets have been obtained from EPO
Worldwide Patent Statistical Database, also known as “PATSTAT” where the data
is available as public. The patent dataset contains attributes such as appln_id,
cpc_maingroup_symbol, publn_auth, publn_nr, publn_kind.

• appln_id refers to application id of the PATSAT application.
• publn_nr refers to the unique number given by the Patent Authority issuing the

publication of application.
• publn_auth refers to a code indicating the Patent Authority that issued the

publication of the application.
• cpc_maingroup_symbol refers to the code for specific field of technology. The

field of technology chosen here for experimentation and validation is
ELECTRICITY and its code starts with H.

• publn_kind is specific to each publication authority (Fig. 1).

The validation process includes the following steps.
Patent dataset ! Preprocessing ! Attribute selection ! modeling through

K-means clustering ! Evaluation through cluster distance performance.
The process is repeated for different clusters till we get optimum DB value

(Figs. 2, 3 and 4).
The process is performed for various values of k. The result shows that for k = 4,

the cluster assignment is best. The intraspace within cluster is maximum and
interspace between clusters is minimum; it minimizes the sum of squared distances
to the cluster centers [15].

642 Anuranjana et al.

Data Processing Steps

Visualize Results

Apply Clustering
Algorithm ((K-means)

Deploy on
Rapid Miner

Data Set Generation

appln_id,
cpc_maingroup_symbol
publn_auth, publn_nr ,
publn_kind

Data dataset

Attribute selection

Patstat Database

Validate Result by
using D B Index

1

1

Fig. 1 Validation process for K-means clustering

Fig. 2 Clustering using RapidMiner

Clustering the Patent Data Using K-Means Approach 643

5 Conclusion

In this paper, K-means cluster approach is used for clustering the patent dataset
based on the metadata attributes like appln_id, cpc_maingroup_symbol, pub-
ln_auth, publn_nr, publn_kind. The experimental results show that optimal clus-
tering in this case study is obtained for k = 4. This is evaluated using DB index for
k values ranging from 2 to 7. In future, the study can be extended using fuzzy
approach as it gives an idea of overlapping members and topics which are
interrelated.

Fig. 3 Cluster plot for k = 4

Fig. 4 Validation using DB index

644 Anuranjana et al.

References

1. Hartigan, J., Wong, M.: Algorithm AS136: a k-means clustering algorithm. Appl. Stat. 100–
108 (1979)

2. Alsabti, K., Ranka, S., Singh, V.: An efficient K-means clustering algorithm. http://www.cise.
ufl.edu/ranka/ (1997)

3. Modha, D., Spangler, S.W.: Feature weighting in k-means clustering. Mach. Learn. 52(3)
(2003)

4. Kovács, F., Legány, C., Babos, A.: Cluster validity measurement techniques. In: Proceedings
of the 6th International Symposium of Hungarian Researchers on Computational Intelligence,
Budapest, Nov 2005, pp. 18–19 (2005)

5. WIPO-Guide to Using Patent Information: WIPO Publication No. L434/3 (E) (2010). ISBN
978-92-805-2012-5

6. Shih, M.J., Liu, D.R., Hsu, M.L.: Discovering competitive intelligence by mining changes in
patent trends. Expert Syst. Appl. 37(4), 2882–2890 (2010)

7. Vlase, M., Muntaeanu, D., Istrate, A.: Improvement of K-means clustering using patents
metadata. In: Perner, P. (ed.) MLDM 2012, LNAI 7376, pp. 293–305 (2012)

8. Candelin-Palmqvist, H., Sandberg, B., Mylly, U.-M.: Intellectual property rights in innovation
management research: a review. Technovation 32(9–10), 502–512 (2012)

9. Abbas, A., Zhang, L., Khan, S.U.: A literature review on the state-of-the-art in patent analysis.
World Patent Inf. 37, 3–13 (2014)

10. Sunghae, J.: A clustering method of highly dimensional patent data using Bayesian approach.
IJCSI. ISSN (online): 1694-0814

11. Mattas, N., Samrika, Mehrotra, D.: Comparing data mining techniques for mining patents. In:
2015 Fifth International Conference onAdvancedComputing&Communication Technologies,
22–23 Feb 2015, pp. 217–221

12. The United States Patent and Trademark Office: http://www.uspto.gov
13. European Patent Office: http://www.epo.org
14. Davies, D.L., Bouldin, D.W.: A cluster and separation measure. IEEE Trans. Pattern Anal.

Mach. Intell. 1(2), 224–227 (1979)
15. Halkidi, M., Batiktakis, Y., Vazirgiannis, M.: On clustering validation techniques. Intell. Inf.

Syst. (2001)

Clustering the Patent Data Using K-Means Approach 645

http://www.cise.ufl.edu/ranka/
http://www.cise.ufl.edu/ranka/
http://www.uspto.gov
http://www.epo.org

Success and Failure Factors that Impact
on Project Implementation Using Agile
Software Development Methodology

Saru Dhir, Deepak Kumar and V. B. Singh

Abstract In the agile software development, there are different factors behind the
success and failure of projects. Paper represents the success, failure, and mitigation
factors in agile development. A case study is presented depending on all of these
factors after the completion of small projects. Each team grouped into 10 team
members and developed the project with different approaches. Each group main-
tained the documentation from initial user stories and factors employed on the
projects. Final outcomes are observed based on the analysis of efficiency, accuracy,
time management, risk analysis, and product quality of the project. Final outcomes
are identified using the different approaches.

Keywords Agile development process � Scrum � Factors

1 Introduction

Software development is the process whose success and failure depends upon the
team, organization, and technical environment. Software project development is a
teamwork where the delivery of the project depends upon different factors or cir-
cumstances. In the traditional development, the customer got the final product after
the completion of development and testing that final product sometimes satisfied or
unsatisfied the customer. According to the agile development, customer has the
continuous involvement in the project through the daily meetings. Agile method-
ology has four agile manifesto and twelve principles [1].

S. Dhir (&) � D. Kumar
Amity University, Noida 110025, Uttar Pradesh, India
e-mail: sdhir@amity.edu

D. Kumar
e-mail: deepakgupta_du@rediffmail.com

V. B. Singh
University of Delhi, New Delhi, India
e-mail: singh_vb@rediffmail.com

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_62

647

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_62&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_62&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_62&domain=pdf

Different methods such as scrum, XP, FDD, DSDM, lean are coming with agile
development. Agile methodology overcomes the problems of the traditional
development. Agile approach is driven by self-organizing teams that coordinate
their tasks on their own. This enables the employee innovate, team work and
increases the productivity and quality of the product. While different steps have
been taken to understand the barriers occurred in software teams, and all these
issues may be addressed by taking into the concerns of involved customer and
stakeholders. In fact, due to various roles and their expectations, the software team
may have perceptual differences on issues such as delivery time of software, risk
factors, success and failure of the project [2]. Due to lack of knowledge and
understanding about the project, it may directly affect the performance and delivery
of the project. In the agile team, knowledge sharing is a challenging task to enlarge
user’s motivation to share their knowledge with the developers and other team
members; to handle the diversity of social identities and cross-functionally involved
in the software development [3].

2 Literature Review

The software development process depends upon the interest of the project team
and the other resources. One of the major problems with software development is
causing during the change of project development technology and business envi-
ronment [4]. During the survey of agile projects in government and private sectors
in Brazil and UK, five sociological (such as experience of team members, domain
expertise and specialization) and five projects (team size, estimation of project,
delivery of the product, etc.) related factors were added [5].

Tore Dyba signifies a major departure from traditional approaches to agile
software development by identifying the 1996 studies, out of which 36 were the
empirical studies. The studies fell into four groups: introduction and adoption,
human and social factors, perceptions on agile methods, and comparative studies
[6]. A framework was proposed a conceptual framework on different factors and
represents the link between various predictor variables and agile development
success [7].

Mahanti [8] mentioned six critical factors in agile methodology, during the
survey conducted in four projects. He discussed several factors such as an office
environment, team mind-set, mind-set toward documentation. Harnsen [9] men-
tioned different factors focusing on culture, stability, time variations, technology,
stability, etc. Different factors and barriers of agile implementation were considered
those significantly affecting the agile methods [10].

648 S. Dhir et al.

3 Different Factors in the Agile Development

In an agile environment, different technical (requirement volatility, requirement
quality, technical dependency, non-functional requirement, etc.) and non-technical
factors (communication, documentation, domain, hardware, customer involvement,
etc.) are continually impacting in the agile environment. Figure 1 represents the
various success and failure factors that are impacting on software development.

A. Success Factors:
There are certain success attributes which determine the overall observation of a
particular project such as delivering a quality product and customer satisfaction,
on-time delivery of product with the planned estimations. Ambler contends that
in software development, the expert people are critical to make sure the success
of the project while adopting the agile approaches [11]. In 2013 comparing
software development paradigms, Ambler found the highest success rate of
agile projects [12].

B. Failure Factors:
Boehm and Turner focus on management challenges in implementing the agile
projects [13], whereas in another research Nerur et al. focused on management,
people, technical, and process dimensions in agile projects [14].

Fig. 1 Factors impacting the agile development

Success and Failure Factors that Impact on Project … 649

4 Strategies for Mitigating Factors Affecting Agile
and Distributed Agile Development

There are different success factors on agile such as make training programs on
higher priority, keep agile practices consistent, encourage team members, scale the
infrastructure. Table 1 represents the different success, failure, and mitigation fac-
tors in agile software development.

Table 1 Success, failure, and mitigation factors based on different dimensions

Dimension Success factor Failure factor Mitigation factors

Organization 1. Cooperative
culture
2. Facilities for agile
work environment

1. Organizational culture
become socially narrow
2. Communication
problem in distributed
environment
3. Inaccurate estimations
at initial stages

1. Provide a better
technology infrastructure
to support
communication in a
distributed environment

Team 1. Motivation
between the team
members
2. Teamwork reduces
the work pressure and
increases the
knowledge
3. Strong relationship
between the team
members,
stakeholders, and
customer

1. Lack of knowledge
and experience issue
2. Lack of management
competence
3. Understanding issue
between team members
4. A bad relationship
with customers

1. Experienced people
should be as a part of a
team
2. There should be a
proper time management
and synchronize the
working hours
3. Team collaboration
4. Build trust

Process 1. Team follow
agile-oriented
configuration, project
management process
2. Good
communication with
daily meetings
3. Understanding the
level of the project
and its new issues

1. Customer’s absence
2. Vague planning and
project scope
3. Project roles are net
clearly defined
4. Requirement
prioritization becomes
the major issue during
the development of the
process in a small team

1. The process should be
clearly defined
2. Iterations should be
implemented in fixed
time-boxed
3. Work standards
should be defined
properly

(continued)

650 S. Dhir et al.

5 Case Study

Case study is based on the software project implementation during the training
period of the students. Projects were divided into 5 teams and each team had 10
team members. Projects were based on the application development and Web site
development for the customer. Projects were related to social implications such as
safe cab car facility, e-voting system, women security app. Table 2 represents the
team configuration, where different development processes of each team are men-
tioned, with the total number of team members involved in the development of
project. The project implementation was implemented by waterfall, spiral, and the
scrum (agile methodology). In the spiral implementation, each builds focused
especially on risk analysis, including the requirement gathering and evaluation
part. Scrum principles were followed by the team members for the requirement
elicitation, daily meetings, and frequent changes. Daily meetings were conducted in
a classroom and there was a customer interaction between the team members in a
laboratory after every sprint cycle.

Table 1 (continued)

Dimension Success factor Failure factor Mitigation factors

Technical 1. Following simple
design
2. Continuous de
faery of the software
3. Proper integration
testing
4. The team is
dynamic in nature
and adapts new
techniques according
to demand

1. Lack of resources
2. Lack of the usage of
new techniques and tools
3. Practices of incorrect
agile approach

1. Availability of
resources on time
2. Trainings or
short-term courses
should be provided for
the awareness of new
technologies and tools

Documentation 1. Accurate amount
of documentation
2. Less
documentation
avoids extra effort

Less documentation may
create a problem for new
members

Documentation should
be in appropriate form so
the new users can be
easily familiar with the
project and its
development

Table 2 Team configuration Development process Team members

Spiral 10

Scrum 10

Scrum 10

Waterfall 10

Scrum 8

Success and Failure Factors that Impact on Project … 651

6 Findings

Initially, user stories were created by the customers and team members. Figure 2
shows the different user stories of project 1 by the team 1. Like project 1, other team
members also build their different user stories as per customer and project
requirement.

But due to the lack of experience, different responsibilities and environmental
restrictions, it is really tough for students to follow this process. An analysis report
was maintained on the success and failure factors of the projects. This analysis was
done with the help of questionnaire and personal interaction with the team mem-
bers. On the basis of a questionnaire, different factors were analyzed as:

1. Organization: Student had other responsibilities also and do not have a proper
work environment; hence, there was a delay in delivery of the project.

2. Team: Team had a good relationship and trust between them, but as the
beginner’s team had a lack of experience about the methodology. Hence, they
faced problems at the initial stage of development.

3. Process: Team followed the agile development process in which there was a
proper group discussion between team members and also set sprint meetings
with the customer. Project planning and roles were clearly defined. Team roles
were rotated for the constant change in task prioritization to maintain the quality
of the final product.

4. Technical: The team continuously tested the whole process with the strict TDD
process. Students faced the technical issues such as new technical tool and
techniques. Hence, free tools were used for the development of the project.

5. Documentation: As documentation, students maintain a daily diary on the
regular basis, and at the end, report was generated.

6.1 Outcomes

During the analysis, it was observed that there were differences in non-functional
activities with the different methods. Analysis was based on the efficiency,

Fig. 2 User stories of project 1

652 S. Dhir et al.

accuracy, time management, risk analysis, and product quality of the project. In the
waterfall approach, team members approached to the customer after the delivery of
the project. Development with waterfall approach had low efficiency, medium
accuracy; low time management and product quality were less without the cus-
tomer’s involvement during the development. In the spiral method, students
focused on risk analysis and quality of product. Projects had low accuracy in the
spiral model as they created a prototype and did risk analysis. In the scrum
methodology, results were better than waterfall and spiral model, where efficiency,
product quality, and time management are high.

In Table 3, there is different parametric value that had major impact on success
and failure of projects by using different approaches. Waterfall, spiral, and scrum
methodology were used on different projects and all had different impacts. In
Table 3, L represents the less/low value, M represents the medium value, and
H represents the high value of different projects based on the usage of various
approaches. Figure 3 represents the graphical representation of different factors
using different methods, according to which agile methodologies have high per-
formance rate and good quality of product on fixed time.

Table 3 Factors based on different methodology

Methods Efficiency Accuracy Time
management

Risk
analysis

Quality
product

Waterfall L M L L L

Spiral M L M H M

Scrum H M H H H

Fig. 3 Graphical
representation of different
factors using different
methods

Success and Failure Factors that Impact on Project … 653

7 Conclusion

Paper is concluded with the success, failure, and mitigation factors in agile
development projects. A case study was conducted based on the development of
five projects. Projects were developed by the students as five different teams. It was
observed that projects were developed using different development approaches such
as waterfall, spiral, and agile approach and examined that there were differences in
non-functional activities with different methods. Analysis was based on the effi-
ciency, accuracy, time management, risk analysis, and product quality of the pro-
ject. Finally, outcome was that in the scrum methodology results were better than
waterfall and spiral model, where efficiency, product quality, and time management
are high.

References

1. http://www.agilealliance.org/the-alliance/the-agile-manifesto/
2. Huisman, M., Iivari, J.: Deployment of systems development methodologies: perceptual

congruence between IS managers and systems developers. Inf. Manag. 43, 29–49 (2006)
3. Conboy, K., Coyle, S., Wang, X., Pikkarainen, M.: People over process: key people

challenges in agile development. IEEE Softw. 99, 47–57 (2010)
4. Williams, L.A., Cockburn, A.: Guest editors’ introduction: agile software development: it’s

about feedback and change. IEEE Comput. 36(6), 39–43 (2003)
5. Danillo, S., Bassi, D., Bravo, M., Goldman, A., Kon, F.: Agile projects: an imperial study

(2006)
6. Byab, T., Dingsoyr, T.: Empirical studies of agile software development: a systematic review.

Inf. Softw. Technol. (2008)
7. Misra, S.C., Kumar, V., Kumar, U.: Success factors of agile development method. J. Syst.

Softw. (2009)
8. Mahanti, A.: Challenges in enterprise adoption of agile methods—a survey. J. Comput. Inf.

Technol. 197–206 (2006)
9. Harnsen, F., Brand, M.V.D., Hillergerberg, J., Mehnet, N.A.: Agile methods for offshore

information systems development. First Information Systems Workshop on Global Sourcing:
Knowledge and Innovation (2007)

10. Asnawi, A.L., Gravell, A.M., Wills, G.B.: An empirical study—understanding factors and
barriers for implementing agile methods in Malaysia. IDoESE (2010)

11. Ambler, S.: Agile adoption strategies: survey results. http://www.ambysoft.com (2011)
12. Ambler, S.: Agile adoption strategies: survey results. http://www.ambysoft.com (2013)
13. Boehm, B., Turner, R.: Management challenges to implement agile processes in traditional

development organizations. IEEE Softw. 22(5), 30–39 (2005)
14. Nerur, S., Mahapatra, R.K., Mangalaraj, G.: Challenges of migrating to agile methodologies.

Commun. ACM 48(5), 72–78 (2005)

654 S. Dhir et al.

http://www.agilealliance.org/the-alliance/the-agile-manifesto/
http://www.ambysoft.com
http://www.ambysoft.com

Fuzzy Software Release Problem
with Learning Functions for Fault
Detection and Correction Processes

Deepak Kumar and Pankaj Gupta

Abstract Present-day software advancement has turned into an exceptionally
difficult errand. The real difficulties included are shorter life cycles, expense invades
and higher software quality desires. Notwithstanding these difficulties, the software
developers have begun to give careful consideration on to the process of software
advancement, testing and reliability analysis to bolster the procedure. A standout
amongst the most essential choices identified with the software improvement is to
focus the ideal release time of software. Software advancement procedure includes
part of instabilities and ambiguities. We have proposed a software release time
problem to overcome such vulnerabilities and ambiguities utilizing a software
reliability growth model under fuzzy environment. Further we have talked about the
fuzzy environment system to take care of the issue. Results are outlined numeri-
cally. Taking into account model and system, this paper particularly addresses the
issue of when to release software under this condition.

Keywords Software reliability growth models � Fuzzy � Release time problem
Optimization problem � Membership function

1 Introduction

In the course of recent years, numerous software products unwavering software
reliability growth models (SRGMs) have been proposed for estimation of reliability
of software product. As personnel computer and its related software turn out to be
more refined, whilst turning out to be more essential in our lives, individuals are
progressively worried about its unwavering quality. Software reliability offers the

D. Kumar (&)
Amity University, Noida 110025, Uttar Pradesh, India
e-mail: deepakgupta_du@redifmail.com

P. Gupta
Birla Institute of Technology, Mesra, Ranchi, India
e-mail: pgupta@bitmesra.ac.in

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_63

655

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_63&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_63&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_63&domain=pdf

most far-reaching cutting-edge procedures to measure the product quality and
testing approaches. Software improvement forms normally concentrate on dodging
mistakes, recognizing and redressing programming blames that do happen at any
period of software advancement.

A wide range of SRGMs have been produced to depict the failure of software
system. In the previous four decades, numerous software reliability
development-based SRGMs [1–3] have been proposed in writing to gauge and
anticipate the software dependability and number of shortcomings staying in the
product.

A standout amongst the most critical utilizations of SRGMs is to focus on
release time of the software. For the most part, the detection of faults included in
enhancing the software reliability of a software comprises of an exceptionally
prolonged and costly testing system. It is accounted for that much of the time, more
than a large portion of the time and cost is spent in testing when creating software.
Subsequently, one of the imperative issues in this testing is the point at which we
ought to quit testing and are prepared to release the software.

In the writing, a wide range of methodologies have been created to focus the
ideal release time of software, in view of distinctive SRGM. It could not be any
more obvious, for case, Okumoto and Goel [4]; Kapur et al. [2, 5]; Jha et al. [6].

Parameters of the SRGM used to portray the failure are assessed from the watched
testing information, different goals and limitations are situated by the administration
and expense parameters included in the cost are resolved in the light of past expe-
rience and all are altered constants. Practically speaking, it is conceivable that the
administration is not ready to situated exact estimations of the different cost
parameters and targets to be met by the release time. It might likewise be conceivable
that the administration itself does not set exact qualities keeping in mind the end goal
to give some resilience on these parameters because of focused contemplations. This
prompts vulnerability (fuzziness) in the problem. Fresh optimization problem ways
to deal with take care of these issues give no instrument to evaluate these instabil-
ities. The fuzzy procedures can be utilized as a part of such a circumstance.

The paper is composed as follows: first in Sect. 2.1, we have examined the
SRGM using detection and correction of fault in the software. In Sect. 2.2, we have
talked about the cost, and we defined the problem in Sect. 2.3. In Sect. 3.1, we have
talked about the essential ideas of fuzzy problem and given a calculation to explain
the fuzzy optimization problem. Further in Sect. 3.2, a method is shown with a
numerical example. At last, we conclude in Sect. 4.

2 Formulation of Problem

2.1 Software Reliability Growth Models

SRGM based on non-homogeneous Poisson process (NHPP) model [3, 7, 8] is
developed with following list of symbols and notations:

656 D. Kumar and P. Gupta

List of symbols:

a Initial number of faults in the software.
md(t) Expected number of fault detected by time t.
mc(t) Expected number of fault corrected by time t.
b(t) Fault removal rate per remaining fault.
R(x|T) Pr{no failure happens during time (T, T + x)}
C1 Cost acquired on testing before release of the software.
C2 Cost acquired on testing after release of the software.
C3 Testing cost per unit time.
C0 Total cost spending plan.
T Release time of the product.
a, b Constant parameter in the learning (aa > 0, bb > 0).
b, c Constant parameter in the learning (b > 0, c > 0).

