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Abstract This paper presents the design and implementation of the integral super
twisting sliding mode control for the tracking control of a linearized model of
longitudinal plane autonomous underwater glider. The performance of the proposed
controller is evaluated in terms of chattering reduction in control input for the
nominal system as well as the system in the presence of external disturbance. The
controller is designed for the gliding path from 45° to 30° downward and upward.
The performance of the proposed controller is compared with the quasi sliding
mode control (boundary layer), integral sliding control, and super twisting sliding
mode control. The simulation results have shown that the proposed controller is
able to eliminate the undesired chattering.in control inputs.

Keywords Autonomous underwater glider (AUG) ⋅ Super twisting sliding mode
control (STSMC) ⋅ Integral sliding mode control (ISMC)

1 Introduction

Underwater offers a wide range of research opportunities. Autonomous underwater
vehicles (AUVs) are amongst the popular of underwater vehicles used in under-
water for data gathering. While autonomous underwater gliders (AUGs) are con-
sidered as a new class of AUVs where the idea was initiated by Henry Stommel in
1989 [1]. However the real operational AUGs are realized more than a decade later
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when Slocum AUG, Seaglider AUG and Spray AUG were successfully designed,
developed, and tested in 2001. The ideal AUG slides the internal movable mass
translational and/or rotational and the ballast is pumped back and forth for con-
trolling its position and attitude.

The maneuverability of AUG in underwater is very much depending on the
underwater environment. Many control techniques are reported being employed to
control the motion of AUG in underwater. The classical control
proportional-integral-derivative (PID) controller have been proposed in [2, 3] is
based on the single-input-single-output system. The optimal control known as linear
quadratic regulator (LQR) was proposed in [4–6]. The LQR offers very simple
design that involves two tuning parameters Q and R to obtain the optimal perfor-
mance in which minimizing the cost function (J) and become the solution for the
Ricatti’s equation. In [4–6], the LQR was designed for the system without per-
turbation. The nonlinear control approach such as model predictive control
(MPC) is proposed in [7, 8] and sliding mode control is proposed in [9]. The MPC
is also known as Receding Horizon Control and Moving Horizon Optimal Control.
In [7] the MPC is designed for controlling the attitude of the Slocum glider where
the control architecture is divided into inner and outer loops. The inner loop is
responsible for internal glider configuration and outer loop to control the attitude of
the glider. Ian Abraham and Jingang Yi in [8] developed the MPC to control the
horizontal plane of the glider. The MPC is integrated with the time suspension
technique to enable online tuning capability. The sliding mode control (SMC) is
employed by Hai Yang and Jie Ma as in [9] to control the pitch angle and the net
buoyancy of the glider. The SMC is formulated for the nonlinear longitudinal plane
of the glider. The intelligent method is proposed in [10, 11]. In [10] the homeostatic
method is formulated to control the motion of the USM hybrid-driven underwater
glider. The algorithm is based on emergent approach which combining the property
of artificial neural network (ANN), artificial endocrine system (AES) and artificial
immune system (AIS). The neural network (NN) is employed in [11] also to control
the motion of the USM hybrid-driven underwater glider. The predictive control is
designed based on neural network multilayer (three layer) perceptron with six input
nodes, six hidden layer nodes and fourteen output nodes.

In this paper the integral super twisting sliding mode control (ISTSMC) is
proposed for the linearized model of the AUG longitudinal plane. The model is
linearized using Taylor’s series expansion method as proposed by J. Graver in 2005
[12]. The proposed controller is considered as a new approach in regards to lin-
earized model of the AUG application and will be the contribution for this paper.
The paper is organized as follows. The glider system is explained in Sect. 2. In
Sect. 3, the controller design procedures are presented. The result and discussion
are explained in Sect. 4 and finally the paper is summarized in Sect. 5.
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2 Glider System

The glider model is discussed in this section. The model is restricted to longitudinal
plane dynamics where the internal only move along the x-axis. The detail derivation
is shown in [13].

The linearized model of a longitudinal plane is computed using Taylor’s series
expansion method. The linearization is performed for the gliding equilibrium as
computed by J. Graver in [12]. Consider the following general nonlinear equations.

x1̇ = f1 x1, . . . , xn, u1, . . . , umð Þ
⋮

xṅ = fn x1, . . . , xn, u1, . . . , umð Þ
ð1Þ

The approximation of nonlinear equations in (1) is performed by computing the
gradient of the nonlinear equations with respect to the state vectors and input
vectors respectively. The general linear system is defined in Eq. (2).

