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1 Introduction

Thermal heat from enhanced geothermal systems (EGS) has the ability to generate
and dispatch baseload electricity without storage and with low carbon emissions.
EGS reservoirs in hot dry rocks (HDR) are, in general, located at significant depths,
commonly more than 3 km below the surface, and close to radiogenic heat sources
(Mohais et al. 2011a). In their natural state, these rocks typically have temperatures
at around 300 °C and usually have very low permeability. Extracting heat from an
EGS requires a connected network of fractures in the rock mass through which fluid
can be circulated and brought to the surface as very hot water. The fracture network
is usually created by hydraulic fracturing, which creates new fractures and causes
existing fractures to propagate (Mohais et al. 2011a, b). Cold working fluid, usually
water, is injected into the fracture network through an injection well, flows through
the fracture network, where it is heated by the surrounding rock and is then
extracted through a production well. The heat in the extracted water can be used to
generate electricity or can be used as a heat source for other applications.

As a result of the hydro-fracturing process and the granular composition of the
rocks, the walls of the fracture channels have permeable properties due to cracks
and fissures of varying sizes in the channel wall (Christopher and Armstead 1978;
Mohais et al. 2011b; Phillips 1991). The efficiency of the geothermal reservoir is
highly dependent on the permeability of the rock fractures within the reservoir
(Natarajan and Kumar 2012) and on the flows within the fracture channels, as
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demonstrated in Xu et al. (2015). Figure 1 shows idealised three-dimensional (3D)
and two-dimensional (2D) schematic views of a flow channel with porous upper
and lower walls. The walls are porous due to the cracks and fissures generated by
the fracturing process. As the span-wise dimension of the fracture channels
(z-direction in Fig. 1a) is always much larger than the height of the channel
(y-direction in Fig. 1a, b) and variation of flow field in z-direction is assumed to be
negligible, the channel flow is generally considered as a 2D flow as shown in
Fig. 1b.

Several studies of fluid flows in channels with porous walls have been reported
in the literature. In early studies of the flow at the interface between the channel and
the porous medium, the velocity u in the x-direction in Fig. 1b, at the
channel-porous medium interface was usually assumed to be zero (Mikelic and
Jäger 2000). In fluid dynamics, this is known as the no-slip boundary condition.

Beavers and Joseph (1967) pioneered the investigation of the slip velocity at
channel-porous medium interfaces. In an experiment, they compared fluid flow
through a porous block with flow through a channel formed by an upper wall
without flow through the wall and a lower permeable wall formed by the upper
surface of the porous block. Flows were compared for various samples of two types
of permeable material. This type of channel differs slightly from those in EGS
in which the upper and lower walls channels (fractures) are porous (Fig. 1).
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Fig. 1 a 3D and b 2D schematic view of channel flow with two porous medium walls

120 Z. F. Tian et al.



Beavers and Joseph (1967) derived the boundary condition of the interface wall
between the channel and the porous medium as

du
dx

����
yþ¼0

¼ affiffiffi
k

p uinterface � umð Þ; ð1Þ

where a is a dimensionless coefficient termed the slip coefficient or Beavers–Joseph
coefficient. In Eq. (1), 0+ is a boundary limit point and y = 0+ means that
du/dy values are calculated using the velocity u (velocity in x-direction) on the
channel side but not the porous medium side. In Eq. (1), k is the absolute perme-
ability of the porous medium (m2); uinterface is the fluid velocity u at the interface
between the channel and the porous medium (m s−1); um is the fluid velocity in the
x-direction in the porous medium (m s−1), given by Darcy’s law as below

� dpm
dx

¼ l
k
um; ð2Þ

where l is the dynamic viscosity of the fluid (Pa s) and pm is the pressure of the
fluid in the porous medium (Pa).

Saffman (1971) further developed the generic velocity boundary condition for
the fluid-porous medium interface based on the Beavers–Joseph boundary condition
(Eq. 1). Saffman’s boundary condition (Nield 2009; Saffman 1971) is

uinterface ¼
ffiffiffi
k

p

a
@uinterface

@n
þOðkÞ; ð3Þ

where O(k) is the average velocity in the porous medium (m s−1), which can be
neglected (Nield 2009). In Eq. (3), n denotes the direction normal to the
fluid-porous medium interface. Again ∂uinterface/∂n is calculated on the channel side
but not the porous medium side. The Beavers–Joseph boundary condition is a
special case of Saffman’s boundary condition (Nield 2009; Saffman 1971) for
channel flows. Saffman’s modification of the Beavers–Joseph condition has been
further confirmed by theoretical studies such as Mikelic and Jäger (2000).