Assumption:

(1) Fault detection rate is proportional to the mean value of undetected faults.
(2) The number of faults in each of the individual interval is autonomous.
(3) Each time a failure happens; the fault that brought on it is perfectly fixed.
(4) No new fault is created.

The testing stage is a two-stage process. For first phase of testing process, the
mean number of fault detected md(t) is propositional to the mean number of
undetected faults staying in the software and can be communicated by taking after
differential mathematical equation:

m0
dðtÞ ¼ bðtÞ a� mdðtÞð Þ ð2:1Þ

where

bðtÞ ¼ aþ bt
1þ bt

Understanding comparison (2.1) with beginning md(0) = 0, we get

mdðtÞ ¼ a 1� ð1þ btÞ b

b2
�a

b

� �
e�

b
bð Þt

� �
ð2:2Þ

It can be shown that as t ! 1; bðtÞ ! b
b.

In the second stage, the fault correction rate is relative to the mean number of
faults detected, however not yet fixed in the software. In this stage, fault correction
rate is accepted as logistic learning capacity and it can be communicated as far as
the differential equation as:

Fuzzy Software Release Problem with Learning Functions … 657

dmcðtÞ
dt

¼ bðtÞ mdðtÞ � mcðtÞð Þ ð2:3Þ

where bðtÞ ¼
b
bð Þ

1þ ce� b
bð Þt.

Above mathematical Eq. (2.3) can be solved with beginning mc(0) = 0; the
mean number of fault correction is given by:

mcðtÞ ¼ a

1þ c e�
b
bð Þt 1� 1þ 1þ btð Þ b

b2
�a

bþ 1
� �

�1
b

b2
�a

bþ 1
� � b

b2

� �0
@

1
Ae�

b
bð Þt

0
@

1
A ð2:4Þ

This model is due to Kapur et al. [9].

2.2 The Cost Model

The cost capacity incorporates cost of testing, fixing faults during testing and cost
of failure and consequently removal of faults during testing and operational stage.
Testing is performed under controlled environment. In this manner, utilizing the
total cost of failure phenomenon the accompanying cost function can be defined to
depict the aggregate expected cost of testing and debugging.

CðTÞ ¼ C1mcðTÞþC2 mcðT þ TwÞ � mcðTÞð ÞþC3T ð2:5Þ

Total cost shown in (2.5) is the most ordinarily utilized as a part of writing in
ideal release time problem under blemished testing environment [2, 6, 7].

2.3 Problem Formulation

Utilizing the total cost capacity given by Eq. (2.5), the release time problem with
minimizing the cost function subject to the reliability constraint is expressed as

Min~imize C ðTÞ

Subject to RðTSjTÞJR0

T � 0 ðP1Þ

where R0 is the desired level of reliability by the release time, the management may
not be prepared to acknowledge level of reliability lesser than R0, called the lower
resilience level of the reliability.

658 D. Kumar and P. Gupta

3 Problem Solution and Numerical Example

3.1 Problem Solution

Optimization problem (P1) can be solved by the Mathematical Programming
methodology. As management may not be giving absolute value for cost and
reliability and its aim to release software at earliest. Hence, we utilize fuzzy opti-
mization techniques to comprehend the above problem. Problem P1 may be restated
as

Find T
Subject to CðTÞ�C0

RðTW jTÞ�R0

T � 0
ðP2Þ

Membership functions li(T); i = 1, 2 for each of the fuzzy inequalities in
problem P2 can be defined as

l1ðTÞ ¼
1; CðTÞ�C0
C�
0�CðTÞ
C�
0�C0

; C0\CðTÞ�C�
0

0; CðTÞ[C�
0

8<
:

9=
; ð2:5Þ

l2ðTÞ ¼
1; RðTW jTÞ�R0
RðTW jTÞ�R�

R0�R� ; R� �RðTW jTÞ\R0

0; RðTW jTÞ\R�

8<
:

9=
; ð2:6Þ

where C�
0 and R* are the respective tolerances for the desired reliability and

resources. Next we use Bellman and Zadeh’s [10] principle to solve the problem P2.
Crisp optimization problem can be written as

Max a
Sub:to liðTÞ� a i ¼ 1; 2; ; a� 0; T � 0

ðP3Þ

Crisp mathematical programming approach can be used to find optimal solution.

3.2 Numerical Example

We have gathered real-time software data from Brooks and Motley [11] to evaluate
the various parameters. The assessed estimations of parameters are a = 1334.26,
b = 0.119, c = 18.902, a = 1.972 and b = 0.024. Further it is accepted that esti-
mations of C1, C2, C3 and TW are known. The release time issue in view of the

Fuzzy Software Release Problem with Learning Functions … 659

accompanying information could be dissected. Here we have C1 = 6, C2 = 15,
C3 = 30, TW = 5. Further aggregate spending plan accessible to the management is
C0 = 20,000, and dependability prerequisite by the release time is R0 = 0.99 with
resistance levels on expense and reliability C�

0 = 22,000 and R* = 0.80 (we have
accepted these qualities for representation, however these qualities are situated by
the management in the light of past experience).

After solving numerical problem with above method, we get following results.
Figures 1 and 2 show cost membership value versus time and reliability versus
time, respectively. Figure 3 demonstrates that the two curves cross at a point, which
gives the ideal release time of the software.

From Fig. 3, we acquire ideal release time T = 65 and a = 0.87475.

Fig. 1 Cost membership
values cost versus time

Fig. 2 Cost membership
values reliability versus time

Fig. 3 Ideal software release
time

660 D. Kumar and P. Gupta

4 Conclusion

We have defined a fuzzy release time issue by minimizing the expense capacity
subject to reliability limitation. We have also examined the fuzzy mathematical
programming methodology for different type of learning function. The problem is
then solved by fuzzy optimization method [12–16]. The numerical illustration is
indicated for an achievable issue if there should arise an occurrence of an infeasible
issue a fresh objective optimization problem is utilized to acquire a bargained
arrangement. This is a fascinating subject of further study in fuzzy enhancement.

References

1. Goel, A.L., Okumoto, K.: Time dependent error detection rate model for software reliability
and other performance measures. IEEE Trans. Reliab. R-28(3), 206–211 (1979)

2. Kapur, P.K., Garg, R.B.: Optimal release policies for software systems with testing effort. Int.
J. Syst. Sci. 22(9), 1563–1571 (1990)

3. Deepak, K., Sharma, S.G., Saini, S., Mrinal, N.: Development of software reliability S-shaped
models. Rev. Bus. Technol. Res. 6(1), 101–110 (2012)

4. Okumoto K. and Goel A.L., “Optimal release time for computer software”, IEEE
Transactions On Software Engineering, SE-9 (3), 323–327, 1983

5. Kapur, P.K., Aggarwal, S., Garg, R.B.: Bicriterion release policy for exponential software
reliability growth model. RAIRO-Oper. Res. 28, 165–180 (1994)

6. Jha, P.C., Deepak, K., Kapur, P.K.: Fuzzy release time problem. In: Proceedings of 3rd
International Conference in Quality, Reliability and Infocomm Technology (ICQRIT’2006),
pp. 304–310 (2006)

7. Kapur, P.K., Garg, R.B., Kumar, S.: Contributions to hardware and software reliability. World
Scientific Publishing Co., Ltd., Singapore (1999)

8. Khatri, S.K., Deepak, K., Dwivedi, A., Mrinal, N.: Software reliability growth model with
testing efforts using learning function. In: IEEE Explore Digital Library, Proceedings of
International Conference on Software Engineering (Conseg 2012), Devi Ahilya
Vishwavidhylaya, Indore, India, pp. 1–5 (2012)

9. Kapur, P.K., Jha, P.C., Deepak, K.: A general software reliability growth model with different
types of learning functions for fault detection and correction processes. Commun.
Dependability Qual. Manag. Int. J. 12(1), 11–23 (2009)

10. Bellman, R.E., Zadeh, L.A.: Decision making in a fuzzy environment. Manag. Sci. 17,
141–164 (1973)

11. Brooks, W.D., Motley, R.W.: Analysis of Discrete Software Reliability Models—Technical
Report (RADC-TR-80-84). Rome Air Development Center, New York (1980)

12. Huang, C.Y., Lyu, M.R.: Optimal release time for software systems considering cost,
testing-effort, and test efficiency. IEEE Trans. Reliab. 54(4), 583–591 (2005)

13. Kapur, P.K., Deepak, K., Anshu, G., Jha, P.C.: On how to model software reliability growth
in the presence of imperfect debugging and fault generation. In: Proceedings of 2nd
International Conference on Reliability & Safety Engineering, pp. 515–523 (2006)

14. Pham, H.: System Software Reliability. Springer, Reliability Engineering Series (2006)
15. Xie, M.: A study of the effect of imperfect debugging on software development cost. IEEE

Trans. Softw. Eng. 29(5) (2003)
16. Zimmermann, H.J.: Fuzzy Set Theory and Its Applications. Academic Publisher (1991)

Fuzzy Software Release Problem with Learning Functions … 661

Reliability Assessment
of Component-Based Software System
Using Fuzzy-AHP

Bhat Jasra and Sanjay Kumar Dubey

Abstract Software reliability is one of the most commonly discussed research
issues in the field of software engineering. Reliability of software concerns both the
maker and the buyer of the software. It can be defined as a collection of attributes
that check the capability of software to assure the needed performance in given
conditions for a particular span of time. Most of the estimation models proposed till
date have focused only on some conventional factors internal to the software. In this
paper, we try to analyze the reliability of software using a FAHP approach. The
proposed model considers the factors external to a component-based software that
affects its reliability. Analysis shows that by considering these factors a more
efficient model for estimating reliability in CBSE systems.

Keywords Fuzzy � AHP � CBSS � Reliability � Factors

1 Introduction

In this modern technology-driven world, role of computer systems has become
more important than ever. And for any computer system to perform efficiently,
quality of the underlying software system is a crucial concern. Quality of a software
system is estimated using many factors such as software functionality, usability,
efficiency, testability, and reliability as given in ISO/IEC 9126-1 software quality
model. Among all these quality factors, software reliability is one of the most
important factors. It can be defined as a collection of attributes that check the
capability of software to assure the needed performance in given conditions for a

B. Jasra (&) � S. K. Dubey
Amity University, Noida, Uttar Pradesh, India
e-mail: bhatjasra@gmail.com

S. K. Dubey
e-mail: skdubey1@amity.edu

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_64

663

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_64&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_64&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_64&domain=pdf

particular span of time [1]. Software reliability consists of three main activities:
prevention of error, detection and removing the faults, measures to increase the
reliability [2]. Component-based software systems (CBSSs) are gaining importance
because of various edges it provide over object-oriented technology in terms of
design, development, flexible architecture maintenance, reliability, and reusability
[3]. CBSS reliability is highly affected by the individual components in the system
and interaction between these components which leads to interdependencies
between them increasing the system complexity hence making estimation of reli-
ability difficulty [4]. Other factors that play an important role in determining the
reliability are deployment context, usage profiles, and component-environment
dependencies [5]. There are lot of extrinsic factors that affect the performance and
reliability of software [6]. In this paper, we propose a reliability evaluation model
for component-based software systems based on fuzzy-AHP. It uses fuzzy evalu-
ation with the capability of consistent evaluation of AHP. Fuzzy logic is used to
deal with uncertain, vague data obtained from individual perception of humans
providing more realistic and acceptable decisions. AHP handles diverse criteria by
converging complex problem into less significant factors that are important for
global decision making. Fuzzy-AHP uses goodness of both. AHP is used for weight
metric assignment and complex evaluations at all the three layers, whereas fuzzy
logic is used to evaluate and layer three weights [7, 8]. Using fuzzy-AHP approach,
the uncertainties present in the data can be represented effectively to ensure better
decision making [9].

2 Methodology

2.1 Identification of Factors

Reliability assessment is mostly confined to testing phase after the development of
the whole software. But reliability is actually affected by factors from almost every
stage of software’s life cycle, i.e., analysis, development, testing, usage time [10].
To determine appropriate factors that affect reliability of CBSS, we identified rel-
evant stakeholders, researchers, academicians, organizations, and other experts who
deal with CBSSs. On the basis of these findings, we have selected following factors.

2.1.1 The Deployment Context

In a CBSS environment, one component has to interact with another, and these
interactions increase dependency of component’s reliability on each other, e.g., if a
participating component fails, directly or indirectly the performance of other com-
ponents is affected, thereby its reliability. Key factors of deployment context are
unknown usage profile, unknown required context, and unknown operational profile.

664 B. Jasra and S. K. Dubey

2.1.2 Human Factor

Right from the requirement analysis to deployment and maintenance, humans are
almost involved in every aspect of the software development. Key factors are
programming skills, domain knowledge/expertise, and human nature.

2.1.3 Analysis and Design Factor

Analysis is the most important stage in life cycle of the software. An inefficient
analysis and designing can have a severe effect on the reliability of the software.
Some key factors influencing reliability in this aspect are missing requirements,
misinterpreted requirements, conflicting/ambiguous requirements, design mis-
match, and frequency of changes in requirement specifications.

2.1.4 Testing Factor

Testing is the most commonly used phase for reliability assessment of software.
Efficient testing helps finding all possible shortcomings of the software and helps
achieving higher efficiency as well as reliability. Some key factors comprising the
effect of testing on reliability are tools methodology used for testing, testing
resource allocation, testing coverage, testing effort, and testing environment.

2.2 Evaluation of Reliability Using Analytical Hierarchy
Process

2.2.1 Building the Hierarchy

An indexed hierarchy of correlated assessment criteria is derived for the
multi-criteria problem. Hierarchy for our model is given in Table 1.

2.2.2 Pair-Wise Comparisons

In this step, we find the relative significant of the criteria at both levels. Weight
matrices are formed to determine the priority where every value of the matrix (Aij)
gives the comparative significance of Criteria Ii and Ij. The importance in marked
on a scale of 1–9 where 1 means two equally significant criteria and 9 meaning Ii is
highly significant than Ij. Let the two-level weight matrices for our model are given
in Tables 2 and 3.

Similarly level 2 weight matrices are taken for all four sub-factors.

Reliability Assessment of Component-Based Software System … 665

2.2.3 Relative Weight Estimation

Based upon the above weight matrices, we calculate relative priorities of the factors
using the eigenvector W corresponding to largest eigenvalue kmax, such that

A �W ¼ kmax �W ð1Þ

Table 1 Indexed hierarchy of factors for evaluation of reliability

Assessment quantity Indexed
selected criteria

Indexed sub-criteria

Reliability of component-based
software systems

Deployment
context (I1)

Unknown usage profile (I11)

Unknown required context (I12)

Unknown operational profile (I13)

Human factor
(I2)

Programming skills (I21)

Domain knowledge (I22)

Human nature (I24)

Testing factor
(I3)

Test tools and methodology (I31)

Testing coverage (I32)

Testing environment (I33)

Testing resource allocation (I34)

Testing effort (I35)

Analysis and
design (I4)

Missing requirements (I41)

Misinterpreted requirements (I42)

Conflicting/ambiguous requirements
(I43)

Design not to requirements (I44)

Frequency of changes in requirement
specifications (I45)

Table 2 Level 1 weight
matrix for reliability

Reliability I1 I2 I3 I4
I1 1 4 1 2

I2 0.25 1 0.33 1

I3 1 3 1 4

I4 0.5 1 0.25 1

Table 3 Level 2 weight
matrix for I1

Deployment context (I1)

I1 I11 I12 I13
I11 1 0.5 1

I12 2 1 2

I13 1 0.5 1

666 B. Jasra and S. K. Dubey

Hence, the relative weight vector of level 1 criteria is W = (0.361292, 0.114188,
0.396258, 0.128262). Similarly at level 2, W1 = (0.25, 0.50, 0.25), W2 = (0.42317,
0.484411, 0.092418), W3 = (0.2118, 0.3064, 0.1618, 0.2306, 0.0893),
W4 = (0.3367, 0.1939, 0.1374, 0.2641, 0.0679), and consistency C.I. � 0.1 for all
matrices (Table 4).

2.3 Fuzzy Comprehensive Evaluation

In this qualitative method, we use following principles for reliability estimation.

2.3.1 Create Sets of Grade Factors and Elements

Let U = {u1, u2, u3 …, un} be the factor set based on first-level criteria indexing and
V = {V1, V2, V3, V4, V5}, i.e., {high, higher, medium, lower, low} be the evaluation
grades.

2.3.2 Derive a Single-Factor Evaluation Matrix R from U to V

To form the expert evaluation matrix, opinions of 25 experts were taken to decide
the reliability of CBSS based on the suggested criterion. The values obtained are
given in Table 5.

Table 4 Relative weights and ranking of factors

Criteria Level 1 weight Sub-criteria Level 2 weight Reliability value Rank

I1 0.3613 I11 0.25 0.090323 4

I12 0.50 0.180646 1

I13 0.25 0.090323 4

I2 0.1142 I21 0.42317 0.048321 8

I22 0.484411 0.055314 7

I23 0.092418 0.010553 14

I3 0.3963 I31 0.211748 0.0839068 5

I32 0.306419 0.121421 2

I33 0.161894 0.064152 6

I34 0.230607 0.091379 3

I35 0.089332 0.035385 10

I4 0.1283 I41 0.33668 0.043183 9

I42 0.193926 0.024873 12

I43 0.137445 0.017629 13

I44 0.26405 0.033867 11

I45 0.067899 0.008709 15

Reliability Assessment of Component-Based Software System … 667

If rij represents the degree of membership on Uj to Vi (i = 1, 2, 3, 4) for each Uj.
rj = n/25 where n is number of Uj. R is represented by the fuzzy matrix of Uj on

grade factor Vi. The individual criteria reliability evaluation matrices are

U ¼ I1; I2; I3; I4f g; U1 ¼ I11; I12; I13f g;
U2 ¼ I21; I22; I23f g; U3 ¼ I31; I32; I33; I34; I35f g
U4 ¼ I41; I42; I43; I44; I45f g:

R1 ¼
0:2 0:24 0:16

0:36 0:24 0:16

0:24 0:32 0:2

0:32

0:12

0:08

0:08

0:12

0:16

2
64

3
75

Similarly we calculated R2, R3, and R4.

2.3.3 Find Results of Comprehensive Evaluation

Evaluated results of reliability based on individual factors are: Bi = Wi * Ri where
Bi = {b1, b2, b3, b4, b5}

Hence, B1 = W1 * R1 i.e. {0.29, 0.26, 0.17, 0.16, 0.12}, B2 = {0.0956, 0.1924,
0.2929, 0.1819, 0.2361}, B3 = {0.2071, 0.3148, 0.2326, 0.3985, 0.1964}

B4 = {0.1429, 0.2058, 0.2085, 0.2132, 0.2294}

Table 5 Expert matrix

Sub-criteria High Higher Medium Low Lower

I11 5 6 4 8 2

I12 9 6 4 3 3

I13 6 8 5 2 4

I21 2 5 8 1 9

I22 3 5 7 7 3

I23 1 3 6 8 7

I31 4 3 9 5 4

I32 4 8 5 3 5

I33 7 2 6 4 6

I34 7 4 3 5 6

I35 4 7 8 4 2

I41 3 6 7 3 6

I42 5 2 5 8 5

I43 1 5 6 9 4

I44 5 7 3 4 6

I45 2 3 4 7 9

668 B. Jasra and S. K. Dubey

2.3.4 Comprehensive Multi-level Fuzzy Evaluation

The synthetic evaluation results will be B = W * R = {b1, b2, b3, b4, b5} where
R = [B1 B2 B3 B4]T, and W are the relative weights of first-level criteria. From
calculations B = {0.2161, 0.2671, 0.2138, 0.2639, 0.17763}.

2.3.5 Conclude Evaluation

Using maximum subordination principle, our synthetic evaluation shows maximum
subordination in level “Higher” in set B. Therefore, the CBSS ranked by experts in
terms of our given factors is having higher reliability according to our model.

3 Conclusion

Reliability of software plays very critical role for the success or failure of any
organization. In this paper, we have proposed a reliability estimation model for
component-based software systems. The proposed model considers a wider range of
factors affecting the reliability. AHP is used to get the relative importance of each
criterion, and comprehensive fuzzy evaluation method is used to evaluate reliability
of a CBSS using the given criterion. The experimental results showed the effec-
tiveness of evaluating criteria. In future, the experiments will be carried out at large
scale and in the quantitative score.