δx ̇=Aδx+Bδu+Bh x, tð Þ ð2Þ

where

δx= x− xd, δu= u− ud and h x, tð Þ is the disturbance. ud is set to zero then Eq. (2)
become

δx ̇=Aδx+Bu+Bh x, tð Þ ð3Þ

The system matrix A and input matrix B are obtained using Eq. (4).

A=
∂f
∂x

����
xe, ue

∈ℜn× n

B=
∂f
∂u

����
xe, ue

∈ℜm× n
ð4Þ

The matrices A and B for AUG longitudinal plane for downward and upward
glides are given in Eq. (5) and (6) respectively.
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Ad =

0 1.0000 0 0 0 0 0

− 7.1379 0.0079 − 6.5792 0 − 174.4810 0 − 0.1708

− 0.1709 − 0.0531 − 0.6366 1.1003 0.8959 0 0.2537

0.0439 0.1638 − 0.3524 − 3.4850 − 0.0335 0 0.3251

0 0 0 0 0 1.0000 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

2
666666666664

3
777777777775

Bd =

0 0

− 0.6782 0

− 0.1249 0

− 0.0002 0

0 0

1.0000 0

0 1.0000

2
666666666664

3
777777777775

ð5Þ

Au =

0 1.0000 0 0 0 0 0

− 9.9372 0.0797 7.1377 0 − 162.7320 0 − 0.0617

0.2732 0.0538 − 0.7413 − 0.4095 0.8761 0 − 0.2556

0.0810 0.1602 0.3386 − 3.3597 0.9299 0 0.3376

0 0 0 0 0 1.0000 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

2
666666666664

3
777777777775

Bu =

0 0

− 0.6548 0

− 0.1311 0

0.0020 0

0 0

1.0000 0

0 1.0000

2
666666666664

3
777777777775

ð6Þ

The AUG has seven states (θ,ω2, v1, v3, rp1, r ̇p1,mb) and two inputs (u1, u2) as
defined in Table 1. The eigenvalues of the open loop system for downward and
upward glides are depicted in Table 2. The controllability and observability are full
rank. The open loop system is stable since all the eigenvalues are laid on left-hand
plane (LHP) except three zero eigenvalues indicate marginally stable.
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3 Controller Design

The controllers are designed for the gliding path from 45° to 30° downward and
upward. A glide path is specified by a desired gliding angle, ςd and desired speed Vd.

ςd = θ− α ð7Þ

where θ = pitching angle, α = angle of attack.

Vd =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 + v23

q
ð8Þ

The conventional SMC is suffered from chattering phenomena due to high fre-
quency oscillations induced by signum function where in practical, actuators unable
to cope with high frequency oscillations. Therefore in this section all the controllers
are designed to reduce the chattering and improve the system performance.

Table 1 Parameter definition

Parameter Definition

θ Pitching angle
ω2 Pitching rate
v1 Surge velocity
v3 Heave velocity
rp1 Internal mass position in x-axis

rṗ1 Internal mass velocity

mb Ballast mass

Table 2 The eigenvalues, controllability and observability of AUG open loop system

Glide Eigenvalue Controllability Observability

Downward −0.0315 + 2.6339i
−0.0315 − 2.6339i
−3.4160
−0.6347
0, 0, 0

7/7 7/7

Upward −0.0324 + 3.0843i
−0.0324 − 3.0843i
−3.3304
−0.6260
0, 0, 0

7/7 7/7
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Consider the linear time invariant in Eq. (9)

δx ̇=Aδx+Bu+Bh x, tð Þ ð9Þ

where x ∈ Rn, and u ∈ Rm, are the state vectors, and input vectors which satisfies
the following assumptions

1. The pair A,Bð Þ is controllable.
2. h x, tð Þ is assumed known and in the range of input distribution B. h x, tð Þ is a

bounded matched perturbation that is a bounded with a known upper bound as
defined in Eq. (10)

h x, tð Þj j≤ d ð10Þ

Section 3.1 explains the controller design for the boundary layer sliding mode
control which is also called quasi sliding mode control (QSMC) control design.
Section 3.2 and Sect. 3.3 explain the design methodology for integral sliding mode
control (ISMC) and super twisting sliding mode control (STSMC) respectively.
Finally the proposed controller, integral super twisting (ISTSMC) is explained in
Sect. 3.4.