In a later study, Jones (1973) pointed out that the Beavers–Joseph boundary
condition for generic cases should be

@u
@y

þ @v
@x

� �����
yþ¼0

¼ affiffiffi
k

p uinterface � umð Þ ð4Þ

meaning that the left-hand side of the equation should be the shear strain rate for
generic cases. In Eq. (4), v is the velocity component in y-direction. It can be seen
that the Beavers–Joseph condition is a special case of Jones’ condition, for a
one-dimensional flow, ∂v/∂x = 0.

For the non-dimensional slip coefficient a in Eqs. (1), (3) and (4), Beavers and
Joseph (1967) found that values of a depend on the structure of the porous material at
the fluid-porous medium interface and materials with similar permeability may have,
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significantly, different slip coefficients but are independent of the fluid viscosity
(Nield 2009). In the Beavers and Joseph (1967) study, for foametal with average pore
sizes of 0.00406 m (0.016 in.), 0.00864 m (0.034 in.) and 0.0114 m (0.045 in.), the
values of a are 0.78, 1.45 and 4.0, respectively; while, for aloxide with average pore
sizes of 0.0033 m (0.013 in.) and 0.00686 m (0.027 in.), the value of a is 0.1, for
both pore sizes. The influence of the fluid (water, oil and gas) on the value of a was
found to be insignificant, whereas a is very sensitive to the nature of the porous
interface (Beavers et al. 1974). A later numerical study by Larson and Higdon (1986)
concluded that the value of a is sensitive to microscopic changes in the definition of
the interface implying that it is not possible to define a consistent value of a for any
media. The numerical studies of Sahraoui and Kaviany (1992) shows that a depends
on porosity, Reynolds number (Re), channel height, choice of interface, bulk flow
direction and interface structure. Another numerical study (Liu and Prosperetti 2011)
shows that a values for pressure-driven and shear-driven flows are somewhat dif-
ferent and a values depend on the Reynolds number.

Several numerical studies of channel flows with porous media boundary con-
ditions have been reported in the literature. One of the earliest, Berman (1953), used
the perturbation method to solve the Navier–Stokes equations to describe the flow
in a channel with a rectangular cross section and two equally porous walls. The
velocity u at the channel-porous medium interface is taken as zero (no-slip con-
dition) and the vertical velocity at the interface is assumed to be constant. Terrill
and Shrestha (1965) used the perturbation method to solve the Navier–Stokes
equations for laminar flows through parallel and uniformly porous walls. The
boundary conditions in their study are similar to those in Berman (1953); the
u velocities at the channel-porous medium interface are zero and the vertical
velocities are constant but different for the two porous walls. Granger et al. (1989)
obtained the analytical solutions of the Navier–Stokes equations for both a rect-
angular channel with one porous wall and a porous tubular channel. They found
that the velocity u profile of the flow in porous channels may be considered
parabolic and there is no pressure profile across the width of the channel. Recently,
Herschlag et al. (2015) obtained the analytical solution for the flow in a channel
with high wall permeability. The boundary conditions at the channel walls are
no-slip for axial velocity and Darcy’s law for the vertical velocity.

The analytical studies reviewed above are for cases in which there are vertical
flows at the channel-porous medium interfaces and the axial velocities at the
channel-porous medium interface are assumed to be zero. This no-slip velocity
condition is not realistic for fracture channels in EGS or similar systems. Mohais
et al. (2011a, b) used the perturbation method to solve the Navier–Stokes equations
to provide an analytical solution for laminar flow in a channel with porous walls
and non-zero axial velocity at the fluid-porous media interface. For a channel with
walls that contain small fissures, cracks and granular material, the axial velocity
profile in the channel can be affected by factors such as the slip boundary coeffi-
cient, permeability and the channel width (Mohais et al. 2011a, b; Tian et al. 2012).

This chapter reports computational fluid dynamics (CFD) simulations of fluid
flows in a single horizontal fracture sandwiched between two equally porous media,
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in the context of an EGS. Little research has been reported in modelling this
problem using the finite volume approach.

The first objective is to compare the velocity profiles predicted by CFD with
analytical solutions (Mohais et al. 2011a, b). To the authors’ knowledge, validations
of these analytical solutions of flow velocity profiles in a channel (Mohais et al.
2011a, b) have not been investigated using numerical models. These validations will
assist the development of other complex models of channel flows in future research.