References

1. Guo, Y., Wan, T.T., Ma, P.J., Su, X.H.: Reliability evaluation optimal selection model of
component-based system. J. Softw. Eng. Appl. 4(7), 433–441 (2011)

2. Rosenberg, L., Hammer, T., Shaw, J.: Software metrics and reliability. In: 9th International
Symposium on Software Reliability Engineering (1998)

3. Mishra, A., Dubey, S.K.: Fuzzy qualitative evaluation of reliability of object oriented software
system. In: IEEE International Conference on Advances in Engineering & Technology
Research (ICAETR-2014), 01–02 Aug 2014, Dr. Virendra Swarup Group of Institutions,
Unnao, India, pp. 685–690. IEEE. ISBN: 978-1-4799-6393-5/14. https://doi.org/10.1109/
icaetr.2014.7012813

4. Tyagi, K., Sharma, A.: Reliability of component based systems: a critical survey.
ACM SIGSOFT Softw. Eng. Notes 36(6), 1–6 (2011)

5. Reussner, R.H., Heinz, W.S., Iman, H.P.: Reliability prediction for component-based software
architectures. J. Syst. Softw. 66(3), 241–252 (2003)

6. Rahmani, C., Azadmanesh, A.: Exploitation of quantitative approaches to software reliability.
Exploit. Quant. Approach Softw. Reliab. (2008)

7. Mishra, A., Dubey, S.K.: Evaluation of reliability of object oriented software system using
fuzzy approach. In: 2014 5th International Conference on Confluence the Next Generation
Information Technology Summit (Confluence), pp. 806–809. IEEE (2014)

Reliability Assessment of Component-Based Software System … 669

http://dx.doi.org/10.1109/icaetr.2014.7012813
http://dx.doi.org/10.1109/icaetr.2014.7012813

8. Dubey, S.K., Rana, A.: A fuzzy approach for evaluation of maintainability of object oriented
software system. Int. J. Comput. Appl. 41, 0975–8887 (2012)

9. Gülçin, B., Kahraman, C., Ruan, D.: A fuzzy multi-criteria decision approach for software
development strategy selection. Int. J. Gen. Syst. 33(2–3), 259–280 (2004)

10. Zhang, X., Pham, H.: An analysis of factors affecting software reliability. J. Syst. Softw.
50(1), 43–56 (2000)

670 B. Jasra and S. K. Dubey

Ranking Usability Metrics Using
Intuitionistic Preference Relations
and Group Decision Making

Ritu Shrivastava

Abstract The popularity of a Web site depends on the ease of usability of the site.
In other words, a site is popular among users if it is user-friendly. This means that
quantifiable attributes of usability, i.e., metrics, should be decided through a group
decision activity. The present research considers three decision makers or stake-
holders viz. user, developer, and professional to decide ranking of usability metrics
and in turn ranking of usability of Web sites. In this process, each stakeholder gives
his/her intuitionistic preference for each metric. These preferences are aggregated
using intuitionistic fuzzy averaging operator, which is further aggregated using
intuitionistic fuzzy weighted arithmetic averaging operator. Finally, eight consid-
ered usability metrics are ranked. The method is useful to compare Web site
usability by assigning suitable weights on the basis of rank of metrics. An illus-
trative example comparing usability of six operational Web sites is considered.

Keywords Usability metrics � Intuitionistic fuzzy set � Intuitionistic preference
Decision makers

1 Introduction

Every day, many new Web sites are hosted increasing thousands of pages on
WWW. These Web sites are searched for information needs of user. E-commerce
domain web sites like amazon.com, alibaba.com, snapdeal.com, flipkart.com are
used for purchasing electronic goods, furniture, clothes, etc. People are using net
banking for managing their accounts and making bill payments. However, it is well
known that the popularity of a Web site depends on the ease of usability and
authenticity of information. It is obvious that the quality of Web site and popularity

R. Shrivastava (&)
Computer Science & Engineering, Sagar Institute
of Research Technology & Science, Bhopal, India
e-mail: ritushrivastava08@gmail.com

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_65

671

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_65&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_65&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_65&domain=pdf

are related. Recently, Thanawala and Sakhardande [1] have emphasized that user
experience (UX) is a critical quality aspect for software. They have pointed out that
current UX assessments helped identify usability flaws, and they lacked quantifiable
metrics for UX and suggested new user experience maturity models. It is obvious
that user, developer, and professional have different perspectives of usability. Some
amount of fuzziness is involved in selecting usability metrics due to the differences
in perception of three stakeholders. In such situations, group decision making using
intuitionistic fuzzy preference relations has been successfully applied [2–6]. The
group decision making has proved very useful in medical diagnostic as well [7, 8].
As no exact numerical values are available, the intuitionistic fuzzy relations and
group decision theory as proposed by Xu [9] are handy to rank usability metrics.

The author, in this research, proposes to apply group decision making using
intuitionistic preference relations and the score and accuracy functions as proposed
by Xu [9], to rank usability metrics. The three decision makers, viz. user, developer,
and professional, have been used to provide their intuitionistic preferences for
usability metrics.

2 Literature Survey

The ISO/IEC 9126 model [10] describes three views of quality, viz. user’s view,
developer’s view, and manager’s view. The users are interested in the external
quality attributes, while developers are interested in internal quality attributes such
as maintainability, portability. In a survey conducted by Web software development
managers and practitioners by Offutt [11], they agreed at six quality attributes—
usability, reliability, security, scalability, maintainability, and availability. Olsina
and Rossi [12] identified attributes, sub-attributes, and metrics for measuring quality
of e-commerce-based Web sites. They also developed a method called “WebQEM”
for measuring metric values automatically. Olsina identified and measured quality
metrics for Web sites of domain museum [13]. Shrivastava et al. [14] have specified
and theoretically validated quality attributes, sub-attributes, and metrics for aca-
demic Web sites. They have developed a framework for measuring attributes and
metrics [15]. In this framework, template for each metric has been developed so that
metric value is measured unambiguously. Shrivastava et al. [16] used logical scoring
of preferences (LSP) to rank six academic institution Web sites.

According to Atanassov [17, 18], the concept of intuitionistic fuzzy set is
characterized by a membership function and a non-membership function, which is a
general form of representation of fuzzy set. Chen and Tan [3] developed a technique
for handling multi-criteria fuzzy decision-making problems based on vague sets
(vague set is same as intuitionistic fuzzy set). They developed a score function to
measure the degree of suitability of each alternative with respect to a set of criteria
presented by vague values. It has been observed that a decision maker may not be
able to accurately express his/her preference for alternatives, in real-life situations,
due to various reasons. Thus, it is suitable to express the decision maker’s

672 R. Shrivastava

preference values in terms of intuitionistic fuzzy values. As described in Sect. 1, the
ranking of usability involves three stakeholders, who may not be sure of exact
values of contribution of each metric, and therefore, it is natural to apply group
decision making using intuitionistic fuzzy preference relations. These preferences
are aggregated using intuitionistic fuzzy averaging operator, and then further
aggregation is done using intuitionistic fuzzy weighted arithmetic averaging oper-
ator. In this research, the author has considered usability as the most important
single attribute of quality which is crucial in Web applications from user’s point of
view and has tried to rank usability metrics using group decision-making process
proposed by Xu [9]. Three decision makers, viz. user, developer, and professional,
are considered.

The paper is organized as follows: Sect. 3 gives basics of group decision-making
process and basic definitions. Section 4 deals with the description of usability
metrics and four-step process to rank eight metrics. The process is empirically
evaluated through an example in which usability is ranked for six Web sites of
academic institutions. The conclusion and future work is given in Sect. 5.

3 Basics of Group Decision Making

Let X ¼ fx1; x2. . .xng be discrete set of alternatives in a group decision-making
problem. Group decision makers generally provide preferences for each pair of
alternatives xi and then construct preference relations. A preference relation P on set
X is defined as

lP : X � X ! D; ð1Þ

where D is the domain representing preference degrees.
A complementary matrix R is a fuzzy preference relation R on the set x and is

given by

R ¼ ðrijÞn�n � X � X ð2Þ

where rij � 0, rij þ rji ¼ 1, rii ¼ 0:5 for all i, j = 1, 2…, n and rij denotes preference
degree of alternatives xi over xj. It is to be noted that rij ¼ 0:5 indicates indifference
between xi and xj; rij [0:5 means xi is preferred over xj and rij\0:5 means xj is
preferred over xi.

The concept of intuitionistic fuzzy set characterized by a membership function
and a non-membership function was introduced by Atanassov [17, 18]. The intu-
itionistic fuzzy set A is defined as

A ¼ fðx; lAðxÞ; tAðxÞÞ xeXj g ð3Þ

Ranking Usability Metrics Using Intuitionistic Preference … 673

The A is characterized by a membership function lA

lA : X ! ½0; 1�

and a non-membership function tA

tA : X ! ½0; 1�

with the condition

0� lAðxÞþ tAðxÞ� 1; 8x 2 X ð4Þ

Following Xu [9], the author introduces the concept of intuitionistic preference
relation. An intuitionistic fuzzy relation B on X is a matrix defined by

B ¼ bij
� �

n�n� X � X

bij ¼ f xi; xj
� �

; l xi; xj
� �

; m xi; xj
� �g; 8i; j ð5Þ

In short, the author can write bij ¼ ðlij; mijÞ, where bij is an intuitionistic fuzzy
value representing certainty degree lij to which xi is preferred to xj and certainty
degree tij to which xj is preferred to xi. Further, lij and tij satisfy the relation

0� lij þ tij � 1 lji ¼ tij tji ¼ lij lii ¼ tii ¼ 0:5 ð6Þ

Following Chen et al. [3] and Xu [9], score function D of an intuitionistic fuzzy
value is defined as

D bij
� � ¼ lij � mij ð7Þ

It is obvious that D will lie in the interval [−1, 1]. Hence, the greater the score
DðbijÞ, the greater the intuitionistic fuzzy value bij.

As in [3, 9], the accuracy function H can be defined as

HðbijÞ ¼ lij þ tij ð8Þ

It evaluates degree of accuracy of intuitionistic fuzzy value bij. Clearly, the value
of H will lie in the interval [0, 1].

4 Application of Group Decision Making to Rank
Usability Metrics

In the recent paper [14], the author has specified and theoretically validated
usability metrics for Web sites of academic institutions. These metrics are repro-
duced below for reference

674 R. Shrivastava

Usability Metrics, Global Site Under stability, Site Map (Location Map),
Table of Content, Alphabetic Index, Campus Map, Guided Tour, Help Features and
On-line Feedback, Student Oriented Help, Search Help, Web-site Last Update
Indicator, E-mail Directory, Phone Directory, FAQ, On-line in the form of
Questionnaire, What is New Feature?

For simplicity, the author considers eight metrics for ranking: x1 = location map,
x2 = table of contents, x3 = alphabetic index, x4 = guided tour, x5 = search help,
x6 = last update information, x7 = e-mail directory, x8 = what is new feature.

The usability metric ranking problem involves the following four steps:

Step 1: Let X ¼ fx1; x2. . .x8g be a discrete set of alternatives in a group decision
problem. Three decision makers are represented by D ¼ fd1; d2; d3g with
corresponding weights x ¼ x1;x2;x3ð ÞT and having the propertyP3

k¼1 xk ¼ 1;xk [0. The decision maker dk 2 D provides his/her intu-
itionistic preferences for each pair of alternatives and then constructs an
intuitionistic relation

BðKÞ ¼ ðbðKÞij Þ8�8;

where

ðbðKÞij Þ ¼ ðlðKÞij ; tðKÞij Þ 0� lðKÞij þ tðKÞij � 1

lðKÞji ¼ tðKÞij lðKÞij ¼ tðKÞji lðKÞii ¼ tðKÞii ¼ 0:5
ð9Þ

In the present application, three decision makers have provided their

intuitionistic preferences using relation (9) giving Bð1Þ ¼ ðbð1Þij Þ Bð2Þ ¼
ðbð2Þij Þ Bð3Þ ¼ ðbð3Þij Þ. Values of these matrices are given in Appendix 1.

Step 2: The author now applies intuitionistic fuzzy averaging operator

bðKÞi ¼ 1
n

Xn

j¼1

bðKÞij ; i ¼ 1; 2. . .; n; n ¼ 8 ð10Þ

Values of bðKÞi are given in Appendix 2.
3. Step 3: Now, use intuitionistic fuzzy weighted arithmetic averaging

operator defined as

bi ¼
X3

K¼1

wkb
ðKÞ
i ; i ¼ 1; 2. . .; 8 ð11Þ

This will aggregate all bðKÞi corresponding to three DMs into a collective
intuitionistic fuzzy value bi of the alternative xi over all other alternatives.

Ranking Usability Metrics Using Intuitionistic Preference … 675

Using x1 ¼ 0:4;x2 ¼ x3 ¼ 0:3;, I get

b1 ¼ ð0:6539; 0:1575Þ; b2 ¼ ð0:6075; 0:3450Þ
b3 ¼ ð0:5298; 0:4101Þ; b4 ¼ ð0:5389; 0:4039Þ
b5 ¼ ð0:4575; 0:4675Þ; b6 ¼ ð0:5053; 0:6289Þ
b7 ¼ ð0:3739; 0:5651Þ; b8 ¼ ð0:2451; 0:6750Þ

Step 4: The author uses (7) to calculate score function D for each intuitionistic
fuzzy value

Db1 ¼ 0:4964;Db2 ¼ 0:2625;Db3 ¼ 0:1197

Db4 ¼ 0:1350;Db5 ¼ �0:01;Db6 ¼ �0:1236

Db7 ¼ �0:1912;Db8 ¼ �0:4299

Thus, the following preference relation is obtained:

b1 [b2 [b4 [b3 [b5 [b6 [b7 [b8

If the symbol 	 is used to represent preference of a usability metric over the
other, then the following preference relation is obtained:

x1 	 x2 	 x4 	 x3 	 x5 	 x6 	 x7 	 x8 ð12Þ

This means that users prefer to see location map on Web site compared to table
of contents, table of contents is preferred to guided tour of the campus, and so on.
The relation (12) is useful in assigning weights to usability metrics so that overall
usability of Web sites can be calculated.

5 Illustrative Example

In my work, I have applied group decision making in usability measurement and I
have taken academic Web sites of six institutes, viz. Georgia Institute of
Technology, Stanford University—School of Engineering, IIT Delhi, IIT BHU,
MANIT Bhopal, and BITS Pilani. I have measured eight usability metric values for
each institute using the methodology outlined by Shrivastava et al. in [15, 16]. The
metric values were collected during March 2–6, 2015. I have used Eq. (12) that
gives ranking of eight metrics to assign weights according to their ranks. Thus,
assigned weights to x1 through x8 are 0.20, 0.18, 0.15, 0.13, 0.11, 0.10, 0.07, and
0.06. For assigned weights, the usability comparison is given in Fig. 1, where bars
represent percentage usability of six sites. Figure 2 gives usability comparison for
the case, where each metric is assigned equal weight or simple arithmetic average.

676 R. Shrivastava

6 Conclusion

The present research uses intuitionistic preference relations and group decision
theory to rank eight commonly used usability metrics. The group decision theory,
described in Sects. 3 and 4, considers three decision makers, who provide their
intuitionistic preferences for each metric. On the basis of theory developed, eight
usability metrics are ranked and the result is given in Eq. (12). The main advantage
of the method is that weights are assigned according to rank value to calculate
overall usability of Web sites.

The usability of six Web sites (academic institute) has been calculated, and
usability comparison is given in Fig. 1. Figure 2 also gives usability comparison in
which usability is calculated using simple arithmetic average of metric values. It is
observed that usability of good sites is going down compared to last two sites,
where there is increase in usability value. This is somewhat unusual because either
all values should increase or all should decrease. Hence, the method of group
decision making using intuitionistic preference relations appears superior to simple
aggregation.

1 2 3 4 5 6

Stanford Georgia IITD IIT BHU BITS MANIT

83.6 81.54 80.35
69.43

60.3
52.5

0

20

40

60

80

100

1 2 3 4 5 6

Fig. 1 Weighted usability
(in %) comparison

80.3 77.4 75.4
68.3 64.2

57.5

0

20

40

60

80

100

1 2 3 4 5 6

Fig. 2 Averaged usability
(in %) comparison

Ranking Usability Metrics Using Intuitionistic Preference … 677

Appendix 1

x1 x2 x3 x4 x5 x6 x7 x8

Bð1Þ ¼ x1 (0.5, 0.5) (0.6, 0.2) (0.5, 0.2) (0.6, 0.4) (0.6, 0.3) (0.8, 0.1) (0.7, 0.2) (0.9, 0.1)

x2 (0.2, 0.6) (0.5, 0.5) (0.7, 0.2) (0.6, 0.4) (0.6, 0.3) (0.8, 0.1) (0.7, 0.1) (0.7, 0.2)

x3 (0.2, 0.5) (0.2, 0.7) (0.5, 0.5) (0.6, 0.3) (0.7, 0.3) (0.7, 0.2) (0.8, 0.2) (0.6, 0.3)

x4 (0.4, 0.6) (0.4, 0.6) (0.3, 0.6) (0.5, 0.5) (0.8, 0.1) (0.7, 0.2) (0.7, 0.3) (0.6, 0.3)

x5 (0.3, 0.6) (0.3, 0.6) (0.3, 0.7) (0.1, 0.8) (0.5, 0.5) (0.8, 0.1) (0.6, 0.3) (0.7, 0.2)

x6 (0.1, 0.8) (0.1, 0.8) (0.2, 0.7) (0.2, 0.8) (0.1, 0.8) (0.5, 0.5) (0.6, 0.4) (0.7, 0.2)

x7 (0.2, 0.7) (0.1, 0.7) (0.2, 0.8) (0.2, 0.7) (0.3, 0.6) (0.4, 0.6) (0.5, 0.5) (0.7, 0.1)

x8 (0.1, 0.9) (0.2, 0.7) (0.3, 0.6) (0.3, 0.6) (0.2, 0.7) (0.2, 0.7) (0.1, 0.7) (0.5, 0.5)

Bð2Þ ¼ x1 x2 x3 x4 x5 x6 x7 x8

x1 (0.5, 0.5) (0.6, 0.3) (0.8, 0.2) (0.7, 0.2) (0.6, 0.3) (0.7, 0.1) (0.7, 0.2) (0.8, 0.1)

x2 (0.3, 0.6) (0.5, 0.5) (0.8, 0.2) (0.7, 0.3) (0.6, 0.3) (0.8, 0.1) (0.6, 0.4) (0.7, 0.2)

x3 (0.2, 0.8) (0.2, 0.8) (0.5, 0.5) (0.6, 0.3) (0.7, 0.2) (0.8, 0.1) (0.7, 0.3) (0.6, 0.3)

x4 (0.2, 0.7) (0.3, 0.7) (0.3, 0.6) (0.5, 0.5) (0.8, 0.1) (0.9, 0.1) (0.7, 0.2) (0.7, 0.2)

x5 (0.3, 0.6) (0.3, 0.6) (0.2, 0.7) (0.1, 0.8) (0.5, 0.5) (0.8, 0.1) (0.7, 0.3) (0.6, 0.2)

x6 (0.1, 0.7) (0.1, 0.8) (0.1, 0.8) (0.1, 0.9) (0.1, 0.8) (0.5, 0.5) (0.6, 0.3) (0.7, 0.2)

x7 (0.2, 0.7) (0.4, 0.6) (0.3, 0.7) (0.2, 0.7) (0.3, 0.7) (0.3, 0.6) (0.5, 0.5) (0.8, 0.2)

x8 (0.1, 0.8) (0.2, 0.7) (0.3, 0.6) (0.2, 0.7) (0.2, 0.6) (0.2, 0.7) (0.2, 0.8) (0.5, 0.5)

Bð3Þ ¼ x1 x2 x3 x4 x5 x6 x7 x8

x1 (0.5, 0.5) (0.7, 0.2) (0.8, 0.2) (0.7, 0.3) (0.6, 0.3) (0.7, 0.1) (0.5, 0.4) (0.6, 0.3)

x2 (0.2, 0.7) (0.5, 0.5) (0.7, 0.1) (0.7, 0.2) (0.6, 0.4) (0.8, 0.1) (0.6, 0.3) (0.7, 0.3)

x3 (0.2, 0.8) (0.1, 0.7) (0.5, 0.5) (0.5, 0.4) (0.7, 0.3) (0.8, 0.2) (0.6, 0.4) (0.7, 0.2)

x4 (0.3, 0.7) (0.2, 0.7) (0.4, 0.5) (0.5, 0.5) (0.6, 0.3) (0.7, 0.2) (0.6, 0.4) (0.8, 0.1)

x5 (0.3, 0.6) (0.4, 0.6) (0.3, 0.7) (0.3, 0.6) (0.5, 0.5) (0.9, 0.1) (0.6, 0.3) (0.7, 0.2)

x6 (0.1, 0.7) (0.1, 0.8) (0.2, 0.8) (0.2, 0.7) (0.1, 0.9) (0.5, 0.5) (0.5, 0.4) (0.6, 0.3)

x7 (0.4, 0.5) (0.3, 0.6) (0.4, 0.6) (0.4, 0.6) (0.3, 0.6) (0.4, 0.5) (0.5, 0.5) (0.8, 0.2)

x8 (0.3, 0.6) (0.3, 0.7) (0.2, 0.7) (0.1, 0.8) (0.2, 0.7) (0.3, 0.6) (0.2, 0.8) (0.5, 0.5)

Appendix 2

bð1Þ1 ¼ ð0:65; 0:25Þ; bð1Þ2 ¼ ð0:60; 0:37Þ; b3 ¼ ð0:54; 0:38Þ; bð1Þ4 ¼ ð0:55; 0:40Þ;
bð1Þ5 ¼ ð0:45; 0:47Þ; bð1Þ6 ¼ ð0:32; 0:62Þ; bð1Þ7 ¼ ð0:32; 0:58Þ; bð1Þ8 ¼ ð0:28; 0:68Þ
bð2Þ1 ¼ ð0:68; 0:25Þ; bð2Þ2 ¼ ð0:62; 0:32Þ; b3 ¼ ð0:53; 0:41Þ; bð2Þ4 ¼ ð0:55; 0:39Þ;
bð2Þ5 ¼ ð0:44; 0:47Þ; bð2Þ6 ¼ ð0:29; 0:62Þ; bð2Þ7 ¼ ð0:37; 0:59Þ; bð2Þ8 ¼ ð0:24; 0:67Þ
bð3Þ1 ¼ ð0:64; 0:29Þ; bð3Þ2 ¼ ð0:60; 0:32Þ; b3 ¼ ð0:51; 0:44Þ; bð3Þ4 ¼ ð0:51; 0:42Þ;
bð3Þ5 ¼ ð0:50; 0:45Þ; bð3Þ6 ¼ ð0:29; 0:64Þ; bð3Þ7 ¼ ð0:44; 0:51Þ; bð3Þ8 ¼ ð0:26; 0:67Þ

678 R. Shrivastava

References

1. Thanawala, R., Sakhardande, P.: Sotware user experience maturity model. CSI Commun.
Knowl. Dig. IT Commun. 38(8) (2014)

2. Atanassov, K., Pasi, G., Yager, R.R.: Intuitionistic fuzzy interpretations of multi-person
multi-criteria decision making. In: Proceedings First International IEEE Symposium on
Intelligent Systems, vol. I, Varna, pp. 115–119 (2002)

3. Chen, S.M., Tan, J.M.: Handeling multicriteria fuzzy decision-making problems based on
vague set theory. Fuzzy Sets Syst. 67, 163–172 (1994)

4. Szmidt, E., Kacprzyk, J.: Remarks on some applications of ituitionistic fuzzy sets in decision
making. Note IFS 2, 22–31 (1996)

5. Szmidt, E., Kacprzyk, J.: Group decision making under ituitionistic fuzzy preference
relations. In: Proceedings of 7th IPMU Conference, Paris, pp. 172–178 (1998)

6. Szmidt, E., Kacprzyk, J.: Using ituitionistic fuzzy sets in group decision making. Cotrol
Cybern. 31, 1037–1053 (2002)

7. De, S.K., Biswas, R., Roy, A.R.: An application of ituitionistic fuzzy sets in medical
diagnosis. Fuzzy Sets Syst. 117, 209–213 (2001)

8. Xu, Z.S.: On correlation measures ituitionistic fuzzy sets. Lect. Notes Comput. Sci. 4224,
16–24 (2006)

9. Xu, Z.: Intuitionistic preference relation and their application in group decision making. Inf.
Sci. 177, 2363–2379 (2007)

10. ISO/IEC 9126-1: Sotware Engineering—Product Quality Part 1 Quality Model (2000)
11. Offutt, J.: Quality attributes of Web software applications. IEEE Softw. 25–32 (2002)
12. Olsina, L., Rossi, G.: Measuring web-application quality with WebQEM. In: IEEE

Multimedia, pp. 20–29, Oct–Dec 2002
13. Olsina, L.: Website quality evaluation method: a case study of museums. In: 2nd Workshop

on Software Engineering Over Internet, ICSE 1999
14. Shrivastava, R., Rana, J.L., Kumar, M.: Specifying and validating quality characteristics for

academic web-sites. Int. J. Compt. Sci. Inf. Secur. 8(4) (2010)
15. Shrivastava, R., et al.: A framework for measuring external quality of web-sites. Int. J. Compt.