The block diagram of the proposed controller is shown in Fig. 1. Two basic
steps are involved in designing SMC based controllers. Firstly, the stable sliding
manifold is designed so that the dynamic of the system is confined to the sliding
manifold in which output responses converged to the desired values. Secondly
control law is designed such that the system trajectory moves towards the sliding
manifold, reach the sliding manifold and remain there.

Fig. 1 The block diagram of the integral super twisting sliding mode control (ISTSMC)
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3.1 Quasi Sliding Mode Control (QSMC)

The quasi sliding mode control (QSMC) is another name for boundary layer
approach. In this method a boundary layer is used to approximate the discontinuous
function, signum. This approach is one of the approaches that can be used to reduce
chattering phenomena induced by the discontinuous function.

The QSMC sliding manifold and control law are defined in Eqs. (11) and (12)
respectively

σQSMC = Sδx tð Þ ð11Þ

uQSMC = ueq + udis ð12Þ

where S ∈ Rmxn, ueq and udis are the sliding gain, equivalent control and discon-
tinuous control respectively. The S is chosen such that SB ∈ Rmxn is non-singular.
From the underwater glider state-space system m = 2 and n = 8, therefore the
sliding gain has 2 × 8 matrix structure.

The Lyapunov function and its derivative are defined in Eqs. (13) and (14).

V σQSMCð Þ= 1
2
σ2QSMC ð13Þ

V ̇ σQSMCð Þ= σQSMCσ ̇QSMC = σQSMCðS Aδ xð Þ+Bu+Bh x, tð Þð Þ ð14Þ

The equivalent control is defined as σ ̇QSMC =0 as written in Eq. (15)

ueq = − ðSBÞ− 1 SAδ xð Þ+ SBh x, tð Þð Þ ð15Þ

The reachability condition is chosen as in Eq. (16)

udis = −M
σ

σj j+ ε
ð16Þ

where M and ε are the design parameter and boundary layer thickness and both are
positive constants.

3.2 Integral Sliding Mode Control (ISMC)

The integral sliding mode control (ISMC) is known as a sliding mode control
without reaching phase. The method was proposed by V. Utkin and J. Shi in 1996
[14]. The sliding and control law of the ISMC are defined in Eqs. (17) and (18).
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σISMC tð Þ= Sδx tð Þ+ z tð Þ ð17Þ

uISMC = u0 + u1 ð18Þ

where u0 is the control law for system without perturbations and u1 is the nonlinear
control law for rejecting the perturbations. S∈Rm× n is the sliding gain and z tð Þ is
the integral term.

u0 is designed using linear feedback control, linear quadratic regulator
(LQR) and is defined as in Eq. (19).

u0 = −Fδx tð Þ ð19Þ

The Lyapunov function and its derivative are defined in Eqs. (20) and (21).

V σISMCð Þ= 1
2
σ2ISMC ð20Þ

V ̇ σISMCð Þ= σISMCσ ̇ISMC = σISMCðS Aδ xð Þ+B u0 + u1ð Þ+Bh x, tð Þð Þ+ ż tð Þ ð21Þ

and ż tð Þ is chosen as in Eq. (22)

z ̇ tð Þ= − S Aδx tð Þ+Bu0ð Þ, z 0ð Þ= − Sδx 0ð Þ ð22Þ

Substitute Eq. (22) into Eq. (21), then u1 which consists of equivalent control
and discontinuous control is defined as in Eq. (23).

u1 = − SBð Þ− 1 SBh x, tð Þð Þ−Msign σISMCð Þ ð23Þ

Finally, the overall control law of ISMC is written in Eq. (24)

uISMC = −Fδx tð Þ− SBð Þ− 1 SBh x, tð Þð Þ−Msign σISMCð Þ ð24Þ

3.3 Super Twisting Sliding Mode Control (STSMC)

The super twisting sliding control (STSMC) was proposed by A. Levant in 1993 [15].
The sliding manifold and control law of STSMC are defined in Eqs. (25) and (26).

σSTW = Sδx tð Þ ð25Þ

uSTW = u1 + u2 ð26Þ
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where S∈Rmxn, u1 and u2 are the sliding gain, continuous control and discontinuous
time derivative control, respectively.