The second objective is to investigate the influence of parameters such as slip
coefficient a, Reynolds number, permeability and channel height on the velocity
profiles and pressure drops in the channel flows. Of particular interest are the
pressure drops in the channel flows under different conditions as they are not
available in the analytical solutions reported in Mohais et al. (2011a, b).

2 Numerical Methods

2.1 CFD Domain and Boundary Conditions

In this study, laminar water flow is simulated in a 2D channel with a height of
2h. The channel is contained between two equally porous media, as illustrated in
Fig. 1b. ANSYS/Designmodeler 17.2 was used to generate the CFD domain.
Figure 2 is a schematic diagram of the domain and boundary conditions of the
single fracture channel model. To reduce the computational time for the simula-
tions, the CFD domain is half of a single channel with a symmetric boundary at the
bottom, as shown in Fig. 2, and thus the height of the half-channel modelled is
h. Following the work of Mohais et al. (2011b), two values of h(0.001 m and
0.0001 m) were tested in the study; these values are commonly used in modelling
channel flows in EGS reservoirs. The Reynolds numbers for the flows vary from
0.5 to 7.0 as the analytical solutions of Mohais et al. (2011a, b) hold for Re < 7.
The Reynolds number of the flow, Re, is defined in this case as

Rew ¼ 2hquave
l

; ð5Þ

Length 

h

Channel-porous medium interface

Symmetric  boundary Periodic boundary 1
Periodic 
boundary 2

y 

x 

Fig. 2 The boundary conditions of the CFD model of a single fracture (not to scale)
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where uave is the average velocity u of the flow in the channel (m s−1), 2h is the full
height of the channel (m) and q is the density of fluid (kg m−3) (water in this study).

In the x-direction, the periodic boundary condition is imposed with a mass flow
rate of uave. The values of uave are calculated using Eq. (5) with corresponding
Reynolds number Re and channel height 2h, for each case. The length of the
channel L is 0.08 m for h = 0.001 m and 0.01 m for h = 0.0001 m. The fluid in the
channel is water at 25 °C. The dynamic viscosity of water is 0.0008899 Pa s and
the density of water is 997 kg m−3.

At the channel-porous medium interface, the velocity u of the fluid is imposed
using the analytical equation developed by Mohais et al. (2011b). The porous walls
are assumed to be saturated, i.e. there is no fluid flow across the interface boundary.
The boundary conditions at the channel-porous medium interface used in the study
are

vinterface ¼ 0 ð6Þ

uinterface ¼ uave f
0 y�ð Þjyþ¼1¼ uave f 00 y�ð ÞþRew f 001 y�ð Þ� ���

yþ¼1; ð7Þ

where vinterface is the fluid velocity in the y-direction at the channel-porous medium
interface and uinterface is the fluid velocity in the x-direction at the channel-porous
medium interface. In Eq. (7), y* is the normalised distance in y-direction defined as
y* = y/h. Rew in Eq. (7) is the Reynolds number of fluid at the channel-porous
medium interface and is calculated as in Mohais et al. (2011b)

Rew ¼ 2hquinterface
l

: ð8Þ

In Eq. (7), f0(y
*) and f1(y

*) are determined as in Mohais et al. (2011b)

f0 y�ð Þ ¼ y�3
�1

2 1þ 3;ð Þ þ y�
3þ 6;
2þ 6;

� �
ð9Þ

f1 y�ð Þ ¼ � y�7

2520
9

1þ 3/ð Þ2
 !

þ y�3

6
9 7/þ 1ð Þ

140 1þ 3/ð Þ3
 !

þ y�
1

280 1þ 3/ð Þ2 �
3 7/þ 1ð Þ

280 1þ 3/ð Þ3
 !

;

ð10Þ

where / ¼ ffiffiffi
k

p
= ahð Þ.

The CFD package, ANSYS/CFX 17.2, was used for all steady-state simulations
based on the Navier–Stokes equations. The steady state Navier–Stokes equations
for incompressible flows are
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$ � U ¼ 0 ð11Þ

$ � UUð Þ ¼ �$p
q

þ$ � l
q

$Uþ $Uð ÞT� 2
3
$ � IU

� 	
 �
þG; ð12Þ

where G is the source term due to gravity and I is the identity matrix. U in Eqs. (11)
and (12) is velocity vector. Following the work of Mohais et al. (2011b), gravity
has negligible effects on the flows and therefore is neglected in this chapter.
ANSYS/CFX is a finite volume solver. The fourth-order Rhie–Chow option was
used for the velocity pressure coupling. The high-resolution scheme was used for
advection terms. A double precision version of the solver was employed to ensure
the accuracy of the CFD results. The maximum residual target was set at
1.5 � 10−6 for all simulations.