Sci. Inf. Secur. 9(7) (2011)
16. Shrivastava, R., et al.: Ranking of academic web-sites on the basis of external quality

measurement. J. Emer. Trends Comput. Inf. Sci. 3(3) (2012)
17. Atanassov, K.: Intuitioistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986)
18. Atanassov, K.: Intuitioistic Fuzzy Sets: Theory and Applications. Physica-Verlag, Heidelberg

(1999)

Ranking Usability Metrics Using Intuitionistic Preference … 679

Research Challenges of Web Service
Composition

Ali A. Alwasouf and Deepak Kumar

Abstract Using semantic-based Web service composition based on functional and
non-functional user requests promises to enable automatic dynamic assembly of
applications. Apart from many advantages of such approaches, an effective auto-
matic dynamic semantic-based Web service composition approach is still an open
problem. Publishing, discovery, and selection mechanisms as well as heterogeneity
and limitations of semantic languages have a major impact on the effectiveness of
service composition approaches. This paper explores the major challenges related to
semantic languages, Web service publishing, discovery, and selection techniques
which affect the composition of the service. Additionally, it evaluates the effec-
tiveness of automation, dynamicity, scalability, adaptation, and management
strategies of the composition approaches.

Keywords Service-oriented architecture � Semantic-based Web service composi-
tion � Discoverability � Selection � Dynamic composition � Automatic composition
Composition management

1 Introduction

Service is a milestone of service-oriented architecture (SOA) to develop rapid
dynamic applications. Using widespread XML-based standards like simple object
access protocol (SOAP), Web service description language (WSDL), semantics

A. A. Alwasouf (&) � D. Kumar
Amity Institute of Information Technology, Amity University, Noida 110025,
Uttar Pradesh, India
e-mail: alialwasouf@gmail.com

D. Kumar
e-mail: deepakgupta_du@rediffmail.com

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_66

681

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_66&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_66&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_66&domain=pdf

(Web language ontology (OWL), resource description framework (RDF), … etc.),
and further WS-* specifications make SOA platform independent from underlying
technologies.

The service is described using WSDL, semantic languages, and other WS-*
specifications, published to a registry, i.e., Universal Description, Discovery and
Integration (UDDI), and discovered by matchmaking, filtering, or any other search
technique. The user query, preferences, QoS, user feedback, and rating [1] are used
in many approaches to discover and select the best available service that fulfills
users’ requirements.

Composition techniques are classified to static versus dynamic and manual,
semiautomatic or automatic techniques. Static composition is a predefined work-
flow which locates manually exact services at developing stage. Such techniques
are very useful to an build enterprise application as they are much faster and where
business process workflow is already predefined, i.e., BPEL4S. Meanwhile,
dynamic approaches locate best services at run-time. It can be manual, semiauto-
matic, or automatic composition. Automatic dynamic composition is widely used to
build Web applications where user requirements are undefined and unexpected.

Recently, some efforts have been done to provide semantic annotations through
extending existing standards. WSDL-S, SAWSDL, OWL-S, METERO-S, and
WSMO are the most prominent candidates. WSDL-S added some elements to
extend WSDL in order to refer to semantic models. Using WSDL-S is considered to
be more flexible than OWL-S and WSMO as developers are already familiars with
WSDL. Also, WSDL-S specification has been extended to SAWSDL adding pro-
visions for semantic annotations.

OWL-S is a semantic Web service description language, and it is an instance of
OWL. OWL-S provides a model to describe both services and processes. A service
ontology is defined in three parts: service profile to advertise the functionality of the
service, service process to describe the workflow as well as data flow between
services, and service grounding which provides all information related to how to
access the composite service.

Another alternative to OWL-S is Web service modeling ontology (WSMO) and
the combination of Unified Modeling Language (UML) and Object Constraints
Language (OCL). WSMO defines four parts to describe a service: ontologies, Web
services, goals, and mediators. WSMO differs with OWL as it employs
object-oriented style of modeling using frames. WSMO prescribes the Web Service
Modeling Language (WSML) as a tool to actually represent its elements. Unlike
OWL-S [20], WSMO includes service and ontology specification formalisms,
whereas OWL-S is OWL based as it uses OWL for ontology specifications and
other languages for formal semantics.

In this paper, we present various existing semantic-based Web service compo-
sition techniques in Sect. 2. In Sect. 3, we discuss the major research challenges of
semantic-based composition approaches. Finally, we present our main conclusion
and introduce lines of our future research in Sect. 4.

682 A. A. Alwasouf and D. Kumar

2 Semantic-Based Composition Techniques

A considerable number of semantic-based compositions approaches have been
proposed during recent years. Evaluation of such approaches must take into account
some requirements need to be met. Since the focus of this survey is semantic-based
approaches, we have to take into account the following composition requirements
while evaluating approaches: (a) each semantic-based composition approach must
provide an automated way to generate, at least partially, the composition workflow
(automation), (b) it must also produce an abstract composition schema (dynamic-
ity), (c) the richness of semantic description is fundamental to enhance the dis-
covery and selection process of the services (discoverability and selection),
(d) meanwhile, any approach may work correctly with a given set of services; there
is no guarantee that it works with larger more complex composition (scalability),
and (e) Finally, we have to study if the composition approach can adapt itself to the
changes of real world (adaptation).

Ontology-based dynamic service composition is represented in [2]. The
approach developed a prototype for service composition which has two elements: a
composer and inference engine (OWL reasoner). Reasoner stores information of
known services in knowledge base (KB) using RDF format. The composition
workflow gets done by the user; the composer offers choices to the user at each
step. This work suffers from scalability and availability problems. Also, it uses
filtering on a set of pre-discovered services instead of dynamic matchmaking.

A semantic-based approach based on understanding the semantics of interactions
of services is presented in [3]. Similar work has been proposed in [4]. The proposal
supports reuse and composition of services through enabling ontologies to integrate
models, languages, and activities.

Composing services on the basis of natural languages requests has been adopted
by many researchers. In [15, 16], the authors propose architecture (SeGSeC) for
semantics-based, context-aware, dynamic service composition inspired by the
component model. They introduce CoSMoS, a semantic abstract model for both
service components and users which is the basis for all required representations of
their framework. The approach is based on parsing a natural language request from
the user using preexisting natural language analysis technologies into a CoSMoS
model instance. The workflow synthesis module creates an executable workflow by
discovering and interconnecting components based on the request and the com-
ponents’ functional description. The workflow-based composition approach has
evolved from offering only manual and static composition methods to support
automation and dynamicity, but the resulting workflows are limited to sequential
and parallel execution.

The solutions described in [5, 6] assume that the natural language is used to
express requests with a controlled subset. Using templates, a flow model is created
from a user request. Action and its parameters are identified by verbs. Well-defined
keywords set are paired to service. Operation semantics and ontological classifi-
cation are provide by OWL-S annotations. The operations act as nodes of a direct

Research Challenges of Web Service Composition 683

acyclic graph, and the relations among their IOPEs establish graph which is
translated into an executable service. In [7], retrieval of relevant services is solved
by defining conceptual distances using semantic concepts in order to measure the
similarity between service definition and user request. Composition is done using
retrieved services templates called aspects of assembly. Ubiquarium system is used
to compose a service based on user request described by a natural language.

Another approach based on natural language proposed in [21]. The approach
leverages description of known service operations catalog. Each request is pro-
cessed with vocabulary that contains lexical constructs to cover semantics, in order
to extract functional requirements emended in the request and link them to the
Catalog. Additionally, the request interpreter extracts service logic, which is
pre-defined as modular templates to describe control and data flow of operations.
A composition specification is created, and each user request is associated to a
composed service. The specification is transformed into an executable flow docu-
ment to be used by composition engine.

Skogan et al. [18] proposed a method that uses UML activity diagrams to model
service compositions. Executable BPEL processes are generated by using the UML
diagrams which are used to generate XSLT transformations. While this work only
uses WSDL service descriptions as input to the UML transformation, a follow-up
work [19] eliminates this limitation by considering semantic Web service
descriptions in OWL-S and WSMO as well as supporting QoS attributes. This
enables dynamicity, since the BPEL processes that are generated are static and only
invoke concrete services at run-time. Additionally, services are selected based on
QoS properties when more than one service fulfill the requirements. Also, the work
by Gronmo et al. presents only the methodology behind their model-driven
approach without testing whether and how to implement such methodology.
However, both works do not achieve full automation as the composition workflow
is created manually.

In [12], the authors present a mixed framework for semantic Web service dis-
covery and composition, with ability to user intervention. Their composition engine
combines rule-based reasoning on OWL ontologies with Jess and planning func-
tionality using GraphPlan algorithm. Reachability analysis determines whether a
state can be reached from another state and disjunctive refinement resolves possible
inconsistencies. Planning is used to propose composition schemas to the user, rather
than enforce a decision, which is presented by authors to be the more realistic
approach.

Graph-based planning is also employed by the work of Wu et al. [14] in order to
realize service composition. The authors propose their own abstract model for
service description which is essentially an extension of SAWSDL to more resemble
OWL-S and WSMO. In addition, they model service requests and service com-
positions with similar semantic artifacts. Then, they extend the GraphPlan algo-
rithm to work with the models defined. They also add limited support for
determinism, by allowing loops only if they are identified beforehand. The final
system takes a user request defned using the authors’ models and extracts an
executable BPEL flow.

684 A. A. Alwasouf and D. Kumar

In [13], the authors follow a similar approach, but they employ OWL-S
descriptions (instead of creating their own services ontology), which are similarly
translated to PDDL descriptions. They use a different planner, however, a hybrid
heuristic search planner which combines graph-based planning and HTN. This
combines the advantages of the two planning approaches, namely the fact that
graph-based planning always finds a plan if one exists and the decomposition
offered by HTN planning. The framework also includes a re-planning component
which is able to re-adjust outdated plans during execution time.

3 Composition Research Challenges

All challenges presented in this section contribute to the same high-level goal to
(a) provide rich and flexible semantic specifications, (b) automate discovery,
selection, and composition process of Web services, and (c) achieve scalable,
self-adaption, and self-management composition techniques.

3.1 Semantic Web Services Languages, Discovery,
and Selection Challenges

The purpose of semantic Web services is to describe the semantic functional and
non-functional attributes of a Web service with a machine-interpretable and also
understandable way in order to enable automatic discovery, selection, and com-
position of services. The enormous number of semantic Web service languages,
including OWL-S, WSMO, METERO-S, SAWSDL, and many others, resulted in
overlap and difference in capabilities at conceptual and structural levels [20]. Such
differences affect discovery, selection, and composition techniques. Therefore,
composition of services implies to deal with heterogeneous terminologies, data
formats, and interaction models.

Describing the behavior is a good progress for enriching service descriptions, but
the adequate description of underlying service semantics beyond the abstract
behavior models is still a challenging problem [1].

Current semantic Web service languages describe the syntactical aspects of a
Web service, and therefore, the result is rigid services that cannot respond to
unexpected user requirements and changes automatically, as it requires human
intervention.

Input, output, effect, and precondition (IOEP) of each service are described in
different semantic Web languages like OWL, SWRL [8], and many others.
Composing services, described in different languages, is a complex process.
Interoperations between composite services require mapping of IOEPs of each two
service which is a complex process to get done automatically.

Research Challenges of Web Service Composition 685

From composition point of view, discovery is an early step of composition. The
discovery process should be based on matching a given description of the service
and a description of the actual available service. This problem requires an algorithm
to match descriptions and a language to describe capabilities of services. Also,
enabling discovery of services involves publishing the service to a public registry.
In spite of all efforts that have been done to add semantics to UDDI [9–11], such
registries are still incapable to support different semantic languages and deal with
their differences. On the other hand, standard registry structure is not suitable to
combine the capabilities of semantic languages. The lack of semantic search
capability of the registry is a major challenge for any semantic-based composition
technique. Additionally, many approaches realize the QoS-based discovery and
selection; registry support of QoS is important for automation of selection. For
automated discovery of services, it is critical that a search engine can retrieve and
perform reasoning on I/O parameters [17].

Automatic composition implies an automatic selection of the retrieved services.
The approach must be able to choose the best available service that fulfills the
composition requirements automatically based on the comparison of similarities
and differences between the retrieved services. Thus, semantic languages of the
service should enable such comparison. Some of the proposed approaches proposed
an automatic selection based on QoS, rating, and user feedback. However, QoS and
rating do not ensure that the best services will be selected. There is a need for richer
description to distinguish among services.

To conclude, semantic languages initiatives do not enable automatic dynamic
semantic-based Web service composition techniques and none of them achieve
fully automated service discovery, selection, or composition. There is a need to
abstract away differences among semantic languages and enrich them in order to
(a) add different semantics support and semantic search capabilities to public reg-
istries to enable automatic discovery of services, (b) enable automatic interopera-
tions and data flow in the composition workflow, (c) enable automatic selection of
Web services those best fulfill the requirements. Such abstraction will benefit from
the strength of each language and highlights the weakness of each individual lan-
guage. On the other hand, registry search capabilities must be extended in order to
enable semantic-based and QoS service matchmaking.

3.2 Composition Challenges

In general, while workflow-based composition approaches have evolved from
offering only manual and static composition methods to supporting automation and
dynamicity, the resulting workflows are limited to simple schemas such as
sequential and parallel execution, or in other cases, automation is only supported
during the execution and adaptation of the workflow, while the workflow design
process is manual. This deficiency has been addressed by combining
workflow-based methods with AI planning techniques. However, so far, the

686 A. A. Alwasouf and D. Kumar

automated composition of the processes is still a difficult to be achieved: there no
effective, easy-to-use, flexible support that can interact with the life cycle of
processes.

3.3 Scalability, Adaptation, and Management

Composition approach must be scalable; the existing ones do not suggest how to
describe, discover, and select a composite service. Any composition approach must
suggest a solution to describe the composite services with the same standards
automatically based on descriptions of services participating in the composition.

There is a lack of tools for supporting the evolution and adaptation of the
processes. It is difficult to define compositions of processes that respond to the
changes and differences of user requirements. Self-adapting service compositions
should be able to respond to the changes of behaviors of external composite ser-
vices. The need of human intervention for adapting services should be reduced to
the minimum.

The composition approach must be self-healing, it should detect automatically
that some service composition requirements have been changed and the imple-
mentation and react to requirement violations. On the other hand, the composition
must detect automatically any collapse of a service participating in the composition,
discover a new service that fulfills the exact same requirements then replace the
discovered service and integrate it into the composition workflow.

Finally, any proposed approach must ensure that the advertisement of any ser-
vice meets the actual result of service execution. The user must trust that the
business rules are enforced into composition.

4 Conclusions and Future Work

In this paper, we explored many semantic-based composition approaches. The goal
fully automated dynamic approach is still not achieved yet. The research challenges
to achieve such approach include differences in the semantic languages capabilities
which led to poor registry support of semantics. Thus, fully automated discovery
and selection of services participating in composition have not met yet. At final, we
highlighted many characteristics that any proposed approach has to satisfy in order
to deliver a fully automated self-management composition process.

Currently, we are working to draft a new abstraction level of semantic languages
which will enable compose services described in different semantic languages. This
work is expected to add semantic support for different kinds of registry.

Next, we are going to propose a new kind of semantics that would enable
auto-generation of workflow and auto-generation of composite services description
in order to publish it for scalability purpose.

Research Challenges of Web Service Composition 687

At last, we try to leverage the benefits of two previous works to suggest a new
automatic dynamic composition approach based on natural language request for
Web services on-fly composition. This work aims to achieve scalable,
self-management, and self-healing composition approach.

References

1. Kritikos, K., Plexousakis, D.: Requirements for Qos-based web service description and
discovery. IEEE T. Serv. Comput. 2(4), 320–337 (2009)

2. Sirin, E., Hendler, J., Parsia, B.: Semi-automatic composition of web services using semantic
descriptions. In: Web Services: Modeling, Architecture and Infrastructure workshop in ICEIS
2003 (2002)

3. Mrissa, M., et al.: Towards a semantic-and context-based approach for composing web
services. Int. J. Web Grid Serv. 1(3), 268–286 (2005)

4. Pahl, C.: A conceptual architecture for semantic web services development and deployment.
Int. J. Web Grid Serv. 1(3), 287–304 (2005)

5. Bosca, A., Ferrato, A., Corno, F., Congiu, I., Valetto, G.: Composing web services on the
basis of natural language requests. In: IEEE International Conference on Web services
(ICWS’05), pp. 817–818 (2005)

6. Bosca, A., Corno, F., Valetto, G., Maglione, R.: On-the-fly construction of web services
compositions from natural language requests. J. Softw. (JSW), 1(1), 53–63 (2006)

7. Pop, F.C., Cremene, M., Tigli, J.Y., Lavirotte, S., Riveill, M., Vaida, M.: Natural language
based on-demand service composition (2010)

8. Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: a
semantic web rule language combining OWL and RuleML, May, 2004, [Online]. Available:
http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/

9. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.: Importing the semantic web in UDDI.
In: Web Services EBusiness and the Semantic Web, vol. 2512 (2002)

10. Luo, J., Montrose, B., Kim, A., Khashnobish, A., Kang, M.K.M.: Adding OWL-S support to
the existing UDDI infrastructure, pp. 153–162. IEEE (2006)

11. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.: Importing the semantic web in UDDI.
In: Web Services EBusiness and the Semantic Web, vol. 2512 (2002)

12. Rao, J., Dimitrov, D., Hofmann, P., Sadeh, N.M.: A mixed initiative approach to semantic
web service discovery and composition: Sap’s guided procedures framework. In: ICWS,
pp. 401–410. IEEE Computer Society (2006)

13. Klusch M., Gerber, A.: Semantic web service composition planning with owls-xplan. In:
Proceedings of the 1st International AAAI Fall Symposium on Agents and the Semantic Web,
pp. 55–62 (2005)

14. Wu, Z., Ranabahu, A., Gomadam, K., Sheth, A.P., Miller, J.A.: Automatic composition of
semantic web services using process and data mediation. Technical report, Kno.e.sis Center,
Wright State University, 2007

15. Fujii, K., Suda, T.: Semantics-based dynamic web service composition. Int. J. Cooperative
Inf. Syst. 15(3), 293–324 (2006)

16. Fujii, K., Suda, T.: Semantics-based context-aware dynamic service composition. TAAS 4(2),
12 (2009)

17. Ardagna, D., Comuzzi, M., Mussi, E., Pernici, B., Plebani, P.: Paws: a framework for
executing adaptive web-service processes. IEEE Softw. 24, 39–46 (2007)

18. Skogan, D., Gronmo, R., Solheim, I.: Web service composition in UML. In: Enterprise
Distributed Object Computing Conference, IEEE International, pp. 47–57 (2004)

688 A. A. Alwasouf and D. Kumar

http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/

19. Gronmo R., Jaeger, M.C.: Model-driven semantic web service composition. In: APSEC’05:
Proceedings of the 12th Asia-Pacific Software Engineering Conference, Washington, DC,
USA,. IEEE Computer Society, pp. 79–86 (2005)

20. Lara, R., Roman, D., Polleres, A., Fensel, D.: A conceptual comparison of WSMO and
OWL-S Web Services, pp. 254–269 (2004)

21. Pop, F.-C., Cremene, M., Tigli, J.-Y., Lavirotte, S., Riveill, M., Vaida, M.: Natural language
based on-demand service composition. Int. J. Comput. Commun. Contr. 5(4), 871–883 (2010)

Research Challenges of Web Service Composition 689

Automation Software Testing
on Web-Based Application

Saru Dhir and Deepak Kumar

Abstract Agile testing is a software testing exercise, follows the rules of agile
policy, and considers software improvement as a critical part like a client in the
testing process. Automated testing is used to do this in order to minimize the
amount of manpower required. In this paper, a traditional automation testing model
has been discussed. A model has been proposed for automated agile testing, and an
experimental work has also been represented on the testing of a Web application.
Finally, outcomes are evaluated using the agile testing model, and there is a
comparison between traditional and agile testing models.