The Lyapunov function is defined in Eqs. (27).

V σSTWð Þ= 1
2
σ2STW ð27Þ

The STSMC control law is written in Eq. (28)

uSTW = − h x, tð Þ− β1 σSTWj j12sign σSTWð Þ+ β2 ∫
t

0
sign σSTWð Þdτ

 !
ð28Þ

3.4 Integral Super Twisting Sliding Mode Control
(ISTSMC)

The integral super twisting sliding mode control (ISTSMC) is an integration of the
integral SMC and super twisting SMC. The sliding manifold and control law are
defined based on ISMC as written in Eqs. (29) and (30)

σISTW tð Þ= Sδx tð Þ+ z tð Þ ð29Þ

uISTW = u0 + u1 ð30Þ

where u0 is the control law for system without perturbations and u1 is the nonlinear
control law for rejecting the perturbations. S∈Rmxn is the sliding gain and z tð Þ is the
integral term.

u0 was designed using linear feedback control, linear quadratic regulator
(LQR) and is defined as in Eq. (31).

u0 = −Fδx tð Þ ð31Þ

The Lyapunov function and its derivative are defined in Eqs. (32) and (33).

V σISTWð Þ= 1
2
σ2ISTW ð32Þ

V ̇ σISTWð Þ= σISTWσ ̇ISTW = σISTWðS Aδ xð Þ+BuISTW +Bh x, tð Þð Þ+ z ̇ tð Þ
= σISTWðS Aδ xð Þ+B u0 + u1ð Þ+Bh x, tð Þð Þ+ ż tð Þ ð33Þ
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and ż tð Þ is chosen as in Eq. (34)

z ̇ tð Þ= − S Aδx tð Þ+Bu0ð Þ, z 0ð Þ= − Sδx 0ð Þ ð34Þ

Substitute Eq. (34) into Eq. (33), then time derivative of sliding manifold is
reduced to Eq. (35)

σ ̇ISTW tð Þ= S Bu1 +Bh x, tð Þð Þ ð35Þ

u1 was defined based on super twisting algorithm is given in Eq. (36)

u1 = − SBð Þ− 1 Bh x, tð Þð Þ+ udis ð36Þ

where

udis = udis1 + udis2 = − β1 σISTWj j12sign σISTWð Þ− β2 ∫
t

0
sign σISTWð Þdτ ð37Þ

and

udis1 =
− β1 σ0j j1 ̸2sign σISTWð Þ σISTW > σ0
− β1 σISTWj j1 ̸2sign σISTWð Þ σISTWj j≤ σ0

�
ð38Þ

uḋis2 =
− udis2 udis2j j>1
− β2sign σISTWð Þ udis2j j≤ 1

�
ð39Þ

Finally the control law for ISTSMC is written in Eq. (40).

uISTW = −Fδx tð Þ− SBð Þ− 1 SBh x, tð Þð Þ− β1 σj j12sign σð Þ+ β2 ∫
t

0
sign σð Þdτ

 !
ð40Þ

The closed loop error dynamic is computed by substituting back Eq. (36) into
Eq. (35) gives the time derivative of Lyapunov function

V ̇ σISTWð Þ= σISTWσ ̇ISTW = σISTWð− β1 σj j12sign σð Þ− β2 ∫
t

0
sign σð ÞdτÞ ð41Þ
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To ensure the sufficient conditions for finite time convergence, the conditions in
Eq. (42a, 42b) must be satisfied [16].

β21 ≥
4C0KM β2 +C0ð Þ
K2
mKm β2 −C0ð Þ ð42aÞ

β2 >
C0

Km
ð42bÞ

4 Result and Discussion

This section presents the simulation results and discussions. The simulation is done
using the parameters adopted from Graver (2005) [12]. The controllers are simu-
lated for the gliding from 45° to 30° downward and upward using MATLAB/
SIMULINK software. The simulations are performed for the nominal system and
also for the system with induced external disturbance. The desired values of the
observed parameters are shown in Table 3.

The sliding gain, S is chosen to be the same for all controllers. The same sliding
gain and linear feedback gain are used for the nominal system and system with
external disturbance. The linear feedback gain, F and sliding gain, S for the
downward and upward glides are written in Eqs. (43–46). No tunings are per-
formed for the sliding gain and feedback gain. The tunings are performed for other
controllers’ parameters only. All the controllers’ parameters for nominal system and
system with external disturbance are depicted in Table 4 and Table 5, respectively.