2.2 CFD Mesh and Mesh-Independent Test

ANSYS/meshing was used to generate the CFD mesh. A grid independence test
was conducted for the case for h = 0.001 m, Re = 0.5 and a = 1. An initial
structured mesh of 700 (in the streamwise direction, x) � 50 (height, y) was gen-
erated and then refined to a mesh of 1000 � 80, and further refined to a mesh of
1500 � 120. Mesh independence was checked by comparing the fluid velocity
profile along periodic boundary 1 (indicated as the red line in Fig. 3).

Figure 4 shows the comparison of normalised velocity u profiles for h = 0.001 m,
a = 1, Re = 0.5 and k = 10−8 m2, for three mesh systems. The velocity u is
normalised by the average velocity uave.

Channel- porous medium interface 

Symmetric boundary
 

Periodic 
boundary 1 

y 

x 

(0,0) 

Fig. 3 Mesh at periodic boundary 1 for h = 0.001 m
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All three meshes give almost identical results. The maximum difference in the
results obtained from the 1000 � 80 mesh and the 1500 � 120 mesh is less than
1%. For h = 0.001 m, the 1000 � 80 structured mesh was used for all other
simulations. Figure 3 shows the mesh nodes at periodic boundary condition 1 for
this case. For h = 0.0001 m, a similar mesh independence test was conducted and
the 1200 � 80 structured mesh was used for the simulations.

3 Results and Discussion

The CFD flow profiles for the channel with impermeable walls are reported in
Sect. 3.1. The no-slip boundary (uinterface = 0) condition was imposed on the
channel-porous medium interface. The purpose of reporting results for this
boundary condition is twofold. The first is to verify the CFD results by comparing
the predicted velocity profiles with the analytical solutions of Potter et al. (2016),
and the second is to examine the differences between the pressure drop values of the
slip boundary cases with those of the no-slip boundary conditions.

In Sects. 3.2–3.6, a series of parametric studies are reported for the flows in the
channels with permeable walls. The slip boundary conditions calculated using
Eq. (7) in Mohais et al. (2011b) were used to calculate the slip velocity (uinterface) at
the channel-porous medium interface. The key parameters influencing the velocity
profiles and pressure drop in the channel, including Re number, slip coefficient a,
permeability k and channel height h are investigated using the CFD model.

In Sect. 3.7, we compare the slip velocities predicted by Eq. (7) and by
Saffman’s boundary condition (Eq. 3) using the ∂u/∂n values predicted by CFD.

0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00 1.25 1.50

y*

Normalised velocity u

α=1, h=0.001m, k=10E-8 
Re=0.5

Mesh 700 x 50

Mesh 1000 x 80

Mesh 1500 x 120

Fig. 4 Mesh independence test based on h = 0.001 m, a = 1, Re = 0.5 and k = 10−8 m2
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3.1 Flow and Pressure Drop in Channels
with No-Slip Walls

Flows in channels with impermeable walls are simulated by imposing the no-slip
boundary condition at the channel-porous medium interface. Table 1 lists the
pressure drop per unit length, −Δp/L (Pa m−1), predicted by CFD for the no-slip
boundary condition, which is defined as

�Dp
L

¼ � p2 � p1ð Þ
L

; ð13Þ

where p2 and p1 are the area-averaged static pressures at periodic boundary 2 and 1
(Fig. 2), respectively. In Eq. (13), L denotes the length of the channel (m). Note, in
our model, p1 is always higher than p2 in this pressure-driven flow.

The velocity profiles predicted by CFD in the channel with the no-slip boundary
condition are verified by comparing them with the analytical solutions for laminar
channel flows (Potter et al. 2016)

uðyÞ ¼ 1
2l

dy
dx

y2 � 2hy
� �

: ð14Þ

Figure 5 shows a comparison of the CFD-predicted velocity profile with the
analytical solution of Eq. (14) for the case Re = 0.5 and h = 0.0001 m. The CFD
model performs very well; the velocity profiles obtained from the two methods are
almost identical with the maximum difference between them of about 0.7%. The
same conclusion can be drawn for the other three cases: Re = 5 and h = 0.0001 m,
Re = 0.5 and h = 0.001 m and Re = 5 and h = 0.001 m.