Keywords Agile development and testing � Automation testing
Web application � Selenium tool

1 Introduction

A software test project can be successful, with a significant estimation and a
complete execution in the software development life cycle [1]. Software testing is
the main part of software development, where different level of testing is imple-
mented, such as unit, integration, system, and acceptance testing according to the
system behavior and client requirement, whereas unit and integration testing focus
on individual modules, system and acceptance testing focus on overall behavior of
system [2]. The adoption of the latest technology trends and development practices
by the technology and software developers leads to polarization of opinions on the
strengths and weaknesses of the technologies and software development practices
[3]. Automation forms are one of the most important parts of agile testing; other-
wise it is very difficult to keep pace with the agile development schedule.

S. Dhir (&) � D. Kumar
Amity University, Noida 110025, Uttar Pradesh, India
e-mail: sdhir@amity.edu

D. Kumar
e-mail: dkumar8@amity.edu

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_67

691

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_67&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_67&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_67&domain=pdf

The process of prioritization of defects identified by automation and their fixation
during sprints is also determined at this stage. In the case of regression testing,
efficiency increases with the automation testing, where test cases are implemented
iteratively in the software [4].

In agile testing, generally the code is written during iteration and the testing
process is done after each iteration. The developers and the testers work together to
reduce the probability of error occurrences. Developers do the unit testing, and the
rest system testing is done by the customer which is also known as acceptance
testing and based on that clients provide their feedback which also gives a glance of
excellence guarantee movement in agile [5].

2 Literature Review

In a survey result, it was revealed that only 26% of test cases are done through
automation testing, which was considerably less than in comparison to the last
years. The paper focused on to do more effort on automation testing and its tools
[6]. According to a survey report, “State of agile development” showed that more
than 80% of respondents’ organizations had adopted agile testing methodology at
some level and the other half of respondents indicated that their organization is
using agile testing methodology for approximate two to three years [7]. Agile
software development methods are these days widely extended and established. The
main reason to adopt agile testing methodology is to deliver the product within a
time limit, to increase efficiency, and to easily manage the frequently changing
business requirements [8]. A survey report indicated that agile testing is mostly
used development process. Agile testing provides small iterations (79%), regular
feedback (77%), and the scrum meeting, which were on a daily basis (71%) were
the most important factors [9]. Hanssen et al. [10] said that the use of agile testing
methodology is global. Evaluation and scheduling are the main concern to the
accomplishment of a software growth of a project of any dimension and conse-
quences; agile software growth of a project has been the area under discussion of
much conviction.

3 Automated Testing

In Fig. 1, automation testing model is mentioned in which different steps are
specified [11]. After the implementation process, the testing environment is set,
plan all of the test activities. In all of the planning, different test cases are created
which is reviewed by senior testers. Test cases are executed, and bug report is
generated. If the bugs are not generated, iterations are completed and backlog
stories are ended [12].

692 S. Dhir and D. Kumar

4 Proposed Method

In the agile environment, testing of the project is implemented with a proposed
method to improve the accuracy of software. In an agile development, developers
are also responsible for the testing. Hence, there is parallel and independent testing
which is possible between developers and testers. Figure 2 is the proposed
automation testing model using agile methodology.

Below algorithm is the pseudocode of automated agile testing to execute the test
suites by the developers and testers. At line 2, quality assurance (QA) team initially
involved in the project. Line 3 represents that the parallel testing is done by
developers and testers, and stand meetings are also done to demonstrate the func-
tionality of software. At line 4, testers generate the automation testing in different
sprint cycles, and at line 5, verification test is build. At line 6 if the test suite result
failed then at line 7, RCA (root cause analysis) is executed to remove the bugs. If at
line 6, result successfully passed the validate the regression testing at line 10 and
run the test and end. Finally at line 13 generate the report.

1. Dd ← Set the delivery date

2. QA $ P Involvement of QA team in project

3. Deploy the build in the Pre-Production environment.

4. t $ d Testing and development both are implemented parallel.

5. T ! Generate automation test suite, in the sprint cycle.

6. Release the 1st sprint and complete the BVT

7. If d’s and t’s result failed then

Fig. 1 Automated testing model in traditional environment

Automation Software Testing on Web-Based Application 693

8. do RCA (“remove the bugs in next sprint”)

9. GOTO step 3

10. Else

11. T ! RT (validate the regression testing)

11. Result ← T. runtest

12. end if

13. Generate the report

Whereas; Dd: Delivery Date; QA: Quality Assurance Team; P: Project; T:
Tester; D: Development; BVT: Build Verification Test; t: testing; d: development;
RCA: root cause analysis; RT: regression testing.

Fig. 2 Testing model using agile methodology

694 S. Dhir and D. Kumar

4.1 Experimental Work

During the implementation of Web application, project was developed and tested
using the agile methodology. Product development and automation testing both
were implemented in scrum. During the implementation in agile environment,
developers and testing teams worked parallel. Automation test execution was
implemented using the selenium tool in different steps. By using the steps of agile
testing models, at the initial testing, bug was found as represented in Fig. 3. RCA
was done, and then again a new sprint cycle was implemented. Bug was resolved as
shown in Fig. 4 and validate the regression testing. Final result was evaluated as in
Fig. 5, and maximum bugs were removed and a final report was generated.

Fig. 3 Failure in initial test
and detect the bugs

Fig. 4 Testing on a book
button using selenium IDE

Automation Software Testing on Web-Based Application 695

4.2 Comparison and Result Between Traditional and Agile
Automated Testing Model

Web application was tested using the traditional and agile testing models vice versa.
In the agile testing models, results were improved than the traditional model.
During the testing implementation with or without agile methodology, results were
observed as in Table 1:

A comparison between the testing in agile and traditional environments is rep-
resented in Fig. 6. Results in figure are based on different parameters per iteration.
Parameters are cost, quality, detected bugs, and productivity.

Fig. 5 Successfully booked
the tickets

Table 1 Comparison between agile model and automated testing model

Agile testing model Automated testing model

According to the delivery date of the project,
testing was done in parallel to the
development process

Testing was implemented after the
completion of development process

Due to the parallel testing from the initial
stage of the development, less number of
defects were evaluated at the end

Testing was done without the customer’s
involvement and took more time for customer
satisfaction

As regression testing was executed frequently
in a single sprint, it saved time and cost

After the completion of development process,
test cases were created followed by
automated test scripts

Productivity and quality of product were
improved with the sequent involvement of
customers

Less productivity with the low quality of
product

696 S. Dhir and D. Kumar

5 Conclusion

Paper concludes that the automation testing not only increases the test coverage but
also reduces the cost and improves the delivery of the product. In this paper, an
experimental work was discussed in which an automation testing was implemented
on a Web application using agile environment and traditional development. The
proposed agile testing model worked with productization team in a planned and
organized manner to deliver the products in sprint. At the end, there is comparison
between agile and traditional automated testing models, which specifies the results
through the agile testing is better than traditional testing.

References

1. Sharma, M.A., Kushwaha, D.S.: A metric suite for early estimation of software testing effort
using requirement engineering document and its validation. In: Computer and
Communication Technology (ICCCT) 2nd International Conference, pp. 373–378 (2012)

2. Spillner, A., Linz, T., Schaefer, H.: Software Testing Foundation: A Study Guide for the
Certified Tester Exam, 3rd ed. Rocky Nook (2011)

3. Aggarwal, S., Dhir, S.: Ground axioms to achieve movables: methodology. Int. J. Comput.
Appl. 69(14) (2013)

4. Karhu, K., Repo, T., Taipale, O., Smolander, K.: Empirical observations on software testing
automation, international conference on software testing verification and validation
(ICST’09). IEEE Computer Society, Washington, DC, USA, pp. 201–209. DOI = 10.1109/
ICST.2009.16 (2009)

5. Aggarwal, S., Dhir, S.: Swift tack: a new development approach. In: International Conference
on Issues and Challenges in Intelligent Computing Techniques, IEEE (2014)

6. Kasurinen, J., Taipale, O., Smolander, K.: Software test automation in practice: empirical
observations. Adv. Softw. Eng., Article 4 (2010)

7. http://www.versionone.com/pdf/2011_State_of_Agile_Development_Survey_Results.pdf
8. Rai, P., Dhir, S.: Impact of different methodologies in software development process. Int.

J. Comput. Sci. Inf. Technol. 5(2), 1112–1116 (2014). ISSN: 0975-9646
9. West, D., Grant, T.: Agile development: mainstream adoption has changed agility. Forrester

Research Inc. (2010)

Fig. 6 Testing parameters
using agile implementation
and traditional
implementation

Automation Software Testing on Web-Based Application 697

http://www.versionone.com/pdf/2011_State_of_Agile_Development_Survey_Results.pdf

10. Hanssen, G.K., Šmite, D., Moe, N.B.: Signs of agile trends in global software engineering
research: a tertiary study. In: 6th International Conference on Global Software Engineering,
pp. 17–23 (2011)

11. Collins. E., Macedo. G., Maia. N., Neto. A. D.: An industrial experience on the application of
distributed testing in an agile software development environment. In: Seventh International
Conference on Global Software Engineering, IEEE, pp. 190–194 (2012)

12. Mattsson, A., Lundell, B., Lings, B., Fitzgerald, B.: Linking modeldriven development and
software architecture: A case study. IEEE Trans. Softw. Eng. 35(1), 83–93 (2009)

698 S. Dhir and D. Kumar

Automated Test Data Generation
Applying Heuristic Approaches—A
Survey

Neetu Jain and Rabins Porwal

Abstract Software testing is a systematic approach to identify the presence of
errors in the developed software Pressman (Software Engineering A Practitioners
Approach, Mc Graw Hill International Edition, 2010) [1], Beizer, Software Testing
Techniques, Van Nostrand Reinhold Co, New York, 1990) [2], Beizer (Black
Box Testing: Techniques for Functional Testing of Software and Systems, Wiley
1995) [3]. In this paper, we explore and present the challenges in software testing
and how software testing techniques evolved over the period of time. Further
software testing is tedious, time-consuming, cost-ineffective and does not guarantee
reliability. Automation of software testing has been an area of most research in the
field. Test cases play a vital role in achieving effective testing target, but generating
effective test cases is equally challenging task. Heuristic approaches have gained
the attention in different fields of computer science. In this paper, we discuss the
need of automation of test data generation and heuristic algorithms or techniques to
implement the same. We present an extensive survey of the work done in the related
field by researchers and their results.

Keywords Software testing � Automated test data generation � Heuristic
approaches

1 Introduction

Software development is a creative, intelligent, and a systematic process. Software
construction can be summarized in four stages as analysis, design, implementation,
and testing. Among these all four stages, Software Testing is considered as most

N. Jain (&) � R. Porwal
Department of Computer Science, Faculty of Computer System Studies,
Mewar University, Chittorgarh, Rajasthan, India
e-mail: neetugupta78@gmail.com

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_68

699

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_68&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_68&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_68&domain=pdf

crucial and important task, wherein the output of all the other stages and their
accuracy is evaluated and assured [1–3]. Software testing is a systematic approach
to identify the presence of errors in the developed software. In software testing, the
focus is to execute the program to identify the scenarios where the outcome of the
execution is not as expected—this is referred as non-conformance with respect to
the requirement and other specifications. Software testing can be thus termed as a
process of repeatedly evaluating the software quality with respect to requirements,
accuracy, and efficiency [1, 3–5]. For the conformance of the accuracy and quality
of engineered software, it primarily goes through two level of testing—(i) func-
tional testing or black box testing and (ii) structural testing or white box testing.
Functional testing is performed in the absence of knowledge of implementation
details, coding details an internal architecture of the software under consideration as
stated by Pressman and Bezier in [1, 2]. Structural testing is performed with the
adequate knowledge of internal details, program logic, implementation, and
architecture of the software by actually executing the source code to examine the
outcome(s) or behavior.

A vital component in software testing is test data. Test data is a value set of input
variable that executes the few or more statements of the program. The success of
any testing process is dependent on the effectiveness of the test data chosen to run
the program. The test data selected should be such that it attains the high program
coverage and meet the testing target. Manually deriving the test data to achieve
specified code coverage and revealing the errors is tedious, time-consuming, and
cost-ineffective. Also, the test data generated by programmers is ineffective and
does not attain high coverage in terms of statement execution, branch execution,
and path execution [6]. With the aim of reducing the cost and time in testing
process, research on automation generation of test data has attracted the researchers
and techniques has been tried and implemented.

Heuristic approaches have been applied in various areas to approximately solve
a problem when an exact solution is not achievable using classical methods.
Heuristic technique gives a solution that may not be the exact solution but seems
best at the moment. Various heuristic techniques had been devised and tested in the
different disciplines in computer science. Techniques like Hill Climbing, Swarm
Optimization, Ant Colony Optimization, Simulated Annealing, and Genetic
Algorithm have been used by researchers.

In this paper, we present the role of heuristic approaches in the field of software
testing for the purpose of automatically generating the test data. Section 2 is an
extensive literature review on automation of test data generation, how various
heuristic algorithms have been applied in this direction and their results. In Sect. 3,
detailed analysis of the work done in the area has been tabularized for the benefit of
future researchers.

700 N. Jain and R. Porwal

2 Literature Survey

2.1 Software Testing

References [1, 3–5] for the conformance of the accuracy and quality of an engi-
neered software, it primarily goes through two different levels of testing—func-
tional testing or black box testing and structural testing or white box testing.
Functional testing is performed in absence of knowledge of implementation details,
coding details, and internal architecture of the software under consideration as
stated by Pressman and Bezier in [1, 2]. The sole aim is to run the implemented
functions for the verification of their output as expected. It is strongly done in
synchronization of the requirement specification. Further during the functional
testing phase, purpose is to test the functionality in consent with the SRS and
identify the errors those deviate from what is stated. Use cases are created during
the analysis phase with conformance to functionality. Studying the use cases, the
test cases are identified and generated. For a single use case, few test cases or a
complete test suit is generated. The test suit should be sufficient enough to execute
the software such that all the possible features have been tested and possible errors
and unsatisfied functionality are identified. Structural testing is performed with the
adequate knowledge of internal details, logic of the program, implementation
details, and architecture of the software by actual execution of the source code to
examine the outcome or behavior. This testing approach assures the accuracy of the
code actually implemented to achieve desired functionally. A program consists of
control structures in form of loops, logical conditions, selective switch, etc. With
presence of control statements, a program is never a single sequence of statements
executed from start to exit of the program it consists of multiple different sequences
of statements depending upon the values of variables, and these different sequences
are termed as independent paths. Execution of the independent paths decides the
code coverage of program. Code coverage is important, and to achieve high code
coverage, structural testing can be based upon statement testing, branch testing,
path testing, and data flow testing depending upon the implementation details of the
software [5, 7–10]. Test cases are to be identified to cover the all implemented paths
in program [11]. The quality of test cases to much extent decides the quality of
overall testing process hence of high importance [12]. An adequacy criterion is the
test criterion that specifies how much and which code should be covered. It acts as
the end point of the testing process which can be otherwise endless. Korel states
that criterion could be Statement coverage requires execution all the statements of a
program, Branch coverage requires all the control transfers are executed, Path
coverage demands the execution of all the paths from start to end, and Mutation
coverage is the percentage of dead mutants.

Automated Test Data Generation Applying … 701

2.2 Test Data Generation

Test data is a value set of input variables that executes the few or more statements
of the considered program. In testing, challenge for the programmers is to generate
a minimal set of test data that can achieve high code coverage [6]. With the aim of
reducing the cost and time invested in testing process, research on automation of
generation of test data has attracted the researchers and significant techniques have
been automated and implemented. Automatic test data approach is to generate the
input variable values for a program with the help another program dynamically.

Korel [12] stated the idea of dynamic approach to test data generation. It is based
on actually executing the program, analyzing the dynamic data flow, and using a
function minimization method. Edvardsson [6] presented a survey stating that
manual testing process is tedious, time-consuming, and less reliable. He focused on
the need of automatically generated test data with the help of a program that can
make testing cost and quality effective. Korel [13] divided the test data generation
methods as random, path oriented, and goal oriented. Edvardsson [6] defines the
test data generator as a program such that given a program P and a path u, the task
of generator is to generate an input x belongs to S, such that x traverses the path u
where S is the set of all possible inputs. The effectiveness depends on how paths are
selected by the path selector. Path selection must achieve good coverage criteria
which could be Statement Coverage, Branch Coverage, Condition Coverage,
Multiple-condition Coverage, and Path Coverage. Pargas [14] found classical
approaches like random technique, path-oriented technique inefficient as no
knowledge of test target is taken as feedback and hence leads to the generation of
widespread test data and infeasible paths test. He treated the test data generation as
a search problem. Girgis [7] stated that an adequacy criterion is important. Latiu [4]
took finding and testing each path in source code as an NP-complete problem. Test
data generation is taken up as a search problem—A problem defined as finding the
test data or test cases into a search space. Further, the set of test data generated
should be small and enough to satisfy a target test adequacy criterion.

2.3 Heuristic Approaches

Heuristic approaches have been applied in various areas to approximately solve a
problem when an exact solution is not achievable using classical methods. Primarily
in the domain of artificial intelligence, scheduling problems, optimization problems,
search problems, virus scanning problems, NP-complete problems, etc., heuristic

702 N. Jain and R. Porwal

approaches are being widely applied and proved to find an approximate solution
[15, 16].

a. Hill Climbing is a local search algorithm for maximizing an objective function
b. Simulated Annealing [17, 18], a probabilistic that Kirkpatrick, Gelett, and

Vecchi in 1983, and Cerny in 1985 proposed for finding the global minimum for
a cost function that possesses several local minima values.

c. Genetic evolutionary Algorithm [19] is based on the natural process of
selection, crossover, and mutation. It is a population of candidate solutions for
the problem at hand and makes it evolve by iteratively applying a set of
operators—selection, recombination, and mutation.

d. Swarm Intelligence [20–22] is an simulating the natural phenomenon of bird
flocking or fish schooling. In PSO, the potential solutions in search space called
particles fly through the problem space by following the current optimum
particles. Two best values pbest, best position for each particle gbest, best
position among all particles best position. Iteratively update velocity and
position of ith particle as

Vd
i ðtÞ ¼ Vd

i ðt � 1Þþ c1 � rd1i � pbestdi � Xd
i t � 1ð Þ� �

þ c2 � rd2i � gbestd � Xd
i t � 1ð Þ� � ð1Þ

Xd
i tð Þ ¼ Xd

i t � 1ð ÞþVd
i tð Þ ð2Þ

Here, Xi = (Xi1, Xi2,…, XiD) is ith particle position, Vi = (Vi1, Vi2, …., ViD) is
the velocity of ith particle, c1, c2 are acceleration constants, and r1, r2 are two
random numbers in the range of [0, 1]

2.4 Applying Heuristics in Test Data Generation

References [4, 7, 8, 14] popular heuristic approaches like data like Genetic
Algorithm (GA), Simulating Annealing (SA), Particle Swarm Optimization, Ant
Colony Optimization have been widely applied to search for effective test data.
These approaches are verified to be more optimized than random technique. Studies
suggest that though the test data generated achieves good code coverage the con-
vergence toward the adequacy criteria is important. GA-, SA-based techniques are
tested and found to be slow and takes more generations to generate the test data
required to execute target path and achieve a foresaid code coverage [23, 24]. With
an aim to achieve faster convergence, another heuristic approach Particle Swarm

Automated Test Data Generation Applying … 703

Optimization (PSO) based on swarm behavior of insects, birds flocking has
received a lot of attention due to it its comparatively simpler implementation and
fast convergence [21, 25, 26]. Other versions of Particle Swarm Optimization—
Binary PSO (BPSO) and Quantum PSO (QPSO)—have also been defined and
tested for the effective test data generation [14]. Pargas treated test data generation
as a search problem and applied GA, a heuristic approach to find an optimal
solution, i.e., a set of optimal test data. His approach was based on control
dependency graph of program. He implemented GA-based algorithm that generated
test data (chromosomes) and calculated its fitness by comparing the predicates in
the program actually executed by the test data with the set of predicates on the
control dependency predicate paths of the target, assigning high fitness to test data
that covered more predicates. His experiment on six programs concluded that
GA-based approach outperformed RA [7]. Girgis implemented GA-based algorithm
using data flow dependencies where the search was based on coverage of def-use
associations of the variable to generate the test data that meets the all-uses criteria.
A binary string represented chromosome such that m =

P
mi, where i = 1 to k, and

mi represents the value of xi, and fitness of chromosome was calculated as no of def-
use paths covered by vi/ total no. of def-use paths. The experiment concluded that 12
out of 15 FORTRAN programs showed good performance with GA and 10 pro-
grams used less number of generations to achieve the same def-use coverage as
compared to RA [8]. Girgis implemented GA based on d-u coverage percentage
where a chromosome (binary vector) represents the edges in the DD graph of the
considered program and length of the binary vector is number of edges plus two
edges for entry–exit and number of edges contained in the loops. The set of test
path was recorded that covered the d-u pairs. As a result, the 11 programs showed
better performance in d-u coverage percentage by GA and in rest 4 programs both
GA and RA showed 100% d-u coverage but GA needed less number of generations
than RA.