Sd =
− 197.223 − 107.5742
− 0.6370 0.0269

24.8201 0.5956 647.5100
56.3215 15.0971 33.0080

8.1147 0.7552
7.8103 6.5436

� �
ð43Þ

Su =
− 75.0704 − 73.9775
− 0.3635 − 0.0023

− 18.0774 0.1523 409.6529
− 13.1394 1.9503 7.1941

5.9687 0.2550
− 1.4724 4.2390

� �
ð44Þ

Table 3 Desired parameters’
values

Parameter Desired value
Downward Upward

Glide (ξ) (°) −30 30
θ (°) −23.7 23.7
mb (kg) 1.36 0.64

mem (kg) 0.36 −0.36

Integral Super Twisting Sliding Mode Control … 315



Fd =
− 107.3832 − 74.4613
4.9429 − 1.1047

29.8753 312.7714 827.4601
58.5956 51.8619 122.73000

15.8377 3.5445
10.2141 7.4767

� �
ð45Þ

Fu =
− 44.0298 − 33.8326
4.3815 2.6488

− 25.1949 225.0394 623.4317
− 21.5701 18.9855 48.1683

16.4489 2.3837
1.3245 5.4174

� �
ð46Þ

The simulation results for the nominal system and system with induced external
disturbance are shown in Figs. 2, 3, 4, 5, 6, 7, 8 and 9 and Figs. 10, 11, 12, 13, 14,

Table 4 Controllers’ parameters (without disturbance)

Controller Parameter
Downward Upward

QSMC M1 = 3, M2 = 3, ε1 = 0.5, ε2 = 0.5 M1 = 3, M2 = 3, ε1 = 0.5, ε2 = 0.5
ISMC M1 = 0.5, M2 = 0.3 M1 = 0.3, M2 = 0.1
STSMC β11 = 2.3, β12 = 0.0001

β21 = 0.3, β22 = 0.0001
β11 = 1.8, β12 = 0.0005
β21 = 0.5, β22 = 0.0001

ISTSMC β11 = 0.2, β12 = 0.0001
β21 = 0.5, β22 = 0.0001

β11 = 0.1, β12 = 1, β21 = 0.3, β22 = 1

Table 5 Controllers’ parameters (with disturbance)

Controller Parameter
Downward Upward

QSMC M1 = 5, M2 = 5, ε1 = 0.5, ε2 = 0.5 M1 = 3, M2 = 3, ε1 = 0.05, ε2 = 0.05
ISMC M1 = 1.5, M2 = 1.2 M1 = 1.5, M2 = 1
STSMC β11 = 3, β12 = 0.0001

β21 = 3, β22 = 0.0001
β11 = 3, β12 = 0.3
β21 = 3, β22 = 0.3

ISTSMC β11 = 0.2, β12 = 0.0001
β21 = 0.5, β22 = 0.0001

β11 = 0.3, β12 = 1, β21 = 0.5, β22 = 1

Fig. 2 DOWNWARD—Glide angle (ξ) and pitch angle (θ)—Without disturbance
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15, 16 and 17 respectively. Figures 2, 3, 4 and 5 show that all the designed
controllers are able to converge to the vicinity of the desired values with proposed
controller shows the smallest steady-state error for all the observed outputs.
The STSMC provides the highest steady error for the glide and pitch angles,
however smaller errors show in ballast mass and net buoyancy. The ISMC provides

Fig. 3 UPWARD—Glide angle (ξ) and pitch angle (θ)—Without disturbance

Fig. 4 DOWNWARD—Ballast mass, mb and net buoyancy, mem—Without disturbance

Integral Super Twisting Sliding Mode Control … 317



second highest accuracy in glide and pitching angles, however the worst perfor-
mance is shown in ballast mass and net buoyancy for the upward glide. The QSMC
produce slightly better performance than the STSMC in glide and pitch angles and
the worst performance shown in ballast mass and net buoyance for the downward
glide. However, the proposed controller provides slower response (i.e. higher
convergence time), in some cases.