3.2 Effect of Slip Coefficient on the Velocity Profiles

Figure 6 shows the CFD-predicted velocity u profiles normalised by the average
velocity uave with varying values of a and Re = 0.5, h = 0.001 m and k = 10−8 m2.
In this case, the CFD results are compared with the solution of the analytical model
given in Mohais et al. (2011b). The analytical model of Mohais et al. (2011b) is

Table 1 CFD predicted −Δp/L values for different cases

Case h = 0.0001 m,
Re = 5

h = 0.0001 m,
Re = 0.5

h = 0.001 m,
Re = 5

h = 0.001 m,
Re = 0.5

CFD predicted
−Δp/L (Pa m−1)

5940 594 5.94 0.594
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f y�ð Þ ¼ f0 y�ð ÞþRew f1 y�ð Þ; ð15Þ

where f0(y
*) and f1(y

*) are given in Eqs. (9) and (10), respectively.
The CFD predictions and the analytical solutions are almost identical for all

cases shown in Fig. 6. The maximum difference between the CFD results and the

0.0
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Normalised velocity u 

Re=0.5, h=0.0001m, 
no-slip boundary

CFD results

Analy cal results

Fig. 5 Verification of CFD-predicted velocity profile against the analytical solution of Eq. (14)
(Potter et al. 2016), no-slip boundary, h = 0.0001 m and Re = 0.5
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Fig. 6 Comparison of CFD and analytical results (Eq. 3) for flows with walls with varying a
values and Re = 0.5, h = 0.001 m, k = 10−8 m2
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analytical solutions for the cases shown in Fig. 6 is less than 1%. This very good
agreement confirms the analytical solutions of velocity profiles in the channel
derived by Mohais et al. (2011b).

As shown in Fig. 6, all the velocity curves are parabolic as expected for the
channel flow (Mohais et al. 2011b). As the values of a increases from 0.1 to 4, the
normalised velocity u at the channel-porous medium interface decreases from 0.75
(a = 0.1) to 0.0706 (a = 4). The normalised velocity at the channel centre line
decreases as the value of a increases.

Figure 7 compares the CFD prediction with the analytical solutions of the
profiles of normalised fluid velocity u with varying values of a and Re = 5,
h = 0.001 m and k = 10−8 m−2. The variations in uinterface for different a values and
Re = 5 are very similar to those for Re = 0.5, with the normalised velocity u at the
wall decreasing from 0.756 when a = 0.1 to 0.0786 when a = 4. The velocity at the
channel-porous medium interface for a = 0.1 and Re = 5 in Fig. 7 is 0.757, com-
pared with 0.751 for the Re = 0.5. The slightly higher interface velocity for Re = 5
is due to its higher corresponding Rew (Eq. 15), which is 3.78 compared with 0.375
for Re = 0.5 (shown in Fig. 6). The normalised velocity u at the channel centre line
decreases as the value of a increases. This is not surprising as the mass flow rates of
all the cases in Fig. 6 are the same. For these incompressible flows, the increase in
velocity u at the region near the channel-porous medium interface needs to be
balanced by the decrease of velocity u at the centre.

Figure 8 compares the CFD and analytical results for flows in a narrower
channel with h = 0.0001 m at Re = 0.5 and varying a values. When a = 0.1, the
velocity profile is close to a vertical line, i.e. the fluid velocity at the channel-porous
medium interface is close to the flow velocity at the channel centre line, similar to
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Fig. 7 Comparison of CFD and analytical results for flows with walls of varying a values and
Re = 5, h = 0.001 m, k = 10−8 m2

Numerical Simulation of Flows in a Channel with Impermeable … 129



the profile of a plug flow. When a increases to 1 and then to 4, the fluid velocity at
the interface decreases and the flow at the channel centre line increases. Compared
with the results shown in Fig. 6, for h = 0.001 m and the same Re number, k value
and a value, the fluid velocities at the channel-porous medium interface for
h = 0.0001 m are higher. Again, this is caused by the higher Rew values for the
cases shown in Fig. 8 than those shown in Fig. 6. The profiles of normalised
velocity for h = 0.0001 m at Re = 5 with varying a values are given in Fig. 9.
These profiles are very similar to those of the Re = 0.5 cases shown in Fig. 8,
suggesting that the velocity profiles become insensitive to the Reynolds number.

3.3 Effect of a Values on the Pressure Drops

The effect of the slip coefficient, a, on the pressure drop per unit length, −Δp/L, in
the channel is investigated for channel heights of h = 0.001 m and h = 0.0001 m.
As shown in Fig. 10, for both Re = 5 and Re = 0.5 with h = 0.001 m, the
−Δp/L value is higher for a higher value of a. In other words, the higher the a value,
the higher is the head loss in the channel flow. Please note that the pressure drops in
the porous walls are not calculated in the current chapter. To calculate the total
energy required to push the water through the channel, the porous walls should be
included in the CFD domain.