Latiu [4] explored three evolutionary approaches, i.e., Genetic Algorithm,
Simulated Annealing, and Particle Swarm Optimization (PSO). He worked on
target path and used heuristics approximation level and the branch distance for
evaluating the test data. The approximation level calculates how the actual test data
is far away from target path branching condition and Branch distance is calculated
as per the Korel’s Distance Function which depends on the branching condition(s)
of the node where the target node is missed. Fitness function used was sum of
approximation level and normalized branch distance. He presented results in form
of comparisons between convergences of algorithms (number of generations) for
specified target path. SA converged earlier than GA and PSO. But in Sum and Prod,
GA produced the fastest convergence test data and SA being the second. PSO is

704 N. Jain and R. Porwal

another heuristic approach to be studied for test data generation. Kennedy and
Eberhart [20] proposed the PSO in 1995. Kennedy and Eberhart [21] in 1997
described a concept of BPSO. Agarwal [25] used BPSO and compared its per-
formance with GA. Branch coverage was taken as adequacy criterion for the
experiment. String was identified as a test case and fitness value was calculated as
f = 1/(|h − g| + d), where h and g were expected and the desired value of branch
predicate, and a small quantity was chosen to avoid numeric overflow. The Soda
Vending Machine simulator with total 27 branches was taken as the experiment
problem and was run over hundred times with population size in range 5–50 to
achieve 100% coverage. BPSO was better with small and large population while
GA being effective in larger size and degraded for small size. Khushboo [26] used
another variation QPSO and used the branch coverage as adequacy criterion. They
made use of DFS with memory—if a test data traverse a branch for the first time,
saved the test data and further injected this saved test data into the population for
the sibling branch. Nayak [9] focused his research on PSO approach and compared
it with. The work showed that GA converges in more generations than PSO. His
work used d-u path coverage as fitness criteria and conducted experiment on
fourteen FORTRAN programs and recorded number of generations and d-u cov-
erage percentage. PSO technique took less number of generations to achieve a said
d-u coverage percentage. The reason is—PSO chooses a gbest (global best) in each
iteration and moves toward solution, whereas GA applies selection, crossover, and
mutation in each iteration. In 2012 [23], Chengying Mao implemented PSO for test
data generation and compared the same with GA. For PSO, initialized f(pbesti) and
f(gbest) to zero, and for each particle Xi, f(Xi) is calculated and pbesti/gbest is
updated. The function f() representing the fitness was based on branch distance
based on Korel’s and Tracey’s theory. The experiment on five benchmark programs
studied Average converge, Successful rate, Average generations, and Average
Time for GA and PSO. PSO has higher converged rate and faster on convergence
generations and time than a GA-based test cases. He opened the issues of more
reasonable fitness function which can be future scope. In Sect. 3, we summarize the
work in tabular form.

3 Heuristic Approaches Applied in Test Data Generation

(See Fig. 1).

Automated Test Data Generation Applying … 705

Fig. 1 Heuristic approaches applied in test data generation

706 N. Jain and R. Porwal

4 Conclusion

Test data is vital for efficient software testing. Manually generated test data is
costly, time-consuming, and ambiguous at times. Randomly generated test data
does not achieve target paths or good code coverage. Automatic test data generation
and use of heuristic approaches had shown good results. In this paper, we present a
detail survey of work done in past for test data generation using heuristic
approaches. Results show that GA outperforms the RA technique. Further work by
researchers and their results presents that PSO is faster and efficient than GA.
References [25, 26] applied variations of PSO, i.e., QPSO and BPSO and observed
better results [27–32]. Future work will focus on testing more application and
observing results using these algorithms.

References

1. Pressman, R.R.: Software Engineering A Practitioners Approch. Mc Graw Hill International
Edition (2010)

2. Beizer, B.: Software Testing Techniques, 2nd Edn. New York: Van Nostrand Reinhold Co.
550 p. (1990). ISBN 0-442-20672-0

3. Beizer, B.: Black-Box Testing: Techniques for Functional Testing of Software and Systems.
Wiley (1995)

4. Latiu, G.I., Cret, O.A., Vacariu, L.: Automatic test data generation for software path testing
using evolutionary algorithms. In: Third International Conference on Emerging Intelligent
Data and Web Technologies (2012)

5. Varshney, S., Mehrotra, M.: Search based software test data generation for structural.
ACM SIGSOFT Soft. Eng. Notes, 38(4) (2013)

6. Edvardsson, J.: A survey on automatic test data generation. In Proceedings of the Second
Conference on Computer Science and Engineering in Linkoping, ECSEL, pp. 21–28, October
1999

7. Girgis, M.R.: Automatic test data generation for data flow testing using a genetic algorithm.
J. Univers. Comput. Sci. 11(6), 898–915 (2005)

8. Girgis, M.R., Ghiduk, A.S., Abd-Elkawy, E.H.: Automatic generation of data flow test paths
using a genetic algorithm. Int. J. Comput. Appl. (0975–8887) 89(12) (2014)

9. Nayak, N., Mohapatra, D.P.: Automatic Test Data Generation for Data Flow Testing Using
Particle Swarm Optimization. Springer (2010)

10. Jiang¸ S., Zhang, Y., Yi, D.: Test data generation approach for basis path coverage.
ACM SIGSOFT Soft. Eng. Notes, 37(3) (2012)

11. Zhu, H., Hall, A.V.P., John, H.R.: Software unit test coverage and adequacy. ACM Comput.
Surv. 29(4), 366–427 (1997)

12. Rapps, S., Weyuker, E.J.: Selecting software test data using data flow information. IEEE
Trans. Software Eng. 11(4), 367–375 (1985)

13. Ferguson, R., Korel, B.: The chaining approach for software test data generation. IEEE Trans.
Soft. Eng. 5(1), 63–86 (1996)

Automated Test Data Generation Applying … 707

14. Pargas, R.P., Harrold, M.J., Peck, R.R.: Test-data generation using genetic algorithms. J. Soft.
Test. Verification Reliab. (1999)

15. Nguyen, T.B., Delaunay, M., Robach, C.: Testing criteria for data flow software. In
Proceedings of the Tenth Asia-Pacific Software Engineering Conference (APSEC’03), IEEE
(2003)

16. Deng, M., Chen, R., Du, Z.: Automatic Test Data Generation Model by Combining Dataflow
Analysis with Genetic Algorithm. IEEE (2009)

17. Kokash, N.: An introduction to heuristic algorithms. ACSIJ (2006)
18. Karaboga, D., Pham, D.: Intelligent Optimisation Techniques: Genetic Algorithms, Tabu

Search, Simulated Annealing and Neural Networks. Springer
19. Bajeh, A.O., Abolarinwa, K.O.: Optimization: a comparative study of genetic and tabu search

algorithms. Int. J. Comput. Appl. (IJCA), 31(5) (2011)
20. Kennedy, J., Eberhart, R.: Particle swarm optimization. Int. Conf. Neural Networks,

Piscataway, NJ (1995)
21. Kennedy, J., Eberhart, R.C.: A discrete binary version of the particle swarm algorithm. IEEE

International Conference on Systems Man, and Cybernetics (1997)
22. Eberhart, R., Shi, Y., Kennedy, J.: Swarm Intelligence. Morgan Kaufmann (2001)
23. Mao, C., Yu, X., Chen, J.: Swarm intelligence-based test data generation for structural testing.

In: IEEE/ACIS 11th International Conference on Computer and Information Science (2012)
24. Windisch, A., Wappler, S., Wegener, J.: Applying Particle Swarm Optimization to Software

Testing. In: Proceedings of the Conference on Genetic and Evolutionary Computation
GECCO’07, London, England, United Kingdom, 7–11 July 2007

25. Agarwal, K., Pachauri, A., Gursaran: Towards software test data generation using binary
particle swarm optimization. In: XXXII National Systems Conference, NSC 2008, 17–19 Dec
2008

26. Agarwal, K., Srivastava, G.: Towards software test data generation using discrete quantum
particle swarm optimization. ISEC’10, Mysore, India, 25–27 Feb 2010

27. Frankl, P.G., Weyuker, E.J.: An applicable family of data flow testing criteria. IEEE Trans.
Software Eng. 14(10), 1483–1498 (1998)

28. Korel, B.: Automated software test data generation. IEEE Trans. Software Eng. 16 (1990)
29. Mahajan, M., Kumar, S., Porwal, R.: Applying Genetic Algorithm to Increase the Efficiency

of a Data Flow-based Test Data Generation Approach. ACM SIGSOFT, 37 (5), (2012)
30. Harrold, M.J., Soffa, M.L.: Interprocedural Data Flow Testing. ACM (1989)
31. Clarke, L.A., Podgurski, A., Richardson, D.J., Zeil, S.J.: IEEE Transactions on Software

Engineering, 15(II) (1989)
32. Frankl, P.G., Weiss, S.N.: An experimental comparison of the effectiveness of branch testing

and data flow testing. IEEE Trans. Soft. Eng. 19(8) (1993)

708 N. Jain and R. Porwal

Comparison of Optimization Strategies
for Numerical Optimization

Gopal Narayanam, Kartikay Ranjan and Sumit Kumar

Abstract According to the need and desire, various optimization strategies have
been conceived and devised in past, particle swarm optimization (PSO), artificial
bee colony (ABC), teacher–learner-based optimization (TLBO), and differential
evolution(DE) to name a few. These algorithms have some advantages as well as
disadvantages over each other for numerical optimization problems. In order to test
these algorithms (optimization strategies), we use various functions which give us
the idea of the situations that optimization algorithms have to face during their
operation. In this paper, we have compared the above-mentioned algorithms on
benchmark functions and the experimental result shows that TLBO outperforms the
other three algorithms.

Keywords ABC � PSO � TLBO � DE

1 Introduction

According to mathematics, computer, and applied sciences, optimization is the
process of selection of best candidates from a given set of candidates which may or
may not be the solution to a particular problem, the process to find the maximum, or
minimum obtainable value which could be attained by any given function within its
domain. In simple words, optimization is finding the best suitable answer for a

G. Narayanam (&) � K. Ranjan � S. Kumar
Krishna Institute of Engineering and Technology, Ghaziabad, India
e-mail: narayanam.gopal@gmail.com

K. Ranjan
e-mail: kartikey.ranjan30@gmail.com

S. Kumar
e-mail: sumitkumarbsr19@gmail.com

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_69

709

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_69&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_69&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_69&domain=pdf

given problem in a given domain by systematically choosing various candidates
and testing them for optimum performance. The problem of optimization revolves
around determining such values for independent variables that satisfy the con-
straints and in the meanwhile also give the optimal value to the function which is
being optimized. Optimization is fairly easy when dealing with simple mathemat-
ical problems, but when the problem get complex and involve a large number of
invariants and dimensions, we need various optimization strategies or metaheuristic
algorithms so as to seek out the optimum solutions of a given problem [1]. As
optimization problems relate to various fields such as science, mathematics, engi-
neering, and industry due to their real-life applicability and utility, there is always a
need to formulate new optimization process/techniques which perform better than
earlier ones, or to refine and modify the existing techniques in order to get optimum
results with ensured quality and exploration of the domain [2]. Day by day, new and
better algorithms are being devised or prior ones are being redefined in multiple
variants; these new variants and algorithms often show better results than previous
techniques. In order to ascertain oneself of the best optimization technique required
for a particular problem, one needs to know about their comparative behavior and
various attributes in a transparent and concise manner [3]. In order to achieve this
objective, this paper compares few optimization techniques on mathematical
benchmark functions for numerical optimization to learn about their comparative
efficiency and effectiveness.

2 Related Work

Many optimization algorithms like GA, PSO, ABC, TLBO, and DE have been
applied for numerical optimization problems. Genetic algorithm (GA) was the most
initial optimization technique developed for numerical optimization [4], but its
drawback is that as soon as the problem changes, the knowledge regarding the
previous problem is discarded. Particle swarm optimization was discovered by
Kennedy et al. [1]. PSO has its advantage of fast convergence and retaining of good
solution due to memory capabilities, but its disadvantage is that it often gets stuck
in local minima.

Artificial bee colony algorithm (ABC) was developed by Dervis Karaboga [5].
Its characteristic property is better exploration, ease to efficiently handle the cost
with stochastic nature, but it had significant tradeoffs such as slow exploitation and
missing of optimal solution in case of large swarm size. Differential evolution was
formulated in 1995 by Price and Storm [5]. DE is simple to implement, but as PSO
it also gets stuck in local minima. Teacher–learner-based optimization (TLBO) by
Rao [6]. This metaheuristic algorithm is for solving continuous nonlinear opti-
mization on large scale. The major disadvantage of TLBO is that it gets slow when
dealing with problems having higher dimensions.

710 G. Narayanam et al.

3 Proposed Work

In order to verify that which algorithm works efficiently under certain criteria, we
have compared the four most common algorithms PSO, ABC, DE, and TLBO for
numerical optimization problems. The details of these algorithms are as given
below.

3.1 Particle Swarm Optimization

Particle swarm optimization (PSO) is an optimization algorithm which is based on
the foraging and social habits of bird flocks and fish schools. Unlike traditional
genetic operations, every particle in PSO moves by accounting on its own as well as
the neighboring particles experience. PSO uses two equations, position and velocity
update equations. These equations are modified in every successive run of particle
swarm optimization to reach the required optimum solution. For a search space
having n-dimensions, the swarm particles are given by a vector of n-dimensions,
Xi = (xi1, xi2… xin) T, whereas the velocity of the particles is given by another
vector of similar dimensions Vi = (vi1, vi2… vin) T. The best position visited by the
ith particle previously is given as Pi = (pi1, pi2, …, pin) T, and “g” denotes the index
of the particle having best value. Velocity and position update equations for ith
particle are as

Vid ¼ Vid þ c1r1 pid � xidð Þþ c2r2 pgd � xid
� � ð1Þ

Xid ¼ Xid þVid ð2Þ

where the dimension of the problem is represented by d =1, 2, …, n and the swarm
size is given by I =1, 2, …, S, while the constants −c1 and c2 are known as scaling
and learning parameter, respectively, and acceleration parameters collectively.
Generally, these two are generated randomly over a uniform distribution [3].

3.2 Artificial Bee Colony

The artificial bee colony algorithm often abbreviated as (ABC) is an optimization
technique inspired by the intelligent behavior of honey bees while finding their food
[5, 7]. This algorithm consists of three parts; each part is simulated by the different
bees as employee bees, scout bees, and onlooker bees. In ABC algorithm, every
iteration of the search process comprises of three steps, which can be categorized
into, sending employee bees to their respective food sources (solutions) and

Comparison of Optimization Strategies for Numerical Optimization 711

calculating the nectar (fitness) values of these food sources. Second step consists of
sharing the collected information pertaining to the food sources and selecting viable
regions that contain food sources by onlooker bees and evaluating fitness value
(nectar amount) of food sources. Thirdly, sending the scout bees randomly in the
search space to scout and discover new sources of food.

The major steps of the algorithm are as:

1. Initializing the population
2. Placing the employee bees at their food sources
3. Placing onlooker bees on the food sources with respect to the nectar amount of

the source
4. Sending scouts for discovering new food sources in the search area
5. The best food source so far is memorized
6. Repeat until termination condition is satisfied

Formulae used in ABC:
To produce a candidate food source for employee bees, ABC uses the formula.

Vij ¼ Xij þ;ij Xij � Xkj
� � ð3Þ

where j and k are randomly chosen indices and ; is a constant.
Food source generation for onlooker bee:

pi ¼ fiti

,XSN
N�1

fitn ð4Þ

where pi is the probabilistic value of that food particular source and fiti is the fitness
while SN represents the number of food sources.

New food generation for scouts is done by the below formula if the earlier food
source gets exhausted

x ji ¼ x jmin þ rand½0; 1� x jmax � x jmin

� � ð5Þ

3.3 Teacher–Learner-Based Optimization

This optimization technique has its formation basis in the phenomenon of the
influence caused by a teacher on the outcome of the pupil. This method like other
methods based on population uses a number of solutions in order to reach a global
solution. The different parameters of TLBO are analogous to the different domains
offered to the students, and the fitness function is resembled by their result, just like
other population-based algorithms.

712 G. Narayanam et al.

The best solution in TLBO is resembled by the teacher due to the consideration
that the teacher is the most learned in the group. TLBO operation is divided into
two sub-processes consisting of the “teachers phase” and the “learners phase”,
respectively. Teachers phase is analogous to learning from a teacher, and the second
phase “Learners phase” represents peer to peer learning.

Formulae used in TLBO:

Initialization of population and filling up of parameters by random value:

x0ði;jÞ ¼ xmin
j þ rand � xmax

j � xmin
j

� �
ð6Þ

x ¼ xgði;1Þ; x
g
ði;2Þ; x

g
ði;3Þ; . . .; x

g
ði;jÞ; . . .; x

g
ði;DÞ

h i
ð7Þ

The mean parameters of a learner at any generation g is given by

Mg ¼ mg
1;m

g
2;m

g
3; . . .;m

g
j ; . . .;m

g
D

h i
ð8Þ

Improving the fitness/learning of candidates by using teacher is done by

Xnewg
ðiÞ ¼ Xg

ðiÞ þ rand � Xg
TeacherTFMg

� � ð9Þ

where Tf is known as teacher’s factor and is decided by

TF ¼ round 1þ rand 0; 1ð Þ 2� 1f g½ � ð10Þ

Improving the fitness/learning of candidates by using other candidates is done by

Xnewg
ðiÞ ¼

Xg
ðiÞ þ rand � Xg

ðiÞ � Xg
ðrÞ

� �
if f Xg

ðiÞ
� �

\f Xg
ðrÞ

� �
Xg
ðiÞ þ rand � Xg

ðrÞ � Xg
ðiÞ

� �
8<
: ð11Þ

3.4 Differential Evolution

Differential evolution (DE) optimizes any given problem by creating new
prospective solutions by combining the previously existing solutions on the basis of
its formulae and retains only those solutions having improved fitness [8, 9]. DE
consists of four parts, namely initialization, mutation, crossover, and selection.
Initialization is carried out by randomly generating candidates according to the
given formula

Comparison of Optimization Strategies for Numerical Optimization 713

x jði;0Þ ¼ x jmin randð0; 1Þj � x jmax � x jmin

� � ð12Þ

After initialization, mutation is carried out to increase the fitness of the
candidates

Vi1;G ¼ Xrj;G1
þ F Xri;G2

� Xri;G3

� �
ð13Þ

Once mutation is performed [10], crossover is applied to each X with its cor-
responding V pair to generate a trial vector, and this phase is known as crossover
phase

u j
ði;GÞ ¼

v jði;GÞ; if ðrandj½0; 1Þ ¼ CR

x jði;GÞ; otherwiseð j ¼ 1; 2; . . .;DÞ:

(
ð14Þ

Some of the newly generated trial vectors might consist of some parameters
which violate the lower and/or upper bounds. Such parameters are reinitialized
within the pre-specified range. After this, the values given by an objective function
to each one of the trial vectors are evaluated and a selection operation is carried out.

Xi;Gþ 1 ¼ Ui;G; if f Ui;G
� �� f Xi;G

� �
Xi;G; otherwise:

�
ð15Þ

3.5 Benchmark Functions

The functions used for testing various algorithms are often called as benchmark
function due to their known solutions and behavioral properties [11]. We will be
using three such benchmark functions in our study that is sphere function, Rastrigin
function, and Griewank function which are mentioned in Table 1.

Table 1 Benchmark functions used

Function
name

Function Search domain Optimal
value

Sphere
function

f xð Þ ¼ Pd
i¼1 xi2 −5.12 � xi � 5.12 0

Rastrigin
function

f xð Þ ¼ An þ
Pn

i¼1 x2i � A cos 2pxið Þ� �
−5.12 � xi � 5.12 0

Griewank
function

f xð Þ ¼ 1
4000

Pn
i¼1 x

2
i �

Qn
i¼1 cos

xip
i

� �
þ 1 −600 � xi � 600 0

714 G. Narayanam et al.

4 Experimental Results and Analysis

To reach the conclusion, we compared the performance of PSO, ABC, TLBO, and
DE on a series of benchmark functions that are given in Table 1. Dimensions, initial
range, and formulation characteristics of these problems are tuned as given in the
table. We used the above-mentioned benchmark functions in order to asses and
compare their optimality and accuracy. We found that TLBO outperforms other
algorithms by a significant difference evident by Table 2.

Parameter Tuning:

For the experiments, the values which are common in all algorithms that depict
population size, iterations, and a number of functions, evaluations were kept con-
stant. Population size was taken to be 20, iterations within a single run were carried
out 20,000 times, and a total run of 30 was carried out in order to get a stable mean
value. Parameter tuning of all algorithms is mentioned below.

After performing the above-given operations and experiments, the results have
been tabulated and analyzed. The analysis shows the mean value of the solution that
has been optimized after 30 runs containing number of iterations as 20,000 or until
the function stops converging. Table 3 displays this data in a tabulated and easy
format; Table 4 further summarizes the results as declarations.

Table 2 Parameter tuning

Algorithm Parameter Value

PSO Acceleration constant
Inertia weight

C1 = 2, C2 = 2
W = 0.7

DE Variation constant F = 0.5 * (1 + rand(0,1))

Table 3 Mean best value (optimized solution) over 30 runs

Algorithm used Sphere Rastrigin Griewank

PSO 416.3412 0.9959 0.0660

ABC 9.505587e−016 9.156553e−010 9.129795e−016

TLBO 7.2500e−145 0 0

DE 5.8553e−005 34.3569 0.0030

Table 4 Performance table Function Best performance Worst performance

Sphere TLBO PSO

Rastrigin TLBO DE

Griewank TLBO PSO

Comparison of Optimization Strategies for Numerical Optimization 715

5 Conclusion

In this study, we applied four optimization algorithms on numerical optimization
problem and the experimental results found out that TLBO significantly outper-
forms the other three algorithms (PSO, ABC, and DE) in numerical optimization by
quality of the solution. We can test these algorithms performance on average time
consumption and iterations of function evaluations.

References

1. Kennedy, J., Eberhart, R.C., et al.: Particle swarm optimization. In: Proceedings of IEEE
International Conference on Neural Networks, vol. 4, pp. 1942–1948. Perth, Australia (1995)

2. Eberhart, R.C., Shi, Y.: Tracking and optimizing dynamic systems with particle swarms. In:
Evolutionary Computation, 2001. Proceedings of the 2001 Congress on, vol. 1, pp. 94–100.
IEEE (2002)

3. Shi, Y., Eberhart, R.C.: Parameter selection in particle swarm optimization. In: Lecture Notes
in Computer Science Evolutionary Programming VII, vol. 1447, pp. 591–600 (1998)

4. Mitchell, M.: An introduction to genetic algorithm. MIT Press Cambridge USA (1998)
5. Dervis Karaboga, D.: An idea based on honey bee swarm for numerical optimization.