Fig. 5 UPWARD—Ballast mass, mb and net buoyancy, mem—Without disturbance

Fig. 6 DOWNWARD—Control inputs u1 and u2—Without disturbance
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Fig. 7 UPWARD—Control inputs u1 and u2—Without disturbance

Fig. 8 DOWNWARD—Sliding surfaces s1 and s2—Without disturbance

Fig. 9 UPWARD—Sliding surfaces s1 and s2—Without disturbance
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Fig. 10 DOWNWARD—Glide angle (ξ) and pitch angle (θ)—With disturbance

Fig. 11 UPWARD—Glide angle (ξ) and pitch angle (θ)—With disturbance

Fig. 12 DOWNWARD—Ballast mass, mb and net buoyancy, mem—With disturbance
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Fig. 13 UPWARD—Ballast mass, mb and net buoyancy, mem—With disturbance

Fig. 14 DOWNWARD—Control inputs u1 and u2—With disturbance

Fig. 15 UPWARD—Control inputs u1 and u2—With disturbance
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From Figs. 6 and 7, all the controllers are able to stabilize in the vicinity of
origin. The highest control effort in u2 for both glides is seen in ISMC, the STSMC
shows the highest control effort in u1 for downward glide and the QSMC provides
the highest control effort in u1 for upward glide, whereas the proposed controller
demonstrates the lowest control effort in both input channels for both downward
and upward glides with no undesired chattering. The sliding surface responses of all

Fig. 16 DOWNWARD—Sliding surfaces s1 and s2—With disturbance

Fig. 17 UPWARD—Sliding surfaces s1 and s2—With disturbance
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controllers in Figs. 8 and 9 are also stabilized in the vicinity of origin with the
proposed controller provides no undesired chattering in its sliding surface
responses.

The step input disturbance with magnitude of 1 is induced to both control input
channels begins from t = 25 s. From Figs. 10, 11, 12 and 13, all the controllers are
able to reject the induced disturbance with errors. The QSMC and STSMC show all
the observed outputs are deviated from the desired values whereas the ISMC and
the proposed controller are able to stabilize within the desired values with proposed
controller gives the smallest steady-state error. The control effort of both channels
for QSMC, ISMC and STSMC are not stabilized in the vicinity of origin as shown
in Figs. 14 and 15 and the undesired chattering is also clearly can be observed. The
proposed controller is able to stabilize to origin with no undesired chattering. The
sliding surface responses in Figs. 16 and 17 have shown that the QSMC, ISMC and
STSMC unable to stabilize within the origin with QSMC shows the highest
deviation from origin for s1 and ISMC for s2. Therefore, it can be concluded that the
QSMC, ISMC and STSMC have lost their sliding mode. The sliding surfaces of the
proposed controller are able to converge to zero and remain there and no undesired
chattering is observed. The comparative analysis of all controllers is summarized
Table 6.

Table 6 Comparative analysis of the controller

Controller QSMC ISMC STSMC ISTSMC

Robustness Reject disturbance
with highest error

Reject
disturbance with
small error

Reject
disturbance with
large error

Reject disturbance
with the smallest
error

Chattering High chattering Small chattering
and high in
certain case

High chattering No chattering

Oscillation Highest frequency
oscillation

Smaller
frequency
oscillation

High frequency
oscillation

Very small
frequency
oscillation

Tracking
control

Converged to the
desired value with
very large error

Converged to the
desired value
with small error

Converged to
the desired value
with large error

Converged to the
desired value with
very small error

Control
effort

Very large control
efforts

Small control
efforts

Large control
efforts

Very small control
effort

Sliding
surface
convergence

Did not converge
to origin for
disturbance case

Did not
converge to
origin for
disturbance case

Converged to
origin with
chattering

Converged to
origin with no
chattering

Integral Super Twisting Sliding Mode Control … 323



5 Conclusion

In this paper the integral super twisting (ISTSMC) is proposed for robust tracking
for a linearized model of longitudinal plane of AUG. The performance of the
proposed controller is compared with three other SMC controllers. Since the per-
formance of the proposed controller is evaluated in terms of chattering reduction,
therefore only controllers in SMC family are chosen for this work. The simulation
results have shown that the proposed controller demonstrates the smallest
steady-error and lowest control effort. The undesired chattering is also eliminated.
The inconsistency performance is shown in QSMC, ISMC and STSMC may due to
manual tuning and also the performance of the controllers only depend on the
controllers’ gains. Therefore, in the future, the optimization method can be used to
optimize the controllers’ gains, linear feedback gain and sliding gain and thus
improve the performance of the controllers.
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