For Re = 0.5 and h = 0.001 m, the −Δp/L value predicted by CFD for the
no-slip boundary case is 0.594 Pa m−1 (in Table 1). As shown in Fig. 10, the
−Δp/L value of 0.15 Pa m−1 for a = 0.1 is 25% of that for the corresponding
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Fig. 8 Comparison of CFD and analytical results for flows with walls of varying a values and
Re = 0.5, h = 0.0001 m, k = 10−8 m2
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no-slip boundary case. The −Δp/L value of 0.46 Pa m−1 for a = 1 is 77.4% of that
for the no-slip boundary case. The −Δp/L value of 0.55 for a = 4 is about 93% of
that for the no-slip boundary case.

For the Re = 5 cases in Fig. 10, the −Δp/L value predicted by CFD for the
no-slip boundary, when h = 0.001 m, is 5.94 Pa m−1. With the slip boundary
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Fig. 9 Comparison of CFD and analytical results for flows with walls of varying a and Re = 5,
h = 0.0001 m, k = 10−8 m2
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condition, the −Δp/L value is 1.45 Pa m−1 for a = 0.1, which is 24.4% of that of
the no-slip boundary case. The −Δp/L value approaches 5.94 Pa m−1 as a increases
and when a = 4, the value is 5.47 Pa m−1, which is 92% of that of the no-slip
boundary case.

The effect of a values on the pressure drop per unit length in the channel is much
more pronounced when h = 0.0001 m (Fig. 11). For Re = 5 and h = 0.0001 m, the
−Δp/L value of the no-slip boundary is 5940 Pa m−1 (Table 1). With the slip
boundary condition, for a = 0.1, the value is 191 Pa m−1, which is 3.2% of that of
no-slip boundary case, and for a = 4, the −Δp/L value is 3277 Pa m−1, about 55%
of that of no-slip boundary case. Similar trends can be observed for Re = 0.5 and
h = 0.0001 m. The −Δp/L value of the no-slip boundary is 594 Pa m−1, while the
value of −Δp/L for a = 0.1 is 19 Pa m−1 and for a = 4 is 338 Pa m−1, which are
3.2 and 57%, respectively, of the no-slip boundary case.

For both Re = 5 and Re = 0.5 cases, when h = 0.001 m (Fig. 10), the pressure
drop per unit length under the slip boundary condition can result in up to a 75.6%
(a = 0.1) reduction compared with the pressure drop per unit length for the non-slip
boundary cases. When h = 0.0001 m, however, the slip boundary condition can
result in up to a 96.8% (a = 0.1) reduction in pressure drop per unit length com-
pared with the non-slip boundary condition results. The reduction in pressure drop
per unit length for the slip boundary condition can be attributed to the reduction in
shear stress at the channel-porous medium interface. For this channel flow, the
shear stress at the channel-porous medium interface can be calculated as

sinterface ¼ l
@y
@x

����
interface

: ð16Þ
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It is obvious from Figs. 6, 7, 8 and 9 that lower values of a lead to higher slip
velocities at the channel-porous medium interface and lower velocity at the centre.
This leads to ‘flatter’ velocity profiles and lower velocity gradients ∂u/∂y at the
channel-porous medium interface and hence, based on Eq. (16), lower shear stress
at the interface. This reduction in shear stress contributes to the reduction of skin
friction and, in turn, reduction in the pressure drop per unit length along the
channel.

3.4 Effect of Permeability k on the Velocity Profiles

Figure 12 shows the velocity profiles of flows in the channel for different perme-
ability k values of the porous medium and for Re = 0.5, h = 0.001 m and a = 1.
For lower permeability values (k = 10−10 m2 and k = 10−12 m2), the normalised
u velocities at the channel-porous medium interface are as small as 0.033 and 0.003,
respectively, leading to very small Rew values of 0.0149 and 0.00163, respectively.
As the permeability k increases from k = 10−8 m2 to k = 10−6 m2, the normalised
velocity u at the channel-porous medium interface increases from 0.2327 to 0.7506,
while the normalised velocity u at the channel centre line decreases from 1.38 to
1.12 due to the conservation of mass flow rate.