Technical Report-TR06, Erciyes University, Engineering Faculty, Computer Engineering
Department (2005)

6. Rao, R.V., Savsani, V.J., Vakharia, D.P.: Teaching learning-based optimization: a novel
method for constrained mechanical design optimization problems. Comput. Aided Des. 43(1),
303–315 (2011)

7. Hadidi, A., Azad, S.K., Azad, S.K.: Structural optimization using artificial bee colony
algorithm. In: 2nd International Conference on Engineering Optimization, 2010, 6–9
September, Lisbon, Portugal

8. Storn, R., Price, K.: Differential evolution—a simple and efficient adaptive scheme for global
optimization over continuous spaces. Technical Report, International Computer Science
Institute, Berkley (1995)

9. Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global
optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

10. Rao, R.V., Savsani, V.J., Balic, J.: teaching learning based optimization algorithm for
constrained and unconstrained real parameter optimization problems. Eng. Optim. 44(12),
1447–1462 (2012)

11. Das, S., Abraham, A., Konar, A.. Automatic clustering using an improved differential
evolution algorithm. IEEE Trans. Syst. Man Cyber. Part A: Syst. Humans 38(1) (2008)

716 G. Narayanam et al.

Sentiment Analysis on Tweets

Mehjabin Khatoon, W. Aisha Banu, A. Ayesha Zohra
and S. Chinthamani

Abstract The network of social media involves enormous amount of data being
generated everyday by hundreds and thousands of actors. These data can be used
for the analysis of collective behavior prediction. Data flooding from social media
like Facebook, Twitter, and YouTube presents an opportunity to study collective
behavior in a large scale. In today’s world, almost every person updates status,
shares pictures, and videos everyday, some even every hour. This has resulted in
micro-blogging becoming the popular and most common communication tool of
today. The users of micro-blogging Web sites not only share pictures and videos but
also share their opinion about any product or issue. Thus, these Web sites provide
us with rich sources of data for opinion mining. In this model, our focus is on
Twitter, a popular micro-blogging site, for performing the task of opinion mining.
The data required for the mining process is collected from Twitter. This data is then
analyzed for good and bad tweets, i.e., positive and negative tweets. Based on the
number of positive and negative tweets for a particular product, its quality gets
determined, and then, the best product gets recommended to the user. Data mining
in social media helps us to predict individual user preferences, and the result of
which could be used for marketing and advertisement strategies to attract the
consumers. In the present world, people tweet in English and regional languages as
well. Our model aims to analyze such tweets that have both English words and
regional language words pronounced using English alphabets.

Keywords Sentiment analysis � Social media � Blogs � Tweets

M. Khatoon � W. Aisha Banu (&) � A. A. Zohra � S. Chinthamani
Computer Science and Engineering Department, B. S. Abdur Rahman University,
Chennai, India
e-mail: aisha@bsauniv.ac.in

M. Khatoon
e-mail: mehjabinkhatoon@gmail.com

© Springer Nature Singapore Pte Ltd. 2019
M. N. Hoda et al. (eds.), Software Engineering, Advances in Intelligent Systems
and Computing 731, https://doi.org/10.1007/978-981-10-8848-3_70

717

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_70&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_70&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8848-3_70&domain=pdf

1 Introduction

All human activities are based on opinions. Opinions are one of the key factors that
influence our behaviors. Our perception of reality, the choices we make, the
products we buy, everything to a considerable amount, depend on how others see
the world, i.e., opinion of others. Whenever we want to take a decision, we ask
opinions of our friends and family before making the decision. This suits both for
an individual as well as for an organization.

Businessmen and organizations always want to find out how well a particular
product of theirs has reached the consumers. Individuals want to know how good a
product is before buying it. In the past, when an individual wanted an opinion about
some product, he/she asked their family and friends. Organizations conducted surveys
and polls to collect information regarding the reach of a product among the consumers.
In today’s world, enormous amount of opinionated data is available on the Web.
Organizations and individuals look up to these data when needed to make a decision.

Sentiment or opinion mining is the field of study that analyzes people’s opinions,
views, feelings, sentiments, and attitude toward a particular product, organization,
individual, or service. It is a vast field with application in almost all the fields. The
word opinion has a broadermeaning. Here, we restrict it to those sentiments that imply
either positive or negative feeling. The increased reach of social media has resulted in
a large amount of data available on the Web for the purpose of decision making.

When one wants to buy a product, he/she is not restricted to the opinion of his/
her family and friends. One can always read through the review of the product
available online, submitted by the users of the product and also in discussion
forums available on the Web. For an organization, it need not conduct polls and
surveys since abundant of opinionated information is available online publicly.
However, gathering the necessary information and processing it are a difficult task
for a human. Hence, an automated sentiment analysis system is needed. Sentiment
analysis is classifying a sentence to be positive, negative, or neutral. The early
researches in this domain focused on factors like bag of words, support vectors, and
rating systems. However, natural languages like regional languages require a more
sophisticated approach for the purpose of analysis.

We identify the sentiment of a sentence based on sentiment words or opinion
words, and these words imply either a positive or a negative opinion. Words like
good, best, and awesome are examples of positive words, while bad, worse, and
poor are examples of negative words. This can also include phrases that imply
either a positive or a negative meaning. A list of such sentiment words and phrases
is known as sentiment lexicon.

Micro-blogging allows an individual to post or share opinions from anywhere at
any time. Some individual post false comments about a product either to make it
reach to the masses or to compromise the analysis process. Such individuals are
known as opinion spammers, and this process is known as opinion spamming.
Opinion spamming poses a great challenge to the task of opinion mining. Hence, it
is important to ensure that the data taken for analysis is from a trusted source and is
free from opinion spamming. The next challenge is in identifying and processing
factual sentences that may not have any sentiment words, but still imply a positive

718 M. Khatoon et al.

or negative meaning. For example, “The washer uses more water” is a factual
sentence that implies negative opinion. Unlike facts, opinions and sentiments are
subjective. Hence, it is important to ask opinion from multiple sources rather than a
single source. The next challenge is identifying sentence that has a sentiment word
but implies neither a positive nor a negative opinion. For example, the sentence “I
will buy the phone if it is good” has the sentiment word ‘good,’ but it implies
neither a positive nor a negative opinion.

2 Literature Survey

Sentiment mining has been an active area of research since the early 2000. Many
have published scholarly articles on the same. Sentiment mining is nothing but
feature-based analysis of collected data. It approximately follows the following
steps:

• Keywords based on which the analysis is to be done are detected in the data.
• Sentiment words are searched for in the data.
• The sentiment words are then mapped to the keywords and assigned a sentiment

score accordingly.
• The result can be displayed in visual format.

We refer to comprehensive summaries given in [7] for details about the first two
steps. The sentiment words and the features can be extracted from external source
or from a predefined list. It is important to associate the sentiment words with the
keyword because certain words differ in meaning according to the domain in which
they are used. For example, consider the word “fast” for the keyword or domain
“laptop.” In the sentence “The laptop processes fast,” the word fast gives out a
positive comment with respect to the laptop’s processor. However, in the sentence
“The laptop heats up fast,” it gives out a negative comment.

There are different approaches for associating a sentiment word with the key-
word. One approach is based on the distance in which the closer the keyword is to a
sentiment word, the higher is its influence. These approaches can work on entire
sentences Ding et al. [4], on sentence segments [3, 5] or on predefined words Oelke
et al. [9]. Ng et al. [8] use subject–verb, verb–object, and adjective–noun relations
for polarity classification. The feature and sentiment pairs can also be extracted
based on ten dependency rules as done by Popescu and Etzioni [1].

All these approaches are based on parts of speech sequences only, rather than on
typed in dependency. Analysis can also be done on reviews that are submitted
directly to the company via the company’s Web server Rohrdantz et al. [2]. Several
methods are available for visualization of the outcome of analysis. The Opinion
Observer visualization by Liu et al. [6] allows users to compare products with
respect to the amount of positive and negative reviews on different product features.

Sentiment Analysis on Tweets 719

3 Proposed System

All the past researches in the field of sentiment mining are based mostly on English.
Our model is based on reviews that are typed in both English as well as the regional
language. In our model, the analysis is based on tweets that are typed using both
English and a regional language. The regional language words are spelled using
English language characters rather than its characters.

In order to perform the analysis task, we need the data corpus on which the
analysis is to be done. The data for analysis is extracted from the popular social
networking site Twitter [10]. The tweets belonging to a particular hash tag or query
are extracted and used for analysis. These tweets are then preprocessed, and then,
sentiment words in each tweet are extracted. We compare these with a predefined
list of words called bag of words. The bag of words consists of not only the
dictionary form of words, but also their abbreviations and texting formats.

The sentiment words extracted from the preprocessed data are then compared
with the bag of words. After comparison, each sentiment word is assigned a polarity
according to the context in which it is used. The words are then combined with one
another to determine the polarity of the entire sentence or tweet. The tweets are then
classified as positive, negative, or neutral tweets based on the results of polarity
determination.

4 Implementation

4.1 Tweets Extraction

As said earlier, the analysis task is done on the data extracted from the popular
micro-blogging site Twitter. The comments, pictures, or anything that is being
shared on Twitter is called as a ‘tweet.’ In order to extract these tweets, firstly we
must create an application in Twitter and get it approved by the Twitter team.
Twitter4j package is used for the extraction of tweets. When the application gets
approved by the Twitter team, a unique consumer/secret key is given for the
application. This consumer/secret key is needed to get authorization during the
extraction process.

Once all these initial steps are done, we proceed with the extraction process. The
tweets belonging to a particular hash tag are then extracted. This hash tag is given
as a query in our code. When run, this module will generate an URL as the
intermediary output, which has to be visited using a Web browser to get the session
key. This key is copied and pasted in the output screen. Upon doing so, the tweets
belonging to the given hash tag are extracted. Since the number of tweets for any
hash tag may exceed thousands, we restrict the number of tweets to be extracted to
100 tweets. The extracted tweets are stored in a text file.

720 M. Khatoon et al.

Extraction of
Tweets

Stop words
removal

Splitting
keywords

Keywords of each
tweet

Extract positive
words

Regional
Language

English

Comparison
algorithm

Calculating
polarity

Positive NegativeNeutral

WEB WEB

Sentiment Analysis on Tweets 721

4.2 Stop Words Removal

Stop words are words that occur frequently in a sentence but do not represent any
content of it. These words need to be removed before starting with the analysis as
they are insignificant to the analysis process. Articles, prepositions, and some pro-
nouns are examples for stop words. The following are a few stop words in English:

a, about, and, are, is, as, at, be, by, for, from, how, of, on, or, the, these, this, that,
what, when, who, will, with, etc.

4.3 Split Keywords

Keywords are the words in a sentence based on which the polarity of the sentence is
determined. Hence, it is important to remove the keywords, also known as senti-
ment words from the rest of the sentence. To do so, initially, the words in the tweet
are extracted and then compared with the predefined list of words. When a word in
the tweet matches a word in the bag of words, it is stored in a separate text file. This
process is carried out until all the keywords in the extracted tweets are removed and
stored separately.

For the splitting of words from the sentence, we use the ‘initial splitting algo-
rithm.’ It parses the whole text file and splits paragraphs into sentences based on “.”
and “?” present in the input file. It uses the rule-based simplification technique to
split paragraphs into sentences. This proposed approach follows the following steps:

I. Split the sentences from the paragraph based on delimiters such as “.” and “?”
II. Delimiter such as comma,-,?,\,! is ignored from the sentences.

The text can be of any form, i.e., paragraphing format, individual sentences. The
presence of delimiter such as “?” and “.” is an important prerequisite as the initial
splitting is done based on delimiters. Sentence boundary symbols (SBS) for sen-
tence simplification simplify the paragraph into small simpler sentences. We
defined the classical boundary symbols as (“.”,”?”). This sentence boundary symbol
goes through the paragraph and splits it into simple sentences when it encounters
the symbols “.”, “?”. Words are split when a space is encountered.

4.4 Bag of Words

Bag of words is a predefined list of words collected prior to the analysis process.
The words in the bag of words list are also extracted from the Web. The bag of
words contains words from both the regional language and English language. Same
words with different spellings are clustered together. These words are associated
with a polarity.

722 M. Khatoon et al.

4.5 Polarity Comparison

The keywords extracted from the tweets are then compared with the words in the
bag of words list in order to associate each word with its polarity. The words in the
bag of words are assigned polarity. The polarity of the input words is then found by
comparing the keywords with the bag of words. The output of this module will be
the words with their polarities heightened.

4.6 Calculating Polarity

In this, the polarity associated with each word is combined with one another and the
polarity for the combined words is found using the “Basic Rules Algorithm,” which
contains a set of rules to be followed while calculating the polarity of two words
combined. This process is continued till the polarity of the whole sentence is
determined. The output of this module is the sentence with its polarity found.

After this, the sentences are classified into three groups, namely positive, neg-
ative, and neutral. The number of positive or negative tweets gives a collective
opinion about the product, i.e., whether the product has more number of positive
comments or more number of negative comments. The result is then visualized in
the form of a graph in order to enable easy interpretation of the results.

5 Conclusion

In this paper, we use feature-based sentiment analysis approach to analyze and
classify tweets that contain both English words and words in regional language. For
our analysis, we used Tamil as the regional language. However, this approach is not
restricted to Tamil language alone. It can be extended to any of the regional
languages.

References

1. Popescu, A.-M., Etzioni, O.: Extracting product features and opinions from reviews. In:
Proceedings of the Human Language Technology Conference and the Conference on
Empirical Methods in Natural Language Processing (HLT/EMNLP) (2005)

2. Rohrdantz, C., Hao, M.C., Dayal, U., Haug, L.-E., Keim, D.A.: Feature-based Visual
Sentiment Analysis of Text Document Streams (2012)

3. Ding, X., Liu, B.: The utility of linguistic rules in opinion mining. In: SIGIR’07: Proceedings
of the 30th annual international ACM SIGIR conference on Research and development in
information retrieval. pp. 811–812. ACM, New York, NY

Sentiment Analysis on Tweets 723

4. Ding, X., Liu, B., Yu, P.: A holistic lexicon-based approach to opinion mining. In:
Proceedings of the International Conference on Web Search and Web Data Mining, pp. 231–
240 (2008)

5. Kim, S.-M., Hovy, E.: Determining the sentiment of opinions. In: COLING’04: Proceedings
of the 20th International Conference on Computational Linguistics. Association for
Computational Linguistics, Morristown, NJ, pp. 1367–1373 (2004)

6. Liu, B., Hu, M., Cheng, J.: Opinion observer: Analyzing and comparing opinions on the web.
Proceedings of WWW (2005)

7. Liu, B.: Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data. Springer (2006)
8. Ng, V., Dasgupta, S, Niaz Arifin, S.M.: Examining the role of linguistic knowledge sources in

the automatic identification and classification of reviews. In: Proceedings of the COLING/
ACL Main Conference Poster Sessions, Sydney, Australia, July 2006, pp. 611–618.
Association for Computational Linguistics (2006)

9. Oelke, D. et al.: Visual Opinion Analysis of Customer Feedback Data. VAST (2009)
10. Zhou, X., Tao, X., Yong, J., Yang, Z.: Sentiment analysis on tweets for social events. In:

Proceedings of the 2013 IEEE 17th International Conference on Computer Supported
Cooperative Work in Design

724 M. Khatoon et al.

	Preface
	The Organization of CSI-2015
	Chief Patron
	Patrons
	Chair, Programme Committee
	Secretary, Programme Committee
	Advisory Committee
	Editorial Board

	Contents
	About the Editors
	1 A Multi-agent Framework for Context-Aware Dynamic User Profiling for Web Personalization
	Abstract
	1 Introduction
	2 User Modeling Techniques
	2.1 Information Gathering
	2.2 User Profile Representation
	2.3 User Profile Construction

	3 Related Work
	4 Proposed Framework for Multi-agent-Based Dynamic User Profiling
	5 Detailed Description of Framework
	5.1 Client-Side Agents
	5.2 Server-Side Agents

	6 Flow Diagram of the Proposed Work
	7 Conclusion and Future Work
	References

	2 Implementation of Equivalence of Deterministic Finite-State Automation and Non-deterministic Finite-State Automaton in Acceptance of Type 3 Languages Using Programming Code
	Abstract
	1 Introduction
	2 Finite Acceptors
	3 Algorithm to Implement DFA
	4 Programming Code to Implement DFA and NFA
	5 Regular Languages or Type 3 Grammars
	6 Equivalence of NFA to DFA on Acceptance of Regular Language
	7 Example of NFA to DFA with Test Cases
	8 Algorithm for Conversion of NFA to DFA
	8.1 Test Case 1 for NFA and Its Equivalent DFA

	9 Result and Conclusion
	References

	3 A Multi-factored Cost- and Code Coverage-Based Test Case Prioritization Technique for Object-Oriented Software
	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Work
	3.1 Considered Factors for Prioritized Test Cases

	4 Result and Analysis
	4.1 Faults Detected by Test Cases in Non-Prioritized Order
	4.2 Faults Detected by Test Cases in Prioritized Order
	4.3 Comparison of APFD Graphs Prioritized and Non-prioritized Order of Test Cases for Three Programs
	4.4 Effectiveness of the Proposed Approach

	5 Conclusion
	References

	4 A Novel Page Ranking Mechanism Based on User Browsing Patterns
	Abstract
	1 Introduction
	2 Related Work
	2.1 PageRank
	2.2 Page Ranking Algorithm Based on Link Visits (PRLV)

	3 Proposed Page Ranking Mechanism
	3.1 Search Engine Interface
	3.2 PPF Calculator
	3.3 DB Builder
	3.4 Query Processor

	4 Example
	5 Conclusion
	References

	5 Indexing of Semantic Web for Efficient Question Answering System
	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Architecture
	3.1 Query Interface Module
	3.2 Query Processing Module
	3.3 Question Categorization Module
	3.4 Question Analysis Module
	3.5 Question Categorization
	3.6 Semantic Mapping in Question Answering System
	3.7 Indexing Module
	3.8 Result Processing Module

	4 Experimental Evaluation
	5 Conclusions and Future Scope
	References

	6 A Sprint Point Based Tool for Agile Estimation
	Abstract
	1 Introduction
	1.1 Estimation

	2 Sprint-point based Estimation Framework in SPBE Tool
	2.1 Sprint Estimation
	2.2 User Story-Based Prioritization Algorithm
	2.3 Managing Uncertainty in Estimating User Stories
	2.4 Sprint-Point Based Estimation Using Delay-Related Factors
	2.5 Sprint-Point Based Estimation Tool
	2.5.1 Contents of SPBE Tool

	2.6 Case Study
	2.7 Results

	3 Conclusion
	References

	7 Improving Search Results Based on Users’ Browsing Behavior Using Apriori Algorithm
	Abstract
	1 Introduction
	1.1 Introduction to Apriori Algorithm

	2 Related Work
	3 Working Methodology
	4 Example
	5 Conclusion
	References

	8 Performance Efficiency Assessment for Software Systems
	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Performance Efficiency Model
	3.1 Performance Efficiency in Quality Models

	4 Assessment of the Proposed Performance Efficiency Model
	5 Case Study
	6 Conclusion and Future Scope
	References

	9 Impact of Programming Languages on Energy Consumption for Sorting Algorithms
	Abstract
	1 Introduction
	2 Related Works
	3 Role of Programming Language in Energy Efficiency
	4 Sorting Algorithms
	4.1 Bubble Sort
	4.2 Selection Sort
	4.3 Insertion Sort
	4.4 Quick Sort

	5 Programming Language
	5.1 Java [18]
	5.2 Visual Basic 6.0
	5.3 C#.Net

	6 Experimental Setup
	7 Experimental Run
	8 Experimental Result and Analysis
	9 Conclusion
	References

	10 Crawling Social Web with Cluster Coverage Sampling
	Abstract
	1 Introduction
	2 Related Work
	3 Problem Description
	4 Cluster Coverage Sampling (CCS) Methodology
	5 Experiments and Result Analysis
	6 Conclusion and Future Scope
	References

	11 Efficient Management of Web Data by Applying Web Mining Pre-processing Methodologies
	Abstract
	1 Introduction
	2 Literature Review
	3 Data Pre-processing on Web Log File
	3.1 Field Extraction
	3.2 Significant Attributes Selection
	3.3 Data Selection
	3.4 Data Cleaning
	3.4.1 Remove Duplicacy
	3.4.2 Missing Value
	3.4.3 Noise

	4 Results and Interpretation
	5 Conclusion
	References

	12 A Soft Computing Approach to Identify Multiple Paths in a Network
	Abstract
	1 Introduction
	2 Related Work
	3 AntNet Routing Algorithm
	4 Proposed AntNet Modifications
	5 Conclusion
	References

	13 An Efficient Focused Web Crawling Approach
	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Method
	4 Conclusion
	References

	14 A New Log Kernel-Based Possibilistic Clustering
	Abstract
	1 Introduction
	2 Literature Work
	2.1 Fuzzy C-Means Clustering (FCM)
	2.2 Possibilistic C-Means Clustering (PCM)
	2.3 Unsupervised Possibilistic C-Means Clustering (UPC)

	3 Kernel-Based Algorithm
	3.1 Kernel-Based Approach

	4 Proposed kernelized UPC-Log Algorithm
	5 Experimental Results
	5.1 Synthetic Datasets
	5.2 High-Dimensional Real Datasets

	6 Conclusions
	References

	15 Fuzzy c-Means Clustering Strategies: A Review of Distance Measures
	Abstract
	1 Introduction
	2 Related Work
	2.1 Fuzzy c-Means Algorithm
	2.2 Distance Measures
	2.2.1 Euclidean Distance
	2.2.2 Standard Euclidean Distance
	2.2.3 Mahalanobis Distance
	2.2.4 Standard Mahalanobis Distance
	2.2.5 Minkowski Distance
	2.2.6 Chebyshev Distance