When the Re number increases from 0.5 to 5, the effect of permeability values on
the velocity profiles is similar to the Re = 0.5 cases, i.e. higher permeability causes
higher slip velocity at the channel-porous medium interface (Fig. 13). It is
noticeable that for cases with the same permeability, the normalised slip velocity for
Re = 5 (Fig. 13) is higher than that for Re = 0.5 (Fig. 12).
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Fig. 12 Effect of permeability on the velocity profiles for Re = 0.5, h = 0.001 m, a = 1
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The effects of permeability k on the velocity profiles were also investigated for
cases when h = 0.0001 m. Figure 14 shows the velocity profiles of low Re (i.e.
Re = 0.5) and different permeability values. The profiles in Fig. 14 are comparable
with those in Fig. 13 even though the latter are for a high Reynolds number of
Re = 5 in a wider channel with h = 0.001 m. The reason for these similar profiles is
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that the same / value / ¼ ffiffiffi
k

p
=ðahÞ� �

is obtained for all cases shown in these two
figures even they have different Re and h values, which theoretically would lead to
the same profile (see Eq. 7). On the other hand, the effect on the velocity profiles of
Re ranging from 0.5 to 5 is not significant. This can be confirmed by comparing the
velocity profiles for a higher Re(Re = 5), shown in Fig. 15, to those of a lower
Re(Re = 0.5), shown in Fig. 14, with all other parameters unchanged. Nevertheless,
more discussion about the effect of Re on the velocity profiles can be found in
Sect. 3.6.

3.5 Effect of Permeability k on the Pressure Drop
Per Unit Length

Figures 16 and 17 show the variation of pressure drop per unit length −Δp/L for the
channel with permeable walls and varying permeability, k. As the permeability
k decreases, there is an increase in pressure drop per unit length, −Δp/L, for all the
cases shown. This again can be explained by the fact that lower permeability results
in lower slip velocity at the interface and hence a higher wall shear stress and skin
friction, and the increase in skin friction consequently leads to an increase in the
pressure drop, as discussed above.

It is also noticeable in Figs. 16 and 17 that, when the permeability is less than a
certain threshold (and any further decrease in k will not significantly increase the
pressure drop per unit length along the channel), the pressure drop per unit length,
−Δp/L, tends to approach that of the corresponding no-slip boundary case shown in
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Fig. 15 Effects of permeability k on the velocity profiles for cases of Re = 5, h = 0.0001 m,
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Table 1. For example, in Fig. 16, −Δp/L reaches 0.59 Pa m−1 when k is 10−12 m2

(Re = 0.5 and h = 0.001 m), which is approximately the same as the value of
−Δp/L for k = 10−14 m2 for the corresponding no-slip boundary case in Table 1.
This observation is consistent with the predicted velocity profiles shown in Fig. 12,
where the slip velocity is very small when k = 10−12 m2 and the shear stress at the
interface is very close to that of the no-slip boundary case.
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Figures 16 and 17 show the variation of pressure drop per unit length −Δp/L for
the channel with permeable walls and varying permeability k. As the permeability
k decreases, there is an increase in pressure drop per unit length −Δp/L, for all the
cases shown. This again can be explained by the fact that lower permeability results
in lower slip velocity at the interface and hence, a higher wall shear stress and skin
friction, and the increase in skin friction consequently leads to an increase in the
pressure drop, as discussed above.

It is also noticeable in Figs. 16 and 17 that, when the permeability is less than a
certain threshold (and any further decrease in k will not significantly increase the
pressure drop per unit length along the channel), the pressure drop per unit length
−Δp/L tends to approach that of the corresponding no-slip boundary case shown in
Table 1. For example, in Fig. 16, −Δp/L reaches 0.59 Pa m−1 when k is 10−12 m2

(Re = 0.5 and h = 0.001 m), which is approximately the same as the value of
−Δp/L for k = 10−14 m2 for the corresponding no-slip boundary case in Table 1.
This observation is consistent with the predicted velocity profiles shown in Fig. 12,
where the slip velocity is very small when k = 10−12 m2 and the shear stress at the
interface is very close to that of the no-slip boundary case.

3.6 Effect of Re Number on the Velocity Profiles
and Pressure Drop Per Unit Length

As discussed in Sect. 3.4, the effect of Re on the velocity profiles is insignificant.
This is confirmed by a further parametric study shown in Fig. 18, which shows the
normalised velocity profiles of the flows with different Re ranging from 0.5 to 7,
with other parameters constant at a = 1, h = 0.001 and k = 10−8 m2 as shown in
Fig. 12. It can be seen that the velocity profiles of flows with different Re are very
similar, although there are small differences at the interface surface and in the centre
line zone. As shown in the figure, the Rew numbers are different in these cases; for
example, the Rew number for the Re = 0.5 case is 0.116, whereas for the Re = 5
case it is 1.25. The difference in the Rew values can be attributed to the different
uinterface values as calculated by Eq. (7). Nevertheless, these differences in the
normalised uinterface values are very small for the Re range studied. The same
conclusion can be drawn for the other cases, suggesting that the effect of Re on the
normalised velocity profiles is negligible for cases that have the same slip coeffi-
cient, channel height and wall permeability.

The effect of Re on the pressure drops per unit length is much more pronounced
as demonstrated in Figs. 10, 11, 16 and 17. The pressure drop per unit length for
high Re cases (Re = 5) are an order of magnitude higher than those for the low
Re(Re = 0.5) cases.
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3.7 Comparison with Saffman’s Boundary Condition

At this point, it is interesting to compare the slip velocity predicted by the model
(Eq. 7) and by Saffman’s boundary condition (Eq. 3). The values of ∂u/∂n derived
by CFD at the fluid-porous medium interface are used in Eq. (3) to calculate
uinterface, which is then compared with the analytical values of uinterface calculated by
Eq. (7). Table 2 lists the normalised velocity on the interface surface calculated by
both methods for different cases. Note that O(k) is neglected in Eq. (3) following
Nield (2009) and Mohais et al. (2011b). The absolute values of the differences in
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Table 2 Comparison of normalised velocity u at interface surface by using different equations

Re h (m) a k (m2) Normalised
velocity u at
interface by
Eq. (7)

Normalised velocity
u at interface by
Eq. (3) (O(K)
neglected)

Difference
(%)

0.5 0.001 1 10−8 0.231 0.227 −1.69

10−6 0.751 0.739 −1.52

0.1 10−8 0.0698 0.0688 −1.42

4 10−8 0.751 0.739 −1.58

0.0001 0.1 10−8 0.0968 0.0956 −1.26

5 0.001 4 10−8 0.0704 0.0683 −3.11

0.1 10−8 0.755 0.721 −4.58

7 0.001 0.1 10−8 0.757 0.713 −5.83
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the normalised u velocity values predicted by the two methods are less than 2%
when Re = 0.5, but increase as Re increases. When Re = 7, the absolute value of
the difference is as high as 5.83% for h = 0.001 m, a = 0.1 and k = 10−8 m−2.

4 Conclusions

The flows in a 2D channel with permeable and impermeable walls were studied
using CFD techniques.

The velocity profiles based on CFD were compared with analytical solutions in
the literature (Potter et al. 2016) for impermeable wall conditions (no-slip boundary
condition) and analytical solutions developed by Mohais et al. (2011a, b) for per-
meable wall conditions (slip boundary conditions). There is good agreement
between the CFD results and the analytical solutions with an observed maximum
difference of less than 1% for all cases investigated.

The effects of key parameters—Re, slip coefficient a, permeability k and channel
height h—for the case of permeable walls were investigated using a CFD model.
The results show that, in general, when the slip coefficient a decreases from 4 to
0.1, the slip velocity at the channel-porous medium interface increases, but the
velocity at the channel centre decreases, leading to a ‘flatter’ velocity profile,
similar to that of a plug flow. This ‘flatter’ velocity profiles are a result of lower
shear stress at the interface and lower skin friction. The lower skin friction leads to
lower pressure drops per unit length along the channel.

When the wall permeability k decreases, the slip velocity at the channel-porous
medium interface also decreases which leads to an increase in shear stress, and
hence the increase in pressure drop along the channel. As demonstrated in the
results, when the permeability is less than a certain threshold, the slip velocity at the
interface becomes very small and approaches to zero, and therefore the shear stress
and pressure drop values approach those of the no-slip boundary cases.

The effect of Re on the velocity profiles is small for the range of Re values (0.5–7)
investigated in this chapter. However, the effect of Re on the pressure drops per unit
length in the channel is much more pronounced. The pressure drops per unit length
for high Re cases (Re = 5) are an order of magnitude higher than those for low
Re(Re = 0.5) cases.

We are developing a CFD model that includes both the channel and the porous
walls to further validate the velocity solutions of Mohais et al. (2011a, b) at the
channel-porous medium interfaces. The CFD model will be used to predict the
pressure drops per unit length in the porous walls that is not included in the current
chapter.
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Dedication The authors dedicate this chapter to their former colleague and friend, Dr. Rosemarie
Mohais. A short but courageous battle with cancer ended Rosemarie’s life at a tragically young age
in March 2014. This chapter is an extension of the work that Rosemarie conducted during her
membership with our research group at the University of Adelaide and it is with gratitude and
sadness that we acknowledge her contribution.
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