	3 Experiments’ Results
	3.1 Synthetic Datasets
	3.1.1 X_{12} Dataset

	3.2 High-Dimensional DataSets

	4 Conclusions
	References

	16 Noise Reduction from ECG Signal Using Error Normalized Step Size Least Mean Square Algorithm (ENSS) with Wavelet Transform
	Abstract
	1 Introduction
	2 Proposed Implementation
	2.1 ENSS Algorithm-Based ANC System
	2.2 1-D Wavelet Transform (Haar Wavelet Transform)
	2.3 ENSS-LMS Algorithm
	2.4 Implementation Steps

	3 Simulation Results
	4 Conclusion
	References

	17 A Novel Approach for Extracting Pertinent Keywords for Web Image Annotation Using Semantic Distance and Euclidean Distance
	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Architecture
	3.1 Crawl Manager
	3.2 URL Queue
	3.3 Parser
	3.4 Visual Web Page Segmenter
	3.5 Block Analyzer
	3.6 Nearest Text Block Detector
	3.7 Tag Text Extractor
	3.8 Keyword Extractor
	3.9 Semantic Distance Calculator
	3.10 Text Extractor
	3.11 Keyword Determiner
	3.12 Image Annotation

	4 Algorithm
	5 Conclusion
	References

	18 Classification of Breast Tissue Density Patterns Using SVM-Based Hierarchical Classifier
	Abstract
	1 Introduction
	2 Methodology
	2.1 Description of Dataset
	2.2 Selecting Regions of Interest
	2.3 Proposed Method

	3 Results
	3.1 Classification Performance of Laws’ Texture Features Using Hierarchical Classifier

	4 Conclusion
	References

	19 Advances in EDM: A State of the Art
	Abstract
	1 Introduction
	2 Materials and Methods
	2.1 Dataset and Its Features
	2.2 Feature Measurement

	3 Methodology
	3.1 AdaBoost Algorithm
	3.2 Feature Importance Using AdaBoost Algorithm
	3.3 Machine Learning Methods

	4 Model Evaluation
	5 Experimental Result
	6 Conclusion and Future Scope
	References

	20 Proposing Pattern Growth Methods for Frequent Pattern Mining on Account of Its Comparison Made with the Candidate Generation and Test Approach for a Given Data Set
	Abstract
	1 Introduction
	1.1 Association Rule Mining

	2 Literature Survey
	3 Experiment
	4 Result and Discussion
	5 Conclusion
	References

	21 A Study on Initial Centroids Selection for Partitional Clustering Algorithms
	Abstract
	1 Introduction
	2 Study on Initial Centroid Selection for Clustering Algorithms
	3 Developed Farthest Distributed Centroid Clustering Algorithm
	3.1 Basic Concept
	3.2 Farthest Distributed Centroid Clustering Algorithm

	4 Experimental Study
	5 Conclusion
	References

	22 A Novel Rare Itemset Mining Algorithm Based on Recursive Elimination
	Abstract
	1 Introduction
	1.1 Rare Itemset Mining

	2 Related Work
	3 Proposed Rare Itemset Mining Algorithm
	3.1 Illustration

	4 Proof of Correctness
	5 Simulation Results and Discussion
	6 Conclusion
	References

	23 Computation of Various Entropy Measures for Anticipating Bugs in Open-Source Software
	Abstract
	1 Introduction
	2 Literature Review
	3 Information Theoretic Approach
	4 Basic Model for Entropy Measurement
	5 Data Collection and Preprocessing
	6 Calculation of Arimoto, Havrda–Charvat, and Renyi Entropy
	7 Analysis and Bug Prediction Approach
	8 Result and Discussion
	9 Conclusion
	References

	24 Design of Cyber Warfare Testbed
	Abstract
	1 Introduction
	2 Testbed Requirements
	3 Testbed Design
	3.1 Design of Cluster
	3.2 Composing Attack System
	3.3 Composing Defence System
	3.4 Data Logger and Report Generation

	4 Operational Configuration
	4.1 Scenarios
	4.2 Attack Emulation

	5 Analysis
	5.1 Identification of Measures of Effectiveness (MOEs)
	5.2 Vulnerability Analysis
	5.3 Development of Strategy and Tactics

	6 Conclusion
	7 Future Scope
	References

	25 Performance Evaluation of Features Extracted from DWT Domain
	Abstract
	1 Introduction
	2 Steganography Algorithms
	3 Proposed DWT Feature Extraction
	3.1 Histogram
	3.2 Markov
	3.3 Existing DWT Farid Features

	4 Neural Network Classifier
	5 Experimental Results
	6 Analysis
	7 Conclusion
	References

	26 Control Flow Graph Matching for Detecting Obfuscated Programs
	Abstract
	1 Introduction
	2 Disassembly of Executables
	3 Obfuscation Techniques
	4 Control Flow Graph
	4.1 Control Flow Graph Reduction
	4.2 Control Flow Graph Matching

	5 Proposed Framework
	5.1 Explanation

	6 Conclusion
	References

	27 A Novel Framework for Predicting Performance of Keyword Queries Over Database
	Abstract
	1 Introduction
	2 Related Work
	2.1 Post-retrieval Methods
	2.2 Clarity Score Based
	2.3 Popularity Based
	2.4 Challenges in Information Retrieve in Structured Database with Keyword Query

	3 Proposed System
	3.1 Objective

	4 Implementation and Discussion
	5 Conclusion
	References

	28 Predicting and Accessing Security Features into Component-Based Software Development: A Critical Survey
	Abstract
	1 Introduction
	2 Security Specification for Software Component
	3 Architecture and Design for Secure Software Component
	4 Proposed Framework for Security of Component-Based Software
	5 Conclusion and Future Scope
	References

	29 Traditional Software Reliability Models Are Based on Brute Force and Reject Hoare’s Rule
	Abstract
	1 Introduction
	2 Software Reliability Measurement
	3 Brute Force Nature of Traditional Models
	4 Perceiving Reliability with Hoare’s Logic
	5 Proposed Model Framework
	6 Conclusion
	References

	30 Object-Oriented Metrics for Defect Prediction
	Abstract
	1 Introduction
	2 Literature Survey
	3 Methodology
	3.1 Performance Evaluation Parameters

	4 Collection of Data
	5 Results
	6 Conclusion
	References

	31 A Comparative Analysis of Static and Dynamic Java Bytecode Watermarking Algorithms
	Abstract
	1 Introduction
	2 Background
	2.1 Difficulties Faced by Software Watermarking
	2.2 Watermarking Techniques
	2.3 Classification of Watermark
	2.4 Types of Attacks to Watermarks [13]

	3 The Empirical Evaluation
	3.1 The Watermarker
	3.1.1 Static Watermarking Algorithms Are as
	3.1.2 Dynamic Watermarking Algorithms

	3.2 The Transformation Attacks
	3.3 The Test Case Jar Files

	4 Results
	4.1 Static Watermarking Algorithms
	4.1.1 Watermarking
	4.1.2 Obfuscation
	4.1.3 Recognition

	4.2 Dynamic Watermarking Algorithms
	4.2.1 Watermarking
	4.2.2 Obfuscation
	4.2.3 Recognition

	4.3 Comparative Analysis of Static and Dynamic Software Watermarking Algorithms
	4.4 Analysis of Results

	5 Conclusion
	References

	32 Software Architecture Evaluation in Agile Environment
	Abstract
	1 Introduction
	1.1 Definition of Software Architecture
	1.2 Software Architectonics and Software Architect
	1.3 Agile Software Development
	1.4 Agile Architecture Is a Paradox

	2 Literature Survey
	3 Problem Definition
	4 Objectives
	5 Experimental Design
	5.1 Software Architecture Metrics
	5.2 Agile Software Metrics
	5.3 Eclipse
	5.4 X-Ray
	5.5 JArchitect
	5.6 JFreeChart

	6 Results and Discussion
	7 Conclusion
	8 Future Scope
	References

	33 Mutation Testing-Based Test Suite Reduction Inspired from Warshall’s Algorithm
	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Research Questions
	3.2 Experimental Design
	3.3 Procedure
	3.3.1 Algorithm of Proposed Approach
	3.3.2 Time Complexity of the Proposed Approach

	4 Results
	5 Conclusion and Future Work
	References

	34 Software Component Retrieval Using Rough Sets
	Abstract
	1 Introduction
	2 Related Work
	3 Decision Making Using Rough Sets
	3.1 Rough Sets
	3.2 Methodology for Component Extraction

	4 Results and Analysis
	5 Conclusion
	References

	35 Search-Based Secure Software Testing: A Survey
	Abstract
	1 Introduction
	2 Key Points
	3 Strategies of Research
	3.1 Research Questions

	4 Elucidation for Research Questions
	4.1 RQ1: What Is Metaheuristic and Its Techniques?
	4.2 RQ2: Why SBST Is Used to Tackle Security Vulnerabilities?
	4.3 RQ3: What Is Meant by Software Security Testing?

	5 Threats
	6 Conclusion
	References

	36 Limitations of Function Point Analysis in Multimedia Software/Application Estimation
	Abstract
	1 Introduction
	2 Function Point Analysis (FPA)
	2.1 External Inputs (EIs)
	2.2 External Outputs (EOs)
	2.3 External Inquiries (EQs)
	2.4 Internal Logical Files (ILFs)
	2.5 External Interface Files (EIFs)
	2.6 Rating of Components
	2.7 Calculation of Complexity Adjustment Factor (CAF)

	3 Multimedia Systems Features Against FPA
	3.1 Limitations of FPA

	4 Conclusion
	References

	37 Maintainability Analysis of Component-Based Software Architecture
	Abstract
	1 Introduction
	2 Maintainability Scenario and Graph
	3 Maintainability Analysis and Scenario Evaluation
	4 Conclusion
	References

	38 An Assessment of Vulnerable Detection Source Code Tools
	Abstract
	1 Introduction
	2 Tools
	2.1 Cppcheck 1.68 [7]
	2.2 Flawfinder [8]
	2.3 Visual Code Grepper (VCG) [9]

	3 Comparison/Analysis of Tools
	3.1 Conceptual Comparison
	3.2 Empirical Comparison

	4 Conclusion and Future Scope
	References

	39 Devising a New Method for Economic Dispatch Solution and Making Use of Soft Computing Techniques to Calculate Loss Function
	Abstract
	1 Introduction
	2 New Approach for the Solution of Economic Dispatch Problem
	2.1 Steps of the Deterministic Approach
	2.2 Description of Fuzzy Sets Used in the New Approach
	2.3 Usage of Genetic Algorithm in the Method

	3 Illustrations and Result
	3.1 Sample System Consisting of Two Generators
	3.2 Conclusions

	References

	40 Trusted Operating System-Based Model-Driven Development of Secure Web Applications
	Abstract
	1 Introduction
	2 Secure Web Application Modeling
	3 Axes of Change in Round-trip Engineering
	4 Conclusion
	References

	41 Navigational Complexity Metrics of a Website
	Abstract
	1 Introduction
	2 Factors Affecting Navigational Complexity of the Website
	2.1 Website Structural Complexity
	2.2 Other Factors
	2.2.1 Website Defects
	2.2.2 Maximum Depth
	2.2.3 Path Density

	3 Methodology
	4 Results and Discussion
	5 Conclusions
	References

	42 Evaluation and Comparison of Security Mechanisms In-Place in Various Web Server Systems
	Abstract
	1 Introduction
	2 Background and Related Work
	3 Methodology
	3.1 Metrics
	3.2 Web Server Tests

	4 Case Study—Results and Discussion
	References

	43 Component-Based Quality Prediction via Component Reliability Using Optimal Fuzzy Classifier and Evolutionary Algorithm
	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Methodology for Software Quality Prediction
	3.1 Steps Involved in the Software Quality Prediction
	3.2 Software Cost and Reliability Measure to Estimate the Quality
	3.2.1 Software Reliability Measure
	Fuzzy Logic
	Fuzzy Rule Optimization Using Evolutionary Programming (EP)

	3.2.2 Software Cost Measure

	4 Results and Discussion
	5 Conclusion
	References

	44 Applying Statistical Usage Testing Along with White Box Testing Techniques
	Abstract
	1 Introduction
	2 White Box Testing Techniques (WBTT)
	2.1 Use of White Box Testing Techniques (WBTTs) with SUT
	2.2 Types of White Box Testing Techniques

	3 Testing ‘HTML to Text Converter Utility’ Using SUT
	3.1 HTML to TEXT Utility
	3.2 SUT for HTML to TEXT Converter

	4 Applying SUT Along with WBTT
	4.1 Control Flow Testing (CFT)
	4.2 Data Flow Testing (DFT)
	4.3 Mutation Testing

	5 Findings and Conclusion
	6 Limitations and Future Work
	Acknowledgements
	References

	45 A Review on Application Security Management Using Web Application Security Standards
	Abstract
	1 Introduction
	2 Objective
	3 Scope
	4 Types of Vulnerabilities
	5 Methodology
	5.1 Design
	5.2 Coding
	5.3 Security Testing
	5.4 Delivery and Deployment

	6 Management Practices
	6.1 Requirements, Design, and Development
	6.2 Testing
	6.3 Audience
	6.4 Verification Matrix

	7 Conclusion
	References

	46 A Review of Software Testing Approaches in Object-Oriented and Aspect-Oriented Systems
	Abstract
	1 Introduction
	2 Evaluation Criteria
	3 Object-Oriented Testing
	4 Aspect-Oriented Testing
	5 Conclusion and Limitations
	Acknowledgements
	References

	47 A Literature Survey of Applications of Meta-heuristic Techniques in Software Testing
	Abstract
	1 Introduction
	2 Meta-heuristic Techniques
	2.1 Ant Colony Optimization
	2.2 Genetic Algorithm

	3 Benchmark for Evaluation
	4 Analysis of ACO and GA
	4.1 Genetic Algorithm
	4.2 Aco

	5 Conclusion
	References

	48 A Review of Test Case Prioritization and Optimization Techniques
	Abstract
	1 Introduction
	1.1 Regression Testing
	1.2 Test Case Prioritization
	1.3 Techniques of Test Case Prioritization and Optimization

	2 Literature Survey
	2.1 Research Questions

	3 Analysis of Papers
	4 Conclusion
	References

	49 Software Development Activities Metric to Improve Maintainability of Application Software
	Abstract
	1 Introduction
	2 Software Development Activities Metric to Improve the Maintainability
	3 Analysis of SDA Metric
	4 Conclusion
	References

	50 Label Count Algorithm for Web Crawler-Label Count
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Crawling Strategy
	2.2 Architecture

	3 Schemes for Web Crawling
	3.1 Genetic Algorithm
	3.2 Breadth-First Search Algorithm
	3.3 Page Rank Algorithm
	3.4 Depth-First Search Algorithm

	4 Conclusion and Future Work
	References

	51 Vulnerability Discovery in 	Open- and Closed-Source Software: A New Paradigm
	Abstract
	1 Introduction
	2 Proposed Approach
	3 Parameter Estimations
	4 Prediction Capabilities of Models
	5 Conclusion
	References

	52 Complexity Assessment for Autonomic Systems by Using Neuro-Fuzzy Approach
	Abstract
	1 Introduction
	2 Autonomic Computing-Enabled Systems
	2.1 Architecture of Autonomic System

	3 Literature Review
	4 Proposed Model
	4.1 Implementation of the Proposed Approach
	4.2 Empirical Evaluation

	5 Conclusion and Future Work
	References

	53 Proposal for Measurement of Agent-Based Systems
	Abstract
	1 Introduction
	2 Existing Metrics
	3 The Necessity for New Metrics
	4 Advancement in Metrics
	5 Conclusion
	References

	54 Optimal Software Warranty Under Fuzzy Environment
	Abstract
	1 Introduction
	2 The Cost Model
	3 Problem Formulation
	4 Numerical Example
	5 Conclusion
	References

	55 Automation Framework for Test Script Generation for Android Mobile
	Abstract
	1 Introduction
	2 Related Work
	3 Architecture of Proposed Framework
	3.1 Overview of the proposed framework
	3.2 Architecture of the Virtual Test Engineer
	3.3 Mobile side architecture

	4 Case Study
	5 Experimental Results
	5.1 Horizontal deployment
	5.2 Bug fixing/Enhancement

	6 Comparison with Other Methods
	7 Conclusions
	References

	56 Optimizing the Defect Prioritization in Enterprise Application Integration
	Abstract
	1 Introduction
	2 Literature Review
	3 Genetic Algorithm
	4 Proposed Approach and Experimental Set-up
	5 Outcomes and Discussions
	6 Conclusions
	References

	57 Desktop Virtualization—Desktop as a Service and Formulation of TCO with Return on Investment
	Abstract
	1 Introduction
	2 Components of DaaS
	3 Comparison of DaaS Providers
	4 Obstacles in Adoption of DaaS
	5 Formulation of TCO/ROI
	6 Conclusion
	References

	58 An Assessment of Some Entropy Measures in Predicting Bugs of Open-Source Software
	Abstract
	1 Introduction
	2 Literature Review
	3 Entropy Measures and Code Change Process
	4 Methodology
	4.1 Data Collection and Preprocessing
	4.2 Evaluation of Shannon, Renyi, and Tsallis Entropies

	5 Bug Prediction Modeling
	6 Assessment of Entropy Measures
	6.1 One-Way ANOVA
	6.2 Tukey’s HSD Test

	7 Conclusion and Future Scope
	References

	59 A Path Coverage-Based Reduction of Test Cases and Execution Time Using Parallel Execution
	Abstract
	1 Introduction
	2 Problem Description
	3 Proposed Technique
	3.1 Algorithm

	4 Parallel Test Case Executor
	5 Result and Analysis
	6 Conclusion
	References

	60 iCop: A System for Mitigation of Felonious Encroachment Using GCM Push Notification
	Abstract
	1 Introduction
	2 Feasibility Study
	3 A Brief About Arduino Platform
	4 Methodology
	5 iCop System
	5.1 Testing Results
	5.2 Risk Analysis

	6 Conclusion
	References

	61 Clustering the Patent Data Using K-Means Approach
	Abstract
	1 Introduction
	2 Background Study
	2.1 Processing of Algorithm

	3 Methodology
	4 Experiments and Results
	5 Conclusion
	References

	62 Success and Failure Factors that Impact on Project Implementation Using Agile Software Development Methodology
	Abstract
	1 Introduction
	2 Literature Review
	3 Different Factors in the Agile Development
	4 Strategies for Mitigating Factors Affecting Agile and Distributed Agile Development
	5 Case Study
	6 Findings
	6.1 Outcomes

	7 Conclusion
	References

	63 Fuzzy Software Release Problem with Learning Functions for Fault Detection and Correction Processes
	Abstract
	1 Introduction
	2 Formulation of Problem
	2.1 Software Reliability Growth Models
	2.2 The Cost Model
	2.3 Problem Formulation

	3 Problem Solution and Numerical Example
	3.1 Problem Solution
	3.2 Numerical Example

	4 Conclusion
	References

	64 Reliability Assessment of Component-Based Software System Using Fuzzy-AHP
	Abstract
	1 Introduction
	2 Methodology
	2.1 Identification of Factors
	2.1.1 The Deployment Context
	2.1.2 Human Factor
	2.1.3 Analysis and Design Factor
	2.1.4 Testing Factor

	2.2 Evaluation of Reliability Using Analytical Hierarchy Process
	2.2.1 Building the Hierarchy
	2.2.2 Pair-Wise Comparisons
	2.2.3 Relative Weight Estimation

	2.3 Fuzzy Comprehensive Evaluation
	2.3.1 Create Sets of Grade Factors and Elements
	2.3.2 Derive a Single-Factor Evaluation Matrix R from U to V
	2.3.3 Find Results of Comprehensive Evaluation
	2.3.4 Comprehensive Multi-level Fuzzy Evaluation
	2.3.5 Conclude Evaluation

	3 Conclusion
	References

	65 Ranking Usability Metrics Using Intuitionistic Preference Relations and Group Decision Making
	Abstract
	1 Introduction
	2 Literature Survey
	3 Basics of Group Decision Making
	4 Application of Group Decision Making to Rank Usability Metrics
	5 Illustrative Example
	6 Conclusion
	Appendix 1
	Appendix 2
	References

	66 Research Challenges of Web Service Composition
	Abstract
	1 Introduction
	2 Semantic-Based Composition Techniques
	3 Composition Research Challenges
	3.1 Semantic Web Services Languages, Discovery, and Selection Challenges
	3.2 Composition Challenges
	3.3 Scalability, Adaptation, and Management

	4 Conclusions and Future Work
	References

	67 Automation Software Testing on Web-Based Application
	Abstract
	1 Introduction
	2 Literature Review
	3 Automated Testing
	4 Proposed Method
	4.1 Experimental Work
	4.2 Comparison and Result Between Traditional and Agile Automated Testing Model

	5 Conclusion
	References

	68 Automated Test Data Generation Applying Heuristic Approaches—A Survey
	Abstract
	1 Introduction
	2 Literature Survey
	2.1 Software Testing
	2.2 Test Data Generation
	2.3 Heuristic Approaches
	2.4 Applying Heuristics in Test Data Generation

	3 Heuristic Approaches Applied in Test Data Generation
	4 Conclusion

	69 Comparison of Optimization Strategies for Numerical Optimization
	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Work
	3.1 Particle Swarm Optimization
	3.2 Artificial Bee Colony
	3.3 Teacher–Learner-Based Optimization
	3.4 Differential Evolution
	3.5 Benchmark Functions

	4 Experimental Results and Analysis
	5 Conclusion
	References

	70 Sentiment Analysis on Tweets
	Abstract
	1 Introduction
	2 Literature Survey
	3 Proposed System
	4 Implementation
	4.1 Tweets Extraction
	4.2 Stop Words Removal
	4.3 Split Keywords
	4.4 Bag of Words
	4.5 Polarity Comparison
	4.6 Calculating Polarity

	5 Conclusion

